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Preface

The principal feature of this edition is the introduction of the Systeme
International d’Unites (SI), under which the United Kingdom is
adopting the metric system. Also the opportunity has been taken to
bring the notation up to date, by the use of sigma and tau for stresses,
epsilon for strains, for example.

It sets out to cover in one volume the whole of the work required up to
final degree standard in Strength of Materials. The only prior know-
ledge assumed is of elementary applied mechanics and calculus. Conse-
quently, it should prove of value to students preparing for the Higher
National Certificate and professional institution examinations, as well
as those following a degree, or diploma course.

The main aim has been to give a clear understanding of the principles
underlying engineering design, and a special effort has been made to
indicate the shortest analysis of a wide variety of problems. Each
chapter, starting with assumptions and theory, is complete in itself
and is built up logically to cover all aspects of the particular theory.
In this way the student is made aware of the limitations from the start,
and, although he may leave sections of a chapter to be digested later,
it should enable him to avoid making errors in principle.

Separate paragraph numbers are used for each chapter to enable
quick reference to be made, and equation numbers quoted in worked
examples are from the current paragraph except where stated. A
summary of formulae, methods, and underlying principles is given at the
end of each chapter; specialized works of reference have been quoted for
the use of readers wishing to extend their knowledge of a particular
branch of the work.

Examples worked out in the text, and problems given at the end of
each chapter, are typical of National Certificate and Degree standard.
The 2im has been to present a diversity of problems without undue
overlapping. Acknowledgement is made to the Senate of the University
of London for permission to use questions from their examination
papers, which have been marked U.L. Numerical answers are given
to all the problems.

1969 G. H. RYDER
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Notation

Area, constants

Width.

Diameter, depth.

Young’s Modulus.
Eccentricity extension.
Shearing force.

Frequency of vibration.
Modulus of rigidity.
Acceleration due to gravity.
Distance, height.

Moment of inertia.

Polar moment of inertia.
Bulk modulus, radius of gyration.

Stress concentration factor, stiffness of shaft, spring, or beam.

Length. Load factor.

Bending moment, mass.

Modular ratio, mass.

Load.

Pressure or compressive stress.

Radius, reaction.

Shape factor.

Torque.

Thickness, temperature, time.

Strain energy—resilience.

Radial shift.

Volume.

Concentrated load

Distributed load, weight per unit length.

Co-ordinate; extension.

Co-ordinate; deflection.

Section modulus.

Co-ordinate; intercept.

Coeflicient of thermal expansion, angle.

Deflection.

Direct Strain.

Slope of beam, twist of shaft

Shear strain, chord angle.

Density.

Direct stress.

stresses in Directions OK, OY, OZ

Principal stresses.

Shear stress.

Poisson’s ratio.

Angular velocity. ~

Sign for maximum (e.g., M).
x
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Introduction

Strength of Materials is the study of the behaviour of structural
and machine members under the action of external loads, taking into
account the internal forces created and the resulting deformations.
Analysis is directed towards determining the limiting loads which the
member can stand before failure of the material or excessive deformation
occurs. To this end three basic sets of relations can be obtained, as set
out in the following paragraphs.

Throughout the text it will be shown how these conditions are
brought into play. It will not always be necessary to apply all the
conditions, as simplified analysis may be suggested by symmetry or
approximations. In other cases relations will be obtained by indirect
methods, e.g. by strain energy or virtual work, which themselves
incorporate certain of the basic conditions.

Conditions of Equilibrium. The external forces and reactions on a
member (including inertia forces if necessary) must form a system in
equilibrium, and are therefore related by a certain number of equations,
known as the conditions of equilibrium, depending on the configura-
tion,*

In a general three-dimensional system six such equations are obtained,
in a coplanar system three, reducing to two if the forces are parallel or
concurrent. These equations can be obtained by resolving or taking
moments, and the number of unknown forces or reactions which can
thereby be determined is equal to the number of such equations.

Stress-Strain Relations. It will be shown subsequently that for a
given material there are relations between the strains (i.e. deformation)
in a member and the stresses (i.e. internal forces) producing them.
These stresses and strains can be analysed by methods to be developed,
and equations connecting them can be obtained. The number of such
relations depends on the complication of the system in a similar manner
to that of the preceding paragraph.

Compatibility. Sometimes a number of relations can be obtained
between the strains or deformations to ensure that the system derived
from any assumptions made is compatible, i.e. the deformations can
exist concurrently. Such conditions clearly arise where a number of
parts have to fit together, as in the analysis of compound bars, beams,
and cylinders.

* See author’s Mechanics Applied to Engineering.
xi
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SI Units. In this system the fundamental units of mass, length and
time are the kilogramme (kg), metre (m), and second (s).

The derived unit of force is a Newton (N), being that force which
produces unit acceleration on unit mass, i.e.

IN=1 kg.m/s?
(note that, where standard gravitational acceleration is 9-81 m/s2, the
force of gravity — weight — on 1 kg is 9-81 N).
Multiples and sub-multiples of the basic units can be used, prefer-
ably in steps of 103 (e.g. mm length, kN =1000 N, MN =106 N, etc.).

The basic unit of stress or pressure is N/m?2, but since this is very small, '

a more realistic unit for stress analysis is the MN/m? or N/mm?2. It
will be seen that these are equal in value, and in the present text the
latter has been preferred, giving a clearer interpretation of stress as
the force acting on a “point” area.
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CHAPTER 1

Direct Stress

1.1. Load. Any engineering design which is built up of a number of
members is in equilibrium under the action of external forces and the
reactions at the points of support.

Each individual member of the design is subjected to external forces
which constitute the load on the member. Since the member is itself
in equilibrium the resultant of all the forces acting on it must be zero,
but they produce a tendency for the body to be deformed or torn
asunder. This action is resisted by the internal forces of cohesion be-
tween particles of the material itself. The external forces may be trans-
mitted through contact with other members, or may be due to fluid
pressure, gravity, or inertia effects.

The simplest type of load (P) is a direct pull or push, known tech-
nically as tension or compression, as illustrated in Fig, 1.1.

x;
7ension: P «— E F—>p
xi
Compression: P —> le —p
Fig. 1.1

An example of tension is provided by the rope attached to a crane
hook, and of compression the leg of a table. In each case the load con-
sists of two equal and opposite forces acting in line and tending to
fracture the member. The forces on the crane rope are the load being
raised at the one end and the pull of the winding gear at the other, and
on the table leg a portion of the table weight on top and the reaction
of the ground underneath. In structural frameworks some members
will be in tension, some in compression, the load consisting of the
reactions through the joints at the ends of the member.

If the member is in motion the load may be caused partly by dynamic
or inertia forces. For instance the connecting rod of a reciprocating
engine is acted on by inertia forces due to piston acceleration and due to
its own acceleration, as well as gas pressure forces on the piston and
gravity effects. Again, the load on a flywheel is created by the centrifugal
forces on the particles of the rim.

1
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Load will be measured in kg or Newtons (N). The standard gravity
forceon 1kgis9-81 N.

1.2. Stress. Across any section such as XX of the member represented
in Fig. 1.1 the total force carried must equal the load P. This is distrib-
uted among the internal forces of cohesion, which are called stresses.

If the member is imagined cut through the section XX (Fig. 1.2), each
portion is in equilibrium under the action of the external load P and
the stresses at XX,

Stresses which are normal to the plane on which they act are called
direct stresses, and are either tensile or compressive.

X

»P

|
1
| -
|@-
|
]
]
[

X
Fig. 1.2

The force transmitted across any section, divided by the area of that
section, is called the #ntensity of stress, or, for brevity, the stress (o). If
itis assumed that the load is uniformly distributed over the section, then

c=Pg4
where A is the area.

In a great many instances the intensity of stress varies throughout the
member, and the stress at any point is defined as the limiting ratio of
8P/84 for a small area enclosing that point.

(Stress is force per unit area, and the S.I. units are N/m2 or multiples
of this).

1.3. Principle of St. Venant. This principle states that the actual
distribution of the load over the surface of its application will not affect
the distribution of stress or strain on sections of the body which are at
an appreciable distance (relative to the dimensions) away from the load.
Any convenient statically equivalent loading may therefore be sub-
stituted for the actual load distribution, provided that the stress analysis
in the region of the load is not required.

For instance, a rod in simple tension may have the end load
applied either (a) centrally concentrated, or (b) distributed round the
circumference of the rod, or (c) distributed over the end cross-section.
All these are statically equivalent, but case (c) is the simplest to deal
with analytically, and St. Venant’s principle provides the justification
for always assuming this distribution to apply. For points in the rod
distant more than three times its greatest width from the area of
loading no appreciable error will be introduced.

Visit : Civildatas.blogspot.in
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1.4. Strain. Strain is a measure of the deformation produced in the
member by the load.

Direct stresses produce a change in length in the direction of the
stress. If a rod of length / is in tension and the stretch or elongation
produced is x, then the direct strain ¢ is defined as the ratio

Elongation
Original length
or £E=X / l

Normally, tensile strains will be considered positive and com-
pressive strains (i.e. a decrease in length) negative.

Note that strain is a ratio, or change per unit length, and hence
dimensionless.

1.5. Hooke’s Law. Principle of Superposition. This states that
strain is proportional to the stress producing it, and forms the basis of later
analysis in this book. It is obeyed within certain limits of stress by most
ferrous alloys (see Para. 1.7), and can usually be assumed to apply with
sufficient accuracy to other engineering materials such as timber, con-
crete, and non-ferrous alloys.

In this chapter only direct stresses and the resultant strains are being
considered, but in general a material is said to be elastic if all the
deformations are proportional to the load. Where a number of loads are
acting together on an elastic material, the principle of superposition
states that the resultant strain will be the sum of the individual strains
caused by each load acting separately.

1.6. Modulus of Elasticity (Young’s Modulus). Within the limits
for which Hooke’s law is obeyed, the ratio of the direct stress to the
strain produced is called Young’s Modulus or the Modulus of
Elasticity (E), i.e.

E=ac/e 1
For a bar of uniform cross-section 4 and length / this can be written
E=PIl/Ax 2

E is therefore a constant for a given material, and is usually assumed
to be the same in tension or compression. For those materials mentioned
in Para. 1.5 which do not exactly obey Hooke’s law it is frequently pos-
sible to apply an average value of E over a given range of stress, to satisfy
the above equations.

Young’s modulus represents the stress required to cause unit strain,
i.e. provided Hooke’s law continued to be obeyed, a stress numerically
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equal to the modulus, when applied to a uniform bar, would cause the
length to be doubled. In fact, however, for engineering materials the
strain will rarely exceed 1/1000, so that the change in length may always
be considered small compared with the original length, e.g. mild steel
has a value of E approximately 205,000 N/mm2 and will rarely be
stressed higher than 150 N/mm?2, At this value the strain is

150/205,000 =0-00073 from (1) above,

so that a bar 1 m long will change in length by 0-77 mm.

To sum up, most metals have a high value of E and consequently the
strains are always small. On the other hand rubber, though it does not
obey Hooke’s law very accurately, has a low value of E and will undergo
considerable deformation at moderate stress values.

Particular values of E for various materials are given in the Appendix.

Since strain is dimensionless, it follows that the units of E are the
same as those of o,

1.7. Tensile Test. The following remarks apply mainly to the be-
haviour of mild steel, but other engineering materials show the same
phenomena to a varying degree. Further discussion of tensile tests will
be found in Chapter XIX.

The test is carried out on a bar of uniform cross-section, usually
circular, in a testing machine which indicates the tensile load being
applied. For the very small strains involved in the early part of the test,
the elongation of a measured length (called the gauge length) is recorded

D

E
B C
gg A
Qv
N
%)
0 Strain
Fig. 1.3

by an “‘extensometer” or ‘“‘strain gauge” (for particular types see
Paras. 19.9 and 19.10).

The load is increased gradually, and at first the elongation, and hence
the strain, is proportional to the load (and hence to the stress). This

Visit : Civildatas.blogspot.in

1.7. pIRecT YiHEs§ivildatas.blogspot.in 5

relation (i.e. Hooke’s law) holds up to a value of the stress known as the
limit of proportionality (point A in Fig. 1.3). Hooke’s law ceases to be
obeyed beyond this point, although the material may still be in the
“elastic’ state, in the sense that, if the load were removed, the strain
would also return to zero. The point B shows the elastic limit.

If the material is stressed beyond this point, some plastic deformation
will occur, i.e. strain which is not recoverable if the load is removed.

The next important occurrence is the yield point C, at which the metal
shows an appreciable strain even without further increase in load. In
an actual test the extensometer would be removed at or before the yield
point, further extension being measurable by dividers and scale. With
mild steel careful testing will reveal a drop in load immediately yielding
commences, so that there are two values, known as the upper and lower
yield points. For materials showing no definite yield, a proof stress is
used to determine the onset of plastic strain (Para. 19.1).

After yielding has taken place, further straining can only be achieved
by increasing the load, the stress-strain curve continuing to rise up to
the point D. The strain in the region from C to D is in the region of
100 times that from O to C, and is partly elastic (i.e. recoverable), but
mainly plastic (i.e. permanent strain). At this stage (D) the bar begins to
form a local “neck,” the load falling off from the maximum until frac-
ture at E. Although in design the material will only be used in the range
OA, it is useful to examine the other properties obtained from the test.

The maximum, or ultimate, tensile stress is calculated by dividing the
load at D by the original cross-sectional area. Here it should be pointed
out that the true stress occurring in the necked portion is much higher
than this, and in fact reaches its greatest value at the breaking load, but
it is the stress which a member can stand distributed over its original
area which interests the designer.

The capacity for being drawn out plastically before breaking is called
the ductility of the material, and is measured by the following two
quantities. If the total increase in the gauge length at fracture is ex-
pressed as a percentage of its original length, the figure is called the
percentage elongation. A similar calculation of the reduction in cross-
sectional area at the neck, expressed as a percentage of the original area,
gives the percentage reduction in area or contraction. The latter is
considered to be a better measure of ductility, being independent of the
gauge length, but both elongation and contraction are made up of
“uniform” and “local” deformations in proportions depending on
the material (see Para. 19.1 (e) ). N

ExaMPLE 1. The following results were obtained in a tensile test on a mild-
steel specimen of original diameter 2 cm. and gauge length 4 cm.
At the limit of proportionality the load was 80,000N and the extension
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0-048 mm. The specimen yielded at a load of 85,000 N, and the maximum
load withstood was 150,000 N.

When the two parts were fitted together after being broken, the length
between gauge points was found to be 5-56 cm, and the diameter at the
neck was 1-58 cm.

Calculate Young’s modulus and the stress at the limit of proportionality,
the yield stress, and ultimate tensile stress; also the percentage elongation
and contraction.

Hooke’s law is obeyed up to the limit of proportionality, and Young’s
modulus is calculated from E =Pl/Ax (Eq. (2), Para. 1.6).

P =80,000 N. =4 cm
A=7mcm? x=0-048 mm
80,000 x4 x10
%100 x 0-048
=213,000 N/mm?
Stress at limit of proportionality = P/4 =255 N/mm?

Yield stress =85,000/7 x 100 =271 N/mm?
Ultimate tensile stress =150,000/7 x 100 =478 N/mm?2

556 -4
Percentage elongation = s 100 =399,
3 -1-582
Percentage contraction = BRI x 100 =389,

1.8, Factor of Safety. It has been pointed out that stress is calculated
from a knowledge of the magnitude and position of application of the
load, the dimensions of the member, and the properties of the material.
In practice none of these factors is known exactly, and possible errors
arise from various sources.

(2) The type of load may be described as “dead” load (i.e. static,
probably gravity), “live” load (such as vehicles crossing a bridge),
“fluctuating” load (e.g. the alternating tension and compression in
the connecting rod of a reciprocating engine—see “fatigue”), or
“impact” or shock load. The magnitude of the load is frequently
subject to uncertainty, and for a given member the permissible load
decreases in the order of the types just described. Other approxi-
mations are involved when, for simplification of analysis, the load is
assumed to be concentrated at a point, or uniformly distributed over
an area.

(b) The dimensions of the member should be known with accuracy,
though any sudden changes of cross-section will cause stress concen-
trations which cannot easily be analysed (see Paras. 1.15 and 8.4). In
this respect methods of manufacture (e.g. cast, forged, or machined
surfaces) and standards of workmanship will have their influence.
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(c) The character of the material is usually assumed to be homo-
geneous and isotropic. The latter implies that the elastic properties
are the same in all directions, which is true for most metals but
certainly not so for timber. Steels and most ductile materials can be
assumed to have the same strength in tension and compression, but
cast iron and concrete are much weaker in tension than compression.
Cast materials are always liable to internal flaws and inclusions which
may be sources of weakness.

(d) Hooke’s law is assumed to apply, which will introduce an error
when dealing with cast iron, concrete, and non-ferrous alloys.

Other assumptions made in particular parts of the theory will be
stated in the appropriate chapter.

In spite of all these approximations and assumptions, a body of
theory has been developed which in many cases can be shown to agree
with experimental results within a reasonable margin of error, and
forms the basis for sound design. When dealing with problems outside
the scope of mathematical analysis the engineer must use his experience
to suggest simplifications which will enable an estimate of the stresses
to be made. Alternatively, an experimental method may be employed,
such as photo-elasticity (Para. 19.11).

The maximum permissible stress, or working stress, is determined
from a consideration of the above factors, taking into account the social
and economic consequences of failure, and the factor of safety is
normally defined as the ratio between the ultimate tensile stress and
the working stress, i.e.

Ultimate stress

Working stress

Based on this definition, values used in engineering design will vary
from about 3 (for dead loads accurately known) to 12 (for shock loads of
indefinite magnitude).

It is becoming more frequent practice to define the factor of safety
as the ratio of the yield stress (or sometimes the elastic limit) to the
working stress, since the member is considered to have “failed” if the
stress in any part of it is sufficient to cause plastic deformation. If this
interpretation is intended, it should be stated, otherwise the previous
definition will be assumed.

A more logical approach, particularly for ductile materials and all
problems of instability (e.g. struts), is to work with a load factor, being
the ratio between the load at failure and the working load. Again, where
rigidity is the main criterion, design may be based on a limiting
deflection when subjected to the working load.

A more detailed discussion of the cause of failure is reserved until
later (Para. 3.21).

Factor of safety ==
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1.9. Strain Energy, Resilience. When a tensile or compressive load
P is applied to a bar there is a change in length x which, for an elastic
material, is proportional to the load (Fig. 1.4).
'The strain energy (U) of the bar is defined as
the work done by the load in straining it.

For a gradually applied or “static” load the
work done is represented by the shaded area
in Fig. 1.4, giving

U=1Px (1

e
Extension

To express the strain energy in terms of
the stress and dimensions, for a bar of uniform

Fig. 14 section 4 and length [ substitute P=c¢A
(Para. 1.2) and & =0l/E (Para. 1.6), giving
U=%.04.6l/E
=(0?/2E)Al 2)

But Al is the volume of the bar, and hence equation (2) can be stated:
“the strain energy per unit volume (usually called the resilience) in
simple tension or compression is 62/2E.”

Proof resilience is the value at the elastic limit, or at the proof stress
for non-ferrous materials (see Para. 19.1).

Strain energy is always a positive quantity, and, being work units,
will be expressed in N (i.e. Joules).

ExaAMPLE 2. Calculate the strain energy of the bolt shown in Fig. 1'5 under
a tenstle load of 10 kN.

Show that the strain energy is increased, for the same maximum stress, by
turning down the shank of the bolt to the root diameter of the thread.
E =205,000 Njmm?2 )

It is normal practice to assume that the load is distributed evenly over
the core of the screwed portion (i.e. the root diameter 16.6 mm. Area of
core =217 mm?2.

"""""""""" [T 1
N - .f E
__________ T:._ T
Fig. 1.5
Stress in screwed portion =10,000/217
=46 N/mm?2
Stress in shank (at 20 mm dia., area 314 mm?)
=10,000/314
=31-8 N/mm?
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Total strain energy, from (2)

1
=5 %305 00046” .82
2 ><205,000(4-6 x 217 x 25 +31-82 x 314 x 50)
=67 N.mm

If now the shank is turned down to 16:6 mm dia. the stress in the bolt
will be 46 N/mm?2 throughout, and the strain energy

=462 x 217 x 75/(2 % 205,000)
=84 N.mm.

The reader should check the calculation by using equation (1), in
which P =10 kN and % is the total extension of the bolt.

r.10, Impact Loads. Supposing a weight W falls through a height &
on to a collar attached to one end of a uniform bar, the other end being
fixed. Then an extension will be caused which is greater than that due
to the application of the same load gradually
applied. (Note that, if the bar does not fail, ¥’
will subsequently oscillate about, and come to
rest in, the normal equilibrium position.) A Area A

In Fig. 1.6, x is the maximum extension set
up, and the corresponding stress in the bar is f P4

Let P be the equivalent static or gradually

7. 777///77777477

applied load which would produce the same w

extension x. Then the strain energy in the bar !

at this instant is $Px, by Para, 1.9, ‘ K73
Neglecting loss of energy at impact, the Y- X

following equation is obtained : Xig
Loss of potential energy of weight=Gain of Fig. 1.6

strain energy of bar

ie. W(h +x) =3P«

Applying the relation x=Pl/AE (Para. 1.6), a quadratic in P is
obtained, i.e.

W(h + PI|AE) = {(P2l/ AE)
Rearranging, and multiplying through by AE|I,
P22 - WP - WhAE(l=0
Solving, and discarding the negative roat,
P=W ++/(W2+2WhAE]I)
=WT[1++/(1+2hAE/WI)]

From which % =PI/AE and ¢ = P/4 can be found.
The particular case of £=0 (i.e. for a suddenly applied load) gives a
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value P=2W; i.c. the stress produced by a suddenly applied load is
twice the static stress.

The above simple analysis assumes that the whole of the rod attains
the same value of maximum stress at the same instant. This however is
not strictly correct; a wave of stress is set up by the impact and is
propagated along the rod. The actual maximum stress set up will then
depend on the dimensions of the rod, its density, and the velocity of the
load at impact. Usually the approximate analysis gives results on the
“safe” side, but this is not always the case,

ExamMpLE 3. Referring to Fig. 1-6, let a mass of 100 kg fall 4 cm on to a
collar attached to a bar of steel 2 cm diameter, 3 m long. Find the maximum
stress set up. E=205,000 N/mm?2.

Applying the result just obtained

o =P[A=WI[1++/(1 +2RAE/WI)]/A where W =
100 x9-81 N

_ o8ty 1, 240 xm x 100 x 205,000
1007 T\ T 981 x3 x1,000

=9-81(1 +42-8)/w (note units are N and mm)
=134 N/mm?2

i.e. even with only a 4 cm drop the maximum stress is nearly 44 times the
“static” stress.

EXAMPLE 4. If in the previous problem the bar is turned down to 1 cm
diameter along 15 m of its length, what will be the maximum stress and
extension caused by the 100 kg load falling 4 cm?

Let P be the equivalent gradually applied load to cause the same maxi-
mum stress. The corresponding extension is made up of two parts

x= Pl|AE +Pl,/A,E
_P.1500 . P.1500
"~ (25mE  (100mE

75P .
B ~a D
7 x 205,000
Applying the energy equation
W(h +x)=3%Px

75P , 75P _
%81 (_40 +m) =3P 505,000 (from (i))
7 x 205,000 P2 081 x 40 x a7 x 205.000
. £ _ , o
x 75 5 ~981P y
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75
=981 x981+/(1 +700)
=27,000 N

Solving P=981 + J (9812 1281 x 807 205,000)

The maximum stress will occur in the smallest section, giving
P 27,000

A
o=—

A~ 25x¢
=343 N/mm?

The maximum extension
L 75P
" @ x 205,000
=314 mm

from (i)

If the bar is already stressed before impact, e.g. if the collar in the
previous examples is given a weight value, it would be correct to allow
for the loss of potential energy of this
weight after impact and equate the
total loss of potential energy to the
difference between the final and initial
strain energies. Let W’ be the weight of
the collar and LM in Fig. 1.7 represent
the further extension after impact,
then the area ALMB represents the in- W -4 c
crease in strain energy. But area ALMC,
being W’ times the added extension, /
represents the loss of potential energy O  f, M
of the collar after impact, leaving area Fig. 1.7
ABC to be equated to the loss of energy
of the falling weight alone.

Consequently the stress due to impact may be calculated without
consideration of the initial stress, the final total stress being found by
adding on the initial stress,

ie, P=P+W

where P’ is calculated on the assumption of zero initial stress (as in
Fig. 1.8).

Pl AT

ExampLE 5. The loads to be carvied by a lift may be dropped 10 cm on to
the floor. The cage itself weighs 100 kg and is supported by 25 m of wire
rope weighing 0-9 kg/m, consisting of 49 wires each 16 mm diameter. The
maximum stress in the wire is limited to 90 N/mm? and E for the rope 1is
70,000 Njmm?2. Find the maximum load which can be carried.
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and for the whole rod:

12isit : Civildatas.bloSERENGTH OF MATERIALS 1.10.

The maximum stress will occur at the top of the wire rope, and the

initial stress is found from the weight of cage and rope. 1

4Pdx
wld +(D -d)x/l)2E
0

Extension =

4

-1 .ﬂ’{ 1
D-d'nE d+(D—d)x/l}o

_ 4P (1 1
" #E(D -d) d"f))

A ¢ _ 4Pl
Fig. 1.8 “wDdE
Initial stress 100 +25 x09
s RGO
=124 kg/mm?2=12-2 N/mm? P P

Subtracting this from the permissible stress of 90 N/mm?2 the increased ,
stress due to impact is 77-8 N/mm?2. This would be caused by an equivalent X e
static load of dx

Fig. 1.9

77-8 x49 x (7/4)(16)2=7670 N =782 kg

with an extension of . .5
ExampLE 7. What is the condition for a column to have uniform strength

(i.e. constant maximum stress) under the action of its own weight when a
longitudinal stress o is applied to the top?

Let the cross-section at the top be a, and .
at a distance x from the top be 4. Fig. 1.10 e
shows the forces acting on a slice of
thickness dx, where w is the density and o
the uniform stress.

77-8 x25 x 100
70,000
If W is the load dropped, applying the energy equation gives
W(h +x)=1Px
W10 +2-78) =% x 782 x 2:78
782 x 278
T2 x1278

1.11, Varying Cross-section and Load. It is usual to assume that
the load is uniformly distributed over the cross-section, and hence the

stress will be inversely proportional to the area.
The load also may vary, as in the case of a column where its own

=2-78 cm.

=85 kg
Equating forces
o(4+dA) -cA=wAdx
Separating variables d4/A4 =wdx/oc !
Integrating  log, 4 =(w/o)x +C @) E
When x=0, 4 =a 77

weight is to be taken into account, and in the case of inertia loading on ' '
members in motion. =.C=log, a, { Al
~ll® N ] I_——.—_—i
EXAMPLE 6. A rod of length l tapers uniformly from a diameter D at one gwving  log, (4/a) =wx/o from (i) _1dx
end to a diameter d at the other. Find the extension caused by an axial load P. or A = gew¥io o(A+dA)
i i i wddax
At a distance x from the small end the diameter is ExaMPLE 8. A steel rod of uniform ection, —
ig. 1.

1 m long, is rotated about a vertical axis
through one end at vight angles to its length, at 1000 r.p.m. If the density
of the material is 7-8 glcm3 find the maximum stress.

Let the stress at a distance x from the axis be o, in Fig. 1.11, and at
% +dx, 6 +do. Writing the area as 4, density p, and angular velocity w, the

d+(D -d)x/l by proportion (Fig. 1.9).

The extension of a short length dx
4Pdx

= wld+(D - d)x/I2E
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forces acting on an element of length dx are shown in Fig. 1.12,
(p Adx)xw? being the centrifugal force.

4 —>
oA __>—->(a+do)A
POBEEN ok PAAT - x0?
dx dx
Fig. 1.11 Fig. 1.12

For equilibrium

(6 +do)4 - 04 + (pAdx)xw? =0

or do = — (pxw?)dx
I ating o= - px2a?(24C G
When x=I, =0
SC=plw?[2
and o =(pw?/2)(I12 -x2) from (i)

The maximum stress occurs at the axis, x =0,
ie _pwH?  7-8 x10002 x (27)2 x 12
e TS 2 X602

=42-8 N/mm2 (1 N=1 kg m/s?)

1.12. Compound Bars. Any tensile or compressive member which |

consists of two or more bars or tubes in parallel, usually of different
materials, is called a “ compound” bar. The method of analysis will be
illustrated by two examples.

LLLELI LI L L IO I TIEr TS ExaMPLE 9. 4 compound bar (Fig.
P p 1.13) is made up of arod of area A,
and modulus E, and a tube of equal
length of area A, and modulus E,.
If a compressive load P is applied to
the compound bar find how the load

is shared.

UL L L L L L L L

Fig. 1.13

Since the rod and tube are of the same initial length, and must remain

together, then the strain in each part must be the same. The total load |

carried is P, and let it be shared W; and W,.

Compatibility equation : Wl / A lE 1= Wz/ A 2E2 (i)

Equilibrium equation: Wi+W,=P (ii)
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Substituting W, = 22,22, W, from (i) in (ii) gives
Ay E;

AE,;\
i 28)-
_ P, AlEl
or 17 4,Fy + AE,
P.
Then AE om )

2T 4B, + AE,

ExampLE 10. A4 central steel rod 18 mm diameter passes through a copper
sleeve 24 mm inside and 39 mm outside diameter. It is provided with nuts and
washers at each end, and the nuts are tightened until a stress of 10 N|mm?
is set up in the steel. The whole
assembly is then placed in a lathe

and a cut is taken along half the E die defrizg
length of the tube, rvemoving the W m
copper to a depth of 1-5 mm (a) Cal- Wz 7772772
culate the stress now existing in the Fig. 1.14

steel. (b) If an additional end thrust
of 5000 N is applied to the ends of the steel bar calculate the final stress in
the steel. E;=2E,.

When the nuts are tightened on the tube, the effect is to put the steel
rod in tension (stress o;;), and the copper tube in compression (stress o).

Equilibrium equation:

Pull on rod =Push on tube
ie. a 1(m/4) 182 =0 ,1(7/4)[392 — 242]
10 x324 =0,4(1521 - 576)
giving 0,1 =343 N/mm?

(a) When the tube is reduced in area for half its length, let the com-
Pressive stresses be o,, in the reduced section and 0,5/ in the remainder.
Let o, be the stress in the rod, and I the length of rod and tube.

Equilibrium equation:

Load on tube =Load on rod

ie. 0o (m[A)[362 - 242] =02 (7/4)[392 — 242] = 0,,(m/4)182

0,2720 =0,5"945 —=0,,°324
From which 0.2 =(9/20)0,, @
and 0,2’ =(12/35)0,, (ii)

Compeatibility equation:
Reduction in length of rod =Reduction in length of tube

4
Os1 "'0'52-l__0c2_0c1.l_+0c2 —o‘tl'l

E, E, 2 E, 2

ie.
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Note that reduction in length is caused by a decrease of tension in the
rod and an increase of compression in the tube. Substituting the known
values and solving for o,,, using (i) and (ii)

10 -0, _(9/20)0,, 343 1 (12/35)0,, ~343 1
2E, E, 2 E, 2

10 - 0,5 =(9/20) oy, — 3+43 +(12/35)0,; ~ 343
(251/140)0,, = 1686

ie. Tsy =9-4 N/mm2
o (b) An additional end thrust of
c3 5000N 5000 N will cause a further reduction
0.; \ in the tension in the rod and an in-
g crease in compression in the tube. Let
€3 R the corresponding stresses be o3, 0,3
Fig. 1.15 in the reduced section, and o,  in

the remainder
Equilibrium equation:

5000 =0,3(7/4)[362 — 242] - 04;3(7/4)182
giving 0,3 =(9/20)0,3 +8-85 (iii)
The load must be constant along the length of the tube, giving
0.3/ (m/4)(945) =0,3(7/4)720 as before
ie. v,3 =(16/21)0,3
=(12/35)0,3 +6-75 from (iii) (iv)

Compatibility equation referred to initial conditions,

’
051—053. l_0c3_0cl.£ O3 _acl.é

E, E, 2" E 2
Substituting from (iii) and (iv) and solving for o3
10 — 033 =(9/20)0,3 +8-85 — 343 + (12/35)0,3 + 675 + 343
(251/140)0,; =126
053 =07 N/mm?
1.13. Temperature Stresses. If a compound bar made up of several

materials is subjected to a change in temperature there will be a tendency
for the component parts to expand different amounts due to the un-

equal coefficients of thermal expansion. If the parts are constrained to |

remain together then the actual change in length must be the same for
each, This change is the resultant (taking into account positive and

negative strains) of the effects due to temperature and stress conditions. |
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ExXAMPLE 11. A steel tube 2-4 cm external diameter and 1-8 cm internal dia-
meter encloses a copper rod 1-5 cm diameter to which it is rigidly joined at each
end. If, at a temperature of 10°C there is no longitudinal stress calculate
the stresses in the rod and tube when the temperature is raised to 200°C.

Es=210,000 N/mm?2 E:=100,000 N /mm?2
Coefficients of linear expansion: o,=11 x10-6/°C., «=18 x10~6/°C.

From the constants given it is seen

that the copper rod would expand Final
more than the steel tube if it were position
free. Since the two are joined to- prrrzzzzzzzzzzzzZ), |
gether the copper will be prevented

from expanding its full amount and '
will be put in compression, the steel Y7ILI IS | 2
being put in tension, the compound \/ N
bar taking up an intermediate posi- Positions

tion (Fig. 1.16). if free
Let o,=compressive stress in Fig. 1.16
copper,
and o;=tensile stress in steel.
Equilibrium equation:
ou(m4)(1°57) =0 (mA)[242 ~ 1.87]
ie. o,=1120, @)

Compatibility equation: (it may be assumed that the briginal lengths
are the same).

Temperature strain of rod — Compressive strain
=Temperature strain of tube + tensile strain
18 x10-6(200 - 10) - ¢,/100,000 =11 x 10-6(200 - 10) +0,/210,000
ie. 476 0, +10 0,=1330
Substituting for o, from (i) in (ii)

0,=1330 / 15-96=83-3 N/mm?2

From (j): 0,=112 x83-3 =93-3 N/mm?

!

1.14. Elastic Packings. This includes a variety of problems in
which two parts are held together by bolts which are tightened against
elastic washers or sheets of packing. Solution is obtained by a con-
SIdel:lation of the statical equilibrium and the elasticity of the bolts and
packing.
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ExampLE 12. A4 square rigid base plate of 20 cm. sides bears a column which

applies a central load of 5 RN. The base plate is held down to a rigid founda-
tion by 4 bolts placed symmetrically at the corners of a square of 16 cm sides.

Between the base plate and the foundation there is a sheet of elastic packing.
While the load is carried the bolts are tightened to a tension of 0-5 kN, the

extension of the bolts being half the compression of the packing due to thelload |
and the tension in the bolts. If the Line of action of the load shifts 2 cm. §

parallel to a side of the base plate, find the new tensions in the bolts.
(U.L.)

Since the eccentric load is equivalent to a central load and a couple, it |
follows that the base plate will rotate about its centre line, the net upthrust }

of the packing and bolts remaining equal to 5 kN.

Although the packing acts over an area, a “line” diagram can be ]
considered (Fig. 1.17), in which the action of the bolts is shown in pairs }

dimns.incm

Fig. 1.17

and the upthrust of the packing is treated as a load per unit length of

varying intensity.

Let the initial extension of each bolt be e. Let one pair of bolts increase |

in length by x, the other pair decreasing by x, when the load is shifted.

For two bolts together, the initial load of 1 kN produces an extension e. §
Hence an extension x will be produced by a load of x/e kN. This implies j

an increase in tension of x/e kN on one side of the plate, and a decrease
of x/e kN on the other side.
The total initial load on the packing is 7 kN, distributed over 20 cm

and causing a compression of 2¢. That is to say, a compression of 2e is |
produced by a rate of loading of 3% kN/cm. After the load is shifted the |
change of compression at the edge of the packing is x by geometry, and |
the mean change is therefore §x, which corresponds to a mean rate of |

loading of

5 % 7 7 x
§.2;.2_(—) or 6—4-—e-kN/Cm.

Multiplying the mean rate of loading and the distance on one side of the :

centre line gives the change in total force in the packing on one side,
7 x 35 x

ie. @ -210 or 3~2-;kN
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upwards on one side and downwards on the other. These forcc?s act
through the centroid of the load distribution diagram, which is a triangle
representing a rate of loading increasing uniformly from the centre out-
wards. This centroid is 4.10 or 29 ¢m from the centre line.

Taking moments about the centre line (Fig. 1.17),

x 35x 20
2x:x8+2x3—2-;x—§=5x2

. x_5x24

giving e 367

But the change in tension in each bolt separately is
ix/e =0-164 kN
Hence the final tensions in the bolts are
0-5 +0-164 =0-664 kN
and 0-5 -0-164 =0-336 kN.

1.15. Stress Concentrations in Tensile Members.When a member
is subjected to a tensile load, it has so far been assumed that the stress
is uniform and is obtained by dividing the load by the corresponding
area of transverse cross-section. However, if a rapid change of cross-
section occurs along the length of the member, the stress will no longer
be uniform, and cannot be calculated by the normal procedure. The
ratio

Maximum stress
~ Average stress at minimum section

is called the stress concentration factor, and values of this ratio for some
important cases are given below.

(1) Small Elliptic Hole at the Centre (Fig. 1.18(a)). By theoretical
8
;Egiib |
¢ L_ 2r

() Y
Fig. 1.18
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analysis Inglis showed that the maximum stress would occur at the |

ends of the semi-major axes ¢, and the stress concentration factor
k=1+2afb
the width of the plate being considered large compared with a.

Note that as b becomes small, % increases very rapidly, the limiting 7

case representing a transverse crack in the plate. On the other hand a

zero value for a reduces k to unity, i.e. a longitudinal crack has no stress ]
concentration effect. When a =25 the hole becomes circular, and k=3, §

(2) Circular Hole at the Centre (Fig. 1.18(b)). By an approximate |

analysis Timoshenko obtained the following values for  to be applied
to the mean stress at the minimum cross-section.

r/B 0-167 01 , 0-0625 0-05

k 2:25 2-46 f 271 297

Similar results over a different range of sizes were obtained photo- |
elastically (see Para. 19.11) by Frocht. A selection of values is quoted |

below.

r/B ' 0-333 0-292 0-222 0-143 0-083

k ’ 2-05 21 2:15 23 25

Note the agreement with paragraph (1) above for small values of r/B.

(3) Edge Fillets (Fig. 1.19). These values were also determined
photo-elastically, and are as follows.

r/B 0-333 0-292 0-222 0-143 0-083
(a) k 1-25 1:35 1-65 205 23
(b) k 1-25 1-3 1-5 1-65 1-8

In a ductile material, the full stress concentration factor may not be
developed if local yielding has occurred, as the above factors have been
determined for the elastic region. When the material becomes plastic
at any point a redistribution of stress and strain will occur. However,
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under rapidly fluctuating loads (see “fatigue”) this r?distribution may
not be able to take place, so that stress concentratlor.xs are always a
danger under “fatigue” conditions and in brittle materials.

3 .
O\t
(a) (b)

Fig. 1.19

SUMMARY

Stress o =P[A assuming uniform distribution over the cross-section
Strain ¢ =/l

Modulus E = g/e = Pl{Ax within the limits of Hooke’s law.

Ultimate stress

Working stress

Collapse Load

Working Load

Strain Energy U =4Px =(02/2E) x volume.

Impact Loads: Loss of P.E. = Gain of S.E.

Varying cross-section and load: solution by integration.

Compound bars and temperature stresses: apply l.oad equation for
equilibrium, and compatibility equation if parts remain together.
Elastic packings: consider elasticity and equilibrium.
Maximum stress
Average stress at minimum section

Factor of Safety =

Load Factor =

Stress Concentration Factor =
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PROBLEMS

1. A tie bar on a vertical pressing machine is 2 m long and 4 cm diameter.
‘What is the stress and extension under a load of 100 kN? E =205,000 N/mm?,
(796 N/mm?2; 0-78 mm)
2. A brass tube 5 cm outside diameter, 4 cm bore, and 30 cm long, is com-
pressed between two end washers by a load of 25 kN, and the reduction in
length measured is 02 mm. Assuming Hooke’s law to apply, calculate Young’s
modulus. (63,600 N/mm?2)
3. A rod 1 m long is 10 cm?2 in area for a portion of its length and 5 cm?
in area for the remainder. The strain energy of this stepped bar is 409, of that
of a bar 10 cm? in area 1m long under the same maximum stress. What is the
length of the portion 10 cm? in area? (40 cm)
4. A compound bar 90 cm long is made of a rod of steel 30 cm long 3 cm
diameter securely fastened to a rod of copper 60 cm long. Under a pull of 50 kN
the extensions in each portion are found to be equal. What is (a) the diameter
of the copper rod, (b) the stresses in steel and copper, (c) the work done in
extending the compound bar? Es=205,000 N/mm?2; E.=110,000 N/mm?2.
((a) 5-8 ecm; (b) 70-6, 18-9 N/mm?2; (c) 5-17 Nm)
5. A vertical rod 2 m long, fixed at the upper end, is 13 cm? in area for 1 m
and 20 cm? in area for 1 m. A collar is attached to the free end. Through what
height can a load of 100 kg fall on to the collar to cause a maximum stress of
50 N/mm?2? E=200,000 N/mma2. (1-32 cm)
6. Two rods A and B of equal free length hang vertically 60 cm apart and
support a rigid bar horizontally. The bar remains horizontal when carrying a
load of 5000 kg at 20 cm from A. If the stress in B is 50 N/mm? find the stress in
A and the areas of A and B. Ea=200,000 N/mm?; Ep=90,000 N/mm2.
(111 N/mm2; 295 mm?2; 327 mm?)
7. The cross-section of a bar is given by (1 +x2/100) cm2 where x cm is the
distance from one end. Find the extension under a load of 20 kN on a length of
10 cm. E=200,000 N/mm?. (0-008 cm)
8. Three vertical wires in the same plane are suspended from a horizontal
support. They are all of the same length and carry a load by means of a rigid
cross bar at their lower ends. One of the wires is of copper and the other two are
of steel. The load is increased and the temperature changed so that the stress
in each wire is increased by 10 N/mm?2. Find the change of temperature.
Es=205,000 N/mm2; E=102,000 N/mm?2; os=11 x1076/° C.; ¢ =18 x10~6/°
C. (-70C.)
9. A square rigid plate is hung from a rigid support by means of four steel
bars of length L and cross-section 4, symmetrically arranged. A load W is then
hung from the middle of the plate.

A steel rod of initial length L ~ A and cross-section a is now attached to the
rigid support and heated to a tempersture #° above the normal so that it can be
connected with the middle of the square plate. The four bars and rod are all
vertical and the plate horizontal. At normal temperature it is found that the load
in each of the four bars has been reduced by 20%,. Show that the values of A and
t are respectively

(WL[5E)1]/a-1/4) and (W/5EP)(1/a+1/44)
where B is the coeflicient of expansion of steel. (U.L.)

Visit : Civildatas.blogspot.in

prrect sTXkdb: Civildatas.blogspot.in 54

10. A steel tie rod 25 mm diameter is placed concentrically in a brass tube 3
mm thick and 40 mm mean diameter. Nuts and washers are fitted on the tie rod
so that the ends of the tube are enclosed by the washers. The nuts are initially
tightened to give a compressive stress of 30 N/mm?2 in the tube and a tensile load
of 45 kN is then applied to the tie rod. Find the resultant stresses in tie rod
and tube (1) when there is no change of temperature, (2) when the temperature
increases by 60° C. Es=205,000 N/mm?2; E;=80,000 N/mm2; as=1-1x
10-5/° C; ap =1-89x10-5/° C. ((1) 93-7, 2-5 N/mm?; (2) 116, 31-6 N/mm?2).

11. An elastic packing piece is bolted between a rigid rectangular plate and a
rigid foundation by two bolts pitched 25 cm apart and symmetrically placed on
the longer centre line of the plate, which is 37-5 cm long. The tension in each bolt
is initially 20,000 N, the extension of each bolt 0-0125 mm, and the compression
of the packing piece 0-5 mm. If one bolt is further tightened to a tension of
25,000 N. determine the tension in the other bolt. (20,800 N)

12. Two equal washers 15 cm apart are compressed between a rigid horizontal
base and a rigid horizontal plate by two equal bolts. The bolts are 30 cm apart,
arranged symmetrically on either side of the washers and collinear with them.
Initially each bolt is tightened to a tension of 27 kN with an extension of 0:0045
cm. If the compression of a washer is four times the extension of a bolt for the
same load, determine the increase in tension in one bolt when the other one is
further tightened to 36 kN. (1730 N)

13. The figure shows a steel bolt 2:5 cm diameter which passes centrally
through a brass tube having an outside diameter 3-8 cm and inside diameter
2-84 cm and also through a rigid cast iron body. The screw has 4 threads/cm and
the nut is initially just tight. Find the changes in the stresses in the bolt and tube
due to (a) tightening the nut by turning it through 30°, (b) an increase in
temperature of 25°C.

Assume that there is no change in the thickness of the cast iron body on
account of stress. Es =200,000 N/mm?2, E =100,000 N/mm?2, «s =13 x 10-6/°C.,
=19 x1076/°C., a;i =11 x1076/° C.

(note difference in length of bolt and tube: (a) 92:5 N/mm? each (b) 668 N/mm?2
each.

38em dia.
2:84cm dia.
f 2:5cm dia.
" '
ANRY
r— 125 em———»la— 75cm — >
Laipnid
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CHAPTER 11
Shear Stress

2.1. Shear Stress. If the applied load P consists of two equal and
opposite parallel forces not in the same line (as in Fig. 2.1), then there is
a tendency for one part of the body to slide over or shear from the other
> p Part across any section LM. If the

.~ cross-section at LM measured parallel
Lomprmmmmmees 2 1o the load is 4, then the average shear
stress 7=P/A. If the shear stress varies,
P~y then at a point 7 =8P/8A4.
. Notice that shear stress is tangential to
Fig. 2.1 the area over which it acts.

The most common occurrences of pure shear are in riveted and
cottered joints, which will be treated later in this chapter.

Shear stress is, of course, expressed in the same units as direct stress,
being load per unit area.

2.2. Complementary Shear Stress. Let ABCD (Fig. 2.2), be a
small rectangular element of sides x, y, .
and z perpendicular to the figure. Let A= — ey p

there be a shear stress 7 acting on planes N x ?

AB and CD. T { \7
It is clear that these stresses will form J Y A

a couple (7.xz)y which can only be 1 }

balanced by tangential forces on planes
AD and BC (any normal stresses which
exist will balance out in pairs). These are Fig. 2.2

known as complementary shear stresses.

Let 7’ be the complementary shear stress induced on planes AD
and BC. Then for equilibrium
) (. xz);: =(7".y2)x
ie. =1,
showing that every shear stress is accompanied by an equal
complementary shear stress on planes at right angles. The directions
of the shear stresses on an element are either both towards or both away
from a corner, to produce balancing couples.

The existence of the complementary shear stress may be an important
factor in the failure of anisotropic materials such as timber, which is
weak in shear along the grain (see Ex. 1, Chap. VII).

24

D - e -
= ¢
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It can now be shown that near a free boundary (i.e. no external
applied forces) the shear stress on any cross-section must act in a
direction parallel to the boundary. This is because if there were a
component in a direction at right angles to the boundary it would re-
quire a complementary shear stress on the boundary plane. For
example, the shear stress distribution over a section of a rivet must be
as Fig. 2.3(a) and not as 2.3(b).

@ , ®)
Fig. 2.3

This causes an obvious complication in that the shear stress varies in
magnitude and direction, though in this particular case the variation is
not usually allowed for in design. Further important applications of
this principle will be found when dealing with shear stress in beams of
various cross-sections (Chapter VII).

ExampLrr 1. A flange coupling joining two sections of shaft is required to
transmit 250 kW at 1000 r.p.m. If six bolts are to be used on a pitch circle
diameter of 14 cm, find the diameter of the bolts. Allowable mean shear stress
75 N/mm?2.

Torque to be transmitted

Watts x 60
- 2aN Nm
_ 250 x 1000 x 60
T 2w x1000
=2380 Nm

If d mm is the diameter of a bolt, the load carried by one bolt
=75 x7d?/4 N

Multiplying by the number of bolts and the radius arm, the torque
carried
=75 x (wd?/4) x6 x0-07 Nm

=2380 from above

2380 x4
. 229V 7 g6
d 757 x 0-42 963
giving d=9-82 mm, say 10 mm
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2.3 Shear Strain. The distortion produced by shear stress on an
element or rectangular block is shown in Fig.

! — 2.4. The shear strain or “‘slide” is ¢, and can be

i defined as the change in the right angle. It is

: . measured in radians, and is dimensionless.

] .

)

] 2.4. Modulus of Rigidity. For elastic
~r ' materials it is found that shear strain is pro- |

. portional to the shear stress producing it,
Fig. 24 within certain limits,

The ratio M is called the Modulus of Rigidity, i.c.
Shear strain

G =7/$ N/mm2,

2.5. Strain Energy. Within the limit of proportionality stress is |

proportional to strain, and
Strain energy (U)=Work done in straining
=}(Final couple) x (Angle turned through)

for a gradually applied stress (work done is proportional to shaded area |

in Fig, 2.5),

3

Stress
w—g ——
8
N
S~
S~

: A e

Strain ¢ T
Fig. 2.5 Fig. 2.6
i.e. U=4(ryz.x)¢ from Fig. 2.6
=%.72y2f/G from Para. 2.4
=(7%/2G) x volume

(compare with ¢2/2E for direct stress). The units are again Nm.
For suddenly applied loads the principles of Para. 1.10 may be
applied.

2.6. Cottered Joints. A cottered joint is used to join two members
by means of a tapered pin or cotter which passes through slots in the
ends of the members,
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The cottered joint shown in Fig. 2.7 may fail in the following ways:

. p
B ion in the rod: tensile stress = —__,
(1) By tension in the rod: tensile stress wd24

(2) By shear of the cotter through AB and CD: shear stress=
Pj2f,

(3) By shear of the right-hand member through EF and GH: shear
stress = P/4ab,

(4) By shear of the left-hand member through JK and LM: shear
stress = P/2ch.

(5) By crushing between the right-hand member and the cotter.

If the crushing or bearing pressure p between the two curved
surfaces (the side FH of the cotter) is assumed constant (Fig. 2.8),
then the total load P is equal to the pressure x the “projected”
area on a plane perpendicular to P, i.e.

P=p x2af
or »=Pj2of

' F_bm- Cotter

Ty

Fig. 2.7

(6) By crushing between the left-hand member and the cotter.
Here the projected area is fk, giving a crushing stress =P/fh.

7 If the joint is designed so that each of the above
values is equal to the permissible stress, it is said to
p £ be equally strong against all types of failure.
EXAMPLE 2. In the joint shownin Fig. 2.7, if the diameter
of the rod is 5 cm, and the thickness of the cotter 1.25 cm,
v 4 find the other dimensions required so that the strength
Fig. 2.8 shall be the same against all types of failure. Permissible
stresses are 300 N|mm?2 tension, 150 N/mm? shear in
the members, 225 Njmm? shear in the cotter, and 450 N/mm? crushing.

(1) Load
P =300 x (r/4)502 =588 kN
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(2) Shear of cotter
225 =588,000/(2¢ x 12-5)
e=105 mm
(3) Shear of right-hand member
150 =588,000/4ab
ab =980

(4) Shear of left-hand member
150 =588,000/2¢h
ch=1960
(5) Crushing between right-hand member and cotter
450 =588,000/(2a x 12-5)
a=>524 mm
From (3)
5=187 mm
(6) Crushing between left-hand member and cotter
450 =588,000/(2 x 12-5 x k)
h=524 mm
From (4)

2.5. Riveted Joints. These may be either lap joints (Fig. 2.9) or butt
foints (Fig. 2.10), the latter being usually provided with two cover plates.

The rivets are driven home hot, and hence will shrink away from the
holes when cold. They will exert considerable force on the plates,
pressing them together, and the friction resulting may be sufficient to
carry the load, in which case there is no transverse load on the rivets.
However, the amount of friction is a very doubtful factor, depending
on the condition of the surfaces in contact and the standard of work-
manship in applying the rivets. It is usual, therefore, to neglect friction
forces entirely, and consider that slip has taken place between the rivets
and the plates and that all the load is carried by the rivets. If the
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plates are assumed rigid compared with the rivets, then for sym-
metrically applied loads the deformation of each rivet will be the same,
and hence the load will be shared equally by the rivets.
Consider first a lap joint with a single row of rivets of pitch p. Let
Joad per rivet=P (Fig. 2.9).
t =thickness of plates.
d =diameter of rivet or hole (considered equal).
o = permissible tensile stress in plate.
7= permissible shear stress in rivet.
7" =permissible shear stress in plate.
o = permissible bearing pressure on rivet.
There are four principal ways in which the joint may fail:
(1) By tearing the plate; taking the least cross-section AB, the
permissible load is
P 1 =0 (p - d)t

(2) By shearing the rivet at the section between the plates
Py =7.7d2[4
(3) By crushing between the rivet and one plate
Py=g,.dt (see Para. 2.6, (5)).
(4) By shearing the plate along CD and EF
Py=7".2CD.t
The efficiency of the joint is taken as
Least load to cause failure
Load carried by parent plate

_ Least of P;...P, x100%
apt

x 1009,

For butt joints the cover plates should be greater than half the
thickness of the main plates, and the most efficient way to arrange, say
2®
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six rivets on either side, is in 3, 2, 1 formation (Fig. 2.10). Then, on the
assumption of equal load per rivet, the full load is carried across the
plate at A (width reduced by 1 hole), § of the load across the plate at B
(width reduced by 2 holes), and only } the load across the plate at C
(width reduced by 3 holes).

ExampLE 3. Design a double cover butt joint to withstand a load of 25,000
kg. The plates to be joined are 20-5 cm wide and 1-25 cm thick; 1-9 cm rivets

are to be used, and the permissible stresses are: shear 75 N/mm?, bearing
pressure 180 Nfmm?, tension 105 N[mm?2. What is the efficiency of the joint?

The cover plates are usually each made § of the thickness of the plates
Joined, i.e. 0-8 cm, so that they will not fail before the main plate.

N\ With a double cover joint each rivet
2 is in ““double” shear, since it can only fail
by shear along two cross-sections at the
| —t—>  same time (shown dotted in Fig. 2.11).
) Load to shear one rivet
"\ =7 2nd*/4
Fig. 2.1 =75 x (2m/4)(19)2

=42,400 N =4330 kg
Load to crush one rivet

=0, dt

=180 %19 x12-5

=42,700 N =4350 kg

. No. of rivets required 25,000/4330, say 6, arranged as Fig. 2.10.
Load which can be carried by solid plate

=gbt

=105 x 205 x12:5

=270,000 N =27,600 kg

To find the maximum load which A
can be carried by the riveted joint it
is necessary to investigate all possible

Il

1
ways of failure. . ' @
(i) Load to shear all the rivets d}R ; g
C

c

T

OO

=6 x4330=26,000 kg

(ii) Load to crush all the rivets i
=6 %4350 =26,200 kg. A

le— o—sl

by~

(iii) Plate may tear through section 212
AA (Fig. 2.12), Fig. 2.

permissible load =o(b — d)¢
=105 x (205 -19) x12-5
=244,000 N =25,000 kg

(iv) Plate may tear through section BB, at the same time shearing the
rivet at AA
permissible load =c(b — 2d)t +4330
=105 x (205 - 38) x 12-5/9-81 + 4330
=26,200 kg
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(v) Plate may tear through section CC, at the same time shearing the
3 rivets at AA and BB,

permissible load =a(b —3d)t +3 x 4330
=105 x (205 - 57) x12-5/9-81 + 13,000
=31,500kg

(vi) Cover plates may tear through section CC,

permissible load =105(205 - 57)16/9-81 = 25,000 kg
Least load to cause failure
Load carried by solid plate
25,000
=27,600 0%

2.8. Eccentric Loading. If the load is not applied through the
centroid of the rivet formation, it will not be equally distributed among
the rivets.

Any eccentric load, such as that in Fig. 2.13, may be replaced by an
equal parallel load at the centroid G, together with a couple of magni-
tude equal to the load P times the perpendicular distance k& from the
centroid on to its line of action. The equivalent loading is shown in

Efficiency of joint =

Fig. 2.13

Fig. 2.14, and A represents one of the rivets at a distance r from G.
The load on the rivet is then made up of two parts as follows:
(a) Due to P at G, each rivet has an equal load P/n, in the direc-
tion of P, where 7 is the total number of rivets.
(b) Due to the couple Ph, there will be an angular rotation 8 of the
joint about G. Assuming the plate “rigid,” and the load on a rivet

Fig. 2.14

4
{

proportional to the relative “slip” at that point between the members -

joined, the load on the rivet A =krf, where % is a constant for a given
joint.
By moments about G
Ph=X(kr).r
giving k0 = Ph/Zy2 (1)
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There must be an “instantaneous centre” I about which the joint
can be considered to rotate, and since the slip at G is Pink from (a),
IG is given by

Pink=1G .6
or 1G = P/nkf
=Zr2/nh  from (1), 2)

and is perpendicular to the line of action of P. The resultant slipatA is
given by the vector sum of P/nk from (a), and 70 from (b) (Fig. 2.15),
being equal to IA.f and perpendicular to
IA. Similarly the load in the rivet A is
2 given by TA .26,
nk IA.0 =IA.Ph/Zr2 from (1) (3)
In any particular problem the procedure
is to calculate IG from (2), and mark the
position of I. The factor A9 is calculated
Fig. 2.15 from (1), and the load in each rivet is then
found from (3), the distances IA being
either calculated or measured. It is clear that the rivet farthest from
I takes the maximum load.

ré

EXAMPLE 4. Fig. 2.16 shows a column to which a bracket is riveted, carry-
ing a load of 10 kN at a distance of ’
8 cm from the centre line of the
column. Examine the distribution of ! dimns. in
load among the rivets. cm i

The centroid of the rivet for- }(—3_)!(‘3_)' :
mation is at the centre rivet E, and a )A Q)B éc
the instantaneous centre of rotation '

¥
3.
of the joint I is found from (2) _*__eQFGbQ@E
above 3 "™ 8-
=! 2 L !
IE =2r2/nh —O, di)B Oc !

_4(34/2)2 +4 x 32

D Sr-s— {
9x8 ‘
=108/72=1-5 cm -\/\,-L\f\,\] 70 kN

Load in any rivet =(Ph/Zr2) x
(distance of rivet from I) from (3)
where Ph/Zy? =(10 x 8)/108 =0-74 kN/cm.

Load in rivet C=0-744/(32 +4-52) =395 kN.

Load in rivet B=0:744/(32 +1-52) =248 kN.

Load in rivet A =0-744/(32 +1-52) =2-48 kN.

Load in rivet D =074 x1-5=1-11 kN.

Load in rivet E =074 x1:5=1-11 kN.

Load in rivet F =074 x4-5=3-33 kN.

Fig. 2.16
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SUMMARY

Shear Stress 7 =P/A. Area tangential to stress.
Modulus of Rigidity G =7/¢.
Strain Energy U =(72/2G) x volume.

PROBLEMS

1. Estimate the force required to punch out circular blanks 6 cm diameter
from plate 2 mm thick. Ultimate shear stress =300 N/mm?2. (113 kN)
2. A copper tube, external diameter
4 cm, 6 mm thick, fits over a steel rod 100kN
2-5 cm diameter. The tube is secured to
the bar by two pins 1 cm diameter fitted

transversely one at each end. If the
temperature after assembly is raised by
50° C. calculate the shear stress in the
pins. E:=100,000 N/mm2; E;=200,000
N/mm2; ¢ =0-00002/° C.; a5 =0-000012/ < — >

°C. (70-5 N/mm?2)
3. The cottered joint shown in the
sketch carries aload of 100 kN. The F3
socket is of square section of sides x mm T
and the cotter is rectangular, 5 mm by ¢
mm. Find the dimensions d, x, b, and ¢ for the following allowable stresses
01 =110 N/mm?2; 7=80 N/mm?2; ¢, =140 N/mm2. Assume double shear 1-875
times as strong as single shear. (34 mm; 40 mm; 35 mm; 18 mm)
4. A pressure vessel is made from a cylinder with a welded longitudinal joint
and dished end plates secured by double-row riveted lap points. Plate thickness
16 mm, diameter of rivets 22 mm, pitch of rivets 60 mm. If the permissible ten-
sile stress in the plates is 100 N/mm?2 and the shear stress in the rivets 75
N/mm? find the efficiency of the joint. (59%)
5. Two steel plates 30 cm wide, 2.5 em
thick, are connected by a double-strap
butt joint, There are ten rivets 2.5 cm
diameter on each side. If the allowable
tensile stress in the plate is 75 N/mm?2
and the strengths in tension and shear are
the same, what is the maximum shear
stress? (56 N/mm?2)
6. A tie bar is attached to a gusset plate
by four rivets arranged at the corners of
a square, and the pull is applied symmetrically as shown. If the rivet at A is
now removed, the load remaining the same, calculate by what percentage the
loads on rivets B, C, and D are increased. (68%; 18%; 2%.)

-d—————— & — 9{
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CHAPTER II1
Compound Stress and Strain

3.1. Oblique Stress. Previous chapters have dealt with either a pure
normal, or direct, stress (i.e. tension or compression), or a pure shear
stress. In many instances, however, both direct and shear stresses are
brought into play, and the resultant stress across any section will be
neither normal nor tangential to the plane. If o, is the resultant stress,
making an angle ¢ with the normal to the plane on which it acts (Fig. 3.1),

0,
o
J
&
T
Fig.31 © Fig. 3.2

it is usually more convenient to calculate the normal and tangential
components ¢ and 7, then, by equilibrium

¢ =tan—17/g
or=1/(c?+7%)
Several important particular cases will now be considered, followed by
the general stress system in two dimensions.

3.2. Simple Tension. If a bar is under the 0

action of a tensile stress o along its length then m

any transverse section such as AB in Fig. 3.3 will

have a pure normal stress acting on it. The

problem is to find the stress acting on any plane

AC at an angle 8 to AB, This stress will not be _4 (% B-

normal to the plane, and may be resolved into

two components o, and 7, as outlined in Para. 3.1.
Fig. 3.4(a) shows the stresses acting on the

three planes of the triangular prism ABC. There ¢

can be no stress on the plane BC, which is a Fig. 3.3

longitudinal plane of the bar; the stress com-

ponent 7, must act “up”’ the plane for equilibrium, though if shown

34

and, from Fig. 3.2,

c

Visit : Civildatas.blogspot.in

3.2. COMPOUND smxsyif“i)%%\lﬁﬁs'bmgsmt'in 35

the other way would work out negative in the analysis. Fig. 3.4(b)
shows the forces acting on the prism, taking a thickness ¢ perpendicular

to the figure.
The equations of equilibrium are used to solve for o, and 7,.

(@ (8 0AaBt
\ Fig. 3.4
Resolve in the direction of o,:
0y.AC.t=0.AB.t.cos 0
i.e. oy=0.(AB/AC).cos §
=0 cos2 § ¢))
Resolve in the direction of 74!
74.AC.t=g.AB.2.8in
ie. Ts=0.(ABfAC).sin 0
=g.cosf.sin §
=40 sin 20 (2)
The resultant stress
0,=14/(042 +742) = c4/(cos* § + cos? §.sinZ 6)
=cocosf (3)

From these results it is seen that the maximum normal stress occurs
at §=0, and is of course equal to the applied stress o. The maximum
shear stress occurs at § =45°, and its magnitude is 4o; on these planes
there is also a normal component =}o. The variation of stress com-
ponents with 8 is given by the above equations (1), (2), and (3), o, being
zero when 0 =90° and 7, zero when =0 and 90°. The resultant stress
is a maximum when 6 =0,

The important result here is that in simple tension (or compres-
sion), the maximum shear stress is equal to one-half the applied
stress and acts on planes at 45° to it.

3.3.- Note on Diagrams. In most problems the stress is varying
from point to point in the member, and it is necessary to consider the
equilibrium of an element, which if sufficiently small may be assumed
to give the values at a “point.”
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It is clear that the results are independent of the thickness of element
considered, and for convenience this will in future be taken as umity.
Also, as the figures will always be right-angled triangles there will be
no loss of generality by assuming the hypotenuse to be of unit length. By

making use of these simplifications it will be found that the areas on . |

which the stresses act are proportional to 1 (for AC), sin  (for BC),
and cos 6 (for AB), and future figures will show the forces acting on such
an element.

3-4. Pure Shear. Let the stress on a given plane “AB” be a pure
shear stress 7, then there is an equal complementary shear stress on the
plane “BC” (Para. 2.2). The problem
is to find the stress components o,
and 7, acting on any plane “AC” at
an angle § to AB. For purposes of
convention the applied‘shear stresses
will be shown acting towards the
“corner” B, and 7, acting “up”’ the
plane AC.

Fig. 3.5 In accordance with the note in
Para. 3.3, taking the area of the plane
AC as unity, the forces acting on the element are as shown in Fig. 3.5.

Resolving in the direction of o,:
gy =(r.cos ) sin 8 + (+.sin 6) cos §
=7.sin 20

Resolving in the direction of 7,:
T={7.8in 0) sin 8 - (. cos 8) cos §
= —7.cos 20 (down the plane for § < 45°)
g =1(02+72)=7 at 20 to 7,

T =7
T /
/ 0=T
—— 45° o~
v
P’
Fig. 3.6

In this system the normal component ¢, has maximum and minimum
values +7 (tension) and -7 (compression) on planes at +45° to the
applied shear, and on these planes the tangential component 7, is zero.
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This shows that at a point where there is pure shear stress on two given

planes at right angles, the action across the planes of an element taken at

45° to the given planes is one of equal tension and compression. In fact the
two stress systems shown in Fig. 3.6 are identical and interchangeable,

" a conclusion which will be used later in examining the relation between

the elastic constants E and C' (Para. 4.3).

3.5. Pure Normal Stresses on Given Planes. Let the known
stresses be o, on BC and o, on AB, then the forces on the element are
proportional to those shown in Fig. 3.7.

Resolve in the direction of oyt c

oy =(0,.cos f) cos 8 +(o,.sind) sin § G; T

=g, cos2 § + g, sin2 0 ' L

Resolve in the direction of 7,: | Oy siné

79 =(0,.cos 0)sin § — (o, .sin ) cosf y, e l L

=4(o,- o,) sin 20

gy can be shown to vary between 0"7 cosé
the limits of o, and o,, which Fig. 3.7
become its maximum and minimum
values; 74, however, has a maximum value equal numerically to one-
half the difference between the given normal stresses and occurring on
Dplanes at 45° to the given planes. This becomes of some significance
when calculating the maximum shear stress in any complex stress
system, and it will be found that o, and o, correspond to the Principal
Stresses (Para. 3.8).

3.6. General Two-dimensional Stress System. Let the stresses
on the planes AB and BC be o,, g,, and 7, then the forces are as shown
in Fig. 43.

c Resolve in the direction of ¢,:
ag . :
- o 0g=(0,.cosf)cosd +(o,.sinf) sin 0
& onf +(7-.cz)s0)sin0+(1-.:in0)c050
I . 1+cos26 1-cos20
4 7.5in6 =0, (——2 o\ ——5—
g m— B .
4 T.cos8 +7.sin 20
=40, +0,) +3(o,—0,) cos 20 +
0 cos6 T 26 (1)
Fig. 3.8 Resolve in the directionof 7 :
79=(0,.cos §) sin 8 - (o,.sin ) cos § + (r.sin 0) sin § —(7.cos ) cos 8
=4(o, —0)sin 28 — 7.cos 20 2
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ExampLE 1. If the stresses on two perpendicular planes through a point
are 60 N/mm? tension, 40 Njmm? compression, and 30 N/mm? shear, '
Jind the stress components and resultant stress

on a plane at 60° to that of the tensile stress.
a, % Fig. 3.9 shows the forces on an element.
40s/n60°  Resolving
t‘ 09 =(60 cos 60°) cos 60° — (40sin 60°)sin 60° + 1
Yosin 60° (30 cos 60°) sin 60° + (30 sin 60°) cos 60° ~\
60° 11 3 3 1 K
e . =6Oxixé—40x%‘x-\g—~+30x2x)—/2— 1
\.306‘056‘0 +30X3/3X1
60cos 60° 2 2 3
Fig. 3.9 =15-30+7-54/3+7-54/3 ‘
=11 N/mm?2
and

79 =(60 cos 60°) sin 60° + (40 sin 60°) cos 60° — (30 cos 60°) cos 60° +
(30 sin 60°) sin 60°

=154/3 +104/3 - 7-5 +22-5

- =583 N/mm?2 Or
0, =+/(112 +58:32) 58:3
=59-3 N/mm?
at an angle to the ‘
$—tan~1583/11 (Fig. 3.10) 1

=80° 15’, (or 20° 15’ to the 60 N/mm?2 stress). Fig. 3.10

3.7. Principal Planes. It can be seen from equation (2) of Para. 3.6 §
that there are values of § for which 7, is zero, and the planes on which §

the shear component is zero are called Principal Planes.
From (2)
tan 20 =271/(0,—0,) when 7,=0,
This gives two values of 26 differing by 180°, and

principal planes are two planes at right angles,
27 From Fig. 3.11
27
in 20 = +
T A e, — o+ 4]
and cos 20 = + (0, ~ o)
Fig. 3.11 Vi(oy-0,)2 + 477

Visit : Civildatas.blogspot.in

hence two values of @ differing by 90°, i.e. the §

3.7. coMPOUND sTREssVAND Ehdldatas.blogspot.in 39

where the signs are to be taken both positive or both negative (giving
the values for 20 + 180°).

3.8. Principal Stresses. The stresses on the principal planes will
be pure normal (tension or compression) and their values are called
the Principal Stresses.

From equation (1) Para. 3.6, using the above values (Para. 3.7)

o, —0)? .27
VIR + 47 Vl(oy-o, P+ 47
3 (oy—0,)* +477]

'\/[(O'y - Gx)z + 472]
=30y +09) £3vI[(oy —0,)? +477]

The importance of the principal stresses lies in the fact that they
are the maximum and minimum values of normal stress in the
two dimensions under consideration, and when they are of opposite
type they give the numerical values of the maximum tensile and com-
pressive stresses. This can easily be verified by differentiating equation
(1), Para. 3.6,

Principalstresses =(c, +0,) +

=¥(o,+0,) £

doe/df = —( o, - 0,) sin 20 + 27.cos 26

Equating to zero for a maximum or minimum gives
tan 26 =21((c, - oy)
as before for principal planes (Para. 3.7).

3.9 Shorter Method for Principal Stresses. If it is assumed that
principal planes, by definition those on which the shear stress is zero, do
exist, it is possible to obtain a shorter analysis for their position and the
values of the principal stresses. It cannot now be shown that the prin-
cipal stresses are the maximum

values of normal stress, but the c ~
method may nevertheless be con- 7 )
sidered as a treatment from first 0 OxSiné
principles.

Let AC be a principal plane Tsiné
and ¢ the principal stress acting 6 -
on it; g,, 0,, and T are the known 4 __;:.T:‘-os P
stresses on planes BC and AB as
before (Fig. 3.12). oy cos &

Resolve in the direction of o,: Fig. 3.12

o.sin f=c,.sin 0 +7.cos 6

or g—o,=7.cot 8 (1)
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Resolve in the direction of g,
o.cos 0=a,.cosf +7.sin §

or o-o,=7.tan § 2 ‘

It is now possible to eliminate 6 by multiplying corresponding sides of ]

equations (1) and (2), i.e.

(o0 ~0)(o~ o) =12

In any numerical problem it is advisable to substitute the values of }

0y, 0y, and 7 at this stage or earlier, and solve the quadratic for the two
values of the principal stresses, but it is of interest here to proceed in
symbols:

02 (0, +0,)0+0,0,-72=0
solving, o=%(oy+0,) £3V[(0, +0,)? - 40,0, +472]
=305 +0y) £3/[(0, —0,)2 + 417]
as in Para. 3.8,

a The values of 4 for the principal :

Planes are of course found by sub-
stitution of the principal stress values
in equation (1) or (2).

0 Ts

e N
0’, s/n @

3.10. Maximum Shear Stress.
B Let AB and BC be the principal
planes and o, and o, the principal
stresses (Fig. 48).

Then, resolving

\lO'z cos @
Fig. 3.13

Ty =(03.cos 8) sin § ~ (o .sin ) cos §
=4(0, ~0y) sin 20 (compare Para. 3-13)

Hence the maximum shear stress occurs when 20 =90, i.e. on
planes at 45° to the principal planes and its magnitude is
Tmax = %(0‘2 —0y)
=34v/[(0,~0,)2+47%] From Para. 3.8

In words: the maximum shear stress is one-half the algebraic
difference between the principal stresses.

"The same result could be obtained by differentiating equation (2) of
Para. 3.6.

It should be mentioned here that, all solids being of three dimensions,
there must be three principal stresses, although in many cases the third
principal stress is zero. In calculating the maximum shear stress by
taking one-half the algebraic difference between the principal stresses
the zero principal stress will be of importance if the other two are of
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the same type. The following figures will clarify this, where oy, oy, and
o3 are the principal stresses, compression being shown negative.

