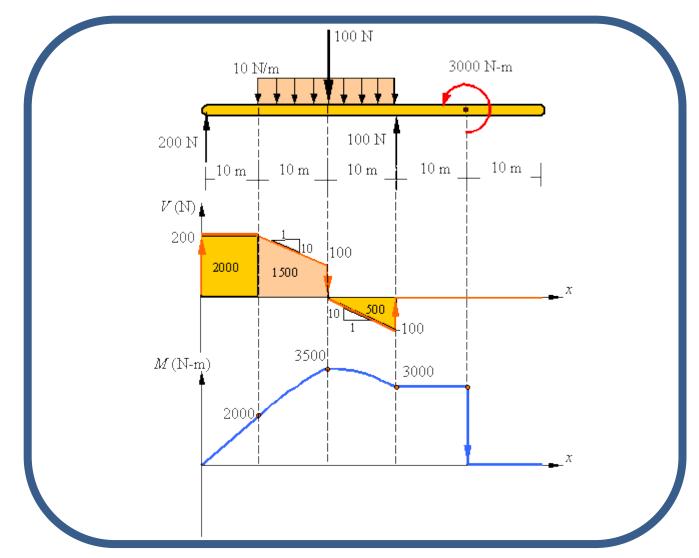
Shear Force and Bending Moment

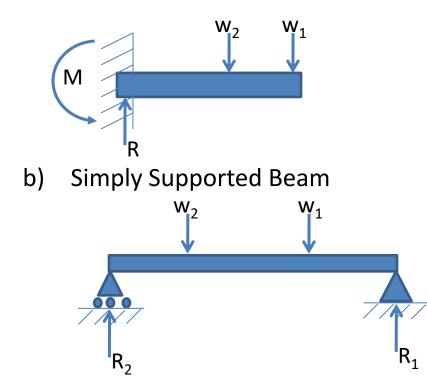


Beam – a horizontal bar carrying external forces that are inclined to its axis.

Freely/simply supported beam is one that rests on "knife edges" ie the supports that provide only the vertical reaction and no restraint at end from rotating to any slope at the supports.

Modes of Supports

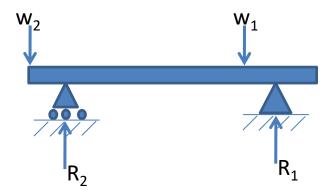
a) Cantilever Beam



• Sufficient restraint to prevent rotation of the end

- Supported by hinged reaction at one end and roller support at the other
- Not restrained otherwise.

c) Overhanging Beam



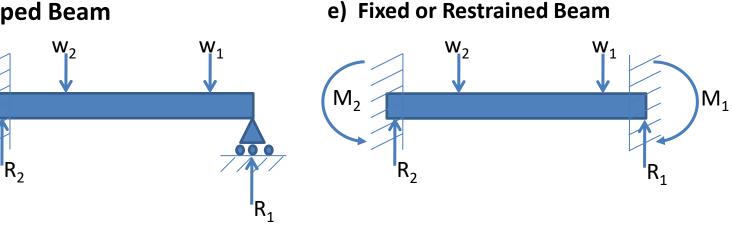
- Supported by a hinge and roller reaction
- Either or both ends extend beyond supports

Support reactions in all the above cases a, b, c can be determined by equations of static equilibrium.

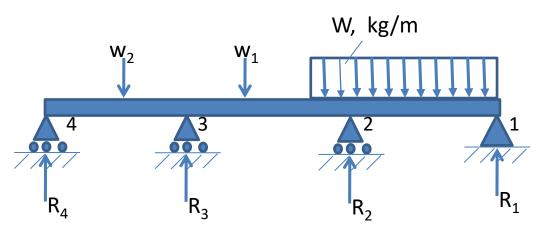
<u>Others</u>

Μ

d) Propped Beam



f) Continuous Beam



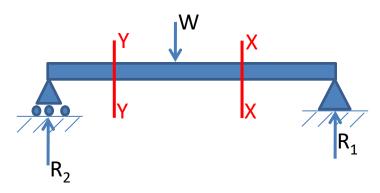
Support reaction in cases d, e, f can not be determined by equations of static equilibrium.

... Statically indeterminate.

Type of Loads

- a) Point Load (Concentrated load) is one acting over so small a distance that it can be assumed to act at a point.
- **b) Distributed Load** distributed over a part or entire length of beam.
 - 1) Spread uniformly (u.d.l, kg per metre).
 - 2) Non-uniformly (called by its pattern of non-uniformity, e.g triangular distributed).

Consider a simply supported beam carrying a point load W. let support reactions be R_1 and R_2 .



• The beam on the right of section X-X is subjected to an upward force R₁ and portion to the left of X-X is subjected to a downward force (W-R₂).

