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Preface 
The principal feature of this edition is the introduction of the Systeme 

International d'Unites (SI), under which the United Kingdom is 
adopting the metric system. Also the opportunity has been taken to 
bring the notation up to date, by the use of sigma and tau for stresses, 
epsilon for strains, for example. 

It sets out to cover in one volume the whole of the work required up to 
final degree standard in Strength of Materials. The only prior know­
ledge assumed is of elementary applied mechanics and calculus. Conse­
quently, it should prove of value to students preparing for the Higher 
National Certificate and professional institution examinations, as well 
as those following a degree, or diploma course. 

The main aim has been to give a clear understanding of the principles 
underlying engineering design, and a special effort has been made to 
indicate the shortest analysis of a wide variety of problems. Each 
chapter, starting with assumptions and theory, is complete in itself 
and is built up logically to cover all aspects of the particular theory. 
In this way the student is made aware of the limitations from the start, 
and, although he may leave sections of a chapter to be digested later, 
it should enable him to avoid making errors in principle. 

Separate paragraph numbers are used for each chapter to enable 
quick reference to be made, and equation numbers quoted in worked 
examples are from the current paragraph except where stated. A 
summary of formulae, methods, and underlying principles is given at the 
end of each chapter; specialized works of reference have been quoted for 
the use of readers wishing to extend their knowledge of a particular 
branch of the work. 

Examples worked out in the text, and problems given at the end of 
each chapter, are typical of National Certificate and Degree standard. 
The aim has been to present a diversity of problems without undue 
overlapping. Acknowledgement is made to the Senate of the University 
of London for permission to use questions from their examination 
papers, which have been marked U.L. Numerical answers are given 
to all the problems. 

1969 G. H. RYDER 

v 



Contents 
Chaptn Page 

INTRODUCTION 

Strength of Materials. Conditions of Equilibrium. Stress-
Strain Relations. Compatibility. SI Units xi 

I DIRECT STRESS 
Load. Stress. Principle of St. Venant. Strain. Hooke'. 
Law. Modulus of Elasticity (Young's Modulus). Tensile 
Test. Factor of Safety. Strain Energy, Resilience. Im­
pact Loads. Varying Cross-section and Load. Compound 
Bars. Temperature Stresses. Elastic Packings. Stress 
Concentrations 

II SHEAR STRESS 
Shear Stress. Complementary Shear Stres.. Shear Strain. 
Modulus of Rigidity. Strain Energy. Cottered Joints. 
Riveted Joints. Eccentric Loading 24 

III COMPOUND STRESS AND STRAIN 
Oblique Stress. Simple Tension. Note on Diagrams. 
Pure Shear. Pure Normal Stresses on Given Planes. 
General Two-dimensional Stress System. Principal Planes. 
Principal Stresses. Shorter Method for Principal Stresses. 
Maximum Shear Stress. Mohr's Stress Circle. Poisson's 
Ratio. Two-dimensional Stress System. Principal Strains 
in Three Dimensions. Principal Stresses Determined from 
Principal Strains. Analysis of Strain. Mohr's Strain Circle. 
Volumetric Strain. Strain Energy. Shear Strain Energy. 
Theories of Failure. Graphical Representation. Conclusions 34 

IV ELASTIC CONSTANTS 
Elastic Conltants. Bulk Modulus. Relation between E and 
G 65 

V SHEARING FORCE AND BENDING MOMENT 
Shearing Force. Bending Moment. Types of Load. Types 
of Support. Relations between w, F and M. Concentrated 
Loads. Uniformly Distributed Loads. Combined Loads. 
Varying Distributed Loads. Graphics1 Method 71 

VI BENDING STRESS 

Pure Bending. Moments of Inertia. Graphical Determina­
tion of Moment of Inertia. Bending Stresses. Stress 
Concentrations in Bending. Combined Bending and Direct 
Stress. Middle Third Rule for Rectangular Sections. 
Middle Quarter Rule for Circular Sections. Composite 
Beams. Reinforced Concrete Beams. Principal Moments 
of Inertia. Unsymmetrics1 Bending 86 

VII SHEAR STI\J!SS IN BEAMS 

Variation of Shear Stress. Rectangular Section. I-Section. 
Principal Stresses in I-Beams. Pitch of Rivets in Built-up 
Girders. Solid Circular Section. Thin Circular Tube. 
MilceUaneoul Sections. Shear Centre 117 

vii 



viii 

Chapt ... 

CONTBNTS 

Page 
VIII TORSION 

Circular Shafts. Strain Energy in Torsion. Shafts of Varying 
Diameter. Stresa Concentrations in Torsion. Shafts under 
Action of Varying Torque. Compound Shafts. Torsion 
Beyond the Yield Point. Combined Bending and Twisting. 
Rectangular Shafts. Torsion of Thin Tubular Sections. 
Torsion of Thin-Walled Cellular Sections. Torsion of Thin 
Rectangular Members. Torsion of Thin Open Sections .. 130 

IX DEFLECTION OP BEAMS 

Strain Energy due to Bending. Application to Impact. De· 
flection by Calculus. Macaulay's Method. Moment-Area 
Method. Method of Deflection Coefficients. Deflection due 
to Shear. Deflection by Graphical Method .. 1 S2 

X BUILT-IN AND CONTINUOUS BEAMS 

Moment-Area Method for Built-in Beams. Macaulay Method. 
Continuous Beams. Beams on Elastic Foundations. Portsl 
Frames 178 

XI BENDING OP CURVBD BARS AND RIGID FRAMES 

Stresaes in Bars of Small Initial Curvature. Stresses in Bars 
of Large Initial Curvature. Deflection of Curved Bars (Direct 
Method). Deflection from Strain Energy (Castigliano's 
Theorem). Portal Frame by Strain Energy .. 19S 

XII PLASTIC THEORY OF BENDING 

Bending Beyond the Yield Stress. Assumptions in the Plastic 
Theory. Moment of Resistance at a Plastic Hinge. Collapse 
Loads. Combined Bending and Direct Stress. Portal 
Frames-Collapse Loads 209 

XIII SPRINGS 

Close-coiled Helical Springs. Open-coiled Helical Springs. 
Leaf Springs. Flat Spiral Springs • • • • . . • • 225 

XIV STRUTS 

Definition. Pin-ended (Hinged) Strut Axially Loaded. 
Direction-fixed at Both Ends. Partial Fixing of the Ends. 
Direction-fixed at One End and Free at the Other. Direc­
tion-fixed at One End and Position-fixed at the Other. Strut 
with Eccentric Load. Strut with Initial Curvature. Limi­
tations of Euler Theory. Rankine-Gordon Formula. 
Johnson's Parabolic Formula. Perry-Robertson Formula. 
Straight-Line Formulae. Strut with Lateral Loading. Tie 
with Lateral Loading. Struts of Varying Cross-Section-
Energy Method 238 



CONTBNTS 

Chapter 

IX 

Page 

XV CYLINDERS AND SPHERES 

Thin Cylinder under Internal Pressure. Thin Spherical Shell 
under Internal Pressure. Cylindrical Shell with Hemi­
spherical Ends. Volumetric Strain on Capacity. Tube under 
Combined Loading. Wire Winding of Thin Cylinders. 
Rotational Stresses in Thin Cylinders. Thick Cylinders. 
Internal Pressure only. Plastic Yielding of Thick Tubes. 
Compound Tubes. Hub Shrunk on Solid Shaft. Thick 
Spherical Shells 259 

XVI ROTATING DISCS AND CYLINDERS 

Disc of Uniform Thickness. Solid Disc. Disc with Central 
Hole. Long Cylinder. Disc of Uniform Strength. Tem­
perature Stresses in Uniform Disc. Plastic Collapse of 
Rotating Discs .. 287 

XVII CIRCULAR PLATES 

Circular Plates Symmetrically Loaded. Solid Circular Plate. 
Annular Ring, Loaded Round Inner Edge 295 

XVIII VIBRATIONS AND CRITICAL SPEEDS 

Linear Vibrations. Torsional Oscillations-Single Inertia. 
Torsional Oscillations-Two Inertias. Torsional Oscilla­
tions of Spring. Transverse Vibrations-Single Mass. 
Transverse Vibrations of Uniform Beam. Transverse 
Vibrations-Combined Loading. Energy Method for 
Frequency. Whirling of Shafts. Whirling of Eccentrically 
Mounted Mass 302 