I Greatest
(] l 02 a3 T
4 2 0 2
4 -2 0 3
4 2 2 1
-4 2 -2 3

EXAMPLE 2. At a section in a beam the tensile stress due to bending is
50 N/mm? and there is a shear
stress of 20 N/mm?2. Determine C
from first principles the mag-
nitude and direction of the 0

principal stresses and calculate T) 50 sin 8

the maximum shear stress. .
2] 20 sind

' [/
. 0
the bending stress acts. There 20 cos .
is no normal stress on AB, Fig. 3.14

which is a longitudinal plane of the beam. The forces are shown in
Fig. 3.14,

Resolve in the direction AB:

o sin 8=50 sin 6 +20 cos 6
6 -50=20 cot @ (1)

Let AC be a principal plane
and BC the plane on which 4

Resolve in the direction BC:
o cos =20 sin 0

0 =20 tan # (ii)
Multiply corresponding sides of equations (i) and (ii):
oo - 50) =202

or 02 - 500 -400=0
s c=50:§:10\£(25 +16)

_50+64

T2

=57o0r -7

ie. the principal stresses are 57 N/mm?2 tension, 7 N/mm?2 compression,
the third being zero.

Substituting in equation (ii)
tan 6 =3/20=57/20 or -7/20
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giving 6 =70° 40’ and 160° 40’ (differing by 90°), being the directions of |

the principal planes.
Maximum shear stress =4(57 - ( - 7))
=32 N/mm?

and the planes of maximum shear are at 45° to the principal planes, i.e.
6 =25° 40’ and 115° 40",

3.11. Mohr’s Stress Circle. In Fig. 3.15, oy and g, are the principal
stresses, on principal planes BC and AB. The stress circle will be
developed to find the stress components on any plane AC which makes
an angle 6 with AB.

Fig. 3.15

In Fig. 3.16 mark off PL=0; and PM=o;, (positive direction— |
tension—to the right). It is shown here for 0,>0,, but this is not a

necessary condition, On LM as diameter describe a circle centre Q.

Fig. 3.16

Then the radius OL “represents” the plane of ¢,(BC), and OM
“represents” the plane of o, (AB). Plane AC is obtained by rotating
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AB through # anticlockwise, and if OM on the stress circle is rotated
through 26 in the same direction, the radius OR is obtained, which will
be shown to represent the plane AC. (Note that OR could equally well
be obtained by rotating OL clockwise through 180° — 26, corresponding
to rotating BC clockwise through 90° -4.)

Draw RN perpendicular to PM.

Then PN=PO+ON
=301 +03) +¥{o3—0}) cos 20
=01(1 - cos 20)/2 + a5(1 + cos 26)/2
=0 8in2 0 + g, cos2 §
=0y, the normal stress component on AC, (Para. 3.5),
and RN =4(0; - 0y) sin 26
=7y, the shear stress component on AC, (Para. 3.5).
Also the resultant stress
ov=v/(o2 474
=PR
and its inclination to the normal of the plane is given by ¢ = / RPN.
0y is found to be a tensile stress in this case, and 7, #s considered

positive if R is above PM, a positive shear stress being that which will tend
to give a clockwise rotation to a rectangular element (shown dotted in
Fig. 3.15).

The stresses on the plane AD, at right angles to AC, are obtained
from the radius OR’, at 180° to OR,
ie. gy =PN’ and 7,/=R'N’
the latter being of the same magnitude as s, but of opposite type,
tending to give an anticlockwise rotation to the element dotted in
Fig. 3. 5.

The maximum shear stress occurs when RN =OR (i.e. § =45°) and
is equal in magnitude to OR =4(0, - ay).

The maximum value of ¢ is obtained when PR is a tangent to the
stress circle.

Two particular cases which have previously been treated analytically
will be dealt with by this method.

(1) Pure compression. If o is the compressive stress the other principal
stress is zero.

Let 6 be the angle measured from the plane of zero stress (Fig. 3.17).

In Fig. 3.18, PL =0 numerically, measured to the left for com-
Ppression, PM =0.
Hence OR=1%¢

0y=PN, compressive
7= RN, positive
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Maximum shear stress = OR =40, occurring when § =45°. (Compare ]

Para. 3.2.)

/7R

Fig. 3.17 Fig. 3.18

(2) Principal stresses equal tension and compression, Let 0 be the angle

measured anticlockwise from the plane of ¢ tensile (Fig. 3.19).

0 -
ot
Fig. 3.19 Fig. 3.20
In Fig. 3.20:

PM =0 to the right.
PL =0 to the left.

Hence O coincides with P,

0, =PN and is tensile for  between +45°, compressive for § between
45° and 135°,

7o=RN. When 6=45°, 7, reaches its maximum value, numerically | v

equal to o, on planes where the normal stress is zero (i.e. pure shear).
Compare Para. 3.4.

ExampLE 3. 4 piece of material is subjected to two compressive stresses at §
right angles, their values being 40 N|mm? and 60 N|mm?2. Find the position |

of the plane across which the resultant stress is most inclined to the normal,
and determine the value of this resultant stress.
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In Fig. 3.21 the angle 8 is inclined to the plane of the 40 tons N/mm?2
compression.
In Fig. 3.22, PL =60, PM =40. The maximum angle ¢ is obtained when
PR is a tangent to the stress circle. OR =10, PO =50.

Then ¢ =sin~13
=11° 30"
=PR =4/(502 - 102) =49 N/mm
20=90°-¢
s 0=39°15'
which gives the position of the plane required.

Mohr’s stress circle can also be used in the reverse sense, that is, to
find the magnitude and direction of the principal stresses in a given
stress system, as will be shown below.

ExampLE 4. At a point in a piece of elastic material there are three mutually
perpendicular planes on which the stresses are as follows: tenstle stress
50 N/mm? and shear stress 40 N/mm?2
on one plane, compressive stress
35 Nimm? and complementary shear
stress 40 N/mm? on the second plane,
no stress on the third plane. Find (a)
the principal stresses and the positions
M of the planes on which they act, (b) the
(o] positions of planes on which there is no
normal stress. (U.L.)
Mark off PN =50, NR =40;
PN’= -35,N'R’'= -40.

R’ (Fig. 3.23).
) Join RR’ cutting NN’ at O. Draw
Fig. 3.23 circle centre O, radius OR.
Then ON =1iNN’

=425
OR = 4/(42-52 +402) —58-4
PO=PN -ON =75
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(a) The principal stresses are

PM =PO +OM =659 N/mm?2, tensile,
and PL =OL - OP =50-9 N/mm?2, compressive.
26 =tan ~140/42-5 =43° 20’

0=21° 40’

This means that the plane of the tensile principal stress has to be

50
40

50-9
21°%40°

\68°20" |
‘\
AY

\
. LY
35 \

40\\

65-9

Fig. 3.24

rotated through 21° 40’ in an anti-
clockwise direction in order to coin-
cide with the plane of 50 N/mm?2
tensile stress, and the relative posi-
tions of the planes are shown in
Fig. 3.24.

(b) If there is no normal stress,
then for that plane N and P coin-
cide, and
260 =180° —cos™1 7-5/58-4 (dotted
radius Fig. 3.23)

=97° 24/

9 =48° 42’ to the principal plane.

The following example gives a method of constructing Mohr’s
circle, and hence finding the principal planes and stresses, when the
direct stresses in any three directions are known.

ExaMPLE 5. Fig. 3.25 (a) shows the direct stresses in three coplanar directions

differing by 60°, at a particular point. It is required to find the magnitude
and directions of the principal stresses.

First draw a vertical line (i.e. the one through P in Fig. 3.25 (b)) and |
measure off distances proportional to the given stresses (positive to the ¥
right, negative to the left). At these distances draw three vertical lines, one }
for each stress, and starting at an arbitrary point R on the central line draw §
lines at 60° and 120° to the vertical, cutting the other two verticals in §
Q and S. In determining which side of the vertical at R to measure these #
angles, they must be drawn so as to produce a similar figure to the given
stress directions, i.e. it must be possible to rotate Fig. 3.25 (a) and place it #
over R with the 20 N/mm? stress in the vertical position. The 60° line }
from R is produced to cut the 100 N/mm? vertical in S, and the 120° is §
produced (backwards in this case) to cut the —50 N/mm? vertical in Q. |

The circle passing through QRS (the centre is constructed by per- }
pendicular bisectors on the lines QR and RS) is Mohr’s stress circle, the | !
stress conditions on the three given planes being related to the points &

Q, R, and S, where R’ is on the vertical through R.

The justification of the construction lies in the fact that the angle at :
the centre of a circle is twice that at the circumference, and it can be seen |
that the angles between the radii OQ, OR’, and OS are 120°, which is &

twice the angle between each pair of given direct stresses.
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The principal stresses are then given by

PM =0; =112 N/mm?
and
PL =0, =63 N/mm?

To0Nmm*
{tension)

(» K
Fig. 3.25

A

o; being inclined at $SOM, i.e. 14° to the 100 N/mm? stress and o3
A -

being inclined at $QOL, i.e. 16° to the — 50 N/mm? stress.

3.12. Poisson’s Ratio. If a bar is subjected to a longitudinal stress
there will be a strain in this direction equal to o/E. There will also be a
strain in all directions at right angles to o, the final shape being dotted
in Fig. 3.26.

Q
Q

po-
1

Fig. 3.26

It is foynd that for an elastic material the lateral strain is proportional
to the longitudinal strain, and is of the opposite type. The ratio
lateral strain
longitudinal strain
produced by a single stress is called Poisson’s Ratio, and the symbol used
isv ie.
Lateral strain= -y.o/E
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If the stress o is beyond the elastic limit, and the total longitudinal
strain is ¢, the “elastic” portion is approximately o/E and the * plastic”
portion is & —g/E. Poisson’s ratio for plastic deformation may be taken

as 0-5 (corresponding to no change in density or volume—see Para.
3.18), and hence

Total lateral s_t;f?:iﬁpf —vo[E - 0-5(¢ - o/E)

ExampLE 6. 4 bar of steel 25 cm long, of rectangular cross-section 25 mm by
50 mm is subjected to a uniform tensile stress of 200 N/mm?2 along its length.
Find the changes in dimensions. E =205,000 N/mm? Poisson’s ratio =0-3.

Longitudinal strain =o/E =200/205,000
Increase in length =(200/205,000) x 250
=0-244 mm
Lateral strain = — vg/E = - 0-3 x200/205,000
Decrease in 25 mm side of section =(0-3 x 200/205,000) x 25
=0-0073 mm.

Decrease in 50 mm side of section =0-0146 mm.

3.13. Two-dimensional Stress System. It has been proved that
every system can be reduced to the action of pure normal stresses on
the principal planes, as shown in Fig, 3.27. ‘

0 Consider the strains produced by each
ZT stress separately.

oy will cause

Strain ¢4 /E in the direction of o;.
Strain —voy /E in the direction of o.

o O g, will cause
Strain o,/E in the direction of o.
U\L Strain —~vg,/E in the direction of oy.
2 Since the strains are all small, the

Fig. 3.27 resultant strains are given by the
algebraic sum of those due to each stress

separately, i.e.
Strain in the direction of a4,

e1=01/E —vo,/E
Strain in the direction of o3,

€2=02[E —voi|E
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where tensile stress is to be taken positive, and compressive stress
negative, a positive strain representing

an increase in dimensions in that direc- 02

tion.

3.14. Principal Strains in Three
Dimensions. By a similar derivation
to the previous paragraph, it can be
shown that the principal strains in the Y
directions of &y, 03, and o5 (Fig. 3.28), are

e1=01/E —va,]E —vo;/E A
&, =0,/E ~vo3[E ~voy|E .
e3=03/E~voy[E —vo,/E Fig. 3.28

It should be particularly noted that stress and strain in any given
direction are not proportional where stress exists in more than
one dimension. In fact strain can exist without a stress in the same
direction (e.g. if g3 =0, then 3= —vo/E —vo,/E), and vice versa.

ExampLE 7. A4 piece of material is subjected to three perpendicular tensile
stresses and the strains in the three directions are in the ratio 3:4:5. If
Poisson’s ratio is 0-286 find the ratio of the stresses, and their values if the
greatest is 60 Njmm?2 (U.L.)

Let the stresses be o, 05, and o3, and the corresponding strains 3%, 4%,
and 5%.

Then 3kE =01 —0-286(0, +a3) @)
4kE =0, —0-286(03 + o}) (ii)
S5kE =03 —0-286(0; +07) (iii)

Subtract (i) from (iii):
o3 -0y —0-286(c —03) =2kRE

giving 03 —01=2kE/1-286 @iv)
Writing (iit) : 03/0-286 — 0, — 0o, =5kE[0-286 )

and (ii): 0y — 0-28603 — 0-2860, =4kE (vi)

Add (v) and (vi): 3-2103 —1-2860; =21-5kE (vii)

Writing (iv) 1-28603 —1-2860, =2kE (viii)

Subtract (viii) from (vii): 1:29403 =19-5kE

or 03=10-14RE

From (iv): o1 =8-58kE

From (ii): 0, =9-34kE

Ratio of stresses: 01; 03t 03=0-847:0-921:1

If the greatest o3 =60 N/mm?2
g1 =508 N/mm? and o, =553 N/mm?
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3-15. Principal Stresses determined from Principal Strains,

(a) Three-dimensional stress system. Writing the equations of Para, ]

3.14.

E81=0'1'—'V0'2—V0'3 (1) '
Eey =0, —vo3 —vay (2) 1
Eey =03 —vo;) —vo, (3) 1

and subtracting (2) from (1) gives

E(ey ~e3)=(o1 = o)1 +7) 4 |

From (1) and (3), eliminating o3

ey +vey)=oy(1=32) a1 +1)y ) |

Multiplying (4) by » and subtracting from (5)
E[(1 —v)ey +1(ex +3)] =0q(1 —v - 22)
=oy(1+v)(1 -2v)

Rearranging, .
o E[(1 -v)ey +1v(ey +£3)]
! (1 +v)(1-2v)
Similarly
1\ E[(1 -v)ey +v(e3 +#1)]
1 (T+v)(1-2v)
and

o _E[(1 —v)es +1(e; +&))]
S G Y

(b) Two-dimensional stress system. a3 =0 and

EEI =01 —V0y
E82=0'2 —Vop

Solving these equations for oy and o, gives

E(eq +vey)
1~
and
E(vey +&,)
==

3-16. Analysis of Strain. Supposing ¢,, ¢, and ¢ are the linear and
shear strains in the plane XOY. It is required to find an expression for
&g, the linear strain in a direction inclined at 8 to OX, in terms of &,
&, andf.

InFig. 3.29 OP, of length 7, is the diagonal of a rectangle, which under
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the given strains distorts into the dotted parallelogram, P moving to
P’. Remembering that actual strains are very small,
PP’ =PQ cos § + QR sin § + RP’ cos § approx.

=(r cos 8.¢,) cos @ +(r sin 6.¢,) sin § +(r sin 6.¢) cos §

=re, cos2 f +re, sin2 0 +r¢ sin 6. cos §

Y
R R'
ok . i Xy
/ X 1 /
/ 2 /
/ ~ " /
/ i o
1 =z 1
(]
0 X
Fig. 3.29

But
g, =PP'[r by definition
=4e,(1 +cos 26) +3e,(1 — cos 20) +3$ sin 26 from above
=}(e, +2,) +3(e; — &) cos 20 +4¢ sin 20 1)

This can be compared with equation (1) of Para. 3.6, and the princigml
strains &; and &,, being the maximum and minimum val.ues of strain,
occur at values of § obtained by equating de,/df to zero. i.e.

tan 26 =¢/(e; ~ ¢,) @

Then, as for principal stresses (Paras. 3.7 and 3.8), ¢, and &, are given
by
Heo+e)) 3V (e - &y)? +¢7 ©)

In order to evaluate ¢,, ,, and ¢ (and hence the principal strains) it
is necessary in general to know the linear strains in any three directions
at a particular point (if the principal directions are known only two
strains are required, since ¢ =0 and ¢, =¢,, &, =¢,).

Finally, if these strains are caused by stresses in two dimensions
only, the principal stresses can be determined by the method of Para.
3.15 (b).

ExampPLR 8. The measured strains in three directions inclined at 60° to
one another (as in Fig. 3.30(a)) are 550 x 10—, —100 x10-6, and 150 x
10-5, Calculate the magnitude and direction of the principal strains in this
dlane.
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If there is no stress perpendicular to the given plane, determine the principal :

stresses at the point. E =200,000 N/mm?2.v = 0-3.

~100x10°* 50x10™¢

550%107¢
RES
\4 Q -
150x 107 ~loox10™® \ .
eZ
/ L 1S M
/
[0
ol 550x107
X
(o] \\e‘ B
(@) (b)
Fig. 3.30

Taking the X-axis in the direction of the 550 x 10 ~6 strain, &, ¢, and 1
¢ are determined from equation (1), with 6 =0, 60°, and 120° for the three

measured strains, i.e.
£9=550 x 106
=4(e, +3y) + %(ex T 8,) .
=& ()]
ego= — 100 x 106
=H(e; +&,) —Hex — &) +19V/3/2

=3(e, +3¢,) +344/3 (i)
and 8120=150 x10-6
=3(ex+&) ~Hex ~8) - %‘ﬁ‘\/3/2
=He, +3e,) ‘#'\/3 (iid)
Adding (ii) and (iii)
3(e, +3e,) =50 x 10 -6
or £,=%(100x10-6 -¢,)
= -150x10-¢ from (i) @iv)
From (ii), (i), and (iv) 3¢+/3 =[ —100 - }(550 —450)]10 ~¢
giving ¢ = —(500/4/3)10 -6 v 1
The direction of the principal strains ¢, and ¢, (to the X-axis) are given $#
by (2)
tan 20 =¢/(e, - &,)
= —500/7004/3 from above
= -04125

20 = ~22:4° or 180° - 22-4°
0= -11-2° or 78-8°
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The principal strains, from (3), are
Hex +8)) 3/ [(2; — £,)2 + 2] =200 x 10 ~6 + £4/[7002 + 5002/3].10 -6
=(200+379)10-6
ie. £, =579 x10-6
and gy=—-179 x10 -6
For a two-dimensional stress system, using the derivation of Para.
3.15 (b), the principal stresses are
_0-2(579 - 0-3 x179)
25T 032
=115 N/mm?
~0-2(0-3 x 579 -179)
B 1-032
= —1-2 N/mm?

and os

3.17. Mohr’s Strain Circle. By comparison of Paras. 3.6, 3.8, and
3.16, it will be seen that Mohr’s Circle can be used equally to represent
strains, the horizontal axis for linear strains ¢, and e,, and the vertical
axis for half the shear strain, 3. Fig. 3.31 shows the relations between

N

/ /o
== A
P Ll N o/%% N M|

€y
€ )
* -95/2/
N
Ry
Fig. 3.31

&, &y, ¢ and 0, and the principal strains ¢; and ¢, as given by eqns.
(2) and (3) of Para. 3.16. Note that PO = (e, +¢,) and OR =4+/[(e, — 8,)?
+¢2].

The strain circle can be constructed if the linear strains in three
directions at a point and in the same plane, are known. The problem
of Ex. 8 will now be solved graphically. The given strains are sg, g¢q,
and eqyq in Fig. 3.30 (a), and the construction is similar to that of Ex. 5
for the stress circle,

3+
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Vertical lines are set off relative to a datum through P (Fig. 3.30 (b)).

and at distances on either side proportional to the given strains. From
R on the central line (i.e. &5 in this case) lines are set off at 60° and

120° to the vertical, to cut the corresponding strain verticals in Q and
S. The strain circle then passes through QRS, the principal strains

being
& =PM =580 x 10-6
and
gy=PL = —-180x10-6

The radius OS gives the strain conditions in the X direction, and ]
the angle SOM =22°, The direction of ¢y is then 4.22=11° clockwise 1

from the X-axis, and &, is at right angles to £.

Principal stresses can best be obtained from the principal strains by

calculation, as in Ex. 8.

3.18. Volumetric Strain. Consider a rectangular solid of sides x, y, |
and 2, under the action of principal stresses 01, G2, and o respectively |
(Fig. 3.32). Then if ¢, ¢,, and &3 are the corresponding linear strains, the 3
dimensions become x + ¢y, y +£,¥, 2 +&32. |

, % Volumetric strain
Increase in volume
’ = Original volume
=x(1 + Sl)y(l + 82)3(1 + 83) —Xyz
g %
=(1+¢)(1+e)(1+e5)-1
03 =1+£l+82+83+8182+8283+8381
\ + 818283 - I
Fig. 3.32

=& +&+e;
to sufficient accuracy, since the strains are small.

Expressing this in words, the volumetric strain is the algebraic %

sum of the three principal strains.

Substituting for the strains in terms of the principal stresses (Para. §

3.14) it is found that
(o +02+03)(1~2v)

Volumetric strain = 5

3-19. Strain Energy. Strain energy U is the work done by the &
stresses in straining the material. It is sufficiently general to consider a '
unit cube acted on by the principal stresses oy, a5, and o3. If the corres- |
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ponding strains are £y, &,, and ¢3, then the total work done =Xloe, since
the stresses are gradually applied from zero, i.e.

U=%0181 +3026; + 30363

=(1/2E)[0'1(O’1 —V0o) —V0'3) +O'2(O'2 —VO3 —VO'I) +0’3(O‘3 —vop —V(Tz)] by
Para. 3.14

= (1/2E)[0’12 + 0'22 + 0'32 - 21/(0'10'2 +0503+ 0'30'1]) per unit volume,
For a two-dimensional stress system o3 =0

and U=(1/2E)[042 + 0,2 — 2v015,] per unit volume.

EXAMPLE 9. The principal stresses at a boint in an elastic material are
60 Nimm? tensile, 20 N/mm? tensile, and 50 N, [mm? compressive. Calculate
the volumetric strain and the resilience. E = 1 00,000 N/mm?2;
v=035

01=60, 03 =20, 03 = — 50.

Volumetric strain =(oy +a, +¢73)1 — (Para. 3.18)
1-07
=(60+20 - 50)——100’000
=9 x10-5

Resilience =[1/(2 x 100,000)] [602 + 207 +( - 50)2
-2 %035 (60 x20 - 20 x50 — 50 x 60)]
=8460/200,000
=0-0423 N mm/mm3

3-20. Shear Strain Energy.
Writing
01=3(01+02 +03) + {01 —02) +}{0, ~03)
02=3(01+02+03) +4(02 —01) + (0 — 03)
03=3(01+02+03) +3(03—01) +4(03 ~ ),
then under the action of the mean stress 3{o1 +0y, +03) there will be
volumetric strain with no distortion of shape (i.e. no shear stress any-
where). The strain energy under this mean stress acting in each direc-

tion is obtained from the general formula (Para. 3.19), and may be
called volumetric strain energy,

=B/2E)[(01 +02 +03)/31X(1 - 2v)

The other terms in the rearrangement of oy, o,, and o3 are propor-
tional to the maximum shear stress values in the three planes, and will
Cause a distortion of the shape.
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Define Shear strain energy U, as the difference between Total strain ]

energy and Volumetric strain energy, i.e.
U,=(1/2E)[012 + 0,2 + 032 - 20(010, + 0,03 + 0304)]

~[(o1+02+03)%(1 - 20)]/6E |

=(1/6E)[012+0,2 +032)(3 ~ 1 +2v)

~ (0102 +0203 +0301)(6v + 2 — 4v)]
=[(1 +v)/6E1[2(c42 + 0,2 + 032) — 20105 + 0,03 +06301)]
=(1/12G)[(01 - 02)* + (02 = 03)2 + (03 - 01)?]

(See Para. 4.3 for relation between E and G.) The quantities in
brackets are each twice the maximum shear stress in their respective ;

planes (Para. 3.10).

In a pure shear system (stress 7), the principal stresses are +7, 0

(Para. 3.4 or 3.8), and by substitution
shear strain energy = (1/12G)[(27)2 + (- 7)2 +( - 7)2]
=72/2G' (compare Para. 2.5)

3.21. Theories of Failure. The theory of elasticity and formulae -
derived are based on the assumption that the material obeys Hooke’s
law. Consequently no information can be derived from them if the I
material has passed beyond its elastic limit at any point in the member. |
In fact, when “permanent” (non-recoverable) deformations occur the }
material is said to have “failed.” Note that failure does not imply |

rupture.

It is natural to consider that, in a simple tensile test, the elastic limit {
is associated with a certain value of the tensile stress; but at this stage |
other quantities, such as shear stress and strain energy, also attain |
definite values, and any one of these may be the deciding factor in the &

physical cause of failure,

In a complex stress system these quantities can be calculated from
the known stresses and material constants, and the problem is to decide
which quantity is the criterion of failure, i.e. the cause of the material |
passing beyond its elastic limit and taking up a permanent set. Having &
decided, the actual value of that particular factor which corresponds §
to the onset of failure is usually taken to be the value it reaches in the I

simple tension case at the elastic limit.

The principal theories of failure are outlined in detail below, in which §§
o is the tensile stress at the elastic limit in simple tension, and o1, G2, 03

the principal stresses in any complex system.

(1) Maximum Principal Stress Theory (due to Rankine). According ‘
to this theory failure will occur when the maximum principal stress in |
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the complex system reaches the value of the maximum stress at the
elastic limit in simple tension, i.e.
o1=%(o,+0,)+3v[(0, —0,)? +472] (Para. 3.8)
=g in simple tension

where o, 0,, and 7 are the stresses on given planes in the complex
system.

(2) Maximum Shear Stress or Stress Difference Theory (due to F}uest
and Tresca). This implies that failure will occur when the maximum
shear stress in the complex system reaches the value of the maximum
shear stress in simple tension at the elastic limit, i.e.

oz —01)=3V[(0, —0,)? +477] (Para. 3.10)
on the assumption that the maximum shear is greatest in the XY plane.
=40 in simple tension (Para. 3.2)

or Gy —01=0

(3) Strain Energy Theory (due to Haigh). This theory is base:d on the
argument that as the strains are reversible up to the elastic limit, the
energy absorbed by the material should be a single-valued fu.nctlon at
failure, independent of the stress system causing it, i.e. strain energy

per unit volume causing failure is equal to the strain energy at the
elastic limit in simple tension.

(1/2E)[0’12 +0'22 +0’32 —ZV(0'10'2 +0,03 +0’30’1)] =0'2/2E (Para. 3.19)
or 012 + 0% + 042 ~ 20(010, + 0203 + 0301) =02

(4) Shear Strain Energy Theory (due to Mises and Her}ck ) At s
failure the shear strain energy in the complex system and in simple

tension are equal, i.e.
(1/12G)[(o1 —02)% + (02 —63)2 +(03 —01)?] =02[6G Para. 3.20)
ar (01 —02)* + (02— 03)? +(03 — 01)? =202

(The value in the simple tension case is found by putting the principal
stresses equal to g, 0, 0.)

(5) Maximum Principal Strain Theory (due to St. Venant). If £y is
the maximum strain in the complex stress system, then according to
this theory

ey =(1/E)(01 —vop —vo3) (Para. 3.14)
=o/E in simple tension
or 01 —V0y —VG3 =0

Other theories have been put forward, but have not prov?d to be
nearer the truth except perhaps for particular types of loading, and
discussion will be confined to the theories already outlined.
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3.22. Grap.hical Representation. Where only a two-dimensiona] ]
stress system is under consideration the limits of principal stress can be |

shown graphically according to the different theories (F: ig. 3.33).

The axes OX and OY show the values of the principal stresses o; and 1
03, O3 bem_g zero. Positive directions are to the right for oy and upwards ]
for o,. Using the number references attached to the theories in Para, ]
3.21 Value.s are derived within which the principal stresses must lie for
the. material to be below the elastic limit. That is to say, according to ;
wl.uchever theory is adopted, failure will occur when the point deter~ !
mined by the principal stresses lies on or outside the boundary of the ;

corresponding figure.

v /
5 B Bl A [ g
7|0 R
4 7 \ beaw
—1 K 7 : \ 4.
3| N3
. 1\ g
2Lt 2~
K
==/ H——1
F /-0 14 [
/ Ty X
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’r, f ///'
AL e
Y o~
\\ X // ’,
N -0 | .z M
. T 4
CHI6 D
Fig. 3.33

It will be assumed that the elastic limit ¢ is the same in tension and ]

compression.

(-1) Maximum principal stress equal numerically to the elastic limit,
This produces a square boundary ABCD, the sides being defined by §

g1 =0, 09=0, 01= —0, 0= —0.

(2.) Maximum shear stress equal numerically to the value in simple :
tension (30). Where the principal stresses are alike, the greatest maxi-
mum shear stress is 4oy (or 40,), obtained by taking half the difference

between the principal stresses o, and 0, or o, and 0. This produces
lines

15 = _
t01=0, do=0, doy=-0; and 1o,= -0
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in the first and third quadrants (HA, AE, FC, CG). When the principal
stresses are of opposite type, maximum shear stress is

Yo1~0z)= 3o
completing the figure in the second and fourth quadrants with the lines
EF and GH. The boundary is then AEFCGHA.

(3) In the two-dimensional case, the strain energy theory is defined
by an ellipse with axes at 45° to OX and OY; the equation is
012 + 052 — 2vo10p =02,
It passes through the points E, F, G, and H.

(4) The shear strain energy theory results in an ellipse similar to (3),
defined by

0'12 — 010y +O'22=0'2

(5) The principal strains are
(1/E)oy ~voy) and (1/E)(op ~voy)
and failure is assurned to occur when either of these values reaches
+/E. For like principal stresses the lines HJ, JE, FL, and LG are
produced by the equations
01 —V0,=0, 0,—V0 =0, O1—vo,=—0, and o,~vo = —0

respectively. For unlike stresses EK, KF, GM, and MH complete the
figure.

3.23. Conclusions. Considerable experimental work has been done
on various stress systems, such as tubes under the action of internal
pressure, end loads, and torsion; also on different materials. So far,
however, no conclusive evidence has been produced in favour of any
one theory.

It must be admitted that the cause of failure depends not only on the
properties of the material but also an the stress system to which it is
subjected, and it may not be possible to embody the results for all cases
in one comprehensive formula. The following general conclusions may
be used as a guide to design.

In the case of brittle materials such as cast iron the maximum prin-
cipal stress theory should be used. For ductile materials the maximum
shear stress or strain energy theories give a good approximation, but
the shear strain energy theory is to be preferred, particularly when
the mean principal stress is compressive. The maximum strain theory
should not be used in general, as it only gives reliable results in
particular cases.

It should be noted that, since the shear stress and shear strain energy
theories depend only on stress differences, they are independent of the
value of the mean stress and imply that a material will not fail under a
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“hydrostatic” stress system (i.e. o, =03 =03). In practice the effect of |
such a stress system, if tensile, is to produce a brittle type fracture in a |
normally ductile material, no plastic deformation having taken place. |
Conversely, a triaxial compressive system will produce a ductile type |

failure in a normally brittle material. In general the tendency to ductility

is increased as the ratio of max. shear to max. tensile stress under |

load increases.

ExampLE 10. If the principal stresses at a point in an elastic material are
2f tensile, f tensile, and Lf compressive, calculate the value of f at failure
according to five different theories.

The elastic limit in simple tension is 200 N /mm? and Poisson’s ratio =0-3.

(1) Maximum principal stress theory

In the complex system, maximum stress =2 f
In simple tension, maximum stress =200 N/mm?

Equating gives f=100 N/mm?

(2) Maximum shear stress theory
Maximum shear stress = Half difference between principal stresses

=2[2f - (=31

=5
=1

In simple tension, principal stresses are 200, 0, 0, and
maximum shear stress =1 x 200
=100 N/mm? (See also Para. 3.2.)

Equating gives f=80 N/mm?

(3) Strain energy theory
In the complex system

U=(2E)[2f)*+12 +(~ 1)? =2 x 0-3Qf.f —f.£/2 ~£/2.2P)]

(Para. 3.19)
=495f2)2F
In simple tension: U =2002/2E
Equating gives f=200/+/4-95
=89-8 N/mm?2

(4) Shear strain energy theory
In the complex system

U =(1/120)[2f =2 +(f +1f)? +(-3f—2/)?] (Para 3.20.)

=9-5f2/12G
In simple tension (principal stress 200, 0, 0)
U =200%/6G
Equating gives f=200/+/475
=91-7 N/mam?
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(5) Maximum strain theory
Equating the maximum strain in the complex and simple tension cases
(1/E)2f -0-3f+0-3f/2) =200FE
or f=200/1-85
108 N/mm?

ExampLE 11. The load on a bolt consists of an axial pull of 10 kN togel{her
with a transverse shear force of 5 kN. Estimate the diameter of bolt required
according to (1) maximum principal stress theory, (2) maximum shem" stress
theory, (3) strain energy theory, (4) shear strain energy theory. _Elastw. limit
in tension ts 270 N[mm?, and a factor of safety of 3 is to be applied. Poisson’s
ratio =0-3.

The permissible simple tensile stress is 270/(Factor of safety)
=90N/mm?. .

Let required diameter be d mm, then the applied stresses are

10,000 40,000
=— =" N 2
O T N/mm

~ 5000 20,000
7.»'n'd2/4 T md?
assuming uniform distribution over the cross-section.

(1) Maximum principal stress in bolt

N/mm? shear (Fig. 3-34),

and

=40 +3/(02 +472) (Para. 3.8: 0, =0,
a,=0) o
=1-40,000/7d? +++/[(40,000/md?2)2 + ‘l—’
4(20,000/7d?)?] T
=(20,000/md?)[1 + /(1 +1)]
=48,290/mwd? T
Maximum stress in simple tension =90 Fig. 3.34

Equating to above gives
d =1/(48,290/907)
=13-1 mm.
(2) Maximum shear stress =34/(c2 +472) (Para. 3.10)
=28,290/7d?
=45 in simple tension
d=1/(28,290/457)
=14-2 mm.
(3) Principal stresses are 4o +14/(02 +472), 0, i.e.
48,290/md?, 8290/md2, 0
Strain energy =(1/2E)(48,2902 +82902 4 2 x 0-3 x 48,290 x 8290)/m2d4
=264 x108/(2E =2d%)
=902/2F in simple tension
d=+(264 x 105/8172)
=135 mm.
3*
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(4) Shear strain energy
=(1/12G)[(48,290 + 8290)2 + 82902 + 48,2902]/m2d*
=902/6G in simple tension
d=¥[(56-0 x 106 x 6)/(8172 x 12})]
=13-7 mm.

SUMMARY

Resultant Stresso = 4/(02 +72) at angle to normal ¢ =tan~! 7/o.

45°,
Principal Planes—zero shear.
Principal Stresses o1, 0, =%(0, +0,) +3v[(0, —0,)? +472]
Maximum Shear Stress =4+/[(¢, —0,)? +477]
=301 -0)
Mohr’s Stress Circle.
lateral

Poisson’s Ratio v= —————
longitudinal

strain due to a single stress.

Principal Strains, &; =(1/E)(cy —vo, —vo3), etc.
Volumetric Strain=¢; +¢&, +&3
=(0'1 +ay+a3)(1 -2v)
E

Mohr’s Strain Circle.
Strain Energy U=(1/2E)[02 + 0,2 + 032 — 2v(0105 + 0,03 +0301)]
Shear Strain Energy U, =(1/12G)[(c{ — 02)? + (32— 63)% + (03 —01)?]

Theories of Failure. Brittle material: maximum stress. Ductile

material: maximum shear stress or shear strain energy.

PROBLEMS

1. At a cross-section of a beam there is a longitudinal bending stress of
120 N/mm? tension, and a transverse shear stress of 50 N/mm?2. Find from 3}
first principles the resultant stress in magnitude and direction on a plane in- :
clined at 30° to the longitudinal axis. (Note: there is no normal stress on longi- }

tudinal planes.) (106 N/mm? at 13° 40’ to the axis). :

2. In a piece of material a tensile stress f1 and a shearing stress g act on a given 1

plane. Show that the principal stresses are always of opposite sign. If an addi- |
tional tensile stress f, acts on a plane perpendicular to that of f1 find the condition }
that both principal stresses may be of the same sign. (U.L.)

applied to an elastic material at a certain point, on planes at right angles.

‘The greater principal stress is limited to 150 N/mm2. What shearing stress }

may be applied to the given planes, and what will be the maximum shearing
stress at the point? Work from first principles.
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3. Direct stresses of 120 N/mm?2 tension and 90 N/mm2 compression are 3}

(85 N/mm?2; 135 N/mm?) ]
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4. A column rests on a foundation block, the top of the latter being horizontal.
The column transmits to the block a compressive stress of 174 N/mm? together
with a shear stress of 46:6 N/mm2. Find the magnitude and direction of the
principal stresses at a point just below the top face of the block.

(185 N/mm? compression, 14°; 11-7 N/mm? tension, 104°)

5. Show that the sum of the normal components of the stresses on any two
planes at right angles is constant in a material subjected to a two-dimensional
stress system.

At a point in a material there are normal stresses of 30 N/mm? and 60 N/mm?2
tensile, together with a shearing stress of 22:5 N/mm?2, Find the value of the
principal stresses and the inclination of the principal planes to the direction of
the 60 N/mm?2 stress. (72 N/mm?2; 18 N/mm?2; 61° 48’, 151° 48’)

6. Draw and describe Mohr’s stress circle.

If, at a point in a material, the minimum and maximum principal stresses are
30 N/mm?2 and 90 N/mm?2, both tension, find the shear stress and normal stress
on a plane through this point making an angle of tan~1 0-25 with the plane on
which the maximum principal stress acts. (14-1; 86-5 N/mm?2)

7. The principal stresses at a point are 45 N/mm? tension and 75 N/mm?
tension.\Working from first principles, determine for a plane at 40° to that of the
latter stress: (a) the magnitude and angle of obliquity of the resultant stress,
(b) the normal and tangential component stresses.

(645 N/mm2, 13-5°; 62-7, 14-8 N/mm?)

8. A bar of rectangular cross-section is in tension under an axial stress of
100 N/mm2. If v=1% for the material, what stresses must be applied to the side
faces to prevent any change in cross-sectional dimensions? Show that, by the
introduction of these lateral stresses, the axial strain has been reduced in the
ratio 2/3. (50 N/mm?2)

9. An axial tensile force of 100 kN is applied to a steel rod 4 cm diameter
50 cm long. Deduce the change in volume if E=210,000 N/mm?2 and the ratio
of longitudinal to lateral strain is 3-8. (0-113 cm3)

10. A rectangular block of steel is subjected to normal stresses 75 N/mm?2
tensile, 90 N/mm?2 compressive, and 60 N/mm? tensile, on each of its three pairs
of faces. What are the strains in each of the three directions if Poisson’s ratio is
1/3:5 and E is 202,000 N/mm?2. (0-000412; -0-000635; 0-000318.)

11. A cylindrical bar 1 cm diameter is subjected to an end thrust of 4000 N
and is encased in a closely fitting sheath which reduces lateral expansion by one-
half of its value if free. Determine (a) the longitudinal strain in the bar, (b) the
pressure exerted by the sheath, and (c) the strain energy per unit volume.
E =210,000 N/mm?2; » =0-283. (0-00021; 10 N/mm2; 0-00515 N/mm?)

12. A piece of material is subjected to two perpendicular stresses, oy tensile
and o, compressive. Find an expression for the strain energy per unit volume.

If a stress of 120 N/mm? acting alone gives the same value of strain energy
as the expression already found, find the value of o2 when o7 is 105 N/mm?2
Poisson’s ratio =0-32. (33:75 N/mm?)
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13. A flat brass plate was stretched by tensile forces acting in directions
x and y at right angles. Strain gauges showed that the strain in the x direction
was 0:°00072 and in the y direction 0-00016. Find (a) the stresses acting in the
x and y directions and (b) the normal and shear stresses on a plane inclined at
30° to the x direction. E =80,000 N/mm?2. Poisson’s ratio =0-3.
(I.Mech.E.)
((a) 67-5 N/mm2. 33 N/mm?2. (b) 41-5 N/mm?2. 15 N/mm?2.)

14. In a certain material the maximum strain must not exceed that produced
by a simple tensile stress of 90 N/mm?2. Show that the maximum permissible
pure shear stress is 90/(1 +v), where v is Poisson’s ratio.

With the same limitation of strain, calculate the energy stored per kg of
material, (1) when subjected to a simple tensile stress, (2) when subjected to a
pure shear stress.

E =205,000 N/mm2; v=0-3; density 7600 kg/m3. (2.6 Nm; 4 Nm)

15. A rectangular rosette strain gauge records the following values for the
linear strain at a point in a two-dimensional stress system: ex =400 x 106,
ey = —100 x10-6, and e45 =200 x 10-6, the latter being at 45° to the X and Y
axes. Determine the principal strains and stresses by analysis and by Mohr’s
strain circle. E =207,000 N/mm2, v =0-3.

(405 x10-6, —105 x10-6, 85, 3:7 N/mm?2

Principal stresses at 5°40’ to XY axes.)

16. A strain gauge rosette has the axes of the three guages OA, OB and OC
at 120° to each other. The observed strains are +0-:000554, -0:000456 and

+0-000064 along OA, OB and OC respectively.

Determine the inclinations of the principal planes at O relative to OA and the
magnitudes of the principal stresses. Determine also the strain at right angles to
OA. E=200,000 N/mm2. Poisson’s ratio =0-3. (U.L.)

(—15° 30, 74° 30”; 105, 74-5 N/mm?2; — 0-000446)
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CHAPTER IV
Elastic Constants

4-1. Elastic Constants. These are the relations which determine the
deformations produced by a given stress system acting on a particular
material. Within the limits for which Hooke’s law is obeyed, these
factors are constant, and those already defined are the modulus of
elasticity E, the modulus of rigidity G, and Poisson’s ratio ». A
fourth constant is now to be introduced, which has applications mainly
to fluids, being the relation between pressure and change in volume.

4-2. Bulk Modulus. If a “hydrostatic” pressure p (i.e. equal in all
directions), acting on a body of initial
P volume V, causes a reduction in volume
equal numerically to 6V, then the bulk
modulus K is defined as the ratio
between fluid pressure and volumetric

strain, i.e,

P -pP
g K SvViv
the negative sign taking account of the
Fig. 4.1. reduction in volume,

Fig. 4.1 represents a unit cube of
material (or fluid) under the action of a uniform pressure p. It is clear
that the principal stresses are —p, —p, and —p, and the linear strain
in each direction is

—p/E +vp/E +vp/E (Para. 3.14.)
= —(1-2v)p/E
But, by Para. 3.18,
volumetric strain =sum of linear strains
=3(1-2v)-p/E

Hence, by definition,

-p
K= —a-opE
E=3K(1-2v)
65
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Strain energy per unit volume (U), in terms of the principal stresses,
=(12E)[p?+p2+p2 - 20(p2 +p2 +p?)] (Para. 3.19)
=3(1 - 2v)p2/2E
ie. U= p?/2K from above.

ExamrLE 1. A frictionless plunger 6 mm diameter, weighing 1 kg, com-
presses oil in a steel container. A weight of 1-5 kg is dropped from a height of
5 cm on to the plunger. Calculate the maximum pressure set up in the oil if its
volume is 5000 cm? and the container is assumed rigid. K =2800 N/mm?
for oil.

Let p N/mm? be the additional momentary maximum pressure set up
by the falling weight. Then, neglecting loss of energy at impact:

Loss of potential energy of falling weight =Gain of strain energy of oil.

The volumetric strain produced by p is — p/K, and hence the decrease
in volume of the oil is (p/K) x 5000 cm3, and this is taken up by the
plunger which will therefore sink a further distance

=(p/K) x 5000 x 103 x 4/7(6)2 mm
=p x5 x106/97K
6
Loss of potential energy =1-5 x 9-81(50 +1L5X1—0
97K
Gain of strain energy =(p2/2K) x5 x 106 N.mm
Equating these last two quantities, and multiplying through by K/5 x 106
produces the quadratic

)N/mm

147K p x5 %106
P2 = 10 (50+ 9K )
or $%/2 -0-52p - 0412 =0
Solving =052 ++/(0-522 +2 x 0-412)
=156 N/mm?

Adding the initial pressure due to the 1 kg weight gives the final
maximum pressure of
1-56 +9-81/97 or 191 N/mm?

4-3- Relation between E and G. It is necessary first of all to
establish the relation between a pure shear
C  stress and a pure normal stress system at a
point in an elastic material. This was dis-
cussed in Para. 3.4, and may also be deduced
from the principal stress formulae, but for
completeness it will be treated here from first
principles.
In Fig. 4.2 the applied stresses are o tensile
o on AB and ¢ compressive on BC, If the stress
vz components on a plane AC at 45° to AB are o,
and 7,, then the forces acting are as shown,
taking the area on AC as unity.

T
0’6 0

Sla T

Fig. 4.2

Visit : Civildatas.blogspot.in

.

4.3. eLAsTIC CORIETiMldatas.blogspot.in 67

Resolving along and at right angles to AC,
79=(0/+/2) sin 45° +(o/4/2) cos 45°
=g

0y =(0/1/2) cos 45° - (0/4/2) sin 45°=0

i.e. there is pure shear on planes at 45° to AB and AC, of magnitude
equal to the applied normal stresses.

Fig. 4.3 shows a square element ABCD, sides of unstrained length
2 units under the action of equal normal stresses o, tension and com-
pression. Then it has been shown that the element EFGH is in pure
shear of equal magnitude o.

and

i
A 5 B
o | ¢
e CEHT
N | A
D G c
o

Fig. 4.3

Linear strain in direction EG =¢/E +ve[E

say e=(1+v)o/E 1)
Linear strain in direction HF = —¢/E —vo/E
=—¢

Hence the strained lengths of EQ and HO are 1+¢ and 1-¢

respectively.
The shear strain
¢=0/G (Para 2.4) 2)
on the element EFGH, and the angle EHG will increase to #/2 +¢.
Angle EHO is half this value, i.e. 7/4 +¢/2.
Considering the triangle EOH,
tan EHO =EO/HO

i.e. tan(‘”'+¢)«=-1+‘B

4°2] 1-¢
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Expanding
I+e  tan #/4 +tan ¢/2
1-¢ 1-tann/4.tan ¢2
_1+4/2
T1-¢/2
since tan /4 =1 and tan ¢/2=¢/2 for small angles.
Clearly e=¢(2
and by substitution for ¢ and ¢ from (1) and (2):
(1 +v)o/E=0/2G
E=2G(x +v)

By elimination of Poisson’s ratio between the above and E=
3K(1 -2v) of Para. 4.2, it can be shown that E=9GK/(G +3K), and
in fact if any two elastic constants are known, the other two may be
calculated. Experimentally, however, it is not satisfactory to calculate

Poisson’s ratio by determining E and G separately, as will be illustrated
by the following example.

approx.

Rarranging

ExampLE 2. Show that if E is assumed correct, an ervor of 1% in the
determination of G will involve an error of about 5% in the calculation of
Poisson’s ratio when its correct value is 0-25.

Let the correct values be E, G, and v
Then E=2G(1 +v) @)

If G is increased to 1:01G, let the calculated value of Poisson’s ratio be
v/, then

E =2 x1-.01G(1 +v) (i1)
Eliminating E between (i) and (ii)
G(1 +v) =1-01G(1 +v)

ie. 1 +v=1-01+1-01
or ’ v —v=-0-01 -0-01» (iii)
The percentage error in v is
Y ¥ 100 = — 0015 %100 from i)
14
= —(1 +0-25)/0-25 approx.

= -59
Alternatively, the problem may be solved by calculus, differentiating
the equation

E=2G(1 +v)
remembering that 8E =0 since E does not vary.
0=28G(1 +v) +2G &

S
or Sv= - _Gg(l +v) 3iv)
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Percentage error =_x100

G AP 100 from (iv)

14
1 14025
100" 0-25
~5%.
SUMMARY

Fluid pressure

x 100

Bulk Modulus K=~ — = ™~ |
Volumetric strain

. E=3K(1-2)
. U=p2/2K per unit volume.
| E=2G(1 +v)

' E=9GK/(G +3K)
PROBLEMS

1. A small light piston 1-29 cm? in area compresses oil in a rigid container of
16,400 cm3 capacity. When a weight of 10 kg is gradually applied to the piston
its movement is obsetved to be 3-5 cm. If a weight of 4 kg falls from a height of
16-8 c¢m on to the 10-kg load, determine the maximum pressure developed in the
oil container, neglecting the effects of friction and loss of energy.

(2:59 N/mm?2)

2. Prove from first principles the relation between E, G, and K.

If two pieces of material A and B have the same bulk modulus, but the value
of E for B is 1%, greater than that for A, find the value of G for the material B
in terms of E and G for the material A. (U.L.) (101E G4/(101E,; —3Gy).)

3. Express Poisson’s ratio in terms of G and K, and prove the derivation.

Determine the percentage change in volume of a steel bar 7-6 cm square sec-
tion 1 m long when subjected to an axial compressive load of 20 kN. What change
in volume would a 10 cm cube of steel suffer at a depth of 4.8 km in sea water?
E =205,000 N/mm?2; G =82,000 N/mm?2.

(3K -2G)/2(G +3K); 0-00082; 0-35 cm?)

4. The principal stresses in an elastic material are o7 tensile and o2 com-
pressive. Derive an expression for the strain energy per unit volume.

If these principal stresses are caused by a tensile stress o and a shearing stress
T on a certain plane find, from the energy equation, the relation between E, G,
andv. (U.L)

5. A determination of E and G gives values of 205,000 N/mm? and 80,700
N/mm?2. Calculate Poisson’s ratio and the bulk modulus.

Find the change in diameter produced in a bar of this material 5 cm diameter
acted on by an axial tensile load of 150 kN.

If both moduli are liable to an error of 429, find the maximum percentage
error in the derived value of Poisson’s ratio.

(0-27; 148,000 N/mm?2; +£19%.)
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6. An element of elastic material is acted upon by three principal stresses and
the three principal strains sy, syy, and s, are measured. Show that the principal
stress in the direction xx is given by

aA +2Gsy,

where a =mE[[(m +1)(m —2)], A is the volumetric strain, G is the modulus of
rigidity, and 1/m is Poisson’s ratio.

In a certain test the principal strains were found to be 0-00071, 0-00140, and
—0-00185. Determine the three principal stresses. Take E=207,000 N/mm?2
and Poisson’s ratio =0-35. (U.L.)

CHAPTER V

Shearing Force and Bending Moment

5.1. Shearing Force. The shearing force at any section of a beam
represents the tendency for the portion of beam to one side of the sec-

tion to slide or shear laterally relative to the other portion.
Consider the case shown in Fig.5.1,

(155, 261, ~237 N/mm?2, see Para. 3.15).

Wi 1: Wy W3 in which a beam carrying loads W,
{ by A W,, and W; is simply supported at
( : JL ] two points, the reactions at the sup-
T : A T ports being R, and R,. Now imagine

Rz R, the beam to be divided into two
Fig. 5.1 portions by a section at AA. The

resultant of the loads and reactions
to the left of AA is F vertically upwards, and since the whole beam is in
equilibrium, the resultant of the forces to the right of AA must also be
F, acting downwards. F is called the Shearing Force (abbrev. S.F.) at
the section AA and may be defined as follows: the shearing force at any
section of a beam is the algebraic sum of the lateral components of the
forces acting on either side of the section.

Where a force is in neither the axial nor lateral direction it must be
resolved in the usual way, the lateral component being taken into
account in the shearing force.

Shearing force will be considered positive when the resultant of the forces
to the left is upwards, or to the right is downwards.

A shearing force diagram is one which shows the variation of shearing
force along the length of the beam.

5.2. Bending Moment. In a similar manner it can be argued that
if the moment about the section AA of the forces to the left is M clock-
& wise (Fig. 5.2), then the moment of

the forces to the right of AA must w; Mm W2 W
be M anticlockwise. M is called the | x| A Y &
Bending Moment (abbrev. B.M.) at | ! 11

5 AA, and s defined as: the algebraic
sum of the moments about the section R:
of all the forces acting on either side Fig. 5.2
of the section.
Bending moment will be considered positive when the moment on the left
!

—>
Il’
LN

\:1
Vi

2
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portion is clockwise, and on the right portion anticlockwise. This is referred
to as sagging bending moment since it tends to make the beam concave
upwards at AA. Negative bending moment is termed hogging.

A bending moment diagram is one which shows the variation of
bending moment along the length of the beam.

5-3- Types of Load. A beam is normally horizontal, the loads being
vertical, other cases which occur being looked upon as exceptions.

A concentrated load is one which is considered to act at a point,
although in practice it must really be distributed over a small area.

A distributed load is one which is spread in some manner over the
length of the beam. The rate of loading w may be uniform, or may vary
from point to point along the beam.

5-4- Types of Support. A simple or free support is one on which the
beam is rested, and which exerts a reaction on the beam. Normally the
reaction will be considered as acting at a point, though it may be dis-
tributed along a length of beam in a similar manner to a distributed
load.

A built-in or encastré support is frequently met with, the effect being
to fix the direction of the beam at the support. In order to do this the
support must exert a “fixing” moment M and a reaction R on the
beam (Fig. 5.3). A beam thus fixed at one end is called a cantilever;

when fixed at both ends the reactions are not

& ]; W/ statically determinate, and this case will be

- ¥/, dealt with later (Chapter X).
.

In practice it is not usually possible to

obtain perfect fixing, and the “fixing”’ moment

Fig. 5.3 applied will be related to the angular move-
ment at the support. When in doubt about

the rigidity (e.g. a riveted joint), it is “safer’ to assume that the .

beam is freely supported.

5.5. Relations between w, F, and M. Fig. 5.4 shows a short length

d.
:«—————x———>|<— x—»l
]

‘é 1 M. A wwé‘a: ﬁ{;ﬂ %
g

- F+dF
Fig. 5.4

3x imagined to be a “slice”” cut out from a loaded beam at a distance x
from a fixed origin O.
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Let the shearing force at the section x be F, and at x +8x be F+3F.
Similarly, the bending moment is M at x, and M +8M at x +8x. If w
is the mean rate of loading on the length 8, the total load is wdx, acting
approximately (exactly, if uniformly distributed) through the centre C.
The element must be in equilibrium under the action of these forces
and couples, and the following equations are obtained.

Taking moments about C:
M +F .8x[2+(F +8F)0x/2=M +3M

Neglecting the product F. 8, and taking the limit, gives

F=dM/dx 03]
Resolving vertically
wdx+F+3F=F
or w= —dF/dx 2)
= ~d2M/[dx? from (1) 3)

From equation (1) it can be seen that, if M is varying continuously,
zero shearing force corresponds to maximum or minimum bending
moment, the latter usually indicating the greatest value of negative
bending moment. It will be seen later, however, that “peaks” in the
bending moment diagram frequently occur at concentrated loads or
reactions, and are not then given by F=dM|/dx =0, although they may
represent the greatest bending moment on the beam. Consequently it
is not always sufficient to investigate the points of zero shearing force
when determining the maximum bending moment.

At a point on the beam where the type of bending is changing from
sagging to hogging, the bending moment must be zero, and this is called
a point of inflection or contraflexure.

By integrating equation (1) between two values of x=a and b, then

>
M,-M,= f Fdx
a
showing that the increase in bending moment between two sections is

given by the area under the shearing force diagram.
Similarly, integrating equation (2)

F,~F,= f " wds
=tlﬂ1e area under the load distribution diagram.
Integrating equation (3) gives
Ma—]W,,=f [wdx.dx

These relations prove very valuable when the rate of loading cannot
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be expressed in an algebraic form, and provide a means of graphical
solution.

5.6. Concentrated Loads

EXAMPLE 1. 4 cantilever of length I carries a concentrated load W at its
Jree end. Draw the S.F. and B.M. diagrams.

At a section a distance x from the free end, consider the forces to the
left.

Then F=-W and is constant along the whole beam (i.e. for all
values of x).

Taking moments about the section gives M = - Wx, so that the maxi-
mum bending moment occurs at the fixed end, i.e.

M = WI (hogging)

From equilibrium considerations, the fixing moment applied at the
built-in end is Wi, and the reaction is W.

The S.F. and B.M. diagrams are therefore as shown in Fig. 5.5.

wi
e —
=] 17
W w
F
w
l |
M |
|
744
Fig. 5.5

ExampLE 2. A beam 10 m long is simply supported at its ends and carries
concentrated loads of 30 kN and 50 kN at distances of 3 m. from each end.
Draw the S.F. and B.M. diagrams.

First calculate the reactions R; and R, at the supports (Fig. 5.6).
By moments aboutZR?_:
Ry x10=30x7 +50 x3
R; =36 kN
and R,=30+50-R, =44 kN
Let x be the distance of the section from the left-hand end.
Shearing Force:
0<x<3, F=R;=36kN
3<x<7, F=R;-30=6kN
7<x<10, F=R; -30 - 50 = —44 kN
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Note that the last value = — R,, which provides a check on the working.
Bending Moment:

0<x<3, M=R;x=36x kNm
3<x<7, M=R;x-30(x—-3)=6x+90 kNm
7<x<10, M=Ryx —30(x - 3) =50(x - 7)
= —44x +440 kNm
30kN 50kN

3m i 4m l 3m
R 70nm _J—)TRZB
l

l
I 36 | l

N e

l
f
|
I

E-——-.-—- —_

Fig. 5.6

Principal values of M are: at =3 m, M =108 kNm, at x=7 m,
M =132 kNm. Note that the latter value can be checked by taking
R, x 3 as calculated for the right-hand portion.

The following general conclusions can be drawn when only con-
centrated loads and reactions are concerned:

(1) The shearing force suffers a sudden change when passing through a
load point, the change being numerically equal to the load.

(2) The bending moment diagram is a series of straight lines between
the loads, the slope of the lines being equal to the shearing force between
those points.

5.7. Uniformly Distributed Loads

ExaMmPLE 3. Draw the S.F. and B.M. diagrams for a simply supported
beam of length | carrying a uniformly distributed load wlunit length across
the whole span.

The total load carried = wl, and by symmetry the reactions at the end
supports are each wi/2 (Fig. 5.7).

If x is the distance of the section considered from the left-hand end
F=wli2 -wx
=w(l/2 - x)
giving a straight line of slope equal to the rate of loading (compare
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W = —dF/dx of Para. 5.5). End values of S.F. are + wi/2, with a zero
value at the centre.

The B.M. at the section x is found by treating the distributed load as
acting at its centre of gravity, which is x/2 from the section (Fig. 5.8),
giving M =(wlf2)x - (wx)x/2

= (wx/2)(1 — x)

e F

2
/ fwx |

= e

Fig. 5.8

This is a parabolic curve, having zero values at each end and a maximum
at the centre (corresponding to zero shear, from F =dM/dx, Para. 5.5)

M =(wl/4)(1 -1/2) putting x=1/2
=wi2/§

5.8. Combined Loads
ExampLE 4. A beam 25 m long is supported at A and B and loaded as
shown in Fig. 5.9. Sketch the S.F. and B.M. diagrams and find (a) the
position and magnitude of maximum B.M. and (b) the position of the point of
contraflexure.
By moments about B:
20R,=10,000 x 15 +2000 x 5 ~3000 x 5
(all loads are taken into account for equilibrium, the distributed load
acting as its centre of gravity).
R,=7250 kg=71-1 kN
Ry, ="Total load - R,
=7750 kg=76 kN
Shearing Force. Starting at the left-hand end, F==71-1 kN at A. As the
section moves away from A, F decreases at a uniform rate=w (i.e.

F =711 —wx), reaching a value — 27 kN at E.
Between E and D, F'is constant (no load on ED), and at D it suffers a
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sudden decrease of 19-6 kN (i.e. the load at D). Similarly there is an in-
crease of 76 kIN at B (the reaction at B), making the value of F'=29-4 kN
between B and C (checking with the end load at C).

2000kg 3000kg
2 o B ¢
|
70m r<5m —>]l<*5m~><—5m—>}
|
[

1000 kg/fm

Ry | YRy
t

294

I
R

|
|
{.
|
!
|

47

Fig. 5.9

Bending Moment. From A to E:
M =R x —wx?[2
=71-1x —4-9x2 kNm
a parabola which can be sketched by evaluating for several values of x.
For x beyond E the distributed load may be treated as a single load of
98-1 kN acting at 5 m from A.
Between E and D:
M=71-1x -98-1(x - 5)
= —-27x +490

producing a straight line between E and D, similar equations applying
for sections DB and BC.
However, it is only necessary to evaluate M at the points D and B (it
is zero at C), and draw straight lines between these values.
AtD: M= -27 x15 +490 =86 kNm
AtB: M= -294x5
=147 kNm. (calculated for the portion BC).
(a) The maximum B.M. between A and E is where the shearing force
1s zero, i.e. 725 m from A.
M=711x725-49 x7-252=258 kNm
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(b) The point of contraflexure (zero B.M.) occurs between D and B

at

147
(m) x5=3-16 m from B.

ExampLE 5. 4 girder 30 m long carrying a uniformly distributed load of
w kN[m is to be supported on two piers 18 m apart so that the greatest B.M.
shall be as small as possible. Find the distances of the piers from the ends of
the girder and the maximum B.M.

Let the distance of one pier from the end be d m, the other being
12 —d m. (Fig. 5.10).

Fig. 5.10

By moments about the right-hand support
18R =30w(3 +d)
R=(5w/3)(3 +d)
where (3 +d) m is the distance from the centre of the beam to the right-
hand pier.
For the overhanging end, M = —wx?/2, giving a maximum value at
the support
= —wd?/2 (i)
For the portion between the supports
M= —wx?/2 + R(x - d)
(x from left-hand end), which is a maximum when
dM/dx =0 = —wx +R
ie. x=R/w=(5/3)(3 +d) from above,
and M= - (25/18)w(3 +d)2 + (5w/3)(3 +d)[(5/3)(3 +d) —d]
= —(250/18)(3 + M2 + (5w/9)(3 + d)(15 +2d)
=(5w/18)(45 +12d — d?) (ii)
For the greatest B.M. to be as small as possible it is necessary to make
the two possible values equal (numerically), since it is clear that if the
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supports are moved to the right from this position the value at the left
pier will be increased, and if moved to the left the value between the piers
will be increased.

Equating numerical values (i) and (ii):
wd?[2 =(5w/18)(45 +12d - d?)

x18: 9d2 =225 +60d — 542
or 14d2 - 60d - 225 =0.
. 60 + /(3600 +4 x 14 x 225)

Solving d=

28

=6-7 ft. (one pier)
and 12 -d=5-3 ft. (other pier)
M =wd?/2 from (i), numerically,
=224 kNm

ExamPpLE 6. Draw the S.F. and B.M. diagrams for a beam 8 m long
simply supported at its ends, carrying
a load of 20 kN which is applied 206N
through a bracket. The bracket is fixed Im
to the beam at a distance of 6 m from

one support, the length of bracket in A L
the dirvection of the beam being 1 m. R1 &m ' Zm"T
(Fig. 5.11.) | 20Nm |
By moments about the right-hand 75 ? \4 T12'5
end } 20kN !
R=(20 x3)/8 =75 kN '
The effect of the bracket is to JI
apply a load of 20 kN, and a BM. F
of 20 kNm, at a point 6 m from |
the left-hand end. —

l
Thus F has a value of 7-5 kN along { l45 %
6 m of the beam and - 12-5 kN along i 25 i
the other 2 m. | |
M increases from zero to 7-5 x 6 = B J
45 kNm at the bracket on one side, Fie. 5.11
and from zero to 12-5 x2 =25 kNm S

at the bracket on the other side. There is a sudden change in the B.M.
at the bracket, equal to 20 kNm.

5.9. Varying Distributed Loads

ExampLE 7. 4 beam ABC, 27 m long, is simply supported at A and B,
18 m apart, and carries a load of 20 kKN at 6 m from A together with a dis-
tributed load whose intensity varies in linear fashion from zero at A and C to
10 kN/m at B.

Draw the S.F. and B.M. diagrams and calculate the position and mag-
nitude of the maximum B.M.
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The total load on the beam
=20 +%4 %270 =155 kN

since the mean rate of loading is 1 x 10 kIN/m.

10kNjm
20kN 9ok 45kN
%\
A [ - —c
78—} g
A | i 22 |
36 | | 45 |
26 1 !
| 1
F }

I
| | 24 }
l et
[ 196 201 { [
| 1 w7t {
|
i ' } {
f [ |

M! [ {
dimns.in m [
1
Fig. 5.12 £l

The total distributed load on AB =% x18 x10=90 kN, and on BC =
1 x9 x10 =45 kN, each acting through its centre of gravity, which is
% x 18 =12 m from A in one case, and ¥ x9 =6 m from C in the other case
(these are the centroids of triangles representing the load distribution).
Then by moments about B for the whole beam
R;=(20x12+90 x6 ~45 x3)/18 =36 kN
hence R, =155 -36=119 tons
At a distance x(<<18) from A, the rate of loading =10x/18 kN/m.
The distributed load on this length is
(mean rate of loading) x x =3(10x/18)x
=10x2/36 kN
and its centre of gravity is 2x/3 m from A.

For 0<x<6, F =36 —10x2/36
at x =6 ft., F=26 kN
M =36x — (10x2/36)x/3
=36x —10x3/108
at x =6 ft., M =196 kNm
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For 6 <<x<<18 F=36-210 - 10x2/36
at x= 12 m, = -24 kN
at x=18 m, = ~74 kN
F=0when x=64/16=1-6=7-58 m
M =36x ~210(x — 6) —10x3/108
=16x +1210 — 10x5/108
at x=12 m, M =152 kNm
at x=18 m, M =135 kNm
Maximum bending moment occurs at zero shearing force, i.e. x =7-58m
M =201 kNm

The portion BC may be dealt with more conveniently by using a
variable X measured from C. Then, by a similar argument

F=1(10X/9)X =X?2/18 kN

at X=9 m, F=45kN
M= - $10X/9)X(X/3) = ~10X3/54 kNm
at X=9 m, M= -135 kNm (check x =18 m)

The complete diagrams are sketched in Fig. 5.12, and it is seen that,
for a uniformly varying distributed load, the shearing force diagram
consists of a series of parabolic curves, and the bending moment dia-
gram is made up of ““cubics,” discontinuities occurring at concentrated
loads or reactions. It was, of course, shown in Para, 5.5 that shearing
force can be obtained by integrating the loading function, and bending
moment by integrating the shearing force, from which it follows that
the curves produced will be of a successively ““higher order” in x.

5.10. Graphical Method. In Para. 5.5 it was shown that the change
of bending moment was given by the double integral of the rate of
loading. This integration can be carried out conveniently by means of
a funicular polygon, as illustrated in Fig. 5.13

Suppose the loads carried on a simply supported beam are W, W,,
W;, and W,. R, and R, are the reactions at the supports. Letter the
spaces between the loads and reactions A, B, C, D, E, and F.

Draw to scale ab=W,, bc=W,, cd=W;, and de=W,. Take any
pole O to the left of this line and join O to a, b, ¢, d, and e. This is called
the polar diagram.

Commencing at any point p on the line of action of R;, draw pq
parallel to Oa in the space “A,” qr parallel to Ob in the space “B,” and
similarly rs, st, and tu. Draw Of parallel to pu.

It will now be shown that fa represents R; and ef represents R,.
Also that pqrstu is the bending moment diagram on a base pu, M being
proportional to the vertical ordinates.

W, is represented by ab, and acts through the point q; it can be

Visit : Civildatas.blogspot.in


http://Civildatas.blogspot.in

Visit : Civildatas.blogspot.in
82 STRENGTH OF MATERIALS 5.10.

replaced by forces a0 along qp and Ob along qr. Similarly ¥, can be
replaced by forces represented by bO along rq and Oc along rs, W; by
cO along sr and Od along st, etc. All these forces cancel each other out,
except a0 along gp and Oe along tu; and these two forces must be in
equilibrium with R; and R,. This can only be so if R, is equivalent to
a force Oa along pq and fO along up, R, being equivalent to €O along
ut and Of along pu. Hence R, is represented by fa, and R, by ef.

w; W, UZ! Wy
AlﬁlchlE

& Z oy £ Tzez

|
s | L !
' |

n

s I N

t
{
[
|
I
I
I
]
|

B.M
ol

Fig. 5.13

Triangles pqv and Oaf are similar, hence

qv=af.pv/Of
or ocaf.x,/h

where x; is the distance of W; from the left-hand end of the beam and
h is the length of the perpendicular from O on to ae,

But af.x; oc Rxy, i.e. the B.M. at x;.

Hence, for a given position of the pole O, qv represents the B.M. at
x; to a certain scale.

If qy is drawn parallel to pu, then the triangle qry is similar to Obf

and
ry =bf. qy/Of
=bf.(x, —x;)/h
rz=qv+ry
=af.x; [k +bf(x, —x,)/h
which is o Ryx; +(Ry — Wi)(x2 — ;)

=Ryx; ~ Wy(x; — %)
i.e. the B.M., at x,.
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Similarly the ordinates at the other load points give the bending
moments at those points, the scale being determined as follows:

If the load scale of the polar diagram is 1 cm=s; N, the length
scale (along the beam) is 1 cm=s, m, and the bending moment scale
required is 1 cm =53 Nm, then the length

qvecaf.x;/k  as shown above
= Ryx,/s15:h =M, [s155h
But qv=M,/s;
. h=s3/5i5; cm

If a base on the same level as f is drawn and the points a, b, ¢, d, and
e are projected across from the polar diagram the shearing force diagram
is obtained.

This method can equally well be used for distributed loads by divid-
ing the loading diagram into “strips’ and taking the load on a strip to
act as concentrated at its centre of gravity.

For cantilevers, if the pole O is taken on the same horizontal level as
the point a, the base of the bending moment diagram will be horizontal.

SUMMARY
Shearing Force F.
Bending Moment M. Positive senses: 7
Rate of Loading w. M
F=dM/ds. 1 b

w= —dF/dx = — d2M/dx2.
The following table of maximum shearing force and bending moment
in standard cases is given for reference.

Loading F )7
w W1 (fixed end)
A Z
w
W=wl ,
A4 W (fixed end) W1/2 (fixed end)
fe— —V
w

Wi/4 (centre)

< I 4
2 2 w2
W?)
a
Wab|l (load
e ol o0
.@“Z%

W/2 (support) WI/8 (centre)
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PROBLEMS

1. A beam ABCDEF, in which AB=2m, BC=2m, CD=233m, DE=2m
and EF =2 m, carries loads of 50 kN, 50 kN, 40 kN, and 40 kN at A, C, D, and
F respectively, and is supported at B and E.

Draw the S.F. and B.M. diagrams and find (a) maximum S.F., (b) maximum
B.M.,, (¢) point of inflection. (50 kN; 100 kNm; none.)

2. Sketch the B.M. and S.F. diagrams for the beam shown and state (a) the
position and magnitude of the maximum bending moment, (b) the position of
the point of contraflexure. (3:63 m; 277 kNm; 2-66m.)

20kN o 20kN 15kN
30 kN/m
e~ 2m-»| I<—2m—>‘<—2m->|
8m

3. Draw the S.F. and B.M. diagrams for the propped cantilever shown and
find the position and magnitude of the maximum B.M. (8 m; 240 kNm.)

40kN 5kNim  30kN
2m < 6m —>
1,k 16m 7
80kN

4. A horizontal beam AD, 10 m long, carries a uniformly distributed load of
360 N/m run, together with a concentrated load of 900 N at the left-hand end A.
The beam is supported at B, 1 m from A, and at C, which is in the right-hand
half of the beam, x m from D. Determine the value of % if the mid-point of the
beam is a point of inflexion, and plot the B.M. diagram. Locate any other points
of inflexion. (9 m)

5. A horizontal beam, simply supported on a span of 10 m, carries a total
load of 1000 kg. The load distribution varies parabolically from zero at each end
to a maximum at mid-span. Calculate the values of the B.M. at intervals of 1 m
and plot the B.M. diagram. State the values of (a) maximum B.M., (b) shearing
force at quarter span. (U.L.) (15,400 Nm; 3380 N)

6. A beam ABC is simply supported at B and C and AB is a cantilevered
portion. AB =5 m, BC =15 m. The loading consists of 2000 kg concentrated at
A, 3000 kg concentrated at D, 11 m from C, and 4000 kg concentrated at 5 m
from C. In addition the beam carries a uniformly distributed load of 2000 kg/m
over the length DC. Draw dimensioned sketches of the S.F. and B.M. diagrams.

7. A beam ABCD is 24 m long and is simply supported at B and D, 17 m
apart. A concentrated load of 20 kN at A and a total distributed load of 120 kN,
which varies linearly from p kN/m at the centre C to ¢ kN/m at D, is spread
from C to D. Find the values of p and q for the reactions at B and D to be equal.
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Find also the point of contraflexure and the position and magnitude of the
maximum bending moment.
(125 kN/m; 7-5 kN/m; 24 m B; 77 m D; 285 kNm)
8. A horizontal beam is simply supported at its ends and carries a uniformly
distributed load of 40 kN/m between the supports, which are 7-5 m apart.
Counter-clockwise moments of 100 and 80 kNm are applied to the two ends.
Draw the B.M. diagram and find (1) the reactions at the supports, and (2) the
position and magnitude of the greatest B.M.
(174, 126 kN; 4-35 m, 280 kNm)
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CHAPTER VI
Bending Stress

6.1. Pure Bending. If a length of beam is acted upon by a constant
bending moment (zero shearing force), the stresses set up on any cross-

section must constitute a pure couple equal in magnitude to the bending
moment. Hence it can be deduced that one part of the cross-section is :
in compression and the other part in tension. Referring to Fig. 6.1(a),
subject to the condition that the end sections remain plane, it is clear -
that for an initially straight beam the inside or concave edge will be in :
compression and the outside or convex edge will be in tension. There .
will be an intermediate surface at which the stress is zero (“neutral”
surface) ; the neutral surface cuts any cross-section in the neutral

axis.
The following theory will not be strictly correct when the cross-
section is subjected to a shearing force, as this will cause a distortion of

transverse planes. However, this will be dealt with separately in -

Compression

N

Tension
)

()

Fig. 6.1

Chapter VII, and the theory of pure bending is accepted as being suffi-
ciently accurate even when the bending moment is varying.

The problem will be treated as of one-dimensional stress, lateral
stresses being neglected. There must, however, be lateral strains,
which will cause a distortion of the cross-sectional shape known as anti- -
clastic curvature, but the effect of this on the dimensions will be ;

neglected.
86
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6.1. BENDING STRESS

A summary of the assumptions is as follows:

(1) The material is homogeneous, isotropic, and has the same value
of Young’s modulus in tension and compression.