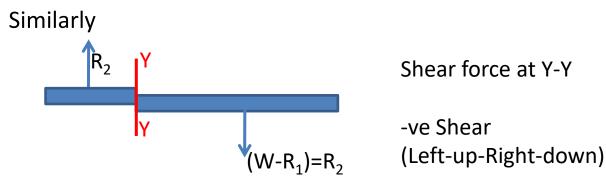
$$(W-R_2)=R_1$$

Shear force a X-X

+ve shear (Right-up-left-down)

But $R_1 + R_2 = W$ \therefore W- $R_2 = R_1$

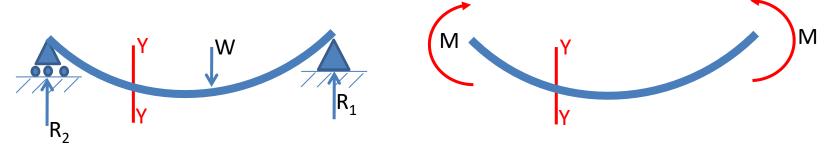
 R_1 is thus shearing the beam at section X-X.



- \therefore At section Y-Y the beam is subjected to a shear force of R₂
- Shearing force at a section of a beam is the algebraic sum of the forces on either side of that section.

$$\sum F_{left} = 0$$
 and $\sum F_{right} = 0$

• Consider a beam (simply supported) bent as a result of load W along its length



• For equilibrium, the algebraic sum of the moments due to forces to the right of this section should be equal to the moments in anti-clockwise direct

The moment causing this bending is called the **Bending Moment**. a) M M M

+ve B.M (Sagging)

-ve B.M (Hogging)

Calculation of S.F and B.M at any Section

- 1) In simply supported beams, first determine the support reaction(s).
- 2) Choose to start either from the right end or left end of beam. (In the case of cantilever always start from free end).
- 3) For S.F at any section, find ΣF (including R) acting on a chosen portion of beam or the portion of the cantilever between section and free end.
- 4) For B.M , find Σ M due to all forces acting on chosen portion.
- 5) Plot calculated values of S.F (and B.M) as ordinates to some scale. (Take +ve values above, and –ve below beam axis.)
- 6) Indicate important values, and sections where the values are max & zero.

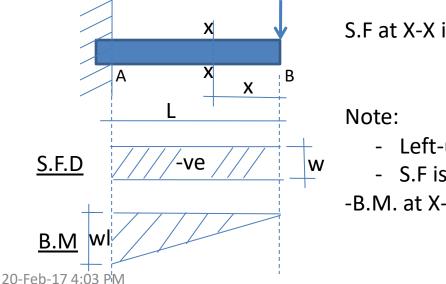
<u>Note</u>

- For point loads, the S.F diagram has straight horizontal line & B.M diagram has inclined straight line.
- For u.d.l, the S.F diagram has inclined line (mostly) & B.M diagram has curve.

Shear Force & Bending Moment Diagrams.

- 1) Cantilevers
 - Point Load at the Free End. a)

Consider any section X-X at any distance x from free end.



- S.F is independent of x

-B.M. at X-X is

Shear Force & Bending Moment Diagrams.

- 1) Cantilevers
 - a) Point Load at the Free End.

Note:

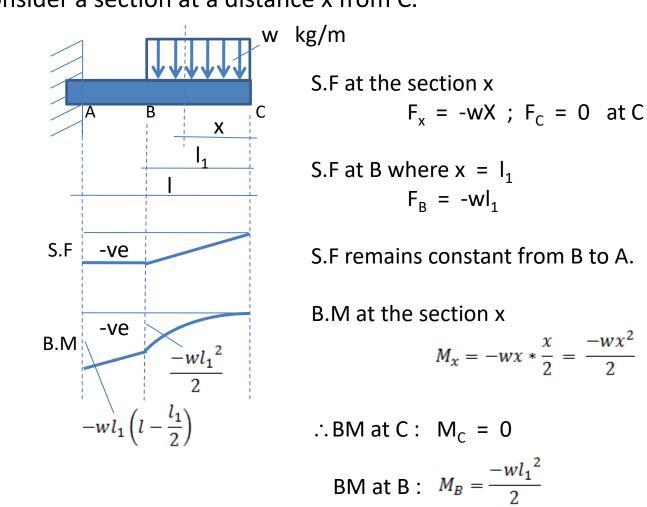
- The force causes hogging moment at section x-x ∴ -ve M.
- B.M at free end

$$x = 0$$
 \therefore $M_B = 0$

- B.M at fixed end

x = L \therefore $M_A = -WL$

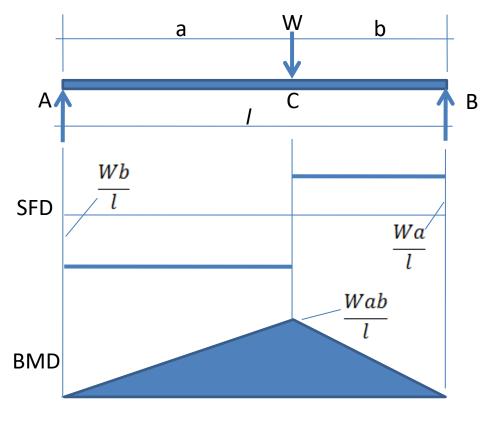
 Eqn (i) is of first degree order ∴ straight line where it changes from 0 at B to (-WL) at A. b) Uniformly Distributed Load (u.d.l) Consider a section at a distance x from C.