XIX MATERIAL TESTING AND EXPERIMENTAL METHODS 

Tensile Tests. Compression Tests. Hardness Tests. Impact 
Tests. Effect of Carbon Content. Effect of Tempering. 
Creep. Fatigue. Extensometers. Electrical Resistance 
Strain Gauges. Photo-Elastic Stress Analysis. Brittle 
Lacquers 320 

Appendix-TABLE OF ELASTIC CONSTANTS 337 

Illdex 338 



A,a 
B, b 
D,d 

E 
e 

Notation 
Area, constants 
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Diameter, depth. 
Young's Modulus. 
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F Shearing force. 
f Frequency of vibration. 
G Modulus of rigidity. 
g Acceleration due to gravity. 
h Distance, height. 
I Moment of inertia. 
J 
K 
k 

L, 1 
M 

Polar moment of inertia. 
Bulk modulus, radius of gyration. 
Stress concentration factor, stiffness of shaft, spring, or beam 
Length. Load factor. 
Bending moment, mass. 

m Modular ratio, mass. 
P Load. 
p 

R, r 
S 
T 

Pressure or compressive stress. 
Radius, reaction. 
Shape factor. 
Torque. 

t Thickness, temperature, time. 
U Strain energy-resilience. 
u 

V,v 
W 
w 

X,x 
Y,y 

Z 
z 
a 
S 

Radial shift. 
Volume. 
Concentrated load 
Distributed load, weight per unit length. 
Co-ordinate; extension. 
Co-ordinate; deflection. 
Section modulus. 
Co-ordinate; intercept. 
Coefficient of thermal expansion, angle. 
Deflection. 

e Direct Strain. 
(J Slope of beam, twist of shaft 

cp Shear strain, chord angle. 
p 
fJ' 

fJ'x,fJ'y,fJ'z 

fJ'1,fJ'2,fJ'3 

T 

Density. 
Direct stress. 
Stresses in Directions OX, OY, OZ 
Principal stresses. 
Shear stress. 

v Poisson's ratio. 
CJ) Angular velocity. A 

A. Sign for maximum (e.g., M). 
x 



Introduction 
Strength of Materials is the study of the behaviour of structural 

and machine members under the action of external loads, taking into 
account the internal forces created and the resulting deformations. 
Analysis is directed towards determining the limiting loads which the 
member can stand before failure of the material or excessive deformation 
occurs. To this end three basic sets of relations can be obtained, as set 
out in the following paragraphs. 

Throughout the text it will be shown how these conditions are 
brought into play. It will not always be necessary to apply all the 
conditions, as simplified analysis may be suggested by symmetry or 
approximations. In other cases relations will be obtained by indirect 
methods, e.g. by strain energy or virtual work, which themselves 
incorporate certain of the basic conditions. 

Conditions of Equilibrium. The external forces and reactions on a 
member (including inertia forces if necessary) must form a system in 
equilibrium, and are therefore related by a certain number of equations, 
known as the conditions of equilibrium, depending on the configura­
tion.-

In a general three-dimensional system six such equations are obtained, 
in a coplanar system three, reducing to two if the forces are parallel or 
concurrent. These equations can be obtained by resolving or taking 
moments, and the number of unknown forces or reactions which can 
thereby be determined is equal to the number of such equations. 

Stress-Strain Relations. It will be shown subsequently that for a 
given material there are relations betWeen the strains (i.e. deformation) 
in a member and the stresses (i.e. internal forces) producing them. 
These stresses and strains can be analysed by methods to be developed, 
and equations connecting them can be obtained. The number of such 
relations depends on the complication of the system in a similar manner 
to that of the preceding paragraph. 

Compatibility. Sometimes a number of relations can be obtained 
between the strains or deformations to ensure that the system derived 
from any assumptions made is compatible, i.e. the deformations can 
exist concurrently. Such conditions clearly arise where a number of 
parts have to fit together, as in the analysis of compound Uhrs, beams, 
and cylinders. 

• See author's Mec/umic. Applied to Engine"';",. 
xi 



xii INTRODUCTION 

SI Units. In this system the fundamental units of mass, length and 
time are the kilogramme (kg), metre (m), and second (s). 

The derived unit of force is a Newton (N), being that force which 
produces unit acceleration on unit mass, i.e. 

1N = 1 kg.m/s2 

(note that, where standard gravitational acceleration is 9·81 m/s2, the 
force of gravity - weight - on 1 kg is 9·81 N). 

Multiples and sub-multiples of the basic units can be used, prefer­
ably in steps of 103 (e.g. mm length, kN = 1000 N, MN = 106 N, etc.). 
The basic unit of stress or pressure is N/m2, but since this is very small, 
a more realistic unit for stress analysis is the MN/m2 or N/mm2• It 
will be seen that these are equal in value, and in the present text the 
latter has been preferred, giving a clearer interpretation of stress as 
the force acting on a "point" area. 



CHAPTER I 

Direct Stress 

1.1. Load. Any engineering design which is built up of a number of 
members is in equilibrium under the action of external forces and the 
reactions at the points of support. 

Each individual member of the design is subjected to external forces 
which constitute the load on the member. Since the member is itself 
in equilibrium the resultant of all the forces acting on it must be zero, 
but they produce a tendency for the body to be deformed or torn 
asunder. This action is resisted by the internal forces of cohesion be­
tween particles of the material itself. The external forces may be trans­
mitted through contact with other members, or may be due to fluid 
pressure, gravity, or inertia effects. 

The simplest type of load (P) is a direct pull or push, known tech­
nically as tension or compression, as illustrated in Fig. 1.1. 

x: 
I 

Tension: P ~L.---i-l--------I~P 
X: 

Compression;P~L--_________ .--I1--p 

Fig. 1.1 

An example of tension is provided by the rope attached to a crane 
hook, and of compression the leg of a table. In each case the load con­
sists of two equal and opposite forces acting in line and tending to 
fracture the member. The forces on the crane rope are the load being 
raised at the one end and the pull of the winding gear at the other, and 
on the table leg a portion of the table weight on top and the reaction 
of the ground underneath. In structural frameworks some members 
will be in tension, some in compression, the load consisting of the 
reactions through the joints at the ends of the member. 

If the member is in motion the load may be caused partly by dynamic 
or inertia forces. For instance the connecting rod of a reciprocating 
engine is acted on by inertia forces due to piston acceleration and due to 
its own acceleration, as well as gas pressure forces on the piston and 
gravity effects. Again, the load on a flywheel is created by the centrifugal 
forces on the particles of the rim. 
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Load will be measured in kg or Newtons (N). The standard gravity 
force on 1 kg is 9·81 N. 

1.2. Stress. Across any section such as XX of the member represented 
in Fig. 1.1 the total force carried must equal the load P. This is distrib­
uted among the internal forces of cohesion, which are called stresses. 

If the member is imagined cut through the section XX (Fig. 1.2), each 
portion is in equilibrium under the action of the external load P and 
the stresses at XX. 

Stresses which are normal to the plane on which they act are called 
direct stresses, and are either tensile or compressive. 

XI 

P-ir------'g 1 ~ ~P 
I ...... ------1. x: 

Fig. 1.2 

The force transmitted across any section, divided by the area of that 
section, is called the intensity of stress, or, for brevity, the stress (a). If 
it is assumed that the load is uniformly distributed over the section, then 

a=P/A 
where A is the area. 

In a great many instances the intensity of stress varies throughout the 
member, and the stress at any point is defined as the limiting ratio of 
SP/SA for a small area enclosing that point. 

(Stress is force per unit area, and the S.l. units are N/m2 or multiples 
of this). 

1.3. Principle of St. Venant. This principle states that the actual 
distribution of the load over the surface of its application will not affect 
the distribution of stress or strain on sections of the body which are at 
an appreciable distance (relative to the dimensions) away from the load. 
Any convenient statically equivalent loading may therefore be sub­
stituted for the actual load distribution, provided that the stress analysis 
in the region of the load is not required. 

For instance, a rod in simple tension may have the end load 
applied either (a) centrally concentrated, or (b) distributed round the 
circumference of the rod, or (c) distributed over the end cross-section. 
An these are statically equivalent, but case (c) is the simplest to deal 
with analytically, and St. Venant's principle provides the justification 
for always assuming this distribution to apply. For points in the rod 
distant more than three times its greatest width from the area of 
loading no appreciable error will be introduced. 
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1.4. Strain. Strain is a measure of the deformation produced in the 
member by the load. 

