
Deflection of Straight Beams
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Deflection of a point – distance between its position before and after loading.

Slope at a section in deflected beam – The angle, in radians, which the
tangent at the section makes with the original axis of the beam.

Stiffness of a beam – Ratio of max deflection of beam to its span.

Relationship between Curvature, Deflection and Slope.
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Due to imposed
load, let the beam
AB bend to the
curve AIBI .

From the relationship 
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Of which

EI – Flexural rigidity
R  - Radius of curvature
M – Bending moment causing deflection of 

the beam
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Elastic Curve

Consider two points P and Q on the elastic curve.
Let  - Angle made by tangent at P with X-axis .

d  - Angle between normals to the curve at P and Q.

Now 

Or

(For very small deflections, PQ = dx)
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Slope at P = ; at Q = (+d). Slope
decreases with increase in dx
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But in the case below B.M is –ve and the slope at Q is more than at P.
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At P the slope is  whereas at Q is (+d)

 Here

In both cases arc PQ = Rd

 PQ = dx (since the arc is very small)

Therefore 

(Compare with eqn (i), M is –ve for cantilever)

Therefore 
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When M is +ve (case of beams)                          is –ve

M is –ve (case of cantilever)                    is +ve.

General equation of deflection

By integrating it once we get                        - the slope equation.

By integrating it twice we get             y - the deflection.

The above equation is known as Differential Equation of Flexure.
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Sign Convention

1. When measuring along the beam from left to right, x is taken as +ve.

2. Deflection y is +ve downwards.

3. Bending moment M is positive (+ve) when sagging.

4. Slope  is +ve if while going from left to right along the beam tangent to
the elastic curve while inclined downwards.

Below: Distance x; deflection y; bending moment M and slope A are positive.
Whereas B is –ve.

A B

x

A B
y

W
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Standard Cases using the deflection equation of flexure.

1. Cantilever

a) Concentrated load w at the free end.

Consider a section X-X at a distance x from the fix end A.

Integrating we have

where C1 – constant of integration
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At A where x=0 the slope            is zero, therefore C1 = 0dx

dy
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Hence 

For slope at B where x = l

For deflection, integrate equation (i)

Deflection at A is zero, thus y=0 when x=0 therefore C2 = 0

Hence
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For deflection at B where x = l

Eqns (i) and (ii)   Slope and deflection resp.

Eqns (a) and (b)  Max values of slope and deflection at the free end resp.

2) Carrying u.d.l at the of w/unit length over entire span.

Consider a section X – X at distance x from fixed end A.
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

Integrating both sides we get:

Now at point A the slope is zero,  putting 

when    x  =  0      C1 =  0

For slope at B,  put    x  =  l
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Integrating eqn (i) for deflection, we have:

Deflection y at A is zero. Thus   y = 0 when x = 0,  C2 = 0

Hence 

For deflection at B, put   x = l
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2) Simply Supported Beam

a) Point load at mid-span

Consider a section X –X at a distance x from the support A but within the
portion AC. By symmetry the support reactions at A and B are equal to
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Integrating above expression for the slope, we have:

At mid span C, the slope is zero
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For slope at A where  x = 0

For deflection, further integrate expression (i) above:

At A deflection is zero, ie. Y = 0  when  x = 0.    C2 = 0

For deflection at C , put 
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b) U.D.L of w/unit length over the while span

Consider a section at distance x from the support A and within portion AC. By 
symmetry, support reactions at A and B are each equal to
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Integrating the above for slope, we have:

At mid-point, slope is zero  ie. 
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For slope at A, put    x = 0

For deflection, further integrate expression (i) above:

For deflection at C put    x = l/2
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Moments applied on a beam
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Determine the slope and
maximum deflection at B

Determine the slope and
maximum deflection at C
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