Deflection of Straight Beams

Deflection of a point – distance between its position before and after loading.
Slope at a section in deflected beam – The angle, in radians, which the tangent at the section makes with the original axis of the beam.

Stiffness of a beam – Ratio of max deflection of beam to its span.

Relationship between Curvature, Deflection and Slope.

Now

 $PQ = Rd\theta$

 $\frac{1}{d\theta} = \frac{d\theta}{d\theta} = \frac{d\theta}{d\theta}$

 $\overline{R} - \overline{PQ} = \overline{dx}$

Slope at P = θ ; at Q = (θ +d θ). Slope decreases with increase in dx

$$\frac{d\theta}{dx}$$
 is -ve

•

(For very small deflections, PQ = dx)

Or

Hence
$$\frac{1}{R} = -\frac{d\theta}{dx}$$

But $\frac{dy}{dx} = \tan \theta = \theta$ (small angle θ)
Therefore $\frac{d^2 y}{dx^2} = \frac{d\theta}{dx} = -\frac{1}{R} = -\frac{M}{EI}$
Therefore $EI \frac{d^2 y}{dx^2} = -M$ $\frac{\frac{d\theta}{dx}}{\frac{d\theta}{dx}}$ is -ve, so $\frac{d^2 y}{dx^2}$ is -ve.
The B.M causing deflection is +ve.

But in the case below B.M is -ve and the slope at Q is more than at P.

At P the slope is θ whereas at Q is (θ +d θ)

$$\therefore$$
 Here $\frac{d\theta}{dx}$ is + ve and so is $\frac{d^2y}{dx^2}$

In both cases arc
$$PQ = Rd\theta$$

 \cong PQ = dx (since the arc is very small)

Therefore $Rd\theta = dx$ or $\frac{d\theta}{dx} = \frac{1}{R}$ or $\frac{1}{R} = \frac{d^2y}{dx^2} = -\frac{M}{EI}$

(Compare with eqn (i), M is -ve for cantilever)

Therefore

$$EI\frac{d^2y}{dx^2} = -M$$

When M is +ve (case of beams)

M is -ve (case of cantilever)

General equation of deflection

$$EI\frac{d^2y}{dx^2} = -M$$

By integrating it once we get

$$\frac{dy}{dx}$$
 - the slope equation

is –ve

is +ve.

 $\frac{d^2 y}{2}$

By integrating it twice we get

- the deflection.

The above equation is known as **Differential Equation of Flexure**.

y

Sign Convention

- 1. When measuring along the beam from left to right, x is taken as +ve.
- 2. Deflection y is +ve downwards.
- 3. Bending moment M is positive (+ve) when sagging.
- 4. Slope θ is +ve if while going from left to right along the beam tangent to the elastic curve while inclined downwards.

Below: Distance x; deflection y; bending moment M and slope θ_{A} are positive. Whereas θ_{B} is –ve.

<u>Standard Cases</u> using the deflection equation of flexure.

Cantilever 1.

Consider a section X-X at a distance x from the fix end A.

$$M_{x} = -w(l-x)$$

.
$$EI\frac{d^{2}y}{dx^{2}} = -M = w(l-x) = wl - wx$$

Integrating we have

$$EI\frac{dy}{dx} = wlx - \frac{wx^2}{2} + c_1$$

where C_1 – constant of integration dyAt **A** where **x=0** the slope is zero, therefore $C_1 = 0$ dxMEC 3351 - Strength of Materials I 18:20

Hence $EI \frac{dy}{dx} = wlx - \frac{wx^2}{2}$... (i)

For slope at **B** where $\mathbf{x} = \mathbf{l}$

$$\theta_B = \frac{dy}{dx} = \frac{1}{EI} \left(wl * l - \frac{wl^2}{2} \right) = \frac{wl^2}{2EI} \quad \dots \text{ (a)}$$

For deflection, integrate equation (i)

$$EIy = \frac{wx^2l}{2} - \frac{wx^3}{6} + c_2$$
 where c_2 - const of integration

Deflection at A is zero, thus y=0 when x=0 therefore C₂ = 0

$$EIy = \frac{wlx^2}{2} - \frac{wx^3}{6} \quad \dots \text{(ii)}$$

)

For deflection at B where x = l

$$y_B = \frac{1}{EI} \left(\frac{wl^* l^2}{2} - \frac{wl^3}{6} \right) = \frac{wl^3}{3EI} \quad \dots (b)$$

Eqns (i) and (ii) \Rightarrow Slope and deflection resp.

Eqns (a) and (b) \Rightarrow Max values of slope and deflection at the free end resp.

2) Carrying u.d.l at the of w/unit length over entire span.

Consider a section X – X at distance x from fixed end A.

$$M_x = \frac{-w(l-x)^2}{2}$$

$$\therefore \qquad EI\frac{d^2y}{dx^2} = -M = \frac{w(l-x)^2}{2} = \frac{w}{2}(l^2 - 2lx + x^2)$$

Integrating both sides we get:

$$EI\frac{dy}{dx} = \frac{w}{2} \left[l^2 x - \frac{2lx^2}{2} + \frac{x^3}{3} \right] + c_1$$

Now at point A the slope is zero, \therefore putting $\frac{dy}{dx} = 0$

when
$$\mathbf{x} = \mathbf{0} \Rightarrow \mathbf{C_1} = \mathbf{0}$$

 $EI \frac{dy}{dx} = \frac{w}{2} \left[l^2 x - lx^2 + \frac{x^3}{3} \right] \qquad \dots (i)$