Direct stresses produce a change in length in the direction of the 
stress. If a rod of length I is in tension and the stretch or elongation 
produced is x, then the direct strain e is defined as the ratio 

Elongation 
Original length 

or s=~/l 

Normally, tensile strains will be considered pos1uve and com­
pressive strains (i.e. a decrease in length) negative. 

Note that strain is a ratio, or change per unit length, and hence 
dimensionless. 

1.5. Hooke's Law. Principle of Superposition. This states that 
strain is proportianal to the stress producing it, and forms the basis of later 
analysis in this book. It is obeyed within certain limits of stress by most 
ferrous alloys (see Para. 1.7), and can usually be assumed to apply with 
sufficient accuracy to other engineering materials such as timber, con­
crete, and non-ferrous alloys. 

In this chapter only direct stresses and the resultant strains are being 
considered, but in general a material is said to be elastic if all the 
deformations are proportional to the load. Where a number of loads are 
acting together on an elastic material, the principle of superposition 
states that the resultant strain will be the sum of the individual strains 
caused by each load acting separately. 

1.6. Modulus of Elasticity (Young's Modulus). Within the limits 
for which Hooke's law is obeyed, the ratio of the direct stress to the 
strain produced is called Young's Modulus or the Modulus of 
Elasticity (E), i.e. 

(1) 

For a bar of uniform cross-section A and length I this can be written 

E=PI/A~ (2) 

E is therefore a constant for a given material, and is usually assumed 
to be the same in tension or compression. For those materials mentioned 
in Para. 1.5 which do not exactly obey Hooke's law it is frequently pos­
sible to apply an average value of E over a given range of stress, to satisfy 
the above equations. 

Young's modulus represents the stress required to cause unit strain, 
i.e. provided Hooke's law continued to be obeyed, a stress numerically 
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equal to the modulus, when applied to a uniform bar, would cause the 
length to be doubled. In fact, however, for engineering materials the 
strain will rarely exceed 1/1000, so that the change in length may always 
be considered small compared with the original length, e.g. mild steel 
has a value of E approximately 205,000 N/mm2 and will rarely be 
stressed higher than 150 N/mm2• At this value the strain is 

150/205,000=0·00073 from (1) above, 

so that a bar 1 m long will change in length by o· 73 mm. 
To sum up, most metals have a high value of E and consequently the 

strains are always small. On the other hand rubber, though it does not 
obey Hooke's law very accurately, has a low value of E and will undergo 
considerable deformation at moderate stress values. 

Particular values of E for various materials are given in the Appendix. 
Since strain is dimensionless, it follows that the units of E are the 

same as those of u. 

7..7. Tensile Test. The following remarks apply mainly to the be­
haviour of mild steel, but other engineering materials show the same 
phenomena to a varying degree. Further discussion of tensile tests will 
be found in Chapter XIX. 

The test is carried out on a bar of uniform cross-section, usually 
circular, in a testing machine which indicates the tensile load being 
applied. For the very small strains involved in the early part of the test, 
the elongation of a measured length (called the gauge length) is recorded 

o Strain 
Fig. 1.3 

D 

by an "extensometer" or "strain gauge" (for particular types see 
Paras. 19.9 and 19.10). 

The load is inoreased gradually, and at first the elongation, and hence 
the strain, is proportional to the load (and hence to the stress). This 
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relation (i.e. Hooke's law) holds up to a value of the stress known as the 
limit of proportionality (point A in Fig. 1.3). Hooke's law ceases to be 
obeyed beyond this point, although the material may still be in the 
"elastic" state, in the sense that, if the load were removed, the strain 
would also return to zero. The point B shows the elastic limit. 

If the material is stressed beyond this point, some plastic deformation 
will occur, i.e. strain which is not recoverable if the load is removed. 

The next important occurrence is the yield point C, at which the metal 
shows an appreciable strain even without further increase in load. In 
an actual test the extensometer would be removed at or before the yield 
point, further extension being measurable by dividers and scale. With 
mild steel careful testing will reveal a drop in load immediately yielding 
commences, so that there are two values, known as the upper and lower 
yield points. For materials showing no definite yield, a proof stress is 
used to determine the onset of plastic strain (Para. 19.1). 

Mter yielding has taken place, further straining can only be achieved 
by increasing the load, the stress-strain curve continuing to rise up t9 
the point D. The strain in the region from C to D is in the region of 
100 times that from 0 to C, and is partly elastic (i.e. recoverable), but 
mainly plastic (i.e. permanent strain). At this stage (D) the bar begins to 
form a local "neck," the load falling off from the maximum until frac· 
ture at E. Although in design the material will only be used in the range 
OA, it is useful to examine the other properties obtained from the test. 

The maximum, or ultimate, tensile stress is calculated by dividing the 
load at D by the original cross-sectional area. Here it should be pointed 
out that the true stress occurring in the necked portion is much higher 
than this, and in fact reaches its greatest value at the breaking load, but 
it is the stress which a member can stand distributed over its original 
area which interests the designer. 

The capacity for being drawn out plastically before breaking is called 
the ductility of the material, and is measured by the following two 
quantities. If the total increase in the gauge length at fracture is ex­
pressed as a percentage of its original length, the figure is called the 
percentage elongation. A similar calculation of the reduction in cross­
sectional area at the neck, expressed as a percentage of the original area, 
gives the percentage reduction in area or contraction. The latter is 
considered to be a better measure of ductility, being independent of the 
gauge length, but both elongation and contraction \lre made up of 
"uniform" and "local" deformations in proportions depending on 
the material (see Para. 19 .1 (e) ). 

EXAMPLE 1. The following results were obtained in a tensile test on a mild­
steel specimen of original diameter 2 cm. and gauge length 4 em. 

At the limit of proportionality the load was 80,OOON and the extension 
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0·048 mm. The specimen yielded at a load of 85,000 N, and the maximum 
load withstood was 150,000 N. 

When the two parts were fitted together after being broken, the length 
between gauge points was found to be 5·56 cm, and the diameter at the 
neck was 1'58 cm. 

Calculate Young's modulus and the stress at the limit of proportionality, 
the yield stress, and ultimate tensile stress; also the percentage elongation 
and contraction. 

Hooke's law is obeyed up to the limit of proportionality, and Young's 
modulus is calculated from E=Pl/Ax (Eq. (2), Para. 1.6). 

P=80,000 N. 1=4 cm 
A =7T cm2 x =0'048 mm 

E= 80,000 x4 x 10 
7T X 100 x 0'048 

=213,000 N/mm2 

Stress at limit of proportionality =P/A =255 N/mm2 
Yield stress = 85,000/7T x 100 =271 N/mm2 

Ultimate tensile stress = 150,000/7T x 100 =478 N/mm2 

5·56 -4 
Percentage elongation =--4- x 100 =39% 

22 -1,582 
Percentage contraction 22 x 100 =38% 

1.8. Factor orSalety. It has been pointed out that stress is calculated 
from a knowledge of the magnitude and position of application of the 
load, the dimensions of the member, and the properties of the material. 
In practice none of these factors is known exactly, and possible errors 
arise from various sources. 

(a) The type of load may be described as "dead" load (i.e. static, 
probably gravity), "live" load (such as vehicles crossing a bridge), 
"lluctuating" load (e.g. the alternating tension and compression in 
the connecting rod of a reciprocating engine-see "fatigue "), or 
" impact" or shock load. The magnitude of the load is frequently 
subject to uncertainty, and for a given member the permissible load 
decreases in the order of the types just described. Other approxi­
mations are involved when, for simplification of analysis, the load is 
assumed to be concentrated at a point, or uniformly distributed over 
an area. 

(b) The dimensions of the member should be known with accuracy, 
though any sudden changes of cross-section will cause stress concen­
trations which cannot easily be analysed (see Paras. 1.15 and 8.4). In 
this respect methods of manufacture (e.g. cast, forged, or machined 
surfaces) and standards of workmanship will have their influence. 
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(c) The character of the material is usually assumed to be homo­
geneous and isotropic. The latter implies that the elastic properties 
are the same in all directions, which is true for most metals but 
certainly not so for timber. Steels and most ductile materials can be 
assumed to have the same strength in tension and compression, but 
cast iron and concrete are much weaker in tension than compression. 
Cast materials are always liable to internal flaws and inclusions which 
may be sources of weakness. 