BM at A: $M_A = -w l_1 \left(l - \frac{l_1}{2} \right)$

Beams Simply supported at the two ends

Let the beam AB of span I carry a load W at a distance a from A and b from B.



BM at C is :
$$M_C = \frac{Wa}{l}b = \frac{Wab}{l}$$

Note: MB is max at C where SF changes sign.

20-Feb-17 4:03 PM

Take moments about A to determine support reactions:

$$R_B * l = Wa \quad \therefore \quad R_B = \frac{Wa}{l}$$

But $R_A + R_B = W$

$$\therefore \ R_A = W - \frac{Wa}{l} = \frac{W(l-a)}{l} = \frac{Wb}{l}$$

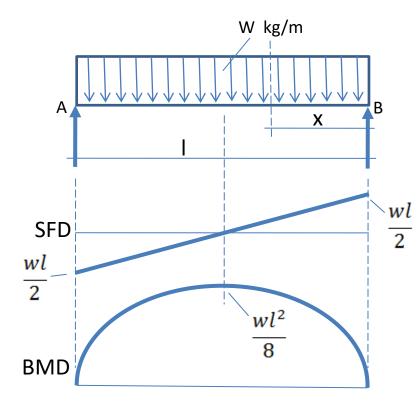
SF just left of B is: $+\frac{Wa}{l} = Const$ up to C.

SF just left of C is:

$$\left(+\frac{Wa}{l}-W\right) = \left[\frac{-W(l-a)}{l}\right] = -\frac{Wb}{l}$$

BM at the supports A & B is zero (since the beam is simply supported).

U.d.l Over the entire span



BM at the section is

$$M_x = +\frac{wl}{2}x - \frac{wx^2}{2}\dots\dots\dots\dots\dots(i)$$

∴ BM at B where x=0 is

$$M_B = +\frac{wl}{2} * 0 - \frac{w0^2}{2} = 0$$

20-Feb-17 4:03 PM

By symmetry, each support is equal to

$$R_A = R_B = \frac{Wl}{2}$$

SF at a section of distance x from B is

$$F_x = +\frac{wl}{2} - wx$$

$$\therefore F_B = +\frac{wl}{2} \qquad (x=0)$$

At the mid span
$$\left(x=\frac{l}{2}\right)$$

$$F_{Mid} = \frac{wl}{2} - \frac{wl}{2} = 0$$

$$F_A = \frac{wl}{2} - wl = -\frac{wl}{2}$$
 where $x = l$

$$M_x = +\frac{wl}{2}x - \frac{wx^2}{2}\dots\dots\dots\dots(i)$$

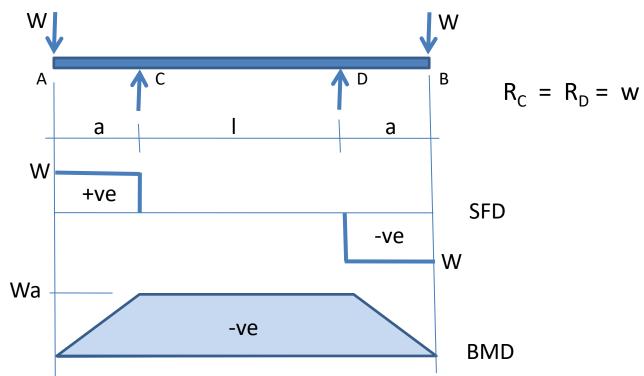
For the BM to be max, put $\frac{dM_x}{dx}$ for eqn (i) above equal to zero Slope