(2) The beam is initially straight and all longitudinal filaments bend
into circular arcs with a common centre of curvature.

(3) Transverse cross-sections remain plane and perpendicular to the
neutral surface after bending.

(4) The radius of curvature is large compared with the dimensions
of the cross-section.

(5) The stress is purely longitudinal and local effects near concen-
trated loads will be neglected.

Fig. 6.1(a) shows a length of beam under the action of a bending
moment M. Oisthe centre of curvature, and R is the radius of curvature
of the neutral surface NN. The beam subtends an angle 8 at O.

Let o be the longitudinal stress in a filament ab at a distance y

from NN. Then the strain in ab ig

o/E=(ab-NN)/NN
(since originally all filaments were of the same length NN)
=[(R +y)8 - RO]/RO
=y/R
oly=EIR (1)

It is apparent at this stage that, since E/R is constant, the stress is
proportional to the distance from the neutral axis XX (Fig. 6.1(c))
and that for purposes of economy and weight reduction the material,
should be concentrated as much as possible at the greatest distance
from the neutral axis. Hence the universal adoption of the I-section for
steel beams.

Three equilibrium equations can be obtained for the system of parallel
stresses on any cross-section.

If 34 is an element of cross-sectional area at a distance y from the
neutral axis XX (Fig. 6.1(b)) then for pure bending the net normal force
on the cross-section must be zero, i.e.

fc.dA=0
(E/R)[ydA=0 from (1)
This is the condition that XX passes through the centroid of the
section.
The bending moment is balanced by the moment of the normal
forces about XX, i.e.
M=oy dA
=(E[R)[y?.dA from (1)
= EI/R

or

or
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6.1,

where I (fy2.dA) is a property of the cross-section known as the ,.

moment of inertia or second moment of area (Para. 6.2) or
M|I=E/R 2)

Equations (1) and (2) may now be combined and written in the

convenient form

o/y=M/I=E/R 3)

In order to satisfy the convention of signs, y should be taken as ,
positive when measured outwards from the centre of curvature, and |

negative when inwards.

The ratio I/§ is called the section modulus Z, so that 6 =M/Z. The
bending moment which can be carried by a given section for a limiting

maximum stress is called the moment of resistance.

A further condition which should not be overlooked is obtained by
integrating the moments about the axis YY, perpendicular to the
neutral axis and through the centroid. For pure bending about the |

neutral axis this moment must be zero, i.e.

foxdA =0
or JxydA=0 from (1)

This integral is referred to as the product of inertia, and the axes for
which it is zero are called the Principal Axes of the cross-section. The
limitation on the above theory is that it shall only be applied for

bending about a principal axis. A bending moment in any other
plane must be resolved into components about the two principal axes, °
the resulting stresses being calculated separately. If the cross-section 3
has an axis of symmetry (as is normally the case), then it is easy to show
that this satisfies the condition for a principal axis, the other principal ¢
axis being at right angles through the centroid. The subject will be

dealt with more fully in Paras. 6.11 and 6.12.

It is important to use consistent units in the bending formula, e.g. -

o N/mm?2
¥ mm
M Nmm
I mm#
E N/mm?
R mm

6.2. Moments of Inertia. Readers may be familiar with the moment !

of inertia of a rigid body, which is a property obtained by summing the
products of particle mass and the square of its distance from a given

axis, for all the particles in the body. This function is involved in all

problems of angular motion.
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By analogy with mass moment of inertia the summation of areas
times distance squared from a fixed axis, which arose in the proof of
the previous paragraph, is called the moment of inertia (I) of the cross-
section about that axis. An alternative
name is second moment of area, the
first moment being the sum of the
areas times their distance from a given
axis.

By definition I = [y2.dA about the
XX’ axis (Fig. 6.2), and I, =[x2.dA.
The moment of inertia about an axis
through O perpendicular to the figure
is called the Polar Moment of Inertia

J=fr2.d4 o
=[(x2+y?)d4 Fig. 6.2
=L+, (1)

This relation is referred to as the perpendicular axes theorem, and may
be stated as follows: the sum of the moments of inertia about any two axes
in the plane is equal to the moment of inertia about the axis perpendicular
to the plane, the three axes being concurrent. :

It follows as a corollary that the sum of the moments of inertia about
any two perpendicular axes through a given point in the plane is constant.

Circular Section. To calculate the polar moment of inertia about
O (Fig. 6.3), 64 =2ar.8r.

a2
J=J’ r2. 2nr.dr
[\]

=2a[r4[4]5?

=xd?4[32
But ¥=1I,+1I, by the perpendicular axes
X theorem, and since I, and I, are both equal,
being moments of inertia about a diameter

Ly, =3 =md*[64

For a hollow circular section of diameters
D,d

F=(n/32)(D4-d%) and I=(m/64)(D*~d%)

The parallel axes theorem will now be proved. If ZZ is any axis in
the plane of the cross-section and XX is a parallel axis through the
centroid G (Fig. 6.4), then

LI.=[(y+h)2dA by definition
={y2.dA +2hfy.dA + h2[dA
=1I,+Ah?

Fig. 6.3

@
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times the square of the distance between the axes.

It should be noted from the above U U
that the moment of inertia about the
axis through the centroid is the mini-
mum value for an axis in that particular
direction. If it is required to transfer
from one axis ZZ to a parallel axis UU,
neither being through the centroid, the
operation must be done in two stages,
ie.

Fig. 6.4
I;=1I,+Ah?
and I =1+ A4k?
where k =distance between axes XX and UU.
From which Iy=1,-Ah + Ak? 3)

Rectangular Section. For bending about the

X! J i- y...__.)_.f 3742
d| 70| nb[y_]
1 3 ~a12
| =bd3[12
For a hollow rectangular section, of outside
dimensions B, D, and inside dimensions b, d,
Iy =3(BD3 - bd3).
I-section. In the case of standard sections the moments of inertia are
computed graphically from the actual shape

of the cross-section as rolled (see Para. 6.3), n B IY |

but a reasonable approximation may be 4 7 '

obtained by estimating a mean flange thick- ~ T

ness and v.vork%ng from a series of rectangles x| Hlire x

as shown in Fig. 6.6. T J‘—“—‘
Using the dimensions shown, the moment l ~ ’

of inertia about XX’ may be obtained by ‘L
YI

subtracting that for rectangles (B —1t,) wide
Fig. 6.6

v
Fig. 6.5

D

and d deep from the overall figure B by D,
ie.

Ix=75[BD? - (B - 1,)d°]

Alternatively, and for greater accuracy of computing, the web and |
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since [y.dA =0 for an axis through the centroid and A =total area, |
Stating in words, the moment of inertia about any axis is equal to the .
moment of inertia about a parallel axis through the centroid plus the area

E; 3 , XX axis, let the width be 4 and the depthd
- (Fig. 6.5). o .
Then - f y2.bdy
~a2

6.2 senpiInd Silgfslyildatas.blogspotin - g

flange areas may be treated separately, using the parallel axis theorem
for the flanges.

Then Iy =2{(Bt;3/12) + Bt,[(d + ,)/2]2} + (t,d3/12)
where (d +#)/2 is the distance between the centroid axis of the flange

itself and the principal axis of the whole cross-section XX'. The term
Bt,3/12 is very small and can usually be neglected.

I, =352, B3 + dt,3)

the “width” being the dimension parallel to YY’, and the “depth”
parallel to XX'.

A table of moments of inertia for standard sections is given in the
summary at the end of this chapter.

6.3. Graphical Determination of Moment of Inertia. Suppose
it is required to find the moment of
inertia about the centroid axis XX of
the irregular figure shown in Fig. 6.7.
Let ZZ be any convenient axis outside
the section parallel to XX.

Divide the figure into strips of area
84 parallel to ZZ and at a distance y
from it. If each strip is the same thick-
ness 8y then the areas 84 will be
proportional to their widths x. <

Tabulate the values as follows:

x 84 y 84

Totals Z5A=A Zy3A | Zy28A =1z

If h is the distance of the centroid axis from ZZ, then
Ah=Zy5A by moments
ie. h=2y8A4[A
and I =I,-Ah? by the parallel axes theorem (Para. 6.2, Eq. (2)),
I, being given by Zy23 4.
6.4. Bending Stresses

ExampLE 1. The beam of symmetrical I-section shown in Fig. 6.8 is simply
supported over a span of 9 m. If the maximum permissible stress is 75 N[mm?2
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what concentrated load can be carried at a distance of 3 m from one support?
It is understood that XX is the axis of bending, the bending moment

being in the plane YY.

\¥

M 6

3 \

6m ><—23m —>T

3 3 : !
Fig. 6.9

If W kN is the load, the maximum bending moment is
M=6W/3 kNm. (see Chap. V)

=2 x106 W Nmm

I=2[100 x11-53/12 +100 x 11-5(112-5 - 11-5/2)2] +7-5 x 202-53/12

=2[1-25 +1300] x 104 +490 x 104

=31 x 106 mm*

(compare Para. 6.2)

o/y =M/I (Eq. (3) Para. 6.1) gives
75/112-5 =2 x 106W/31 < 106
W=10-3 kN

i ExamPLE 2. The cross-section of a cast-iron beam is shown in Fig. 6-10, the

A

loading being in the plane of the
web, the upper portion of the sec-
tion being in compression. If the
maxtmum permissible stresses are
2000 kg/em? tension and 3000
kglem? compression, find the moment
of resistance of the section and the
actual maximum stresses

Since the neutral axis XX
passes through the centroid it is
necessary first to find its position.
This and the total moment of

inertia about XX can be evaluated conveniently by tabulating as follows,
in which y is the distance of the centroid of each area from the bottom
edge of the section, I the moment of inertia of each area about its own
centroid axis parallel to XX, and % the distance between each centroid

axis and XX.
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Part A y Ay I h AR? | I+
cm? cm cm3 cm#4 em | cmt | AR2
cm?
Top flange . | 12 |11 132 (6x2%/12 | 6-13] 452 | 456
Web . .| 105 |65 68-25 (1-5x739/12 | 1-63| 278 | 707
Bottom flange | 27 15 40'5 (Ox39/12 | 3-37| 306 | 3262
Totals . EA=495 ZAy=24075 671 7858 | 8529

By moments
§=2Ay|2 A =24075/49-5
=4-87 cm.

For the whole section about the neutral axis I =853 cm#*. The maxi-
mum distances from the neutral axis are 4-87 cm on the tension side and
7-13 cm on the compression side. Working out the moment of resistance
for each limiting stress individually:

M =(2000 x 853)/4-87 =351,000 kg cm
M =(3000 x 853)/7-13 =359,000 kg cm

for tension,

for compression,

The limiting value is therefore 351,000 kg cm, corresponding to a maxi-
mum tensile stress of 2000 kg/cm? and a maximum compressive stress
=2000 x 7-13/4:87 =2930 kg/cm? by proportion of distances from the
neutral axis.

Alternatively, it may be argued that the actual maximum stress ratio
must be determined by the distances from the neutral axis, i.e. 7-13/4-87,
from which it can be deduced that the tensile stress is the limiting one,
the maximum compressive stress being less than the permissible value.
The moment of resistance is then calculated on the basis of 2000 kg/cm?
tensile stress.

Unsymmetrical sections are used for cast-iron beams because the
material is stronger in compression than in tension. The beam must be
placed so that the larger flange is on the tension side.

ExampLE 3. 4 300 mm by 125 mm I-beam is to be used as a cantilever
3 m long. If the permissible stress is 120 N[mm? what uniformly distributed
load can be carried? 1=280 x 106 mm*.

If the cantilever is to be strengthened by steel plates 12-5 mm thick, welded
to the top and bottom flanges, find the width of plates required to withstand an
increase of 50% in the load, and the length over which the plates should
extend, the maximum stress remaining the same.

M=Wi[2
(where W N =total load)
=1500 Nmm
¥ =150 mm

4*
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| b applying ofy =M|I
255 . 120 1500w
1251 T 150 80 x 106
W =427 kN
X XU o =143 kN/m

dimns.in
mm
=96 x 106 N mm; y increases to 162-5 mm
I=96 x10 x 162:5/120 =130 x 106 mm*

Fig. 6.11 The increase in moment of inertia is 50 x 106 mm?,
and is the moment of inertia about XX of the two
flange plates. If their width is # mm, then

2[b x (12'5)% + (b x 12:5)1562] =50 x 105 mm*
or b=50 x106/(2 x 30-4 x 104) 825 mm.

l If the load is increased by 50%, M becomes 2250 W

H
i

The length over which the plates must extend is determined by the
position at which the maximum stress in the beam itself is equal to 120
N/mm?2 under the increased loading.

If x m is the distance from the free end

M =wx2/2 =21-45 x x2/2 kNm
=AG10-72 x 106 N mm

Substituting in the bending stress equation ‘
120/150=10-72 x 106x2/80 x 109 ot
giving x=245 m,

The maximum bending moment is at the fixed end, and the plates °
should extend a distance of 0-55 m from this end.

ExampLE 4. The I-beam shown in Fig. 6.12 is simply supported at its ends ;; ‘
over a 2 m span and carries a central load of 500 kg which acts through the
centrotd, the line of action being as shown. Calculate the maximum stress. it

The section being symmetrical, the centroid is at the centre of the web,
and the principal axes are XX’ and YY".
Iy =2[% x6 x13+6 x1 x5:52] for the flanges
+1%-2-103 for the web
=426'5 cm*
Iy =2 x 751 %63 4710 x 33
=36-35 cm*
The maximum bending moment = Wi/4
=500 x 200/4 =25,000 kg cm.
This must be resolved into
My =25,000 sin 60°
=21,700 kg. cm in the plane YY’
and My =25,000 cos 60°
=12,500 kg cm in the plane XX’

dimns.incm
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Then the bending stress at any point (x, ¥) in the section is made up of
two parts, one due to bending about axis XX’ and the other due to

bending about YY’, i.e.
[eg =Mx.y/1x +My.x/Iy
where x and y are to be reckoned positive to the right of YY’ and below
XX’ respectively. This will ensure tensile stresses positive and com-
pressive stresses negative.
It is clear, then, that the maximum tensile stress occurs at the bottom

right-hand tip of the lower flange, where x =3 cm, y=6 cm.

=21,700 x 6/426-5 +12,500 x 3/36-35

=305 +1030

=1335 kg/cm2 =131 N/mm?

6.5. Stress Concentrations in Bending. The following is a selection
of values obtained by Frocht by photo-elastic analysis (Para. 19.11) for

({—g—_z_m)
A

™M

Fig. 6.13

the stress concentration factor k at a change in cross-section in a _round
or flat bar subjected to a bending moment. In all cases the ratio D/d
(Fig. 6.13) was 1-5.

rid | 01 02 04 07
k 177 1-48 1-27 1-15

6.6. Combined Bending and Direct Stress. Consider the case of a
column acted on by a thrust P whose line of action cuts the cross-section
at a point on the XX axis at a distance 4 from the centroid O (Fig. 6.14).

Then P is equivalent to an equal load at O, which produces a uni-
form direct stress, together with a bending moment Ph about YY,
which produces a varying bending stress.

The combined stress, at any point at a distance x from YY, is given
by

o=P|A+Ph.x/Iy

where A is the cross-sectional area.
If x is reckoned positive on the same side of YY as the load, so that
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the bending stress is of the same type as the direct stress, the equation

for compressive loads will give a positive value for compressive stress.

The same notation used for tensile loads will produce a positive value
for tensile stresses.

Proceeding with the case under consideration, it is clear that the |

()N Ve

Fig. 6.14

maximum compressive stress will occur at the right-hand edge of the
section. At the left-hand edge of the section % is negatlve, and if P/A>

Ph_x|I, the stress will remain of the same type, i.e. compressive .

(Fig. 6.14(a)). If the bending stress is greater than the direct stress,
then the tensile stress at the left-hand edge may be written
Ph.x(I, - P|4 (Fig. 6. 14(b)).

Other points to note from the stress variation diagrams are that the

stress at the centroid is P/4, and the usual bending stress diagram is

then plotted about this base. Whether there is a reversal of stress
depends on the magnitude of the eccentricity h (see Paras. 6.7 and 6.8).

ExAMPLE 5. 4 cast-iron column of 8 cm outside diameter and 6% cm inside .
diameter carries a central axial load of 10,000 kg and a load of W kg at
13 cm from the axis. If the allowable stresses ave 1200 kgjcm? compressive

and 300 kg/cm? tensile, find the value of W.
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6.6.
All diameters being principal axes, assume W lies on XX (Fig. 6.15).

A =(w/4)(82 - 6-52) =171 cm?

I, =(=/64)(8* - 6:5%)
—(/64)(82 — 6-52)(82 + 6-52)
=113 cm*

Fig. 6.15

Bending moment =13W kg cm

Maximum bending stress = +(13W x 4)/113 kg/cm?

Total “direct” stress =(10,000 + W)/17-1 kg/cm?

Allowable compressive stress 1200 =(10,000 -+ W)/17-1 + 52W/113

giving W=1650 kg
Allowable tensile stress 300 = — (10,000 + W)/17-1 +52W/113, changing
the sign giving
W =3580 kg
Taking the smaller value, W =1190 kg, and the stress varies from
1200 kg/cm?2 compressive to
11,190/17-1 — (52 x 1190)/113 =106 kg/cm? compressive

(i.e. there is no tensile stress).

ExampLE 6. The tie bar shown in Fig. 6.16 is 3 m long and of rectangular
section 25 mm thick. The longitudinal section is tapered from a depth of
150 mm to 25 mm at the ends. A load of 50 kN acts through the centroid of the
smaller end and parallel to the edge AB. Find the position and magnitude of
the maximum tensile stress.

Fig. 6.16

At x m from the smaller end of the depth of the section is
50 +100-x/3 =50(1 +2x/3) mm

M -
P S

lﬂ.zrtM J
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so that the line of action of the load is at an eccentricity of 50x/3 mm.

Area of section =25 x 50(1 + 2x/3) mm?

3
Moment of inertia =25 x 503(—1--—4—_1—2%ﬁ =26 x 1041 +2x/3)3 mm*
, 50 x 103 : 25 +50x/3
1 — Xl 3 P A
Tensile stress o 35 % 5001 2 2%73) +(50 x 10 +50x/9 26 % 10%(% 20/3)}
at top edge
40 80-3x

T +2%/3) " (1 +2x/3)2

For a maximum, do/dx =0.

40 2 80-3[(1 +2x/3)2 - x:2(1 +2x/2)%] -0

L€ T r2x3)23 (1 +2x/3)*
x3(1 +2x/3)3: ~80(1 +24/3) +80-3[3 + 2% —4x] =0
x=075m
50 x10° 50 x 103 x 50 x 025 x 375
T35 %50 %15 26 x 104 x 153
=53-5 N/mm?2

Load Eccentric to both Axes. Let the line of action of the load P
be at distances of % and k2 from the principal
¥ axes OY and OX (Fig. 6.17).

Then the eccentric load is equivalent
to a central load P, together with a
2 +@Z) bending moment Pk about OY and a
—¥___.\ _ bending moment Pk about OX.

i X The stress o at any point in the section
defined by the co-ordinates #, y is made
up of three parts, i.e.
c=P[A+Ph.x/L,+Pk.y|I,
where x and y are to be reckoned
positive when on the same side of their respective axes OY
and OX as the load.

It follows that the maximum stress occurs at a point in the
same quadrant as the load, and the minimum stress in the
opposite quadrant.

Fig. 6.17

ExaMmpLE 7. A short column of vectangular cross-section 8 cm by 6 cm
carries a load of 40 kN at a point 2 cm from the longer side and 3:5 cm from
the shorter side. What are the maximum compressive and tensile stresses in
the section?
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The centroid is at half the depth, i.e. 25 + 50x/3 mm from the top edge,

-
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The eccentricities of the load are 4 cm from OY and 1 cm from OX
(Fig. 6.18).
ly A =48 cm?
' Iy =(8 x63)/12 =144 cm*
Ty =(6 x83)/12 =256 cm*

B
T Maximum bending stress due to
'%@_3.59 3 bending about OX
|y X (40,000 x 1)3/144 x 100
=8-33N/mm?
being compressive along the edge
AB and tensile along the edge CD.
Maximum bending stress due to
bending about OY
=(40,000 x $)4/256 x 100 =
3-13 N/mm?2
being compressive along the edge BC and tensile along the edge AD.
Direct stress =40,000/48 x 100 = 8:33 N/mm?2 compressive

The maximum compressive stress occurs at B, of magnitude
8-33 +8-33 +3-13 =19-8 N/mm?

The maximum tensile stress occurs at D, of magnitude
—-8-33 +8:33 +3:13 =3-13 N/mm?

6.7. Middle Third Rule for Rectangular Sections. In the case
of masonry columns it is usual to design so that no tensile stresses will
be set up. It will now be shown that for an axial load on a rectangular
section the line of action must lie within a central area of the section.

Referring to Fig. 6.19, let the eccentricity of the load be & from OY
and k from OX.

Then the combined stress at any point x, y in the section is given by

o=P|A+Ph.x/Iy+Pk.y/Ix (Para. 6.6)
< P[bd + 12Ph.x/b3%d + 12Pk.y[bd?

The limiting condition for no
Y
B Jr__>|
|

tensile stress to be set up is
]
1 d
xT |3
|
|Y-’

obtained by taking extreme nega-
Fig. 6.19

S

tive values of x and y, ie x
= —b/2, y= -df2 (compare Ex-
ample 7), and equating the stress
to zero, i.e.

PJbd — (6Ph.b)[b3d — (6Pk.d)/bd>

X

Simplifying and rearranging
dh + bk =bd[6

gives the limiting values of 4 and k. In each quadrant the load must lie
within the line produced by this equation. When k=0 (load on OX),
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h=5b/6, and when k=0 (load on OY), k=d/6, so that when the load is on
either axis it must lie within the “middle third” for the stress to be every-
where compressive.
For intermediate positions it must lie within the diamond area.
Note that for given values of k and %

1-12k.x/b2 — 12k.y/d? =0

is the equation of the neutral axis (zero stress).

6.8. Middle Quarter Rule for Circular Sections. Let d be the
diameter of the circle, and OX the diameter through which the line of
action of the load passes at an eccentricity e from the centre O.

The limiting condition for no tensile stress
to be set up is when the maximum tensile
bending stress is just equal to the direct
compressive stress, i.e.

Pe d_ P
nd4/64°2 wd2j4
or e=d/8
For all possible positions of the load this
Fig. 6.20 produces a circle of diameter d/4 with centre
O (“middle quarter”), within which the
load must lie for no tensile stress to be set up (Fig. 6.20).

6.9. Composite Beams. In the case of beams made up of two dif-
ferent materials, such as timber beams reinforced by steel plates, if the
parts are assumed to be rigidly connected together the strain at the
common surfaces will be the same for both.

Then, if transverse sections remain plane after bending, strain will
be proportional to the distance from the common neutral axis.

Denoting the two materials by suffixes 1 and 2, the following equa-
tions are obtained from these assumptions.

Strain =0 /E, =0,/E, at any common surface 1

In general, as stress = E x strain, and strain is proportional to distance
from neutral axis

o'1/o'2=Ey1/Ezy, )
where ¢'; is the stress in material 1 at a distance y; from the neutral
axis, and o', is the stress in material 2 at y, from the neutral axis.
M, =011y (Eq. (3), Para. 6.1) 3)
and My =o0,1,]y “4)
where y is the distance from the neutral axis to the common surface
and o and o, are as equation (1).
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The total moment of resistance
M =M+ M,=(01l; +0,I5)]y from (3)and (4)

= (o1 +(E2/Er);] from (1)
=(o1/y){1 +mly) )

where m=modular ratio E,/E,

I, +mI, can be treated as the equivalent moment of inertia of the cross-
section, as if all made of material 1, which will give the same moment of
resistance as the composite beam. It is frequently convenient to produce
an equivalent section with I=1I, +ml,, which can be achieved by multi-
plying by m the dimensions of material 2 in the direction parallel to the
neutral axis.

The equivalent figure can be used for finding the position of the
neutral axis and the equivalent moment of inertia, but equation (2)
should be used for the stresses, taking care to relate corresponding
o and y values for the separate materials.

ExaMPLE 8. A timber beam 6 cm wide by 8 cm deep is to be reinforced by
bolting on two steel flitches, each 6 cm by % cm in section. Calculat‘e the
moment of resistance in the following cases: (a) flitches attached. symmetrically
at top and bottom; (b) flitches attached symmetrically at the sides. Allowable
timber stress 8 N/mm?

What is the maximum stress in the steel in each case? E;=210,000N [mm?

E, =14,000 N/mm?

Emm_jr% dimns.incm 1
(@) (8)
Fig. 6.21

Since the allowable stress in the timber is given, it is convenient to
calculate on a basis of equivalent timber section.

(a) I=I,+ml;
6—1"38—3 +3—2°[2 «8 "1(2‘})3 +2%(6 x3) x 4-252], Fig. 106(a)
=1884 cm*
M=o,/y,, from (5)
=8 x 1884 x 104/40
=3,768,000 N.mm =3768 N.m
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Maximum stress in steel

as =§j %i.m from (2)
=15 x(4-5/4) x8
=135 N/mm?
(b) Again working on equivalent timber
I=6x83/12 +15 x2 x% x63/12, Fig. 106(b)
=526 cm*
M =8 x 526 x 104/40
=1,052,000 N.mm =1052 N.m
os=15x3x8

=90 N/mm?

ExampLE 9. Two rectangular bars, one steel and one brass, each 38 mm by
9-5 mm are placed together to form a beam 38 mm wide by 19 mm deep, on two
supports 760 mm apart, the brass on top of the steel. Determine the maximum
central load if the bars are (a) separate and can bend independently, or (b)
Sfirmly secured throughout their length. Maximum allowable stress in the
brass =70 N/mm?. Maximum allowable stress in the steel =105 N/mm?;
E, =87,500 N/mm?; E,=210,000 N/mm? (U.L.)

(a) Since the two materials bend in-
dependently, each will have its own
¥ neutral axis.

e 38mm —

—--——-Brass—-—i 95mm a/y =E/R
¥ and assuming the radius of curvature the
~—-——"-8tee/——-—1 9:5mm same for both, then
—+ o5/oy =Egys/Eyy,
Fig. 6.22 =210/87-5 (since y,= y;)
=24

Referring to the allowable stresses, it follows that the actual stresses
must be 105 N/mm? steel and 105/2:4 =43-75 N/mm?2 brass.

Moment of resistance of brass
My =0, I/y,
=43-75 x 1% x 38(9-5)3/4-75
=25,000 N mm
Moment of resistance of steel
M, =105 x % x 38(9-5)3/4-75
=60,000 N mm
Total moment of resistance
=85,000 N mm
=WI/4 for a central load
W =85,000 x4/760 =450 N
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Note that the section could be treated as equivalent brass with a total
moment of inertia

— I, +ml, =% x 38(9-5)3(1 +2+4)

The stress variation is as shown in Fig. 6.23.

Compression Tension
< 4375 >

\ Brass
105 \

106 >{

Fig. 6.23

(b) Fig. 6.24 is the equivalent section, as of all brass, and if the parts are
rigidly fixed together along their length they will bend about a common
neutral axis XX. The dimension of the steel parallel to the neutral axis
has been increased in the modular ratio 2-4, and the position of XX is
found by moments in the usual way, i.e.

(38 x9'5) 1425 + (91 x 9-5) 475
Y= 3895191 x95
=76 mm
T = x 38(9-5)3 + (38 x 9-5)6-652 - fy x 91(9-5)% +(91 x 9-5)2-852
—2750 +16,000 -+ 6,700 + 7000

=32,500 mm?*
fe———38mm——>]
! 9-5mm
| - FTX
e E T}? 95mm
< 9lmm >
Fig. 6.24

The maximum stress ratio is again determined by the modular ratio
and the maximum distances from the neutral axis (Eq. (2)), i.e.

0,Jo, =24 xT-6/114
=16

from which it follows that the allowable steel stress is still the limiting
factor, and the maximum stress in the brass is 105/1-6 =655 N/mm?2,
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Compression Tension Total moment of resistance

f— 655 —>] ={65-5 x 32,500)/11-4 x 1000
(Eq. (5))
Brass =187 Nm
Central load =(187 x4)/0-76

=985 N

w The stress variation is shown in
Fig. 6.25, the brass being all in
05 . .compres.sion, the steel being mainly
—1  in tension, but in compression

Fig. 6.25 above XX. At the common surface
the stress ratio is 24,

E?(AMPLE 10. A steel rod, 3 cm diameter, is placed inside a brass tube
having outside and inside diameters of 6 cm and 5 cm. The rod and tube have
the same length and their axes are parallel and
3 em apart. The ends are covered by rigid plates

through which a compressive force of 60 kN is R
ap.plied, acting along the axis of the tube. Deter- l
mine the maximum and minimum longitudinal My B T
stresses in the rod and tube. E,=205,000 N/mm? . ;\ %
E, = 95,000 Njmm?. % > ) \ 1
g N g
Let P, and P, be the direct loads at the axis |/ S g
of the steel rod and brass tube respectively, 3 | %
and Ms and M, the corresponding bending [/ ¢
moments on each (Fig. 6.26). L] 'y
Then for equilibrium, ; j
P, + P, 60,000 @) 1]
and M, +M,=P, x5 (if) Ry |
The area of steel 2 :.: '

A =(@/9302=707 mm? Fig. 6.26
and the area of brass
Ay =(7/4)(602 — 502) =864 mm?
The corresponding moments of inertia are
I, =7 x304/64 =39,700 mm*
and I, =7(604 - 504)/64 =329,000 mm*
Since the end plates are rigid, the rod and tube may be assumed to
bend together with the same radius of curvature,
M,|EJ;=M,/E,I,
ie. 3-84M,=M, “(iii)
Equating the linear strains for rod and tube at the centre-line of the
tube, the compatibility equation is
PJEA,+M, xy|EI,=Py/E, A, (iv)
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From (ii) and (iii)
M,=(5/484)P;=1-03 P )
Substituting from (i) and (v) in (iv),
P, 1-03 P, x5 60,000 — P;
205,000 x 707 + 205,000 x 39,700 - 95,000 x 864
x 205,000 x 707: P, +0-0917 P,=106,000 - 1-765 P,
giving P,=37,100 N
From (i) P,=22,900 N
From (v) and (iii)
M, =38,200 N.mm and M, =147,000 N.mm
The maximum and minimum stresses in the steel rod are given by
PjA,+ M2
=37,100/707 +38,200 x 30/2 x 39,700
=525 1144
=669 and 381 N/mm?2 compression.

Similarly, the maximum and minimum stresses in the brass tube are
22,900/864 -- 147,000 x 60/2 x 329,000
=2654+13-4
=399 and 13-1 N/mm? compression.

ExampLe 11. A straight bimetallic strip consists of a strip of brass of
rectangular section of width b and thickness t joined along its length by a strip
of steel of the same dimensions, thus forming a composite bar of width b and
thickness 2t. If the bar is uniformly heated and is quite free to bend, show
that it will bend to a radius

Eg2+E2+14EgEg
T T12EgEg(eg~wg) T

where ag and og are the coefficients of linear expansion and T is the rise
in temperature.

Such a strip 200 mm long with the steel and brass each 1-5 mm thick rests
on a level surface with the brass uppermost. If the strip is initially straight,
find the maximum clearance between it and the surface due to a rise in temper-
ature of 100° C. ag=19 x 1076 per °C. ag=11 x 10~5per °C. Eg=295,000
Njmm?2. E5=205,000 N/mm? (U.L.)

The interaction between the two strips produces a force at the common
surface tending to compress the brass and extend the steel. If this internal
force is P, it gives rise to a “direct” load P at the centre of each section,
together with a bending moment in each strip (as in Fig. 6.27). Assuming
R is the same for both strips (i.e. large compared with t)

Mp=(Ep/R)I; =b3Eg/12R @)
and Mg =(Es/R) 5 =bt3Es/12R (i)
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For equilibrium of the cross-section,
ie. Pt =(bt3/12R)(Eg + E5) from (i), (ii) and (iii) @iv)

Fig. 6.27

The difference in linear strains at the central axis of each strip is t/R,
and allowing for load and temperature, the compatibility equation is
t/R= ~ P/btEg +oagT — (P[btEs +osT)
. P11 t
.. e T= )+ =
1.e (aB as) bt(EB"'E) +R
t (Eg+Es)? ¢t

“12R EoFis +}—2 from (iv)

t Ep?2+Eg?+14EgEs
12R EpEs

Re-arranging,
Ep’+Es’ +14EgEs t
12EBEs(aB —as) T

(95,0002 +205,0002 + 14 x 95,000 x 205,000) x 15
- 12 x 95,000 x 205,000 x 8 x 106 x 100
=2740"mm
The clearance % is given:by
(2R - B)h =100 x 100 for a circular arc

or h=10,000/2 x 2740 approx.
=1-83 mm

R=
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6.10. Reinforced Concrete Bd4ils. KivHealas aOsRalelial which

has a useful compressive strength, but is weak in tension, and in fact
may develop minute cracks which reduce its tensile strength to zero.
Steel reinforcement is therefore placed on the tension side of the beam,
and by concentrating this at the greatest distance from the neutral axis
the material is used to the best advantage.

It must be determined prior to erection which will be the tension
side, but as the concrete is usually poured on site this is no disadvantage.
Also, apart from being economical in the use of steel, concrete is useful
as a protection against corrosion and in case of fire.

The following assumptions are made in the theory:

(1) The stress in the concrete is zero on the tension side.

(2) The stress in the steel is uniform.

(3) Strain is proportional to distance from neutral axis.

(4) Stress is proportional to strain in the concrete.

Assumption (3) has been found to be true for pure bending, and
implies also that there is no relative slip between steel and concrete.
The last assumption is not true, since concrete does not obey Hooke’s
law, but it is possible to take a mean value of the modulus over the
range of stress used. Values to be used, and also for allowable stresses,
depend on the type and mix of concrete used.

Rectangular Section

In Fig. 6.28 4 is the depth of reinforcement measured from the
compression face.

Let A be the distance of the neutral axis from the compression face,
o, the maximum stress in the concrete, and o, the stress in the steel.

On the assumption of strains proportional to distance from neutral
axis

o,/o,=(E, x strain)/(E, x strain)
=m(d—h)|h where m=E,/E, (1)
If the beam is under the action of a pure bending moment M, then
the resultant forces P in the steel and concrete must be equal and
opposite, i.e.
P=od,=30,.bh (2)
———b— o

1 e
LR N

l«e——— 05— P
——————

!!
|
|
4

N
a
J——-e——e o o

Strains Stresses
Fig. 6.28
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whé{'gl s icszlt ILdg}gg'g}os%gglolt'gpnforcement and 4o, is the mean stress in
the concrete,

The moment of resistance is given by the force P times the couple
arm, and noting that the force in the concrete acts at the centroid of
the area on the stress diagram

M=P(d - h/3), which from (2)
=0, A(d~h[3)
=%0,.bh(d - 1/3) 3)

If the ratio o,/c, is known, then % can be determined, for a beam of
given dimensions, from equation (1). The area of steel reinforcement
is then found from equation (2), and the moment of resistance from (3).
This is known as the “economic” section, the limiting values of stress
being realised. Any increase in reinforcement above this amount,
although resulting in an increase in M, will restrict the stresses
attainable.

If the dimensions and 4 are given, then by eliminating o /o, between
equations (1) and (2) a quadratic in % is obtained. The actual stresses
are then determined from the bending moment equation.

Exampire 12. A4 reinforced concrete beam of rectangular section is 12 cm
wide and 18 cm deep, with the steel placed 2 cm above the tension face.
Find the position of the neutral axis if the area of the steel is 2 cm? and the
modular ratio 16.

Find the maximum stresses produced in the steel and concrete when such a
beam 2 m long is simply supported at its ends and carries a central load of
1000 kg.

Strain equation: a,fa,=m x(d —h)/h

=16 x (16 —h)/h m
Load equation o, A;=%0,-bh
agfo, =12h/(2 x 2) 2

Eliminating o,/o, between (1) and (2),
16 x (16 —~h)/h=3h

or 3h2+16h - 256 =0
solving h=[-16 +4/(256 +3072)]1/6
=695 cm
M =WI/4 =(1000 x 200)/4
=50,000 kg. cm.
But M=0,4(d - k/3) =%, bh(d - 1/3) from (3)
50,000
—— 2
o 516 —232) 1830 kg/cm
50,000
and o, = . =88 kg/cm?

3 %12 x6:95(16 — 2-32)
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Frequently reinforced concrete Igégﬁsck\fgdgpsﬁ@g%%'Quch as
occurs where floor slabs are integral with rectangular sections which are
parallel and at fixed distances apart. The same basic equations can be
applied as above, with modification to the area of concrete in
compression.

Cases where the beam is further strengthened by reinforcement on
the compression side will be found in the reference book quoted at the
end of this chapter.

6.11. Principal Moments of Inertia. It was pointed out in Para. 6.1
that the principal axes of any area are those about which the product of
inertia is zero. Axes of symmetry
through the centroid are auto- Y
matically principal axes, the pro- 4 SA
duct moments for opposite quad- T P
rants cancelling each other out. o

When the direction of the Y U
principal axes is unknown, let OX o
and QY be any two perpendicular |, — ) g
axes through the centroid, and OU, o) T > X
OV the principal axes (Fig. 6.29). Fig. 6.29

Let 84 be an element of area
with co-ordinates u, v relative to OU, OV, and #, y relative to OX,
0Y. / UOX =4.

-

Then u=x cos 0 +ysinf
and v=y cos § —x sin #
The product of inertia
Iy =[uvdA
= [(x cos 0 +y sin 0)(y cos 0 —x sin §)dA4
=sin 0.cos §[[y2dA — [x2d A] + (cos? § —sin2 §)fxyd A
=(4 sin 26)(Ix - Iy) +cos 20. Ixy 1)
Condition for principal axes is Iy, =0, i.e.
tan 20 =21y /(Iy - Ix) from (1) (2)
I;=[v2.d4

=cos2 0.1y +sin2 0.1y —sin 20. Ixy
and substituting for Iy from (2)
=3(Ix+Iy) +% cos 20(Ix - Iy) + (sin? 26/cos 20)(Ix — Iy)

=3(Ix+Iy) +3(Ix — Iy) sec 20 3)
I, =fu2.d4
=cos2 0.1y +sin2 0.1 +sin 20.Ixy
=3(Ix+1y) —$(Ix — Iy) sec 26 (4)
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Iy+1,=Ix+1, (5)
If I, Iy, and Iy are calculated or determined graphically, 8 can be
found from equation (2), Iy, from (3), and I, from (5).

For a rectangle of dimensions & and d with sides parallel to the axes
OX and OY (Fig. 115)

0% —5— Iyy=[[xy.dy.dx
T T [xz}h'b/Z 2 k+d/2
] Bl
-T_ j_ -d 2 h—bj2 2 k—d/2
3 ! l troid)
l =hb x kd
=bd x hk
= Ahk (6)

(where A, k are the co-ordinates of the cen-

o
Fig. 6.30

ExamPLE 13. Find the position of the principal axes and the values of the
principal moments of inertia for an unequal angle 5 cm by 3 cm by 0-5 cm
Fig. (6.31).

ES ! Ji n0-5cm
14 | -
~ / Y

Iopelyey b

,10‘\‘ X

Sem T

A A .

}(_
0'5¢cm
Fig. 6.31

To find the centroid O, by moments:

(4-5 x0:5) x0-25 +(3 x0-5) x1-5
4-5+3) %05

=075 cm

_(4-5x0-:5) x2-75 +(3 x0-5) x0:25

B (45 +3) x0-5

i
I

i

=175 cm
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0-5 x4-53
= . . 2 . .52
Ix 1 +(0-5 x4-5) x12 + 12 +(3 x0-5)x1-5
=9-44 cm*
. .53 . 3
Ly =43 X0 5 0.5 x0-524 233 L (0.5 x3) x0-752
12 12
=2-58 cm?
Ly =(4-5 x0-5) x ( =0-5) x (= 1) +(3 x 0-5) x (0-75) x (1-5) from (6)
=2-813 cm#
2 x2-813
From (2) tan 26 —m = -0-820
giving 20 =140° 40’
or 8 =70°20’
From (3) I; =1(9-44 +2-58) + 4(9-44 — 2-58) sec 140° 40’
=1-59 cm#
IV=IX+IY_IU from (S)
=10'43 cm*

6.12. Unsymmetrical Bending. The following is a further example
of an applied bending moment not in a principal plane, being a more
general case than Example 4, where the cross-section was symmetrical.

ExampLE 14. 4 5 cm by 3 cm by 0-5 cm angle is used as a cantilever of length
50 cm with the 3 cm leg horizontal. A load of 1000 N is applied at the free
end. Determine the position of the neutral axis and the maximum stress set up.
"The position of the centroid O and the inclination of the principal axes
UU’ and VV’ (Fig. 6.32) have been determined in Example 13.
'The maximum bending moment about XX’ is 1000 x 500 N mm.

Resolving about VV’ and UU" respectively, gives

My, =500,000 sin 70° 20" =470,080 N mm
and My; =500,000 cos 70° 20" =160,830 N mm

The combined bending stress at any point defined by co-ordinates
u, v mm is
(o) =MV.u/IV +Mu.‘v/IU

(where u and v are both positive in the quadrant UOV)

=(470,080/104,300)u +(160,830/15,900)v (values from Ex. 13)
=451y +10-6v

The equation of the neutral axis is ¢ =0, which reduces to 0-426u +v =0.
This is a line through O inclined at tan—! ( - 0-426), or —23° 4’ to UU".
The stress will be tensile ““above’ the N.A., and compressive ‘“‘below’’,
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¥i15e!tmgxll\1/1|1|191§;{ E%g'rpsll g gPr%tsér}s at the outside of the corner of the angle,
where © and v are both positive, and is given by
4-51(17-5 sin 70° 20’ —7-5 cos 70°20") +
10-6(17-5 cos 70° 20" +7-5 sin 70° 20") from (i)
=4-51 x13-9 +10-6 x 13 =203 N/mm?2

o~75l2;»‘!y—/g'" *,’«}/A

T I /\V n0~5cm

> T
|
“1
¥ |
—vﬁlf’_ lY'
Fig. 6.32

The maximum compressive stress occurs at the inside bottom edge of
the vertical leg, where u and v are both negative, and is given by

—4-51(32-5 sin 70° 20" +2-5 cos 70° 20") -
10-6 (32-5 cos 70° 207 —2-5 sin 70° 20°)
~4-51 x31-4 -10:6 x 862
=233 N/mm?
(For deflection of this beam, see Chapter IX, Problem 20.)
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Bending Stress Formula: ¢/y=M/I=E/R
Moments of Inertia:

Section Axis I zZ

Diameter wd4/64 wd3[32

l
l<——d,——>l Polar md4/32 nd3/16

X
x| ] a _r XX bd3/12 bd2/16
ebL, a

| _L YY db3j12 db2/6

ly

bg

——
z: = XX 2(BD3—bd?) (BD3— bd3)/6D

*—dD

I
¢ <5y ) x
:_—_[:i l YY |&[(D—d)B3+d (D—d)B3+d(B—1)3
(B-5)%] 6B h

|7
¥
I XX bh3[36 bh2[24
A
X X|
X
-7 —>
b YY hb3/48 hb2[24

Combined Bending and Direct Stress o =P[A + Mxy[Ix + Myx/Iy
Composite Beams.—Equivalent Section.
Reinforced Concrete Beams.—Strain and Load Equations.
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PROBLEMS

1. A long rod of uniform rectangular section and thickness ¢, originally
straight, is bent into the form of a circular arc and the displacement d of the
mid-point of a length L is measured by means of a dial gauge. If 4 is regarded
as small compared with L, show that the longitudinal surface strain e in the
rod is given by e =4td/L2. (note that ¢ =¢/2R by Para. 6.1) (U.L)

2. Calculate the moments of inertia about XX and YY for the built-up

section shown. (738 cm#4; 790 cm9)
5 3. A beam of I-section of moment

f inertia 954 cm4 and depth 14 cm is
78 > o "
':&— 8 3 A freely supported at its ends. Over what
—— — 2 .
L_ A t span can a uniform load of 500 kg/m run
4 i be carried if the maximum stress is
X . o) 1l X 60 N/mmz.?

6— *'12 What additional central load can be
: carried when the maximum stress is

i l —— 90 N/mm?2? (365 m; 456 kg.)

4, A cantilever has a free length of
2-5 m. It is of T-section with the flange
100 mm by 19 mm, web 200 mm by 12-7 mm, the flange being in tension. What
load per m run can be applied if the maximum tensile stress is 30 N/mm?2? What
is the maximum compressive stress? (310 kg/m; 61 N/mm2.)

5. A welded girder, of cross-section shown, is to span 9 m, being simply
supported at its ends.

A uniformly distributed load of 120 kIN/m is to be § 1<300mm—~|
carried with a2 maximum bending stress of 120 N/mm?2, 32'"er Y
the beam being strengthened where necessary by the
addition of flange plates 127 mm thick. Findfthe
length of plates and their width. (4 m; 024 m)

6. A vertical flag staff 9 m high is of square section
150 mm by 150 mm at the ground, tapering to 75 mm
by 75 mm at the top. A horizontal pull of 1000 N is
applied at the top in the direction of a diagonal of the
section. Calculate the maximum stress due to bend-
ing (27 N/mm?2 at 4-5 m down.)

7. A short cast-iron column is of hollow section, 200 mm external diameter,
38 mm thick. A vertical compressive load acts at an eccentricity of 63 mm from
the axis. If the maximum permitted stresses are 75 N/mm?2 compression and
20 N/mm? tension find the greatest load.

Plot a diagram of stress variation. (U.L.)

dimns.inem | ¥

19mm
——

760mm

— o Y

(5 x 104 kg)

{
I‘—Y—'rssai 8. The figure shows the section of a beam. What is
ES the ratio of its moment of resistance to bending in the
—LI:\,P 50 plane YY to that for bending in the plane XX, if the
x_ 5 % | x maximum stress due to bending is the same in both
dimns.in mm cases? For a semicircle of radius 7 the centroid is at a
_13—' distance 4737 from the centre. (U.L.)
- > (Ix =325 cm, Iy =8-0 cm#4, 2-85)
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9. A 50 mm by 125 mm flat steel l\)/alrSIVtvzisCI!I\zlllclech Ezrilsébtlgs%sypgoghlychine and
subjected to a 60 kN load acting as shown. An extensometer placed in line with
r~ the load recorded an extension of
%2,5”"" 0-16 mm on a gauge length of 200
€ —> mm. Calculate the maximum and
60kN 60kN minimum stresses set up, and the
value of Young’s modulus. (U.L.)
! (240 N/mm?; 48 N/mm?;
210,000 N/mm?2
10. A short column is of hollow circular section, the centre of the inside
hole being 6 mm eccentric to that of the outside. The outside diameter is
96 mm and the inside 48 mm. The line of action of the load intersects the cross-
section at a point in line with the two centres. What are the limiting positions of
the load for there to be no tensile stress set up? (152 mm; 14-0 mm)
11. The cross-section of a masonry column is an equilateral triangle ABC of
2 m sides. The column is subjected to a vertical load of 2 x 105 kg, the resultant
of which cuts the cross-section at a point on the median AD, distant £4/3 m
from BC. Find the stress at each corner of the cross-section.
(A=0; B=C=1-7 N/mm?)
12. A tie bar of rectangular section, originally 75 mm by 25 mm, has these
dimensions reduced by 1/ath of their original values by removal of material
from two adjacent faces. If an axial load of 100 kN is applied through the centre
of the original section find the value of 1/n for 2 maximum tensile stress of 128
N/mm2.
Determine also the magnitude of the last stress. (U.L.)
0-123; 10-2 N/mm?2
13. A timber beam, simply supported over a span
of 6 m, is to be strengthened by the addition of [——B——>]
steel flitches fixed as shown.
With the original timber beam a load of 3500 N/m T
gave a maximum stress of 4 N/mm?2, If the flitched
beam is to carry an additional load of 900 N/m with a 30cm d
maximum stress in the steel of 55 N/mm?2, the l
timber stress remaining the same, find the dimen-
sions. Bs/E; =20. ;/’U ey,
(8=262 mm; t =103 mm; d =207 mm) 2
14. A timber beam 72 mm wide by 144 mm deep is to be reinforced by bond-
ing strips of aluminium alloy 72 mm wide on to the top and bottom faces, over
the whole length of the beam. If the moment of resistance of the composite
beam is to be 4 times that of the timber alone with the same value of maximum
stress in the timber, determine the thickness of alloy strip and the ratio of maxi-
mum stresses in alloy and timber. Eg =7-15E.
(U.L) (9 mmj; 8-04).
15. The composite beam of steel and timber
shown is supported over a span of 6 m and carries
a load W at its mid-point. If the maximum stresses
127mm in steel and timber are not to exceed 128 N/mm?2
and 12 N/mm? respectively, find the greatest value
U< 12:7mm ‘l- of W.Es[E;=20. (770 kg)
16. A compound beam is formed by joining two
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bars rigidly together, one of steel and the other of brass, each 50 mm wide. The

bars are of thickness #; and #; respectively, so that the total depth of the beam

is t1 + 2. If Es=2Fp find the ratio #1/t> so that the neutral axis is at the dividing

line of the two bars.

If the total depth of the section is 25 mm and the stresses in the steel and brass
are not to exceed 114 N/mm?2 and 42-5 N/mm?2 respectively, determine the
maximum moment of resistance. (U.L.) (0-707; 260 Nm)

17. A compound beam consists of a steel and a copper bar, each 75 mm by
25 mm section, one resting on the other with the 75 mm sides in contact. They
are securely fastened together at the ends so that no relative movement or rota-
tion can take place. The beam is now heated through 100° C. Assuming that both
bars bend into an arc of the same radius, but that stresses are only transmitted
through the end connections, find the radius of this arc and the maximum tensile
and compressive stresses in both materials. For steel, E=208,000 N/mm?2,
=11 x10-6 per °C. For copper, E =104,000 N/mm?2, =18 x 1076 per °C.

(U.L)
(Compare Ex. 11. 49-5 m. Steel 66, 40 N/mm?2. Copper 13-2,
40/mm?2)

18. A reinforced concrete beam is to be 225 mm wide and 400 mm deep. The
maximum allowable stresses are 7 N/mm?2 concrete, 126 N/mm2 steel. What area
of reinforcement is required if both these stresses are developed and the steel is
50 mm above the tension face ? Modular ratio 15.

‘What uniformly distributed load may be carried over a span of 6 m. Concrete
weighs 2400 kg/m3, neglect weight of steel. (1000 mm2; 620 kg/m)

19. A reinforced concrete beam of rectangular section is 25 cm wide and 50 cm
deep. Steel reinforcement of 11 cm? is placed at 5 cm above the tension face.
The maximum compressive stress in the concrete is 4-2 N/mm?2. The modular
ratio is 15. Calculate the moment of resistance and the stress in the steel.

(38 kNm; 89 N/mm?2)

20. The reinforced concrete beam shown in the figure has maximum stresses
of 4-2 N/mm? in the concrete and 112 N/mm?2 L
in the steel. Modular ratio 15. Assuming the ! 75§
neutral axis to be inside the full width of the L
section, find its position and the sectional [
area of the steel. Calculate also the moment 15 cm
of resistance. -

(10-8 cm; 15-2 cm?; 45 kNm)

oY v 21. A cantilever consists of a 72 mm by 72 mm
30 / B by 12 mm angle with the top face AB horizontal. It
carries a load of 1 kN at 1 m from the fixed end, the
______ line of action passing through the centroid and is
X inclined at 30° to the vertical. Determine the
stresses at A, B, and C, and the position of the
neutral axis. A=1590 mm?2; Ix=Iy=723x
104mm?, Iy =114 x 104 mam#4; Iy =30-5 x 104 mm*
(100; -51; ~75 N/mm?2; vju= —14-0.)

17

30em
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CHAPTER VIl

Shear Stress in Beams

=.1. Variation of Shear Stress. The shearing force at any cross-
section of a beam will set up a shear stress on transverse sections Whl(fh
in general will vary across the section. In the following analysis it will
be assumed that the stress is uniform across the width (i.e. parallel to
the neutral axis), and also that the presence of shear stress does not
affect the distribution of bending stress. The latter assumptiox.a cannot
be strictly true, as the existence of shear stress will cause a distortion
of transverse planes, which will no longer remain plane (see Para. 9.7).

|<—-é'x———>
O—fjoroirIIr =0t 6o
My ML |\ MM
F+OF
Fig. 7.1

Due to the shear stress on transverse planes there will be a com-
plementary shear stress on longitudinal planes parallel to tl.le neutral
axis. In Fig. 7.1 two transverse sections are shown, at a distance ox
apart, the shearing forces and bending moments being F, F +8F, and
M, M +3M respectively.

Let 7 be the value of the complementary shear stress (and hence the
transverse shear stress—Para. 2.2), at a distance y, from the neutral
axis. z is the width of the cross-section at this position, and 4 the area
of cross-section cut off by a line parallel to the neutral axis. y is the
distance of the centroid of 4 from the neutral axis.

If o, o + 8o are the normal stresses on an element of area 84 at the two
transverse sections (Fig. 7.2), then there is a difference of longitud'ln‘al
forces equal to 8084, and this quantity summed over the area 4 is in
equilibrium with the transverse shear stress 7 on the longitudinal plane
of area zdx, i.e.

7.28x=[do.d4 8))
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b o=My|I
and o +80=(M+8My|I
do=0M.y/1

(0+80)d4

Substituting in (1)
7.2.0x=@M/I)[ydA
7=(8M/[3x)Ay|2]
=F.Ay/zI (F=dM]|dx, Para. 5.5) (2)
Note that z is the actual width of the section at the position where T is

being calculated, and I is the total moment of inertia about the neutral axis.
In many cases it will be convenient to determine 47 as several parts.

or

7-2- Rectangular Section. At a distance y from the neutral axis
(Fig. 7.3), A=b(d[2-3), F=}d/2 +), and z=b.

b

*

\ 7 \

N ‘[y .y la Y
Fig. 7.3

I =bd3/12, hence from (2), Para. 7.1
_Fxb(d]2-y)d|2+y)
bx(bd3/12) x2
= (6F [bd*)(d2[4 - y?)
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This shows that there is a parabolic variation o gﬁeglro % e%ts ith ¥,

the maximum shear stress being 7=3F/2bd, at the neutral axis. If
F/bd is called the mean stress, then

7=15 X Tpean

ExaMPLE 1. A timber beam 10 cm wide by 15 cm deep carries a uniformly
distributed load over a span of 2 m. If the permissible stresses are 28 N, [mm?
longitudinally and 2 Njmm? transverse shear, calculate the maximum load
which can be carried.

If W kg is the total load,

M=WI|8=9-81W x2/8 N.m
=24507" N.mm at the entre,
and F=9-81T/2 N at the supports.

Maximum bending stress
=2450W x 6/100 x 1502

=28 N/mm?
from which
W =4290 kg

Maximum shear stress .
=1-5F/bd from above

2=1-5 x9-81 W/(2 x 100 x 150)
giving W =4080 kg
The permissible load is therefore 4080 kg total, or 2040 kg/m.

ie.

7.3. I-Section. Using the dimensions shown in Fig. 121, to find an
expression for the shear stress in the web, Ay is made up of two parts, ie.

— b
5
-

%, T

1ty 4

N

D a

Sy e e ]
Fig. 7.4

Ay =B(QT—J) (9;1) for the flange area

+H(dj2 - y)‘_’/zz_” for part of the web.
z=b, giving

7= (F/bI)[B(D? - d2)[8 +(b]2)(d?/4 - y?)]
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As with the rectangu
is at the neutral axis

7 =(F/8bI)[B(D? — d?) + bd?]

At the top of the web
7=(F/8bI)B(D2 - d2)

Since the shear stress has to follow the direc-

tion of the boundary (Para. 2.2), the distribution l===== g=—x
must be of the form shown in Fig. 7.5, be- TT

coming horizontal in the flanges. Consequently i

the complementary shear stress in the flangesis — "7 ° f A
on longitudinal planes perpendicular to the |

neutral axis, and the “width 2" is replaced by I

the flange thickness (D —d)/2.
Then
F.A4y

=gy e 129

T

showing that the shear stress in the flanges varies from a maximum at :

the top of the web to zero at the outer tips.

In practice, however, it will be found that

most of the shearing force (about 95%,) is

bending moment is carried wholly by the flanges.

ExampLE 2. 4 12 ¢cm by 5 cm I-beam is subjected to a shearing force of
10 EN. Calculate the value of the transverse shear stress at the neutral axis
and at the top of the web, and compare with the mean stress on the assumption

uniform distribution over the web. What percentage of shearing force is carried .
by the web? I=220 cm?; area =94 cm?; web thickness =0-35 cm; flange

thickness 0-55 cm.

Ay =(5 x0-55)5-725 +(5-45 - 3)0-35[(5-45 +¥)/2] (Fig. 7.7)
=15-75 +(5-452 - y2)0-35/2
=20-95 ~0-175y2 cm3

10,000(20-95 — 0-175y%)

T=F. A5[x] =——G35 550

N/cm?
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ar section, the maximum transverse shear stress

carried by the web (see Example 2), and the |
shear stress in the flanges is negligible. As the
variation over the web is comparatively small
(about 259,), it is convenient for design pur-
poses, and also in calculating deflection due -
to shear (Para. 9.7), to assume that all the
shearing force is carried by the web and is uniformly distributed over -
it. Similarly it may be assumed as a first approximation that the '

il R
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At the neutral axis 5 —>
10,000 x 20-95 t.55
77035 x 220 x 100 T
=17-1 N/mm? dimns.incm
At the top of the web . T_y_-
100 x 1575 7z
=035 %220 (y =545 cm) 0-35
=201 N/mm?2

Assuming all the shearing force carried uni-

formly by the web Fig. 7.7
10,000
Tmean = (.35 % 10-9 x 100
=26-2 N/mm?

The total shearing force carried by the web is given by
s
. .95 _Q. 2
0-35 x10(20:95 —0.175y2)dy N

a/2 54
J gody =J 035 » 220
—-d/2 —545

1 [20-95y -

22 3
=(228 —18:9)/22

=9-5kN, ie. 95% of the total.

The remaining 5%, of vertical shearing force is presumably accounted
for by the component of shear stress at the junction of the flange and
web.

Failure due to shear stress in the web usually takes the form of
buckling brought about by the compression stresses on planes at 45° to
the transverse section (see Para. 3.4). For this reason deep webs are
often supported by vertical stiffeners.

0~175y3] #43
—545

7.4. Principal Stresses in I-Beams. When an I-section beam is
subjected to bending and shear stresses it will usually be found that
the maximum principal stress is at the top of the web, the other
possible value being the maximum bending stress, which occurs at the
outer edge of the flange.

ExaMPLE 3. A short vertical column is firmly fixed at the base and projects
a distance of 30 cm from the base. The column is of I-section 20 cm by 10cm,
fanges 1 cm thick, web 0-7 cm thick. I =2150 cm* and area =33 cm?.

An inclined load of 80 kN acts on the top of the column in the centre of the
section and in the plane containing the centre line of the web. The line of
action is at 30° to the vertical. Determine the position and magnitude of the
greatest principal stress on the base of the column.
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The inclined load will intersect the base cross-section at a distance of §

30 tan 30° =17-3 cm from the centroid.

Resolving the load into vertical and horizontal components, there is a =

direct load =80 cos 30° =69-2 kN, as hearing force =80 sin 30° =40 kN,
and a bending moment =69-2 x 0:173 =12 kNm.
At the top of the web
- 40,000 x (10 x1) x9-5
T=F Ayl = 2150 < 100
=253 N/mm?
Bending stress =12,000 x 9/2150 =50-2 N/mm?
Direct stress =692/33 =21 N/mm?2
Total normal stress 6 =71-2 N/mm?

Maximum principal stress =o/2 ++4/(c2 +472) (Para. 3.8)
=35-6 +%4/(5070 +257)
=793 N/mm?2 compression,
at the top of the web
Check also the value of the maximum bending stress, which is

12,000 x 10/2150 =55-8 N/mm?
which together with the direct stress gives a maximum stress of 76:8 N/

mm? at the outside of the flange, less than the value at the top of the
web.

%.5. Pitch of Rivets in Built-up Girders. The load to be carried -
by one rivet in a beam section built up as in Fig. 7.8(a), is determined

P o

( — (o]
Al i
N_ 1l _4 (2,)
= P{ L | i
(@ ©
Fig. 7.8

by the difference of normal stresses on certain areas of two transverse |

sections at a distance apart equal to the pitch of the rivets.

The area to be used is that part of the cross-section which ‘““comes
away”’ when the particular set of rivets is removed. Hence in the case
of the rivets holding the flange to the angle sections the area is as

shaded in (b), and for the rivets holding the angles to the web the area

is shown in (c).

Visit : Civildatas.blogspot.in

7.5. SHEAR STRESS IN BEAMS ) 123
Visit : Civildatas.blogspot.in
If p is the pitch of the rivets and R the force on the rivets over a

length p of beam, then proceeding as in Para. 7.1
R=X3c-804
=X(BM.y/1)84
=(OM/I)ZydA
=FpAj/I approx.

(compare F=dM|/dx, and let dx=p).

Note that for the flanges there are two rivets to a pitch length,
usually staggered so as not to occur together in one cross-section. Also,
the web rivets are in double shear.

ExaMPLE 4. An I-section beam is built up of a web plate 240 mm by 12 mm
with flange plates 144 mm by 24 mm secured by rivets through angle sections
48 mm by 48 mm by 6 mm, as in Fig. 7-8.

If the bending stress is limited to 100 N, [mm? estimate the maximum
uniformly distributed load which can be carried over a span of 12 m.

Assuming 12 mm diameter rivets, calculate theiy pitch if the allowable
shearing stressis 75 N/mm? and bearing pressure 150 N/mm?2.

wx1

92
3 for w N/m

M =wl?/8 =

=18w Nm
I=12x2163/12 for the web, allowing for two rivet holes
+4[36 x (6)3/12 +(36 x 6)1132+6 x 303/12 +(6 x 30)932]
for the angles
+2[132 x243/12 +(132 x 24)1327] for the flanges, allowing for one
rivet
=(10-1 +0-003 +11-8 +0-053 +6-23 +0-3 +110) x 106
=138 x 106 mm*
My 18 x103w x 144
o =100 =7 =g %106
w =5340 N/m
Permissible load per pitch length:
For one rivet in double shear in the web, or two rivets in single shear
in the flange
=2 x (m/4) x (12)2 x75 17,000 N
Crushing of the rivets (one in web, or two in flange)
=(df) x150
=(12 x12) x150=21,600 N
Ay =132 x24 x132 (Fig. 7-8(b))
=417 x 104 mm3
Load per pitch length =17,000, smaller of (i) and (ii)
=FpAy[I
=(5340 x 12/2) p 41-7 x104/138 x 106
p=176 mm

For the flange rivets:
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For the web rivets:
Ay =417 x104+2 x (36 x6)113 +2 x (30 x6)93 (Fig. 7.8 (c))
=50 x 104 mm?3

p=RI|FAy =

17,000 x 138 x 106
32,000 x 50 x 104
=147 mm
7.6. Solid Circular Section. Let 7 be the average shear stress across
a chord parallel to XX, defined by the angle 8 (Fig. 7.9).
T=FAy/zs] (Para.7.1)
4 __F.J@xdy)y
<SR 2R cos 0.wRY4
N

Al R LL LI R R LA

NN
.\\\“ =S oosd V/{(R? -y2).ydy

4F [_1 (R2 - y2)3/2] Ratnd
3 R

" 7R cos 0
x 1(l —sin2 §)32

4F
“#RZcosf 3
4F cos2 8 -
T T3xR2

Fig. 7.9

7=4F[3nR? at the neutral axis
=(4/3) x mean shear stress

The directional distribution of shear stress
must be as indicated in Fig. 7.10, though
this does not affect the magnitude of the
greatest shear stress, which is usually the
value required.

This particular case is applicable to rivets
in shear, but the ratio 4/3 may be assumed
to be incorporated in the allowable stress
value, which is then taken as uniform over
the section.

7.7. Thin Circular Tube. It is necessary here to make use of the
fact that the shear stress has to follow the direction of the boundary,
that is tangential, if the thickness is small compared with the radius
(Fig. 7.11).

If the bending is about XX let P and Q be two symmetrically placed
positions defined by the angle 8, the shear stress being 7.

The complementary shear stress is again on longitudinal planes, and
is balanced by the difference of normal stresses on the shaded area
subtending the angle 26,
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For a length of beam &x
0
27.t8x=| Oc.tRdp
-0

7=4[(80/3x). Rde
But 8o [dx = (3M[dx).y/I,
F.R cos ¢
" }(2nRo)R?
where I, =4 Polar M.I. =1 (Area) x (Mean Radius)?
FR2 [*

T J_ocos ¢.dd
=(F[2nRt).2 sin §
=Fsin /=Rt

7 = F/mRt at the neutral axis
=2 x mean shear stress

(Para. 6.2)

7.8. Miscellaneous Sections. The shear stress at any point in a
cross-section can always be calcu- 2
lated from the basic formula ‘ [
7=FAg[z] of Para. 7.1, and the 4 £
following example will illustrate the 5 7
method of attack. !

ExampLE 5. For the section showun D Y-
in Fig. 7.12 determine the average
shearing stress at A, B, C, and D for
a shearing force of 20 kN, and find
the ratio of maximum to mean stress.
Draw to scale a diagram to show the
variation of shearing stress across the
section, (U.L.)

dimns.incm

Fig. 7.12

I=5x63/12 —7 x 44/64
=774 cm*
50
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At A: Ay =0
.o1=0
At B: Ay =(5x1) x2:5=12-5 cm?
z2=5cm

20,000 x 12-5
TT 5 X774 x 100

At C: A5=(5 x2)2-f22x.dy.y
1

=647 N/mm?

=20 - r\/(‘* ~-¥2).2ydy
1
=20 +%[(4 -y}

=20-3-47
=16'53 cm?
. . 20,000 x16-53
444 o TTB C2/@-1)]774 x 100
Fig. 7.13 —27-7 N/mm?
2
At D: Ay=(5 x3)1-5—f\/(4—y2).2ydy
0
=225 -3 x4
=17-17 cm3

20,000 x17-17
"1 %774 %100
=444 N/mm?
The variation of shearing stress is shown in Fig. 7.13.

=.9. Shear Centre. For unsymmetrical sections, in particular angle
and channel sections, summation of the shear stresses in each “leg”
gives a set of forces which must be in equilibrium with the applied
shearing force.

Consider the angle section, bending about a principal axis, with
shearing force F at right angles to this axis. The sum of the shear
stresses produces a force in the direction of each leg as shown in
Fig. 7.14(a). It is clear that their resultant passes through the corner of
the angle, and unless F is applied through this point there will be a
twisting of the angle as well as bending. Consequently this point is
known as the shear centre or centre of twist.

For a channel section with the loading parallel to the web (Fig. 7.14(b)),
the total shearing force carried by the web must equal F, and that in the
flanges produces two equal and opposite horizontal forces. It can be
seen that for equilibrium the applied loads causing F must lie in a plane
outside the channel, as indicated, its position being calculated as in the
following example.
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a

Fig. 7.14

ExampLE 6. Explain why a single channel section with its web vertical
subjected to vertical loading as a beam, will be in torsion unless the load is
applied through a point outside the section known as the shear centre.

Find its approximate position for a channel section 6 cm by 6 cm outside
by 0-5 cm thick.

If F is the shearing force at the section, then the total vertical force in
the web can be taken equal to F. It should be mentioned that, integrating
for the height of the web only will give a value slightly less than F (com-
pare Example 2, Para. 7.3), but the remaining vertical force is assumed to
be carried by the “ corners’ of the section.

I,=0-5x%63/12 +2[5-5(0:5)3/12 4 5-5 x 0-5 x 2:752]
=9 +2(0-055 +20-85)
=50-7 cm#
Proceeding as Para 73 (fAanges), the shear stress in the flanges at a
distance 2 from the tip is A
r=F.A%/tI (¢=0-5 cm)
=F(2t)2'75/tI (Fig. 7.15)
=0-0543F2
Total force in each flange
R=[rtdz
0-0543 _[22]575
-— F [7]
=0-448F

o —

F

A
T

R -

0 N
Fig. 7.15

If % is the distance of the shear centre (through which the applied
shearing force must act for no twisting of the section) from the centre
line of the web, then for equilibrium

Fh=R x55
or h=247 cm
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SUMMARY

Transverse Shear Stress +=FAy/zI.
Rectangular Section 7=1-5 X 740
Circular Section 7 =4/3 X Tgeaq-
Thin Tube 7=2 x 7 ,0.

I-Section: web carries 959, of shear. Maximum principal stress at
top of web.
Loading plane through shear centre for no twist.

REFERENCE

TERRINGTON, J. S., The Torsion Centre of Girders. Engineering, Nov. 26, 1954.

PROBLEMS

1. A rectangular beam of depth d, width b, and length [/, is simply supported
at its ends and carries a central load W. Show that the principal stresses at a
point in the central cross-section at a distance df4 from the top are

3wl 9d2
s =143

2. Show that the difference between the maximum and mean shearing stress
in the web of an I-beam is Fd2[24], where d is the height of the web.

3. A water main of mean radius r and thickness ¢ is subjected at a particular
cross-section to a bending moment M and a shearing force F. Show that, at a
point in the section where the radius is inclined at an angle 8 to the neutral axis,
the principal stresses are (1/2mr2t)[M sin 8 ++/ (M2 sin2 8 +4F2r2 cos2 6)].

4. A30cmby 12-5cm R.S.]. of I-section, flanges 12:5 mm thick, web 8:25 mm
thick, is subjected to a bending moment of 30 kNm and a shear force of 100 kN
at a particular cross-section. Calculate the values of the maximum principal
stress at (a) neutral axis, (b) top of web, (c) outer edge of flange.

(465 N/mm2; 69 N/mm2; 56 N/mm?2.)

5. A simply supported beam of span 3 m carries a point load of 10,000 kg at a
distance of 1 m from one support. The beam is of hollow square section with
outer dimensions of 150 mm and wall thickness 37-5 mm. Determine the greatest
bending stress and transverse shear stress in the beam at 37-5 mm from the
neutral axis, and from these values find the maximum principal stress and maxi-
mum shear stress at this point. (65; 7 N/mm2; 66; 33 N/mma2.)

6. A beam is of T-section, flange 12 cm by 1 cm, web 10 cm by 1 cm. What
percentage of the shearing force at any section is carried by the web?

(93-5%.)

7. Two beams, particulars of which are given below, are simply supported at
the ends over equal spans and carry central loads to give the same maximum
bending stress. Determine the ratio of maximum shear stress in the webs.
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Section | Web Flange | Flange | Total Distance of N.A. from
th. th. width depth outer edge of flange
1 5 875 62-5 125 62:5 mm
T 12-5 12-5 125 100 26-2 mm

(3-38.)

8. Two steel flats of cross-section 10 cm by 3-75 cm are joined together by a
single row of 20 mm diameter rivets so as to form a beam of breadth 10 cm and
depth 7-5 cm. The beam is supported at the ends and hasa load of 2000 kg at the
centre. Find the pitch of the rivets if each is subjected to a shearing stress of
70 N/mm?2. (11 cm.)

9, A girder of effective span 8 m has to carry a uniformly distributed load,
including its own weight, of 27,000 kg. A 45 cm by 15 ¢m R.S.J. with one 10 mm
plate riveted to each flange is to be used. Find the width of the plates and .the
pitch of the rivets. Allowable bending stress 120 N/mm2. Safe load per rivet
30 kN. Rivet diameter 22 mm; I =3-5 x 108 mm* for the R.S.J.; effective thick-
ness of flanges 18 mm. (160 mm; 740 mm, double row.)

10. A hollow steel cylinder 20 cm external diameter, 10 cm internal diameter
acting as a beam is subjected to a shearing force F perpendicular to the axis.
Determine the mean stress, and the average shearing stress at the neutral axis
and at 25 mm, 50 mm, and 75 mm from the neutral axis as fractions of the mean
value. Draw a diagram to show the variation of average shearing stress across the
section. (F/75m; 1-87; 1-65; 0-80; 0-465.)

11. A rectangular wooden beam 5 cm wide and 15 cm deep is reinforced by
screwing a steel plate 6 mm thick and 5 cm wide on to the bottom. The screws
are 6 mm diameter and are pitched 7-5 cm apart. They are a close fit in the plate.
The beam is simply supported at the ends over a span of 3 m and is loaded at the
centre by a load of 100 kg. )

Calculate the maximum stresses in the steel plate and timber, and the maxi-
mum shearing stress in the screws. Neglect the weight of the beam itself and any
weakening of the plate due to the screw holes. E =210,000 N/mm?2. E;=
14,000 N/mm?2.

(184 N/mm? tension, 2:5 N/mm?2 compression. 11 N/mm?2 shear. See
Para. 6.9 for equivalent section.)

12. A beam of channel section carries a vertical load and is supported so that
the two flanges are horizontal. The flanges and web have equal thicknesses which
are small compared to the depth of the web (D) and the width of the flanges (B).
Show that the shear centre is at a distance 3B2/(6B + D) from the web.  (U.L.)