(d) Hooke's larc is assumed to apply, which will introduce an error 
when dealing with cast iron, concrete, and non-ferrous alloys. 
Other assumptions made in particular parts of the theory will be 

stated in the appropriate chapter. 
In spite of all these approximations and assumptions, a body of 

theory has been developed which in many cases can be shown to agree 
with experimental results within a reasonable margin of error, and 
forms the basis for sound design. When dealing with problems outside 
the scope of mathematical analysis the engineer must use his experience 
to suggest simplifications which will enable an estimate of the stresses 
to be made. Alternatively, an experimental method may be employed, 
such as photo-elasticity (Para. 19.11). 

The maximum permissible stress, or rcorking Itresl, is determined 
from a consideration of the above factors, taking into account the social 
and economic consequences of failure, and the factor of safety is 
normally defined as the ratio between the ultimate tensile stress and 
the working stress, i.e. 

F f af Ultimate stress 
actor 0 s ety = . kin 

Wor g stress 
Based on this definition, values used in engineering design will vary 
from about 3 (for dead loads accurately known) to 12 (for shock loads of 
indefinite magnitude). 

It is becoming more frequent practice to define the factor of safety 
as the ratio of the yield stress (or sometimes the elastic limit) to the 
working stress, since the member is considered to have "failed" if the 
stress in any part of it is sufficient to cause plastic deformation. If this 
interpretation is intended, it should be stated, otherwise the previous 
definition will be assumed. 

A more logical approach, particularly for ductile materials and all 
problems of instability (e.g. struts), is to work with a load factor, being 
the ratio between the load at failure and the working load. Again, where 
rigidity is the main criterion, design may be based on a limiting 
deflection when subjected to the working load. 

A more detailed discussion of the cause of failure is reserved until 
later (Para. 3.21). 
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1.9. Strain Energy, Resilience. When a tensile or compressive load 
P is applied to a bar there is a change in length x which, for an elastic 

p 

material, is proportional to the load (Fig. 1.4). 
The strain energy (U) of the bar is defined as 
the work done by the load in straining it. 

For a gradually applied or "static" load the 
work done is represented by the shaded area 
in Fig. 1.4, giving 

u=-tPx (1) 

To express the strain energy in terms of 
the stress and dimensions, for a bar of uniform 

Fig. 1.4 section A and length i substitute P=aA 
(Para. 1.2) and x = ailE (Para. 1.6), giving 

U =1.aA . ailE 
= (a2/2E)Al (2) 

But Al is the volume of the bar, and hence equation (2) can be stated: 
"the strain energy per unit volume (usually called the resilience) in 
simple tension or compression is a Z/2E." 

Proof resilience is the value at the elastic limit, or at the proof stress 
for non-ferrous materials (see Para. 19.1). 

Strain energy is always a positive quantity, and, being work units, 
will be expressed in N m (i.e. Joules). 

EXAMPLE 2. Calculate the strain energy of the bolt shown in Fig. 1·5 under 
a tensile load of 10 kN. 

Show that the strain energy is increased, for the same maximum stress, by 
turning down the shank of the bolt to the root diameter of the thread. 
E =205,000 N/mm2 

It is normal practice to assume that the load is distributed evenly over 
the core of the screwed portion (i.e. the root diameter 16.6 mm. Area of 
c()re=217 mm2• 

EP'~'- -3~ 
Fig. 1.5 

Stress in screwed portion = 10,000/217 
=46 N/mmz 

Stress in shank (at 20 mm dia., area 314 mm2) 

=10,000/314 
=31·8 N/mm2 
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Total strain energy, from (2) 

1 
= - (462 x217 x 25+31,82 x 314 x 50) 

2 x 205,000 
=67 N.mm 

9 

If now the shank is turned down to 16·6 mm dia. the stress in the bolt 
will be 46 N/mm2 throughout, and the strain energy 

=462 x 217 x 75/(2 x 205,000) 
=84 N.mm. 

The reader should check the calculation by using equation (1), in 
which P=10 kN and x is the total extension of the bolt. 

1.10. Impact Loads. Supposing a weight W falls through a height h 
on to a collar attached to one end of a uniform bar, the other end being 
fixed. Then an extension will be caused which is greater than that due 
to the application of the same load gradually / 
applied. (Note that, if the bar does not fail, W $~~~~~~ 
will subsequently oscillate about, and come to 
rest in, the normal equilibrium position.) 

In Fig. 1.6, x is the maximum extension set 
up, and the corresponding stress in the bar is a. 

Let P be the equivalent static or gradually 
applied load which would produce the same 
extension x. Then the strain energy in the bar 
at this instant is tPx, by Para. 1.9. 

Neglecting loss of energy at impact, the 
following equation is obtained: 

Loss of potential energy of weight - Gain of 
strain energy of bar 

i.e. 

Area A 

Fig. 1.6 

Applying the relation x=Pl/AE (Para. 1.6), a quadratic III P is 
obtained, i.e. 

W(h + Pl/AE) =!(F21/AE) 

Rearranging, and multiplying through by AE/l, 

P2/2- WP- WhAE/l=O 

Solving, and discarding the negative root, 

p ... W + y'(W2+2WhAE/I) 

- W[1 + y'(1 + 2hAE/Wl)] 

From which x ""Pl/AE and a =P/A can be found. 
The particular case of h = 0 (i.e. for a suddenly applied load) gives a 
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value p.,. 2 W ; i.e. the stress produced by a suddenly applied load is 
twiee the static stress. 

The above simple analysis assumes that the whole of the rod attains 
the same value of maximum stress at the same instant. This however is 
not strictly correct; a wave of stress is set up by the impact and is 
propagated along the rod. The actual maximum stress set up will then 
depend on the dimensions of the rod, its density, and the velocity of the 
load at impact. Usually the approximate analysis gives results on the 
"safe" side, but this is not always the case. 

EXAMPLE 3. Referring to Fig. 1·6, let a mass of 100 kg fall 4 cm on to a 
collar attached to a bar of steel 2 cm diameter, 3 m long. Find the maximum 
stress set up. E=20S,000 N/mmz. 

Applying the result just obtained 

a =P/A = W[l + v(1 +2hAE/Wl)]/A where W = 
100 x9·81 N 

= 981 [1 + J(l + 2 x 40 x 7T X 100 x 205,000)] 
1007T 981 x 3 x 1,000 

= 9·81 (1 + 42'8)/7T (note units are Nand mm) 

=134 N/mmz 

i.e. even with only a 4 em drop the maximum stress is nearly 44 times the 
.. static" stress. 

EXAMPLB 4. If in the previous problem the bar is turned down to 1 em 
diameter along 1·5 m of its length, what will be the maximum stress and 
extension caused by the 100 kg load falling 4 em' 

Let P be the equivalent gradually applied load to cause the same maxi­
mum stress. The corresponding extension is made up of two parts 

x= PltfA1E+Plz/AzE 

P.lS00 P.lS00 
= (257T)E + (1007T)E 

75P 
7T X 205,000 

Applying the energy equation 

W(h +x) =tPx 

( 75P) 75P 
981 40 + 7T x 205,000 =tP~ x 205,000 (from (i)) 

7T x 205,000 
x 75 

p2 _ 981P _ 981 x 40 x 7T X 205,000 =0 
2 75 

(i) 



1.10. 

Solving 

DIRBCT STRBBB 

P =981 + j (981 2 + 981 7~ 8071" 205,000) 

=981 + 981 v(1 + 700) 

=27,000 N 

The maximum stress will occur in the smallest section, giving 

A P 27,000 
u=A= 2571" 

=343 N/mm2 

The maximum extension 

75P 
x = from (i) 

71" x 205,000 

=3'14mm 
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If the bar is already stressed before impact, e.g. if the collar in the 
previous examples is given a weight value, it would be correct to allow 
for the loss of potential energy of this 
weight after impact and equate the 
total loss of potential energy to the 
difference between the final and initial 
strain energies. Let W' be the weight of 
the collar and LM in Fig. 1.7 represent 
the further extension after impact, 
then the area ALMB represents the in- W' 
crease in strain energy. But area ALMC, 
being W' times the added extension, 
represents the loss of potential energy 
of the collar after impact, leaving area Fig. 1.7 
ABC to be equated to the loss of energy 
of the falling weight alone. 