$$\therefore \quad \frac{dM_x}{dx} = +\frac{wl}{2} - wx = 0$$

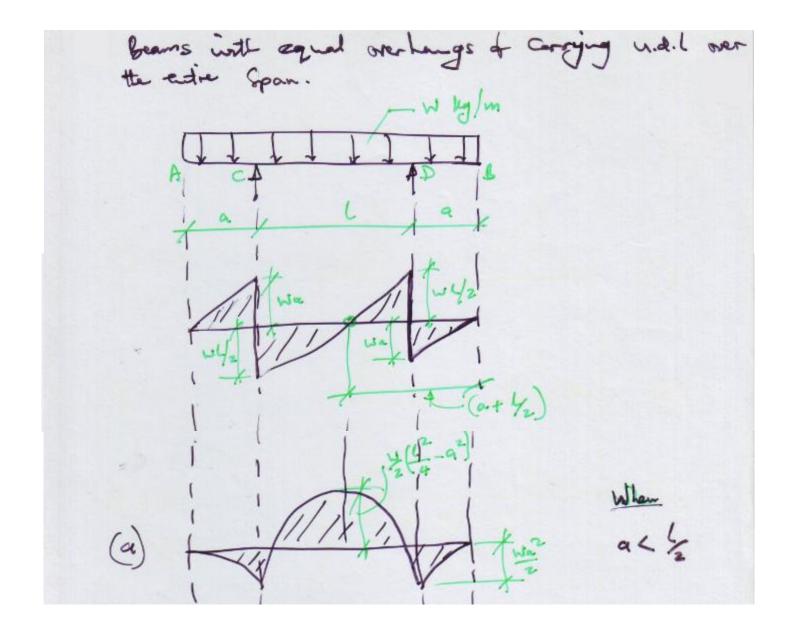
$$x = \frac{l}{2}$$
 for BM to be max (note: SF=0 at the same point)

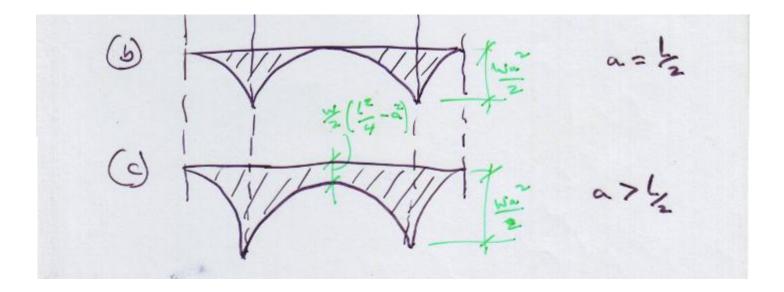
$$M_{max} = +\frac{wl}{2} * \frac{l}{2} - \frac{w}{2} * \left(\frac{l}{2}\right)^2 = +\frac{wl^2}{8}$$

Beams with overhangs



SF just to the left of B is –w and is constant up to D. SF just to the left of D is (-w+w)=0 and is constant up to C. SF just to the left of C is (-w+w+w) = w and is constant up to A. BM at D is $M_D = -wa$. BM at C is $M_C = -w(a+l)+wl = -wa$.

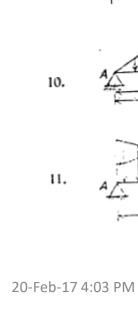


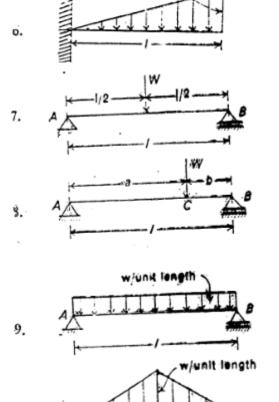


S. No.	Diagram	Shear	Bending momen:
1.		$F_{max} = -12^{\circ}$	$M_{max} = -117$
2.	w/unit length	$F_{max} = -wl$	$M_{max} = -\frac{w^{12}}{2}$
3.	w unit length	$F_{i\sigma\sigma} = -\pi I_1$	$M_{\rho i \eta j} = -w I_1 \left(l - \frac{I_1}{2} \right)$
4.		$F_{max} = -wI_1$	$M_{max} = -\frac{wI_{1}^{2}}{2}$
5.	w/unit length	$F_{max} = -\frac{wi}{2}$	$M_{m_{2}} = -\frac{wl^2}{6}$

TYPICAL STANDARD CASES OF CANTILEVERS AND BEAMS Cantilevers. (S.F. and B.M. are both maximum at fixed end of a cantilever).

20-Feb-17 4:03 PM





w/uni, length

wunit langth -

$$F_{y_{n}g_{n}} = \frac{W}{2}$$

$$F_{\text{max}} = \frac{Wa}{I}$$
 from B to C.

$$F_{max} = \frac{wl}{2}$$
 at A and B .

$$F_{max} = -\frac{wl}{4}$$
 at A and B

 $F_{max} = -\frac{wl}{3}$ at A.

٠

$$M_{elde} = \frac{wl^2}{9\sqrt{3}}$$
 at $\frac{1}{\sqrt{3}}$ from L.

 $M_{max} = + \frac{ml^2}{12}$ at C.

 $M_{max} = + \frac{Wl}{4}$ at mid span.

$$M_{max} = \pm \frac{Wab}{l} \text{ at } C.$$

.