13. A channel section has a web 192 mm deep and 6 mm thick and flanges
84 mm wide and 12 mm thick. Used as a horizontal cantilever with the web ina
vertical plane, it carries an end load W. Determine the position of W relative to

the web in order that the cantilever shall not be subjected to torsion.
(31 mm from back of web).
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CHAPTER VIII

Torsion

8.1. Circular Shafts. If a shaft is acted upon by a pure torque T _
about its polar axis, shear stresses will be set up in directions per- &

pendicular to the radius on all transverse sections (Fig. 8.1). :
The complementary shear stress on longitudinal planes will cause a

distortion of filaments which were originally in the longitudinal 2
direction. It will be assumed that points lying on a radius before twisting §
will remain on a radius, the angle of twist being 8 over a length I of £
shaft. This assumption is justified by the symmetry of the cross-section. #

e

Fig. 8.1

The left-hand figure shows the shear strain ¢ of elements at a distance
r from the axis (¢ is constant for constant T), so that a line originally

OA twists to OB, and / ACB =0, the relative angle of twist of cross-
sections a distance / apart.
Arc AB=r0=I¢ approx.
But ¢ =7/G, where G is the modulus of rigidity (Para. 2.4).
By substitution and rearranging
T/r=Gojl )
The torque can be equated to the sum of the moments of the
tangential stresses on the elements 27rdr, ie.
T=[+2nrdr)r
=(GO/)[(2mrdr)r? from (1)

=(GO/D¥ @)
where ¥ is called the polar moment of inertia,
Combining (1) and (2) . .
‘(T/J='t'/ =Gl 3)
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Showing that, for a given torque, the shear stress is proportional

to the radius.
For a solid shaft:
F=uwDA4/32
and the maximum stress
#=16T/nD3, atr=D|2

For a hollow shaft:
J=(m[32)(D4 - a%)

16D.T
-————-—. t =D 2
and 7 D* =y at r=D/
Torsional stiffness k is defined as torque per radian twist, i.e.
k=T0=G¥ll f

ExaMPLE 1. The working conditions to be satisfied by a shaft transmitting
power are (a) that the shaft must not twist more than 1 degree on a length of
15 diameters, and (b) the shear stress must not exceed 55 N [mm?.

If G=80,000 N/mm? what is the actual working stress, and the dia-

meter of shaft to transmit 1 MW at 240 v.p.m.?
Calculate the torque which can be transmitted for a given diameter

according to the two conditions.
(a) T =(GO/)¥ from (2)
80,000 x 7 x wD*
“15D x 180 x 32
=9:16D3 N. mm
T =(27/D) x ¥ from (3), putting r =D/2
2 x55 x7D*
T Dx32
=10-8D3 N. mm
Taking the smaller value, (a), it follows that the working stress is less
than permitted by condition (b), in fact
7=(9:16/10-8) x 55 =46-5 N/mm?
since stress is proportional to torque.
T.2mn
Power =106 =~1000_ Nm
__9-16D3 x 27 x 240
~ 71000 % 60
D = /(435 x106) =163 mm

(b)

giving

ExampLE 2. Compare the weights of equal lengths of hollow and_solid
shaft to transmit a given torque for the same maximum shear stress, if the

inside diameter is % of the outside.
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T/7=2%/D ftrom (3)
=7D3/16 for the solid shaft of diameter D,
and =m(D* -d*/16D, or (wD3/16)[1 - (34
i.e (65 xwD3)/(81 x16) for the hollow shaft of outside diameter D,
Equating these two gives
D, =D .Y/ (81/65)
=1-075D
Ratio of weights of equal lengths
=(Dy2 - a)/D?
=(D,/D)*{1 -4/9]
=(5/9) x1-0752
=0-642

8.2. Strain Energy in Torsion. Total strain energy of a shaft of
length [ under the action of a torque T is the work done in twisting, i.e.
U=4T0O

for a gradually applied torque (Fig. 8.2).
T This form is most useful if T and 6 have been
previously found.

Expressed in terms of the maximum stress , for
a solid shaft

— v U=% x(nD37/16) x (27]/GD) (sce Para. 8.1)
Fig. 8.2 =(72/4G) x 7w D2l[4

o =(72/4G) % volume

Note that this gives the total strain energy over the whole shaft, for
which the shear stress is varying from zero at the axis to T at the outside.

The maximum strain energy per unit volume is 72/2G (Para. 2.5).
For a hollow shaft:
U=3T48
=% x [m(D* ~d%)7/16D] x (271/GD)
=(72/4G) x [(D? + d2)]D?] x volume
ExampLE 3. A hollow shaft, subjected to a pure torque, attains a maxi-
mum shear stress of T. Given that the strain energy per unit volume is 72/3G,
calculate the ratio of shaft diameters.

Determine the actual diameters of such a shaft to transmit 4 MW at
110 r.p.m. when the energy stored is 20,000 Nm/m3 G =80,000 N/mm?2.

Referring to the derivation just proved

= (72/4G) x (D2 +d?)/D?

=72/3G, given
(D2 +d?)|D2=4/3

volume
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i.e. d[D=+/%
or D/d=1-732
If 72/3G =20 x 10-3 Nmm/mm?3
then 7=1/(3 x80 x20) =693 N/mm?
=4—X—106—x—@ from the power
27w x 110
=348,000 Nm

7=(T/[¥) xD/2
=(16D. T)/m(D*-d*) (Para. 8.1)

Substituting values:
16D x 348,000 x 103
7 D1 - %)
3716 x348 x106x9
y =A/ 7 %693 x 8
=306 mm

and d=§—(-)-9=177 mm

V3
ExaMPLE 4. A tube of mean diameter 5 cm and thickness 2 mm is made
of mild steel with an elastic limit of 250 Njmm? under simple tension.
Calculate the torque which may be transmitted by the tube with a factor of
safety of 2-5 if the criterion of failure is (a) maximum shear stress, (b) maxi-
mum strain energy, (¢) maximum shear strain energy. Poisson’s vatio =0-3.

69:3 =

Treating the tube as “thin,” it may be assumed that the cross-section
is 507 x2 mm? and is situated at 25 mm from the axis, giving a polar
moment of inertia

F=1007 x 252=196,000 mm*

Maximum shear stress

+=(10007/196,000) x26 (T in N.m.)
=0-133T

Applying the factor of safety to the stress, the limiting simple tensile
stress =250/2:5 =100 N/mm?

(a) Maximum shear stress in simple tension

=100/2 =50 N/mm? (Para. 3.2)
=0-1337, from above
T=377 N.m

(b) Maximum strain energy/unit volume

=72/2@G in torsion (Para. 2.5)
=02/2E in tension (Para. 1.9)
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ubstituting and equating

(0-1337)%/2G =1002/2E
T2 =100/2[0-1332 x (1 +0-3)] (see Para. 4.2)
T =10/(0-133 x 4/2-6)
=466 N.m
(c) Shear strain energy =(1/12G)[(c] —0,)2 + 0,2 +0,2] for a two
dimensional stress system (Para. 3.20).
In pure torsion o;= +7, 0= —7 (Para. 3.4), and in simple tension
oy =0, g,=0.
Substituting and equating
(r+7)2+72+72=202
ie. 6(0-1337)2=2 x 1002
giving T =434 N.m

8.3. Shafts of Varying Diameter.

ExaMpLE 5. A shaft tapers uniformly from a radius r +a at one end to
r ~aat the other. If it is under the action of an axial torque T, anda=0-1r,
find the percentage error in the angle of twist for a given length when cal-
culated on the assumption of a constant radius r. (U.L.)

If 1 is the length of shaft the radius at a distance x from the small end
i8 ¥ —a +2ax/l, and the angle of twist of a length 8x
_T.8x _ T x28x
T G¥  G.n(r-a+2ax/Dt

.
T Gr| (r-a+2ax/Dt
0

2T i1 1
T 3Gn'2al(r-a)3 (r+a)
TIx10(1000 1000

~ om0 ~ig1) ¥hen a=r/10

=2-065T1/Gur4
For a shaft of uniform radius 7
0=TlGY
=2Tl/Gnr4
Percentage error =[(2-065 - 2)/2] x 100
=3-25%

Total

ExaMPLE 6. A steel shaft ABCD has a total length of 51 cm made up as
Sollows: AB =12 ¢cm, BC =15 cm, CD =24 cm. AB is hollow, outside dia-
meter 4 cm, inside d em. BC and CD are solid, having diameters 4 cm and
35 cm respectively. If equal opposite torques are applied to the ends of the
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shaft, find to the nearest 0-05 cm theV maximum permgs%?egvggte of d for the

maximum shearing stress in AB not to exceed that in CD.
If the torque applied is 500 Nm what is the total angle of twist? G =
80,000 Njmm?2.

T=(T/[})D/2
For AB: T =[327Tn(4% - d4)] x 4/2
=64T/m(256 — d%)
For CD: (32T x 3:54) x 3-5/2

=16T/(m x 42:9)
Equating and multiplying out
256 —d4=4 x42:9 =441-6
d=+844=3-05 cm

giving
0=2.TI|G¥
500 32 x12 32x15  32x 24] radians
~ 80,000] (256 —84-4) ' 7 x256 ' 7 x 150
500 x 32 x 180
=m(0 07 +0-0586 +0 16) degrees
=1-15°

8.4. Stress Concentrations in Torsion. Some results obtained by
theoretical analysis, due to Willers and others, for the stress concentra-
tion factor at semi-circular fillets (Fig. 8.3 (a)) are tabulated below.

rld 01 0-2 0-3 04
k 1-27 1-20 1-17 1-16

The effect of keyways in circular shafts depends on the radius 7 at
the bottom of the keyway (Fig. 8.3 (b)). If r>>0-4 & stress calculations

Fig. 8.3

based on the minimum metal (diameter d) will be on the “safe” side.
For smaller values of r stress concentration should be allowed for, e.g.
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atvjﬂb-pwilﬁgt%%pgqu %'ipeduced to about 509, of that of a shaft

of diameter d.
The same arguments as in Para. 1.15 apply to the redistribution of
stress in ductile materials under steady loading.

8.5. Shafts under the Action of Varying Torque.

ExamrLE 7. A horizontal shaft, securely fixed at each end, has a free
length of 9 m. Viewed from one end of the shaft axial couples of 30 kNm
clockwise and 37-5kNm counter-clockwise act on the shaft, at distances of
36 m and 6 m from the viewed end. Determine the end fixing couples in
magnitude and direction and find the diameter of solid shaft for a maximum
shearing stress of 60 N/mm?.

Draw a diagram to show how a line, originally parallel to the axis and on
the outer surface of the shaft, will appear, and find the position where the
shaft suffers no angular twist.

If T is the fixing torque at the viewed end, the torque will be T - 30

in the middle portion and 7" — 30 +37-5 at the far end (Fig. 8.4)
0 =TI/G¥oc Tl for a uniform shaft
hence for no resultant twist
Tx36+(T—-30)%x24+(T+75)x3=0

giving T=5-5kNm

The other fixing couple =T +7-5 =13 kNm

Maximum torque =T — 30 =245 kNm numerically.

Maximum shearing stress, 60 =16 x 245 x 106/7D3

D =145 mm

T-30

]
NG

-<———3'6m———>;<X,Z'4m

T+75
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In Fig. 8.4, ABc5:5 x3-6=19-8, CDoc13 x3 =39

By proportion

19-8
19-8 +39

8.6. Compound Shafts. For shafts made up of different materials
two cases will be examined, one where the shafts are joined in ““series,”
and the other where they are joined in “parallel.”

Exampie 8. 4 solid alloy shaft 5 cm diameter is to be coupled in series
with a hollow steel shaft of the same external diameter. Find the internal
diameter of the steel shaft if the angle of twist per unit length is to be 75 %
of that of the alloy shaft. Determine the speed at which the shafts are to be
driven to transmit 200 kW, if the limits of shearing stress are to be 55 N/mm?
and 75 N/mm?2 in alloy and steel respectively. Ggeq =2-2Ggioy-

Angle of twist per unit length =0/I
=T/G¥
(T/G¥ geer) =0 75(T/ GFattoy

x=3-6+( ) x24=441m

) 32T 075 x22 x 32T

ie. 71'(54—d4)= ——

o} 625 —d* =625/(0-75 x 2:2) =379

giving d = /246 =396 cm
2+/D =Go)l

and since 0/ for the steel is 0-75 of that for the alloy
'Tstee!/'ralloy = (Cs/ca)(Ds/Da) x 075
=22 x0'75
=1-65
The limits of shearing stresses are 75 N/mm? steel and 55 N/mm?2
alloy, but the actual maximum stresses must be 75 N/mm? steel and
75/1-65 =45-4 N/mm?2,
Calculate the torque from the solid shaft, i.e.

T=aD37/16
X 125 x 454
- 16
=1100 N.m
27N
Power =200,000 =“ﬁ6x0—"—

N =1720 r.p.m.

ExampLe 9. A gun-metal sleeve is fixed securely to a steel shaft and the
compound shaft is subjected to a torque. If the torque on the sleeve is twice
that on the shaft find the ratio of external diameter of sleeve to diameter of

shaft.
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If the Limits of shearing stress in the gun-metal and steel are 45 and
80 N[mm? respectively, find the torque that may be transmitted by the com-
pound shaft when the steel shaft diameter is 50 mm. Gyq =25 Gy (U.L.)
Since the shafts are securely fixed together it can be assumed that
strain is proportional to distance from the central axis (compare com-
posite beams, Para. 6.9), being the same for each at the common surface,
"This implies that the twist per unit length is the same for shaft and sleeve,
hence
(Tst/Tgm)(jgm/yst) = (Tst/Tgm)(7gm/'st) = Gst/Ggm =25
giving the ratio of torques Ty/T,,, i.e.
1 7d4x32 "
27 32 xm(D*-d%
D4 -d4 =544
Djd=+6=1-565
The ratio of maximum stresses is found by putting
Tem/Ts =1-565
Tst/Tem =2°5/1:565 =16

2:5

so that the actual maximum stresses are 45 N/mm?2 gun-metal and
45 x1:6 =72 N/mm? steel.

The torque carried by the steel shaft
=7 x 503 x72/16 N.mm
= 1760 Nm
Total torque of composite shaft
=3 x 1760
=5300 Nm

8.7. Torsion Beyond the Yield Point. It has been shown that the
maximum shear stress when a circular shaft is twisted occurs at the
outside surface. If the torque is increased until the yield stress is reached,
plastic strain will take place in the outer metal. For an ideal elastic-
plastic material (approximately true for mild steel), the strain obeys
Hooke’s law up to the yield point, and beyond this the stress remains
constant for a considerable increase in strain (see Fig. 12.1, Para. 12.2).
If it is further assumed that strain is proportional to the distance from
the axis of the twisted shaft (even in the plastic region), then the angle
of twist can be determined from the stress in the elastic core. The total
torque is obtained from first principles by integration of the moment
of the forces on elemental rings about the axis.

ExampLE 10. A4 steel shaft 84 mm diameter is solid for a certain distance

Sfrom one end but hollow for the remainder of its length with an inside diameter
of 36 mm. If a pure torque is transmitted of such a magnitude that yielding just
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occurs at the surface of the solid part\é}suzé @WJ?%WM?%B%U} yielding

in the hollow part and the ratio of the angles of twist per unit length for the
two parts of the shaft. (U.L.)

Let 7 be the shear stress at yield, and d mm the diameter of the hollow
section at which yielding commences. It may be assumed that the shear
strain in the outer layers of this shaft is insufficient to cause strain harden-
ing (this will be true of any steel with a plastic strain at yield several times
the value of the elastic strain) and that the stress is uniform and equal to 7.

42
Torque in the yielded part ='rf 2ardr.y
d2

=843 - d3)m7/12 @)
Torque in the unyielded part =(d* - 36*)w7/16d (>ii)
Torque in the solid shaft =84377/16 (iii)
Equating (1) + (1) =(iii)
4(843 —d3) +3(d* —36%)/d =3 x 843
or d*-59 x10%d +5 x106=0

By trial and error, d =81 mm
Ratio of angles of twist per unit length,

Hollow =/d

TOTOW _TIZ _1-04
Solid /84

(this is based on the ““elastic” part of each shaft).

8.8. Combined Bending and Twisting. This condition occurs
frequently in practice, shafts being subjected to bending moments due
to gravity or inertia loads. Stresses are set up due to bending moment,
torque, and shearing force, but the latter is usually unimportant, parti-
cularly as its maximum value occurs at the neutral axis (Para. 7.6),
where the bending stress is zero. Sometimes, for instance propeller
shafts, there is also an end thrust, which is assumed to be distributed
uniformly over the cross-section. )

For design purposes it is necessary to find the principal stresses,
maximum shear stress, strain energy, etc., whichever is to be used as a
criterion of failure (see Para. 3.21). The importance of these applications
is sufficient to warrant the derivation of formulae for these quantities.

If o, is the greatest bending stress and T the greatest shear stress due
to torsion, then

oy, =32M|[nD3

(where M is the bending moment), and
7=16T/mD3, for a solid shaft.
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Vighes CIMidslatashingeRal ibgether at the ends of a vertical diameter, -

for loading in a vertical plane, and since there is no normal stress on .
longitudinal planes of the shaft, the maximum principal stress .

o =%0, + 34/ (0,2 +472) (Para. 3.8)
=16M/wD3 +%+/[(32M/nD3%)2 +4(16 T/mD3)?] 2
=(16/mD3)[M + +/(M? + T?)] (1) 4
Note that }[M ++/(M?+T2?)] is the equivalent bending moment
which would give the same maximum stress.
Maximum shear stress
7=%44/(0y2 +472) (Para. 3.10)
—(16/mD3) /(M2 + T?) @ @
This is the same as the shear stress produced by a pure torque of :
magnitude /(M2 + T?).
"The resilience
U=(1/2E)(012 +0,2 ~2v0| 6;) (Para. 3.19)
where o1 and o, are the principal stresses, i.e.

(16/7D3)[M £+ /(M2 +T?] from (1)

giving U=256/m2DSE)[2M?2 + T%(1 +v)] 3)
Exampre 11. 4 flywheel weighing 500 kg is mounted on a shaft 75 mm }
diameter and midway between bearings 0-6 m apart. If the shaft is trans- \
mitting 30 kW at 360 r.p.m. calculate the principal stresses and the maximum
shear stress at the ends of a vertical and horizontal diameter in a plane close
to the flywheel. %
M =WIj4 =(500 x 9-81 % 0-6) /4
—736 Nm :
T_power x 60 ‘,}
T 2aN ; ‘}
30,000 % 60 1
= 2r 360 00 Nm
At the ends of a vertical diameter 1N
Principal stresses = (16/mD3)[M + +/(M?2 + T?2)] from (1) /‘
=[16/(7 x 753)][736 £ 4/(7362 +7962)] 103 N/mm
=0-0121(736 +1083)

=22 N/mm?2 and -4-2 N/mm?

i.e. on the “tension’’ side of the shaft the principal stresses are 22 N/mm?
tension and 42 N/mm? compression. On the “compression” side the -
principal stresses are 22 N/mm? compression and 4-2 N/mm? tension. &
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Maximum shear stress = (16} COHERESPIOgsPos N
—13-1 N/mm?

At the ends of a horizontal diameter the bending stress is zero and the
torsional shear stress has a value
16T/7D3 =0-0121 x 796
=96 N/mm?2

This is a ‘“‘pure shear stress’ system, and the principal stresses are
+9-6 N/mm?2, the maximum shear stress being 9-6 N/mm?2 (Para. 3.4).

ExaMpLE 12. A4 hollow steel shaft 10 cm external diameter, 5 cm internal
diameter, transmits 600 kKW at 500 r.p.m. and is subjected to an end thrust
of 50 kN. Find what bending moment may be safely applied to the shaft
if the greater principal stress is not to exceed 100 N[mm?. What will then be
the value of the smaller principal stress?

Let the greatest normal and shear stresses on transverse planes be

‘o and 7. Then

T=(T[¥)-D/2
32 x 600,000 x 60 x 10
=27 x 500a(10% - 5%) x 2
=624 N/mm?

Maximum principal stress
=02 +44/(a2 +4712)
ie. 100 =0/2 +1+/(c2 +3900)
Rearranging and squaring
a2 + 3900 =(200 — o)
=40,000 — 4000 + o2

giving o =36,100/400 =90-2 N/mm?

The limiting case is obtained when both the end thrust and bending
stress are compressive, the maximum principal stress being also
compressive.

Normal stress accounted for by end thrust

_' 50,000 x 4
~ (1002 - 502)
Stress due to bending =90-2 — 8-5
=81-7 N/mm?
=My/I
=(64M x 5)/m(10% - 5%)
(M in N.m)

=85 N/mm?

M =817 x7r x7500/320
=6000 N.m
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8.9. Rectangular Shafts. For shafts of non-circular section warping

of the cross-section takes place under the action of a torque, and the
analysis of stresses and angle of twist is outside the scope of this book.
Results are quoted here for rectangular and square sections.
The maximum shear stress is found to occur at the mid-point of the
longer side. If the dimensions are b and d, with d greater than b, then
%=(1~Sb+3d).T
b2d2
The angle of twist
P 7TUb2 + d?)
2Gb3d3
8.10. Torsion of Thin Tubular Sections. (Bredt-Batho Theory).
Consider a closed tube of small thickness acted upon by a torque T
in a transverse plane (Fig. 8.5). If it is assumed that the shear stress 7

Fig. 8.5

at a point P where the thickness is ¢ is constant across the tube wall,
then if 7' is the shear stress at Q and ¢’ the thickness, it follows from the
equilibrium of the complementary shear stresses on PS and QR that

7t=7't'=k say 1)

If dz is an element round the circumference, then the force on this
element is 7¢dz. and taking moments about O,

T={rtdz.rsin¢
=kfh.dz
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where  is the perpendicular distance from O on to 7; hence
T=2krA (2)

where A =area enclosed by the mean circumference.

The strain energy of a length [ of tube is
U =[(2/2G)ltdz
=(klj2G)[rdz from (1)

But U=4T0, where 8 is the angle of twist, hence

0=(kl|TG)frdz
=(l[2GA)[rdz from (2) 3)
If ¢ is constant
0=Ir2/2GA “4)
=ITz/4GA% from (2) (5)

ExampLE 13. Show that, for a uniform hollow tube of outside and inside
diameters D and d, the Bredt-Batho theory underestimates the maximum
shear stress due to a given torque by about 5% when d/D =0-9. Show that
the error in the angle of twist, however, is less than 1%.

From (1) and (2)
7=T[2tA
Tx2x4 ( 2 )2
2(D -dyn\D +d
16T
wD3(1 -0-9)(1 +0-9)2

16T
0-3617D3

@

Applying the normal theory for hollow shafts,
16DT
w(D4 - d%)

__ 16T
0-344wD3

=
(d=09D) (ii)

From (i) and (ii)
T 0344

#0361 0%

i.e. 7 is 5% less than 7.
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From (5)
G0_ Tz
T T44n
Tr(D +d) x42( 2 \4 2
T T A x2 %72 (D+d) D-d
64T
~0-684mD* (i)
By shaft theory
G 32T
1 m(D4-d%
32T .
= 0344nD? @)

The ratio between (iii) and (iv) is 0-995, i.e. a difference of about 0:5%,.

ExampLE 14. Fig. 8.6(a) shows a circular tube for which the inside is
eccentric to the outside. Calculate the maximum shear stress and twist per
metre length for a torque of 100 Nm. G =80,000 N mm?2,

253
Smm Imm 19
N/rnm2 152
¥ 33mmdia 1 o 7 5 -
(o) (b)
Fig. 8.6

From (1) and (2)
7=T/2tA4
100 x 103 x4

=73 w292 taking the least thickness

Since 7 is varying continuously, 6§ must be obtained from (3), where
dz=145d$ and [rdz=1800 N/mm (graphically from Fig. 8.6(b)).
Then, for 1 m length
1000 x4 = 1800
~ 2 x 80,000 x 77 x 292

=0-98°

x 573
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8.11. Torsion of Thin-Walled Cellular Sections. Consider the
twin-celled section shown in Fig. 8.7, the mean area of the two cells
being A; and A,. If the length ABC is of uniform thickness # and

Fig. 8.7

stress 7;, CDA of thickness #, and stress 75, and CA of thickness 73 and
stress 73, it follows from the equilibrium of complementary shear stresses
on a longitudinal section through PQR that

Tity =Toly +T3l3 (M

The total torque on the section by using eqn. (2) of Para. 8.10 and
adding for the two cells, i.e.

T =2(mit14; + 721, 4,) (2)

Applying eqn. (4) of Para. 8.10 to each cell in turn gives
2GH/l=(m121 + T323)[ A4 3)
=(72%2 - T3%3)/ 42 (4)

where 2;, 2, and z3 are the mean perimeters ABC, CDA, and CA
respectively, the negative sign indicating a traverse against the direction
of stress.

ExampLE 15. In Fig. 8.7 the mean dimensions of the two cells are 5 cm x
2:5 em and 2+5 cm square, t; =25 mm, ty =5 mm, and t3 =3mm. Calculate
the shear stress in each section, and the angle of twist per metre length for a
torque of 200 Nm. G =80,000 N/mm?2.

From the dimensions given,
A;=1250 mm2 and A;=625 mm?
21 =125 mm, 2,=75 mm, 23 =25 mm
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Equation (1) gives
Ty X2:5=7,x54+73x3
ie. 2:57 =57, 4373 i)
Equation (2) becomes
200,000 =2(7; x2-5 x1250 +7, x5 x625)
ie. Ti+7,=32 (ii)

Equating (3) and (4) gives
7y %125 + 73 X 25 =2(75 x 75 - 73 x 25)

ie. 57, =67 - 373 (iii)

Eliminating 73 between (i) and (iii) gives

7511 =117, @iv)
and from (ii) and (iv) 7,=(11/18-5)32
=19 N/mm?2
Ty =32 -T1
=13 N/mm?
From (i) 73 = —5-8 N/mm?

(i.e. in the opposite direction to that assumed).
From (3) 0 =(r121 +T323)
2G4,
(19 x 125 —5-8 x25)1000
=7 2x80,000 x 1250
=0-638°

x 57-3

8.12. Torsion of Thin Rectangular Members. In a rectangular
cross-section the shear stress must flow as in Fig. 8.8, being a maximum
7 along the long edge d, and a value 7’ along the short edge z. It will
be assumed that the variation of stress in both the OX and OY direc-
tions is linear, being zero in both directions at O by symmetry. It will
be further assumed, and this has been confirmed by experiment, that
the ratio

' fr=t/d oy

The total torque on the cross-section is found by adding together the
sum of the moments about OY of the forces on elements parallel to d
and the sum of the moments about OX of the forces on elements
parallel to ¢, i.e.
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42
T=2f (27x/t)d.dx.x +
0

2f (27'y/d)t.dy.y RS
: [~
=3rd2 +3r'd% t 1
=%rdt2 from (1) 2 1 l
where 7 is the maximum stress in the 1 1
section. 1 0 l d X
If 6 is the angle of twist of a length /,
equating the strain energy from the t 1 l l
torque and from the stresses, 1 l
£/2
176-2 f (2ratY(dlj2G)dx + {U
0 df2 , L S g
ZJ; (27'y[d)X(tl|2G)dy Y P
=Y72/G)dtl + }("2|G)dtl T
=372dtl(1 + £2[d2)|G from (1) (3)
For a long thin rectangle #2/d2 can be T
neglected, and by substitution from (2)
0=7liG (C)) Fig. 8.8
=3TldB3G (5)

These results should be compared with those of Para. 8.9, in which
the dimension 4 can be neglected in comparison with d.

8.13. Torsion of Thin Open Sections. I, channel and angle sections,
and curved sections which do not form closed tubes may be treated
approximately by the methods of Para. 8.12, equations (2) and (5)
becoming

T=47.2de2
and 0=3Tl/GXds3
(for curved sections d=mean perimeter).

Exampire 16. An I-section 120 mm x 80 mm has flanges 5 mm thick and

web 4 mm thick and is subjected to a torque T. Find the maximum value of T

if the shear stress is limited to 35 Njmm? and the twist per metre length to
6°.G =82,000 N/mm?

Sd? =120 x 42 +2 x 80 x 52
=5920 mm?3

hence T =1 x35 %5920
=69,000 Nmm
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Visit : CiviIdataszb(}ggéq%iQ43 2 %80 x 53 =
=27,700 mm?4
hence 0 =3T x 1000/(27,700 x 82,000)
or T=6x%x27,700 x82/3 x57-3

=79,000 Nmm

The permissible torque is therefore 69 Nm.

SUMMARY 1

Torsion of Circular Shafts T/f=+/r=G6Jl.
Mazximum shear stress 7 =16T/nD3, for solid shafts.
Strain Energy U=4T8

= T2l[2G¥
=(#2/4G) x volume, for solid shafts.

Stiffness k= T/0 =G}/l
Combined Bending and Twisting: \

Maximum Principal Stress & =(16/7D3)[M + +/(M?2 + T2)].
Maximum Shear Stress #=(16/mD3)4/(M2 + T?2), for solid shafts.

PROBLEMS

1. Two lengths of shaft, 15 cm diameter, are connected by a flange coupling, i
with 6 bolts on a 25 cm diameter pitch circle. If the limits of shearing stress are
48 N/mm? in the shaft and 40 N/mm?2 in the bolts (assumed uniform), calculate .}
the power transmitted at 280 r.p.m., and the diameter of bolt required. :

(933 kW; 37 mm.)

2. A solid steel shaft transmits 560 kW at 300 rev./min with a maximum shear
stress of 60 N/mm?2. What is the shaft diameter ?
‘What would be the diameters of a hollow shaft of the same material (diameter
ratio 2), to transmit the same power at the same speed and stress ?
Compare the stiffness of equal lengths of these shafts.
(115 mm; 117 mm; 585 mm; 0-98.)
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3. A hollow steel shaft has to transmitv6l(%b :kg\’\éuqm&mgfp&telﬁlowable
shear stress is 60 N/mm?2 and inside diameter =% of outside, find the dimensions
of the shaft, and the angle of twist on 2 3 m length. G=80,000 N/mm?2.

(370 mm; 222 mm; 42’.)

4. A shaft 3 m long stores 300 Nm of energy when transmitting 1500 kW at
360 r.p.m. What is the shaft diameter and maximum shear stress? G =80,000
N/mm?2. (178 mm; 359 N/mm?2.)

5. A solid phosphor-bronze shaft, 5 cm diameter, rotating at 400 r.p.m., is
subjected to torsion only. An electrical resistance strain gauge is mounted on the
shaft with the axis of the gauge at 45° to the axis of the shaft. Determine the
power being transmitted if the strain gauge reading is 4-17 x 10~4. For phosphor-
bronze E =105,000 N/mm?. (45 kW.)

6. A hollow marine propeller shaft turning at 110 r.p.m. is required to propel

a vessel at 25 knots for the expenditure of 6300 kW, the efficiency of the pro-

peller being 689%,. The diameter ratio is 4 and the direct stress due to the thrust

is not to exceed 7-72 N/mm. Calculate (a) the shaft diameters, (b) maximum
shear stress due to torque. 1 knot =0-515 m/s. (U.L.)

(315 mm, 210 mm; 112 N/mm?)

7. A hollow steel shaft 200 mm external diameter and 125 mm internal dia-
meter transmits 1600 kW at 180 rev./min. Calculate the shear stress at the inner
and outer surfaces and the strain energy per metre length. G =84,000 N/mm?2.

(40-5; 64-5 N/mm2; 325 Nm.)

8. A hollow shaft of diameter ratio 3/5 is required to transmit 600 kW at
110 r.p.m., the maximum torque being 129, greater than the mean. The shear
stress is not to exceed 60 N/mm?2 and the twist in a length of 3 m not to exceed 1°.
Calculate the minimum external diameter satisfying these conditions. G =
80,000 N/mm?2. (258 mm.)

9. The figure shows a steel shaft
25 mm diameter which is rigidly
joined at D to a tube 38 mm outside
% % D
27
430mm _“g
W,

diameter which is anchored at C. The
shaft is carried in a bearing at Band a

load of 500 N is applied at A per-

10. A case-hardened shaft is 25 mm diameter with a case depth of 1-5 mm.
Assuming the case remains perfectly elastic up to its failing stress in shear of
300 N/mm? and that the inner core becomes perfectly plastic at a shearing stress

pendicular to the plane of the figure.

Calculate the bore of the tube so that

of 180 N/mm?, calculate (a) the torque to cause elastic failure in torsion in the
64

the maximum stress in tube and shaft
are equal, and calculate the movement
of A assuming the lever rigid.
G =80,000 N/mma2.

(35 mm; 5-58 mm.)
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cad %H(Q'M{Ldﬁgﬁe Qlocgﬁgto};épmetre length at failure. G =84,000 N/mm?2 for

all the material while elastic. (820 Nm, 16-4°.)

11. A hollow steel shaft having outside and inside diameters of 45 mm and
19 mm respectively is subjected to a gradually increasing axial torque. The yield
stress is reached at the surface when the torque is 1 kNm, the angle of twist per
metre length then being 2-43°, Find the magnitude of the yield stress.

If the torque is increased to 1-08 kNm calculate (a) the depth to which yielding
will have penetrated, (b) the angle of twist per metre length. State any assump-
tions made and prove any special formula used. (58 2, 2:3 mm, 2-7°,

12. A steel shaft ABCD of circular section is 2 m long and is supported in
bearings at the ends A and D. AB =0-75 m, BC =0-5 m, CD =0-75 m. The shaft
is horizontal, and two horizontal arms, rigidly connected to it at B and C, project
at right angles on opposite sides. Arm B carries a vertical load of 2000 kg at
0-333 m from the shaft axis, and C carries a vertical balancing load at 0417 m
from the axis. If the shear stress is not to exceed 80 N /mm?2 find the minimum
diameter of shaft. Assume the bearings give simple support. (99 mm.)

13. The 300 mm diameter steel tail shaft of a ship which runs at 200 r.p.m.,
has a 25 mm thick bronze bushing shrunk over its entire length of 8-5 m. If the
shaft has been designed for a maximum shearing stress in the steel of 10 N/mm?2
find (a) the torsional stiffness of the tail shaft, (b) the power of the engine.
G5 =84,000 N/mm?2; Gp=42,000 N/mm?. (13 x106 Nm/rad.; 16,000 kW.)

14. A solid shaft transmits 1000 kW at 107 rev/min, the maximum torque

being 18 times the mean. The bearings are 1-54 m apart with a 9000 kg fiywheel -

midway between bearings. There is also a bending moment due to steam pres-

sure which is numerically equal to 0-8 of the mean twisting moment. Find the
shaft diameter if the maximum permissible tensile stress is 60 N/mma2.

(290 mm.)

15. In a shaft subjected to bending and twisting the greater principal stress is

numerically 5 times the lesser one. Find the ratio of M: T and the angle which

the plane of greater principal stress makes with the plane of bending stress.

(U.L) @/v/'5;24° 5"

16. A solid shaft 127 mm diameter transmits 600 kW at 300 r.p.m. 4t is also
subjected to a bending moment of 9-1 kNm and an end thrust. If the maximum
principal stress is limited to 77 N/mm? find the end thrust. (39kN.)

17. A horizontal shaft of 76 mm dia. projects from a bearing and, in addition
to the torque transmitted, the shaft carries a vertical load of 7+5 kN at 300 mm
from the bearing. If the safe stress for the material, as determined in a simple
tension test, is 140 N/mm2, find the torque to which the shaft may be subjected
using as a criterion (@) the maximum shear stress, (b) the maximum strain energy.
Poisson’s ratio =0-29. ((a) 5-6 kNm. (5) 69 kNm.)

18. A tube subjected to torsion is of rectangular form, the outside dimensions
being 50 mm x 25 mm and the thickness 16 mm. Show that for calculating both
shear stress and angle of twist such a section may be treated as practically equi-
valent to a thin circular tube in which the mean radius is 24 /S and with a thick-
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ness S2t/4nA, where A is the cross-seééllgrlltal :Ci:rle\g,kgattisébplglqg%(%et:i‘lgnd t the
thickness of the non-circular tube.

If the material is brass (G =34,500 N/mm?2) calculate the safe torque and

maximum angle of twist per metre if the shear stress is not to exceed 27:5 N/mm?2.

(100 Nm, 2-9°.)

19. The figure shows the dimensions of a double-celled cross-section in the

150mm
Smm e
100mm
“Tomn

2:5mm}
L]

25mm 25mm,

125m R5mm

form of a triangle and rectangle of thin section. If a torque of 10,000 Nm is
applied, calculate the shear stress in each part and the angle of twist per metre
length. G =83,000 N/mm?2.
‘What thickness of the internal web would make the stress in it zero?
(49-5 N/mm? ““‘rectangle’, 65 N/mm?2 “triangle”
34 N/mm? “internal”, 0-9657-15 mm.)
20. The dimensions of an angle section are 75 mm x50 mm x 3:2 mm.
Calculate the maximum shear stress and twist per metre length if a torque of 10
Nmis applied. G =83,000 N/mm?2. (23-5 N/mm?2, 5-1°.)
21. An extruded section in light alloy is in the form of a semicircle 50 mm
mean diameter and 2-5 thick. If a torque is applied to the section and the angle
of twist is to be limited to 4° in a length of 1 m estimate the torque and maximum
shear stress. G =26,000 N/mm?2, (0-745 Nm, 456 N/mm?2.)
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CHAPTER IX

Deflection of Beams

9.1. Strain Energy due to Bending. Consider a short length of beam
8x, under the action of a bending moment M. If ¢ is the bending stress
on an element of the cross-section of area 84 at a distance y from the
neutral axis, the strain energy of the length 8x is given by

83U ={(0?/2E) x volume (Para. 1.9)
=3xfc2.dA[2E

= (8x/2E)f M2y2d A[I2
But [y2.dA=1
hence SU =(M2/2EI)dx

For the whole beam:
U=[M2.dx/2EI
The product EI is called the Flexural Rigidity of the beam.

ExampLE 1. A simply supported beam of length |l carries a concentrated
load W at distances of a and b from the two ends. Find expressions for the
total strain energy of the beam and the deflection under the load. j

The integration for strain energy can only be applied over a length of
beam for which a continuous expression for M can be obtained. This |
usually implies a separate integration for each section between two con-
centrated loads or reactions.

Referring to Fig. 9.1, for

4 lW 5 C the section AB,
a > _
we B wy M=V
7 b 4 > L W2b2x2
Us=| Spgr #
e——C -X—> 0
W2b2[ %319
M lfé _2I2EI[3_]
T l = W2a3b2/6E112
Fig. 9.1 Similarly, by taking a

variable X measured from C
b
W2a2X2

= =W2a2h3 2

U, J o 4X =W?a?b/6ETl

0

Total U =U, + U, =(W2a2b2/6 EIl?)(a +b)
=W2a2b2/6EIl
152
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But, if 8 is the deflection under the load, the strain energy must equal
the work done by the load (gradually applied), i.e.
1W3 =W?2a2b?/6EIll
.. 3=Wa2b?/3EIl

For a central load, a =b=Il/2, and
8 =(W/3EI)(12/4)(12/4)
=WDB/48El

DEFLECTION

It should be noted that this method of finding deflection is limited
to cases where only one concentrated load is applied (i.e. doing work),
and then only gives the deflection under the load. A more general
application of strain energy to deflection is found in Castigliano’s
theorem (Para. 11.4).

ExampLE 2. Compare the strain energy of a beam, simply supported at its
ends and loaded with a uniformly distributed load, with that of the same beam
centrally loaded and having the same value of maximum bending stress.

(U.L.)

If [ is the span and EI the flexural rigidity, then for a uniformly dis-
tributed load w, the end reactions are wi/2, and at a distance x from one
end

M =(wl/2)x — wx2[2
= (wx/2)(1 - x)

1
2562(] -
U1=wa(l x)2dx

4 x2K1
0

=—w—2J 1(12x2 = 2lx3 + x4)dx
8EI) o
=(w5/8EN3 -3 +1)

=w?2l5/240E1 ()
For a central load of W,
U,=3W3s
=W2B/96EI (ii)

see also Example 1.
Mazximum bending stress =M/ Z, and for a given beam depends on the
maximum bending moment.
Equating maximum bending moments,
wi?/8 =Wi/4 (Chap. 5)
Cowl=2W
Ratio Uy/U, =(w?I5/240)(96/W213) from (i) and (ii)
=(96/240)(w22/W?2)
=(96/240)4 from (iii)
=8/5

(iii)
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9.2. Application to Impact. ;

ExampLE 3. A concentrated load W gradually applied to a horizontal <

beam simply supported at its ends produces a deflection y at the load point.
If this load falls through a distance h on to the beam find an expression for the
maximum deflection produced.

In a given beam, for a load W, y=0-5 cm and the maximum stress is
60 N/mm?, Find the greatest height from which a load of 0-1W can be E

dropped without exceeding the elastic limit of 270 N/mm?. (U.L.)
Loss of P.E. of load =Gain of S.E. of beam
i.e. W(h +8)=3P3

T
where 8 is the maximum deflection produced by dropping the load W on
to the beam and P is the equivalent gradually applied load which would

cause the same deflection. But a gradually applied load of W produces a

defiection y, hence 8 =(P/W) xy by proportion, or P=W3/y.
Substituting in above
W(k +8) = Wd2/2y
Rearranging 82/2 —y8 —hy =0
Solving 8=y ++/(y2+2hy)
Energy equation for dropping 0-1W is
0-1WH +8)=1P%

But the equivalent gradually applied load (and hence the deflection 8’) .

is proportional to the maximum stress, i.e.
P'=W %x270/60 =9W/2

and & =y x270/60 =225 cm
Substituting, 0 1WH +2:25) =3(9W[2)2:25
giving 0-14" =5-065 - 0-225
i.e. h =484 cm

9.3. Deflection by Calculus. It was proved in Para. 6.1 that, for
bending about a principal axis
M|EI=1/R (1)
and in terms of co-ordinates x and y
2
Y Elastic line of ] 4y d
def/ected beam

R I+@iag @

0o

Fig. 9.2 denominator.

i.e. d2y/dx2 is positive, and 1/R =d2y/dx2 from (2).
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where the sign depends on the con- $
vention for axes. For beams met with %
in engineering practice the slope dy/dx
is everywhere small, and may be neg-
lected in comparison with 1 in the ¥

Taking y positive upwards, under the
action of a positive bending moment the curvature of the beam is as
shown in Fig. 9.2. It can be seen that dy/dx is increasing as x increases, |
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Hence MJ|EI -dzy/dx from ( )

or El.d%y/dx*=M 3)

Provided M can be expressed as a function of x equation (3) can be
integrated to give the slope dy/dx, and the deflection y, of the beam for
any value of x. T'wo constants of integration will be involved, and these
can be obtained by substituting known values of slope or deflection at
particular points. A mathematical expression is thus obtained for the
form of the deflected beam, or “elastic line.”

Differentiating (3)
EI.d3/dx3=dM|dx =F 4)

and EI.d%|dx*=dF|dx= —w (Para. 5.5) (5)

These forms are of use in some cases, though generally the bending
moment relation is the most convenient.

Notes on application

(i) Take the X axis through the level of the supports.

(ii) Take the brigin at one end, or at a point of zero slope

(iii) For a built-in or fixed end, or where the deflection is a maximum,
the slope dy/dx=0.

(iv) For pomts on the X axis, usually supports, the deflection y=0.

Units. Tt is convenient to measure:

E in N/mm?
I in mm*
¥ in mm
M in Nm
x'in m

In numerical problems it will then be necessary to apply correction
factors to the slope and deflection equations.

ExampLe 4. Obtain expressions for yr
the maximum slope and deflection of a x
cantilever of length 1 carrying (@) a Of————===  — t%_
concentrated load W ab its free end, [ _,T .
() a uniformly distributed load w along ¥
its whole length. w

(a) Taking the origin at the free
end, the X axis through the fixed end,
then at a distance » from the origin M = - Wx (Fig. 9.3) and

El.d¥yldx2=M= - Wx from (3)
El.dyldx=-Wx2[2+ A4

Fig. 9.3

Integrating
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But dy/dx =0 at x =1
A=WIi/2
Integrate again
Ely= -Wx3/6 + Wi2x/2+B
At x=I,y=0
B=wn/6 - W2
=-WB/3
The slope and deflection at the free end (where they are a maximum)
are given by the values of dy/dx and y when x =0, i.e.
slope = WI2/2EI
Deflection = — WI3/3EI (indicating downward)
The deflected shape is shown dotted.
(b) El.d%y[dx?2 =M= —wx?/2 (Fig.9.4)
Integrating EI.dy/dx= —wx3/6 + A
when x =1, dy/dx =0
A=uwl3l6

Integrating
Fig. 9.4 Ely = —wx%/24 + (wl3/6).x + B
when =1, y =0
= —wl4/8
Putting x =0, maximum slope =wi3/6EI
and maximum deflection = —wl4/8EI
It is left to the reader to perform the analysis for the two standard
cases of simply supported beam, the results of which are quoted in the

summary at the end of this chapter. They will be treated by a different
method under Para. 9.5.

9.4. Macaulay’s Method. In applying the method of Para. 9.3,
normally a separate expression for bending moment must be obtained
for each section of the beam between adjacent concentrated loads or

_reactions, each producing a different equation with its own constants
of infegration. It will be appreciated that in any but the simplest
cases the work involved will be laborious, the separate equations being
linked together by equating slopes and deflections given by the ex-

pressions on either side of each “junction” point. However, a method &

devised by Macaulay enables one continuous expression for bending

moment to be obtained, and provided certain rules are followed the

constants of integration will be the same for all sections of the beam.
For the purpose of illustration, it is advisable to deal with the differ-
ent types of loading separately.

(1) Concentrated loads

Measuring # from one end, write down an expression for the bending f
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moment in the last section of the beam, enc’los%:g afﬂaélstlo 3 O{elsr; than «
in square brackets, i.e.
EI.d2%y/dx2=M= — Wyx + R[x — a] - W,[x ~b] - W3[x - ] (Fig. 9.5)

Subject to the condition that c .
all terms for which the quantity \W2___g W W3
inside the square brackets is nega- §f—a—>| v l ]
tive are omitted (i.e. given a | x T
value zero), this expression may a R
be said to represent the bending Fig. 9.5

moment for all values of x. If »
is less than ¢ the last term is omitted, if x is less than & then both the
last two terms are omitted, and so on.
The brackets are to be integrated as a whole, i.e.
El.dyjdx = — Wx2(2 +(R/[2)[x - a]? - (W,/2)[x - b]2 -
(W3/2)[x~c]2+4
and
Ely = - W36+ (R/6)[x — a]? — (W/6)[x - b3 -
(W5/6)[x—c]>+ Ax+ B

By so doing it can be shown that the constants of integration are

common to all sections of the beam, e.g. if x=b-4
El.dyldx= —(Wy/2)(b - A2 +(R/2)(b-4 -a)> + 4
and  Ely= —(W/6)(b~A4)3+(R/6)b -4 -a)*+Ab-4)+B
and if x=b+4
EI.dy|dx = —(Wy/2)(b+A)2 +(R/2)(b + 4 - a2 - (W,/2)42 + A’

and
Ely= —(W,/6)(b - 4)3 +(R[6)(b+ 4 - a)> - (W,/6)43 + A’(b + A4)+B’

Now as 4—>0 these slope and deflection values must correspond (i.e.

at x =b), from which it is seen that A=A’ and B=DB'.
The values of 4 and B are found as before.

(2) Uniformly distributed loads
Supposing a load w is stretched from a distance a to a distance b from

one end (Fig. 9.6). Then in order to

l‘_a—ﬁo(rmolg(bﬂ“f‘c“c' obtain an expression for the bending

3 ‘lf“ =Y moment at a distance x from the enq,

x __»| which will apply for all values of #, it

R is necessary to continue the loading
Fig. 9.6 up to the section x, compensating with

an equal negative load from b to x, i.e.

M=Rx - (w/2)[% - a]2 +(/2)[x - b]
6*
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each length of loading acting at its centre of gravity, square brackets
being interpreted as before.

For x>a but <Cb, omit [x —b], and M = Rx — (w/2)(x — a)2, which is
clearly correct.

The remaining steps of integration and constant enumeration are as
before.

(3) Concentrated bending moment
As shown in Fig. 9.7, write
EI.d%y)dx? =M= — Rx + My[x —a]°
then EI.dyldx= — Rx2[2 + My[x —a] + 4, etc.

EXAMPLE 5. A simply supported beam of length L carries a load W at a
distance a from one end,b from the other (a>b). Find the position and magni-
tude of the maximum deflection and show that the position is always within
L/13, approximately, of the centre. (U.L.)

Y] lW
'R Mo 0 ‘\-_f --------- Zi o
e—— a——>1 4 Z
. 72
Fig. 9.7 Fig. 9.8

The maximum deflection (i.e. zero slope) will occur on the length a
since a>b.
Taking the axes as shown in Fig. 9.8,

EI.d%y/dx? =M =(Wb/L)x — W[x - a]

El.dy[dx =(Wb/L)(x2/2) - (W[2)[x —al2 + A4 @)
Ely =(Wb/L)(x3/6) - (W/[6)[x —a]® + Ax + B (ii)
At x=0, y=0, .. B=0
Atx=L,y=0, AL = — (Wb/LYL3/6) +(W[6)b3

giving A= - (Wb/6L)(L? - b)

dy/dx =0 at a value of x given by
(Wb/L)(x2[2) - (Wb/6L)YL? —b?) =0, from (i), omitting [x - a]
since x<a for zero slope when a>b.
This gives x =+/[(L? — b2)/3] at the point of maximum deflection.
Substituting in (ii) to find the value of the maximum deflection:
Wb (L2 -5 Wb (L2 -b)32

Ely=T"6x3v3 6L 3
. Wh(L? - b2)¥2
giving Y=~ T93.EIL
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Distance of point of maximum deflection from centre

=4/[(L? -b?)/3]1-L/2
which has a maximum value of L/+/3 - L/2, or approximately L/13.

ExaMpLE 6. A simply supported
beam of span 20 m carries two Y| 4kN 10kN
concentrated loads 4 kN at 8 m 0 <—8m—><-4% X
and 10 BN at 12 m from one end. 20m

Calculate (@) the deflection under ., x >
each load, (b) the maximum deflec-

tion. E=200,000 Nimm2; I= Fig. 9.9
109mm?A.
10 x8 .
Reaction at O =4—x—1—2—;7—x- =6-4 kN, Fig. 9.9
EI.d&%y[dx2 =M

=6-4x —4[x - 8] —10[» - 12]
Integrating  EIl.dy[dx=3-2x* - 2[x ~8]* -5[x - 122 +4
Integrating again
Ely=(3-2/3)x3 -%[x -8 -$[x ~-12) +4Ax +B
When x=0, y =0, .. B=0
When x =20, y=0
=(3-2/3) x203 —% x123 -§ x 83 +204
giving = —(3-2/3) x400 +(2 x 1728)/60 + (5 x 512)/60
= —326-5 kNm?2
(a) Under the 4 kN load, x =8 m, and
Ely =(3-2/3) x 83 —326-5 x 8 = — 2066 kN-m?
2066 x 103 x 109
~7200,000 x 10°
Under the 10 kN load, x =12 m, and
Ely=(3-2/3) x123 —% x43 - 326-5 x 12 = - 2118 kN-m3
2118 x 103 x 109
200,000 x 109

Deflection y = =10-3 mm downwards

Deflection y = - =106 mm downwards
(b) The mazimum deflection can be judged to lie between th.e loads,
and, omitting the term in [x — 12], the following equation is obtained for

zero slope:
: 3252 —2(x —8)2 —326:5=0

ie. 1:242 +32% — 454-5 =0
. ~32 + /(322 +4 x 12 x454:5)
giving *= 2x12

=103 m

(Note that this does lie within the section assumed.)
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Maximum deflection =

05"9/3) x 1033 - 3 x 233 - 3265 x 10-3)1012
200,000 x 10°

2203 x1012

~ 200,000 x 10°

=11 mm

EXampLE 7. 4 cantilever 4 m long is supported at the free end by a prop,
at the same level as the fixed end,

94.

v 5000kg A uniformly distributed load of
<—1m—>¢<—1m%1|<—7m——>{ 6000 kg/m is carried along the
o, X middle half of the beam, together

4m A with a central concentrated load -
P of 5000 kg. Determine the load
Fig. 9.10 on the prop and the maximum

bending moment.
Let P be the load on the prop.

"Taking the origin at the prop ’ '

EI-d%/dx? = Px - 6000[x — 1]2/2 +6060[x -3]2/2 - 5000[x — 2]
EI-dy/dx =Px?[2 —1000[x ~1]3 + 1000[x — 3]3 - 2500[x — 212+ 4
Ely =Px3/6 - 250[x ~1]* +250[x - 3]* — 2500[x ~ 2]3/3 + Ax -+ B

When x=4m, -
dy/dx =0 =8P — 27,000 -+ 1000 - 10,000 + 4

ie. A =36,000 -8P @)
also y=0=10-67P - 26,670 +-44 + B
From (i) B=-10-67P +26,670 -4 x 36,000 +4 x 8P
=22-23P-117,330 (i)
When x =0, y =0, B=0
giving P =117,330/22-33 from (ii)
=5250 kg

A point of maximum bending moment occurs at a value of x giving
zero shear force (Para. 5.5), which will be in the distributed load such
that the downward load equals the load on the prop, i.e. at

x=1+5250/6000
=1-875 m from the prop
M =5250 x1-875 - 6000 (1-875 —1)2/2
=7550 kg m
Check against the value at the built-in end
M =5250 x4 ~3000(4 - 1)2 +3000(4 - 3)2 - 5000(4 - 2)
=13,000 kgm
The greatest bending moment is therefore 13,000 kgm

where

ExampLE 8. A horizontal beam, simply supported at its ends, carries a
load which varies uniformly from 1000 kg/m at one end to 5000 kg/m at the
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other. Estimate the central deflection if the span is 10 m, the section 0-4 m

deep, and the maximum bending stress 90 Njmm? E =205,000 N/mm?2.

Divide the loading diagram (Fig. 9.11) into a uniform rate of 1000 kg/m
together with a varying load
(from 0O to 4000 kg/m), which has

a value 4000x/10=400x kg/m ¥ =N
at x m from the end. Let R be the /r/ 400 5000
reaction on the support at that 0003~ I—-—— o e {

1
end. oA * * 2 TX
Taking moments about the 1000 x 200x |
other end b4

10R = (1000 x 10) x 5 + (& x
4000 x 10) x 10/3

where the varying load has a total value given by the mean intensity times
the span, and acts at the centroid of the triangular figure

R=11,670 kg =114 kN

Repeating the same method to obtain an expression for the bending
moment at a distance x from the support

EI-d2y/dx? =114x - 9-81x2/2 — [$(3-92x)x]x/3
=114x — 4952 - 0-655x3 kNm
EI-dy/dx="57x2 ~1-63x3 —0-164x* + A4
EIy =19x3 - 0-408x% - 0-0327x° + Ax +B

Fig. 9.11

At x=0, y=0, B=0

At x=10m, y =0,
= —1900 +408 +327
= —1165 kNm?

The maximum bending moment occurs at zero shear force
d3y/dx3 =0 =114 - 9-81x — 1-96x2 from above,

or 1-96x2 +9-81x - 114 =0
-9-81 +4/(96:3 +894) _
giving x= 302 =554 m

M =114 x5-54 =49 x 5542 —~0+655 x 5-543 =362 kNm
Maximum stress 90 =M x (+ depth)/I
giving =362 x 106 x 200/90 =8-05 x 108 mm*
At the centre
EIy =19 x 53 —0-408 x 54 - 00327 x 55 -~ 1165 x5
= —3807 kNm?
3807 x 1012

_ —23
305,000 <805 <108~ %

giving y=
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Alternatively, the above problem may be commenced from the rate |

of loading equation
EI-d%/[dx*= ~9-81 —3:92x kN/m

integrating twice to obtain the bending moment equation, the constants |

of integration being found from M =0 at x=0 and x =10 m.

EXAMPLE 9. If the rate of loading on a beam of length 1, simply supported
at its ends, is given by w =p sin wx[l, where x is the distance from one end, find

the reactions at the supports and the maximum bending moment.
dF{dx= —w= —p sin (wx/l) (Para. 5.5)

F=(pl/m) cos (wx|l) + A @)
=dM/dx
M =(pl2{n?) sin (wx/l) + Ax + B (ii)

But M =0 at x =0 and at x =1,
B=0 and A4=0
Mazximum bending moment =pl2/7r2 from (ii)

Reaction at support =value of F at x =0
=plfx from (i).

R supported through pin joints at its
L__ ------------ A x ends, is acted upon by a couple M
0 s in a plane containing the axis of
l]t[ T R the beam, applied at a point two-

thirds of the span from one end.
Find an expression for the slope
and deflection at the point of
application, and indicate the shape
of the deflected beam.

The reactions must be equal
and opposite, i.e.

R=M/l
The bending moment diagram is shown in Fig. 9.12, giving
EI.d%y/dx? = - Rx + M[x - 21/3]°
El.dyfdx= — Rx?2[2 + M[x -2l/3] + A

Ely= —Rx3/6 + M/2[x - 2I/3]> + Ax + B
When =0, y=0 . B=0

Fig. 9.12

When x=1, y=0 Al=RB[6 — (M/[2)(1/3)?
giving A=Mi/9
At x=2]/3
EI.dyldx = — (R/2)(2l/3)?> + MI/9
= - M1/9
ie. slope = — MI/9EI, indicating downwards to the right
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Ely = - (R/6)2)3' ahffgfpIoospotin

i.e. Deflection =2M1I2/81EI, upwards
There must be a point of zero slope for x<2/3, given by
-Rx2[2+A4=0
ie. x=(~/2/3)]
The maximum deflection =[ — (M/61)(24/2/27)13 + (MI/9)(+/2/3)I]/E]
=24/2MI2/81E1
At x =1

slope =[ - (M/I)(12/2) + MI/3 + M1[9)/E1
= - MI/18EI
so that the beam lies entirely ¢ above ”” the OX axis, its shape being similar
to the dotted line in Fig. 9.12.

9.5. Moment-area Method. Fig. 9.13 shows the bending moment
diagram and the shape of the
deflected beam between two
chosen points P and Q.

The area of the B.M. diagram &
is A4, and its centroid is at 2
distance ¥ from a chosen line
OY. The tangents at P and Q to
the elastic line cut off an inter-

X
N

7]

cept 2 on OY. - "\Jg
d2y|dx?=M|EI
Integrating between P and Q
][ 5 %
delp J EI Fig. 9.13
If EI is constant
@\ _ ‘Q’) o (1)
ds) o \ax)p, EI

i.e. The increase of slope between any two points on a beam is. e?ual to the
net area of the bending moment diagram between those points divided by EI.
If R is the radius of curvature of the beam at some point between P
and Q, then the angle between the tangents at the ends of a short le:ngth
Sx is 8, where 8x = R.80. The intercept of these tangents on OY is 8z,
and since the slope is everywhere small,
dz=x80
=x8x/R = Mx8x|EI
z=[Mx.dx/EI

Integrating
= A%/EI if EI is constant 2)
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164 9.5, W=
i.é./ by }1é gtlt}grlcde%ttaso}kt)lg %?Bgrgllz]ne between the tangents to the beam at any §
points P and Q is equal to the net moment about that line of the bending
moment diagram between P and Q divided by EI.

Account is to be taken of positive and negative areas, and frequently
it is convenient to break down the bending moment diagram into a
number of simple figures, so that the moment is obtained from
ZAx.

The intercept z is positive when the tangent at Q strikes OY below
the tangent at P.

This method will only be used for particular applications in which it
produces a quicker solution than the mathematical treatment. Thesé7
cases can generally be labelled as those for which a point of zero slo
is known. If this point is chosen as “Q,” and OY is taken through }
P (Fig. 9.14), then (1) reduces to ‘

Slope at P= — A/EI o1

STRENGTH OF MATERIALS

and (2)
Deflection of P relative to Q= Ax/EI

i.e the deflection at any point can be

P Jound by working between there and a
Dpoint of zero slope, and taking moments
about the point where the deflection is
required.

@ It is very helpful in applying these
theorems to sketch the approximate
shape of the deflected beam, and then
by drawing the tangents at chosen
points it should be clear which intercept gives the relative deflection
(e.g. if OY is taken through Q in Fig. 9.14 the intercept does not give
the deflection).

Of—N— N

Fig. 9.14

Summarising the cases in which this method proves advantageous:
(a) most cantilever problems (zero slope at fixed end);

(b) symmetrically loaded simply sup- 2
ported beams (zero slope at
centre); A,
(c) Built-in beams (zero slope at each -
end) (Chapter X). | 4 Gy~—%y—]
For uniformly distributed loads the z Ty
B.M. diagram is a parabola, and the Gy
following properties of area and centroids Fig. 9.15

should be known.
In Fig. 9.15, bd is the surrounding rectangle, and the parabola is
tangential to the base,
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Then 41-«}%‘ gsp
aﬂd x1=§b
A,=3bd
and x,=%b

ExXAMPLE 11. Obtain expressions for the maximum slope and deﬂect?on of a
simply supported beam of span l (a) with a concentrated load W at mid-span
(b) with a uniformly distributed load w over the whole span.

In both cases, by symmetry, the slope is zero at the centre, and !‘.he
magimum slope and deflection can be found from the area of the bending
moment diagram over half the beam, i.e. “P” at support, “Q’’ at centre
(cf. Fig. 9.14).

(a) If 4 is the area of B.M. diagram for half the beam

A=3¥W14)(1/2) (Fig.9.16)
=WI2/16

Then from (1)

Slope at support = - A/EI

= - WI/16E1
From (2) )
Deflection of support relative to centre = Ax/EI
_We 13
T 16 'EI
=WDB/48E1
w
oz g7 . S
2 A 2 z
N S e ——
¥y %_5.1_,
21 8 2
<3z ” M \ y:a_l’
X Z
L
Fig. 9.16 Fig. 9.17
(b) Shaded area 4 =%(wl?/8)(l/2) (Fig. 9.17)
=wl3[24
Slope at support = — A/EI
= ~wB/24E1
Deflection of support relative to centre =Ax/EI
_ (P24 (7))
- EI
=Swl4/384E1
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Exampir 12. A4 horizontal cantilever ABC, 15 m long, is built inat 4 3

and supported at B, 12 m from A, by a rigid prop so that AB is horizontal.

If AB and BC carry uniformly

1kN/m distributed loads of 0-5 RN|m
o \ B 0-5 kN/m A and 1-0 EN/m respectively, find
(0/0.0] O
3 7 the load taken by the prop.
s
'(' P m 7 If the bending moment

diagram is broken down into
the areas shown in Fig. 9.18,
each area can be dealt with as
a triangle or parabola of stan-
dard type.

If P is the load on the prop
A =1 12P x12

72P

8m
Ay
!

Due to the load on BC, the
bending moment at B= -3 x
3/2=-9/2 kNm, and at A
-3x27/2=-81/2 kNm,
the trapezium between A and B being split up into two triangles
Ay=—-%x(9/2) x12= —27 kNm?

Az= -1 x(81/2) x12 x —243 kNm?2
Due to the load on AB, the area Ay is a parabola with a maximum value
of (0-5 x 122)/2, or 36 kNm, i.e.
Ay=1% %36 x12 =144 kNm?
Slope is zero at the built-in end A, and deflection is zero at B, i.e.
2=XA%/EI=0 (from (2))
for the portion AB about B, or

A% =A%y + A%y + Ayiiy

72P x8 =27 x4 +243 x8 +144 x9 .
P=93/16 =5-81 kN

Fig. 9.18

and

giving
from which

=72P kNm? T

Exampre 13. A horizontal
beam rests on two supports at the
same level and carries a uniformly

A M

distributed load. If the supports dw(l+d) I

are symmetrically placed find their

positions when the greatest down- w(l+d)

ward deflection has its least value. Az /
Let the distance between the 2

supports be 2/, and the over-
hanging distance d (Fig. 9.19).
Then the reaction at each support =w(l +d).

Fig. 9.19
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' either side of the roller will the strip

205,000 Njmm?.

9.5. DEFLECTION OF BEAMS ) 167
Visit : Civildatas.blogspot.in
The condition for the greatest downward deflection to have its least

value occurs when the deflections at the end and centre are the same,
since any variation of the supports from this position will increase either
one or other of these values. Since the slope is zero at the centre then
ZAx =0 for half the beam about one end.

Breaking down the bending moment diagram into 4; due to the
support, and 4, due to the load, then

Ayxy =A%z

(&.ow(l +d)l.0)(d + %) =[3(w/2)( +d)P( + )]} +d)
513 +-312d - 91d? - 3d3 =0
1=1-24d

i.e.
x24:
By trial and error:

ExampLE 14. A long steel strip of uniform width and 3 mm thick is laid
on a level floor, but passes over a 5 cm diameter roller lying on the floor at
one point. For what distance on

be clear of the ground and what will
be the maximum stress induced?
Density of steel =7950 kg/m3

7777

20N

For that part of the strip lying
on the floor, the ground reaction
just balances the weight, and,
since there is no change of slope,
there is no bending moment in
this length. However, where the
strip leaves the floor, there will be
a point reaction R, and the con-
ditions are as though the surplus length in contact with the floor were
cut off.

The forces and bending moment diagram are shown in Fig. 9.20, w
being the weight per inch length.

Since there is no change of slope between R and the top of the roller,
equating areas gives

R2

of?
2

Fig. 9.20

3RI.1=¥(wi2/2)]

ie. R=1ul (6))
By moment areas about the roller,
_1_(5’ P_wi2 .1.£) -5
EI\2'"'3 3x2 4
ie. 14=5EI x72[w from (i) (i)

5 x 205,000b x 33 x 72 x 106
=712 x3b x 7950 x 9-81
=73 x108 cm
s =164 cm
It should be noted that equation (ii) can be obtained by treating the

(bmm =width of strip)
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roller as a ‘fixed end and taking the difference between the ‘cantilever’
deflections due to R and w.

The maximum bending moment is at the roller, where
M =RI ~wl?|2
=wl2/6 numerically, from (i)

(there is a point of zero shearing force at /3 from R, but here M =
RI/3 — wi2[18 =wl2/18)

& =6M/bd?
_ 6 x3bx7950 x9-81 x 1642
107 x 6 x b x 32
=685 N/mm?

ExampLE 15. 4 cantilever of uniform strength is to be turned from a mild-
steel bar 50 mm diameter. A load of 4000 N is to be supported from the free
end, and the maximum stress is limited to 70 N/mm?2. Determine the maximum
length of the cantilever and its end deflection. E =205,000 N/mm2.

The maximum bending moment is 4000/, at the fixed end, and the
strongest section is 50 mm diameter. Applying the bending stress formula

(40001) x 25
(mr/64) x 504
=214 mm

70 =
from which

Let the diameter be d mm at x mm from the free end, then, applying the
condition for uniform strength (i.e. constant maximum stress)

4000x d
70 T 7dij642
or d3=583x

The I value is varying along the bar, but the deflection can be found by
the moment-area method, using the form 2 ={Mxdx/EI, = giving the end
deflection if moments are taken about the free end, i.e.

1
64(4000x)x. dx
205,000 x 7wd*4

a
64 J x? . d from above,

Deflection =J
0

T5125m(583)43 | x4
0
= 64 3
—_— e 513
STz x5 19
=0-296 mm

9.6. Method of Deflection Coefficients. It should be realised that
any beam of length / and flexural rigidity EI carrying a total load W,
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however distributed, will have a@ag%u%mqféeﬁmoﬁ'mvhe
value of k depending on the type of loading and supports.

k has been found for standard cases of cantilever and simply sup-
ported beam (Examples 4 and 11), and deflection in other cases may
frequently be built up by the principle of superposition (sce
Para. 1.5.)

Two types of problem will be solved by this method.

ExampLE 16. A beam of uniform section and length 21 is simply supported
at its ends and by an elastic prop at the centre. If the prop deflects an amount

o times the load it carries and the beam carries a total uniformly distributed

5W
load W show that the load carvied by the prop = g e -

Ifl=3m, I=6x10 mm*, W =50 kN, and « =4 x10=* mm/N, find the
position and value of the maximum bending moment. E =200,000 N/mm?2.
U.L.
( If I1 is the load on the prop, then its deflection is aP.
Downward deflection due to load only
=(5/384)[W(2D)3/EI] (see Ex. 11, part (b))
Upward deflection due to prop only
=P(21)3/48EI (Ex. 11, part (a))
By superposition, the net downward deflection
oP =(5/384)[W(20)3/EI] — P21} [48EI
from which P(a +B3/6EI) =(5/48)(WB/EI)
_ SWw
" 8(6EIn/B +1)
Substituting the numerical values gives
5 x 50,000
~8[(6 x 200,000 x 6 x 106 x 4 x 10-3)/30003 +1]
=15,000 N
The reaction at the end supports
=1(50,000 - 15,000) =17,500 N

and P

P

and for x<3m
M =17,500x — (50,000/6)(x2/2)
For a maximum dM/dx =0, giving
x=17,500 x 6/50,000 =21 m
and M =18,400 Nm

ExampLe 17. A horizontal steel beam, I —80 x 105 mm?, carries a uni-
formly distributed load of 50 kN over its length of 3 m. The beam is supported
by three vertical steel tie rods, each 2 m long, one at each end and one in the
middle, the end rods having diameters of 24 mm and the centre rod 30 mm.

Calculate the deflection at the centre of the beam below the end points and
the stress in each tie rod. E =208,000 Njmm2. (U.L.)
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IeStItP EIW gg%ﬁes | 0';89?8(% 'lencentre rod (Fig. 9.21).
Then by superposition the following compatibility equation is obtained
Stretch of centre rod - Stretch of end rod
=Deflection of beam due to load — Deflection due to centre rod

ie. P x2000 (50-P)x2000 5 x50 x30003 P x 30003

7 x152E  2(r x 129)E T384E x80 x 105 48E x 80 x 106
or 2-83P-111 +2-22P =219 - 7-05P
giving P=330/12-1 =275 kN
27,500
T x152
. (50,000 - 27,500)
Stress in end rods = xi

L o7 77

Stress in centre rod = =39 N/mm?

=25 N/mm?

24mm I
dia. | 2m

50-p P | 50-P
2 oc 2
fe—15m 15m—>|
Fig. 9.21
Deflection of centre relative to ends
=Difference of stretches of tie rods
_ 39 x2000 —-25 x 2000
- 208,000
=0-135 mm

30mmdia.

9.7. Deflection due to Shear. It was shown in Chapter VII how a
shear stress was set up on transverse sections of a beam, and the accom-
panying shear strain will cause a distortion of the cross-section, and,
since the shear stress varies from zero at the extreme fibres to a maxi-
mum at the neutral axis, cross-
sections can no longer remain
plane after bending.

In fact the “warping” will be
of the form shown in Fig. 9.22,
the left-hand view being for
positive shear and the right-
hand for negative shear. These Fig. 9.22
strains are incompatible with
the theory of pure bending, but nevertheless a good approximation to
the deflection due to shear can be obtained by strain energy methods. It
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should also be noted that the shear distribution near to the application

of a concentrated load must differ considerably from that given by the
theory in Para. 7.1, since there can be no sudden change of shear strain
from one type to the other, as would be implied for a simply supported
beam with a central load.
Strain energy due to shear =(72/2)G x volume (Para. 2.5)
For the whole beam
U,=(1/2G)f[r?dA .dx 0y

where dA is an element of cross-section and dx an element of length.

The integration can only be performed for particular cross-sections
over which the variation of 7 is known, and rectangular and I-sections
will be dealt with below.

Rectangular Section

It was shown in Para. 7.2 that 7 =(6F/bd3)(d2/4 - y2) where y is the
distance from the neutral axis. d4 =bdy, then

412
1 36F2(d¢ dxy? |
bl - . f 1
U, ZGJ[J 36 (16 2 +y )bdy] dx from (1)

—d2
1 (36F2[dYy d%y3 95]%°
z*cf'ﬁ[fé ]
18 1 1 1
= |F2.2{_ ——+__].
defF (32 48+160) &
3 1
=—— | F2, 2
SdeJ‘oF d @
Cantilever with load W at free end.
F=w
3w
U’_S—de from (2)

But U, =4WS3,, where §, is the deflection due to shear

8, =6WI/5Gbd
Cantilever with uniformly distributed
Z l >|  load. The load wdx, on a length Sx at a
l distance » from the fixed end, treated
as a concentrated load, will produce a
< deflection due to shear = (6wdx. x)/5Gbd
* Ywlx at this point. For this load alone the
Fig. 9.23 distortion produced is indicated in
Fig. 9-23, being uniform shear force
over the length ¥ and zero over /-, hence the total deflection due
to shear for all the distributed load
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bwxdx
5Gbd |
=3wl2/5Gbd s

Simply supported beam with central load W.
F=1Wj2

!
_| 34
U,-«J\ SChd .dx from (2)
0

=3W2lj20Gbd

= %WSS

8, =3Wi/10Gbd
w | The _ “simplified” deflection is as
shown in the upper diagram of Fig. 9.24, ;

1% and since the shearing force is constant -
z z ! over each half this case is equivalent
| 2 z ' to a cantilever of length /j2 carrying an
w end load of W/2,
If the load is not centrally applied,
VVllg but divides the length into Z; and [,

2| then treating either section as a canti-

2 lever with an end load equal to the
reaction on that side

_6(WhLIhk

‘T 5Gbd
=6WI;1,/5Gbdl under the load (Fig. 9.24).

Simply supported beam with uni-
i 1 . ¥
G 5 l-x | formly distributed load. Due to a load
wox wdx only, at a distance x from one end
(x<<l/2), the deflection at the load
Fig. 9.25 = 6wdx(l— x)x/5Gbdl just proved.

By proportion, the deflection at the centre of the beam
6wdx(I-x) (12 .
Sde1~x. (l-_—x) (Fig. 9.25)

Then the total central deflection due to shear

1”2 ‘V.'
3wxdx -

=2 | X E |
5Gbd L

l‘—— i

Fig. 9.24

0

=3wl2/20Gbd
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Treating the shearing force as uniformly distributed over the web
area bd (see Para. 7.3), then 7= F/bd and [dA =bd.
U,=(1/2G)[(F?/b%d?)bd.dx from (1)
=([F2.dx)[2Gbd 3)

By similar methods to those employed for a rectangular section the
deflections due to shear may be obtained as follows:

Cantilever with end load, 8, = Wi/Gbd

Cantilever with distributed load, 8,=W1/2Gbd

Simply supported beam with central load, §, = Wl/4Gbd

Simply supported beam with distributed load, 8, = WI/8Gbd.