Consequently the stress due to impact may be calculated without 
consideration of the initial stress, the final total stress being found by 
adding on the initial stress, 

i.e. p ... p'+W' 

where P' is calculated on the assumption of zero initial stress (as in 
Fig. 1.8). 

EXAMPLE 5. The loads to be carried by a lift may be dropped 10 cm on to 
the floor. The cage itself zveighs 100 kg and is supported by 25 m of wire 
rope weighing 0·9 kg/m, consisting of 49 wires each 1·6 mm diameter. The 
maximum stress in the wire is limited to 90 N/mm2 and E for the rope is 
70,000 N/mm2 • Find the maximum load which can be carried. 
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The maximum stress will occur at the top of the wire rope, and the 
initial stress is found from the weight of cage and rope. 

Initial stress 

Fig. 1.8 

100+25 xO'9 
49 x (71/4)1'62 

= 1·24 kg/mm2 = 12·2 N/mm2 

Subtracting this from the permissible stress of 90 N/mm2 the increased 
stress due to impact is 77·8 N/mm2• This would be caused by an equivalcnt 
static load of 

77'8 x 49 x (71/4)(1'6)2 =7670 N =782 kg 

with an extension of 

77'8 x 25 x 100 =2.78 
70,000 cm. 

If W is the load dropped, applying the energy equation gives 

W(h +x) =-!Px 
W(10 +2'78) =t x 782 x 2·78 

W 782 x 2·78 =85 k 
2 x 12·78 g 

I.II. Varying Cross-section and Load. It is usual to assume that 
the load is uniformly distributed over the cross-section, and hence the 
stress will be inversely proportional to the area. 

The load also may vary, as in the case of a column where its own 
weight is to be taken into account, and in the case of inertia loading on 
members in motion. 

EXAMPLE 6. A Tod of Length L tapers uniformLy fTom a diameter D at one 
end to a diameter d at the other. Find the extension caused by an axiaL Load P. 

At a distance x from the small end the diameter is 

d+(D -d)x/l by proportion (Fig. 1.9). 

The extension of a short length dx 

4Pdx 
7T[d + (D - d)x/fj2E 
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and for the whole rod: 

Extension = f'o ----;--:--:-:::4;:-R_dx-::--== 
7T[d + (D - d)x/lj2E 

I 4P{ 1 }' 
= -D-d'7TE d+(D-d)x/l 0 

4Pl (1 1) 
= 7TE(D -d) d - jj 

4Pl 
7TDdE 
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EXAMPLE 7. What is the condition for a column to have uniform strength 
(i.e. constant maximum stress) under the action of its own weight when a 
longitudinal stress u is applied to the top? 

Let the cross-section at the top be a, and 
at a distance x from the top be A. Fig. 1.10 
shows the forces acting on a slice of 
thickness dx, where w is the density and u 
the uniform stress. 

Equating forces 

u(A +dA) -uA =wAdx 
Separating variables dA/A =wdx/u 
Integrating log, A = (w/u)x + C 

When x =0, A =a 

:.C=log, a, 

giving log, (A/a) =wx/u from (i) 

or A =aewx/a 

(i) 

EXAMPLE 8. A steel rod of uniform section, 
1 1ft long, is Totated about a vertical axis Fig. 1.10 

through one end at right angles to its length, at 1000 r.p.m. If the density 
of the material is 7·8 g/cm3 find the maximum stress. 

Let the stress at a distance x from the axis be u, in FIg. 1.11, and at 
x + dx, u + duo Writing the area as A, density p, and angular velocity w, the 
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forces acting on an element of length dx are shown m Fig. 1.12, 
(p Adx)xw 2 being the centrifugal force. 

or 

d.x 
Fig. 1.11 

For equilibrium 

(],A~((f+dq}A 
-.,.j k- ,oAdx 'XWZ 

dx 
Fig. 1.12 

(a +da)A - aA + (pAdx)xwZ =0 

Integrating 

When x =1, a =0 

:. C = p[2wz/2 

da = - (pxwZ)dx 

a= -pxzw z/2+C (i) 

and a = (pwZ /2)([2 - xZ) from (i) 

The maximum stress occurs at the axis, x =0, 

i.e. 
pWZ[2 7'8 x 10002 x (27T)2 x 12 

a=-2-= 2 x602 

=42'8 N/mmz (1 N = 1 kg m/s2) 

I.U. Compound Bars. Any tensile or compressive member which 
consists of two or more bars or tubes in parallel, usually of different 
materials, is called a "compound" bar. The method of analysis will be 
illustrated by two examples. 

Fig. 1.13 

EXAMPLE 9. A compound bar (Fig. 
1.13) is made up of a rod of area Al 
and modulus E 1, and a tube of equal 
length of area A2 and modulus E z• 
If a compressive load P is applied to 
the compound bar find hOf)} the load 
is shared. 

Since the rod and tube are of the same initial length, and must remain 
together, then the strain in each part must be the same. The total load 
carried is P, and let it be shared WI and Wz. 

Compatibility equation: WI/AIEl = W2/A zE2 

Equilibrium equation: W 1 + W 2 = P 

(i) 

(ii) 
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S b · . W Az Ez W f (.). ('i) . u stltutmg z = AI' EI . I rom I In II gives 

WI(l + A2EZ) =P 
AIEl 

or W P.A1EI 
I AIEl +AzEz 

P.AzEz f . 
Then Wz A E A E rom (I) 

1 1+ z z 

EXAMPLE 10. A central steel rod 18 mm diameter passes through a copper 
sleeve 24 mm inside and 39 mm outside diameter. It is provided with nuts and 
washers at each end, and the nuts are tightened until a stress of 10 N/mm2 

is set up in the steel. The whole 

5£~:~~r~i~ ~ 
culate the stress now existing in the Fig. 1.14 
steel. (b) If an additional end thrust 
of 5000 N is applied to the ends of the steel bar calculate the final stress in 
the steel. Es =2E,. 

When the nuts are tightened on the tube, the effect is to put the steel 
rod in tension (stress O'sl), and the copper tube in compression (stress 0'(1)' 

Equilibrium equation: 

Pull on rod = Push on tube 

i.e. a d (7T/4) 182 =acl (7T/4)[39 2 - 242] 

10 x 324=0'<1(1521 -576) 

giving 0'<1 =3,43 N/mm2 

(a) When the tube is reduced in area for half its length, let the com­
pressive stresses be 0',2 in the reduced section and 0',2' in the remainder. 
Let O's2 be the stress in the rod, and l the length of rod and tube. 

Equilibrium equation: 

Load on tube = Load on rod 

I.e. o"d7T/4)[362 - 242] =O'c2' (7T/4) [392 - 242] =0'.z{7T/4)182 

From which 

and 

0'<2'720 =0',2"945 =0'$2'324 

0',2 = (9/20)O's2 

0',2' =(12/35)0"2 

Compatibility equation: 

Reduction in length of rod = Reduction in length of tube 

I.e. 

(i) 

(ii) 
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Note that reduction in length is caused by a decrease of tension in the 
rod and an increase of compression in the tube. Substituting the known 
values and solving for a.2, using (i) and (ii) 

I.e. 

10 - as2 (9/20)a.2 - 3·43 1 (12/35)as2 - 3·43 1 ---= .-+ .-
2E, E, 2 E, 2 

10 -a,2 =(9/20) as2 - 3·43 + (12/35)a.2 - 3·43 

(251/140)as2 = 16·86 

aS2 =9·4 N/mm2 

Fig. 1.15 

(b) An additional end thrust of 
5000 N will cause a further reduction 
in the tension in the rod and an in­
crease in compression in the tube. Let 
the corresponding stresses be as3, ad 
in the reduced section, and a,/ in 
the remainder 

Equilibrium equation: 

5000 =ac3(7T/4)[362 - 242] - as3(7T/4)182 

giving a,3 = (9/20)as3 +8·85 (iii) 

The load must be constant along the length of the tube, giving 

a,3'(7T/4)(945) =a,3(7T/4)720 as before 

i.e. a,3' = (16/21)a<3 

= (12/35)as3 +6'75 from (iii) (iv) 

Compatibility equation referred to initial conditions, 

a.l - as3. I = a,3 - ad . ~ + a,3' - act . ~ 
Es E, 2 E, 2 

Substituting from (iii) and (iv) and solving for as3 

10 - as3 = (9/20)as3 + 8·85 - 3·43 + (12/35)as3 +6·75 - 3·43 

(251/140)as3 = 1·26 

as3 =0·7 N/mm2 

1.13. Temperature Stresses. If a compound bar made up of several 
materials is subjected to a change in temperature there will be a tendency 
for the component parts to expand different amounts due to the un­
equal coefficients of thermal expansion. If the parts are constrained to 
remain together then the actual change in length must be the same for 
each. This change is the resultant (taking into account positive and 
negative strains) of the effects due to temperature and stress conditions. 