For slope at B, put $\mathbf{x} = \mathbf{l}$

$$\theta_{B} = \frac{dy}{dx} = \frac{w}{2EI} \left(l^{2} * l - l * l^{2} + \frac{l^{3}}{3} \right) = \frac{wl^{3}}{6EI} = \frac{Wl^{2}}{6EI} \qquad \text{where} \qquad W = wl \quad \dots \text{ (a)}$$

MEC 3351 - Strength of Materials I

Integrating eqn (i) for deflection, we have:

$$EIy = \frac{w}{2} \left(\frac{l^2 x^2}{2} - \frac{lx^3}{3} + \frac{x^4}{12} \right) + c_2$$

Deflection y at A is zero. Thus y = 0 when x = 0, $\therefore C_2 = 0$

Hence

$$EIy = \frac{w}{2} \left(\frac{l^2 x^2}{2} - \frac{lx^3}{3} + \frac{x^4}{12} \right) \dots (ii)$$

For deflection at **B**, put $\mathbf{x} = \mathbf{l}$

$$y_{B} = \frac{w}{2EI} \left(\frac{l^{2} * l^{2}}{2} - \frac{l * l^{3}}{12} \right) = \frac{wl^{4}}{8EI} = \frac{Wl^{3}}{8EI} \dots (b)$$

where

$$W = wl$$

2) Simply Supported Beam

a) Point load at mid-span

Consider a section X - X at a distance x from the support A but within the portion AC. By symmetry the support reactions at A and B are equal to

$$R_A = R_B = \frac{w}{2}$$
 \therefore $M_x = \frac{w}{2}x$

But

$$EI\frac{d^2y}{dx^2} = -M \implies -\frac{w}{2}x = EI\frac{d^2y}{dx^2}$$

Integrating above expression for the slope, we have:

$$EI\frac{dy}{dx} = -\frac{wx^2}{4} + c_1$$
 where c_1 - integration const.

At mid span C, the slope is zero

ie.
$$\frac{dy}{dx} = 0$$
 where $x = \frac{l}{2}$

$$\therefore EI\frac{dy}{dx} = -\frac{wx^2}{4} + \frac{wl^2}{16}$$

For slope at **A** where $\mathbf{x} = \mathbf{0}$

$$\theta_A = \frac{dy}{dx} = \frac{wl^2}{16EI}$$
 By symmetry $\theta_B = -\theta_A = -\frac{wl^2}{16EI}$

For deflection, further integrate expression (i) above:

$$EIy = -\frac{wx^3}{12} + \frac{wl^2x}{16} + c_2$$
 where c_2 – Integration const.

At **A** deflection is **zero**, ie. **Y** = **0** when x = 0. \therefore **C**₂ = **0**

$$\therefore EIy = -\frac{wx^{3}}{12} + \frac{wl^{2}x}{16} \dots \text{(ii)}$$

For deflection at C, put $x = \frac{l}{2}$ $y_{c} = \frac{1}{EI} \left[\frac{-w(\frac{l}{2})^{3}}{12} + \frac{wl^{2}(\frac{l}{2})}{16} \right] = \frac{wl^{3}}{48EI}$

b) U.D.L of w/unit length over the while span

Consider a section at distance x from the support A and within portion AC. By symmetry, support reactions at A and B are each equal to $\frac{wl}{2} = R_A = R_B$

$$\therefore \qquad M_x = \frac{wlx}{2} - \frac{wx^2}{2}$$
$$EI \frac{d^2 y}{dx^2} = -M = -\frac{wlx}{2} + \frac{wx^2}{2}$$

But

Integrating the above for slope, we have:

$$EI\frac{dy}{dx} = -\frac{wlx^2}{4} + \frac{wx^3}{6} + c_1$$

At mid-point, slope is zero ie.

$$\frac{dy}{dx} = 0 \qquad \text{where} \quad x = \frac{l}{2}$$

$$-\frac{wl}{4}\left(\frac{l}{2}\right)^2 + \frac{w}{6}\left(\frac{l}{2}\right)^3 + c_1 \qquad \Rightarrow \quad c_1 = +\frac{wl^3}{24}$$

$$EI\frac{dy}{dx} = -\frac{wlx^2}{4} + \frac{wx^3}{6} + \frac{wl^3}{24} \qquad \dots (i)$$

••••

••••

For slope at A, put x = 0

$$\theta_{A} = \frac{wl^{3}}{24EI} \quad \text{and by symmetry}$$
$$\theta_{A} = -\theta_{B}$$
$$\theta_{A} = \frac{wl^{3}}{24EI} = \frac{Wl^{2}}{24EI} \quad \dots \text{ (ii) where } W = wl$$

For deflection, further integrate expression (i) above:

$$EIy = -\frac{wlx^3}{12} + \frac{wx^4}{24} + \frac{wl^3x}{24} + c_2$$

$$\begin{bmatrix} y_A = 0 \\ at \ x = 0 \\ c_2 = 0 \end{bmatrix}$$

For deflection at C put x = l/2

$$y_{c} = \frac{1}{EI} \left[-\frac{wl}{12} \left(\frac{l}{2} \right)^{3} + \frac{w}{24} \left(\frac{l}{2} \right)^{4} + \frac{wl^{3}}{24} \left(\frac{l}{2} \right) \right] \implies \frac{5wl^{4}}{384EI} = \frac{5Wl^{3}}{384EI}$$

Moments applied on a beam

Determine the slope and maximum deflection at C