The strain energy method known as “Castigliano’s Theorem”
(Para. 11.4) may be used where a number of loads exist concurrently,
or to find the deflection due to a distributed load by imposing a con-
centrated load at the deflection point and later giving it a value zero
(i.e. 8, =(2U,[0P)p_o)-

Exampre 18. For a given cantilever of rectangular cross-section, length 1,
and depth d, show that, if 8; and 8, are the deflections due to shear and bend-
ing due to a concentrated load at the free end, 8,/8, =k (d/1)?, and find the
value of k for steel. E=205,000 N/mm?; G =80,000 N/mm?2.

Hence find the least value of l/d if the deflection due to shear is not to
exceed 1%, of the total.

It has been shown that
8,=6WI1/5Gbd
and 8y= WP /3ET 4| Fbd®
for a rectangular section.
8,18, =[6/(5 x DE/G)(d[1)> =k(d[)*
E=(3/10)(E/G) =(3/10)(205/80)
=077

where

If 5,/(5, +8)) =0-01
3,/6, =0-01/0-99
=0-77(d/D)? from above,
ie. Least value of I/d =+/(0-77 x 99)
: =87

Exampire 19. 4 250 mm by 150 mm R.S.¥. with web 10 mm, flanges
17-5 mm thick, acts as a horizontal cantilever 4 m long and carries a load of
2000 kg at 2 m from the end. Assuming the shear force is carried by the web
and is uniformly distributed, calculate the deflection at the end. E=200,000
Nimm?; G =78,000 N/mm?. (U.L.)

I=(150 x 2503 - 140 x 2153)/12 =785 x 106 mm+*
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Misith CivldRtae BIogsRakh Y (Para. 9.5), end deflection due to bending : ]

(3 x 2000 x 9-81 x 20002) 10,000

)373200,000 x 785 %106~ ° o4 mm  (Fig. 9.26)

Deflection due to shear at the

2000 kim load is given by
L Wi 2000 x9-81 x 2000
Gbd 78,000 x 10 x 215
0-234mm
M 103 m\ . But since the shearing force is zero
\ beyond the load this is also the

deflection due to shear at the free
end (see also Fig. 9.23).

Combined deflection at free end =8-34=0:234 +8:57 mm

Fig. 9.26

9.8. Deflection by Graphical Method. It was shown in Para. 5.10
how a “funicular polygon” could be used to perform a double integra-
tion of the load curve and produce the bending moment diagram, Since
d%y[dx?=M]EI it follows that a double integration of the bending
moment curve will produce the deflection curve.

k% %

M in__

- = ]

Fig. 9.27

If EI is constant, draw the B.M. diagram and divide into a number of
strips 8x (Fig. 9.27). Draw a vertical line to represent the areas Mdx and
join to a pole O, on the right of this line. Proceed in the normal way to
draw the funicular polygon, being a series of straight lines to be

smoothed out into a curve. The vertical ordinates on this diagram !
represent deflection, and it will usually be necessary to “shear’’ the &
diagram through an angle in order to produce a horizontal base (e.g. &

for a simply supported beam).
If the scales are 1 mm =s; Nm?2 “M&x” units, 1 mm =5, mm length,

and 1 mm =53 Nm3 “ EIy” units, then the distance A is given by s3/s;s, mm. 7 ‘
If then the deflection scale required is 1 mm =s, mm =5;/EI, h = EIs,[s157. |
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SUMMARY
Strain Energy U=/M2.dx[2E]l. Applications to deflection and
impact.
Deflection by Calculus EId2y/dx? =M. Macaulay’s method.

Moment-Area Method. Increase of slope =2A4/EI
Intercept 2 =2 Ax/EI -

Deflection Coefficients. Maximum slope =k,. Wi%/EI /
Maximum deflection =k,. WI3EI

k1 ka
1/2 1/3

W=wl E 1/6

g W
A S 1/16 1/48
T 1

W=wl

Beam and Loading

1/8

1/24 5/384

Deflection due to Shear. Strain energy method.
Graphical Method.

PROBLEMS

L A2
1. Prove that the strain energy of a beam is given by f EE—‘I'dx'
0
Strain energy may also be expressed in the form C.(¢2/E) x volume, where o
is the maximum stress. Find the value of C for a beam of square section simply
supported at the ends and carrying a uniformly distributed load. (U.L.) (4/45.)
2. A timber beam of rectangular section 8 cm deep and 5 cm wide was simply
supported at its ends over a span of 1 m. The following readings were taken from
a test in which the beam was loaded at the centre.
Load (kg) 0 250 500 750 1000 1250 1500 1750 1880
Deflection (mm) 0 19 38 56 75 96 120 150 Broke
Find the load which, falling from a height of 15 cm on to the middle of a
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similar beam, (1) would just not overstrain the beam, (2) would just cause
fracture. (U.L.)

3. Prove, by the method of resilience, that the deflection of a cantilever of
length [ due to a load W at its free end is WI3/3EL

‘What load falling through 25 mm on to the end of a cantilever 3 m long will
cause a maximum deflection of 12 mm? I =80 x 106 mm4; E =200,000 N/mm?2,

(353 kg.)

4. A horizontal steel beam of I-section rests on a rigid support at one end, the
other end being supported by a vertical steel rod 18 mm diameter whose upper
end is rigidly held in a support 2-5 m above the end of the beam. The beam is
200 mm by 100 mm for which =22 x 106mm#* and the distance between the
points of support is 3 m. A load of 200 kg falls on to the beam at mid-span from
a height of 18 mm. Determine the maximum stresses set up in the beam and
rod and find also the deflection at mid-span measured from the unloaded posi-
tion. E=207,000 N/mm2. (U.L.)

(125 N/mm?2; 67-5 N/mm?2 2:53 mm.)

5. A beam simply supported at its ends over an 8 m span is loaded with 40, 80,
and 120 kN at 2, 4, and 6 m respectively from one end. The maximum stress is
90 N/mm? and the beam is 300 mm deep. If £=203,000 N/mm? find the
maximum deflection and state where it occurs. (18.5 mm; 4.1 m.)

6. A girder 6 m long is supported at one end and at 1-5 m from the other end.
It carries a uniformly distributed load of 100 kN/m along its whole length and a
concentrated load of 60 kN at the overhanging end. Calculate the maximum
downward deflection and state where it occurs. EI=16+7 x 1012 N mm?2,

(16:8 mm} 2:0 m)

7. A beam of uniform section and 12 m span is freely supported at its ends
and carries a load varying from 30 kN/m at the left-hand end to 20 kN/m at the
right. Find the position and magnitude of the maximum deflection. I =20 x
108 mm4; E=208,000 N/mm?2 (6:03 m from right; 16 mm.)

8. A beam of uniform cross-section and flexural rigidity EI, length 3/ is
hinged at one end and rests on a support distant 2/ from the hinge. There is a
load W at the free end and a uniformly distributed load of total W spread over a
length between [ and 2/ from the hinge. Show that the deflection of the con-
centrated load is (13/16)(WI3/EI).

9. A horizontal propped cantilever of length L is securely fixed at one end and
freely supported at the other, and is subjected to a2 bending couple M in the
vertical plane applied about an axis 0-75L from the fixed end. Determine the end
fixing moment and the reaction at the prop.

Sketch the B.M. diagram. (U.L.) (13/32)M; (45/32)(M/L).)

10. An initially straight and horizontal cantilever of uniform section and
length L is rigidly built-in at one end and carries a uniformly distributed load of
intensity w for a distance L/2 measured from the built-in end. The second
moment of areais I and the modulus of elasticity E. Determine, in terms of w L
E and I, (2) an expression for the slope of the cantilever at the end of the load,
(b) the defiexion at the free end, (c) the force in a vertical prop which is to be
applied at the free end in order to restore this end to the same horizontal level as
the built-in end. (U.L.)

((a) wL3/48 EI, (b) 7wL4/384 EI, (c)7wL]128)
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11. A beam of constant cross-section 10 m long is freely supgo ed at its ends
and loaded with 10 kN at points 3 m from each end. Find the ratio of central
deflection to that under each load. (33/27.)

12. A beam 9 m long is symmetrically placed on two supports 6 m apart. The
loading is 16+5 kN/m between the supports and 20 kN at each end. What is the
central deflection and the slope at the supports? E =200,000 N/mm? in.; I=
175 x 106 mm4. (4-3 mm; 0-1°.)

13. A cantilever of length [ carries a total distributed load W and is propped at
a distance of 7! from the fixed end so that the load on the prop is W. Find the
ratio between the deflection at the free end of the propped cantilever and that at
the free end of an unpropped cantilever. Plot a curve of this ratio against # and
hence find the position of the prop when the end deflection is zero.

(1 —4n2 +4n3[3; 0-555.)

14. A horizontal cantilever 2 m long has its free end attached to a vertical tie
rod 3 m long and 300 mm? area, initially unstrained. Determine the load taken
by the tie rod and the deflection of the cantilever when a distributed load of
30 kN/m is applied to the outer 1 m of the beam I =6 x106mm4; E =205,000
N/mm? for both. (26 kN; 127 mm.)

15. A beam is simply supported on two supports a distance L apart, and over-
hangs each support by L/3. It carries a distributed load of W spread be.tween the
supports, and a load of W/4 at each end. If the deflection at the centre is equal to
that at the free ends, find the value of the second moment of area for the over-
hanging portions when that between the supports is I. (U.L.) ) ((32/27)1.)

16. A long flat strip of steel 50 mm wide and 3-2 mm thick is lying on a flat
horizontal plane. One end of the strip is now lifted 25 mm from the plane b.y a
vertical force applied at the end. The strip is so long that the other end remains
undisturbed. Calculate (a) the force required to lift the end, (b) the mazimum
stress in the steel. Take the weight of steel as 7800 kg/m3. E =205,000 N/mm2.
(U.L.) ((a) 6+7 N; (b) 21 N/mm?2.)

17. A circular steel pipe 450 mm bore and 6-4 mm thick is supported freely at
each end and at the centre over a span of 15 m. When the pipe is full of water the
central support sinks 12-5 mm below the ends. Find the load on each suPpon
and draw the B.M. diagram. Determine also the maximum bending stress in the
pipe. Steel =7800 kg/m3; E =208,000 N/mm?2; water =1000 kg/m3. (U.L.)

(13 kN centre; 11 kN; 24 N/mm?2.)

18. An aluminium cantilever of length 250 mm and rectangular cross-section
40 mm wide by 25 mm deep carries a concentrated load at its end. Show that
deflection will be underestimated by less than 1% if shear strains are neglected.
E =70,000 N/mm?; G =27,000 N/mm?2. (U.L.)

19. A cast-iron cantilever 0-6 m long consists of an I-section 150 mm deep by
100 mm wide, having flanges 50 mm deep and web 25 mm thick. If a load of
2000 kg is carried at the free end find the deflection due to shear. G =38,000
N/mm2. (U.L.) (0-25 mm.)

20. Determine the end deflection, in magnitude and direction, for the un-
symmetrical angle used as a cantilever in Ex. 14, Para. 6.12. E =208,000 N /@2.

(8y=18 mm. 38y=42mm. Total deflection 4-6 mm at 47° to the vertical.)
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CHAPTER X

Built-In and Continuous Beams

10.x. Moment-Area Method for Built-in Beams. A beam is said 3§
to be built-in or encastre when both its ends are rigidly fixed so that the 4
slope remains horizontal. Usually also the ends are at the same level, L |

It follows from the moment-area method (Para. 9.5) that, for a beam
of uniform section, since the change of slope from end to end and the

intercept 2 are both zero : :
4 0 )
and ZA%=0 2)

It will be found con- B
4 venient to show the bend-
ing moment diagram due |

to any loading such as Fig,

simply supported (Fig.

back to zero (Fig. 10.1(c)).

The area and end re-
actions obtained if freely
supported will be referred
to as the free moment
diagram and the free re-
actions, Ay, R; and R,
respectively.

The fixing moments at
the ends are M, and M,
\rMb and in order to maintain

equilibrium when M, and

M, are unequal, the re-

actions R =(M, — M,)/l are
introduced, being upwards at the left-hand end and downwards at
the right-hand end. Due to M,, M,, and R, the bending moment at a
distance % from the left-hand end

= —M,+Rx=—M,+[(M, - M,)/l]«.
178

Fig. 10.1

Visit : Civildatas.blogspot.in

M

10.1(a) asthe algebraicsum
of two parts, one due to the §
loads, treating the beam as |

10.1(b)), and the other due j
to the end moments intro-
duced to bring the slopes &
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This gives a straight line going from a value _(jﬁt at x-g- to — M, at

x=1, and hence the fixing moment diagram, A, (F1g 10.1(d)).

For downward loads, 4, is a positive area (sagging B.M.), and 4, a
negative area (hogging B.M.) consequently the equations (1) and (2)
reduce to

Ay=4, 0

and Ayxy =A%, (numerically) 2
i.c. Area of free moment diagram =

Area of fixing moment diagram

and Moments of areas of free and fixing diagrams are equal.

It may be necessary to break down the areas still further to obtain
convenient triangles and parabolas.
These two equations enable M, and M, to be found, and the total
reactions at the ends are
R,=R;+R
=Ry +(M,-M,)/!
and Ry=R,-
=Ry~ (M,-M,)/l

Finally, the combined bending moment diagram is shown in Fig.
10.1(e) as the algebraic sum of the two components.

ExampLr 1. Obtain expressions
for the maximum bending moment
and deflection of a beam of length |
and flexural rigidity EI, fixed hori-
zontally at both ends, carrying a
load W (a) concentrated at mid- wi
span, (b) uniformly distributed over A; %
the whole beam. A

(a) By symmetry M,=M,=M, 3
say (Fig. 10.2).

The free moment diagram is a wi
triangle with maximum ordinate &

Wi/4 (Chap. V). v_g_q/ \,'

Area A; =} W4l
Fig. 10.2

i
|
j

=Wi2/8
Area A; =Mi
Equating 4; = 4, from (1), gives
M=WI/8

The combined bending moment dlagram is therefore as shown in the
lower diagram, Fig. 10.2, and the maximum bending moment is W1/8,
Occurring at the end (hoggmg) and the centre (sagging).
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By taking moment-areas about one end for half the beam, the intercept !
gives the deflection, i.e.
5= BWY4A2)13. 12 - M(2)l/4
Er

B/192EI

(b) Free moment area
A =%(wl2/8)l =wil*/12 (Fig. 10.3)

o (properties of parabola, Para. 9.5).
YA 7 Fixing moment area
A, =M.
ﬂl.z Equating gives M =wi2/12
A 8 and this is the maximum bending
moment.
M Az Again, for half the beam, the
intercept about one end gives the
&l_z deflection, i.e. {
Zz /'%Q s [B@/8)A/2)18 .12 - MA2)l4 8
wis EI .
i w —wi*/384E1

Fig. 10.3

the same beam, the fixing moment at one end is given byJ

)
where p =rate of loading at adistance w

of x from the end considered. y a B
Apply the above result to find F %
the fixing moments when 1=20m e A Z

and p varies uniformly from zero at
one end to 20 kN /m at the other.

The free moment diagram is a
triangle of height Wab/l, and the
fixing moments are M, and M, pr| om0
(Fig. 10.4). ==

Equating areas

(M, + M) =X Wab/])
i.e. M,+M,=Wabjl (1)

Fig. 10.4

By moment-areas about the left-hand end, splitting each figure into , |

two triangles

(GM,.DII3 +(3M,. D213 =[3(Wab/Dal2a/3 + [{(Wab/D)bl(a +b/3)
i.e. (M, +2M)12[3 =2Wa3b/31 + (Wab?/l)(a +b/3)
or M, +2M, =(Wab/P)(2a? + 3ab +b2) 2)
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ExaMpLE 2. A beam of span | &
has its ends fixed horizontally at the same level and carries a load W ata 2
distance a from one end and b from the other. Deduce expressions for :‘;
the fixing moments at the ends. Hence show that, for a distributed load on &

pl-s , |
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Subtract (1), giving
=(Wab/I3)(2a2 + 3ab + b2 - I2)
=(Wab/B)(a? +ab), l=a+b
=(Wab/B)a(a +b)
=Wa?b/I2
From (1)
M, =Wab/l - Wa2b/I? = Wab?/I2
For a distributed load the fixing moment 8M, due to the load pdx on a
short length at a distance x from that end =pdx.x(l - x)?/I? from above.
Integrating for all the load

1
O J p(l - xPdx
12
0

p=xkN/m

20
2(20 ~ x)2
M =| ¥20-x¢
a J. 202 .dx
0

1
=300
=267 kNm

20 32
M.=J x—( O—x).dx
0

f (400x2 — 40x3 + x4)dx

Similarly 202

3 _ gt
400J‘ (2023 — x%)dx
=400 kNm

It will be seen from Examples 1 and 2 that for standard cases the
maximum bending moment occurs at one of the fixed ends. More
complicated loadings may be built up by superposition (see Example 3,
below), and it may be accepted in general that, for any combination
of downward loads the maximum bending moment is given
by the greater fixing moment.

ExampLE 3. A built-in beam of span 12 m carries a uniformly distributed
load of 10 EN/m over its whole length together with concentyated loads of
20 kN at 3 m and 30 kN at 8 m from one end. If the bending stress is limited
to 100 N}mm? calculate the section modulus required, and sketch the bending
moment diagram.

For each concentrated load M, =Wab2, M,=Wa?b/l? (Example 2),
and for the distributed load M =wi2/12 (Example 1).

By combination

total M, =(20 x 3 x 92)/122 + (30 x 8 x42)/122 +-10 x 122/12
—180 kNm
7+
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and M, =(20 x32%9)/122 +-(30 x 82 x4)/122 +10 x 122/12
=185 kNm

10.1, |

Maximum bending moment =185 kNm
=cZ

Section modulus Z =185 x 106/100
=1-85 x 106 mm3

In Fig. 10.5 the combined bending moment diagram has been built up
from its component parts, and the main values are shown.
The effects of complete
and perfect end fixing are to
20x3%9_7% reduce the maximum bend-
12 ing moment (and hence the
stress) and to reduce the
N deflection, as may be
30x8x4. 80 appreciated from the pre-
7 vious examples. In practice,
however, it is almost im-
possible to ensure no change
of slope at the ends, so that
usually the degree of fixing
is imperfect and indetermi-
nate. A rotation of the ends
proportional to the fixing
couples may be allowed for,
as occurs in Example 4, the
“stiffness” of the built-in
end being estimated em-
pirically. 1
A further disadvantage %
is the danger of “settle-
ment” of one end relative
to the other, which will |
cause an appreciable change ‘@
This will be illustrated in @&

F<3m

8m

2
122
10-2- =180

180 185

L\A

80 /

in the values of the fixing moments.
Example 5.

29 77

185

Fig. 10.5

ExaMPLE 4. 4 rung of a vertical ladder is in a horizontal plane and has the 4
form of three sides of a rectangle, the short sides of length b and the long side 3§
4b. The rung is made of steel of circular section and the short sides are securely : 7
built in to the vertical sides of the ladder. If a vertical load W is carried in the }§
middle of the long side, find the twisting moment on each of the short sides in ¥
terms of W and b. E=208,000 N/mm?; G =80,000 N/mm?2 (U.L.)

Let T be the twisting moment on each of the short sides; then this acts
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as a bending moment on each end of the long sides, and if § is the angle of
¢wist of the short sides it is also the angle of slope of the long side (see

Fig. 10.6).
T,‘\ w £ T For twisting a short side
(s%l\\d_% Ti¥=GO/b
6 ] - ;
< 45 or 0=Tb/G¥ (i)
Treating the long side as a
W centrally loaded beam with *“incom-
Zx4b plete” fixing moments T,
increase of slope from end to
7 T end =2YA[EI
Fig. 10.6 29 2}(W/4)4b x4b — T.4b
EI
or 0 =(Wh2 -2Tb)/EI (ii)

Equating (i) and (ii) and noting that ¥ =21
Tb/2GI =(Wb2 - 2Tb)/E1
T=2GWb/E -4GT/E
2(G/EYWb

“1+4G/E
(160/208)Wb

=1+320/408

=0-303Wb

from which

and rearranging

ExampLE 5. Find an expression for the change in fixing moments and end
reactions when one end of a built-in
beam of span l sinks an amount u
below the other, the ends remaining
horizontal.

If M is the change of fixing Z |
moment, it must be hogging at
one end and sagging at the other.
The change in end reactions R
must then be given by R=2M/l
for equilibrium.

The bending moment is shown
in Fig. 10.7, and

Fig. 10.7

u=2A%/EI about the left-hand end
=(<}M.l/2)%l -(GM.1Dl6

EI
=MR/6EI
=RPB/12EI since R=2M/l
or M =6EIu/l?
and R =12EIu/P
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Alternatively, treating as two cantilevers of length [/2 carrying end |

loads R,
_2.R(J2p
~ 3EI
=RB/12EI

and : M=R.l/2 as before.

10.2. Macaulay Method. When the bending moment diagram does _
not lend itself to simplification into convenient areas it may be quicker
to use the calculus method (Para. 9.4); it also has the advantage of
giving directly the fixing moments and end reactions, and enables the

maximum deflection to be found.

ExampLE 6. 4 beam of uniform section is built in at each end and has a :"

span of 20 m. It carries a uniformly distributed load of 8 kKN|m on the left-
hand half together with a 120 kN

Ma 120kN My load at 15 m from the left-hand end.
7 0m #5," . Find the end reactions and fixing
v ) T moments and the magnitude and posi-

x 7, tion of the maximum deflection.

Rg Ry E=200,000 Nimm?2; I =5 x 108 mm?
Fig. 10.8
M, and M,, the reactions R, and R, (Fig. 10.8).

Then EId?y/dx? = ~ M, + Rx — 8x2/2 + 8[x — 10]2/2 - 120[x — 15]
Integrating
EI.dyjdx = — Myx + R;x2/2 — 4x3[3 +4[x - 10]3/3 - 60[x —15]2+ 4

when x =0, dy/dx =0 S A=0
Integrating

Ely= — M2 + R;x3/6 — x4/3 +[x —10]4/3 =20[x —15]3 + B
when x=0, y=0 s, B=0

When x =20, dy/dx=0 and y =0, i.e.
-M,.20 +R,.202/2 —4 x203/3 +4 x103/3 - 60 x 52 =0

or 10R, — M, =542 @)
and - M,.202/2 + R,.203/6 —20%4/3 +104/3 —20 x 53 =0 ’
or (20/3)R, ~ M, =262 (ii)

Subtract (ii) from (i): (10/3)R, =280
giving R, =84 kN

From (i): M, =298 kNm
But R, + R,="Total downward load

=200 kN
R,=116 kKN
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Take the origin at the left-hand
end, and let the fixing moments be
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and — M, =value of B.M. at x=¥65it : Civildatas.blogspot.in
= —298 +84 x 20 — (8 x202)/2 +(8 x102)/2 -120 x5
= -420kNm

Since the concentrated load is greater than the total distributed load
and acts at an equal distance from the nearest end, it may be deduced that
zero slope occurs at a value of x between 10 and 15 m., i.e.

Eldy|dx= —298x +84x2/2 — 4x3/3 +4(x — 10)3/3 =0
or 2x2 +102x - 1333 =0

- 0
Solving . 102 +4/(1 ;400 +10,650)

=10m
Substituting this value in the deflection equation gives
Ely= —(298 x102)/2 + (84 x 103)/6 —10%/3
= —4230 kNm3

. Maximum deflection = (4230 x 1012)/(200,000 x 5 x 108)
=42-3 mm

10.3. Continuous Beams. When a beam is carried on more than two
supports it is said to be continuous. It is possible to employ an extension
of the moment-area method given in Para. 9.5 to obtain a relation be-
tween the bending moments at three points (usually supports).

In Fig. 10.9 the areas 4; and 4, are “free” bending moment areas,
treating the beam as simply supported over two separate spans 5y and L.
If the actual bending mo-
ments at these points are Mj,
M, and M, a “fixing”
moment diagram consisting
of two trapezia will be intro-
duced, the actual B.M. being
théalgebraicisum of the two
diagrams.

) In the lower figure the
__________ G Jer= T h s, elastic line of the deflected
3 N beam is shown, the deflec-

\
Z Y, I tions 8; and §, being relative
to the left-hand support and
Fig. 10.9 positive upwards. 6 is the

slope of the beam over the
centre support, and 2; and 2, the intercepts for /; and L.

Then 0=(zl +81)/ll =(2'2 +82—'81)/12
(slopes being everywhere small)
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ie. %= (Mih/2)(U)3) - (Mh/2)(2/3) | 8y
ELL A

ELlL I
(note that 2; is a negative intercept)
or Mlll/Il +2M2(11/II +lz/]2)+M3lz/Iz

=6(Ax1/Iyly + Ayx, [ Il) + 6E[S, /1 + (8, -8)/b] (1)
If Il = 12
Ml +2My(l + 1) + M1,
=6(Ay%1/ly + Apxy/ly) + 6EI[8, /] +(8; — 82)/b] (2

If the supports are at the same level
Ml +2My(1y + b) + Maly = 6(A %y /1 + Az /L)
and if the ends are simply supported (M; =M;=0)
Myl + 1) = 3(Ayxi/ly + Apxa[ L) (4)

Equation (1) is the most general form of the equation of three moments,

€

also called Clapeyron’s equation. The others are simplifications to meet
particular cases, (3) being the form in which it is most frequently

required.

Exampie 7. 4 beam AD, 20 m long, rests on supports at A, B, and C at
the same level. AB =8m; BC =10 m. The loading is 3000 kg/m throughout

and in addition a concentrated load of 5000 kg acts at the mid-point of AB %

and a load of 2000 kg acts at D. Draw the S.F. and B.M. diagrams.
M, =0.
M, =2000 % 2 +6000 x 1 =10,000 kg.m
Applying equation (3) to the spans ABC (Fig. 10.10).

2M;, x 18 +10,000 x 10

i (1 5000><88 A g3ooox82X8 xf+

IR AV 8 \3°7 8 8
2 3000 5
T 2 = 0
(3. 3 x 10 xlO)xlO] 6 x 209,00

M, =32,000 kg.m
B.M. at mid-point of AB
=5000 x 8/4 +30002/8 — M, /2
=18,000 kg.m
B.M. at mid-point of BC
=3000 x 102/8 - 1(M, -+ 10,000)
=16,500 kg.m
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To find the reactions at the supports, note that
M, =\~ R, x8+24,000 x4 +5000 x4 for AB
= 2R, %10 +36,000 x 6 +2000 x12 for BCD

R,=10,500 kg
and R, =20,800 kg
5000 K 2000kg
4 I 5 000k 5
1om —4‘ amfe-
I N 3000 x16* l
I 30%0x8 l 8
L\ v l
s #3 |
4—m E
355 | 17200
F ‘ 8000
10500 I [N\2o00
|
I 6500] ’
( ! : 12,800
I 18400 18500 18,500 [
Ml/;\ | 1650g |
, L
L } |
I 10,000
32,000
Fig. 10.10
Byldifference
R =60,000 + 5000 + 2000 - 10,500 — 20,800

=35,700 kg '
From the shear force diagram it can be seen that the maximum bending
moment occurs either at a distance of 4-27 m from C, where

M =20,800 x 4-27 — 3000 x 6:272/2 — 2000 x 627 =18,500 kg.m,
or at’a distance of 3-5m from A, where
M =10,500 x 3-5 - 3000 x 3-52/2 =18,400 kg.m
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10.3.]
The combined B.M. diagram
is shown in Fig. 10.10. =
ExampLe 8. A beam ABC of B
uniform cross-section rests on elastic &
ch supports at A4, B, and C, each §
[ support sinking by 1/100 mm per §
kN of load carried. If AB=10 m &

I and BC =8 m, and the loading is
12 kN/[m, find the reactions at the
supports and the maximum bending
moment. E=200,000 N/mm?2;
I=5x108 mm?4,
Applying the theorem of three
moments (equation (2)), and

188 STRENGTH OF MATERIALS
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4 12 kN/m B o
A
0om 8m

|
|
|
{

Fig. 10.11 noting that M,=M_,=0 (Fig.
10.11)
2
2M, x 18 =6[(§.12 210 x 10) x% +(§____12;‘82 x8) x%]
R,-Ry R-R] !
+6EI[100 %10 T 100 XS]IO—OO R
where 8; =(R, - R,))/100 mm
and 81 =8, =(R, - R;)/100 mm upwards
ie. M, =126 +0-00417 (4R, - 9R, + 5R.)
But M, =hogging B.M. at B @)
= -10R, +12.102/2
R, =60 - M,/10 (iD)
also M= -8R, +12.82/2
R, =48 - M,/8 (iii)
Hence R,=12 x18 ~ R, - R, =108 +9M,/40 iv) &
Substituting in (i) !
M, =126 +0-00417[240 — 2M,/5 — 972 — (81/40)M, +240 ~ (5/8)M,;]

=126 +0-00417[ — 492 - (122/40)MM,]

giving M,=124/1-013 =122 kNm
From (ii) R,= 47-8 kKN
From (iii) R.= 32-8kN
From (iv) R,=135-4 kN

Zero shear force occurs at 47-8/12 =4 m from A and at 32:8/12 =273 m
from C.

Maximum bending moment between A and B
=47-8 x4 -12.42/2 =95 kNm
Mazximum bending moment between B and C
=32-8 x2-73 -12.,2:732/2 =45 kNm
122 kNm is the maximum bending moment.
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Where the beam extends over more than three supports the

equation of three moments is to be applied to each group of three in
turn, In general, if there are n supports there will be #n—2 unknown
bending moments (excluding the ends), and #n—2 equations to solve
simultaneously.

10.4. Beams on Elastic Foundations. There are many problems in
which a beam is supported on a compressible foundation which exerts
a distributed reaction on the beam, of intensity proportional to the
compressibility. In some cases the foundation can exert upward forces
only, and the beam may, if sufficiently long, lose contact with the
foundation ; in others pressure may be exerted either way. Again, the
support may not be truly continuous (such as holding down a railway
line) but can be replaced by an equivalent distributed support.

If y is the upward deflection of the foundation at any point, the rate
of upward reaction is — &y, and by Para. 9.3

Eld*y[dx*= ~ Ry
or diyldxt = — 4oty 1)
where a4 =k[/4E]
A number of standard cases will now be considered.

(a) Long Beam Carrying Central Load W (Fig. 10.12 (a)).
Assuming that the foundation can exert upward forces only, let 21

Y
V4 14 J
(G) VoL /“‘//’
o X
Y w
@]
(b) 77 ; ¢ [ 77 X
W
Y
(¢) m%wm
X
w
Fig. 10.12

be the length of beam in contact with the foundation, and take the origin
O at the left-hand end.
7#
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\f‘ﬁlé 50 ﬁﬂ!)% os'al)oggg(%énwritten

y=A sin ax. sinh ax + B cos cx.sinh ax

+ C sin ax.cosh ox + D cos ax.cosh ax

Atx=0,y=0 .. D=0
and M =EId%y/dx?=0 S A=0
also F=Eld3y|dx3=0

giving

EI.2a3[B(—cos 0.cosh 0 —sin 0.sinh 0)

+ C( —sin 0.sinh 0 +cos 0.cosh 0)] =0
i.e. C=B
The equation is now reduced to

= B(cos ax.sinh ax +sin ax. cosh ax)

At x=], dy/dx=0
.. Bacosal.coshal=0

The least solution of this is al=4/2 which determines the length in
contact with the ground. The value of the constant B is obtained from
the condition that the shear force at the centre is W/2, since by sym-
metry it must be numerically the same on either side of the load and it
must change by an amount W on passing through the load. Hence

W2 = EIdy|dx3
— EI.463B sin al.sinh o
or B= - Wa/2k sinh }n '

The maximum deflection and bending moment are at the centre,
ax =mu/2,
y = —(Wa/2E) coth 4n
M = ElWe3/K) coth 3n
=(W/4c) coth 4=

(b) Short Beam Carrying Central Load W (Fig. 10.12 (b)).

If al<<m/2 in case (a), the beam will sink below the unstressed level
of the foundation at all points. Again taking the origin at the left-hand
end and the overall length of beam as 2/, the following conditions are
obtained for the constants of integration of the general solution of the
previous paragraph.

At x=0, d2y/dx2=0 . A=0
and d3y/dx3 =0 .. B=C
and

y =B(cos ax.sinh ox +sin ax. cosh ax) + D cos ax. cosh ax
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At x=1, dy/dx=0 giving
B.2 cos al.cosh al + D( —sin al.cosh «l + cos al.sinh of) =0

and Eld3yjdx3=W]2
giving
—B.2 sin al.sinh &l — D(sin . cosh al + cos «l.sinh al) = W/4Elx3
=Wuo/k
- Solving for B and D gives

B VE sin al. cosh al +cos al.sinh ol
T Tk sin 2al + sinh 2al

2Weo  cos al.cosh el
k  sin 2ol +sinh 20

and D= -

The complete solution for y is now known, the maximum deflection
and bending moment being under the load.

(c) Infinite Beam Carrying Load W (Fig. 10.12 (c)).

Assuming that the support can exert pressure either upwards or
downwards, and taking the Y axis through the load and the X axis
at the undeformed level, a solution of equation (1) can be written in
the form

y =€*(A sin ox + B cos ax) +e~**(C sin ax + D cos ax)

For the length to the right of W, since y—0 as x>0, A=B=0.

Atx=0, dy/dx=0 .. C=D
and Eld3y|dx3 = — W/2
giving = — W/8«3EIl = — Wo2R
and y= —(Wa/2k)e—"*(sin ax + cos ax)

The distance from the load at which y =0 is given by
sin al +cos al=0
the least solution being al=3x7/4

The maximum deflection and bending moment are at x=0,
y=— W2k
and M = EIWe3 [k = W/4e.
ExampLE 9. 4 steel railway track is supported on timber sleepers which

exert an equivalent load of 2800 N/m length of rail per mm deflection from
its unloaded position. For each rail I=12 %106 mm*, Z =16 x 10* mm3
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and E =205,000 N/mm?2. If a point load of 100 kN acts on each rail, find ‘

the length of rail over which the sleepers are depressed and the maximum
bending stress in the rail.

at =R[4EI

_ 2800

4 %103 x 205,000 x 12 x 106
giving a=0731 x10-3 mm-1

Each I:ail can be treated as an infinitely long beam, for which the length
over which downward deflection occurs is given by paragraph (c),

2l =37[2e
=37 x103/2 x0-731
=6440 mm =644 m

and M =W/4o

=100 x 103/4 x 0-731
=34,200 Nm

o :M/Z
=214 N/mm?

10.5. Portal Frames. Fig. 10.13 shows a portal frame ABCD, in
which the ends A and D are fixed vertically, and a distributed load w is
carried on BC.

wt?
8
¥
| |2,
w
M B &
(A | B = ¥ - h
! ¢ \
l =R \2,
i ] "
] ]
i : : -4
: 1 2L 1
1 “ Il
N/, "
] ) [
- A) 'D
2 2 Z AT
Fig. 10.13

If M; and M, are the bending moments at A and B, then the B.M.
diagrams for AB and BC are as shown. The joints at B and C being
rigid, the angle ¢ is the same for AB and BC.
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For AB: Intercept at B=0, i.e. bylsrlnomé\xllltlgggss 2@(9\?? % wara. 9.5)
(M +M)21.413 - M21.1=0

giving M, =M, (1)
é _& _ M2L.1- (M, + M;)21.21)3
a 2EIl
=M,l2E] (i1)
. _%_ [3(l2/8)1]1/2 — M,l.1j2
For BC: ) = Bl
3124 —
_wl /24EIM 22 (i)
Equating (it} and (iii) M, =wl2j24
and from (i) M, =wl2[48

The maximum bending moment occurs at the middle of BC, and
M =wl?(8 — wi2[24
=wl2[12

SUMMARY
Built-in Beams:
Area of fixing moments = Area of free moments (1).
Moment area of fixing diagram = Moment area of free diagram (2).
For single concentrated load: M, = Wab?/I2, M, = WaZb/I2.
Ifa=b=12, M=WI8, 6= WI3[/192EIL
For distributed load: M =wi2{12
& =wl4/384E1
Reactions: R, =Free reaction +(M, - M,)/!
R, = Free reaction — (M, - M,)/L.
Continuous Beams:
Ml +2My(L + L) + Maly = 6(A12, /L + Ay [ly) + 6EI[S, [l +
(81 - 8)/b]
Beams on Elastic Foundations—solution for point loads.
Stiff-jointed Frameworks—application of moment-area.

REFERENCES
BUTTERWORTH, S., Structural Analysis by Moment Distribution. Longmans. 1949.
Fisuer Cassie, W., Structural Analysis. Longmans, 1948.

PROBLEMS

1. A beam of 8 m span is built in horizontally at the ends and carries a dis-
tributed load of 16 kN/m in addition to a concentrated load of 60 kN at 3 m from
one end. Find the reactions and fixing moments and the position of the points of
contraflexure. (105, 83 kN; 1556, 127-5 kNm; 1-72, 6:13 m.)
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Vé'.SihibQM,' ﬂ%@lsalP k?sgélp&t, LBan 3 m, carries a load of 60 kN at 1 m from one ] ;

end. Find the fixing moments at the ends and the deflection of the load. E —
205,000 N/mm?2; I =8000 cm*.

loads of 80 kN and 40 kN at 2:25 m and 4-5 m respectively from the left-hand
end. Calculate the central deflection if 7 =5500 cm4 and E =204,000 N/mm?2,
(8:7 mm.)

4. A steel beam of 9 m span is built-in at both ends and carries two point loads
each of 90 kN at points 2-4 m from the ends of the beam. The middle 3 m has a
section of second moment of area 2+4 x 108 mm4 and the 3 m lengths at either
end have second moment of area 3-2 x 108 mm#4. Find the fixing moments at the
ends and calculate the central deflection. E =205,000 N/mm?2.

(Equate areas of M/EI diagrams for *fixing” and “free’”” moments.

M =164 kNm. Deflection =ZMz/EI for half beam about one end =63 mm.)

5. A horizontal steel bar 63-5 mm diameter is rigidly fixed at each end, the
fixings being 1-22 m apart. A rigid bracket is fixed to the middle of the bara
right angles to the axis and in the same horizontal plane. Determine the maxi-
mum radius arm of the bracket at which a vertical Joad of 1330 N can be sus-
pended if the deflection of the load is not to exceed 0-51 mm. E = 206,000 N/mm?;
G =79,000 N/mma2. (037 m.)

6. A beam of uniform section 9 m long is carried on three supports at the
same level, one at each end and one at 6 m from the left-hand end. A uniformly
distributed load of 16 kN/m is carried across the whole span, and a point load of
20 kN at 4-5 m from the end. Calculate the magnitude and position of the
maximum bending moment. (68 kNm at 2:6 m.)

7. A beam of length 2/ is continuous over two equal spans and carried on three

supports at the same level. If one span has moment of inertia I and supports a ]
uniformly distributed load of w, the other span has moment of inertia 2T and )

carries a central load of wl, show that the maximum bending moment is wl2[6.
8. A beam ABCD rests on four supports at the same level. AB =36 m,
BC =72 m, CD =4-8 m. There is a load of 40 kN at the centre of AB, a distri-
buted load of 16 kN/m along BC, and a load of 30 kN at the centre of CD. Deter-
mine the reactions at the supports and the maximum bending moment.
(10, 88, 80, 8 kIN; 72-5 kNm.)
9. A beam rests on three supports A, B, and C. A and C are rigid, but B com-
presses 0-0005 mm per kg of load carried. If AB=BC =45 m, what is the
deflection at B when the beam is loaded with 16 kN/m run? What is the maximum
bending moment and where does it occur? E =204,000 N/mm?2; I=9350 cm4.
(4-2 mm; 28-5 kNm, 1-85 m.)
10. A timber beam 15 cm wide by 10 c¢m deep, rests on compressible ground

which exerts an upward pressure of 7000 N/m2 per mm compression. It sup- -,

ports a load of 1000 kg at its mid-point. Compare the maximum bending stresses
when the beam is (a) 1-8 m long, (b) 3 m long. E =10,000 N/mm?2.
(¢=0:0012 mm~1, (a) 12-6 N/mm?2; (b) 9-3 N/mm?2.)
11." A rigid frame ABCD forms three sides of a rectangle and is hinged to the
ground at A and D. If AB=CD =//2 and BC =/ and two loads each W are
carried at //3 and 2//3 from B, show that the bending moment at B is wijé6.
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(26'7, 13-3 kNm; 0-362 mm,) #
3. A beam of 6 m span, fixed horizontally at the ends, supports concentrated
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CHAPTER XI

Bending of Curved Bars and Rigid
Frames

11.1. Stress in Bars of Small Initial Curvature. Where the rad.ius
of curvature is large compared with the dimensions qf the cross-section
the analysis of stress is similar to that for pure bepdmg (Para. 6.1).

Assume plane sections remain plane after bending.

Let R, be the initial (unstrained) radius of curvature of the neu'Eral
surface, and R the radius of curvature under the action of a pure bending
moment M (Fig. 11.1).

The strain in an element at a distance y
from the neutral axis

_ PQ'-PQ (R +3)(0 +86) - (Ry +y)0

PQ (Ry+y)8
_ R(6+80)— Ryf +y50
- (Ro+y)0
_ y88
(Ro+3)0
since R(f+80)=Ry0=Ilength along neutral Fig. 11.1
surface.

If y is neglected in comparison with Ry, and noting from R(8 +36) =
R¢f that 66 = [(Ro — R)/R]6,

then strain = (y/Ro)[(Ro - R)/R] =y(1/R ~1/Rq) ¢
Neglecting lateral stress, normal stress
o =E x strain

=Ey(1/R-1/Ry) from (1) 2

Total normal stress =0

e fo.dA=E(1/R-1/Rg)fydA=0 from (2),

which shows that the neutral axis passes through the centroid of the
section.
Moment of resistance M = foydA
=E(1/R~1/Ry)fy?.dA from (2)
=EI(1/R-1/Ry) (3)
195
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Combining equations (2) and (3)
o/y=M|I=E(1/R -1/R,)
Strain energy of a short length 8s (measured along the neutral sur-
face), under the action of bending moment M, is
8U =4 M50
~1M[(Ry -~ R)/R}0
=3MRy0(1/R - 1/Ry)
=4M8s. M/EI from (3)
=(M?2/2EI)bs 4
(See also Para. 9.1.)

Application to piston ring. Suppose it is
required to design a split ring so that its 7
outside surface will be circular in the
stressed and unstressed condition, and
that the radial pressure exerted is uniform.

If p is the uniform pressure on the out-

side, then the bending moment at B
(Fig. 11.2) is

n—0
M =J; (p.dRd¢$)R sin¢g approx.,

where d is the depth of the ring in the
axial direction.

Integrating
M=pR2d(1 +cos ) (5)
But M|I=E(1/R - 1/R)=constant for given conditions.
ie. P—%@ = constant
=24pR2[ty3 when 0=0, t=1¢,
giving tfto=+Y [(1 +cos 6)/2] (6)

the required variation of thickness.

Maximum bending stress at any section
=(M/I)(t/2) = (6pR?/t2)(1 +cos ) from (5)

=12pR2?t[ty3 from (6),
and has its greatest value at 8=0, i.e.
o=12pR2[t,? 7

1/R-1/Ry=0/Ey=24pR2[Ety3 from (7)
1/Ro=(1/R)[1 - 24pR3/ Ety?]
=(1/R)[1 - 20R/Et,)
which determines the initial radius when values for ¢y and o are assumed.
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11.2. Stresses in Bars of Large Initial Curvature. When the radius

of curvature is of the same order as the dimensions of the cross-section
it is no longer possible to neglect y in comparison with R, and it will be
found that the neutral axis does not pass through the centroid, and
stress is not proportional to distance from the neutral axis.
Referring to Fig. 11.1, and writing
o =E xstrain=E.QQ'/PQ
_ Ey.56 1
Ry 470 @
where y is the distance from the neutral axis as before, and R, the
initial radius of the neutral surface.
Total normal force on cross-section =0 for pure bending, i.e.
(0.da =20 244 _g
0 Ro +y
Moment of resistance M = foydA4
_Ed6 J' y2dA
0

)

Rty from (1) 3
[ [tk ~Ry] 4
Ry+y Ro+y
=[ydA - Rofy.dA[(Ro +)
=Ae-0 from (2),
where e is the distance between the neutral axis and the principal axis
through the centroid (e being positive for the neutral axis to be on the
same side of the centroid as the centre of curvature).
Substituting in equation (3) gives
M =(E86/0)Ae
=[o(Ry+y)/y]Ae from (1).
Rearranging o=My/Ae(Ry+Yy) 4)
In this equation y is positive measured outwards, a positive bending
moment being one which tends to increase the curvature.
The above derivation neglects lateral stresses and strains, but it can
be shown that allowance for these does not materially affect the results.

But

Rectangular Cross-section. Working from equation (2)

ydA
=0
f Ro+y

Let z=y — e=distance from centroid axis (Fig. 11.3),

also mean radius of curvature R, =R, +e

and dA=bdz
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Then ]. .bdz =0 from above,
R, +z
rdj2
.Ro Rm i.e. &%%j . dz = 0
T ! J ~df2 "
a rdj2 /2 p
2 £
dz~-(R, - =
#=(Rn—e) J R,+z
a Jv =df2 —dj2
2
< or  d-(R,-¢)logtm*¥2_g
5 l R,-djJ2
Fig. 113 o R —d/loglli,:'tjg )

As e is small compared with R, and 4, it is difficult to calculate with

sufficient accuracy from this expression, and an expansion of the log
term into a convergent series is of advantage,

Then
e=R, - d
™ 2[dJ2R, +%(d/2R,)3 +%(d/2R,)5 + .. .]

T 1+&(d@R,2) +;5(d4/R,,,4) g
=R, ~ R,[1 - 15(d?/R,?) +143(d*/R,*) - ¥'5(d¥/R,9). . .]
= (d?/R,)[ 1 + 1hs(d?/R,2)] (6)

ExampirE 1. 4 curved bar of square section, 3~cm sides and mean radius of

curvature 4% cm is initially unstressed. If a bending moment of 300 Nm is

applied to the bar tending to straighten it, find the stresses at the inner and
outer faces. (U.L.)

R,=45mm d=30mm
= O
=45 -30/log, 2 =1-72 mm
Ry=R, -e—4328 mm
M= -300 x 10> Nmm
o=My[Ae(Ry+y) (Eq. (4))

e=R, —d/log

At the inside face
y=-(d/2~¢)
= ~13-28 mm

o =[-300 x103 x ( —13-28)]/[900 x 1-72(43-28 —13-28)]
=86 N/mm? tension.
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11.2.
At the outside face

o=(-300x103
=545 N/mm?

BENDING OF CURVED BARS 199
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y=d/2 +e
=16-72 mm

x 16-72)/[900 x 1-72(43-28 +16-72)]
compression.

The actual stress distribution is shown in Fig. 11.4,

[«—86—>]
—

15mm

1-72 mm
15mm

=
k545

Fig . 11.4

Trapezium Cross-section. By moments
dy = [(B1 +2B,)/(B; +B,)|(D)3)

and dy=[(2B, + By)/(By + BI(D/3) (Fig. 11.5)
Putting 2=y —e and R,,= R, +e, equation (2) becomes
f 2te d4=0
R,+z
ie. A—-(R,—e)fdA|(R, +2)=0
4
Ry o )

\ =R~ (AR, 72)

dA=b.dz={B, + [(B, - B,)/D)(d, - 2)}dz

. f da__ fBz+[(Bl-B»/D]dz—[(Bl-Bz)/D]a e

R, +z
d2

Bz'i'B1 _Bz.d2+

R,+2

BI_BZ-RM_BI —-BZ(Rm-i-z)

= D

D D

.dz

—dy

={B; +[(B1 - By)/D)(Ry +d5)} log

R,+z

d
{B, +[(B, - B,)/D].d; + [(By - B,)/D] . Ry}log %_; _

- dl
[(B1 - By)/DY(d; +dy)

R, +d,
L -(By-B 8
R—q BB ®
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and since 4= [(B; + B,)/2].D, e can be evaluated from (7) and (8)
e=R_ - _L
" JdA[(Ry+2)

ExampLE 2. A crane hook whose horizontal cross-section is trapezoidal,
50 mm wide at the inside and 25 mm wide at the outside, thickness 50 mm,
carries a vertical load of 1000 kg whose line of action is 38 mm from the inside
edge of this section. The centre of curvature is 50 mm from the inside edge.
Calculate the maximum tensile and compressive stresses set up.

Referring to Fig. 11.5

dy =[(50 +2 x 25)/(50 +25)](50/3) =22-2 mm
dy =[(2 x50 +25)/(50 +25)}(50/3) =27-8 mm
R,=50+d;{=722 mm
[dA|(R,, + =) ={25 +[(50 ~25)/50](72-2 +27-8)} log, [(72-2 +27-8)/
(72-2 - 22:2)] - (50 - 25) from (8)
=75 log, 2 -25 =27 mm
A =[(50 +25)/2]50 =1875 mm?
e=72-2 -1875/27 =2-75 mm from (7)
Direct stress =Load/Area =1000 x 9-81/1875 =5-23 N/mm?2
Bending stress =My/Ae(Ry +y), Eq.(®)
=M(z +e)/Ae(R,, +2)
At the inside edge
2= —d;=-222mm
M = —1000 x 9-81(38 +dy)
= —59 x 104 Nmm (tending to decrease the curvature)
- 59 x 104( - 222 +2-75)
1875 x2-75(72-2 —22-2)
=44-5 N/mm? tensile
Combined stress =445 +5-23 =49-7 N/mm? tensile.
At the outside edge

Bending stress ==

2=dy=27-8 mm
—59 x 104(27-8 +2-75)
1875 x 2-75(72-2 +27-8)
= -34-9 N/mm?
Combined stress = — 349 +5-23
==29-7 N/mm?2 compressive.

Bending stress =

Circular Cross-section. Following the method already established
(see “Trapezium Cross-section”)

e=R_- 4
™ fdANR, +2)
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r
dA4 V(2 - 22)dz .
=21 X*__“ 7’7 (Fig.11.6
where J'Rm pd Rtz (Fig )

=27[R,—+/ (R,,,Z—:—'rz)] by calculus methods
Hence  e=Ry=7%/{2[Ry—/(Ru? 7]}
12 Ry ++/(Ry =77
T R~ (R =1)
= 3R, — V(R —17)]
= YRy~ Ry+ 3R(R2)+ $Ru(r* Ry + .. ]
= IR, (R + 2Ry + Hr¥[Rp) + ... ]
and o=My[Ae(Ry+y) as before.

Fig. 11.7

Fig. 11.6

11.3. Deflection of Curved Bars (Direct Method). If a length s qf
an initially curved beam is acted upon by a bending moment M, it
follows from (3), Para. 11.1, that M8s/EI=3s(1/R - 1/Ry).

But 85/R — 85/Ry is the change of angle subtended by 8_5 at the centre
of curvature, and consequently is the angle through which the tangent
at one end of the element rotates relative to the tangent at the other end,
ie.

8¢ =M3ds/EI (Fig. 11.7) 1)

Fig. 11.7 shows a loaded bar AB which is fixed in direction at A, and
it is required to find the deflection at the other end B. ]

Due to the action of M on 8s at C only, the length CB is rotated
through an angle 8¢ = Mds/EI. B moves to B’, where BB’ = CB.6¢.

The vertical deflection of B=BB’.cos §

=CB.cos 8.8¢

=x.8¢.
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The horizontal deflection of B=BB’.sin

=y.8¢.
Due to the bending of all the elements along AB
Vertical deflection at B = [x.d¢

=[Mxds/EI from (1) )
Horizontal deflection at B=[y.dg
= [Myds/EI (3)

It is interesting to compare this with the moment-area method for

deflection of initially straight beams, given in Para. 9.5.

The advantage of this method, as against that of the following
paragraph, is that the deflection can readily be found at any point and
in any direction, even when there is no load at that point.

EXAMPLE 3. A steel tube having outside diameter 5 cm, bore 3 cm, is bent
into a quadrant of 2 m radius. One end is rigidly attached to a horizontal base

Dplate to which a tangent to that end is perpendicular, and the free end supports
a load of 100 kg. Determine the vertical

under this load. E=208,000 N/mm?2.
(U.L)

I=(m[64)(54 - 34)
=(@/64)(25 - 9)(25 +9)
=26-7 cm*
x=2000 sin § mm (Fig. 11.8)
v =2000(1 —cos ) mm
M =100 x 9-81x Nmm
8s =200086 mm
Vertical deflection ={Mxds/EI (Eq. (3))

Fig. 11.8

/2
Y 981 x 20003 sin2 .40
= 208,000 x 26+7 x 104

0

/2
=141J 1 -cos 26 '2°°s 29 1

0
—141 xn/4
=110 mm
Horizontal deflection ={Myds/EI (Eq. (2))
981 x2000  [#12 .
7 208,000 x 267 x 1o4f , o 0(1 - cos 6)dd
=141[ - cos # +% cos 20177
=141 x%
=705 mm
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11.4. Deflection from Strain El\x/ésrléy %&L%gt%étgg%s%égrem).
Theorem: If U is the total strain energy of any structure due to the

application of external loads Wy, W, . . . at 01,0, . . . in the directions

0,X1, 02X, . . ., and to couples My, M, . . ., then the deflections at O,

0, . . . in the directions 01X, 0,X, . . . are 9U[oWy, 0U[oW, . . ., and

the angular rotations of the couples are dU[oM,, dU[oM, . . . at their

applied points.

Proof for concentrated loads. If the displacements (in the direction
of the loads) produced by gradually applied loads W1, W), W3 . . . are
%1, ¥3, X3 . . ., then

U=4Wx; +3Wox, + 3 Wins + . ... 1)

Let W, alone be increased by W, then

8U =increase in external work done
=(W; +8W[2)8x1 + Wydx, + Widxs + ...
where 8x,, dx,, dx; are the increases in ¥y, %, and #;.
= W18x1 + W28x2 + W38x3 +... (2)
neglecting the product $8W,8x;.

But if the loads W, +8W,;, W,, W . . . were applied gradually from
zero, the total strain energy

U+8U =4(Wy +8W,)(x, +8x7) + 3 Wy(%, +825) + 5 Ws(23 +0x3) + ... .

Subtracting (1), and neglecting products of small quantities

SU=3W,8x; +36W ) + 3 Wy, + 3 W3dxs + ... (3)

or 28U = W18x1 +8W1x1 + W25x2 + W38x3 +...
Subtract (2), then SU=56Wx,
and in the limit oU[oW =2,

Similarly for x, and 3, and the proof can be extended to incorporate
couples.

It is important to stress that U is the total strain energy, expressed
in terms of the loads and not including statically determinate reactions,
and that the partial derivative with respect to each load in turn (treating
the others as constant) gives the deflection at the load point in the
direction of the load.

The following principles should be observed in applying this

theorem:

(1) In finding the deflection of curved beams and similar problems,
only strain energy due to bending need normally be taken into account
(i.e. fM2.ds[2EI (4), Para. 11.1).

(2) Treat all the loads as “variables” initially, carry out the partial
differentiation and integration, putting in numerical values at the final
Stage.
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ection’is to be found at a point where, or in a direction ¥

iI.l which, there is no load, a load may be put in where required and
given a value zero in the final reckoning (i.e. x = (2 U/oW )y o).
Generally it will be found that the strain energy method requires less

thought in application than the direct method of Para. 11.3, it being

only necessary to obtain an expression for the bending moment; also
there is no difficulty over the question of sign, as the strain energy is
bound to be positive, and deflection is positive in the direction of the
load. The only disadvantage occurs when a case such as note (3) above
has to be dealt with, when the direct method of Para. 11.3 will probably
be shorter.

c —2-5a 7
o v : a7 EXAMPLE 4. Obtain an expression for
e iD K7 the vertical displacement at A of the
U’.ﬁt breadth beam shown in Fig. 11.9,
2 f‘_} /ﬁt E T_he bending moments in the various
E sections can be written as follows:
t‘\‘.” A AB, M =Wx, (at & from A)
B e al ] BC, M =Wa, constant
Yw CD, M=Wx’, (at x’ from D)
F lg. 11.9 74
DE, M =Wx", (at x” from D)
U=[M2.ds/2EI
a 2a a 1-5a
_ W2x2.dx + W2a2 . ds y. W2x2 dx’ W2x'2 dx
2E x3/12 2E x (2t)3/12 2E x13/12 i 2E x 3/12
0 0 0 0

=(6W?2/Et3)[a3/3 +2a3/8 +a3/3 +1-53a3/3]
=24-5W2a3[2E#
Displacement of load at A =8U/8W vertically
=24-5Wa3/E
An allowance could be made for the linear extension of the portion BC
=(W.2a)/(2t.E)

which is clearly negligible compared with the deflection due to bending.

EX{\MPLE 5. ._Fig. 11.10 shows a steel rod of 12 mm diameter with one end
fixed into a hovizontal table. The remainder of the vod is bent into the form of
three-quarters of a circle and the free end is constrained to move vertically.

f)etermine the vertical deflection for a load of 10 kg. E=208,000 N/mm?.
U.L) ’
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Let the vertical load be W, and the normal reaction due to the con-

straint be R.

Then M=R x150(1 —cos §) - W x 150 sin 8
85 =150560

U=[M2.ds2ET

)2
=(1503/2E1)f [R(1 —cos 0) — Wsin6]2.d0
0

Since there is no horizontal displacement,
oU/OR =0, i.e.

/2
J' 2[R(1 - cos 8) — W sin 0](1 - cos 6)d8 =0
0

32
or f [2R - 4R cos 8 + R(1 +cos 26) -
0

Fig. 11.10
2W sin 0 + W sin 26]d6 =0
i.e.
3R x(37/2) -4R x (- 1) +(R/2) x (0) +2W (0 - 1) - (W/2)( -1 -1)=0
1 . _w e
giving R_g,-,./2+4_0 55 kg =54N

Vertical displacement

=oU/eW
3m/2

=(1503/2EI)J 2[R(1 - cos 8) — W sin g} —sin 0)df
0

3n/2
=(1503/2E1)J. [ -2Rsin 8 + R sin 20 + W(1 - cos 26)]d0
0

=(1503/2ED[2R x( - 1) =(R/2)( -1 - 1) + W(3n/2) - (W/2) x (0)]
3-375 x 106 x 64 981 x 3rr

T2 x208,000 x7r x 124 T]

=3-65 mm

[—5-4+

ExaMPLE 6. If a ring of mean radius R is acted upon by equal and opposite
pulls P along a diameter, find expressions for the maximum bending moment
and the deflection along the line of P.

The bending moment cannot immediately be obtained in terms of P
and R, but, making use of the symmetry, let My be the bending moment
on cross-sections perpendicular to P (Fig. 11.11). There will also be a
normal pull of P/2 on these cross-sections.

At an angle 0

M =(PR/2)(1 - cos §) - M,
/2
[PR(1 - cos 8) —2M,)2

4x2ET Rdb

and U=4
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aU/oMy=(R/2ET) fo ”/22[PR(1 — cos f) ~2M)( -2)df

=rotation of M,

=0 by symmetry.
/2
fo (PR-PRcos 8 -
2My)df =0
ie. PR.w/2-PR-2M;y.7f2=0
giving My=PR( -1/m)
The maximum bending mo-
ment occurs when 8 =/2, and
Fig. 11.11 M=PR/2 - M,
=PR/w

The deflection of P
=oU/oP

—(R/2EI) L "ALPRA - cos 6) - 2M](1 ~ cos 6)RdD

/2
=(R2/2EI)f [2PR - 4PR cos 8 + PR(1 +cos 20) —4M{ +4M, cos 0]d8
0

=(R2[2ED)[PRw —4PR + PR(w/2) + (PR/2)(0) - 2Mm +4M]
=(PR3}2ED[m -4 +n/2 -7 +2 +2 - 4/7)

_PR3 n2-8

T4El @

11.5. Portal Frame by Strain Energy. In Para. 10.5 it was shown
how a framework with stiff joints could be analysed by a “direct”
method based on the moment-area equations. It is frequently simpler
to make use of Castigliano’s theorem to c
solve this type of problem, as the following
example will illustrate.

ExampLe 7. The framework shoun in
Fig. 11.12 is pin-jointed to the ground at A and
D and is loaded along AB with a distributed
load w. If the flexural rigidity EI is constant
throughout, obtain expressions for the reac-
tions at A and D.

Resolving vertically, the vertical com-
ponents of reaction, ¥, must be equal and
opposite at A and D, and by moments about A

V =wd?(2b D

.E.IQ g
<\
N

<

Fig. 11.12

Resolving horizontally
H;+H;=wd (ii)
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Bending moment along AB, at a distance x from A, is
M, =Hx —wx2/2
Bending moment along BC, at a distance ¥’ from B, is
M2 =Hld -V’ —Wd2/2
=H;d —wd?x’[2b ~wd?[2  from (i)
Bending moment along CD, at a distance x” from D, is
M. 3 =H 2 x
=(wd - Hy)x" from (ii)
Total strain energy due to bending

d b d
Mz2.dx | Mpz.dx | Ms?.dx”

U=|—2gr *| 281 | "2EI
° 0 0
But, since the supports are fixed in position

d b d o
J’ M, (0M,/oH )dx + J M,(8M,/oH )dx’ + J'o My(8M;/2H )dx" =0
0 o

d b ,
ie. f (Hyx - wx?/2) . dx +J‘ [H,d - (wd?/2b)x’ —wd?(2]d.dx’ +
o 0 "
f (wd - H)x'"(-x')dx" =0
o

H,d3/3 - wd*/8 + H1d% —wdb/4 — wd*b/2 - wd4/3 + H,d3/3 =0
giving H, =(wd/8)[(11d +18b)/(2d +3b)]
From (ii) H, =(wd/8)[(5d +6b)/(2d +3b)]

SUMMARY
Curvature Small: o/y = M/I=E(1/R-1/Ry).
Curvature Large: o =My/Ae(Ry+y).
e found from [ydA[(Ry+y)=0.
Vertical Deflection = {Mxds/EI.
Horizontal Deflection = [Myds/EL.

Castigliano: Displacement=9U/6W
Rotation =8U/oM.

PROBLEMS

1. A curved bar of rectangular section 38 mm wide by 50 mm deep and of
mean radius of curvature 100 mm is subjected to a bending moment of 1-5 kNm
tending to straighten the bar. Find the position of the neutral axis and t.he
magnitudes of the greatest bending stresses. Draw a diagram to show the varia-

tion of stress across the section. E =206,000 N/mm?2.
(e =2-1 mm; 115, 81 N/mm?2.)
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ar 5 cm diamefer, curved to a mean radius of 5 cm, is subjected to a |

bending moment of 760 Nm tending to open out the bend. Plot the stress dis-
tribution across the section. (e =3-32 mm; limiting stresses 101 N/mm?2 tension
at inside, 44 N/mm?2 compression at outside.)

3. A bar of diameter d is bent as shown. Prove that the stiffness

P 3nEd4/32
8 43 +6wRI2+24R2 +37R3
PA
]
7
1 [ 2

Py

If s=165 N/m, d =6 mm, R=36 mm, find I. E=206,000 N/mm2. (U.L.)
(175 mm.)

4. A steel ring of rectangular cross-section 7-5 mm wide by 5 mm thick has a
mean diameter of 300 mm. A narrow radial saw cut is made, and tangential
separating forces of 1 N each are applied at the cut in the plane of the ring. Find
the additional separation due to these forces. £ =206,000 N/mm?2. (2 mm.)
5. A proving ring is 250 mm mean diameter, 38 mm wide and 6:35 mm thick.
The maximum stress permitted is 55 N/mm?2. Find the load to cause this stress,
and the load to give a 1 mm deflection in the direction of loading. E =206,000
N/mm?2. (3500 N; 585 N.)
6. A chain link made of circular section has the dimensions shown. Prove that

if d, the diameter of the section, is assumed small compared with R, then the

mazximum bending moment occurs at the point of application of the load and is
equal to

2

If R =24 mm, d =6 mm, and [ =42 mm calculate the ratio of the maximum
tensile stress at the section where the load is applied to that at a section half way
along the straight portion. (U.L.) (2-89)

6. A portal frame is of height 2/ and width /, and is loaded with W at the centre
of the top member. Show that the maximum bending moment is 11 WI/56 if the
base is pin-jointed, and 3WI/16 if fixed into the ground.

111_2(1+2R)
l+7R
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Plastic Theory of Bending

12.1. Bending beyond the Yield Stress. In the elastic theory of
bending, as discussed in previous chapters, the method of design has
been to calculate the maximum stresses occurring, and to keep them
within the limits of working stresses in tension and compression, the
working stresses being obtained by dividing the yield (or ultimate)
stress by a factor of safety. However, mild-steel structures do not fail
as soon as the edge stress at any cross-section reaches the yield point,
and will continue to withstand the load as long as a central core of the
section remains in the elastic state,

In any particular loaded beam, if the load system were increased
gradually, yielding would first occur at the extreme fibres of the *‘ weak-
est” section (if the material exhibits a drop in stress at yield, the lower
yield stress is taken to apply—Para. 1.7). These fibres are then said to
be in the plastic state, and further increase in loading will bring about
a considerable increase in strain (and hence deflection) at that section
of the beam, with a redistribution of stress. With mild steel this increase
in strain can take place without the stress rising above the yield point
(i.e. strain hardening effects can be neglected, the plastic strain at yield
being of the order 10/20 times the elastic strain), so that the stress in
the plastic region may be assumed constant. When the whole cross-
section at any point in a structure becomes plastic, no further increase
in the moment of resistance is possible without excessive strain (equiva-
lent to an increase in curvature at that section) and a plastic hinge has
been developed. Depending on the type of structure (e.g. simply
supported beam, built-in beam, rigid frame, etc.) one or more plastic
hinges are required to cause complete collapse. The value of the load
to produce this state is called the collapse load, and the ratio collapse
load : working load is called the load factor. In plastic design this factor
is used to replace the normal factor of safety.

12.2. Assumptions in the Plastic Theory. The main aim is to
calculate the bending moment required to form a plastic hinge for any
particular cross-section, and to determine the distribution of bending
moment along the beam at the collapse load. To that end the following
assumptions are made:

(1) The material exhibits a marked yield, and can undergo consider-

209
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able strain at yield without further increase in stress. This limits applica- ‘3§
tion of the theory generally to mild steels, and as there is a drop in stress §
at yield the lower yield stress is used in calculations (see Para. 1.7), &
Fig. 12.1 shows the idealised stress- &

. strain diagram for such a material. :
upper yield o . .
Shress {__lower ield (2) The yield stress is the same in
: tension and compression.
| .
L plastic g (:”3) Transverse cross-sections  re-
elasHe main plane, so that strain is propor-
! } tional to the distance from the neutral
Steain axis, though in the plastic region stress
Fig. 12.1 will be constant, and not proportional

to strain.

(4) When a plastic hinge has developed at any cross-section the
moment of resistance at that point remains constant until collapse of
the whole structure takes place due to the formation of the required
number of further plastic hinges at other points.

12.3. Moment of Resistance at a Plastic Hinge. Fig. 12.2(a)shows
the variation of stress and strain in a symmetrical cross-section under
the working load, by the simple theory of bending, Para. 6.1 (o,, is the
maximum working stress). If the load is increased until yielding occurs

[+ 0y — —0, —
[ — % %
Strain Stress Strain Stress Straip Stress
“Working state Partially-plastic stafe Fully - plastic stake
(@) (&) ()
Fig. 12.2

in the extreme fibres the partially plastic state of Fig. 12.2(b) would

be obtained, where o, is the lower yield stress (note how the assumptions
of Para. 12.2 are applied). Further increase in load produces the fully J
plastic state of Fig. 12.2(c), in which the stress is assumed uniform and }

equal to o,. There will still be a very small elastic region around the
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neutral axis, as indicated in the diag/r!asrﬁ,' I:?IRI I 2% 2';9 %Sfoaiilsnon the
value of the moment of resistance is very small and will be neglected.

(a) Rectangular Section. If b is the width and d the depth, the total

loads above and below the neutral axis are (bd/2)o, each, acting at df4
from the neutral axis; hence the fully plastic moment

M, =(bd[2)c, x d[2
=(bd?/4)o, 4}
This compares with a working moment
M, =2f,=(6d2/6)o,, o)
from elastic theory (Z is the normal section modulus), and a moment
at first yield of
M, =(bd?/6), @)
The ratio M,/M, is called the shape factor S, since it depends only on
the shape of the cross-section, i.e. for a rectangular section, from (1)
and (3)
S=1-5 4
From (2) and (3),

M,/M, =00,
=normal factor of safety based on initial yield (5)

From (1) and (2),
M,=8x(0,/o,)xM,=8Zo, (6)
Note that equations (5) and (6) will apply to any section.

ExampLE 1. 4 steel bar of rectangular section 72 mm by 30 mm is used as a
simply supported beam on a span of 1-2 m and loaded at mid-span. If the
yield stress is 280 N/mm? and the long edges of the section are vertical, find
the load when yielding first occurs.

Assuming that a further increase in load causes yielding to spread inwards
towards the neutral axis, with the stress in the yielded part remaining at
280 Njmm?2, find the load required to cause yielding for a depth of 12 mm at
the top and bottom of the section at mid-span, and find the length of beam over
which yielding has occurred. (U.L.)

If W, is the load at first yield, then
M, =(bd?/6)o, from (3)
ie. W, x 300 = (30 x 722/6)280
giving W, =242 kN 16)

Under a higher load W, the central section of the beam is in a partially
Plastic state, the stress distribution being similar to Fig. 12.2(b), the outer
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mm on each side of the neutral axis being under constant stress of 280 ,
N/mm? with no drop of stress at yield. The moment of resistance cal. ]
culated from the stress diagram is :

M =(280 x 12 x 30)60 + (% x 280 x 24 x 30)32
=928 x 104 Nmm
=W x 300 since the end reactions are W/2

giving
W=31kN (ii)
At first yield the moment of resistance is W, x 03, i.e. 7-26 kNm from
(1), and if this occurs at a distance x from either end under a central load W
then :

TWx=7-26
i.e. x=0468 m from (ii)

The length of beam over which yielding occurs
=1-2-2x
=0-264 m

(b) I-section. The shape factor will vary slightly with the proportions of
flange to web, an average value being about 1-15, as illustrated by the
example below.

ExameLE 2. 4 300 mm by 125 mm 1-beam has flanges 13 mm thick and .
web 85 mm thick. Calculate the shape factor and the moment of resistance in
the fully plastic state. Take 0,=250 Nimm?2 and I, =85 x 106 mm?.

At first yield,
M, ={I/y)oy,
=(85 x106/150)250 =141 x 106 Nmm

In the fully plastic state the stress is equal to 250 N/mm?2 everywhere,
being tensile on one side and compressive on the other side of the neutral
axis. By moment of the stress x area products, dividing the web into two :
parts, :‘i;’

M, =(250 x 125 x 13)287 for the flanges i
+ (250 x 8-5 x 137)137 for the web

=156 x 106 Nmm =156 kNm

@)

"The shape factor
S =M,/M,
=1-11 from (i) and (ii)
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(c) Umymmetﬂcal Section. If A is the total area of cross-section,

then it is clear that for pure bendmg in the fully plastic state the
« neutral axis” must divide the area into equal halves. If the centroids

Fig. 12.3

of these halves are G; and G, (Fig. 12.3) at a distance y; +y, apart,
then

M, =(3o, )51 +2) 7)
But at first yield
M, =Zo, where Z is the section modulus
Hence M, /M, =A(y, +y2)/2Z (8)

=S by definition.

ExAMPLE 3. Find the shape factor for a 150 mm by 75 mm channel in pure
bending with the plane of bending perpendicular to the web of the channel.
The dimensions are shown in Fig. 12.4, and A =2300 mm?2 and Z =21,000
mm3,

150mn
6-25)mm
—14G2
P f_'Jz¥ —_Y |P
l [ 75mm
-  —95mm ql L
B |
Fig. 12.4

Let PP be the neutral axis under fully plastic conditions, then this
divides the total area equally. Assuming all corners are “‘square’’, then
2 %95 xh=150 x6:25 +2 x9-5(75 - h —6-25)
giving h =59 mm
84
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The centroids of the two areas on either side of PP are G and G, at E!

distances y; and y,, where

y1=h/2=29-5 mm

_ (150 x6-25)(16 —3-125) +(2 x9-5 x 9-75)4-875
150 x 625 +2 x9-5 x9-75
=11-8 mm
S=A(y1 +y)2Z

=2300 x41-3/2 x 21,000
=226

and V2

from (8),

12.4. Collapse Loads. Having determined the moments of resist-
ance at a plastic hinge for the section of beam being used, the next step
is to decide from the conditions at the supports how many such hinges
are required to cause collapse, and to find the corresponding load in
this condition. If there are a number of points of “local” maximum
bending moment along the beam (under working load conditions) it is
clear that the first plastic hinge will occur at the numerical maximum
point. If further plastic hinges are necessary for collapse, these will
occur at the next lower values chosen from the remaining local maxima.
When sufficient plastic hinges have been formed to convert the structure
into a “mechanism” (hinges to be considered as pin-joints), the state
of collapse has been reached. The principal cases for a single beam
will now be examined.

partially plastic
zone —

W

M Mo

Fig. 12.5

(_a) Simply Supported Beam. Let the load divide the length / in the
ratio a:b (Fig. 12.5). There is only one point of maximum B.M. (i.e.
Wab/l under the load), and the collapse condition will be reached when
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a plastic hinge is formed at this point. The B.M. is then M,, and hence
the collapse load is given by
W,=M,l/ab
= §x(0y/0,) x M,Jjab (1)
from Para. 12.3 (a), eqn. (6). ) .
But M, = Wab|l where W is the working load. Rearranging (1) gives
W, =S(o,lo)W
or Load factor = W, [W
=8(ay/ow) @
This is the simple result which will always be obtained when only
one plastic hinge is required for collapse. For a given material and work-
ing stress it is seen that the load factor is greater than the normal factor
of safety on elastic design (which considers failure to occur at first yield)
by the shape factor, and that a different load factor will be obtained for,
say, rectangular and I-sections, even under the same system of loading.