1.13. DIRBCT STRBSS 17 

EXhMPLE 11. A steel tube 2'4 em external diameter and 1·8 em internal dia­
meter encloses a copper rod 1·5 em diameter to which it is rigidly joined at each 
end. If, at a temperature of lOoe there is no longitudinal stress calculate 
the stresses in the rod and tube when the temperature is raised to 200oe. 

Es =210,000 N/mm2 E =100,000 N/mm2 

Coefficients of linear expansion: as =11 x 10-6;oe., a, = 18 x 1O- 6;oe. 

Final 
position 

From the constants given it is seen 
that the copper rod would expand 
more than the steel tube if it were 
free. Since the two arc joined to­
gether the copper will be prevented 
from expanding its full amount and 
will be put in compression, the steel 
being put in tension, the compound 
bar taking up an intermediate posi­

~~=~::~:IJ 
~ . 

tion (Fig. 1.16). 
Let a, = compressive stress In 

copper, 

and as = tensile stress in steel. 

Equilibrium equation: 

i.e. 

Fig. 1.16 

Positions 
iT Tree 

(i) 

Compatibility equation: (it may be assumed that the original lengths 
are the same). 

Temperature strain of rod - Compressive strain 

=Temperature strain of-tube + tensile strain 

18 x 10-6(200 -10) - 0',/100,000 = 11 x 10-6(200 -10) + O's/21 0,000 

i.e. 

Substituting for a, from (i) in (ii) 

From (i): 

0'$=1330/15'96=83'3 N/mm2 

0', = 1·12 x 83'3 =93·3 N/mm2 

1.14. Elastic Packings. This includes a variety of problema in 
which two parts are held together by bolts which are tightened against 
elastic washers or sheets of packing. Solution is obtained by a con­
sideration of the statical equilibrium and the elasticity of the bolts and 
packing. 
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EXAMPLE 12. A square rigid base plate of 20 cm. sides bears a column which 
applies a centraL load of 5 kN. The base plate is held down to a rigid founda­
tion by 4 boLts placed symmetrically at the corners of a square of 16 em sides. 
Between the base pLate and the foundation there is a sheet of eLastic packing. 
WhiLe the Load is carried the boLts are tightened to a tension of 0·5 kN, the 
extension of the boLts being half the compression of the packing due to the load 
and the tension in the bolts. If the line of action of the Load shifts 2 em. 
paralleL to a side of the base plate, find the new tensions in the bolts. 

(U.L.) 
Since the eccentric load is equivalent to a central load and a couple, it 

follows that the base plate will rotate about its centre line, the net upthrust 
of the packing and bolts remaining equal to 5 kN. 

Although the packing acts over an area, a "line" diagram can be 
considered (Fig. 1.17), in which the action of the bolts is shown in pairs 

;!;.kN dimns.incm 1.. 
e 35 SIcN 

.".,.i£IcN Sa: 
3", e 2 x 4 1-;--1 - ------- -- C-io----i- .L T 

4 20' T-----J J 
T 3--t 

10( 8 • 8--

~------JO------~>~IE~-------70----~>~1 
Fig. 1.17 

and the upthrust of the packing is treated as a load per unit length of 
varying intensity. 

Let the initial extension of each bolt be e. Let one pair of bolts increase 
in length by x, the other pair decreasing by x, when the load i. shifted. 

For two bolts together, the initial load of 1 kN produces an extension e. 
Hence an extension x will be produced by a load of x/e kN. This implies 
an increase in tension of x/e kN on one side of the plate, and a decrease 
of x/e kN on the other side. 

The total initial load on the packing is 7 kN, distributed over 20 cm 
and causing a compression of 2e. That is to say, a compression of 2e is 
produced by a rate of loading of n kN/cm. After the load is shifted the 
change of compression at the edge of the packing is -£x by geometry, and 
the mean change is therefore tx, which corresponds to a mean rate of 
loading of 

7 x 
or 64·; kN/cm. 

Multiplying the mean rate of loading and the .distance on one side of the 
centre line gives the change in total force in the packing on one side, 

!.... .:10 or 35.=: kN 
i.e. 64 e 32 e 
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upwards on one side and downwards on the other. These forces act 
through the centroid of the load distribution diagram, which is a triangle 
representing a rate of loading increasing uniformly from the centre out­
wards. This centroid is t.10 or ¥ cm from the centre line. 

Taking moments about the centre line (Fig. 1.17), 
x 35 x 20 

2x-x8+2x--·-x--=5x2 
t 32 t 3 

x 5 x 24-
giving -; = 367 

=0·328 kN 

But the change in tension in each bolt separately is 
tx/e =0·164 kN 

Hence the final tensions in the bolts are 
0·5 +0·164 =0·664 kN 

and 0·5 - 0·164 =0·336 kN. 

1.15. Stress Concentrations in Tensile Members.When a member 
is subjected to a tensile load, it has so far been assumed that the stress 
is unifonn and is obtained by dividing the load by the corresponding 
area of transverse cross-section. However, if a rapid change of cross­
section occurs along the length of the member, the stress will no longer 
be unifonn, and cannot be calculated by the nonnal procedure. The 
ratio 

Maximum stress 
k= A . . . verage stress at mlrumum sectlOn 

is called the stress concentration factor, and values of this ratio for some 
important cases are given below. 

(1) Small Elliptic Hole at the Centre (Fig. 1.18(a». By theoretical 

(0) 

Fig. 1.18 
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analysis Inglis showed that the maximum stress would occur at the 
ends of the semi-major axes a, and the stress concentration factor 

k=1 +2alb 

the width of the plate being considered large compared with a. 
Note that as b becomes small, k increases very rapidly, the limiting 

case representing a transverse crack in the plate. On the other hand a 
zero value for a reduces k to unity, i.e. a longitudinal crack has no stress 
concentration effect. When a=b the hole becomes circular, and k ... 3. 

(2) Circular Hole at tJu Centr~ (Fig. l.18(b». By an approximate 
analysis Timoshenko obtained the following values for k to be applied 
to the mean stress at the minimum cross-section. 

f-I 0'167 I 0·1 0·0625 0·05 

2·25 I 2·46 2-71 2-97 

Similar results over a different range of sizes were obtained photo­
elastically (see Para. 19.11) by Frocht. A selection of values is quoted 
below. 

I 
I riB 

I 

0·333 0·292 0·222 0·143 0·083 

k 2·05 2·1 I 2·15 2·3 2·5 I 

Note the agreement with paragraph (1) above for small values of rIB. 

(3) Edge Fillets (Fig. 1.19). These values were also determined 
photo-elastically, and are as follows. 

riB 0·333 0·292 0·222 0·143 I 0·083 

(a) k 1·25 1'35 1-65 2·05 2'3 

(b) k 1·25 1·3 
I 

1·5 1-65 1-8 

In a ductile material, the full stress concentration factor may not be 
developed if local yielding has occurred, as the above factors have been 
determined for the elastic region. When the material becomes plastic 
at any point a redistribution of stress and strain will occur. However, 
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under rapidly fluctuating loads (see "fatigue") this redistribution may 
not be able to take place, so that stress concentrations are always a 
danger under "fatigue" conditions and in brittle materials. 

Fig. 1.19 

SUMMARY 

Stress a'" PIA assuming uniform distribution over the cross-section 
Strain e "" x/I 
Modulus E=a/e-PI/Ax within the limits of Hooke's law. 

Ultimate stress 
Factor of Safety = W kin -

or g stress 

Collapse Load 
Load Factor = Working Load 

Strain Energy U ... !Px = ( a2/2E1 x volume. 
Impact Loads: Loss of P.E .... Gain of S.E. 
Varying cross-section and load: solution by integration. 
Compound bars and temperature stresses: apply load equation for 

equilibrium, and compatibility equation if parts remain together. 
Elastic packings: consider elasticity and equilibrium. 

. Maximum stress 
Stress Concentration Factor = . . . 

Average stress at mmunum sectJ.on 
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PROBLEMS 
1. A tie bar on a vertical pressing machine is 2 m long and 4 cm diameter. 

What is the stress and extension under a load of 100 kN? E=205,000 N/mm2. 
(79·6 N/mm2; 0·78 mm) 

2. A brass tube 5 cm outside diameter, 4 cm bore, and 30 cm long, is com­
pressed between two end washers by a load of 25 kN, and the reduction in 
length measured is 0·2 mm. Assuming Hooke's law to apply, calculate Young's 
modulus. (53,200 N/mm2) 

3. A rod 1 m long is 10 cm2 in area for a portion of its length and 5 cm2 
in area for the remainder. The strain energy of this stepped bar is 40% of that 
of a bar 10 cm2 in area 1m long under the same maximum stress. What is the 
length of the portion 10 cm2 in area? (40 cm) 

4. A compound bar 90 cm long is made of a rod of steel 30 cm long 3 cm 
diameter securely fastened to a rod of copper 60 cm long. Under a pull of 50 kN 
the extensions in each portion are found to be equal. What is (a) the diameter 
of the copper rod, (b) the stresses in steel and copper, (c) the work done in 
extending the compound bar? E.=205,000 N/mm2; Ec=110,000 N/mm2. 

«a) 5·8 cm; (b) 70'6,18,9 N/mm2; (c) 5·17 Nm) 
5. A vertical rod 2 m long, fixed at the upper end, is 13 cm2 in area for 1 m 

and 20 cm2 in area for 1 m. A collar is attached to the free end. Through what 
height can a load of 100 kg fall on to the collar to cause a maximum stress of 
50 N/mm2? E=200,000 N/mm2. (1'32 cm) 

6. Two rods A and B of equal free length hang vertically 60 cm apart and 
support a rigid bar horizontally. The bar remains horizontal when carrying a 
load of 5000 kg at 20 cm from A. If the stress in B is 50 N /mm2 find the stress in 
A and the areas of A and B. EA=200,000 N/mm2 ; EB=90,000 N/mm2• 

(111 N/mm2 ; 295 mm2 ; 327 mm2) 
7. The cross-section of a bar is given by (1 +x2/100) cm2 where x cm is th 

distance from one end. Find the extension under a load of 20 kN on a length of 
10 cm. E=200,000 N/mm2• (0'008 cm) 

8. Three vertical wires in the same plane are suspended from a horizontal 
support. They are all of the same length and carry a load by means of a rigid 
cross bar at their lower ends. One of the wires is of copper and the other two are 
of steel. The load is increased and the temperature changed so that the stress 
in each wire is increased by 10 N/mm2• Find the change of temperature. 
E.=205,000 N/mm2; Ec=102,000N/mm2; as =11 xl0- 6/oC.; ac=18 xl0- 6/o 
C. (-7'0 C.) 

9. A square rigid plate is hung from a rigid IUpport by means of four steel 
bara of length L and crOll-section A, Iymmctrically arranged. A load W is then 
hung from the middle of the plate. 

A .tecl rod of initial length L - A and cro .. -section a i. now attached to the 
rigid IUpport and heated to a temperature t> above the normal 10 that it can be 
connected with the middle of the square plate. The four ban and rod are aU 
vertical and the plate horizontal. At normal temperature it is found that the load 
in each of the four bara baa been reduced by 20%. Show that the ValUCl of A and 
t are respectively 

(WL/SE)(l/a - t/A) and (WISEfl)(t/a + t/oM) 
where B is the coefficient of expanaion of Itecl. (U.L.) 
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10. A steel tie rod 25 mm diameter is placed concentrically in a brass tube 3 
mm thick and 40 mm mean diameter. Nuts and washers are fitted on the tie rod 
so that the ends of the tube are enclosed by the washers. The nuts are initially 
tightened to give a compressive stress of 30 N/mm2 in the tube and a tensile load 
of 45 kN is then applied to the tie rod. Find the resultant stresses in tie rod 
and tube (1) when there is no change of temperature, (2) when the temperature 
increases by 60° C. E.=205,000 N/inm2 j Eb=80,000 N/mm2 j a.=1·1 x 
10-5t Cj ab =1·89x 10-5t C. «1) 93,7, 2·5 N/nun2 j (2) 116, 31-6 N/mm2). 

11. An elastic packing piece is bolted between a rigid rectangular plate and a 
rigid foundation by two bolts pitched 25 cm apart and symmetrically placed on 
the longer centre line of the plate, which is 37·5 cm long. The tension in each bolt 
is initially 20,000 N, the extension of each bolt 0·0125 mm, and the compression 
of the packing piece 0·5 mm. If one bolt is further tightened to a tension of 
25,000 N. determine the tension in the other bolt. (20,800 N) 

12. Two equal washers 15 cm apart are compressed between a rigid horizontal 
base and a rigid horizontal plate by two equal bolts. The bolts are 30 cm apart, 
arranged symmetrically on either side of the washers and collinear with them. 
Initially each bolt is tightened to a tension of 27 kN with an extension of 0·0045 
cm. If the compression of a washer is four times the extension of a bolt for the 
same load, determine the increase in tension in one bolt when the other one is 
further tightened to 36 kN. (4900 N) 

13. The figure shows a steel bolt 2·5 cm diameter which passes centrally 
through a brass tube having an outside diameter 3·8 cm and inside diameter 
2·84 cm and also through a rigid cast iron body. The screw has 4 threads/cm and 
the nut is initially just tight. Find the changes in the stresses in the bolt and tube 
due to (a) tightening the nut by turning it through 30°, (b) an increase in 
temperature of 25°C. 

Assume that there is no change in the thickness of the cast iron body on 
account of stress. E. =200,000 N/mm2, Eb =100,000 N/mm2, as =13 x 10-6/ oC., 
ab=19 xlO-6tC.,act=11 x 10-6tC. 
(note difference in length of bolt and tube: (a) 92·5 N/mm2 each (b) 6·68 N/mm2 

each. 



CHAPTBR II 

Shear Stress 

2.1. Shear Stress. If the applied load P consists of two equal and 
opposite parallel forces not in the same line (as in Fig. 2.1), then there is 
a tendency for one part of the body to slide over or shear from the other 

r------r-~ ... ~p part across any section LM. If the 

L --t----------t- cross-section at LM measured parallel .M to the load is A, then the average shear 
~tress T =Pj-(l. If~he shear stress varies, 

p II(,/////l/I/I/////X then at a pOInt T -8Pj8A. 
/ Notice that shear stress is tangential to 

Fig. 2.1 the area over which it acts. 
The most common occurrences of pure shear are in riveted and 

cottered joints, which will be treated later in this chapter. 
Shear stress is, of course, expressed in the same units as direct stress, 

being load per unit area. 

2.2. Complementary Shear Stress. Let ABCD (Fig. 2.2), be a 
small rectangular element of sides x, Y, 
and :I perpendicular to the figure. Let A _____ 'T_ B 
there be a shear stress T acting on planes I~ oX t I 

AB and CD. T t t T 
It is clear that these stresses will form {. Y t 

a couple (T.X:I)Y which can only be 
balanced by tangential forces on planes t t 

..D-~~+--C AD and BC (any normal stresses which T 
exist will balance out in pairs). These are Fig. 2.2 
known as complementary shear stresses. 

Let T' be the complementary shear stress induced on planes AD 
and BC. Then for equilibrium 

(T .X:I)Y =(T' .Y.lI')x 
L~ ~-~ 
showing that every shear stress is accompanied by an equal 
complementary shear stress on planes at right angles. The directions 
of the shear stresses on an element are either both towards or both away 
from a corner, to produce balancing couples. 

The existence of the complementary shear stress may be an important 
factor in the failure of anisotropic materials such as timber, which is 
weak in shear along the grain (see Ex. I, Chap. VII). 