Alternatively, basing the design on a constant load factor, the working
stress may be varied to suit the particular section, e.g. from (2),

o, =So,/load factor (3)
=1-50,/load factor for rectangular section
=1-15 o,/load factor for I-section.
The results for distributed load and for a simple cantilever are also
as (2) and (3) above.
(b) Propped Cantilever. Consider the case of a cantilever carrying a

central load W and propped (to the same height as the fixed end) at
the free end (Fig. 12.6). It can be shown by the methods of Chap. IX

5) A .
/w
ﬂ/a /> }I (14
& WE
l%wz / !
P
|
MD
Fig. 12.6
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that the load on the prop under elastic conditions is (5/16)/¥ and the 3
B.M. diagram is shown immediately underneath. There are local}
maxima at the fixed end and under the load, and a gradual increase in ]
load will cause a plastic hinge to form first at the fixed end, the centra]
B.M. being somewhat less. However, due to the support at the free end,
a collapse condition will not be reached until a second plastic hinge
has formed under the load, i.e. the B.M.’s at the end and centre are
numerically M, and the distribution is as shown in the lower diagram,
Note that the shape of the B.M. diagram at collapse is 7ot similar to
that under working conditions, due to a redistribution of stress and
strain when a plastic hinge is formed, the value of M, being assumed
the same at each hinge by Para. 12.2 (4). If P is the load on the prop at
collapse, then equating the numerical value of B.M.’s at the end and
centre:

M, =W, x1/2—Pl=PlJ2 o

ie. P=w,/3
and M,=WJ]6 4)
The maximum bending moment under working conditions is :
M, =(3/16)W1 &)t
Hence W,=6M,l from (4)

=65(0,/0,)M,/l (para. 12.3 (6))
=(9/8)S(a,/c,)W from (5) (6)

Load factor
L=W,[W=(9/8)S(0,/a,)

i.e. an increase of 9:8 over the simply supported beam for the same
working stress conditions,

(c) Built-In Beam, Uniformly Distributed Load (Fig. 12.7). For
collapse, three plastic hinges must be formed, i.e. at each end and the
centre, for this loading. The B.M. diagram at collapse is then formed
by making the values equal to M, at these points. By symmetry the ° \
reactions at the ends are then /2, hence at the centre ‘
M, =(W,[2)([2) - (W]2)(}/4) - M, i

M,=W/i/16 U] ‘
M, =WI[12 from elastic theory (8
W,=16M,/l from (7)
=16S(0,/0, )M,
=(4/3)S(o,/o,)W from (8)
Load factor =(4/3)S(0,/a,)

giving

Hence

giving

Visit : Civildatas.blogspot.in

217

PLASTIC THEORY OF BENDING _
12.4 Visit : Civildatas.blogspot.in

j W= 7

7 ¢ /

Fig. 12.7

For all cases of built-in beams the collapse load is not aﬁ'ectet.i by
sinking of the supports or lack of rigidity of the fixed ends, provided
that the rigidity is sufficient to allow the fully plastic moment to develop.

ExampLE 4. A 300 mm by 125 mm 1-beam is carried over a span of 20m
the ends being rigidly built-in. Find the maximum point load which can be
carried at 8 m from one end, and the maximum working stress set up. Take a
load factor of 1-8 and o, =250 N/jmm?. Z =566 x10* mm? and S =111
(see Ex. 2).

Under elastic conditions the maximum B.M. is at the end nearer the
load, and by Ex. 2, Chap. 10,

M, =W x122 x 8/202
=(72/25)W @)
At collapse, hinges must be formed at each end and under the load

(Fig. 12.8) and it is clear that the collapse load W, is given by equating
the numerical B.M.’s, i.e.

W, x12 x8/20 - M, =M,

or W.=(5/12)M, (ii)
) 8m }W 12m 4
4
3
e,
i
M
WP
Fig. 12.8

Visit : Civildatas.blogspot.in


http://Civildatas.blogspot.in

TRENGTH OF MATERIALS 1241

218 . S
Visit : Civildatas.blogspot.in
Since load factor =1-8, working load
W=Ww./18
=(25/108)M, from (ii)
=(25/108).8Zo,
=(25/108)1-11 x 566 x 104 x 250/103
=36,000 N =36 kN
from (i) M, =(72/25)36 kNm
giving a working stress
oy=M,/Z
72 % 36,000 x 103
T 25 %566 x10°
=183 N/mm?

12.5. Combined Bending and Direct Stress. For a beam or column
su.b_]ec'ted to an axial stress as well as a bending moment, the neutral
axis will be displaced to one side of the centroid axis, the variations in -

working stress being shown in Fig. 201(a). An increase in load will 4
cause the stress to reach the yield point on one side first, and spread |

l" 0, [ B A
Wl _ ___ G
=
_ c| _ A Gul
Vo Lo
K J
F E
Working stresses. parfially plastic . fully plashic.

(@) (b) ()

Fig. 12.9

over the section to give the fully plastic state of Fig. 12.9(c). It is clear

that the displacement of the neutral axis in the plastic state is given by
% such that

2h x b x o, =axial load x load factor = PL 1)
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(where b is the width of the section near the centroid axis) and the plastic

moment of resistance

M, =that given by ABCDEF - that given by GHCDJK
SZo, — (bho)h
=8Zo, - P2L2[4bo, from (1) 2

Comparing this with equation (6) of Para. 12.3, it is seen that the
plastic moment is reduced by a term depending on the axial load, the
load factor, and the shape of the section. The permissible working
moment for a single plastic hinge is then obtained from M, by dividing
by the load factor L,

ie. M, =M,|L=SZo,/L - P2L|4ba, 3)

ExaMPLE 5. 4 300 mm by 125 mm I-beam has to withstand an axial
load of 100 kN. If a load factor of 1-8 is to be applied, determine the maxi-
mum. permissible bending moment. Web thickness =8-5 mm, Z =566 x
104 mm3, S =111 (see Ex. 2). Take oy =250 N/mm?.

At collapse, axial load =1-8 x 100 =180 kN, which requires a depth of
web =180 x103(8-5 x 6,) =84-8 mm. This will be spaced equally about
the centroid, i.e. 42:4 mm either side (% of eqn. (1)).

The reduction in M, is given by the product of half the axial load and
the distance between the centres of areas of each half load (i.e. GHCDJK
of Fig. 12.9). Giving

M,=SZo,-90 x103 x42-4
(check from eqn. (2)).
=111 x 566 x 104 x 250 - 90 x 103 x 42-4
=151 x 106 Nmm =151 kNm
Then M, =M,/1:8 =84 kNm,

Note that the reduction in M, in this case is only about 23%, whereas
on the elastic theory, with a working stress of 150 N/mm?, the permissible
bending stress

o, =150 - axial load/area of beam
=131-2 N/mm?2 (4 =5500 mm?2)
and the reduction in M, due to the existence of the axial load is
150 —131-2 x 100 o
— 0 1259,

ExampLE 6. A rectangular bar of mild steel, 72 mm by 48 mm in cross-
section, is subjected to an axial load applied eccentrically and cutting all
sections at a point mid-way between the 72 mm sides and 24 mm from a 48 mm
side. Calculate the maximum load which can be carried using a load factor of 2
and a vyield stress of 270 N|mm?2.
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Applying equation (3), §=1-5, Z=5bd?/6, 6,=270, L =2,b=48,d=72 &
giving :
M _1-5><48><722><270_ P2x2
v 6x2 4 x 48 x 270

=84 x 105 - P2/25,900
But M, =P x12 from the eccentricity,
P2/25900 +12P -84 x105=0

P=[-12 +4/(144 +1300)]12,950
=337,000 N =337 kN.

Hence
from which

The working stress is then
P[A + Pe/Z =337,000/48 x 72 + 337,000 x 12 x 6/48 x 722
=195 N/mm?2

Note that the neutral axis (zero stress) is at the 48 mm edge opposite
the load under elastic conditions with this eccentricity, but is at a distance
of 4(337,000 x 2)/48 x 270 =26 mm from the centre of the section under
fully plastic conditions (eqn. (1)).

12.6. Portal Frames—Collapse Loads. In a framework with rigid
joints, points of local maximum bending moment will occur at the
joints and under any applied load. At the collapse load some or all of
these points will become plastic hinges.

Consider a portal of height % and span / as shown in Fig. 12.10. Under
a central vertical load ¥ and a horizontal load H, plastic hinges may
form at any combination of the points ABCDE (if A and E are pin-

\
HB of >
£ o 5
] ® 16 0 3
Beam Collapse  Sway Collapse Combined Collapse
A E

Fig. 12.10

joints they will rotate under zero bending moment). A collapse condi-
tion is reached when sufficient hinges are formed to create a “ mechan-
ism”. The only three distinct forms of collapse mechanism are shown
as beam collapse (hinges at B, C and D), sway collapse (hinges at A,
B, D, and E) and combined collapse (hinges at A, C, D, and E). If one
link of the mechanism is given a rotation § (under the action of the
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plastic moment M), then the value\gf it d&é‘é‘%@iﬁ%&&%@ calcu-
Jated by the principle of virtual work, choosing the least load for all the
ossible mechanisms. Some standard cases will be considered below,
and to allow for different section beams, the plastic moments will be
indicated by M, for the stanchions AB and DE, and M,, for the b.eam
BD. At the corners B and D, the smaller plastic moment will be written
M,'.
(a) Hinged Base Portal.

(1) Vertical Load Only. The symmetrical beam collap§e will apply,
the joint rotations being § at B and D, and 26 at C. Neglecting the elastic
strain and assuming that the whole strain takes place under a constant
collapse load, the work done by the load is V.40 and the energy dissi-
pated in the plastic hinges is M,,26 +2M,0.

Equating, and dividing by 26

V=M, + M, (1)

(2) Horizontal Load Only. Sway collapse will apply here, with
rotations @ at B and D. Equating the work done by the load and at the
plastic hinges,

H.ho=2M,0
$HR =M, @

(3) Combined Loading. Generally, collapse will be by forming plastic
hinges at C and D, there being no rotation of the joint at B.
The work equation becomes

V.30 +H.h6=M,,.20 + M, .20
or 1Vl +3Hh=M,,+ M,/ 3)
It can be shown that, if the section is uniform throughout, §ollapse
will occur by sway when Hk>3V1, the collapse load being given by

(2). In no event can the beam collapse occur under combined loading,
by comparison of the corresponding sides of equations (1) and (3).

or

ExampLE 7. If, in Fig. 12.10, H =%V and h =}, obtain an expressio‘n for
the horizontal and vertical collapse loads when the plastic moment M, is the
same for beam and stanchions.

From equation (3)
Vi+3.3V .31=2M,

i.e. V =16M,/3]
Then H=1V
-8M,/31
ge
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\'ﬁsﬁfecgt\ﬂtlag%% Qg)(gi%)sog ncollapse are checked, it will be found that 1

higher collapse loads are required, and consequently the combined col-
lapse mechanism gives the least values.

The most economical sections for a given loading are calculated by
satisfying equations (2) and (3) simultaneously.

ExamrLE 8. A portal frame with hinged feet is 3 m high and 5 m wide and
carries a central vertical load of 50 kN together with a horizontal load at
beam height of 20 kN. Using a load factor of 2, determine the plastic moments
required.

Find the section moduli required, assuming a shape factor of 1-15 and a yield
stress 280 Njmm?2.

From (2),
M’ =1HP at collapse

=1x%x2x20x3
=60 kNm
From (2) and (3)
M, =4V1
=%x2x50x%x5
=125 kNm
The section moduli required are, for the stanchions
Z=M,'|So,
=60 x 106/1-15 x 280
=187 x 104 mm?3

and for the beam
Z =M,[So,

=39 x 104 mm3

(b) Fixed Base Portal.
(1) Vertical Load Only. The beam collapses in the same manner as
a hinge-based portal giving
Vi=M,,+ M, 4
(2) Horizontal Load Only. Sway collapse now requires the formation
of 4 hinges, and the work equation is

Hho=2M,0 +2M,0
i.e. 3Hh=M, +M,’ (5)
(3) Combined Loading. The combined collapse mechanism gives

V.30+H.h0=2M,.0+ M, .20 + M,,.20
or Vi+iHh=M, + M, +M,, (6)
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For economical design equation (X)'Sﬂ;ldcéi‘{ﬂg@% RIPY5HWHiBlld be

satisfied simultaneously.

ExampLE 9. For the same dimensions and loading as Example 8, determine
a suitable section if the base of the portal is fixed.
Again, if H and V are the collapse loads,
1Hh=60 and 2VI=125kNm
If (4) and (6) are to be satisfied
M, =60 kNm
and M, =65 kNm
Alternatively, if (5) and (6) are satisfied
M, =125 kNm
and M,,=30kNm (M, =M))
Choosing the first solution,
Z =M,/So,
=187 x 104 mm3 for the stanchions, and
20-2 x 104 mm3 for the beam.

SUMMARY

dF Collapse Load
e Fags = Working Load

Plastic Moment M,
Moment at First Yield M

Shape Factor=
M,=Zo,
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PROBLEMS

1. The figure shows the section of a beam which is subjected to a bending
moment of such magnitude that yielding occurs at the lower part of the web over
a depth of 2 cm. The yield stress of 280 N/mm?2 may be assumed constant over
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the yielded area, while over the remainder of the section the stress is proportional
to the distance from the neutral axis. Determine:
(a) the position of the neutral axis,
(b) the stress at the top of the section,
(c) the moment of resistance of the section. (U.L.)

; 50mm i
! 7-5mm
}
N A
80mm )
4 L3
4 20mm
4
| 7-5mpe—

(Note: for (a), equate the tensile and compressive forces on either side of
NA)

((a) =542 cm; (b) 210 N/mm?2; (c) 4350 Nm.)

2. Show that the shape factor for a circular cross-section bending about a
diameter is approximately 1-7.

3. A 15 cm by 7-5 cm I-beam is built-in at one end and propped at the same
level at the other. It carries a uniformly distributed load over the whole length.
Determine the load factor using values of oy =240 N/mm?2 and oy =150 N/mm?2
The web thickness is 5-75 mm flange thickness 9-4 mm, and I =820 cm4. (2:63).

4. Show that the plastic moment for a rectangular section beam carrying an
axial stress p is given by

oy2 — L2p2\ bd2
( Oy ) 4
where oy is the yield stress, L the load factor, and b and d the dimensions.

5. A portal frame of height % and span [ carries a central vertical load V¥ to-
gether with a horizontal load H at beam level. If My} is the plastic moment of the
section (uniform throughout) and VI=6HA, find expressions for the collapse
loads when the base is hinged or fixed in direction. (Hinged, ¥V =6Mp/l,
H =My/h. Fixed, V =8My/l, H=4Mp[3h.)

6. In Problem 5, if #=3 m and /=6 m, calculate the minimum plastic
moments required in the stanchions and beam for collapse loads of 150 kN
vertical and 50 kN horizontal.

(Hinged, Mp; =75, Mpp =225 kNm; Fixed, Mps =75, My, =150 kNm.)
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CHAPTER XIII
Springs

13.1. Close-coiled Helical Springs. In Fig. 13.1
D =mean coil diameter
d =wire diameter
n=number of coils

(a) Under axial load W. Since the angle of the helix is small the action
on any cross-section is approximately a pure y
torque=W.D/2, and the bending and shear %
effects may be neglected.

The wire is therefore being twisted like a shaft,
and if @ is the total angle of twist along the wire,
and x the deflection of W along the axis of the coils,
x=(D/2)8 approximately.

Applying the formula for torsion of shafts
(Para. 8.1), making the above substitutions and
also noting that /=mDn approx.,

W.D2_, ;. G.2%/D B
7d4(32 @Dn Fig. 13.1
or 8WD/td*=#/d=Gx[wtD*n (1)

The spring stiffness k= W/x = Gd*/8D%n
The strain energy U=4Wx
which, by substitution in terms of # from (1), can be reduced to
U =(#?/4G) x volume  (see also Para. 8.2).

(b) Under axial torque T. This will produce approximately a pure
bending moment of magnitude T at all cross-sections. The total strain
energy is therefore

T2l T2.7Dn
U=3B1™ TE xndiih
=32T2Dn|Ed4 2

(Para. 11.1)

But if T causes a rotation of one end of the spring through an angle ¢
about the axis, relative to the other end,
U=3T¢
225
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quating to (2) gives
. ¢=TIEI
=64TDn/Ed4
Maximum bending stress = Txdjz_32T
: wd4/64 md3

ExampLE 1. A4 close-coiled helical sprin :
i g has to absorb 50 Nm of e '
when compressed 5 cm. The coil diameter is eight times the wire diar{zetz:’.” ?} :

there are ten coils, estimate the di 1 ]
iameters of coil and wire an ¥
shear stress. G =85,000 N/mm?2. B

. U=iWx
Le. 50 x100=% x W x5
W =2000
D =8d; n=10. N

Substitute in
8WD/|nd* =Gx|mD?n
(8 x2000 x 84)/d* =(85,000 x 50)/[(84)2 x 10]

d=(8 x2000 x 8 x 64)/(85,000 x 5)
=193 mm
D =8d =154 mm
8WD/wd*=7[d from (1)
7=(8 x 2000 x 154 x 19-3)/(m x 19-34)
=108 N/mm?

from which

ExampLE 2. 4 close-coiled helical spring i ;
) ! ) : g is to have a stiffness of 900 N,
in compresszor;, with a maximum load of 45 N and a maximum sheafring strZ'sl
%'120 N, /mm : The ‘solid”’ length of the spring (i.e. coils touching) is 45 mm.
ind the wire diameter, mean coil radius, and number of coils. G=40,000

N/mm2. (U.L.)
Stiffness k=Gd*/8D3n
ie. 900 x 10-3 — $0:000 xd*
8D3n
or 4= i
M T &
) Maximum stress =8WD/nd? from (1)
i.e. 120 =(8 x 45 x D)/md3 1
or D=1-0543 (i) k
ie. Solid length =nd
ie. 45 =nd (iii)
Substitute from (ii) and (iii) in (i)
9 45
di=—2 _ (1. s
s (1095
giving d=3-22 mm
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ie. Mean coil radius =176 mm

From (iii) n=14

ExampLe 3.In a compound helical spring the inner spring is arranged with-
in and concentric with the outer one, but is 9 mm shorter. T he outer spring has
ten coils of mean diameter 24 mm, and the wire diameter is 3 mm. Find the
stiffness of the inner spring if an axial load of 1 50N causes the outer one to

compress 18 mm.
If the radial clearance between the springs is 1-5 mm find the wire diameter

of the inner-spring when it has eight coils. G=77,000 Nfmm2. (U.L.)
The load carried by the outer spring for 2 compression of 18 mm
=§7;7_;_°£g%1% x34 from (1)
=102 N
Hence the load carried by the inner spring =150 —-102=48 N, for a
compression of 18 -9 =9 mm.
Stiffness of inner spring =48/9 =5-33 N/mm

D=24-3-2x15-d=18-d

n=8.
. 77,000 x d*4
Stiffness 5-33 —m
or 226d4=(18 —d)3

Since d is small compared with 18, for a first approximation
d =[5850/226]t =2:26 mm

Second approximation
d =(15-743/226)% =2-05 mm

Final trial
d=(15-953/226)* =2-06 mm

ExampLE 4. A composite spring has two close-coiled helical springs con-
nected in series; each spring has twelve coils at a mean diameter of 25 mm.
Find the wire diameter in one if the other is 2:5 mm and the stiffness of the
composite spring is 700 Njm.

Estimate the greatest load that can be carried by the composite spring, and
the corresponding extension, for a maximum shearing stress of 180 Njmm?.
G =80,000 N/mm?, (U.L.)

For springs in series the load is common to both, and the total extension
is the sum of that for each, i.e.

x=x1+X2
or Wik=W/k,+W/k;
where % is the equivalent stiffness of the composite spring,
or 1/k=1/ky +1/k;
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103 8x253x12 8x253x12
Here —=
700 80,000 x 254 * 80,000 x d*
187_1 187
a* 07 254
=095
d=21 mm

Since W =nd37/8D, the limiting load will be found in the spring with 5

the smaller wire diameter, i.e.
7 x 213 x180
We—s2
=263 N
Total extension =Wk
=26-3/0-7
=37-5 mm

ExampLE 5. A4 close-coiled helical spring of circular section extends 1 em ,
when subjected to an axial load W, and there is an angular rotation of
1 radian when a torque T is independently applied about the axis. If D is the
mean coil diameter, show that T/W =D?(1 +v)/4, where v is Poisson’s ratio.

Determine Poisson’s ratio if D=3 cm, a load of 55 N extends the spring
54 cm, and a torque of 300 Nmm produces an angular rotation of 60°. (U.L.)

It has been shown that

W =Gd*x[8D3n ¢))
and ¢ =TIEI =64TDn/Ed*
Since here x=¢ =1, then
T/W =D2E/[8G

=D2(1 +v)/4 (Para. 4.3)
D=3 cm; T=300 x3/mr Nmm/radn.; W =55/54 N/cm
(90 x 5-4) /(7 x 55) =(32/4)(1 +»)
or v=216/557 -1
=0-255

13.2. Open-coiled Helical Springs. Let « be the angle of the helix,
then the length of wire /==Dn/cos «.

In Fig. 13.2, OX is the polar axis (axis of twisting) at any normal cross-
section, and is inclined at « to the horizontal OH. OY is the bending
axis, and is inclined at & to the verical OV. All the axes OX, OY, OH,
and OV are in the vertical plane which is tangential to the helix at O.

If now an axial load W and an axial torque T are applied to the spring,
the latter tending to increase the curvature, the actions at O are couples
WD]2 about OH and T about OV (effect of shearing force W may be
neglected).
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Resolving these couples about the axes OX and OY, the combined
twisting couple
=(WDj2)cosa+Tsina
and the combined bending
couple
=T cos o —(WD|2)sina
tending to increase the curva-

ture.
The total strain energy due to
bending and twisting

: WP cosoig
_[(WDj2)cosa+Tsina2l =~ 2" =G

—_——-

U 2G5 % Tcosot
[T cosa—(WD/Z) sin a]zl Tsino %—Dsl‘” o
2EI w
(Sl;mmary, Chapters VIII and Fig. 13.2
IX

By Castigliano’s theorem (Para. 11.4), the axial deflection x = oU/oW,
and the axial rotation ¢ =dU/9T. The generﬁ..l case may be derived fror;
the above expression, but usually the 19admg is either W only or
only, and the solution of these cases is given below.

(a) Axial load only.
%=(0U[oW )10 .
2[(WD/2) cos «)(D/2) cos a.1 + 2[ - (WD/2) sin ][ - (D/2) sin o]l
- 2GY 2E1
=(WD2lj4)(cos? o/ GF +sin? a/ET)
~(8WD3n/d* cos a)(cos? /G +2 sin? «/E)
(F=md*/32; I=md*/64)
¢= (0U[6T)rmg
2[(WD/2) cos a] sin oc.l+ 2[-(WD/2) sina] cos «.l
- 2G5 2ET
=(WDI/2) sin a.cos «(1/G¥ — 1/EI)
=(16WD?n sin a/d*)(1/G - 2/E)

(b) Axial torque only.

¢=(0U/0T)w-0
2ATsina)sina.l 2(T cosa) cosa.l
- 2G¥ 2E1

= TJ( sin2 a/G¥ + cos? a/ET)
=(32TDn/d* cos a)(sin2 &/G +2 cos? a/E)
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x= U W=0
2(T sin a)(D/2) cos .l  2(T cos a)[ - (D/2) sin &)l
= +
2Gy 2ET

=[(TD}2) sin «.cos a}(1/G¥ - 1/EI)
=(16TD2n sin «/d4)(1/G - 2/E)

an angle of 30° with a plane perpendicular to the axis of the coil. Find (a) the
throzugh with this load if free to rotate. E =208,000 Njmm?; G =83,000 N/
mm2.
(a) Axial extension
_8WD3n (cosza 2 sin? ot)

“dema\ ¢ TTE
_8x100 %1203 x 10 (cos? 30° 2 sin? 30°
~ 10%cos 30°  \ 83,000 7 208,000 )
800 x1728 x2
T 4/3x104
=183 mm

(b) Angle of rotation of free end

_16WDMsinaf1 2
¢_T

(0-0905 +0-024)

G E

16 x100 x 1202 x 10 sin 30°( 1 2
104 (83,000 _208,000)
_ 16 x 144 x 5
T104
=0-026 radian
=1-48°

(0-1205 + 0-098)

13.3. Leaf Springs. This type of spring is commonly used in carriages
such as cars, lorries, and railway wagons. It is made up of a number of
leaves of equal width and thickness, but varying length, placed in
Iaminations and loaded as a beam,

) There are two main types, the “semi-elliptic,” simply supported at
its ends and centrally loaded, and the “quarter-elliptic” or cantilever
type.

(1) Semi-elliptic type. In Fig. 13.3, let

I=the span (assumed constant)
b =width of leaves
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EXAMPLE' 6. An open-coiled helical spring is made having ten turns wound E 1
to a mean diameter of 120 mm. The wire diameter is 10 mm and the coils make |

axial extension with a load of 100 N, and (b) the angle the free end will turn i
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¢t = thickness of leaves
W = central load

y =rise of crown above level of ends

It is assumed for the development of a simplified theory that the
ends of each leaf—where it extends beyond its neighbour—are tapered
uniformly to a point; also, in order to complete the set, the shortest
leaf should be a diamond shape. Neither of these assumptions will be
realised in practice, in particular the main leaf requiring to be main-
tained at the full width where it is supported, but slight departures from
this design will not seriously affect the theory.

w w
2 z
- &
w L w i |
A A A 17
. N . Wa
<Kot - 7 .
Fig. 13.3 Fig.13.4

If the leaves are initially curved to circular arcs of the same radius
Ry, contact between the leaves will only take place at their ends, and
consequently any one leaf will be loaded as shown in Fig. 13.4. Over the
central portion both M and I are constant. Over the end portions both
M and I are proportional to the distance from the end. Consequently
for the whole leaf M/I is constant,

But MJEI=1/R-1/R, (Para.11.1)

and since R, is assumed constant, the radius of curvature R in the
strained state must be the same for all leaves, and contact continues
through the ends only.

Friction between the plates being neg-
lected, each leaf is free to slide over its
neighbour, and since they all maintain the
same radius of curvature they can be
imagined to be arranged side by side to
form a beam of constant depth and varying z
width, as shown in plan, Fig. 13.5. Fig. 13.5

As the bending moment for the equivalent T
section is directly proportional to the distance from either end, and
also varies uniformly, it can be seen that the spring is equivalent to a
beam of uniform strength (i.e. same maximum stress at all sections).
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The results can now be obtained by consideration of any convenient
section, and in the following analysis the central section will be used.
M= -WIi/4, tending to decrease the curvature
I=nbt3/12, n=number of leaves

By the geometry of a circle
Y(2ZR -y)=(l/2)(}/2)
and treating y as small compared with R, this gives
1/R=8y/I2
M|EI=1/R-1/R,
-wi4 8 (y=70)
Enbpi2~ Y 70
Deflection 8 =yo — y =3WI3/8nbt3E
'The load required to straighten the spring is called the *Proof
Load,” and is given by 8rnbf3Ey,/313.
The maximum bending stress
o=(M/I)2)
_(Wy4)(4/2)
nbt312
=3Wl/2nbt?
(2) Quarter-elliptic type. By a similar
argument, the equivalent plan section

nd varies in width from zero to #b at the fixed
end (Fig. 13.6), and the other values at this

Substituting in

end are
M= -Wl
Fig. 13.6 IRet’{12
1/R=2y[I2
By substitution in M|EI=1/R-1/R,

-wl 2
Eabiiz 0 70
§=y0—-y=6WI3nbE from above .
and o =(M/I)(t/2) = 6WI/nbs? b

ExameLe 7. A laminated steel spring, simply supported at the ends and
centrally loaded, with a span of 0-75 m, is required to carry a proof load of
750 kg, and the central deflection is not to exceed 50 mm; the bending stress
must not exceed 380 N[mm?2. Plates are available in muliples of 1 mm for
thickness and 4 mm for width. Determine suitable values for width, thickness,
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and number of plates, and calculate the radius to which the plates should be
formed. Assume width =12 x thickness. E =208,000 N, Jmm.

Deflection S =3W3/8nbt3E (‘“‘semi-elliptic’’)

3 x750 x9-81 x 7503

8n(121)t3 x 208,000
giving nt4 =9340 1)

Maximum stress ¢ =3W1I/2nbt2
3 x 750 x 9-81 x 7503

ie. 380 = > (120
giving nt3 =1810 )

Dividing (1) by (2)

ie. 50 =

t=9340/1810
=5-16, say 6 mm
b=12t=72 mm

From (2)
n=1810/63

=84, say 9 leaves
The actual deflection under the proof load of 750 kg
3 x 750 x9-81 x 7503
T8x9 x 72 x 63 x 208,000
=40 mm

Since the spring is now straight, the initial radius of curvature is given

b
v Ry=12/88

=7502/(8 x40)
=1750 mm =175 m

ExampLE 8. A laminated spring of the quarter-elliptic type, 0-6 m long, is
to provide a static deflection of 75 mm under an end load of 200 kg. If the %eaf
material is 60 mm wide and 6 mm thick, find the number of leaves required

and the maximum stress. )
From what height can the load be dropped on to the undeflected spring to

cause a maximum stress of 750 N/mm2? E =208,000 N/mm?. (U.L.)
S =6WPB/nbt3E  (*“‘quarter-elliptic”
6 x 200 x 9-81 x 6003
~ 7 % 60 x 63 x 208,000
n=12-6, say 13 leaves.
o =6WI[nbt?
6 x 200 x 9-81 x 600
T 13 %60 x 62
=252 N/mm?2

ie. 75
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e equivalent gradually applied load to cause a maximum stress of
750 N/mm?
200 % 9-81 x 750
=5 =5850 N
and the corresponding deflection
6 x 5850 x 6003
X =217 mm

~ 13 %60 x 63 x 208,000
Loss of P.E. =Gain of S.E.

ie. 200 x9-81(h +217) =% x 5850 x 217
giving h=323 -217
=106 mm

13.4. Flat Spiral Springs. This is the type of spring used in clock-
work mechanisms, and consists of a uniform thin strip wound into a
spiral in one plane, and pinned
at its outer end. The spring is
“wound up” by applying a
torque to a spindle attached to
the centre of the spiral.

Let T be the torque tending
to wind up the spring, and X
and Y the components of re-
action at the outer end of the
spring O (Fig. 13.7).

By moments about the
spindle axis

T=YR (1)
Fig. 13.7 where R is the maximum radius
of the spiral.

At. any point in the spring, defined by co-ordinates ¥ and y, the
bending moment = Yx — Xy tending to increase the curvature,
The strain energy

U=[(Yx - Xy)2ds/2EI
=[[(T/R)x — Xy]2ds/2EIl from (1)
Since O is a fixed point 8U/6X =0 (Para. 11.4) giving
X =(T/R)[xyds/[y2ds=0 by symmetry.
Then 0=0U/oT =(2T/R2)(x2ds[2EI
But [x2ds =(R?/4 + R2)] approximately, treating the spiral as a uni-
form “disc”.
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o - 195" T IRER RAPsPOLIn_ 2)

Strain energy =470
=1-25 T2/2EI from (2) 3)
Maximum bending moment =Y .2R at the left-hand edge
=2T from (1)
Maximum stress 6 =2T/Z
=12T/b? 4)
where b =width and ¢ =thickness of spring material.

ExampLE 9. A flat spiral spring is 6 mm wide, 0-25 mm thick, and 25m
long. Assuming the maximum stress of 800 N, [mm?2 to occur at the point of
greatest bending moment, calculate the torque, the work stored, and the num-
ber of turns to wind up the spring. E=208,000 N, Jmm2. (U.L.)

Maximum stress c =12T/bt2 from (4)
800 =12T7/(6 x 0-252)

T =25 Nmm

Angle of rotation §=1-25 TI/EI from (2)
_1:25 x25 x 2500 x 12
~7208,000 x 6 x 0253
=48 radians
=7-6 turns of the spindle.

Work stored in spring =370
=4 %25 x48 =600 Nmm

ie.
giving
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SUMMARY
Close-coiled Springs:
8WD/wd4=7/d = Gx/mD2n under axial load.
¢ = TYEI under axial torque.
Open-coiled Springs: x=(8WD3n/d* cos «)( cos? «/G +2 sin2 a/E)
under axial load.
Leaf Springs. Semi-elliptic:
S =3Wi3/8nbt3E
o =3Wi[2nbt2
Spiral Springs:
0=1.25 TI/EI
o =12T/bt2

Quarter-elliptic:
8 =6WDB/nbt3E
o =6Wlnbt2
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PROBLEMS

1. Determine the weight of a close-coiled helical spring to carry a load of i

5000 N with a deflection of 5 cm and a maximum shearing stress of 400 N/mm?2
If the number of active coils is eight, determine the wire diameter and mean coil
diameter. G =83,000 N/mm?2; p=7700 kg/m3. (2kg; 13:6 mm; 75 mm.,)
2. Close-coiled helical springs having 7 turns are made of round wire such
that the mean diameter of the coils D mm is ten times the wire diameter. Show
that the stiffness in N/mm for any such spring is (D/#) x constant, and deter-~
mine the constant when G =83,000 N/mma2.
Such a spring is required to support a load of 1000 N with an extension of
10 em and a maximum shear stress of 350 N/mm?2. Calculate (1) its weight,
(2) mean coil diameter, (3) number of turns. The material weighs 7700 kg/m3.
(1-04; 1-05 kg, 85'3 mm, 9.)
3. A close-coiled helical spring of circular section has a mean coil diameter of
76 mm. When subjected to an axial torque of 6:1 Nm there is an angular rotation
of 90°, and when an axial load of 265 N is applied the spring extends 125 mm.
Find Poisson’s ratio. (U.L.) (0-26.)
4. The spring load against which a valve is opened is provided by an inner
helical spring arranged within and concentric with an outer spring. The free
length of the inner spring is 6 mm longer than the outer. The outer spring has
twelve coils of mean diameter 25 mm, wire diameter 3 mm, and initial compres-
sion 5 mm when the valve is closed. Find the stiffness of the inner spring if the
greatest force required to open the valve 10 mm is 150 N.

If the radial clearance between the springs is 1-5 mm, find the wire diameter
of the inner spring if it has ten coils. G=80,000 N/mm?2. (4 N/mm; 2-1 mm.)
5. A composite spring has two close-coiled springs in series. Each spring has
a mean coil diameter eight times its wire diameter. One spring has twenty coils
of wire diameter 2-54 mm. Find the diameter of wire in the other spring if it has
fifteen coils and the stiffness of the composite spring is 1:26 N/mm. Find the
greatest axial load that can be applied, and the corresponding extension, for a
maximum shearing stress of 310 N/mm2. G=80,000 N/mm?2. (U.L.)
(2 mm; 60-5N; 48 mm)
6. Determine the maximum angle of helix for which the error in calculating
the extension of a helical spring under axial load by the “close-coiled”” formula
is less than 19%. (10° 20"))
7. In an open-coiled spring of ten coils the stresses due to bending and twist-
ing are 140 N/mm?2 and 150 N/mm?2 respectively when the spring is loaded
axially. Assuming the mean diameter of the coils to be eight times the wire
diameter, find the maximum permissible axial load and the wire diameter for 2
maximum extension of 18 mm. E =206,000 N/mm?2; G =76,000 N/mm2.
(125 N; 3-9 mm.)
8. An open-coiled spring carries an axial load W. Derive expressions for dis-
placement and angular twist of the free end.
Find the mean radius of an open-coiled spring of helix angle 30°, to give a
vertical displacement of 23 mm and an angular rotation of the load end of
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0-02 radians under an axial load of 35 N. The material available is steel rod 6 mm
diameter. E =200,000 N/mm?2; G =80,000 N/mm2. (U.L.) (105 mm.)

9. Prove than in an open-coiled helical spring, subjected to an axial load, the
value of the maximum shear stress is the same as in a close-coiled spring of the
same dimensions. )

An open-coiled helical spring made of steel rod 12-7 mm diameter has 10 coils
of mean diameter 76 mm and pitch 50 mm. If the axial load is 890 N, find the
deflection and maximum shear stress. E =206,000 N/mm?2; »=0-3. (U.L.)

(Combined bending and twisting, Para. 8.8.15-5 mm 84 N/mm?2.)

10. A carriage spring, centrally loaded and simply supported at its ends, has
ten steel plates each 50 mm wide by 6 mm thick. If the longest plate is 0-7 m,
find the initial radius of curvature if the maximum stress is 150 N/mm? and the
plates are finally straight. )

Neglecting loss of energy at impact, determine the height from which 20 kg
can be dropped centrally on to the spring without exceeding the stress of
150 N/mm?2. E =206,000 N/mm2. (415 m; 82 mm.)

11. A cantilever leaf spring of length 0-43 m has four leaves of thickness 9 mm.
If an end load of 2-5 kN causes a deflection of 36 mm find the width of the leaves.
E =200,000 N/mm?2. (51 mm.)

12. A leaf spring spans 1 m and is supported at each end. It carries two con-
centrated loads of 180 kg each at points 0-3 m from each end. It is made from
leaves 5 cm wide and 6+3 mm thick.

Design the number and length of the leaves in order that the maximum stress
in the material shall not exceed 280 N/mm?,

(6 leaves, lengths 50, 60, 70, 80, 90, and 100 cm.)

13. Obtain from first principles the expression for energy stored in a flat
spiral spring per unit volume in terms of maximum stress and E.

Hence find the length of a spring 25 mm wide by 0-5 mm thick to store 8 Nm .
of energy for a limiting stress of 800 N/mm?. Find also the torque required, and
the number of turns of the winding spindle to wind up the spring. E=
205,000 N/mm2. (U.L.) (562/96E; 4 m; 0-417 Nm 6-2.)

14. A flat spiral spring is made of steel 12-5 mm broad and 0-5 mm thick, 'fhe
length of spiral being 6 m. Determine (a) the maximum turning moment which
can be applied to the spindle if the stress is not to exceed 550 N/mmz2, and (b) the
number of turns then given to the spindle, and (c) the energy stored.

E =205,000 N/mm2, (0-143}]Nm; 6-4;72-88 Nm.)
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CHAPTER XIV

Struts

14.1. Definition. Any member of a structure which is in compression
may be called a strut, but the term is usually reserved for “long slender”
members which are liable to fail by buckling, as distinct from “short

columns” (Para. 6.6), which fail by compressive stress.

The resistance of any member to bending is determined by its flexural
rigidity EI, and I may be written as Ak2 (4 =cross-sectional area,
k=radius of gyration). For a given material, the load per unit area
which the member can withstand is therefore related to k. There will -

be two principal moments of inertia, and if the least of these is taken,

the ratio
length of member )
- - ie -
least radius of gyration k

is called the slenderness ratio. Its numerical value indicates whether the

member falls into the class of columns or struts.

Struts which fail by buckling, before the limiting compressive stress

is reached, can be analysed mathematically by the Euler theory, and

several standard cases will now be treated.

14.2. Pin-ended (hinged) Strut Axially loaded. The strut is
assumed to be initially straight, the end load being applied axially

through the centroid. The usual assumptions about the elasticity of the A;'J

material are made.

Y Z In Fig. 14.1 the strut is shown |
P 7 p deflected under an end load P,
- — x the origin O being taken at one

Fig. 14.1 end and the OX axis through the

centroids of the end sections.
Applying the equation of bending of beams
El.d%yjdx2=M (Para. 9.3)
= —Py
which can be written
dZyldx? +a2y=0 where o2=P/El
The solution is
y=4 sin ax + B cos ax
238
Visit : Civildatas.blogspot.in

14.2. sm{’/fsslt : Civildatas.blogspot.in

At x=0,y=0

s B=0
Atx=1ly=0

Asinal=0

Either 4 =0, in which case y =0 for all values of x and the strut will
not buckle, or sin al=0, which leaves 4 indeterminate. The least value
to satisfy sin al=0 is o/ =, corresponding to

o2 =72[I2=P[EI

From this is obtained the least value of P which will cause the strut
to buckle, and it is called the “Euler crippling load” P, From
above

P.=m2EI/PR

The value of I here is the least moment of inertia.

The interpretation of this analysis is that for all values of the load P,
other than those which make sin a/=0, the strut will remain perfectly
straight (y = 4 sin ax =0). For the particularvalue P, =#2EI/I2, sin al =0
and y=A sin wx/l. The strut is in a state of neutral equilibrium, and
theoretically any deflection which it is given will be maintained.
This is subject to the limitation that ! remains sensibly constant,
and in practice any slight increase in load at the critical value will
cause the deflection to increase appreciably until the material fails by
yielding.

It should be noted that deflection is not proportional to load, and this
applies to all strut problems; likewise it will be found that maximum
stress is ot proportional to load.

The higher solutions of sin a/=0 correspond to higher harmonics of
the deflected strut, and are of no practical importance.

ExampLE 1. 4 straight bar of alloy, 1 m long and 12-5 mm by 4-8 mm in
section, is mounted in a strut-testing machine and loaded axially until it
buckles. Assuming the Euler formula to apply, estimate the maximum central
deflection before the material attains its yield point of 280 N/mm?. E=
72,000. (U.L.)

There will be no deflection at all until the Euler load is reached, i.e.

load =m2EI/I2
2 x 72,000 x 12-5 x 4-83
= 10002 x 12

(using the smaller moments of inertia)
=82 N

Maximum bending moment occurs at centre, =P8 =823, where & is
the central deflection.
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aximum stress is the sum of direct and bending stresses at the centre

(Para. 6.6), i.e. :

82 828 x 6
B0~ is T s aw
=1-37 +1-718
8 =2786/1-71
=163 mm

EXAMPLE 2. A uniform bar of cross-sectional area A and flexural stiffness
EI is heated so that its temperature varies linearly from 4t at one end to s
at the other end. One end is pin-jointed to a rigid foundation; the other end
is pin-jointed so that it can slide in the direction of the length of the bar, the
thermal expansion of which is resisted by a compression spring of stiffness k.
If there is no load in the spring when t =0, obtain an expression for the stress
in the bar when it is heated and show that it buckles in flexure when

4wl Ed
" 3al24 Rl
where o= coefficient of linear thermal expansion.

The average temperature along the bar is #¢, and hence the thermal
expansion of the bar is alz.
If P is the force exerted by the spring on the bar, the compression pro-
duced is PI/AE, and the compression of the spring is P/k.
Net expansion of bar =compression of spring,

3alt - PI/AE =Pk

R
TIAE +1/k

Stress in bar =P/A4

IE+Alk

t

i.e.

from which P

The bar will buckle when P =#2EI/I2, and substitution in above gives

m2El Foldt
2 IAE +1/k

_i’ﬂ(l +AE
3al24\" T H
14.3. Direction-fixed at Both Ends. Suppose the strut to have de-

flected, and let M be the end fixing moment (Fig. 14.2).

Then El.d%/dx2= —Py+M
or d2y/dx? + a2y = M|EI, «2=P/El

rearranging, ]
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Complete solution is
y =4 sin oax + B cos ux + M/Elx2
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When x=0, y=0
B= -M|Eln2= - M|P
and dy/dx =0
s A=0
y=(M/P)(1 - cos ax)
When =1, y=0
cosal=1
The least solution is
ol =2m,

giving buckling load P,=4=2EI/]2

Note that this case is equivalent to a pin-ended strut of length 112. To
allow for imperfect fixing an equivalent length of 0-6/ to 0-81 is fre-
quently employed (see also Para. 14.4. below).

N b
N N1/ T
P 7 ‘LM ZX MY P z AZ
Fig. 14.2 Fig. 14.3

14.4. Partial Fixing of the Ends.

ExampLE 3. A4 strut of length 2a has each end fixed in an elastic material
which exerts a restraining moment p per unit angular displacement. Prove
that the critical load P is given by the equation pn tan na+P =0, where
n2=P/EI. Such a strut, 25 m in length, has a theoretical critical load of
15 EN on the assumption of pinned ends. Determine the percentage increase in
the critical load if the constraint offered at the ends is 170 Nm per degree of
rotation. (U.L.)

Let M be the restraining moment at each end, then the general solu-
tion is obtained as in Para. 14.3,

y=A sin nx + B cos nx + M/P

using the notation given in the question.

At x=0,y=0
B=-M/P
also M =p(dy/dx)q
-u.An
ie. A=M/un
giving y =(M/un) sin nx + (M/P)(1 - cos nx)
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an increase of 839, over the value for pinned ends.

clearly equivalent to a pin-ended strut of length 2/ (see Fig. 14.3).

Other. Let V be the lateral force required to maintain the position of the
pinned-end.

or d%y[dx? +a2y = - Vx[EI, o2=P/EI

When =0, y=0.
B=0
When x=1, y=0
Asinal=VI/P 1
and dy/dx=0 i
Aw. cosal=V/|P 2 ,
By dividing corresponding sides of (1) and (2) }
tan al=al ‘
the least solution of which is
ol =4-49
or P,=20-2E1/12
=2:05m2E1{I2

242 . STRENGTH OF MATERIALS
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At the centre, x =a, dy/dx =0,

ie. (M) cos na +(Mn/P) sin na =0
or pn tan na + P=0
For pinned ends
72ET}(2a)?2 =15,000
giving EI=9500 Nm?2
n=+/(P)/97-5
p =170 x57-3 Nm/radn.
Condition (i) can now be written
tan (0-01284/P) = - 0-014/P
"The least solution of this equation is for 4/P =166, i.e. P=27,500N,

14.5. Direction-fixed at One End and Free at the Other. This is

Hence FP,=n2El/4]2

14.6. Direction-fixed at One End and Position-fixed at the

Then El.d%jds?~ -Py-Vx (Fig. 14.4)

Complete solution is
y=Asinox+ B cos ax — Vx/P
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As a departure from the “perfectyls?tllt'lit%ly ilgzrigasﬁlg’g the té'l?ects of
eccentricity of load and initial curvature of strut will now be examined.

lr v
14
— %——
0| b4 o ‘ (') z
Fig. 14.4 Fig. 14.5

14.7. Strut with Eccentric Load. Let e be the eccentricity of the
applied end load, and measure y from the line of action of the load
(Fig. 14.5).

Then EI.d%y/dx2= —- Py
or d%yldx? + a2y =0
giving y=Asinox+B cosax
When x=0, y=e
B=¢

When x=1/2, dy/dx =0
A cosalf2-Bsinalf2=0
ie. A=etan alf2
giving y=e[(tan al[2) sin oax + cos xx]

Note that with an eccentric load the strut deflects for all values of P,
and not only for the critical value as was the case with an axially applied
load. The deflection becomes infinite for tan al/2 = w0, i.e. al =1, giving
the same crippling load P,=n2EI[I2. However, due to the additional

bending moment set up by deflection, the strut will always fail by com-
pressive stress before the Euler load is reached.

y =e[(tan a//2) sin al/2 + cos al/2], at the centre
- (sin2 al/2 + cos? czl/Z)
cos alf2
=e¢ sec alf2

The maximum bending moment is
M=Pj
=Pe.secal/2, from above

and the maximum stress is then obtained by combined bending and
direct stress

o=P/A+M|Z
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Using Webb’s approximation for sec a//2 1

1+0-26(4/m2)(wl[2)?
1= (4/m2)(d]2)2

1+0-26.P/P,
1-P/P,

=Pe.(P,+0-26P)/(P,- P)

M =Pe.

=Pe.
which is a more convenient expression to use for calculating the value
of P corresponding to a given maximum stress, :

14.8. Strut with Initial Curvature. Treating as a beam with initial -
radius of curvature

Ry= G approximately
d2yoldx?
and using the form
EI(1/R-1/Ry)=M (Para.11.1)
then EI.d%y[dx2 =M + EI . d?%y,/dx?
or d2y[dx? + a2y =d2y,/dx2

under an end load P.

The initial shape of the strut yo may be assumed circular, parabolic,
or sinusoidal without making much difference to the final result, but
the most convenient form is

Yo=c.sinmx/l
which satisfies the end conditions and corresponds to a maximum

deviation of ¢. Any other shape could be analysed into a Fourier series
of sine terms.

Then d2y[dx? + a2y = — (c.w2[12)(sin wx/l)

The complete solution is
cmflz2 | gx

=Asinax+Bcosax— ———' . sin—
Y —m2[I2 4+ o2 l

When =0, y=0
B=0
When x=1/2, dy/dx=0
A4=0
cm?fl2 | 7x

and hence y= - in —

= [cP/(P, - P))(sin mx/l)
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The crippling load is again P =P, =n2EI|I2,
and M=P5v

=c.PP,/(P,-P)

By comparison with Para. 14.7, it may be said that an initial curvature
of maximum deviation ¢ is equivalent to an eccentricity of load

=P,/(P,+0-26P)
which lies between 1 and 1/1-26 (approx. 0-8). The total eccentricity due
to both causes can then be taken as e +0-8¢ for purposes of calculation
of bending moment and stress.
To allow for imperfections due to loading and initial curvature Case
(Strength of Materials) gives an equivalent eccentricity = /500 + B/50
where B is the width of the section in the plane of

¢ V’
bending. '10 4
37

ExaMPLE 4. A strus of length | is encastered ab its lower
end; its upper end is elastically supported against lateral
deflection so that the resisting force is k times the end
deflection. Show that the crippling load P is given by

ta_.:_Ta_l =1 —g where a2 =P/El
(U.L)
Taking axes as shown in Fig. 14.6
El.d%/dx?=P(Yy~y) -k Ypx %w
where Y, is the end deflection, i.e. Fig. 14.6

d2y/dx? +a2y =a2Yy — kYox/EIl

The complete solution is
y =A sin ax + B cos ox + Yo -k Yox/P

When % =0, y=Y,

B=0
When x =1, y =0 :
Asinal + Yo -kYl/P=0 @)
and dy/dx =0 "
Ax cosal -kYo/P=0 (ii)

Substituting for =~ 4 =kYy/Pacosal from (ii)
in (i) gives kY tanal/Po+ Yo -k Yl/P =0
Multiply by P/k Yl and rearrange
tan o P

"l Th

ExampLe 5. A tubular steel strut is 60 mm external diameter and 48 mm
internal diameter. It is 2-2 m long and has hinged ends. The load is parallel to
94
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t\’{ésgmsq;% Ié@E%}%O #309 tt-re]z maximum eccentricity for a crippling load of 1

0-75 of the Euler value,
Njmm?. (U.L)
The Euler load P, =m2EI/I2

I'=(r/64)(602 - 482)(602 +482)
=376 x 104 mm*
P, = (72 x 207,000 x 376 x 104)/22002
=158,000 N
Actual load to cause failure =0-75 x 158,000 N

the yield stress being 310 N/mm?. E=207,000

For an eccentricity e
M=~Pesecalf2 (Para. 14.7)

=075 x 158,000¢ sec (A/

=119,000¢ sec 1-36
Maximum stress 310 =P/4 +M/Z

07-5 x 158,000 2200
207,000 x37-6 x104] 2

119,000 119,000 sec 1-36 60
T @A =1300 7 376 %10 X3
—117 +45-4¢
=193/45-4
=425 mm

14.9. Limitations of Euler Theory. In practice the ideal case of
Para. 14.2 is never realised, and there is always some eccentricity and
initial curvature present. These factors can be dealt with according to
Paras. 14.7 and 14.8 provided the magnitude of these deviations js
known. There is, however, usually considerable uncertainty as to their
values, and it is necessary to apply an empirical formula.

It will be realised that, due to the above-mentioned imperfections,
the strut will suffer a deflection which increases with the load, and con-
sequently a bending moment is introduced which causes failure before
the Euler load is reached. In fact failure is by stress rather than buckling,
and the deviation from the Euler value is more marked as the slender-
ness ratio //k is reduced. For values of //k<120 approx. the error in
applying the Euler theory is too great to allow of its use.

In Fig. 14.7 the stress to cause buckling, from the Euler formula for
pin-ended struts, is

oo Pe_mEI_ mE
‘A4 Az (ke
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14.9. STRY At - Civildatas.blogspot.in
giving the curve ABC. If, how-
ever, g, exceeds o,, the elastic
limit or yield stress in Com- & oo
pression, the strut must fail by ~ 4z a
crushing along the line BD (this fa//ure yo) 3 ruler
is the region of short columns). ( o= Az) 0,
Allowing for imperfections of A
loading and strut, actual values
at failure must lie within and 743

Fig. 14.7

c

below the line ABD. Practical

strut formulae, of which the ' ' -
main types are given below, have been devised to cover the intermediate

zone between “columns” and “struts,” and to allow for imper-

fections.
Note that for structural steel, taking o,=320 N/mm?2 and E=

205,000 N/mm?, the point B corresponds to
Ilk =74/(205,000/320)=80

14.10. Rankine-Gordon Formula. If ¢ is the actual stress to
cause failure, and o, and g, have meanings as in Para. 14.9, the equation

ljo=1[c,+1]o,

will produce a curve which is tangential to o, as I/k—0, and tangential
to ¢, as Ifk—>c0 (since o, is very large in one case and very small in .the
other). This satisfies both limiting conditions, and for intermediate
values o will be less than both o, and o,.

Proceeding
O-co.e

o, +o,

i o
1+0,/0,

For a pin-ended strut
o, =m2Ek2[I2

O,

hence from above

7T T+ (o mE)IR)

o /m2E is now replaced by a constant g, to make allowan(.:e for un-
known imperfections, the value of @ depending on the material and on
the end conditions.

Visit : Civildatas.blogspot.in
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The permissible load is then given by

c.A
P=cA=——°___
1+ a(l/k)’
Material o a
N/mm?2 Pinned ends Fixed ends
Mild steel . . . 320 1/7500 1/30,000
Wrought iron . . 250 1/9000 1/36,000
Castiron . . . 550 1/1600 1/6400
Timber . . . 35 1/3000 1/12,000

Note that the ratio for @ between the two end conditions is maintained
at 4, as in the Euler analysis; other end conditions may be treated by a
similar argument,

If the quantity ¢ /#2F is calculated for steel, a value of about 1/6400
is obtained, to compare with a=1/7500.

A factor of safety may be included in the Rankine formula by reducing
the value of 5, which then becomes the *“ working stress.”

ExamMPpLE 6. 4 compound stanchion is made up of two 20 em by 7-5 cm chan-
nel sections placed back to back 10 cm

¥ VA Y

0 I : l y apart, and two 25 cm by 1-25 cm plates
|| 28¢ ;,—i“sm riveted one to each flange. Calculate the
m— : S— safe load to be carried on a length of
<—10cm—> 6 m with a factor of safety of 3-5.
| Assume fixed ends, o.=320 Njmm?,
X e and a=1/30,000. For each channel
24em—s! | e ‘— A=30 cm?, Ix=1900 cm? I,=
’ 150 ecm?, and distance of centroid from

| back of web=2-1 cm.
= i The principal axes of inertia are
o XX and ZZ (Fig. 14.8), and it is

necessary to determine which gives
the smaller I value (and hence the
least k2).
Iy =2 x1900 +2[25(1-25)3/12 + (25 =% 1-25)10-632]

=10,850 cm?
I;=2(150 +30 x7-12) +2 x 1-25 x 253/12

=6570 cm*

Total Area =2(30 +25 x 1-25)
=122:5 cm?

Fig. 14.8
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Least k2 =6570/122-5=53-7 cm
1 _od
3571 +a(l/k)?
320 x122-5 x 102
~35(1 +6002/537 x 30,000)
=915 kN

Safe load =

ExampLE 7. 4 hollow cast-iron column, with fixed ends, supports an axial
load of 1 MN. If the column is 5 m long and has an external diameter of

0-25 m, find the thickness of metal required. )
Use the Rankine formula, taking a constant of 1/6400 and a working stress

of 80 MN/m2. (U.L.)
A =x/4)(0-0625 - d2), d=internal diameter
k2 =(7/64)(0-25% — d4)/A =(0-0625 +d?)/16
80 x7(0-0625 —d?)
4{1 +(1/6400)[52 x 16/(0-0625 +d?)]}
1 +1/16(0:0625 +d2) =20m(0-0625 — d?)

Load 1=

and 1 +16d2+1=3-93 — 100044
or 100044 +16d% -1-93=0
Solving d2=[ - 16 + /(256 +7700)]/2000
=0-0366
d=0191m
Thickness of metal =(250 —191)/2
=295 mm

14.11. Johnson’s Parabolic Formula.
P=cA[1 - b(}/FY]

300 % | ! Eulep
(o)
% | i '
(N/mm’) Johnson : | 0
150 | | | Uy
]
i i | Rankine
75 ! , | '
R R R S
O™ 20 40 @ 80 Iloo 120 140 160
Uk

Mild steel struts wifh pinned ends.

Fig. 14.9
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b=0-00003 for pinned ends and 0-00002 for fixed ends.

A graphical comparison of the Euler, Rankine, and Johnson formulae

is given in Fig. 14.9.

14.12. Perry-Robertson Formula. It was shown in Para. 14.8 that §
initial curvature of the strut and eccentricity of the load can be com- ]
bined to give an equivalent initial curvature of amplitude ¢, and the

maximum compressive stress due to bending and direct load is then
_ ¢PP, r P
“p-P1t4
where 7 is the maximum distance from the neutral axis
n(P/4)e. P
“v.-pata

where 7 =cr/k? and is taken as 0-003 J/k in B.S. Code of Practice 113.
Rearranging as a quadratic in P/4

(P4 ~[o.+(n+1)o.])P|4) +o0 =0

G,

and solving,
PlA=Ho.+(+1o] -3V {lo.+(+1)o ]2 ~ 40,0}

14.13. Straight-line Formulae.
P=cAlx - n(l/k)]

Formulae of this type are commonly used in America, and can be
made sufficiently accurate over a given range. Typical values are g,=
110 N/mm?2, n=1/200 for pinned ends and 1/250 for fixed ends, for
mild-steel struts. A similar form is suggested for structural steel in
B.S. 153, with 0,=140 N/mm?, n=0-0054 for pinned ends and
0-0038 for riveted ends.

14.14. Strut with Lateral Loading. If the lateral load is uniformly
distributed, of intensity w, then
El.d%y|dx?= M = P(-y) +(wlf2)x - wx2/2 (Fig. 14.10) (1)
Differentiating twice
d2M[dx2= — P.d%y[dx2 - w
=—P.M/EI-w from (1)
Rearranging

d2Mjdx? +a?M = -w (a2=P|EI) @
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which is a differential equation in M with a simpler particular integral

than (1), and is frequently more
useful because it leads directly
to the value of the maximum o
bending moment. 7oA
Solving
M =A sin ax + B cos ax — wja?
When x=0, M =0

Fig. 14.10

.. B=wja?

When x=1/2, dM/dx =0 (zero shear)
*.  A=B tan alf2 =(w/«?) tan alf2

Hence M =(w/a?)[(tan al/2) sin ax + cos ax — 1]
At x=]2
~ wEI (sin2 alf2 )
M P (cosal/2+cosa/ )

= (WEI/P)(sec al/2-1)

The corresponding maximum deflection may be obtained from (1),
i.e.
§ = —(wEI[/P2)(sec al/2 — 1) + wi?/8P
The maximum stress is then obtained in the usual way
o=P/A+MZ

EXAMPLE 8. A horizontal strut 3 m long, having pin joints at it_s ends, is .of
rectangular cross-section 40 mm wide by 100 mm deep, and carries an axial
thrust of 90 kN together with a vertical load of 9 kN uniformly dzstrzb‘uted.
Estimate the maximum stress induced and find the percentage ervor if the
additional bending moment caused by the eccentricity of the thrust were
neglected. E=202,000 Nfmm?. (U.L.)

ol 3000 90,000 x 12
2 72 A/ 202,000 x 40 x 100
=0-547 radians.
M =(wEI/P)(sec «l/2 - 1)
9000 x 202,000 x40 x 1003(1-17 -1)
- 3000 x 90,000 x 12
=3-8 x 106 Nmm
o=PlA+M|Z
=90,000/(40 % 100) -+ (3-8 x 106 x 6)/(40 x 1002)
=22-5+57
=79-5 N/mm?2 compression.
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If the eccentricity of the thrust (i.e. central deflection) is neglected

M =wi2/8
=(9000 x 30002)/(3000 x 8)
=3-375 x 106 Nmm
0=22-5 +50-7
=73-2 N/mm?
Percentage error =[(79-5 - 73-2)/79-5] x 100
=89,

giving

ExaMPLE 9. A4 horizontal bar of uniform section and length L is simply
supported at its ends. In addition to the uniform load w per unit length due to
its own weight, the bar is subjected to longitudinal thrusts F acting at points
on the vertical centre-lines of the end sections at a distance e below the centres.
Show that the resultant maximum bending moment in the beam will have its
least possible value if

w(sec mL[2 ~1)

e=—————— " where mz-ﬁ
Fm2(secmL/2+1)’ EI

If the bar is of steel, 2-5 m long, of rectangular cross-section 80 mm wide and
25 mm deep and weighs 150 N[m, and if the end thrust is 13-3 kN, find the
eccentricity e as already defined and also the corresponding maximum de-
flection. E=200,000 N/mm2. (U.L.)

Equation (1) becomes
El.d%[dx2 =M = — F(y +¢) + wLx[2 - wx2/2 @)
Differentiating twice

d2Mdx?= - F.d%y|dx? - w
= -F.M/EI -w from (i) above

Rearranging
d2M/dx2 + m2M = -w

Solving

M =4 sin mx + B cos mx — w/m? (ii)
When

x=0, M= -Fe (iii)
B=w/m? - Fe
When
x=L[2, dM/dx=0
A =B tan mL[2 =(w/m? — Fe) tan mL[2
Hence (ii) becomes
M =(w/m? — Fe)(tan mL/2.sin mx + cos mx) - w/m?2

At x=L/2,

M =(w/m2 - Fe) sec mL[2 —w|m? (iv)
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and this will be a local maximum value. When it is equal and opposite
to the bending moment at the ends, the condition stated will be satisfied.

From (iii) and (iv),
Fe=(w/m? — Fe) sec mL{2 — w/m?

w(sec mL/2 - 1)
= Fm¥(sec mL]2 +1)
m2 =F/EI =13,300/(200,000 x 1% x 80 x 253) =0-64 x 10-6 mm~2
mL/2 =08 x 10-3 x 2500/2 =1 radian
B 150(1-85 - 1)
103 x 13,300 x 0:64 x 10-6(1-85 +1)

giving

=5-27 mm

e

Maximum deflection will be at the centre, where
M =Fe=13,300 x 5-27 Nmm
= —13,300(y +5-27) +(150/10%)25002/8 from (i)
y=—-2x527+88
= -1:74 mm

giving

The deflected shape will be as shown in Fig. 14.11.

Y
L
[¢) X
E wlp D WL/
F F
Fig.14.11

14.15. Tie with Lateral Loading. Although this is not a strut, the
end load being tensile, a very similar differential equation is obtained.

EI.d%)]ds2 =M= — P(—y) +(wl/2)x - ws?[2 (1)

Differentiating twice

d2M|dx2 = P. d2%y]dx? — w . z =3
=(P/JEI)M -w from (1) ?Wf—;
or d2Mjdx?-a2M=-w (2) wl o
The solution is ] . 2
M = A4 sinh ax + B cosh ax + w/a? Fig. 14.12
When =0, M=0
B= —w/¢2

9.
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hen x=1/2, x =0
A= - B tanh al/2

= (w/a?) tanh al/2

giving M = (w/a2)[(tanh «l/2) sinh ax — cosh ax + 1]
When x=1/2
~ inh 2elf2
M =(wja2) {3222 "*72 _ osh
(w/o )(cosh a2 cosh al/2 +1

=(wEI/P)(1 - sech al/2)

ExampLE 10. A steel tie bar, 38 mm diameter and 5 m long, is supported
horizontally through pin joints at the ends, and sustains an axial pull of
18 kN. Find the greatest tensile stress in the bar, indicating how any formula
used may be deduced. E = 203,000 N/mm?2. Density of steel =7800 kg/m3.

ol _ 5000 18,000 x 64
2 2 A 203,000 x7 x 384

=2-33 radians

7800 x 9-81 x 7 x 382
k 109 x4
=0-087 N/mm

M = (@wEI/P)(1 —sech alf2)

_0-087 x 203,000 x = x 38*

w

18,000 x 64 (1 -0
=82,700 Nmm
o=Pl|A+M|Z
18,000 | 82,700 x 32
(/4) x 382 7 x 383
—15:9 +15-4

=31-3 N/mm? tension.

14.16. Struts of Varying Cross-section—Energy Method. If a
is the crippling load of a strut, it can be considered to remain constant
for any small axial movements A of the ends, and the work done by
the load during this movement will be PA. Since the strut remains
stable for values of the load less than the critical, PA will represent
approximately the total strain energy of the strut. In the deflected form
this strain energy will be mainly due to the bending movement.

If s is the distance measured along the axis of the deflected strut, and
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x the distance measured along its undeflected line, the approach of the
ends is

A=£(ds—dx)

- f VL + (o)~ f d
0 0

-3 fol (dy/dx)2dx  approx. )
Then, equating energy,
P =3 [ (ypnas @
J:(MZ/EI)dx

giving from (1) and (2) (3)

[Laaspas
0

This expression can be evaluated if the form of the deflected strut is
known or assumed, and for a pin-ended strut of length /, y = 4 sin 7/l
will usually be found satisfactory. For a strut fixed at one end the sug-
gested form is y =A (1 —cos mx/2l). M can then be expressed in terms
of P and y and the integration performed taking into account variations
in 1.

ExampLE 11. A4 steel strut 20 cm long is made up of two lengths of 10 cm,
one at 5 mm diameter and the other at 7-5 mm diameter. It is built-in at the

larger end and carries an axial load at the smaller end. Estimate the magnitude
of the crippling load. E =206,000 N|mm?.

Take the X axis through the built-in end, and assume the deflected
form under the action of the crippling load is
y =A(1 - cos 7x/40) cm
dy|dx = A(w[40) sin 7x[40

1 fdy\2 A2m2 (201 — cos mx/20
jo (‘E) =302 Io 2 e
=(A4%r2/1600)(20/2) =0-061742 cm i)
M=P(4-y) since 4 is the deflection at the free end
=PA cos mx/40
! M2dx _P2A2%| (101 +cos mx/20 201 + cos mx/20 }
= Jdx+ — " .dx
,fo EI E \Jo 21, 10 2I,
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where I =(m[64)0-75¢4 =0-0155 cm*
and I, =(7/64)0:54=0-00307 cm*
then M?2dx =PZAZ(IO +20/m + 10 - 20/=
EI 2E \ 0-0155 0-00307
=1120P242/E (ii)
J(M?/ET)dx
But P —
u T(dyjdny2dx from (3)
_ 120P242 from & .
= 306,000 x 102 x 0061722 _rom (@) and (i)
giving P =206,000 x 102 x 0-0617/1120
=1130 N
SUMMARY
Euler Crippling Load P,=k.#2EI]I2.
Pinned Fixed Fixed one end, Fixed one end,
free other pinned other
k ‘ 1 4 3 205

Eccentric Load: M = Pe.sec al/2.
Initial Curvature: M =¢.PP,/(P,- P).

o
1 +a(ljk)?
Johnson’s Parabolic Formula: P=o,4[1 - b(l/k)?].
Straight-line Formula: P=0,4[1 —n(l/k)]
Strut with Lateral Loading: M =(wEI/P)(sec al/2 - 1)
Tie with Lateral Loading: M =(wEI/P)(1 - sech l/2).
Energy Method: P={(M2/EI)dx/[(dy/dx)*dx

Rankine Formula: P=

REFERENCES

Sarmon, E. H., Columns. Oxford Technical Publications. 1921.
TIMOSHENKO, S., Theory of Elastic Stability. McGraw Hill. 1936.

PROBLEMS

1. A strut of length [ has its ends built into a material which exerts a con-
training couple equal to k times the angular rotation in radians. Show that the
buckling load P is given by the equation tan af/2 = — Plak, «2 =P|EI,

In the case of a strut 3-05 m long for which the buckling load for freely hinged
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ends is 10 kN, show that the buckling 158 Wil Be toa e DIO0RPR Bhed if the
ends are under a constraint of 180 Nm per degree of rotation.

2. A vertical strut, initially straight, is subject to a thrust P acting with
eccentricity e. If buckling at the centre is prevented by a horizontal force F,

2Pe(1 —sec alf2)
show that F = lm—)tanam (U.L.)

3. A long strut of constant section is initially straight. A thrust is applied eccen-
trically at both ends and on the same side of the centre-line, with the eccentricity
at one end twice that at the other. If the length is L and the thrust P, show that
the maximum bending moment occurs at a distance X from the end with the
smaller eccentricity, where tan mX =(2 ~cos mL)/sin mL and m =+/ (P/ED).

If in the above problem L =0-76 m and the strut is 25 mm diameter, calculate
the value of the eccentricities which will produce a maximum stress of 310 N/
mm? with P=35 kN. E =200,000 N/mm2. (U.L.) (Note the equal and
opposite lateral forces at the ends for equilibrium. Answer, 3 mm, 6 mm.)

4. A long strut, originally straight, securely fixed at one end and free at the
other, is loaded at the free end with an eccentric load whose line of action is
parallel to the original axis. Deduce an expression for the deviation of the free
end from its original position.

Determine the deviation and the greatest compressive stress for a steel strut
under these conditions. Length 3 m, circular cross-section 50 mm external
diameter, 25 mm internal diameter. Load 3500 N and eccentricity 75 mm.
E =206,000 N/mm2. (U.L.) (e (sec al ~1); 25 mm, 31 N/mm?2.)

5. A hollow circular steel strut, with its ends position fixed, has a length of
2-44 m, external diameter 101 mm, and internal diameter 89 mm. Before loading,
the strut is bent with a maximum deviation of 4:5 mm. Assuming the centre line
is sinusoidal, determine the maximum stress due to a central compressive end
load of 10 kN. E =205,000 N/mm2. (U.L.) (6:3 N/mm?2.)

6. Show that, if a strut has an initial curvature in the form of a parabolic
arc and is hinged at both ends (i.e. position fixed only), the maximum compres-
sive stress produced by a load P is

P es 8P, o [P
o1+ e WE -]

where A is the cross-sectional area, e the initial central deflection, P, the
Eulerian crippling load, % the least radius of gyration and s the distance of the
extreme fibres from the neutral axis. (U.L.) (Para. 14.8. yo =4ex(1 —x)/[12)
7. Compare the crippling loads given by Euler’s and Rankine’s formulae for
a tubular steel strut 2:3 m long having outer and inner diameters of 38 mm and
33 mm, loaded through pin joints at both ends. Take the yield stress as 320 N/
mm?2 and the Rankine constant as 1/7500. E =200,000 N/mm?2.
For what length of strut does the Euler formula cease to apply? (U.L))
(17 kN, 17-1 kN; 1 m.)
8. Working from first principles, derive a formula for the Euler collapsing
load for a strut having its bottom end fixed and the loaded top end free to move
laterally. Sketch a curve showing how the collapsing load per unit area of cross-
section varies with Lk, the slenderness ratio. Assuming the yield stress for steel
is 320 N/mm?2 show that the Euler formula cannot be applied to a strut of
circular cross-section of diameter d if L<10d. (I.Mech.E.)
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9. A steel pipe 38 mm inside diameter, 6:3 mm thick, and 1-22 m long, has its
ends rigidly attached to flanges which are themselves so fixed as to prevent any

expansion in the length of the pipe. The pipe is fixed in position under normal

temperature conditions, and is then unstressed, but may be subjected to a tem-
perature rise of 50° C. Calculate the temperature stress in the pipe and the

factor of safety against failure as a strut. Use the Rankine formula, oc =320 N/ |

mm?2, a =1/7500 for a strut with hinged ends. « =111 x 106/° C.; E =206,000 N/
mm?2, (115 N/mm?2; 2-4.)
10. A 2200 kN load is to be carried by a column 3 m long built up by a 20 cm

by 15 cm I-beam with flange plates 30 cm wide. Find the thickness of the flange |
plates if the allowable concentric load per unit area is p =103 —0-00172({/k)2 "

N/mm?2. For the beam, 4 =65 cm2, Iy =4500 cm?, Iy =750 cm4. (U.L.)

stress induced. E =206,000 N/mm?2. (U.L.) (145 N/mm?2.)

12. A straight strut of length L and of uniform section is hinged at both ends
and is loaded along its axis with a thrust P. It also carries a transverse distributed §
load which varies uniformly in intensity from w per unit length at one end A 2

to zero at the other end B.
Show that the distance x from the end B to the section at which the maximum
bending moment occurs is given by cos mx =(sin mL)/mL, where m2=P[EI.
If the thrust P is 819 of the Eulerian crippling load, find the position and
value of the maximum bhending moment. (U.L.) (0-52L, 0-338wlL2.)
13. Obtain expressions for the bending moments at the ends and centre of a

uniform strut, built in at both ends, and subjected to a uniform lateral load of '

intensity w. The strut length is L, the end thrust P, and the elastic properties
EI. Take p2=P/EI. Show without elaborate analysis, from the expressions
derived, that for practical struts the end moments are greater numerically than
the central moment and of opposite sign. (U.L.)

14. An initially straight slender strut of uniform section and length ! has
hinged ends through which it is loaded by an axial force P. In addition, one
half of the strut from the middle to one end carries a uniform transverse load w
per unit length. If PI2[E] =x2[4, find an expression for the central deflection.

If /=1 m and @ =1750 N/m, find the bending moment at the centre. (U.L.)

(Apply Macaulay’s method, Para. 9.4, 0-043 w /4/EI. 300 Nm.)

15. A steel tie rod, of length 3 m and diameter 25 mm, carries a tensile load of
4500 N. Due to wind pressure and dead weight a transverse load of 88 N/m
occurs. Calculate the maximum bending moment. E =206,000 N/mm?2.

(100 Nm.)

16. A horizontal pin-ended strut 4-5 m long is formed from a standard T-sec-
tion 15 cm by 10 cm by 1-25 cm at 24 kg/m. The axial compressive load is
180 kN. Find the maximum stress if the XX axis is horizontal and the table of
the tee forms the compression face. The centroid is 24 cm below the top.
Iy =250 cm#; A =31 cm2; E=206,000 N/mm2. (U.L.) (81 N/mma2.)

17. A 25 mm-diameter steel rod 0-75 m long has a 12-5 mm-diameter hole
bored centrally from each end for a distance of 0-25 m, leaving the central
025 m solid. Estimate the buckling load if used as a strut with pinned ends.
E =206,000 N/mma2, (67:5 kN.)
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(25 mm.) |
11. A rod of rectangular section 76 mm deep and 38 mm wide, is supported §

horizontally through pin joints at its ends, and carries a vertical load of 350 kg/m &

Iength and an axial thrust of 80 kN. If its length is 2:75 m estimate the maximum §

Visit : Civildatas.blogspot.in

CHAPTER XV

Cylinders and Spheres

15.1. Thin Cylinder under Internal Pressure. By symmetry the
three principal stresses in the shell will be the circumferential or hoop
stress, the longitudinal stress, and the radial stress.

If the ratio of thickness to internal diameter is less than about 1/20
(see Para, 15.9), it may be assumed with reasonable accuracy that the
hoop and longitudinal stresses are constant over the thickness, and that
the radial stress is small and can be neglected (in fact it must have a value
equal to the internal pressure at the inside surface, and zero at the
outside surface).

p &)
¥
—= 11\/
0 A
(@ 6)
Fig. 15.1

Let the internal diameter be d, and the thickness # p is the applied
internal pressure, oy the hoop stress, and o, the longitudinal stress
(Fig. 15.1).

Consider the equilibrium of a half cylinder of length /, sectioned
through a diametral plane (Fig. 15.1(a)). o acts on an area 2¢/, and the
resultant vertical pressure force is found from the projected horizontal
area dl.

Equating forces

o1.2tl=pdl
ie. 1 oy ={d/2t c@ (1)

Consider the equilibrium of a section cut by a transverse plane
(Fig. 15.1(b)). o, acts on an area approximately =zd? (this should be the
mean diameter), and p acts on a projected area of d2/4 whatever the
actual shape of the end. 2%
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Equating forces ;

o, .mdt=p.md2(4 v

ie. o, =pd/4t (2)
In the case of long cylinders, or tubes which are braced by stays or

carried on brackets, the longitudinal stress may

be much less than that given by (2), and is

sometimes neglected.

t

15.2. Thin Spherical Shell under Internal
Pressure. Again the radial stress will be neg-
lected and the circumferential or hoop stress
will be assumed constant.

By symmetry the two principal stresses are
equal, in fact the stress in any tangential direc-

Fig. 15.2 tion is equal to o.
From Fig. 15.2 it is seen that
o.mdt=p.nd2[4 ,
(where d is the internal diameter) 1/
ie. c=pd/4t

15.3. Cylindrical Shell with Hemispherical Ends. Let #; be the
thickness of the cylinder and 2, the thickness of the hemisphere, the in-
ternal diameter being assumed the same for both (Fig. 15.3).

* 524

N v e b by s e o o

Fig. 15.3

If the shell is subjected to an internal pressure p, the stresses in the
cylinder will be:

Hoop stress oy =pd/2t; \J

and Longitudinal stress o, =pd/4t; \}(Para. 15.1)
Then Hoop strain ¢; =(1/E)(o; —vo,) (Para. 3.13)
=(pd/4tE)2~v) A

For the hemispherical ends:
Hoop stress o =pd/4t, (Para. 15.2)
Hoop strain €=(1/E)(o -vo)
=(pd/4tE)(1-v)

J
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For no distortion of the junction under pressure, gspot.in

€‘=€
. 2-v 1-v
i.e. —_—
4 73
. t_z_l—v
° tl 2—1‘
=7/17

taking a value of 0-3 for Poisson’s ratio.
Note that the maximum stress will then occur in the ends, i.e.

o =pd[4ty=(17]7)(pd[4t;)

which is greater than the hoop stress oy in the cylinder. For equal
maximum stress #,/¢; should equal 0-5.

15.4. Volumetric Strain on Capacity. The capacity of a cylinder
=nd?]/4, and if the dimensions are increased by 84 and 3/, the
Volumetric strain

=[(d +8d)2(I +81) - d}/d?]
=[d2l+d2.81+28d.dl+28d .d .81 + (8d)2l + (8d)281 — d*l][d%
=(d2.81+28d.dl)/d?l npeglecting products of small quantities

=2.8d/d + 81/ /
=2 x diametral strain +longitudinal strain
=2 x hoop strain + longitudinal strain

(since circumference = constant x diameter)

Notice that this is the sum of the linear strains in the three principal
directions (compare Para, 3.18).
By a similar argument, for a spherical shell it can be shown that the

Volumetric strain =3 x hoop strain

4 . . S .
To find the increase in capacity it is only necessary to multiply the
volumetric strain by the original volume. ,

ExampLi 1. A boiler drum consists of a cylindrical portion 2 m long, 1 m
diameter, and 25 mm thick, closed by hemispherical ends. In a hydraulic test
to 10 N/mm? how much additional water will be pumped in, after initial filling
at atmospheric pressure? Assume the circumferential strain at the Junction of
cylinder and hemisphere is the same for both. For the drum material, E =
207,000 Njmm?; v=0-3. For water K =2100 N/mm?.

For the cylinder:
Hoop stress o3 =pd/2t =(10 x 1000)/(2 x 25)
=200 N/mm?2

Visit : Civildatas.blogspot.in


http://Civildatas.blogspot.in

262 STRENGTH OF MATERIALS 15.4.

Visit : Civi i
: IVIIdataSB(L%%?R%{Q@I stress o, =pd/4t

=100 N/mm?
Hoop strain €; =(1/E)(o; ~vo5,)
: =100 x1-7/E
Longitudinal strain €; =(1/E)(0; —voy)
=100 x0-4/E

Increase in capacity =(2¢; +¢€,) x volume
100 x3-8 _ 7 x 10002
= 207,000 X4 <2000
=29 x 106 mm3 @)
For the two hemispherical ends:
Hoop strain e =¢;

(same as cylinder)
Increase in capacity = 3e x volume
_ 100 x5-1 7 x10003
207,000 ° 6
=1-3 x 106 mm3 (i1)
Decrease in volume of water originally in
=(p/K) xvolume (Para, 4.2)

_ 10 [ x 10002 7 % 10003
2100 [_—4_ X 2000 + _—]

=10 x 106 mm? (iif)
Additional volume of water required
=(i) +(i1) + (iii)
=14-2 x 106 mm3 at 10N/mm?
or =14-25 x 106 mm?3 at atmospheric pressure

EXAMPLE 2. A cylindrical tank is 2 m diameter, 2-5 m long, and 12 mm
thick. Its ends are flat and are joined by nine tie bars, each 38 mm diameter
equally fpaced. If the tie bars are initially stressed to 50 Njmm?2 and the tanlé
Silled with water, find the increase in capacity when the pressure is raised to
1-2 N|mm?, and the final stress in the tie bars. E ~207,000 N/mm?2; v=0-28.

= - yd
}——) T+

+—> 50 N/mni" — 1}-»

i — 1.2 N/mm* {

1> S
— = "
g >0

@) (%)
Fig. 15.4

Initially: Let o, be the compressive longitudinal st i i
e e 15pos, D gitudinal stress in the cylinder
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oq.m x 2000 x 12 =50 x 97 x 38%/4
giving 01 =677 N/mm?
There is no hoop stress initially.
Finally: Let o be the final tensile stress in the tie bars and oy’ the final
tensile longitudinal stress in the cylinder (Fig. 15.4(b)).
Equilibrium equation
6’17 x 2000 x 12 +0(97 x 382/4) =1-2(7 x 20002/4 — 97 x 382/4)
or gy +0:1350=49-8 (6))
Hoop stress in cylinder =pd/2t (not affected by tie bars)
=(1-2 x 2000)/(2 x 12)
=100 N/mm?
Compatibility equation. The increase in longitudinal strain must be the
same for both tie bars and cylinder, i.e.
(o - 50)/E =Final - Initial longitudinal strain in cylinder
=(1/E)(oy" —0-28 x 100) ~ (1/E)( - 6-77)
or o=0, +288 (i1)
Substituting for o;” from (i) in (ii)
oc=49-8 -0-1350 +28-8
0=78:6/1-135
=69-3 N/mm?
From (i), 0,’ =38-8 N/mm?2.
Increase in capacity
=(2 x increase of hoop strain +increase of longitudinal strain) x volume
1

== [2(100 -0-28 x 38:8 - 0:28 x 6:77)
207,000 +69-3 - 50]

giving

7 x 20002 x 2500
4

=405 x 106 mm?3.

ExampLE 3. 4 thin cylinder 150 mm internal diameter, 2-5 mm thick, has
its ends closed by rigid plates and is then filled with water. When an external
axial pull of 37 kN is applied to the ends the water pressure is observed to fall
by 0-1 Njmm?. Determine the value of Poisson’s ratio. E = 140,000 Njmm?;
K =2200 N/mm.2 (U.L.)

Assuming the cylinder remains full of water, then

Increase in volume of water =Increase in capacity of cylinder.
Since the volumetric strain is determined by change of stresses, only
stresses due to the drop in pressure need be considered.
Reduction in hoop stress o =pd/2t
=(0-1 x 150)/(2 x2-5)
=3 N/mm? (“‘compressive’’)
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ncrease in longitudinal stress is given by
02 X7 x150 x 25 +0-1 x (7/4) x1502=37,000 (Fig. 15.5)
ie. 05 =30N/mm?

15.4.

Z-5mm¢

- -
-
e O Nfm 150mm o/, \—> 37KN :
.
e

Fig. 15.5

Equating volumetric strains
pIK=(1/E) [2( -0 —vo3) + (03 +voy)]
or 0-1/2200 = (24 - 57v)/140,000
From which v=17-64/57
=0-31

15.5. Tube under Combined Loading.

ExavpLE 4. 4 thin cylindrical tube 75 mm internal diameter, 5 mm thick,
1s closed at the ends and subjected to an internal pressure of 55 Njmm?. A
torque of 500w Nm is also applied to the tube. Determine the maximum and
mintmum principal stresses and the maximum sheaving stress. (U.L)

Hoop stress =(5-5 x 75)/(2 x 5)
=41-2 N/mm?2
Longitudinal stress = (55 x 75)/(4 x 5)
=206 N/mm?2
Torque
(Mean radius) x Area
__ 5007 x 103
" 40(r x 80 x 5)
assuming stress is uniform
=357 N/mm?
Maximum and minimum principal stresses
=31(ox +0,) 3/ [(ox ~0,)2 +472] (Chapter 1II)
=4 %618 £1+/(20:62 +4 x 35-72)

Shear stress on transverse planes =

=309 +£37-1
=68 and -6-2 N/mm?
Maximum shear stress =1+/[(0x — 0,)2 +472]
=371 N/mm?
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15.6 Wire Winding of Thin Cylinders. In order & strengthen the

tube against the application of internal pressure it may first be wound
with wire under tension, thus putting the wall in compression. When the
pressure is applied the final hoop stress produced is much less than it
would be without the wire reinforcement. The maximum stress will
probably be that in the wire, which

must be made of a high-tensile E3
material. =

The method of analysis can be
broken down into a number of
stages set out below. It is assumed
that one layer of wire of diameter
d is closely wound on the tube with
an initial tension T (Fig. 15.6).

(1) Replace the wire by an equi-
valent cylindrical shell, of thickness
t,,, with the same cross-section in a longitudinal plane, i.e.

t, x d=md?/4
t, =mdf4
(2) Initial tensile stress in wire
o,=4T(nd?
(3) Let o, be the initial compressive hoop stress in the cylinder.
Then for equilibrium (Fig. 15.7)
g.t=0,.1,

(4) When an internal pressure p is applied, let the stresses be o,/
tensile in the wire, and o, tensile hoop stress in the cylinder.

For equilibrium (Fig. 15.8)

gy .2t+0, . 2t,=pD

4 tus

tyy

A_A ADT A
l fo; P 1"‘1; gfyﬂ’ i1 p i o:* 1'
4 w

Fig. 15.7 Fig. 15.8

(5) Final longitudinal stress in the cylinder is
o,=pD/4t
or a smaller value for long tubes externally supported (see also Para.
15.1).

Visit : Civildatas.blogspot.in


http://Civildatas.blogspot.in

266 STRENGT ATERI 15.6.
Visit : Civildatas.blogspot.?n HOF M ALS 5.6

(6) Since the wire and cylinder remain in contact, the change of
hoop strain due to the application of internal pressure must be the
same for both, i.e.

(Y/E)[oy ~vay) +o1] =(1/E,))(0, —0y,)
Note that o; is compressive, and that the wire is under stress in one
direction only.

ExamPLE 5. 4 copper tube 38 mm external diameter, 35-5 mm internal
diameter, is closely wound with steel wire 0-75 mm diameter. Stating clearly
the assumptions made, estimate the tension at which the wire must have been
wound if an internal pressure of 2N [mm? produces a tensile circumferential
stress of 6:5 N/mm? in the tube. E;=1-6 xE,. (U.L.)

The references refer to the stages of analysis given above.
(1) Equivalent wire thickness
ty,=ndl4
=0-59 mm
(3) Ifo, is the winding stress in wire, the initial hoop stress in the tube
o1 =(t,/t}.0,
=0-472¢,, compression.
(4) If the final stresses are o, and o/, the equilibrium equation gives
o' x2:5 +0,” x1-18=2 x 355
but o{" =6-5 N/mm?
o, =(71 -16-2)/1-18
=46-5 N/mm?2
(6) Equating change of hoop strain for wire and tube, and neglecting
longitudinal stress in tube,
(46'5 ~0,)/E;=(6'5 +0))/E,
Substituting for ¢ from (3), and noting E/E;:=1-6,
465 -0, =104 +1-6 x 04720,

or c,=36-1/1-755
=205 N/mm?
2) Winding tension =20-5 x 7d?/4

=9N

15.7. Rotational Stresses in Thin Cylinders. Consider a cylinder
of mean radius 7 and thickness ¢, rotating at an angular velocity w about
its axis,

The centrifugal force on the walls will produce a hoop stress o which
may be assumed constant.

If p is the density, the centrifugal force on an element (Fig. 15.9) of
unit length axially

=(prdf. tyrw?
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and resolving radially

20t .sin 380 = priw?. 180
or o =pr2w? since sin $86—460
Consistent units are:
o N/m? w radn.[sec.
p kg/m3
rm '
The above analysis can also be applie

approximately to rim-type flywheels.

przwzt'é'é’
d ot ot

ExampLE 6. A flywheel is required with a w
moment of inertia of 250 kg m2. It is to run at
250 r.p.m. and the maximum stress is not to
exceed 4N|mm?. Neglecting the inertia of the 50
spokes, and assuming a width of 125 mm, find
the thickness of the rim. Density 7200 kg/m3.
The maximum radius is determined by the

ig. 15.9
stress, i.e. Fig
4 x 106 = pr2w?
250 x\2

= 2

=7200 xr ( 30 )
giving r2=0-813
or r=09m

For a first approximation assume a mean radius (and radius of gyration)
of 0-85 m and let £ m be the thickness.

Then M.I. =250 =(0-125 x 27 x 0-85¢ x 7200) x (0-85)2
giving t=0-072 m
Corrected values: mean radius 0:864 m
k2=(0-92 +0-8282)/2

=075 m?
Then 250 =(0-125 x 27 x 0-864¢ x 7200) x 0-75
or t=0-068 m =68 mm

which approximately satisfies the assumption of 0:864 m mean radius
and 09 m outside radius.

15.8. Thick Cylinders. Under the action of radial pressures at the
surfaces, the three principal stresses will be p (compressive) r'ad.lally, o
(normally tensile) circumferentially, and o, (normally tensile) lor.lgx-
tudinally. These stresses may be expected to vary over any cross-section,
and equations will be found to give their variation with radius 7.

It may be assumed that the longitudinal strain ¢ is constant, which
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true for sections remote from any end fixing,

Let u be the radial shift at a radius r; i.e.  becomes 7 + u after strain- |

\. ing, where u is small compared |
.Stra/'ﬂed/_\"} with r (Fig. 15.10). The circum- |
. N 5 N \ ferential, or hoop, strain
\, \ ot Su =Incr‘ez?se of circumference
f\/ Original circumference
\sr ,‘ = [200(r +u) - 2a17] 207
=ulr
Unstrained

strained radius 7+8r will be
4 +8u, and the radial strain

=(Increase in 87)/87 = du/dr in the limit.

Stress-Strain equations (see Para. 3.14):

Fig. 15.10

Ee=0)—vo; +vp (1)
E.ufr=01 —vo,+vp (2)
E.duldr= —p—vo; —vo, 3)

giving
and differentiating T
Eduldr =0y —vo, +vp +[do,|dr —v(doy|dr) + W(dp|dr)]
= —p-voy—vo, from (3)
Collecting terms
( +01)(1 +v) +7.doy/dr —vi(doy]dr) +vr(dp|dr) =0 #
From (1), since ¢ is constant
doy|dr =v(doy/dr — dp|dr)
and substituting this in (4)
(B +o1)(1 +v) +1(1 —v2)(do,[dr) +vr(1 +v)(dp/dr) =0
Reducing to
p+o1 +r(1 —v)(doy/dr) +vr(dp|dr) =0 (5)
Equilibrium equation (radially) (Fig. 15.11):
208r.sin 180 + (p + 8p)(r + 8r)(86 — prof) =0

In the limit sin 486466, and neglecting products of small quantities,
this equation reduces to

o1+p+r.dpldr=0 (6)
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at cross-sections remain plane after straining, and this will be

The radial shift at an un- B

First eliminate u from equations (2) and (3) by multiplying (2) by r |
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Subtracting (6) from (5)
r(1 —v)(doy/dr) +vr(dp/dr) —r.(dpdr) =0
which gives doy/dr —dp[dr=0
Integrating
0y - p = constant
=2a,say (7)
Subtracting (7) from (6)
2p +r.dpjdr= —2a

1 d(pr?)
- = - 2
dr ¢

(p+3Sp)(r+0r)d8

g,ér

or
r
ie. dpr?)_ _ 2ar
dr
Integrating Fig. 15.11
pr’=-ar2+B
p=-a+B/r?
= —a+b/d? (8
where d=2r and b=4B.
From (7)
6, =a+b/d? 9)

where a and b are constants depending on the dimensions and the
loading conditions.

It follows from equations (1) and (7), since ¢ is constant, that o, is
constant (i.e. independent of 7). The analysis can be considerably
shortened by making this assumption initially, when equation (1)
reduces to

oy —p =constant
and the results are obtained by application of this and the equilibrium
equation (6).

The majority of numerical problems are best solved directly from
equations (8) and (9), but it may be of interest to put on record the
general formulae for o; and p in terms of the dimensions and the
external pressures.

If the pressures are p; internally (diameter d;), and p, externally
(diameter d,), then the radial stresses at these surfaces must be equal to
the applied pressures, i.e.

p1=—a+bjd;?
and pr=-—a+b/dy?2 from (8)

Subtracting
b=[(p1—22)d12d,%]/(d22 - d,?)
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By substitution
) a=(p1d12 - p,d,?)/(d? - d,2)
giving oy =[p1d,2 ~ p2d? + (p1 — p2)(d12d2/d?)]/(d2 ~ d,2)  from (9)
and  p=[pady? - p1di? +(p1 - p2)(d1%d?/d2)] [(d2 ~d2)  from (8)
The maximum shear stress (half the stress difference, Para. 3.10)
=3(o,+p)
=(p1 - p2)d1?d?/(dy? - dy2)d2.
It will be found that the maximum principal stress and
maximum shear stress occur at the inside surface.

15.9. Internal Pressure Only. This is the most commonly occur-
ring case, and will be examined in detail.

If p, is the internal pressure at a diameter d;, the external pressure
being zero (atmospheric) at diameter d,, then

py=—a+b/d;?
and = —a+b/dy? (Eq. (8), Para. 15.8)
Subtracting
b=[ds2d?/(dy? - d;?)]p,
and a=>b/d;2=[d\2[(dy? - d,2)] p,
The stresses at any diameter d are
Radial p= -a+b/d2
=[d:2/(dy2 - d,2))( -1 +d2/d2)p,
(42 -d?)dy?

@r=aza? T
il Hoop oy=a+b/d?
(d2 +d)dy?
(dzz _ dlz)dz 'pl (2)
The stress variation with dia-
meter is shown in Fig. 15.12, the
. two curves being “parallel,”
“ ’ , since
é,” ; oy—p=2a (Eq. (7), Para. 15.8)
& 2a The maximum hoop stress is at
D ; d = dl
| S1=[(d2+d))/(d2~d)]py (3)
dy; —_—d d; Maximum shear stress
Fig.1512 T=¥.514p1)

=[2(d2-d)]pr (4)
The longitudinal stress o, has been shown to be constant (Para. 15.8),
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and for a cylinder with closed ends is obtained from the equilibrium
equation for any transverse section

o2-(m[4)(dy? - di?) =py . (w[4)d,?
or oy =[di?/(d2? - di?)]ps ()
Error in “thin cylinder ” formula (Para. 15.1)
If the thickness is ¢, then write d, =d; +2¢ in (3) above, i.e.
(d; +2t)2+d;2
A= @ 2zt
2(d; /52 +4(d[t) +4
T Ay +4
o) =(244/44)p,
= 5-55p,
which is 11%, higher than the mean value given by p,d,/2¢
If dyft=20

-
If d,/t =10

o =(884/84)p,
=10-5p,
or 5%, higher than p,d,;/2t
It should be noted that if the mean diameter is used in the thin
cylinder formula the error is practically eliminated.

ExaMpLE 7. The cylinder of a hydraulic ram is 6 cm internal diameter.
Find the thickness required to withstand an internal pressure of 40 N[mm?, if
the maximum tensile stress is limited to 60 N[mm? and the maximum shear

stress to 50 N[mm?2.
If D cm is the external diameter, then the maximum tensile stress is
the hoop stress at the inside, i.e.
60 =[(D2 +36)/(D? - 36)]40 from (3)
or 3D2-108=2D2+72
D=4/180
=1343 cm
The maximum shear stress is half the “stress difference” at the inside,
ie.
50 =[D2?/(D? - 36)]40 from (4)
or 5D2 - 180 =4D2
D=+4/180
=13-43 cm  as before
Thickness =4(13-43 - 6)
=372 cm

EXAMPLE 8. Find the ratio of thickness to internal diameter for a iube
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subjected to internal pressure when the ratio of pressure to maximum circum~ B

ferential stress is 0-5.

Find the alteration of thickness of metal in such a tube 8 cm. internal

diameter when the pressure is 50 Nfmm?. E=200,000 N/mm?2; v=0-304.
(U.L)

61=[(d22 +d,9)/(d:? ~d)]py from (3)

or (d22 —dlz) =0‘5(d22 +d12)
giving dyldi=4/3
Ratio Thickness _ d, —-d; _ /3 -1
Internal diameter  2d; 2

=0-366
d;=80mm d,=804/3=138-6 mm
At inside
=50 N/mm?2, ;=100 N/mm?
oy =pd;?/(ds? ~ dy2) =25 N/mm?
Hoop strain =(100 +0-:304 x 50 - 0-304 x 25)/E
=112-6/E
Increase in internal diameter =(112-6/E)80 mm
At outside .
=0, o1=>50 N/mm?2 (since o; —p =constant =50)
05 =25 N/mm? as before.
Hoop strain =(50 - 0-:304 x 25)/E
=47-4/E
Increase in external diameter =(47-4/E)138:6 mm

Decrease in thickness =(112:6 x 80 —47-4 x 138-6)/(2 x 200,000)
=0-006 mm

ExamPLE 9. The maximum stress permitted in a thick cylinder, radii 8 cm
and 12 c¢m, is 20 N/mm?. The external pressure is 6 N/mm?2; what internal
pressure can be applied?

Plot curves showing the variation of hoop and radial stresses through the
material.

External pressure 600 = —a +5/576 N/cm?

Maximum stress =hoop stress at inside

i.e. 2000 =a +b/256
Adding and solving
b =(2600 x 256 x 576)/832
and a=2000 - 5/256 =200

Internal pressure = —a +5/256

= —200 +(2600 x 576)/832
=1600 N/cm?

The constant difference between the hoop and radial stresses =400
N/cm?2.
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At 10 cm radius

oy =a +bf400
=200 + (2600 x 256 x 576)/(832 x 400)
=1350 N/cm?
and p =07 —400 =950 N/cm?
See Fig. 15.13 for a graphical representation of the stress variation.
20 s,
76 ! .
; i
"’12 ! l70
£g P |6
S ! :
70 72
Radius(cm)
Fig. 15.13

ExampLg 10. Two thick steel cylinders A and B, closed ai the ends, have
the same dimensions, the outside diameter being 1-6 times the inside. A is sub-
jected to internal pressure only and B to external pressure only. Find the
vatio of these pressures (1) when the greatest circumferential stress has the
same numerical value, and (2) when the greatest circumferential strain has
the same numerical value. Poisson’s ratio=0-304. (U.L.)

Cylinder A
Internal pressure p;.
Greatest circumferential stress
8, =[(d2 +d1»)/(d;2 -di)]p, from (3)
=(356/1-56)p; tensile.
Longitudinal stress
oy =p1d%/(dy2 - d1?) from (5)
=p,/1-56 tensile.
Greatest circumferential strain
=(1/E)( 1 +p1 —v02)
=(p,/E)(3:56/1-56 +0-304 —0-304/1-56) from above

=2-394p,/E
Cylinder B
External pressure p, = —a +b/d,?
Internal pressure = —a+b/d;?
s b= —[di2d?/(d; - d D)
and a= -[dy?/(d;? - di)]p»
o1 =a + b/ d?
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and reaches its maximum numerical value at d =d,, i.e.
&= = [d?/(dy? - d1D)]p; - [d:%/(d:? - d1)] p;
= —(2 x2-56/1-56)p,
Longitudinal stress o, is given by the equilibrium equation
ox(n/4)(d;? - di?) =p(m/4)d,?
ie. oy =(2-56/1-56)p, compressive
Greatest (numerical) circumferential strain

=(p,/E) -5-12/1:56 +0-304 x2-56/1-56), at the inside

= -(2-782/E)p,
Case (1)
(3:56/1-56)p; =(2 x2:56/1:56)p,
ie. p1/p2=5-12/3-56 =1-44
Case (2)

2-394p,/E =2-782p,/E
ie. p1/p2=1-16

15.10. Plastic Yielding of Thick Tubes. If the internal pressure is
sufficiently increased, yielding will occur first at the internal surface,
and will spread outwards until the whole cross-section becomes plastic.
Strains will not generally be excessive until this final state is reached,
since in the intermediate state there will be an outer ring of elastic
material. If the pressure for complete plasticity can be estimated and
used as the ‘““collapse” pressure, the design pressure can be derived
from it by dividing by a suitable ‘‘ load factor”, as in the plastic theory
of bending (Chap. XII).

Another application is the * autofrettage” of gun tubes and pressure
vessels, in which the tube is deliberately overstrained by internal pres-
sure before being put into service, with the intention of producing
residual compressive stresses in the inner layers (this has the same
effect as shrinking one tube over another, Para, 15.11 below, the
maximum hoop stress under the working pressure being thereby
reduced).

Assumptions in theory of plastic yielding

(1) Yield takes place when the maximum stress difference (or shear
stress) reaches the value corresponding to yield in simple tension
(Tresca’s criterion, Para. 3.21(2)). This is in good agreement with
experiment for ductile materials.

(2) The material exhibits a constant yield stress oy in tension, with
no strain hardening (ideal elastic-plastic material, Fig. 12.1).

(3) The longitudinal stress in the tube is either zero, or lies alge-
braically between the hoop and radial stresses. From this it follows that
the maximum stress difference is determined by the hoop and radial
stresses only.
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Hoop and Radial Stresses in the Plastic Zone

The equilibrium equation (6) of Para. 15.8 must apply,

oy +p +rdpdr=0 (1)
and the yield criterion, by the assumptions stated above, is
o1 +p=0y (2

(provided o, and p are stresses of opposite type). Subtracting these
equations and integrating,

p=oy log, r+constant

If the radial stress is p, at the outer radius r, of the plastic zone, then
the constant=p, + oy log, r,, and hence the radial stress

p=oylog, (rfr) +p2 (3)
From (2), the hoop stress
oy =oy[l - log, (r2/r)] ~p2 4)

Partially Plastic Wall

Consider a thick tube of internal radius r; and external radius 5, to
which an internal pressure only, of magnitude p;, is applied of such
intensity that the material at a radius below r, is in the plastic state
(i.e. r, is the radius at the boundary between the inner plastic region
and the outer elastic region).

If p, is the radial stress at r,, it is given by elastic theory for internal
pressure only (Para. 15.9, eqn. (4)), such that the maximum stress
difference is oy (i.e. just reaching the yield condition at r,).

O'Y = Ul +P at 72
=2[r3?/(r3? - r2)]p,
or p2=[(r3? ~1%)[2r;?]oy (5)

Substituting this value in (3) and (4) gives the variation of stresses in
the plastic zone, i.e.

p=oyllog (rafr) +(r32 —r2)/2ry2] (6)
and 01 =0y[(r32 +71,2)/2r3% —log (ry/r)] (7)

The relation between internal pressure p; and radius of yield 7, is
given from (6) when r =7y, i.e.

p1=0 [log (rafr1) +(r32 - r2?)[2r5?)] (8)
The pressure at initial yielding is found by putting r,=r,, i.e.
p1=[(ra2 -n2)/2r3%oy 9
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and the pressure required for complete yielding through the wall is
given by r, =73, i.e.

p1=oylog, (r3/r)) (10)

Since 0 +p = oy in the plastic zone, the hoop stress at the inside in the
fully plastic state is

0, =oy[1 -log, (r3/r\)] (11)

If the longitudinal stress is zero, equations (10) and (11) can only
apply for r3/r;<2-718, since at this value p; =0y and 0, =0, and the
maximum stress difference becomes p,. If the tube is thicker than this,
and the internal pressure is raised to the value o,, there will be an inner
zone in which the radial stress is constant and equal to oy and the hoop
stress is — gy (to satisfy the equilibrium equation (1)), an intermediate
zone in which equations (10) and (11) apply, and an outer elastic zone.
This argument can be modified to take account of any uniform longi-
tudinal stress.

ExamprE 11. A4 gun barrel of 100 mm bore and 75 mm thickness is subjected
to an internal pressure sufficient to cause yielding in two-thirds of the metal.
Calculate this pressure and show the variation of stresses across the wall.

What are the pressures required for initial yield and complete yield? Assume

that yield occurs due to maximum shear stress, and neglect strain hardening.

In simple tension ay =400 N/mm?2.
Equation (8) gives the pressure required to cause a given depth of
yielding, where r; =50 mm, and r3 =125 mm. Then
p1=400(log, 2 +9/50)
=350 N/mm?
From (5)
P2 =(9/50)400
=72 N/mm?
p3=0
At r4, hoop stress is given by (7)
o1 =400(41/50 —log, 2)
=50-5 N/mm?
At 7,, from the plastic relation o) +p =0y,
61 =0y —P>
=328 N/mm?
. In the elastic zone, using the conditions p, =45 and p; =0 for a tube

of inner and outer radii 100 mm and 125 mm, it follows from Para. 15.9
that hoop stress

r32 +72 12
1 == T e
732~ 752 72

2
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o1 =(41/9)72 =328 N/mm?2
Atr=125mm
o1 =(32/9)72 =256 N/mm?

The variation of these stresses in the two zones is shown in Fig. 15.14,

Elaskic
Zone

328
¢ TN
7
214 256

Plastic Zone
350

Stress -
N/m
72
[ p
50 75 100 125
Radius mm

Fig. 15.14

The pressure for initial yield is given by (9)
p1=(21/50)400 =168 N/mm?

and the pressure for complete yield by (10)
$1=400 log, 2-5 =367 N/mm?2

15.1x. Compound Tubes. It can be seen from Fig. 15.12 that the
hoop stress falls off appreciably as the radius increases, and that the
material near the outside of the tube is not being stressed to its limit.

In order to even out the stresses the tube may be made in two parts,
one part being shrunk on to the other (after heating). By this means the
inner tube is put into compression and the outer tube is in tension.
When an internal pressure is then applied it causes a tensile hoop stress
to be superimposed on the “shrinkage” stresses, and the resultant stress
is the algebraic sum of the two sets.

In general the procedure is first to calculate the stresses due to
shrinkage in each component, from a knowledge of the radial pressure
at the common surface. The stresses due to application of internal
pressure are calculated in the normal way, and the two tubes may be
treated as one (provided they are of the same material),

The radial pressure at the common surface due to shrinkage is related
to the diametral “interference’ before the tubes are fitted together. If
o, is the compressive hoop stress at the outside of the inner tube and o’

10+
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the tensile hoop stress at the inside of the outer tube, then due to
shrinkage: inner tube diameter is decreased by

(1/E)(o1-vp) xd
and the outer tube diameter is increased by
(1/E)( oy +vp) xd
where d is the common diameter.
The difference of diameters before shrinking

=sum of these two changes
=(1/E)(01+0,) xd
ExampLE 12. 4 tube 4 cm inside by 6 cm outside diameter is to be reinforced
by shrinking on a second tube of 8 cm outside diameter. The compound tube is
to withstand an internal pressure of 50 N/mm?2 and the shrinkage allowance is
to be such that the final maximum stress in each tube is to be the same. Cal-
culate this stress and show on a diagram the variation of hoop stress in the two
tubes. What is the initial difference of diameters before shrinking on?

E =207,000 N/mm2.
Let pg be the common radial pressure due to shrinkage.
For the inner tube:
At the outside Po=-a+b/36
At the inside =-a+b/16
from the general equations (8), Para. 15.8.
Subtract and solve
b= -[(36 x16)/(36 —16)]pg = ~ (144/5)p,
and a=b/16 = - (9/5)p,
Maximum hoop stress =a +5/16 = — (18/5)p, (1)
Hoop stress at 6 cm diameter =a +5/36 = ~(13/5)p, (i)
For the outer tube:
At the inside
At the outside
Subtract and solve
b’ =[(64 x 36)/(64 ~ 36)1po =(576/7)pe
and a’ =b'[64=(9/7)pq
Maximum hoop stress =a’ +5’/36
=(25/7)pq (iii)
Hoop stress at 8 con diameter =a’ +5’/64
=(18/7)p (iv)
The lines marked ““shrinkage stresses” on Fig. 15.15 are sketched from
results (i) to (iv), the numerical value of py being obtained later.

Stresses due to internal pressure:
At the inside 50=-a"”"+b"/16
At the outside 0=-a"+b"/64

po=—a’ +b'[36
0=-a"+b'/64
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Subtract and solve
b” =[(64 x 16)/(64 — 16)] x 50 =(64/3) x 50
and a”=50/3
Hoop stresses:
4 cm diameter oy =50/3 +(64 x 50)/(3 x16)

=83-3 N/mm? )
6 cm diameter o =50/3 +(64 x 50)/(3 x 36) '

=464 N/mm? (vi)
8 cm diameter o7 =50/3 + (64 x 50)/(3 x 64) B

—=33-3 N/mm?2 (vii)

From results (v), (vi), and (vii) the line of ““‘pressure’” stresses is drawn
on Fig. 15.15. The final resultant hoop stress in each tube is obtaine:d by
taking the algebraic sum of shrinkage and pressure stresses. It was pointed
out in Para. 15.8 that the maximum stress occurs at the inside surface.
Equating these values for the two tubes gives

@) + (v) = (iii) + (vi)

i.e. ~(18/5)p, +83-3 =(25/7)p, +46-4
or o =369 x35/251
=515 N/mm?
Pressure
833 N Stresses  Resultant stresses
647
2.
LE q
N e 1
a-E , 1163 I
= | Shrinkage ——
S stressesy—1" 1133
X [Fem ¢ 6bcm 8em
186 /—'—?3'4' —>-Diameter

Fig. 15.15

Numerical value of maximum hoop stress
=(iii) + (vi) =64-7 N/mm?2
the other values being shown in Fig. 15.15.
Tnitial difference of diameters at the common surface

=difference of hoop strains x diameter
=(1/E)(difference of hoop shrinkage stresses) x diameter
=[(13-4 +18-3)/(207,000)] x 60

=0-0092 mm

15.12. Hub Shrunk on Solid Shaft. The shaft will be subjected to
an external pressure p;, and if o) and p are the hoop and radial stresses
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at a radius 7, the equilibrium equation (6) of Para. 15.8 will be obtained

as for a ‘““thick cylinder,” i.e.
oy +p+r.dpldr=0

The longitudinal stress is zero, and assuming the longitudinal strain
to be constant, it follows from equation (1) of Para. 15.8 that

oy —p = constant
These two equations are solved as before, giving
oy =a+b/d?
and p=—a+bjd?

But since the stresses cannot be infinite at the centre of the shaft (i.e.
d =0), then b must be zero, i.e.

oy=a=—p

which means that the hoop stress is compressive and equal to
the radial stress (and consequently the external pressure), both
stresses being constant throughout.

The hub or sleeve is subjected to an internal pressure p; and is
treated as a thick tube under internal pressure (Para. 15.9).

ExampLE 13. 4 steel shaft 50 mm diameter is to be pressed into a cast-iron
hub 150 mm external diameter and 100 mm long, so that no relative slip occurs
under a torque of 5 kN'm. Find the necessary force fit allowance and the maxi-
mum circumferential stress in the hub. E;=2 x E,. Poisson’s ratio =025 for
both, and coefficient of friction between surfaces =0-3.

If, after assembly, the shaft is subjected to an axial compressive stress of
80 Nimm?2, what is the resulting increase in the maximum circumferential hub
stress? Ey=207,000 N]/mm?.

Let p; be the radial pressure at the common surface. Then

Torque =(up; x surface area) x radius
ie. 5 x106=0-3p; x7 x50 x 100 x 25 Nmm
or py1 =425 N/mm?

For the shaft:
Hoop stress =p; =42-5 N/mm? compressive,

and Decrease of outside diameter =Hoop strain x diameter
(4-25 - 025 x42:5) x 50
= 207,000
=0-0077 mm
For the hub:

Hoop stress at inside (maximum) = [(1502 +502)/(1502 - 502)] x42-5
(Eq. (3), Para. 15.9)
=532 N/mm?2
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(53-2 +0-25 x 42-5) x50

103,500
=0-0308 mm

Force fit allowance =0-0077 +0-0308

=0-0385 mm

Increase of inside diameter =

Let 0y be the increase in maximum hoop stress in the iub when an axial
stress of 80 N/mm? is applied to shaft. Then the corresponding increase
in radial pressure at the inside surface is determined by the dimensions of
the hub, and

oy =[(1502 +502)/(1502 - 502)] x increase in pressure
giving an increase in pressure =08 o7.

The radial and hoop stresses in the shaft must also increase by 0-8ay
numerically, since they are both equal and compressive.

Increase in hoop strain at the outside of the shaft
=(1/E)( - 0-801 +0-25 x 0-80 +0-25 x 80)
=increase in hoop strain at inside of hub
=(1/E,)(oy +0-25 x 0-80y)

~0-60, +20=2-40; (E;=2Ey)
o3 =667 N/mm?

giving
from which

15.13. Thick Spherical Shells. At any radius r let the circumferential
or hoop stress be o tensile, and the radial stress be p compressive.

If u is the radial shift then it was shown in Para. 15.8 that the hoop
strain is given by u/r, and the radial strain by du/dr. The stress-strain
equations are

E.ufr=0c-vo+vp (1)
E.duldr=-p—-2vo 2)
Multiplying (1) by r and differentiating
E.du|dr =c —vo +vp +r[do|dr —v(do|dr) +v(dp[dr)]
= —p~2vo from (2)
or (1+v)(o +p) +r(1 —v)(do/dr) +vr(dp[dr) =0 )

Considering the equilibrium of a
hemisphere (Fig. 15.16)

o.2mr .81 = prr? — (p + Sp)n(r + 6r)?
or o+p=—(r/2)(dp/dr) in the limit (4)

Substituting for o +p from (4) in (3)

— (r[2)(dp]dr)(1 +v) +r(1 —v)(da]dr)
v vr(dpldr)=0

which reduces to
doldr ~%.dpjdr =0

Fig. 15.16
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Integrating

15.13,

o — p/2 =constant
=4, say (5)

Substitute for o from (5) in (4)
3pl2+ A= —(r[2)(dp]dr)

Rearranging
1 d(pr3)
2 " dr 24
or Aer) _ _p 402
dr
Integrating

pr3i=—-24r3/3+B
pP=-24/3+B/r3
= ~a+b/d?® 6)
where a=2A4/3 and b=8B.
From (5) c=a+b/2d3 7
If the inside and outside diameters are d; and d,, and the pressures
on these surfaces are p; and p, respectively
p1=—a+bld;3
and Pr=—a+b/d}
Subtracting and solving
b=[d3d3/(dy? ~ d)](p1 - p2)
and a=>bld;3-p,
=(p14:? - p2d)/(d3 - dy®)
From (6) and (7)
P =[82422 - p1ds3 +(p1 - p2)dy3d3 |d3)[(d3 - d;3)
and 0 = [p1d1® - p2dy3 +(p1 — p2)d1d3[24%) (d3 - d;3)
For internal pressure only (p,=0)
p=p1d:3(d3d3 - 1)[(d? - dy3)
and 0 = p1d (3240 + 1))(dy? - dp)
The maximum stress is the value of f at the inside: i.e.
6 =p1(dy3 +2d,3)[2(d)? - d,3)
and the maximum shear stress
=35 +p1)
=1.3d3/4(dy? - dy3)
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SUMMARY
Thin Cylinders:
Hoop stress o) =pd/2t.
Longitudinal stress o, =pd/4t.
Increase in capacity =(2 x hoop strain +longitudinal strain) x
volume.
Rotational stress = pr2w?,

Thin Sphere:
Hoop stress o =pd/4t.
Increase in capacity =(3 x hoop strain) x volume.

Thick Cylinders:
Hoop stress oy =a +b/d2.
Radial stress p = —a +5/d2.
Internal pressure only: & = [(d,2 +dy2)[(dy2 — d12)]p;.
Longitudinal stress o, =[d;2/(d,2 - d;2)]p; (closed ends).
Plastic yielding under constant stress difference.

Compound Tubes:
Resultant stress=algebraic sum of ‘‘shrinkage” +‘ pressure”
stresses.
Shrinkage allowance=(1/E)(numerical sum of hoop stresses) x
common diameter.

Hub on Shaft:
In shaft, hoop stress =radial stress = external pressure.

Thick Spheres:

Hoop stress o =a+b/2d3.
Radial stress p = —a +b/d3.

PROBLEMS

1. A thincylindrical shell, 1:5 m internal diameter, 2-4 m long, internal volume
4-23 m3, plates 25 mm thick, is under internal pressure of 1 N/mm?2. Assuming
the end plates are rigid, find the changes in length, diameter, and volume.
E=206,000 N/mm2; »=0-267. (0-081 mm; 0-19 mm; 0-00124 m3.)

2. A thin spherical copper shell of diameter 0-3 m and thickness 1-6 mm is
just full of water at atmospheric pressure. Find how much the internal pressure
will be increased by pumping in 25,000 mm?3 of water. £ =100,000 N/mm?2: v =
0-286; K =2200 N/mma?. (1-:22 N/mm?2.)

3. A copper tube 25 mm bore and 2-5 mm thick is plugged at its ends and just
filled with water at atmospheric pressure. If an axial compressive load of 5 kN is
applied to the plugs, find by how much the water pressure will rise. Assume the
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plugs are rigid and fixed to the tube, and neglect end effects. £ =103,000 N/mm?2;
v=0-35; K=2200 N/mma?. (58 kN/m2.)
4. A long straight tube, 144 mm bore and 3 mm wall thickness, is made of
steel which yields at 325 N/mm? in tension. If the ends of the tube are plugged
and it is subjected to an internal fluid pressure find what pressure is required if
yielding is assumed to take place according to the following theories of elastic
failure, (1) maximum principal stress, (2) maximum principal strain, (3) maxi-
mum shear stress, (4) maximum strain energy, (5) maximum shear strain energy.
v=0-3, (I.Mech.E))
(13-5, 16-2, 27, 13-9, 15-6 N/mm?2.)

5. A cylindrical compressed-air drum is 1:9 m diameter with plates 12:7 mm
thick. The efficiencies of longitudinal and circumferential joints are respectively
859 and 459%,. If the tensile stress in the plating is limited to 100 N/mm? find
the maximum safe air pressure. (U.L.) (1-14 N/mm?2.)

6. A thin cylinder made of light alloy 200 mm internal diameter, 5 mm thick,
is wound with a single layer of steel tape, 1-25 mm, under a stress of 85 N/mm?2.
If the hoop stress in the cylinder is not to exceed 42-5 N/mm?2, find the maxi-
mum internal pressure and the stress in the tape. Poisson’s ratio =0-25; ratio of
elastic moduli 2-5. (U.L.) (4-8 N/mm?2; 215 N/mm?2.)

7. A copper tube 47-5 mm inside diameter, 50 mm outside diameter, is closely
wound with steel wire 07 mm diameter. Find the winding tension on the tube
if an internal pressure of 1-42 N/mm? is required before the copper is subjected
to tension, the tube being free to expand or contract axially. Es=210,000 N/
mm2; E; =126,000 N/mm2. (U.L.) (13-7N.)

8. A brass cylinder 100 mm outside diameter and 87-5 mm bore has a single
layer of steel wire 12 mm diameter wound on it under a constant tension of
35 N/mm?2. If the cylinder is then subjected to an internal pressure of 14 N/mm2
and to a rise in temperature of 168° C, determine the final magnitude of (a) the
tensile stress in the wire, (b) the radial pressure between the wire and cylinder,
and (c) the hoop stress in the cylinder wall. Assume the cylinder to be a thin
shell with closed ends. For steel, £=210,000 N/mm?2, a«=11-8 x10~6 per °C.
For brass, E =87,500 N/mm?2, a =186 x 106 per °C, »=0-3. (U.L.)

(Add temperature strains to corresponding sides of (6), Para. 15.6. (a) 365 N/
mm?2, (b) 69 N/mm?2, (c) 47 N/mm?2.)

9. A bronze sleeve of 200 mm internal diameter and 6-4 mm thick is pressed
over a steel liner 200 mm external diameter and 16 mm thick, with a force-fit
allowance of 0-07 mm on diameter. Treating both as thin cylinders find (1) the
radial pressure at the common surface, (2) the hoop stresses, (3) the percentages
of the fit allowance met by the sleeve and liner. Ep =117,000 N/mm?2, » =0-33;
Es=207,000 N/mm?2, vs=0-304. (U.L.)

(2:17 N/mm?2; 34-7, 13-9 N/mm?2; 82-5, 17-5%,.)

10. A thick cylinder 200 mm internal diameter is subjected to an internal
pressure of 3-55 N/mm?. If the allowable stress is 24 N/mm?2, find the thickness
required. To strengthen the cylinder it is wire wound, and an internal pressure
of 6:4 N/mm? can now be applied. What is the radial pressure caused by the
wire? (162 mm; 2-5 N/mm?2.)
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11. A pressure vessel 0:3m internal,vd'g!gn Q%H%F%?MQ&%%%‘B&» m long,
with closed ends, is to be subjected to a hydraulic test of 15 N/mm2. Calculate
the change of internal and external diameters. E =210,000 N/mm?; » =0-3.

(0-074, 0-064 mm.)

12. A thick-walled steel cylinder having an inside diameter of 150 mm is to be
subjected to an internal pressure of 40 N/mm?2. Find to the nearest mm the out-
side diameter required if the hoop tension in the cylinder wall is not to exceed
125 N/mma2.

Calculate the actual hoop stresses at the inner and outer surfaces of the cylinder
and plot a graph of the variation of hoop tension across the cylinder wall.

(210 mm; 124 N/mm?2; 83-5 N/mm2.)

13. A thick cylinder of uniform material is unstressed when at a uniform
temperature. It is heated so that there is a temperature variation along any
radius, the temperature being ¢ at a radius 7. If, due to heating, the radius 7 in-
creases by a small increment #, show that

d [1 d(ru)] _ dt
7 T -G
where a is the coefficient of linear expansion. (U.L.)

(Assume oz =0 and add term Eut to right-hand side of equations (2) and (3)
of Para. 15.8. Eliminate o1 and p between equations (2), (3) and (6). See also
Para. 16.6.)

14. A steel cylinder 20 cm external diameter and 15 cm internal diameter has
another cylinder, 25 cm external diameter, shrunk on to it. If the maximum
tensile stress in the outer cylinder is 80 N/mm?2, find the radial compressive stress
between the cylinders.

Determine the circumferential stresses at the inner and outer diameters of
both cylinders, and calculate the shrinkage allowance at the common surface.
E =208,000 N/mm?2; v =0-304.

(17-5 N/mm?; - 80, —62-5 N/mm?; 80; 62 N/mm?2; 0-14 mm.)

15. A compound cylinder is made by shrinking an outer tube, of 12 cm ex-
ternal diameter, on to an inner tube, of 6 cm internal diameter. Find the com-
mon diameter at the junction if the greatest circumferential stress in the inner
tube is numerically % of that in the outer. (974 cm.)

16. A compound tube 10 cm internal diameter and 20 cm external diameter is
made by shrinking one tube on to another. After cooling a radijal stress of
20 N/mm?2 is produced at the common surface, which is 15 cm diameter. If the
tube is now subjected to an internal pressure of 60 N/mm?2, find the maximum

hoop stress. (127 N/mm?2.)

17. A compound cylinder is to be made by shrinking one tube on to another so
that the radial compressive stress at the junction is 28-5 N/mm?. If the outside
diameter is 26-5 cm, and the bore 125 cm, calculate the allowance for shrinkage
at the common diameter, which is 20 cm. E =210,000 N/mm?2. (0-16 mm.)

18. A steel sleeve is pressed on to a solid steel shaft of 50 mm. diameter. The
radial pressure between the shaft and sleeve is 17-5 N/mm? and the hoop stress
at the inner surface of the sleeve is 42 N/mma2, If an axial compressive load of

10*
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54 \é@'}s: I%WI W&P lQ%{%O&HEft, determine the change in radial pressure.
v =0-304. (2-4 N/mm?2.)

19. A steel cylinder 20 cm external dia. and 12-5 cm internal dia. is fitted with
a bronze liner which has an internal diameter of 10 cm. Assume that there is no
stress in the compound cylinder due to fitting; regard the liner as a thin cylinder
and ignore longitudinal stress and strain.

Find the maximum direct stress and the maximum shear stress in each
material due to an internal pressure of 72 N/mma2.

For steel, E=207,000 N/mm2, v=0-28. For bronze, E=112,000 N/mm?2
»=0-30 (U.L.)

(Steel, 107, 77 N/mm?2; Bronze, 52, 62 N/mm?2; Common Pressure =47 N/
mm?2.)

20. A steel shaft 38 mm diameter is to be encased in a bronze sleeve, 57 mm
outside diameter, which is to be forced into position and, before forcing on, the
inside diameter of the sleeve is 0-05 mm smaller than the diameter of the shaft.
Find (a) the radial pressure between the shaft and sleeve, (b) the maximum hoop
stress in the sleeve, (c) the change in outside diameter of the sleeve. Ej==
205,000 N/mm?2, vs =0-29; E=123,000 N/mm?2, v, =0-34. (U.L.)

(48 N/mm2; 125 N/mm2; 0-035 mm.)

21. A bronze sleeve having an outside diameter 76 mm is forced onto a steel-
rod 57 mm diameter, the initial inside diameter of the sleeve being 0-064 mm
smaller than the rod diameter. When in service the compound rod is subjected
to an external pressure of 19-5 N/mm? and at the same time to a rise in tempera-
ture of 100° C. Determine (a) the radial pressure between sleeve and rod, (b) the
greatest circumferential stress in the sleeve. For steel, E=205,000 N/mm2,
v=0-3, =11 x10-6 per °C. For bronze, E =104,000 N/mm?2, v =0-33, a =19 x
1076 per °C. (U.L.)

(Apply compatibility equation to common diameter. (a) 28-5 N/mm2,
(b) 12-5 N/mm2,

22. Find the thickness of a spherical shell of 75 mm internal diameter, to
withstand an internal pressure of 28 N/mm?, if the permissible tensile stress is
63 N/mm?2 and shear stress 47 N/mm?2,

What is the change of thickness under pressure of such a sheil. E =210,000 N/
mm?2; v=0-3. (8:8 mm; 0-0025 mm.)
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CHAPTER XVI

Rotating Discs and Cylinders

16.1. Disc of Uniform Thickness. It may be assumed, for a ““thin”
disc, that the stress in the axial direction is zero.

At a radius r from the axis of rotation, let the stresses be circum-
ferentially o (hoop stress), and radially o,, both tensile. Then if u is the
radial shift, the stress-strain equations are:

E.duldr =0, ~voy 1)

-5 E.u/r=0,—vo, (compare Para. 15.8) 2
Obtaining E. dufdr from (2) and equating to (1) gives

(o1 —02)(1 +v) +r.doy[dr —vr(do,/dr) =0 3)

If the angular velocity of rotation is
w, and the density of the material is
~p, then for the element shown in
Fig. 16.1, the centrifugal force
=(prdf.6r)rew?

= pr2w?2dr .80 for unit thickness

or2wtdr.8o

The equilibrium equation in the
radial direction is

20, .dr.sin 360 + 0,60 —-
(o3 + 8a,)(r + 67)88 =pr2w2dr . 60
In the limit this reduces to
0} — 0y —1.day/dr = priw?
Substitute for g, — o, from (4) in (3)
(r.day/dr + pr2w?)(1 +v) +r.doy [dr —vr(do,/dr)=0
Rearranging

do[dr +do,[dr = — (prw?)(1 +v)
Integrating
o1 +0y= —(pr2w?/2)(1 +v) +24 5)
Subtract (4)
205 +r.doy)dr = — (pr2w?[2)(3 +v) +24
1. d(oyr?) _ _priw?(3 +v) +24
r dr 2

or

287
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ntegrat
o2 = —(pr'w2/8)(3 +v)+ Ar2 - B
or o, =A4 - Bjr2 — (3 +v)(priw?/8) 6)
From (5)
o, =A +Bjr2 — (1 + 3v)(pr2w?/8) )

16.2. Solid Disc. Since the stresses are not infinite at the centre,
B =0, from (6) and (7) of Para. 16.1.

If R is the outside radius, then
0,=0=A4 - (3 +v)(pR2w?2(8) from (6)
From which 02 =(pw,[8)(3 +v)(R2 ~12)
and o1 =(pw?(8)[(3 +v)R2 — (1 + 3v)r?]
At the centre, r=0, and o) =0 =(3 +v)(pw2R2/8)
and this is the maximum stress.
At the outside

o1=(1 ~v)(pw2R2}4)
o For a value of v=0-3
Vel 61=(3-3/8)(pw?R?)
”T % ) =0-41pw?R2 (at the
) Axis of centre)
i ;
Stress RjcaLion and at the outside
a1=(0-7/4)(pw?R2)
=0-4256,
The variations of the hoop and
Fig. 16.2 radial stresses with radius are shown

in Fig. 16.2.

16.3. Disc with Central Hole. If the inside and outside radii are
R, and R, respectively, then the radial stress is zero at each of these
values. From (6) of Para. 16.1

0=4 -~ B|R2 - (3 +v)(pR,2w?/8)
and 0=4 - B/R,2 - (3 +v)(pR,2w?/8)
Solving
B=(3 +v)(pw?/8)(R12R;?)
and A =3 +v)(pw?/8)(R,2 + R?)
Then o2=3 +¥)(pw?/8)(Ry2 + Ry2 — R\2Ry2[r2 — 12)
and
o1=(pw?[8)[(3 +V)}(Ry2 + R;2 + Ry2Ry2[r2) — (1 + 3v)r?]
0 is 2 maximum when r =4/R,R,, and
62 =3 +¥)(pw?/8)(R, ~ R,)?

from (7)
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o1 is a maximum at the inside, and
&1 =(pw?/H)[(1 -V)R:%+(3 +v)R,7]
Note that if R, is very small, &—>(3 +v)(pw?R,2[4), which is twice
the value for a solid disc (Para. 16.2),
At the outside
o1 =(pw?/4)[(3 +V)Ry% + (1 =¥)R)7]
If Ri—>R,=R, then

61—>pw?R2 s
as in the case of a thin rotating T'T 0,
cylinder (Para. 15.7). R

The variation of stresses is
shown in Fig. 16.3.

0 Axis of
rotation

—> Stress

D

Fig. 16.3

ExampLE 1. A thin uniform steel
disc of 25 cm diameter, with a central
hole of 5 cm diameter, runs at
10,000 r.p.m. Calculate the maxi-
mum principal stress and the maxi-
mum shearing stress in the disc. v =
0-3; Density =7700 kg/m3.

The maximum principal stress is

6, =(pw?4;3)[(1 -v)R 2 +(3 +¥)R,?] from above
2
_7700 (10’000, x 2") (07 x 00252 +3-3 x 0-125?) N/m?

4 60
=110 N/mm?
The maximum shearing stress at any radius
=30y —02)

=(pw?/8)[(3 + V)R 2R?[r? + (1 —v)r7]
It is clear from Fig. 16.3 that the greatest stress difference occurs at
r=R;.
Thlen maximum shearing stress
__7700 (10,000 X 277)2( 3
8 60
=55 N/mm?

0:025 x 0-1252

o . 2

16.4. Long Cylinder. Let the longitudinal stress be o, and assume
that the longitudinal strain ¢ is constant (i.e. cross-sections rema.in
plane, which must be true away from the ends). Proceeding as in
Para. 16.1, the strain equations are:

Ee=a;~-v(oy +07) (1)
E.du|dr =0, —v(o; +0)) (2)
E.ujr =01-(oy +ay) 3
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te t.
\ﬂfilmmall}{xllg :’33/81}’) lt?gtstf)gex{rl:quations (2) and (3)
E.du|dr =c, —v(o; +0y) +1[doy/dr —v(do,/ dr) —v(do,/dr)]
from (3)
=0y ~V(O'l +0’,) from (2)
(01 -02)(1 +v) +7.doy[dr —vr(do,|dr) —vr(do,|dr) =0
Substituting doy/dr =v(doy/dr + do,/dr) [from (1) gives
(o1 =02)(1 +v) +7(1 =v2)(doy/dr) —vr(1 +v)(do,/dr) =0

giving

or o1~ 02 +7(1 ~v)(doy/dr) —vr(do,/dr) =0 (4)
The equilibrium equation is as before (Para. 16.1)
01~ 0 ~7.doy/dr = pr2w? (5)
Subtracting (4)

=1(1 —v)(doy/dr) —r(1 —v)(do,/dr) = pr2w?

doy , doy _ pra?

or 2T
dar dr (1-v)
Integrating
priw?
toy=—r—+2
o1+0; 2 —v)+ A (6)

Comparing this with equation (5) of Para. 16.1 it can be seen that the
results for a long cylinder can be obtained from those for a thin disc by

v
for v.

» 1 .
writing —— in place of 1 +v, i.e. substituting
1-v 1-v
Solid cylinder (obtained from Para. 16.2)

"The maximum stress occurs at the centre, where o, and 07 are equal,
and

3-v pw2R?

S P

If v=0-3
&1 =(2:4/5-6)(pw2R2/8)
=0-43pw2R2/8
(compare 0-41 pw2R2/8 for a solid disc).
Hollow cylinder (from Para. 16.3)

A 3 - 2
%= (ﬁi)P*‘é)(Rz ~Ry?
2
and 6, = R’I"”__V) [(1 - 20)Ry2 +(3 - 20)R,7]

which values again do not differ greatly from those for a thin disc.
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16.5. Disc of uniform Strength. Consider the condition of equal

stress at all radii, i.e. 6, =0, =constant =g, say.
Let ¢ be the thickness at a radius

r, and ¢ + 8¢ at a radius 7 + d7.
The mass of the element (Fig.

16.4)

oriw?de.ort

o(r+07) 08t +I8)

=pr88.6r.t approx.
and the centrifugal force
= pr2w236-8r-t

Hence the equilibrium equation
is
208r.t.5in 180 +or80. t=

ofr +8r)86(t + 81) + priw?60. or.t 50

In the limit

ot.dr=or.dt +ot.dr + pr2wt.dr
or dt[dr = — pruw?tfc

oort aort

ordb.t

Fig.16.4

Integrating
log t= — pr2w?[20 + constant

t = Ag—rrieti2e
= toe

where 1, is the thickness at r=0.

or
—priwd/20

ExXAMPLE 2. A turbine rotor disc is 0-6 m diameter at the‘blqde ring, and is
keyed to a 50 mm diameter shaft. If the minimum thickness is 50 mm what
should be the thickness at the shaft for a uniform stress of 200 Nfmm? at
10,000 r.p.m.? Density 7700 kg/m3.

t = Aeprati2o

Atr=03m
t =95 — Jp~pu?x0:09/20

Atr=0-025m
§ = A o=pa? x 0:0006/20,

=0.5¢p02%0:0894/2¢  from above,

pw? x 0-0894/20 =7700(10,0007/30)2 x 0-0894/2 x 200 x 106

=1-89
then t=95¢189

where

=63 mm
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16.6. Temperature Stresses in Uniform Disc. Let T be the

temperature rise above that of the unstressed state. Then, following the
procedure of Para. 16.1, the stress-strain equations are

Eduldr =0, —voy + EaT 1)
Eujr=0, —vo, + EaT 2)
where o is the coefficient of linear expansion.

and

Eliminating u between (1) and (2) gives
(01— 02)(1 +v) +7(doy[dr) —vr(doy/dr) + Ear(dT|dr)=0  (3)
The equilibrium equation is unchanged,
01 — 0, +r(doy/dr) = priw? 4
Substituting for o; ~o, from (4) in (3) and re-arranging
doy/dr +doy/dr = — (1 +v)prw? — EadTdr

Integrating, :
o1+0y=~(1+v)pr2w?/2 - EaT + 24 )
Subtracting (4), regrouping and integrating as in Para. 16.1. .
oo 03=A-B[r2 -3 +v)pr2w?(8 — (Ea/r2)[Tr.dr (6)

Then, from (5)
. 01=A+B[r? — (1 +v)pr2w?/8 —- EaT +(Ea/r2){Tr.dr  (7)

ExaMPpLE 3. Suppose the disc of Ex. 1 has a linear variation of temperature
of 45° C between the inner and outer (hotter) edges. Calculate the new value
of maximum stress. E=205,000 Nmm2, «=11x 10-5 per °C.

The variation of temperature with radius may be written

T =450(r - 0-025)

Assuming no external radial pressure, the radial stress may be equated

to zero at r = 0-025 and r =0-125, i.e. from (6)

A - B0-0252 ~ 770033 3'025(10’006%" 2")2 -0

or A -1600B =2-18 x 106 @
and A - B/0-0156 - 25 x 2:18 x 106— (205,000 x 11/0-0156)
[450r3/3 — 450 x 0-02572/2]% =0
or A -64B =83-4x 106 (i)
From (i) and (i)

A =86-8x 108
B =53x106
The maximum stress again occurs at 7 =0-025 m
o1 =868 x 106 + 85 x 106 - 0-086 x 106 N/m?2
=171 N/mm2,

16.7. Plastic Collapse of Rotating Discs. It has been seen that the
centrifugal forces in a rotating disc set up a two-dimensional tensile
stress system, and in all the cases considered the hoop stress is greater
than or equal to the radial stress at a given radius, maximum values
occurring at minimum radius. It follows that, as the speed is increased,
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yield will first occur in the circumferential direction when ¢y=0,
(the yield stress is tension). A state of collapse will be re.:ached wh§n this
stress condition extends to the outer surface of the disc (assuming an
ideal elastic-plastic material, as Fig. 12.1).

Equilibrium equation (as 16.1 (4), with 0y =0,)

0, — 0y —7.doy/dr = priw?
Integrating,
oyr =0 —priw?(3 +4

Solid disc. Since the stresses are not infinite at =0, then 4=0.
Atr =R, 0, =0=0, — pR%w?|3 giving the collapse speed

Disc with central hole.

1 /3o,
@ =§/—p
At r=Ry, 0, =0, giving

A= (pR12w2/3 _Uy)Rl .
At r=R,, 0,=0=0, - pRy2w?/3 +(pR2w?3 ~0,)R/R, giving the

collapse speed oy Ryt R, )
“T «/ (7‘1723_——1?1_3
Substituting the values of Ex. 1 and assuming a yield stress of
280 N/mm?2 gives a collapse speed
3 x 280 x 106(0-125 +0-025)
=A/ 7700 (0-01253 — 0-0253)
=2910 rad/sec. or 27,700 rev/min

SUMMARY

Uniform Disc. Solid:8,(3 +v)(pw2R2/8).
Hollow: &, =(pw2/4)[(1 —=¥)R;2 + (3 +V)Ry?].

vi A 3-2v pw?R2
Long Cylinder. Solid 6¢:= T £ g
5= (1 y)R2+ (3~ )R;2].
Hollow.01—4(1 ~v)[ V)R +( YR,
Disc of Uniform Strength: £ =fye™?«*2,
36, Ri+R,
Collapse Speed: w = — R _Rp
REFERENCES

Epmunos, H. G., Stress Concentration at Holes in Rotating Discs. Engineer,

Nov. 5, 1954,
HEYMAN J., Practical design of Rotating Discs. 1.Mech.E. Vol. 172, p. 14, 1958.

Visit : Civildatas.blogspot.in


http://Civildatas.blogspot.in

29_4_ o STRENGTH OF MATERIALS
Visit : CIVIIdataS'bIOgSpOt'il}’ROBLEMS

) 1. l?etermine the greatest values of radial and hoop stress for a rotating disc
in which the outer and inner radii are 30 cm and 15 cm. w =150 rad./sec.;
v=0-304; p:=770(). kg./m3. (U.L.) (1:6 N/mm2; 13-6N/mm?)
2'. If a disc of inside and outside radii R; and R; is made up in two parts
which are shrunk together, the common radius being 7, show that the hoop
stresses at R; and R; will be equal at a rotational speed given by
@2= 4pr?
) p(1 +v)(r2 - Ri2)(Ry2 - r2)’
where p is the pressure due to shrinkage at the common surface.
3. Calcul.ate tl'le maximum stress in a long cylinder 5 cm inside diameter and
25 cm outside diameter rotating at 3000 rev/min. v =0-3; p =7700 kg/m3.
(10-3 N/mm?2)

Visit : Civildatas.blogspot.in

Visit : Civildatas.blogspot.in

CHAPTER XVII

Circular Plates

17.1. Circular Plates Symmetrically Loaded

Consider a diametral section through the plate.

O is the centre of the plate and OX, OY the principal axes in the
plane of Fig. 17.1. OZ is the axis perpendicular to the figure.

Let C be the centre of curvature
of a section ab at a distance x from Y
O. Then if the deflection y is small

dy|dx=0 1)

The radius of curvature in the
plane XOY is given by

1/Ryy=d%y[dx2 approx.

=df/dx from (1) 2)

Note that, on a circle of radius x
and centre O, lines such as ab form
part of a cone with C as apex. Hence
C is the centre of curvature in the
plane YOZ, and Fig. 17.1

1/Ryg=0/x approx. (3)

If u is the distance of any “fibre” from the neutral surface (assumed
central), then, proceeding as for “pure bending” (Para. 6.1), in the
planes XOY and YOZ, the linear strains are

e, =[Rxy =(1/E)(05 ~v0) 4
and e, =4[Ryz=(1/E)(0, —voy) )
where o, and g, are the stresses in the directions OX and OZ, o, being

zero.
Solving equations (4) and (5) for the stresses

g B8 (1 v\ Bu (46 0 ©6)
* 1—1’2 ny Ryz 1-V2 dx X
Eu [ o 1 Eu ( d6 0
PR ctisttris [} i —— B crverer— — — 7
and O 1-u2(RX +RYZ) 1-u2(”dx+x) @

from (2) and (3)
295
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e bending moment per unit length along OZ, is My given by
)
Mxy.dz=f o, .udzs.du
—j2

or Myy=D(d0/dx +v0/x) (8)
by substitution from (6), where
D=2
12(1-42)

Similarly, if My is the bending moment about OX per unit length
12
Myz.dng Gz.udx.du
—t2

or My z=D[o(df/dx)+6/x] from (7) 9)
Note also that

o, =Myy.12u/t3 (10}

aﬂd O'z=Myz.12u/t3 (1 1)

Fig. 17.2 shows the forces and moments per unit length acting on
an el?rnent which subtends an angle 8¢ at the centre, F being the
shearing force per unit length in the direction OZ.

M
Xz Mxy+Myy

7~

_ ~ TF+6‘F

0z~ F
|

Fig. 17.2

Consider the equilibrium of the couples in the central radial plane, i.e.
(Mxy +8Myy)(% +8x)8¢ — Myyx8¢ — 2My ;. 8x .sin 8¢ + FxS¢h.8x =0
In the limit
Myy+x.dMyy/dx — My, + Fx=0
Substituting from (8) and (9) gives

d?0/dx? + (1/x)(d0/dx) — 0/x2 = ~ F/D (12)
which can be written
(d/dx)[(1/x).d(%0)/dx) = — F/D (13)

If F is known as a function of x this equation can be integrated to

Visit : Civildatas.blogspot.in

17.1. CIRCULAR PLATES 297
Visit : Civildatas.hl ti
determine 8, and hence y. Bending momca/tls a%lgsstrggssegoca{:q then be

easily obtained. Particular cases will now be considered.
For a plate loaded with a uniformly distributed load w per unit area and
a concentrated load P at the centre, then

2nx . F=nx2.w+P
or F=wx/2 + P[2nx
per unit length circumferentially (except at x=0).
Substituting in (13) and integrating
0= - wx3/16D — (Px/8wD)(2 log,x - 1) + C1x/2 + C,/x (14)
y=[0.dx+C; from (1)
= —wx4/64D — (Px2[8nD)(log, x— 1)+ C;x2/4+Cylog x+C;
(15)
17.2. Solid Circular Plate. Let R be the radius of the plate, and ¢
the thickness. The references are to Para. 17.1.

(a) Uniformly loaded, edge freely supported:
P =0, andsince § and y cannot be infiniteat the centre, C, =0from(14)
Atx=0,y=0 _ C;=0 from (15).
At x=R, Myy=0, i.c.
~3wR2{16D + C;/2 —vwR2[16D +vC1/2=0 from (8) and (14)
wR2 3 +v
“ 8D T+v
Central deflection=y, atx=R
_uRt uR* 34y
64D 32D'1+v
wR4 (5 +v
~alie)

= (3wR416EL)(5 +v)(1 - v)

giving C,

from (15)

From (6)
Eu wx? wR?
= [ —-—(3 -
=1 vz( RTINS ”))
~ E.t2 wR? I
and O'x—TT;E.E‘B(3 +V), at x=0
=3wR2(3 +v)
8s2
From (7)
Eu [-wx? wR2
=10 —VZ[—16D (3v+1)+16—b(3 +v)]

and hence &,=36,, and occurs at the centre.
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X)f E/'n Vllqat?oadledg Se%%telglamped
P=0and C,=0 as in case (a).
Atx=0,y=0 . C3=0 from (15).
At x=R, dy/dx=0=0, i.e.
-wR3/16D +C1R[2=0 from (14)

giving =wR?/8D
Central deflection = — wR4/64D +wR4/32D from (15)
=wR4/64D
=(3wR4/16E)(1 - v2)
Eu wx2
c,———-—l—vz(—wD( )+16D(1+v)) from (6)

This stress has its greatest numerical value when x=R (at clamped
edge), i.e.

5= E.t)2 wR2 wR2
* 1-»2'16D
=3wR2/4t2
o =_§"_( 2ave 1)+ 2R +v)) from (7)
£ 16D 16D
and hence G,= f f 22 ;061;)(1 +v) at the centre
3wR2(1+v)
T2
(c) Central load P, edge freely supported:
w=0,
At x=0,0=0 . Cy=0 from (14), also y=0, .. C3=0 from

(15). (Note that Lt. (x log, x)==0.)
At x=R, Mx,=0, ie.
~(P/87D)(2 log R~1)— (PR/87D)(2/R) + C; /2 -
(vP/8wD)(2log R—1) +vC:/2=0 from (8)

giving Cy =-—£ 1-v
47D 1+
2
Central deflection = — g’i(l R-1)+ f-— (2 log R +:——")
+v
PR (3+v)
167rD (T+v)
_3PRe
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Eu
%= 4m’D(1+v)log-
-—-(3P/21rt2)( 1+v)log (R/x), u=t/2
and from (7)

0, =(3P/27t?)[(1 +v) log (R/x) +1 —v]

These stresses appear to become infinite at the centre, but it must be
realised that the load cannot be applied at a point, but must extend over
a finite area. If this area can be estimated then the maximum stresses
can be calculated.

(d) Loaded round a circle, edge freely R
supported. Supposing a total load P is ‘ rlp
distributed round a circle of radius r
(Fig. 17.3). It is necessary to divide the i
plate into two regions, one for x<(r, |
and the other for x>r. At x=r, the Fig. 17.3
values of 6, y, and Myy must be the
same in both regions.

x<r: w=0 and P=0.

Hence 0=Cix/2+Cy/x from (14)
and y=Cx2/4+Cylogx+C; from (15)

Since § and y are not infinite at =0, C,=0, and since y =0 when
x=0, C;=0, and the above equations reduce to

0= Clx/ 2
and y=Cix?/4
x>r:

w=0, and
0= —(Px/87D)(2 log x— 1)+ C{'%/2 + C;'[x from (14)
y= —(Px2/87D)( log x —1) + Cy'x2/4 + C;’ log x + C3’ from (15)

Equating the values of 6, y, and Myy at x=r gives the following
equations:
—(Pr/8aD)(2log r = 1)+ Cy'r[2+ C)/ [r=Cyr[2 (16)
—(Pr2/8nD)(log r - 1) + Cy'r2/4 + C;' log r + C3' = Cyr2/4 (17)
and
~(P/8=D)[(1+v)2logr +1—v] +(Cy'[2)(1 +v) -
(C/ [ 1-»)=(C1/2)(1 +v) (18)
Myxy =0 at x=R gives
~(P/8wD)[(1 +v)2log R+1 -] +(Cy'[2)(1 +v) -
(G/[R?)(1-v)=0 (19)
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Ic:[»mcélc\lllllla 13%Ss Q%SPOOHB) the constants are found to be:

P R2-r2(1-v
cy _4;1_)[2 tog R+ X210 (1 +v)]
Cy' = — Pr2(8zxD
Cy' =(Pr2/8=D)(log r - 1)
The central deflection is given by the value of y at x=R, and by
substitution in equation (15), reduces to
(P/87D)[(R2 ~r2)(3 +v)/2(1 +v) — 72 log R/r]

and

For x>r
Myy=(P[8m)[(1 +v)2 log x + (1 —v)r2(1/x2 -
which has a maximum value at x=7.

1/R2)]

Hence
8, =(6[12)Myy from (10)
=(3P/4mt2)[(1 +v)2 log R/r +(1 —-v)(R2 - r2)/R?]
Similarly
My z=(P[8m){(1 +v)2 log R/x +(1 ~v)[(2R2 - r2)/|R2 - r2/x2]}

and &,= £3P/4wt2) [(1 +v)2 log R/r +(1 —v)(R2 - 72)/R2]
I=O'x
R i 3
r———-——‘{ rlp 17.3. Annular Ring, Loaded round
Inner Edge. The ring is loaded with

J a total load P round the inner edge and
| freely supported round the outer edge
Fig. 17.4 (Fig. 17.4),
Mxy=0at x=R and at x =7, giving
~(P/8=D)[(1 +v)2log R+1 —v] +(Cy/2)(1 +v) -

(C,/R?)(1 -v)=0 as Eq. (19), Para. 17.2(d)

—(P/8aD)[(1 +v)2 logr+1-v] +(Cy/2)(1 +») -
(Co/r)(1-v)=0

and

Subtracting and solving
Coc P 1+v R»2 R
ED I R B
2(R2log R-r2log r)
4/er R2-y2 1 +v
Then Mxy/D= —(P/8xD)[(1+v)2log x+1—-v]+
(C1/2)(1 +v) - (Co/x2)(1 +v)
and Myz/D= —(P/8aD)[(1+v)2logx—-(1-v)] +
(C1/2)(1 +v) +(Cyfx?2)(1 -v)

and then C =
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The maximum bendmg moment 18 %y CIVIIdataS blg gnsgﬁ)ééin
6. =(6/1)Myz
3P (1+v)R? o R

w2 R2-r2 r

REFERENCE
T1IMOSHENKO, S., Theory of Plates and Shells. McGraw Hill, 1940,

PROBLEMS

1. Show that for a flat circular plate of radius R and thickness ¢, under the
action of a central load P, the deflection is (3PR2/4xEt3)(1 - v2) when the
edges are clamped, and that the maximum stress at the edge is 3P/27¢2.

2. A circular plate of radius R carries a total load P uniformly distributed over
a central area of radius r. Show that the maximum stress is

(P[22 [(1 +v) log Rjr +1 - (1 -+)(r2/4R2)]

3. Show that, for an annular ring of outside and inside radii R and »
respectively, loaded round the inner edge and clamped at the outer edge, the
maximum stress is given by (3P/2nt2) (R2 - r2)[R2, where P is the total load.

4. A circular disc of uniform thickness ¢ is firmly clamped round its outer
periphery at a radius of 3 cm, and at the centre is firmly held in a spindle of
radius 1 cm. An axial force P is applied through the spindle to the disc. Show
that the bending moment per unit length of arc at any radius 7 cm is given by

M =(P|=)(0-2163/r2 — 0-325 log, r +0-1517)
(The plate may be assumed clamped at its inner edge, and M is measured in a
radial plane. »=0-3.) (U.L.)
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CHAPTER XVIII

Vibrations and Critical Speeds

18.1 Linear Vibrations. Suppose a mass m to be carried on an
elastic support, such as a spring, which has a stiffness & (force per unit
extension). Then, if the mass is given a displacement x from its equilib-
rium position, the support will exert a restoring force equal to kx.

Neglecting the inertia of the support, the equation of motion of m is

mi= —kx (%=d2s/dt?)
or %+ (kjm)x=0

This represents simple harmonic motion, and if the zero of time is
taken when x =0, the solution is x = 4 sin+/(k/m)t.

The motion is periodic about the equilibrium position, 4 being the
amplitude, or maximum displacement, which is independent of the
period.

The periodic time is

t=2m+/(m[k)
since sin /(k/m)t ““repeats” itself at intervals of 2.

Note that the period can be written £=27+/(8/g), where § is the
“static” deflection caused by the force of gravity mg.
or  1=2m/(x/%)

=2m+/(Displacement/Acceleration)  from the equation of
motion

[ Frequency (f)=number of oscillations per unit time

Uz =1/Period
or F=1jt=(xf2m)\/(g]8)
18.2. Torsional Oscillations—Single Inertia. Con-
k sider the case of a shaft or wire fixed at one end and

carrying an inertia I at the other end (Fig. 18.1).

If now the inertia is given an angular rotation 8 from
the equilibrium position there will be a torque set up
L 17 in the wire equal to the & (k is stiffness — torque per

Fig. 181  radian twist), tending to reduce the value of 6. The
equation of motion of I is

Ii= k6
or 0+ (k/18=0
302
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This is in simple harmonic motion as in Para. 18.1, and the period
t=2m+/(0/6)
—2m/(1]H)

Frequency f=(x/2n)\/(k/I)
Note: k=G¥/l Nm/rad (Para. 8.1), and I=mK?2 kgm?, It will now
be seen that the units of k/I are Nm/kgm?2 =Ns2/kgms?, i.e. 1/s2, since
1IN =1kgm/s2.

ExampLE 1. A4 steel disc 0-3 m diameter, weighing 30 kg, is suspended from
the end of a wire 2-5 mm diameter, 1-5 m long, which is clamped into a central
hole in the disc. In torsional vibration the disc makes ten oscillations in
80 secs.

Find the modulus of rigidity of the wire, and calculate the amplitude of
oscillation if the maximum permissible shearing stress in the wire is 140 NJ
mm?2  (U.L.)

I=mK2=30 x0-32/8 =0-3375 kg. m?

Period =8-0 =2 23:—75 from above

giving k=0-208 Nm/radn.
=GY¥/l
G=0'208 x1-5 x32 x1012
T x2-54
=815 x 1010 N/m2 =81,500 N/mm?
Direct stress o =:M§_1_X_4 =60 N/mm?2
T x 2:52

If 7 is the permissible shear stress due to torsion
140 =%4/(02 +472) (Chapter III)

giving 7=137 N/mm?
Corresponding amplitude 8 =(27/d)(l/G)
=202 radn.
=115°

18.3. Torsional Oscillations—Two Inertias. It may be assu_med
(and can be shown mathematically) that the two inertias will oscillate
with the same frequency, reaching their extreme positions at the same
instant. It follows that there will be a node (point of zero oscillation)
in the shaft at a fixed point between the inertias.

Treating the node as a fixed end (Para. 18.2), the frequencies of each
inertia individually are

(/2m)/(ky/1;) and  (1/2m)/ (Ra/12)
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where %y and %, are based on the length of shaft between the node and
each inertia, i.e. for a uniform shaft

ky=GJ¥[l; and k,=G¥/l,
(see Fig. 18.2).
Equating the frequencies gives
kyfky =11, )]
or IZ/II =II/IZ

I Iz

as the inertias at the ends.
a; Once the position of the node is
ay established, the frequency can be

11

above.
The amplitude ratio
ayfay =1/l =D[I, (2
Alternatively, if 0 is the angle of twist of the shaft at any instant,
and T the torque transmitted
0=TJk +T|ky
= T(1/k +1/k,)
so that the stiffness for the shaft as a whole
kik,

k=T _—172_
I ki+k,

Fig. 18.2

and since ky/ky=ILi/I, from (1)
it can be shown that

I+

kym 12
I
Hence frequency f=(1/2m)\/(k/I})
1 L+
i (%) @)

If the shaft is made up of parts of different stiffness per unit length
(e.g. different diameters), it may be reduced to an equivalent shaft of
uniform stiffness in the following manner.

If one part is of length /' and the other of length I”, the respective |

polarmoments of inertia being ¥ and ¥”,then since stiffness = G¥/loc ¥/1,
the equivalent length of I reduced to a shaft of moment of inertia ¥’
is given by

I Nlequre.” =J" V",
or lqui'.ll - Ill(yllyll)
Visit : Civildatas.blogspot.in
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The total length of shaft of uniform stiffness is then

I=U+U"(§'[5") *)
=U'+1l'(d'[d") (5)
for solid shafts, where d’ and d" are the corresponding diameters.

ExXAMPLE 2. The flywheel of an engine driving a dynamo has a mass of
180 kg and a radius of gyration of 0-3 m. The shaft at the flywheel end has an
effective length of 0-25 m and is
50mm diameter. The armature
mass is 120 kg and its radius of 180kg
gyration is 0-225 m. The dynamo  03m 120 kg
shaft is 43 mm diameter and 0-2 m G2 o
effective length. Calculate the fre- S0mdia.  43mmdia
quency of torsional oscillations and
the position of the mnode. G =
83,000 N/mm?. (U.L.)

It has been shown that for | |
uniform shaft the node is nearer 0:63m

to the larger inertia (the fly- a; -
ot T | ez

(<——025m 02m>1

wheel), and it may be judged in
this problem to lie in the engine
shaft. Consequently it is advis-
able to reduce the shaft to an
equivalent length of 50 mm dia-
meter (Fig. 18.3).

Total equivalent length =0-25 +0-2(50/43)* from (5)
=0613m

The node divides this length in the inverse ratio of the inertias, i.e.
(120 x0-2252)/(180 x 0-32) =0-376 from (2)
Distance of node from flywheel =(0-376/1-376) 0-613 =0-168 m

As this lies in the part of the shaft which is actually 50 mm diameter, no
adjustment is necessary. Any distances which fell in the region of the
43 mm diameter shaft would have to be converted by the factor (diameter
ratio)?.

The lower diagram in Fig. 18.3 shows the amplitude ratio ay/a;, which
is 0-376 independent of the stiffness of shaft, and the slope of the dotted
line indicates the angle of twist per unit length in the actual 43 mm shaft.

Fig. 18.3

Frequency =(1/2m)4/(k/I1), calculating for a single inertia with a fixed
end at the node.

1 J83,000 x 108 x o x 0-0504

T 274 32 %0168 x 180 x 0-32
=22-1/sec.

ExampLE 3. In a radial engine the moving parts have a total moment of
inertia of 1 kgm? and are concentrated in the plane of the single crank pin.
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e engine 1s directly connected to an air screw, of moment of inertia 1 8kom?2,
by a hollow shaft having outer and inner diameters of 80 mm and 35 mm, and
an effective length of 0-3 m. The stiffness of the crank throw alone is 2-5 x
10% Nm/radn.

Estimate the natural frequency of torsional vibrations of the system. What

percentage error is involved if the air screw mass is assumed infinite? G =
83,000 N/mm2. (U.L.)

The stiffness of the crank throw may be reduced to an equivalent
length of shaft of the same diameter as the engine shaft, but as the position
of the node is not required the expression for combined stiffness
k =k1k2/(k1 +k2) will be used.

83,000 xm
0-3 x32 x 106
=107 x 106 Nm/radn.
2-5x1-07 x 106

25 +1-07
=075 x 106 Nm/radn.
Frequency of torsional vibrations

1 A/’?(_"1_““_1’2) from (3)

Stiffness of shaft = (804 -354)

Combined stiffness =

“2aN T I,

1 [0-75 x106(1 +18)

2w 1x18
=142/sec.

If the airscrew mass is assumed infinite, the frequency can be calculated
from (1/27)+/(R/1,)
1 [0-75 x 106

T on 1
=138/sec.

Percentage error =4/142 =2-89,.

18.4. Torsional Oscillations of Spring. If a close-coiled helical
spring carries an inertia I at its free end, then for an axial rotation § from
the equilibrium position the spring exerts a restoring couple

EI0/l=(Ed4/64Dn)8 (see Para. 13.1)
and the equation of motion for I is
10 + (Ed4/64Dn)f =0
Period =2m+/(6/6)
o= 27/(64DnI|Ed*)

ExampLE 4. A close-coiled helical spring is fixed at its upper end and a
circular metal disc is fixed axially to the lower end. The times for vertical and
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angular oscillations are equal. Show that
E Diameter of disc  \?
G \Mean diameter of coils

If the spring is made of wire 3 mm diameter, and has 50 turns of 45 mm
mean diameter, find the mass of the disc, the time of oscillation being 1 second.
Neglect the mass of the spring. G =83,000 Njmm?. (U.L.)

Let m be the mass of the disc, and R its radius.

For a vertical displacement x the restoring force
=(Gd4/8D3*n)x (Para. 13.1)
= —mik
Period =2m+/(m.8D3n/Gd*)

For angular oscillations
Period =2m+/(64Dnl/Ed*), above
=274/(32DnmR2[Ed*)

Equating the periods
8D3n/Gd*=32DnR2/Ed*
or E/C=(2R/D)?
Using the expression for vertical oscillations

) o, [mx8 x45%x50
Period =1=2m |/ 53,000 x 3¢ x 10}
m =468 kg.

From which

18.5. Transverse Vibrations—Single Mass. If a single mass is
carried on a beam and subjected to lateral vibrations, the case is similar
to the linear vibrations treated in Para. 18.1, the inertia of the beam
being neglected. T'wo particular loadings will be considered.

(1) Mass m at end of cantilever. For a lateral displacement y, the
restoring force

=(3EI/B)y due to the stiffness of the beam (Chapter IX)
= —my when vibrating.
Frequency f=(1/2m)v/(3/y)

= (1/27)/(3E1/ml3)
=(1/2m)v/ (/%)
where § is the static deflection at the
load. a f; 2] \/
It is clear that this form can always j\
be applied to a single load carried on a 4 1
beam, however supported. Fig. 18.4

(2) Load on simply supported beam. ‘ o
Consider the case where the load is supported at a point which divides

the length / into parts a and b (Fig. 13.4).
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The deflection at the load
8 =mg a262[3EIl (Para.9.1)

Hence, in lateral vibration

Frequency f=(1/2m)+/(g/5)
=(1/27)y/(3EIl/ma?b?)

When the load is at the centre, this reduces to

f=(01/27)\/(48EI[mI3)

ExaMmpLE 5. A small imperfectly balanced machine is mounted on a rigid
horizontal plate, supported on four vertical legs 28 mm outside diameter,
25 mm inside diameter, and 0-9 m long, rigidly welded to the plate but having
their other extremities always position-fixed, but direction-fixed or not at
will. If the effective mass of the assembly is 45 kg, find the five lowest machine
speeds which would give resonance corresponding to the five different fixing |
conditions of the legs. E=207,000 N/mm?2. (U.L.)

If % is the composite stiffness of the four legs, then for a lateral dis-
placement x, the equation of motion is
45% +kx =0
Machine speed for resonance

=60f r.p.m.

=(60/27) v/ (¥/x) = (60/2m)+/ (k/45)

—~(60/2m)v/(g/3) il
where 8 is the lateral deflection which would be caused by gravitational |
pull on the mass if exerted in the direction of x.

Let the mass carried by a leg not direction-fixed be m;. Then
8 =mygl3/3ET
or myg =3EI/I3)d

Let the mass carried by a leg direction-fixed be m,. Then
O =mygl3/12EI (Ex. 5, Chap. X)
or mog =(12EI[1%)8
(i) None fixed
100 =4m, =(12EI/13).3/g

6 =(100/12).(l3/ED)g
60 12 x 207,000 x (284 — 254)
27 45 x0-93 x 64 x 106
=276 r.p.m.

Machine speed =

(ii) One leg fixed
100 = 3m1 +my

=(EI/I®(9 +2)é/g
& =(100/21)(I3/ED) g
Machine speed =2764/(21/12) =364 r.p.m.
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(iii) Two legs fixed
100 =2my +2m,
=(EI[13)(6 +24)3/g
6 =(100/30)(3/EDg
Machine speed =435 r.p.m.
(iv) Three legs fixed
8 =(100/39)(I3/EI)
Machine speed =496 r.p.m.
(v) All fixed
8 =(100/48)(3/EI)

Machine speed =550 r.p.m.

18.6. Transverse Vibrations of Uniform Beam. If m is the
mass per unit length, the rate of

inertia loading at any point along izg

the beam is (m)(d%y/ét?), its at2

direction being opposite to that 7]

of the acceleration (Fig. 18.5). 0 = be

Treating the vibration form as
a beam under the action of this
loading (neglecting gravity effects)

EI.0%y|0x* = —m(02y[012) (Para. 9.3)
or 04y [oxA + (m[EI)(02%y[0t2) =0 1)
Assuming a simple harmonic vibration, let
y="F(x).sin 2xft

Fig. 18.5

where f is the frequency.
Equation (1) reduces to
OAF [ox* — (m|EDA4w2f2 . F(x)=0 (2)
The solution can be written
F(x)=A sin ax + B cos ax + C sinh ax + D cosh ax
where o2 =27fy/(m[EI)
(a) Simply supported or pinned ends. The conditions to be satisfied
are:
x=0,y=0, . B+D=0.
x=0, 82y/0x2 =0 (no bending moment),
. B=D=0,
.. Asinal+Csinh al=0.
. —Asinal+C sinh al=0.
since sinh al#0
Asinal=0

.. -B+D=0.

Also at x=1/, y=0,
and x =/, 2y/ox2 =0,
Adding, C=0
and hence
11
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The least solution is
o=/l
or o2 =25fr/(m|EI)
=n2/I2
f=(=[212)+/(mE1])
=(1-57/%)/( EIlm)
(b) Cantslever. Taking the origin at the fixed end:

giving

At x=0,y=0 B+D=0.
i.e. D=-B 3)
also  dy/ox=0 A+C=0. '
ie. =-4 4

At x=1, ¢2y/0x2 =0 (no bending moment)
— A sin al — B cos al + C sinh al + D cosh al=0
or  A(sin al+sinh al)= — B(cosh al + cos al) from (3) and (4) (5)
also 93y/ox3=0 (no shearing force)
— A4 cos al + B sin al + C cosh «l + D sinh al=0
or A(cos el + cosh al) = B(sin al — sinh &l) (6)

Eliminating 4 and B between (5) and (6)
(sm al +sinh al)(sin o — sinh al) = — (cos al + cosh al)?

ie. sin2 ol —sinh2 ol = — cos? al — cosh? a — 2 cos «l. cosh o/ :
or cos ool.cosh o= —1 g
The least solution is «/ =1-875, giving '
f=(1-8752/2712)\/(El|m)
=0-56/12)+/(EIjm)
(c) Ends direction-fixed:
At x=0,y=0 B+D=0.
ie. D=-B (7)
and 9y/éx=0 A+C=0,
ie. C=-4 (8)
At x=1,y=0.

A sin al+ B cos al + C sinh «l + D cosh al=0
or A(sin al —sinh al) = B(cosh al ~cos al) from (7) and (8) (9)
also gy/ox =0
A cos al - B sin el + C cosh ol + D sinh al =0
or A(cos al — cosh al) =B (sin al + sinh af) (10)
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Eliminating 4 and B between (9) and (10)

(sm ol — sinh al)(sin ol +sinh &l) =(cosh al — cos al)(cos «l — cosh «l)
i.e. sin2 ol — sinh? ol = — cosh2 al — cos2 ol + 2 cos al. cosh al

or cosal.coshal=1

31

The least solution is ol =4-73, giving
J(&7322nl2)\/(EI/m)
=(3-57/1*)\/(Ellm)

18.7. Transverse Vibrations—Combined Loading. In Paras. 18.5
and 18.6 the frequency has been found for a single load treating the
beam as “light,” and for the beam under the action of its own inertia.
To determine the frequency when a number of loads are carried on a
“heavy” beam, Dunkerley’s empirical formula may be used. This
states

V=12 + 12+ RR+ 1 +
where f is the frequency under the combined loading, f, the frequency
due to the beam inertia alone, and f, f, f3 . . . the frequencies for each
of the loads acting alone (neglecting the inertia of the beam).

18.8. Energy Method for Frequency. This is an approximate
method, since it assumes the shape of the vibrating beam to be similar
to that of the static deflection curve under the loads. However, Lord
Rayleigh showed that the frequency was almost independent of the
vibrating form assumed, so that very little error is involved.

(a) Distributed load m. Assume the vibrating form to be

y=RY sin 2nft
where Y = F(x) is the static deflection form, and % is a constant.

In the extreme position (sin 27ft=1), the energy is in the form of
strain energy, and y =k Y. The equivalent static load to deflect the beam
into this position =kmg, and hence the total strain energy

!
i f 1(kmg)k Y . dx
o

1
= (k2/2)f mgY.dx )]
[
In the mean position all the energy is kinetic, the velocity being
given by
Oy[ot=RY .2nf (cos 2nmft=1)

H
Total kinetic energy = J' Jm)(kY . 2mf 2. dx
1]
1
— (4m2f2k2J2) f mY2.ds 2)
0
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Equating (1) and (2) gives
;. mYdx
arf _g'ImY’dx )

ExaMpLE 6. Obtain an expression for the natural frequency of transverse
vibrations of a simply supported beam of length [ carrying a distributed loadw.
Assume the vibration deflection is of the same form as the static deflection.

Hence find the natural frequency
of a simply supported beam 6 m long

Y of moment of inertia 1-5 x 108 mm?,
w x carrying a uniformly distributed
0 RO000000R0C00C00FR load of 1500 hgfm. E=207,000 N]
wl Z mm?2.  (U.L.)
Y4 Energy method. First obtain the
Fig. 18.6 equation of the static deflection
curve
EI.d%y/dx? =(wl/2)x —wx?/2 (Fig. 251)
Integrating El.y=wix3/12 ~wx4/24 + Ax + B

When x=0, y=0, .. B=0.
When x =1, y=0, .. A= -wl?/24.
Downward deflection under load = -y

= (w/24ED)(Ix3 - 2Ix3 +x*4)

1
J (B — 203 +x%)dx
24BTg Jo from (3), with w =
® f (Bx - 2Ix3 + x4)2dx mg
0

422 =

_24EIg 153 -%+9)
= o
w f (I6x2 — 4144 + 213x5 + 412x6 — 417 + x8)dx
o

_24EIg 1
Tl 53 -4+3+5-%+D)
=(24EIg/wl*)(126/31)

giving n=(1-574/12)\/(EI|m)

This compares with a value of (1:57/12)y/(EI /m) obtained by mathe-
matical analysis in Para. 18.6(a).

1-574 [ 207,000 x 1-5 x 108
T2 1500 x 106

=6-29/sec.

(b) Concentrated loads. If a number of loads M, Mz,. M, .
acting together, cause static deflections at their points of application of
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Yy, Y, Y;..., assume the amplitudes of transverse vibration are
kY, kY,, kY, the equations of motion being kY sin 2nft, kY, sin
2aft, kY3 sin 2aft.. ..

By similar arguments to those of case (a), the strain energy in the
extreme position is 1Xk2MgY, and the kinetic energy in the mean
position is (1/2)XR2M Y2 . 472f2,

Equating, gives

ZMY
EMY*? *
ExampLE 7. A beam of length Yl

qfi=g

10 m carries two loads of 2000 kg
at distances of 3 m from each end,
together with a central load of OT:_
1000 kg. Calculate the frequency k 3 l 2‘)'
of transverse vibrations by (a) the 250’0<_y______ om ———>
energy method, and (b) Dunkerley’s Fig. 18.7
formula. Neglect the mass of the T
beam. I=10° mm?; E=205,000 N/mm?2.

(a) First find the deflection under each load (Fig. 18.7).

EI.d2%y/dx? =2500x — 2000[x — 3] kgm for x<<5

2000ks  7000ky 2000kg
R X

Integrating EI.dy/dx =1250x2 - 1000[x - 3]2 + 4
and EI.y=(1250/3)x3 - (1000/3)[x - 3]3 + Ax + B
When =0, y=0, .. B=0.
When x =5, dy/dx=0, .. A= -27,250.
At x=3
(1250 x9 — 27,250 x 3)
Y= oos 000 100 081 <107 mm
=3-37 mm downwards
At x =35
_ —86,820 x9:81
Y= 77205000

=415 mm downwards
472f2 —gSMY/EMY? from (4)
981 x103(2000 x 3-37 +1000 x 4-15 +2000 x 3-37)
72000 x 3:372 +1000 x 4-152 +2000 x 3:372
=2770

f=8-38/sec.
(b) Referring to Para. 18.5, case (2), the frequency for each of the
2000-kg loads acting alone
=(1/2m)+/(3EIl|Ma?b?)
1 /3 x205,000 x10° x10
:27/ 2000 x 32 x 72 x 106
=13-3/sec.

Visit : Civildatas.blogspot.in


http://Civildatas.blogspot.in

M4isit - Civildatas DISGISTR OF MATERIALS 18.8

The frequency for the central load alone

=(1/2m)v/(48EI/MI3)
1 /48 x 205,000 x 108

ZZA/ 1000 = 103
=15-8/sec.

The frequency for the combined loading is given by

1/f2=1/13-32 +1/15-82+1/13-32 (Para. 18.7)
131 x15-8
V(2 x15-82+13-12)
=7-95/sec.

from which f=

18.9. Whirling of Shafts. When a shaft running between bearings
is rotated, it is kept rigid at low speeds by the stiffness of the shaft
acting as 2 “beam.” As the speed is increased, a stage is reached at
which, if due to any imperfections the shaft is deflected from the axes
of rotation, the centrifugal effect is equal to the restoring effect due to
shaft stiffness. Since both these forces are proportional to the deflection,
the latter quantity becomes indeterminate at this speed, and the shaft
is said to “whirl.” It is then in an unstable condition, and serious
stresses and vibrations will be set up if it is allowed to run for long at
this speed. However, any further increase in speed will restore the
stability of the shaft, and in practice many shafts are designed to
operate at speeds above the whirling speed.

(a) Whirling of uniform shaft. If m is the mass per unit length of
the shaft, and y the deflection at any point for an angular velocity w, the
rate of centrifugal loading = — myw?.

When the shaft is whirling this is just balanced by the stiffness as a
beam, i.e. (neglecting gravity loading)

EI.d%/dx*=myw? (Para. 9.3)
or  dY/dx*—(m/El)yw?=0

This equation will be found to be the same as (2) of Para. 18.6, the
whirling speed w being equal to 2nf. In fact any problem of whirling may
be treated by the same methods as for transverse vibrations, a conclusion
which could also be deduced from the fact that a point moving with
simple harmonic motion along a straight line can be represented by a
point moving round a circle, with uniform velocity, based on the
straight line as diameter.

The cases (a) and (c) of Para. 18.6 then correspond to:

“short” bearings, w =(n2{I2)\/(EI]m)
=(9-85/12)\/(EI[m)
and “long” bearings, w =(22-4/I12)y/(EI[m)
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(b) Whirling of single load carried on a “light ” shaft, the method

of Para. 18.5 may be used giving

w=/(g/)
(c) Dunkerley’s formula (Para. 18.7) will give the whirling speed for
a combination of loads, taking into account the mass of the shaft,
lw2=1/w?2+1jw2+1jw2+ ...
(d) The energy method of Para. 18.8 may be applied, giving
w2 =g[mYdx[fmY2dx for distributed loads
and w?=gXMY/EMY?2 for concentrated loads

Exampiri 8. Calculate the lowest whirling speed of a steel shaft 50 mm
diameter, 3 m long, carrying a wheel of mass 30 kg at 0-6 m from one end and
one of mass 20 kg at 0-9 m from the other end. The shaft may be considered
simply supported in bearings at the ends. Density =7800 kg/m3; E=
206,000 Nimm2. (U.L.)

For the shaft alone
w,=(@?/12)/(EI/m) by (a)
~9:85 /206,000 x 4 x 7 x 504
_7»/ 7800 x 7 x 502 x 64
=70-3 radn./sec.
For the 30 kg wheel alone
w|=+/(3EIll/Ma?b?) by (b)
3 x 206,000 x7 x 504 x 3
=~/30 x 0:62 x 2:42 x 64 x 106
=95-5 radn./sec.
For the 20 kg wheel alone
3 % 206,000 x 7 x 504 x 3
‘”2=«/20 x 0-92 x 2-12 x 64 x 106
=89-1 radn./sec.
The combined whirling speed is given by Dunkerley’s formula (c)
1/w?2=1/70-32+1/95-52 +1/89-12
or w=100/+/(2-02 +1-10 +1-26)
=47-8 radn./sec.
=457 r.p.m.

18.10. Whirling of Eccentrically Mounted Mass. Consider a
mass M, mounted on a shaft, with its centre of gravity eccentric by an
amount e from the axis of rotation. When rotating, the centre of gravity,
the axis of rotation, and the straight line between the bearings must lie
in the same plane, but the centre of gravity may be “outside” or
“inside” the axis of rotation (Fig. 18.8).
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If % is the stiffness of the shaft (as a beam), defined as restoring force
per unit deflection at the load point, then for equilibrium when rotating
atan angular velocity

M(y +e)w?=ky

ie. w?=(k/M)y/[(yte) (1)
+w?
or y :k]m .e (2)

Note that y tends to become infinite when w =+/(k/M)=1+/(g/d),

which is the whirling speed inde-
\/}%—B—\/ pendent of e.
Pay ‘ ‘A When w<+/(k[M), the positive
. sign is to be taken, i.e. the centre of
Fig. 18.8 gravity is now on the outside.

When w>+/(k/M) the negative sign is to be taken for e, showing
that the centre of gravity is now on the inside. In fact when w becomes
very large e— — y, the centre of gravity lying on the centre line between
the bearings.

EXAMPLE 9. A4 shaft 12 mm diameter rotates in spherical bearings with a
span of 0-9 m, and carries a disc of mass 10 kg midway between bearings.
Neglecting the mass of the shaft, determine its deflection in terms of the speed
of rotation in radians per second if the mass centre of the disc is 0-25 mm out
of centre. E =206,000 Njmm2,

If the stress in the shaft is not to exceed 100 Njmm? find the range of speed
within which it is unsafe to run the shaft. (U.L.)

& =48EI=48 x 206,000 x 7 x 124
3 0:93 x 64 x 106
=13,800 N/m

__ Ee?

13,800/10 — w?

_ +0:2502
T1380 w2

¥ x 025 mm from (2)

m

A stress of 100 N/mm?2? would be caused by a static load of
100 x (4/900) x7 x123/32N, since the maximum bending moment is
“W1i/4” and the section modulus “7d3/32.” Dividing by the stifiness, this
corresponds to a deflection

100 x4 x 7 x 123

Y =500 x 32 x 13,800

=49 mm
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The range of speed is given by Visit : Civildatas.blogspot.in

w?=(k/M)y/(y £e) from (1)
_ 13,800 % 49
10 49 +£0-25
=1320 or 1460
i.e. w between 364 radn./sec. and 38-2 radn. sec.

SUMMARY

Linear Vibrations: ¢=2m4/(5/g).
=1/t
Torsional Oscillations.
Single inertia: 2n7f =+/(k/I).
Two inertias: Node position I/l =1,/I;
2f = /[(Iy + L)/ o).
Equivalent length of shaft of varying stiffness: I=0'+1" (¥/¥").
Spring: ¢ =2m+/(64Dnl|Ed%).

Transverse Vibrations,
Single mass: 27f=+/(g/9).
Uniform beam: 27f =(n2/I2)/(EI/m) simple supported.
Dunkerley’s formula: 1/f2=1/f,2+1/f;2+1/f,2+...
Energy method: 472f2=g[mYdx/[mY2dx for distributed load
=gZMY|EMY? for concentrated loads.

Whirling Speeds. Similar to transverse vibrations, with w =2nf.

PROBLEMS

1. A uniform vertical bar of steel of length [ and cross-sectional area 4, is
fixed at the upper end and is extended a distance x by a load W at the lower end.
If the rod is subjected to longitudinal vibrations, show that, at any instant when
the additional extension is x, the change of potential energy measured from the
rest position of the load is $(AE/l)x2, and, from the energy equation, deduce the
natural period of vibration. Find the length of bar to give a frequency of 100 vib./
sec. when 4 is 640 mm2; W =225 kg; £ =208,000 N/mm2. (U.L.) (1-5m.)

2. A mass of 5 kg is suspended from a spring of stiffness 1 kIN/m. If it is set
in motion with a maximum acceleration of 2-5 m/s2, what are the amplitude
and period of vibration? (12-5 mm; 0-444 s.)

3. A spring, fixed at its upper end, carries a mass of 1 kg at its lower end,
which produces a static deflection of 38 mm. A further mass of 1 kg is suddenly
applied to the original. Find the maximum elongation of the spring and show
that the time of vertical oscillations is approximately $ sec. (114 mm.)
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4. A vertical wire 3 mm diameter carries a heavy flywheel, radius of gyration
168 mm, at its free end. The times of torsional and longitudinal vibrations are
15 sec. and 0-06 sec. Find the value of Poisson’s ratio. (0-25)

5. The upper end of a vertical steel wire 2 mm diameter and 2 m long is held
securely. The other end is fixed centrally to a steel cylinder 75 mm diameter and
of density 7700 kg/m3, arranged with its axis horizontal. Find the length of the
cylinder to give 0-6 torsional vibrations per second, and calculate the amplitude
of vibrations when the maximum shear stress is 120 N/mm?2 G =80,000 N/mm?2.
(U.L) (71 mm 3 radn.)

6. A close-coiled helical steel spring is suspended vertically from one end. A
uniform cylindrical bar of circular cross-section is fixed at its centre, with its
axis horizontal, to the lower end of the spring, which has a mean coil diameter
of 50 mm. If the longitudinal and angular oscillations have the same frequency,
find (a) the limiting length of bar of small diameter, and (b) the limiting diameter
of bar of short length. G =81,000 N/mm2; E =210,000 N/mm 2. (U.L.)

(99 mm; 114 mm.)

7. An engine shaft is directly coupled to the shaft of a dynamo. The engine
shaft has a diameter of 56 mm and an effective length of 300 mm, while the
dynamo shaft has a diameter of 50 mm and an effective length of 225 mm. The
flywheel mass is 225 kg and has a radius of gyration of 350 mm, and the armature
mass is 135 kg and its radius of gyration is 250 mm. Neglecting the inertia of the
coupling and shafts, determine the position of the node and the frequency of
torsional oscillations. Both shafts are steel, G =80,000 N/mm2. (U.L.)

(153 mm from engine; 21-6/sec.)

8. The flywheel of an engine driving a dynamo has a mass of 136kg and has a
radius of gyration of 0-25 m. The armature has a mass of 100 kg and a radius of
gyration of 0-2 m. The driving shaft has an effective length of 0-45 m and is
50 mm diameter, and a spring coupling is incorporated at one end, having a
stiffness of 2'7 x104 Nm/radn. Calculate the natural frequency of torsional
vibration of the system. What would be the frequency if the spring coupling
were omitted? G =82,000 N/mm?2. (U.L.) (14-3/sec.; 32-3/sec.)

9. The figures show (a) front elevation, and (b) side elevation, of a vibrating

]  — 1

—

1T

> <48mm

IJ|<— 300mm —»]ﬁ.

e U

N NN N NN
@) ] (%)

table. Assume the ends of the supporting strips are rigidly fixed in direction and
estimate the natural frequency of transverse vibration if the effective mass of
the platform is 27 kg. E =207,000 N/mm?2. (U.L.) (31-4/sec.)

10. Obtain from first principles an expression for the fundamental natural
frequency of transverse vibrations of a cantilever of length [ and mass per unit
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length m, assuming the vibration cur\v/elstlct) 'bglgi! Igg%sa'rtx)lleogosggthlsn the static
deflection curve.

Hence find the natural frequency of transverse vibration of a steel turbine
blade of uniform section 127 mm long, of mass 2 kg per metre length and least
moment of inertia 2500 mm#4. Ignore centrifugal loading. E =208,000 N/mm?2.
(U.L) [(0-562/12)+/(EI|m); 562/sec.]

11. A small turbine rotor has a shaft of uniform section, EI =1-09 x 106 Nm?
and is freely supported in two bearings at 1 m centres. It carries three equal
wheels, 350 kg each, at positions 0-25 m, 0-38 mand 0-5 m from one bearing. The
static deflections at the wheels are 0-127 mm, 0-157 mm, and 0-162 mm respect-
ively. The maximum deflection occurs close to the third wheel, and is 0165 mm.
Compare the critical speeds as calculated by (a) Dunkerley method, (b) energy
method, (c) use of rule

Critical rev./minute =980/4/[maximum static deflection (mm)] (U.L.)

(2420/min.; 2430/min. ; 2420/min.)

12. A shaft 12-7 mm diameter rotates in “‘long”’ fixed bearings and a disc of
18 kg is secured to the shaft at the middle of its length. The span between bear-
ings is 0-61 m. The mass centre of the disc is 0-5 mm from the axis of the shaft.
Neglecting the mass of the shaft, determine the central deflection in terms of the
speed in r.p.m. E=206,000 N/mm?2. If the bending stress in the shaft is not to
exceed 120 N/mm?2, find the range of speed over which this stress would be
exceeded. (U.L.) (910 r.p.m.; 1310 r.p.m.)
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CHAPTER XIX

Material Testing and
Experimental Methods

19.1. Tensile Tests. The behaviour of a ductile material, such as
mild steel, when subjected to a simple tensile test, was described in
Para. 1.7. It was shown that, up to a certain value of stress, strain is
proportional to stress, and if the load is removed within this range there
will be no permanent strain (i.e. the material is stressed in the “elastic”
range). If the load is increased the material “‘yields,” undergoing a large
*“plastic” strain at a constant stress value. As the load is further in-
creased appreciable strain (mostly plastic) occurs up to the * ultimate
stress value. At this stage the specimen begins to “neck” at some
position along its length, the load falling off until fracture occurs. Most
engineering materials show these features to a varying degree, and
definitions of the principal values will be found in Para. 1.7. It is pro-
posed to discuss some particular aspects of the tensile test and the
significance of the results obtained.

(2) The “working” portion of the specimen is either circular or rec-
tangular in cross-section, and is enlarged at each end for a length suit-
able for the grips. The ends may be screwed into the grips, or they may
be provided with a shoulder through which the load is transmitted, or
they may be held between wedge grips with roughened inside faces. The
latter method is the simplest and cheapest to employ, and is always
used for flat specimens, but it is limited to the “softer” steels and
other metals. It is important that the grips should be self-centring
in order that the load shall be applied axially and evenly over the
specimen (for a circular cross-section an eccentricity of 0-01d in the
load increases the maximum stress by 8%,).

(b) Testing machines fall generally into two categories, one in which
the load is applied manually, and the other in which hydraulic pressure
is utilised, the choice depending largely on the capacity required. In
cither case the applied load is measured by a balance weight through a
system of levers. The latest types of hydraulically operated testing
machines are self-indicating, the balancing mechanism being actuated
by a piston working in a cylinder supplied with the same pressure as
the main straining unit.

(c) In the elastic range strain is measured by an “extensometer’

320
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attached to the gauge length. Thi\s{I Ht arc U9 RICOEROL 1Ban detect

very small changes in length, and various types in common use will be
described later (Paras. 19.9 and 19.10). In the plastic region the. much
larger strains involved may be detected by means of a pair of dividers
and scale rule.

(d) Effect of rate of loading. It has been found that, except for hardened
steels, the more rapid the test the higher the values of yield stress and
ultimate stress, and the greater the elongation obtained.

one end
\
\

Total extension from

Initial distance from one end
Fig. 19.1

(€) Variation of elongation with gauge length and ct‘oss-sectional area.
If a specimen is marked off at a large number of intervals along its
length and tested to destruction, the two pieces may be fitted together
and the distance of each gauge mark from one end can be remeasured.
Subtracting the initial distances gives total extension reckoned from one
end, and when plotted against distance from that end will 'reveal a
graph such as Fig. 19.1. This consists of two parallel straight lmes,'the
sudden increase of extension taking place in the region of the neck at
fracture. There is said to be a “local” extension at the fracture and a
“uniform” extension along the remainder of the specimen. Let e be th.e
extension over a gauge length /, chosen such that the fracture is approxi-
mately at the centre of the gauge length, then e=a +bl expresses the
form of the graph.

The percentage elongation =100e/l=100a/l+ 1005.

Unwin found that, for a given material, a was proportional to the
square root of the original cross-sectional area 4, and writing 100a =
C+/4 and 100b = B, the law becomes

1000-c¥4 ¢ B
l l

The following values are given for the constants B and C for mild

steel: B =20, C=70. In order to eliminate any error in comparison of
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elongmgn %'é@lr%gt%'xbslo BALiended in B.S.18 that the gauge length
should be 44/4.

(f) Overstrain—repeated loading. If, in a tensile test on a steel speci-
men, the load is carried beyond the yield point and then gradually
relea.sed, there will of course be considerable permanent set in the
specimen. On reloading it will be found by careful observation that the
steel appears to have lost its elasticity, i.e. it no longer obeys Hooke’s
law. In .fact the unloading and reloading curves form a “hysteresis”
loop V.Vthh represents energy wasted in internal friction (Fig. 19.2).
The yield point will be considerably raised, almost as high as the stress
value at the end of the previous test, and the material is said to be work-
hardened, as in cold drawing or rolling processes.

Repeated loadings will raise the yield point to a value approaching
the ultimate stress. If continued until fracture, this will exhibit the
characteristics of a hard steel, with only a small reduction in area and
a much reduced elongation.

Stress
Stress

Strain
Fig. 19.2

O P Strain
Fig. 19.3

Elasticity can be recovered by a long period of rest or by boiling in
water for a few minutes. Annealing will return the steel to its original
condition before overstraining, with the same yield point, etc.

(g) Proof Stress. Many materials, notably some alloy steels and light
alloys of al}lminium and magnesium, do not possess any definite limit
of proportionality or yield point in a tensile test, the stress strain
diagram being curved almost from the origin (Fig. 19.3).

If a tangent to the curve at the origin is drawn (OT) and a line PQ is
drawn parallel to OT, cutting the curve at Q, such that OP =0-19,, then
the stress at Q is called the 0-19, proof stress. It is the stress at which

the strain has departed by 0-1%, of the gauge length from the line of
proportionality OT.
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19.2.
19.2. Compression Tests. Sp¥diiiersiifatRhesBhINests on

metals are usually circular, and for concrete square, in section. To pre-
vent failure by buckling, the length should be of about the same order
as the minimum width.

For a ductile material such as mild steel or copper lateral distortion
takes place, and, due to the restraining influence of friction at the load
faces, the cross-section becomes greatest at the centre, the test piece
taking up a barrel shape. Failure finally occurs by cracks appearing on
the surface and spreading inwards.

Brittle materials such as cast iron and cement usually fail by shearing
along planes inclined at between 50° and 70° to the longitudinal axis.
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19.3. Hardness Tests. Hardness represents the resistance of a
material to indentation, and involves the measurement of plastic de-
formation caused when a loaded ball or diamond is applied to the sur-
face of the material. Two of the principal commercial methods will be
described below.

(a) Brinell Method. In this a hardened steel ball is pressed into the
surface under a specified load which is held on for a fixed period and
then released. A permanent impression is left in the surface, and the
“Brinell Number” is defined as the ratio of the applied load in kilo-
grammes to the spherical area of the impression in square millimetres.
In practice either the diameter or the depth of the impression is
measured, and conversion tables used to determine the hardness
number.

The application of the Brinell method is limited to materials with
hardness numbers below 500, as above this value distortion of the steel
ball appreciably affects the readings. For thin sheets the results are only
reliable if the thickness is at least 10 times the depth of the impression
(B.S.240, Pt. I).

(b) Vickers Pyramid Diamond Method. The method is basically
similar to the Brinell, the indenter being a 136° pyramid diamond on a
square base. Owing to the extreme hardness of the diamond it can be
used over the whole range of material hardnesses, and there is a linear
relationship between the depth of impression and the hardness number.

The calculation of the “Vickers Pyramid Number”(V.P.N.) is again
based on the ratio of load to impressed area, the latter being obtained
by measuring the length of a diagonal of the square impression at the
surface of the material under test.

The limiting thickness of the test piece is 1} times the diagonal of
the impression (B.S. 427).

The Firth Hardometer and the Rockwell Hardness Tester are similar
in operation to the Brinell and Vickers diamond machines, though the
Rockwell uses the depth of the impression as the criterion of hardness.
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(M'%g\glwg’%%d& A small weight, known as the hammer,
fitted with a diamond tip or a steel bar on its under surface, is dropped
from a height of 25 cm. onto the surface under test. The height of the
rebound is used as a measure of the hardness of the surface.

There is no direct relation between the Shore hardness and the
Brinell and V.P.N., the ratio between the two varying for different
materials. However, this method can be used as a standard of compari-
son, and in cases where an indentation is undesirable or the surface is
inaccessible to the normal hardness testing machines.

(d) Relation of hardness to tensile strength. It is found that there is
an approximate linear relation, such that

Ultimate tensile strength (N/mm?2) =k x Hardness number

For mild steel, k=3-5.

For alloy steel, k=3-2.

19.4- Impact Tests. Static tests are not satisfactory in determining
the resistance to shock or impact loads such as automobile parts are
subjected to, and in the impact test a notched specimen of the material
is fractured by a single blow from a heavy hammer, the energy required
being a measure of the resistance to impact.

Izod Impact Machine. This is the most commonly used type, and is
illustrated diagrammatically in Fig. 19.4. The specimen (dimensions are

163

Free pointer

Speci) | 4
pec/gnl | )/ot ch/ i e
Anvi/
\ Fig. 19.4

laid down in B.S.131) is fixed in the anvil with the notch at the level of
the top face and on the side of the falling hammer. The hammer is
released from a fixed position (such that the total potential energy of
fall is 163 Nm), strikes the specimen, which breaks, and continues for
some distance on the other side. By means of a pointer which moves
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freely over a scale the energy abso\r/ﬂglci 'ircl: varlalc(:j&}faisrigl(t)ﬂgpt%ts}{npiece is
recorded.

The Charpy impact test is similar in principle to the Izod, but the
notched specimen is supported at each end as a “beam”, and struck
by the hammer in the centre.

The impact test has been found particularly valuable in revealing
“temper brittleness” in heat-treated nickel-chrome steels (see Para.
19.6), and also in revealing the resistance to fracture due to stress con-
centrations in a member. The notch sets up conditions of stress con-
centration from which cracks are liable to start, and for brittle materials
less energy is required to fracture the specimen than for ductile materials.

19.5. Effect of Carbon Content. The variation of mechanical
properties in plain carbon steel in the annealed condition is shown in
Fig. 19.5.

It will be seen that the ultimate strength and hardness values increase
together with increased carbon content, the elastic limit (and similarly
the yield point) increasing at a reduced rate, At the same time there is
a marked falling off in ductility indicated by the decrease in values for
elongation and reduction in area, steel containing more than about
0-6%, carbon exhibiting a “brittle” type of fracture.
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Fig. 19.5

19.6. Effect of Tempering. Nickel-chrome alloy steels are in wide
use where a material possessing a high-tensile strength combined with
a fair measure of ductility is required. A typical heat treatment which
will bring out the best combination of mechanical properties is a
hardening from about 850° C. (either by quenching in oil or cooling in
air), followed by tempering at about 180° C. It will be seen from Fig. 19.6
that tempering reduces very slightly the ultimate strength, while raising
the yield point from the fully hardened state. At the same time the
ductility measured by reduction in area is increased, and a peak is
reached on the curve of impact values.
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I¥cl>stle théWLte%E:})SekglgngR engss” indicated by the impact values for
temperatures between 200° C. and 400° C. referred to in Para. 19.4.
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Fig. 19.6

19.7. Creep. It has been found that at elevated temperatures a metal
in tension will continue to elongate under a constant stress which may
be much less than the ultimate tensile stress. This phenomenon is
called “creep,” and is measured by the rate of strain per hour under a
certain stress at a given temperature,

If a “short time” tensile test is carried out on a metal specimen at a
specific temperature a fairly definite ultimate stress is obtained. The
material may be made to fail by creep under a lower stress, however,
provided sufficient time is allowed, the rate of creep depending on the
stress. At any temperature there is a limiting stress below which creep
will not take place, i.e. the metal will not fracture if the stress is applied
for an indefinite period. This limiting creep stress may frequently be
less than half the ultimate stress obtained in a normal tensile test at
that temperature. In designing any part which is stressed at high tem-
peratures it is clearly necessary to base the working stress on the limiting
creep stress.

Special alloy steels containing small percentages of molybdenum,
vanadium, cobalt or tungsten, have been developed which are creep-
resisting, for applications such as gas-turbine blades and high-pressure
steam fittings.

In practice a very lengthy investigation is involved to determine the
limiting creep stress, since at stresses near to this value tests must be
extended over months or even years to determine the strain. It is
usual, therefore, to circumvent this difficulty by finding the stress at
which a definite very small rate of creep takes place after a shorter
period of test. The creep rate is known to diminish with time and a
typical stress value obtained by a test of this nature is that which will
cause a creep of 1 millionth per hour after 40 days. Ludwig’s law gives
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the creep rate at a stress o as Ce®, VMeSII'E Ia\ﬁl %t%lsr'g I?&?&%i'{s} for a
given material.

19.8. Fatigue. Many machine parts are subjected to fluctuating
stresses, taking place at relatively high frequencies, and under these con-
ditions failure is found to occur at stress values much lower than would
apply for static loading. The phenomenon is known as *“fatigue”’ failure.

The range of stress (R) over which fluctuations occur is the algebraic
difference between the maximum and minimum stresses, treating com-
pression as negative. A mean stress M may be defined such that the
limiting stresses are M + R;2. Particular cases which frequently occur are:

(1) When the mean stress is zero and the fluctuations are of equal
tension and compression (known as “reversed stress”).

(2) When M = R/2, so that the stress ranges from zero to R (known
as repeated stress).

MATERIAL TESTING

Fluctuating stresses occur in practice under three main types of
loading:

() direct stresses (tension and compression),

(b) bending stresses,

(c) torsional stresses.

Testing machines have been developed to reproduce each of these
types, and design stresses should be related to the conditions under
which the part is to operate.

Experiments show that, for a given mean stress, there is a limiting
range of stress below which fracture will not take place for an indefinite
number of cycles. This range is known as the Endurance or Fatigue
Limit, and may be quoted as a maximum and minimum stress or as a
range about a certain mean. The fatigue limit in reversed bending is
found to be about 259, higher than in reversed tension and compression,
probably due to the stress gradient. In reversed torsion the fatigue
limit for shear stress is about 0-55 times the tensile fatigue limit.

In order to determine the fatigue limit at a given mean stress, it is
necessary to carry out a series of tests on specimens subjected to a
gradually decreasing range of stress. It will then be found that the
number of cycles of stress required to fracture each specimen increases,
and as the fatigue limit is approached some hundreds of millions of
reversals may be withstood. From practical considerations it is fre-
quently considered acceptable to use as the limit that stress range which
will not cause fracture after 10 million, or in some cases 100 million
cycles.

The maximum stress corresponding to the fatigue limit (given by
M + R/2) will be least under conditions of reversed stress (i.e. M =0),
and will be well within the elastic limit.

Factors of design which affect the fatigue strength are:
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(1) Stress concentrations caused by sudden changes in cross-section

and features such as screw threads and keyways. Fatigue failures are

found to start from cracks at these points of stress concentration, very

little redistribution of stress being possible even in ductile materials,
However, the stress concentration factor under fatigue conditions is
found to be rather less than under static conditions.

(2) Surface treatment. Considerable improvement in the fatigue
strength of manufactured parts can be achieved by surface hardening
(e.g. carburising) or by work hardening processes. Cold rolling and
shot peening have been found to give increases of up to 209, in the
endurance limit, due to surface hardening and to the residual com-
pressive stresses set up which resist the formation of fatigue cracks.

(3) Surface finish. The highest fatigue strength is obtained with
smooth ground surfaces, particularly in the case of high-tensile steels.

(4) The frequency of stress reversals also influences the fatigue
limit, which is higher for increased frequency.

The most satisfactory empirical formula embodying the experi-
mental results for steels is due to Gerber, which may be written:
o=R[2++/(0,2—nRa,) 9]
where o is the maximum stress during each cycle at the fatigue limit,
R is the stress range,
o, is the normal ultimate tensile stress,
and # is a constant for one material.

For mild steel, n=1-5, for high-tensile steel, n=2-0.
Applied to the particular cases previously mentioned:
(1) Reversed stresses
o=R/2
and it can easily be shown that
g=0,/2n=0,/3 for mild steel
(2) Repeated stresses
c=R
and solving the equation gives
a=0-61 ¢, for mild steel
Noting that ¢ —R/2=2M, Gerber’s formula can be re-arranged to

give
e (O @

and Goodman suggested a simpler straight line law relating the stress
range and the mean stress, i.e.

R=%@-%) (3)
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Note that in both formulae f,/n is t}{ésétresévllalt(rjl%tg gxlor%%%éﬁ stress

conditions (i.e. M =0) and Fig. 19.7 shows the variation of R with M

Ro=0,/n

Gerber's Law.

Goodman's Law

M Ou
Fig. 19.7

according to Gerber and Goodman. In practice, if the values of o, ‘and
Ry (=0,/n) for a given material are found by experiment, t%xe fatlgu’e
limits under other conditions can be determined from this diagram.

ExampLE 1. If the ultimate tensile strength of a material is 600 N[mm? and
its endurance limit under reversed stress is +1 80 Njmm?, calculate the

constant n according to Gerber’s law. What is the maximum stress at the

Fatigue limit for repeated stress conditions (i.e. minimum stress zero), accord-
ing to Gerber’s law and Goodman’s law?
Under reversed stress M =0, 0 =180 N/mm? and R =360 N/mm?2. By
Gerber’s formula
n=a,/R
=600/360=5/3

Under repeated stress R =0 and M =10
o =2.600(1 - 02/4 x 6002)

From (2),
ie. 02/4000 + o — 360 =0
giving o=[-1++/(1+9/25)]2000

=335 N/mm?

From (3), Goodman’s law gives
g =2.600(1 —o/2 x600)

giving o =360 x 10/13 =277 N/mm?

If a machine part is run for a series of cycles ny, 7,...at dif.ferent
stress levels, and the corresponding fatigue life at each level is Ny,
N,. .. cycles, Miner suggested that failure Fould be expected when
Zn|N =1. Experiments show variations in this factf)r fl‘OII"l 0-6 to 1-5,
the higher values being obtained for sequences of increasing loads.
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For fatigue failures under combined bending and torsion, Gough
showed that the ellipse
2 72
o2 T
ST 1
o2 T2
fitted the experimental results, where o and 7, are the direct and shear
stress fatigue limits under pure bending and pure torsion respectively,
and o and 7 are the corresponding endurance limits under combined
bending and torsion.

19.9. Extensometers. The strains involved within the elastic range
of stress in engineering materials do not exceed about 1 part in 1000,
and instruments used to measure such small linear movements are
called extensometers or strain gauges. Magnification is usually achieved
mechanically, as in types (1) and (3) below, or optically, as in (2}, or by
a combination of both. Electrical resistance strain gauges are dealt with
separately in Para. 19.10.

The first two described are designed specifically for use with tensile
test pieces, and work on a fixed gauge length, giving a reading of the
mean extension along opposite sides. The third type measures surface
strain and can be fixed to any structure.

(1) Cambridge Extensometer (Fig. 19.8). This consists of two separate
pieces clamped by means of conical pointed screws into gauge points
on the test specimen.

Vibrating
tongue

[T®

== Knife
|_edge
// E_
' Micrometer
7e St /79 ad
piece
)
Fig. 19.8

The lower piece carries a vertical pillar, at the top of which is a knife
edge, and a horizontal arm through which operates a vertical micro-
meter screw fitted with a graduated disc. The upper piece rests on the
knife edge and carries a horizontal vibrating arm.
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A reading is taken by setting the vibrating arm in motion and gradu-
ally bringing up the screw point until it just makes contact 'w1th the
tongue on the underside of the arm. The correct setting is indicated by
the noise and by the damping out of vibrations.

The relative distances of knife edge and micrometer screw from the
axis of the specimen produce a magnification of extension of five times,
and the micrometer head is so divided that each division represents an
extension of 0-002mm on the test piece. Smaller intervals may be judged
by eye.

y(2§’ Ewing’s Extensometer (Fig. 19.9). The upper piece is fitted with.an
adjustable screw on one side, and at an equal distance on the c?ther side
hangs a small tube. At the lower end of the tube is 2 glass window on
which is inscribed a fine horizontal line. This line is viewed by a micro-
scope and focused on a scale in the eyepiece. The microscope 18 fixed
to the lower piece of the instrument, the two pieces.turmng about a
pivot joint between the ball end of the pillar extension of the l-ower
piece and the conical seat in the end of the screw on the upper piece.

—= []] |
Pivat—[; ; L
' | Test
piece
Pillar —> d—Tube
Scale in
eyeprece
O .
m Microscope
Fig. 19.9

The movement of the tube is twice the extension of the test piece,
and the optical magnification is such that an accuracy of 0-0005 mm
extension can be obtained. A considerable range can be obtained by
bringing the scale back to zero by means of the adjustable screw, and
this enables extensions beyond the elastic limit to be measured. )

(3) Huggenberger Extensometer. A magnification of about 1000 times
is obtained entirely mechanically by a double-lever system.
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ig. 19.10) are fixed to the frame,and Band D are !

movable. The‘rocker BD serves to transmit motion from the knife-edge
arm to the pointer arm, and is held in position by a spring attached at
1ts.other end to AB. The frame is held by a suitable clamp so that the
knife edges press on to the surface, and the pointer may be set to zero

by an adjustment not shown.

The gauge length may be varied by

fitting extension pieces, and no
c marked'gauge points are necessary.
; R Readings are taken directly off the
scale, and converted into extension
or compression by dividing by the
£ . . g oy the
~-/rame partlllcular magnification factor. The
o smallest measurable movement is
oring about 0-0005 mm.
‘ 19.10. Electrical  Resistance
Pointer Strain Gauges. It was first dis-
Scale covered b.y Lord Kelvin in about
1850 that if metal wires are stretched
Al, the_y undergo a change in electrical
> s resistance. This property has been
kM?;ab/e Fixed made use of to develop a gauge for
nife edge  knife edge  measuring the surface strain of
Fig. 19.10 structures and machine parts.

The most commonl i
are copper.-flickel alloys, which have been found to golgzzgsn;atgilﬁls
high §en31t1vity to change in resistance, and a low temperaturz
coefficient. .In order to obtain an appreciable resistance from a short
length of wire, diameters of about 0-025 mm are employed. The wire is
wound on flat formers, and bonded between layers of resin-impreg-
nated paper to form a flat grid as shown in Fig. 19-11. The total fesii-

tance is usually in the region of 100 to 1000 i
size from 1 to 25 mm. 1 Y MR

) The surface to which the gauge
is to be attached is cleaned and 0
grease is removed by washing with
acetone or other chemical. It is
then roughened by rubbing with
tf‘)lne emery, and the gauge is fixed
y a suitable cement. Several days are necessa
: I ry to ensure complete
d}xl'yu;cgi, ll)mle§s moderate heat is used. When thoroughly dry the gguge
should be given a protective coating against atmospheri idi
which will cause corrosion of the wirgs. s eopheric humidiey
Measurement of change in resistance is by means of a Wheatstone

~

\J

Fig. 19.11
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Bridge circuit (Fig. 19.12). Note thit  * Gu¥ay »*gGgEM"dHed to
balance the active gauge. The dummy gauge is fixed to a piece of the
same material as the active gauge and kept in the same vicinity, so that
strains (and hence changes of resistance) produced by change in
temperature will be compensated for.

With no load on and the contact on the slide wire set at zero the
dummy and active bridge arms are balanced by adjustment of the
variable resistance. When the load is applied, stressing the active gauge,
balance is restored by means of the slide
wire contact, which can be calibrated to
read change of resistance directly.

Change of resistance is converted into
strain by means of the gauge semsitivity
factor, which is the ratio between frac-
tional change of resistance and strain.
This factor is determined by calibration
of samples from a batch of similar gauges.
In accurate work a correction must be
made for the strain in a lateral direction,

i.e. the width of the gauge. The numerical Varjable

. . resistance
value of the gauge factor is approximately
2, and depends not only on the actual I-l
changes of dimensions of the wire, but
also on a change in specific resistance
which takes place under stress. Up to a
limiting strain value the factor is found to be constant.

Obvious advantages of the resistance strain gauge are that it can be
used in places which are inaccessible to normal types of extensometers,
and that, with the use of a multi-channel bridge, up to 100 gauges can
be “read” in a short space of time. Once the gauges are fixed and pro-
tected against the atmosphere, tests can be extended over months or
years, which may be a useful asset in detecting changes of stress
distribution.

If the directions of the principal stresses at the surface are not known,
strain “rosettes,” consisting of three gauges fixed at known relative
angles, are used to determine them. Torsional stresses in shafts are
measured by two gauges at right angles, placed with their axes at 45° to -
the shaft axis (see Para. 3.4), these gauges occupying the positions
marked “dummy” and “active”in Fig. 19.12. Oscillatory stresses may
be investigated by applying the fluctuations of voltage across the gauge
to a cathode-ray oscillograph or galvanometer recorder.

The methods of Para. 3.16 can be used to determine the principal
stresses from the measured strains in three directions at a point. The

Battery
Fig. 19.12

Visit : Civildatas.blogspot.in


http://Civildatas.blogspot.in

334 o STRENGTH OF MATERIALS
Visit ; Civildatas.blogspot.in

ollowing results are quoted for reference. For the rectangular rosette
(gauge directions 0, 45° and 90°), the principal stresses are

E 80 + 6‘90 1
{‘Tj 17 v\/ [(20 —290)? + (2245 — 89— 890)2]}

2

and for the delta rosette (gauge directions 0, 60°, and 120°), the principal
stresses are

eoteepterzg 1 2 &0 +260 +£120\2  (e60 ~ £120)°
E{ 3 (1) i1+m/[(1”)(£°" 3 T3

19.11. Photo-elastic Stress Analysis. This method is based on
the phenomenon of double refraction exhibited by transparent
materials when subjected to stress. It was first discovered by Brewster
in 1816 when experimenting on glass, but it was not developed for about
a hundred years due to the difficulty of producing models from such a
brittle material. Coker and Filon were the pioneers of work on problems
of stress analysis, using celluloid models. Since 1930 many other plastic
materials with suitable properties have been developed for this work.

The method consists of observing a loaded model in a beam of
polarised light, and a simple arrangement is shown in Fig. 19.13. Mono-
chromatic light (either mercury or sodium vapour) is normally used, and
a parallel beam is obtained by means of a condenser lens. The polariser
and analyser are either natural crystals or “Polaroid” discs. The
quarter-wave plates are of mica, their thickness being related to the
wavelength of the light source. The model is carried in a loading frame
and placed as shown. Light- and dark-coloured bands are produced on
the screen, and may be photographed for subsequent analysis. It is not
proposed to discuss the theory of light waves, but an outline of the
effects obtained and their interpretation is given below.

Condenser kWave —— YWave  Focusing
Light /eni/ plate plate lens
e nZ r ‘!
source Screen
( z
camera
AU U
Polarizer Analyser

Loading frame
and mode/
Fig. 19.13

If the quarter-wave plates are removed, plane polarised light is pro-
duced, and with the axes of the polariser and analyser at 90° no light is
transmitted to the screen. When the specimen is loaded, however, some
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light is passed through, except at points where the diréction of one

principal stress is in the plane of polarisation. The result is a dar? b_and
across the model indicating the locus of all points at which the principal
stresses are in the same directions. These bands are called ?'soclt:m'.cs,
and by rotating the polariser and analyser together a series of isoclinics
can be obtained for various directions of principal stress.

The quarter-wave plates, placed with their axes at ‘.15° to those of the
polariser and analyser, produce circularly polarised light, and serve to
cut out the isoclinics. It can be shown that, under this arrangement,
light is extinguished on passing through the modf:l and analyser at
points where the principal stress difference (or maximum sh(?ar stress)
is proportional to a value depending on the optical properties of the
material and the thickness of the model. Consequently a series of dz.u-k
bands are produced on the screen (isochromatic fringes), frf)m which
the values of stress difference can be determined. Calibration of the
value of stress represented by the fringes is carried out by a simple
tensile or bending test on a piece of the same material.

At a free boundary the principal stresses must be parallel and per-
pendicular to the boundary, the latter being of zero value. Conseqqently
the edge stresses can normally be determined directly from .the fringes,
and this may be sufficient indication of stress concentrations. If the
individual principal stresses are required for a more detailed analysis the
following methods are available :

(1) Numerical integration along a line, starting from a free

boundary. N

(2) Numerical determination of values of the prmqpal stress sum
by relaxation methods, values at the free bo.um.iary being known.

(3) Experimental determination of the principal stress sum by use
of lateral extensometer.

19.12. Brittle Lacquers. These are coatings which can be spread on
the surface to be tested, and when dry form a layer which will crack when
the surface strain exceeds a certain value. They are particularly useful
for indicating the weakest section of a complicated structure under
load (by watching where the cracks in the lacquer first appear), and
for finding the directions of the principal stresses at the_ surface (t%le
direction of the cracks being perpendicular to the maximum tensile
stress).

Quantitative strain analysis must be carried out under carefully con-
trolled conditions of temperature and humidity, which affect the
response of the lacquer. The strain is then estimated by the spacing
density of the cracks as compared with a calibration bar under known
loading.
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APPENDIX

Table of Elastic Constants

These values are only approximate, and in many cases vary con-
siderably depending on the condition of the material (i.e. cast, forged,
drawn, etc.) and its heat treatment.

Elastic | Ultimate | Elonga-
i v 2 N/mm?2 limit tensile tion
Material N/mm / Nimies | stvennth o
N/mm?2
. 3 .| 102,000 38,000 — 350 40
g;iilsze . .| 116,000 45,000 210 310 20
Cast iron . . 96,000 41,000 — 210 8
Duralumin . . 72,000 26,000 280 380 18
Monel metal .| 180,000 70,000 410 550 20
Mild steel . 202,000 80,000 280 480 25
Nickel-chromesteel | 206,000 82,000 1200 1650 12
Timber 4 . 12,000 1,000 48 70 —
337
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Bars, compound, 14

—, curved, 195

Beams, bending stress in, 86
—, built-in, 178

—, composite, 100

—, continuous, 185

—, curved, 195

—, deflection of, 152, 174
—, on elastic foundations, 189
—, oscillation of, 307-314
—, reinforced concrete, 107
—, shear stress in, 117

Index

Bending and direct stress, 95, 218

— and twisting, 139
~— moment, 71

— —, graphical, 81

— —, maximum, 83
—, pure, 86

— strain energy, 152
—, unsymmetrical, 111
Built-in beams, 178
Bulk modulus, 65

Castigliano’s theorem, 203
Centre of twist, 126
Circular plates, 295
Close-coiled springs, 225
Collapse load, 214
Compound bars, 14

— beams, 100

— shafts, 137

— stress, 34

— tubes, 277
Compression, 1

— test, 323

Concrete, reinforced, 107
Continuous beams, 185
Contraction, percentage, 5
Contraflexure, 73
Cottered joints, 27

Creep, 326

Curved bars, stresses in, 195
— —, deflection of, 201, 203
Cylinders, rotating, 289
—, thin, 259

—-, thick, 267

—, wire-winding of, 265

Deflection coefficients, 175
Deflection of beams, 152

~— — —, by calculus, 154

— — —, graphical method, 174
— — curved beams, 201, 203
Direct stress, 2

Discs, rotating, 287

i

Ductility, 5

Eccentric load, column, 95
— —, strut, 243

Elastic constants, 65,.337

— foundations, 189

— limit, 4

— packings, 17

Elongation, percentage, 5, 321
Euler theory, 238
Extensometers, 330

Factor of safety, 6, 7
Failure, theories of, 56
Fatigue, 327

Fixed beams, 178

Gerber’s law, 329
Goodman’s law, 329
Guest theory, 57

Haigh theory, 57
Hardness test, 323
Hooke’s law, 3
Hub on shaft, 279

Impact, bending, 154

—, direct, 8

— test, 324

Inertia, moment of, 88, 109, 113
—, product of, 88, 109

Johnson’s formula, 249
Joints, cottered, 27
—, riveted, 29, 122

%g:af sp;ings, 230

imit of proportionality, 4
Load, 1 v
—, concentrated, 74

—, distributed, 75

—, factor, 7, 209

—, impact, 8

—, proof, 232

—, suddenly applied, 8
—, type of, 6

——, varying distributed, 79
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Middle third rule, 99

— quarter rule, 100
Mises-Hencky theory, 57
Modulus, bulk, 65

— of elasticity, 3

— of rigidity, 26

— of section, 88

Modulus, Young’s, 3
Mohyr's strain circle, 53
Mohr’s stress circle, 42
Moment, bending, 71

— of resistance, 88
Moment of inertia, 88, 109, 113
— — —, equivalent, 101
— == —, graphically, 91
— — —, polar, 89

— — -, principal, 109
Moment-area method, 163

Neutral axis, 86
— surface, 86

Open-coiled springs, 228
Oscillations, linear, 302
—, torsional, 302

—, transverse, 304
Overstrain, 322

Perry-Robertson formula, 250
Photo-elasticity, 334
Plastic bending, 209

— hinge, 209

— torsion, 139

— yielding of tubes, 274
— — — rotating discs, 293
Plates, circular, 295
Poisson’s ratio, 47

Portal frame, 192, 206, 220
Principal axis, 88

— moments of inertia, 109
— of superposition, 3

— planes, 38

— strain, 49

- — theory, 57

— stress, 39

— — in beams, 121

— — theory, 56

Proof load, 232

-— resilience, 7

— stress, 322

Rankine theory, 57
Rankine-Gordon formula, 247
Reinforced concrete beams, 107

Resilience, 7 (see also Strain energy)

—, proof, 7

Rigidity, flexural, 152
—, modulus of, 26
Riveted joints, 29, 122
Rotating cylinders, 289
— discs, 287

St. Venant, principle of, 2
— theory, 57

Section modulus, 88
Shafts, circular, 130

—, compound, 137

—, oscillation of, 301
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hafts, torsion o
—, whirling of, 314
Shear centre, 126
—, deflection due to, 170
— strain, 26
— — theory, 57
— — energy, 26, 55
-— stress, 24
— — complementary, 24
— —, in beams, 117
— —, maximum, 40
Shearing force, 71
— —, maximum, 83
Spherical shell, thick, 281
— —, thin, 260
Spiral springs, 234
Springs, close-coiled, 225
—, leaf, 230
—, open-coiled, 228
—, oscillations of, 302, 306
—, spiral, 234
Stiffness of beams, 175, 307
— of springs, 225
——, torgional, 131
Strain, direct, 3
— gauges, 332
—, principal, 49
—, shear, 26
—, volumetric, 54, 261
Strain circle, 53
— energy, 7
— — in bending, 152, 203
~— — in torsion, 132
— —, shear, 26, 55
— — theory, 57
— —, volumetric, 55
Stress, 2
—, bending, 86
— circle, 42
— concentrations, bending, 95
—, compressive, 2
— —, tension, 19
— —, torsion, 135
—, direct, 2
—, principal, 39
—, proof, 322
—, shear, 24
—, temperature, 16, 105, 292
—, tensile, 2
—, working, 7
Struts, eccentric loading of, 243
—, Euler theory, 238
—, initially curved, 244
—, Johnson’s formula for, 249
—-, lateral loading of, 250

—, Perry-Robertson formula for, 250
—, Rankine-Gordon formula for, 247

—, varying cross-section, 254
Superposition, principle of, 3

—-, rectangular, 142 Temperature stress, 16, 105, 292
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— —, stress, 2

— —, ultimate, 5

Tension, 1

Testing, compression, 323

-—, creep, 326

—, fatigue, 327

—, hardness, 323

—, impact, 324

—, tensile, 4, 322

Theories of failure, 56

Thick cylinders, 267

— spherical shells, 281

Thin cylinders, 259

— spherical shells, 260

Tie with lateral load, 253
Torsion beyond yield, 138

— of shafts, 130

— of thin tubular sections, 142
— — — cellular sections, 145

INDEX

Torsion of thin rectangular members,

146
-— — — open sections, 147
Tresca theory, 57
Tubes—see Cylinders
—, compound, 277

Unsymmetrical bending, 111

Volumetric strain, 54, 261
— — energy, 55
Vibrations, linear, 302
—, torsional, 302

—, transverse, 307

Wire-winding, 265
Whirling of shafts, 314

Young’s modulus, 3
Yield point, 5

TO THE READER

Author and publisher would welcome suggestions towards future
editions of this text, or the pointing out of any misprint or
obscurity. Please write to The Technical Editor, Macmillan &
Co. Ltd., Little Essex Street, London, W.C.2.
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