24 
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It can now be shown that near a tree boundary (i.e. no external 
applied forces) the shear stress on any cross-section must act in a 
direction parallel to the boundary. This is because if there were a 
component in a direction at right angles to the boundary it would re­
quire a complementary shear stress on the boundary plane. For 
example, the shear stress distribution over a section of a rivet must be 
as Fig. 2.3(a) and not as 2.3(b). 

(8) (b) 
Fig. 2.3 

This causes an obvious complication in that the shear stress varies in 
magnitude and direction, though in this particular case the variation is 
not usually allowed for in design. Further important applications of 
this principle will be found when dealing with shear stress in beams of 
various cross-sections (Chapter VII). 

EXAMPLE 1. A flange coupling joining two sections of shaft is required to 
transmit 250 kW at 1000 r.p.m. If six bolts are to be used on a pitch circle 
diameter of 14 cm, find the diameter of the bolts. Allowable mean shear stress 
75 N/mm2• 

Torque to be transmitted 
_ Watts x60 N 
- 2TTN m 

250 x 1000 x 60 
2TT X 1000 

=2380 Nm 

If d mm is the diameter of a bolt, the load carried by one bolt 

=75 xTTd2/4 N 

Multiplying by the number of bolts and the radius arm, the torque 
carried 

giving 

=75 x (TTd2/4) x 6 x 0'07 Nm 

= 2380 from above 

d2= 2380 x4 =96.3 
75TT x 0'42 

d=9'82 mm, say 10 mm 
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2.3 Shear Strain. The distortion produced by shear stress on an 
element or rectangular block is shown in Fig. 

I ~ 2.4. The shear strain 01' "slide" is cfo, and can be D defined as the change in the right angle. It is I V 1 ~ measured in radians, and is dimensionless. 

I 2.4. Modulus of Rigidity. For elastic 
~ materials it is found that shear strain is pro-

T portional to the shear stress producing it, 
Fig. 2.4 within certain limits. 

T . Shear stress. all d th M d I f R· ·d· . he ratIO . IS C e e 0 u us 0 19l lty, I.e. 
Shear stram 

G-Tjcfo N/mm2• 

2.5. Strain Energy. Within the limit of proportionality stress is 
proportional to strain, and 
Strain energy (U) ... Work done in straining 

-!(Final couple) x (Angle turned through) 

for a gradually applied stress (work done is proportional to shaded area 
in Fig. 2.5), 

-r ------___ _ 

i.e. 

Fig. 2.6 

U=!(ryz.x)q, from Fig. 2.6 
=t.TXYZ.TjG from Para. 2.4 
= (-r2/2G) x volume 

(compare with a2j2E for direct stress). The units are again Nm. 

For suddenly applied loads the principles of Para. 1.10 may be 
applied. 

2.6. Cottered Joints. A cottered joint is used to join two members 
by means of a tapered pin or cotter which passes through slots in the 
ends of the members. 
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The cottered joint 8hown in Fig. 2.7 may fail in the following ways: 

(1) By ten8ion in the rod: tensile stres8-~2 • 
1Td /4 

(2) By 8hear of the cotter through AB and CD: shear stress = 
P/leJ. 

or 

(3) By shear of the right-hand member through EF and GH: 8hear 
stress.", P /4ab. 

(4) By shear of the left-hand member through JK and LM: shear 
stress =- P /2ch. 

(5) By crushing between the right-hand member and the cotter. 
If the crushing or bearing pressure p between the two curved 

surfaces (the side FH of the cotter) is assumed constant (Fig. 2.8), 
then the total load P is equal to the pressure x the" projected .. 
area on a plane perpendicular to P, i.e. 

P-p xZa/ 
p-P/Za/ 

r-b 

p p 

Fig. 2.7 

(6) By crushing between the left-hand member and the cotter. 
Here the projected area is fh, giving a crushing stress = PI/h. 

F If the joint is designed so that each of the above O values is equal to the permissible stress, it is said to 
.:f be equally strong against all types of failure. 

p EXAMPLE 2. In thejoint shown in Fig. 2. 7, if the diameter 
of the rod is 5 cm, and the thickness of the cotter 1.25 cm, 

H find the other dimensions required so that the strength 
Fig. 2.8 shall be the same against all types of failure. Permissible 

stresses are 300 N/mm2 tension, 150 N/mm2 shear in 
the members, 225 N/mm 2 shear in the cotter, and 450 N/mm2 crushing. 

(1) Load 
P = 300 X (1T/4)50 2 = 588 kN 
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(2) Shear of cotter 
225 = 588,000j(2e x 12'5) 

e=105 mm 
(3) Shear of right-hand member 

150 = 588,000j4ab 
ab=980 

(4) Shear ofleft-hand member 

150 = 588,OOO/2ch 
ch=1960 

(5) Crushing between right-hand member and cotter 

450 = 588,000/(2a x 12·5) 
a=52'4 mm 

From (3) 
b=18·7 mm 

(6) Crushing between left-hand member and cotter 
450 = 558,000/(12'5 x h) 

h=I04·8 rom 
From (4) 

c=18·7 mm 

P-F $ ~ f -r.p 

P-f r! ~====i; j-P 
B 

Fig. 2.9 

2.6. 

3.7. Riveted Joints. These may be either lap joints (Fig. 2.9) or butt 
joints (Fig. 2.10), the latter being usually provided with two cover plates. 

The ""ets are driven home hot, and hence will shrink away from the 
holes when cold. They will exert considerable force on the plates, 
pressing them together, and the friction resulting may be sufficient to 
carry the load, in which case there is no transverse load on the rivets. 
However, the amount of friction is a very doubtful factor, depending 
on the condition of the surfaces in contact and the standard of work­
manship in applying the rivets. It is usual, therefore, to neglect friction 
forces entirely, and consider that slip has taken place between the rivets 
and the plates and that all the load is carried by the rivets. If the 
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plates are assumed rigid compared with the rivets, then for sym­
metrically applied loads the deformation of each rivet will be the same, 
and hence the load will be shared equally by the rivets. 

Consider first a lap joint with a single row of rivets of pitch p. Let 
load per rivet = P (Fig. 2.9). 

t = thickness of plates. 
d = diameter of rivet or hole (considered equal). 
a = permissible tensile stress in plate. 
T = permissible shear stress in rivet. 
T' = permissible shear stress in plate. 
a, = permissible bearing pressure on rivet. 

There are four principal ways in which the joint may fail: 
(1) By tearing the plate; taking the least croS8-sectWn AB, the 

permissible load is 
P l =a(p-d)t 

(2) By shearing the rivet at the section between the plates 
P2 =T.1Td2j4 

(3) By crushing between the rivet and one plate 
P3 =a •. dt (see Para. 2.6, (5». 

(4) By shearing the plate along CD and EF 
P.-T'.2CD.t 

The efficiency of the joint is taken as 

Least lo~d to cause failure x 100% 
Load carned by parent plate 

_ Least of Pl· . . p. x 100% 
apt 

Fig. 2.10 

For butt joints the cover plates should be greater than half the 
thickness of the main plates, and the most efficient way to arrange, say 
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six rivets on either side, is in 3,2, 1 formation (Fig. 2.10). Then, on the 
assumption· of equal load per rivet, the full load is carried across the 
plate at A (width reduced by 1 hole), f of the load across the plate at B 
(width reduced by 2 holes), and only! the load across the plate at C 
(width reduced by 3 holes). 

EXAMPLE 3. Design a double cover butt joint to withstand a load of 25,000 
kg. The plates to be joined are 20·5 em wide and 1·25 em thick; 1·9 em rivets 
are to be used, and the permissible stresses are: shear 75 N/mm2, bearing 
pressure 180 N/mm2, tension 105 N/mm2• What is the efficiency of the joint ? 

The cover plates are usually each made i of the thickness of the plates 
joined, i.e. 0·8 cm, so that they will not fail before the main plate. 

With a double cover joint each rivet 
is in "double" shear, since it can only fail 
by shear along two cross-sections at the 
same time (shown dotted in Fig. 2.11). 

Load to shear one rivet 
=T 27Td2/4 

Fig. 2.11 
=75 x (27T/4)(19)2 
=42,400 N =4330 kg 

Load to crush one rivet 
=ac·dt 
=180 x 19 x 12·5 
=42,700 N =4350 kg 

No. of rivets required 25,000/4330, say 6, arranged as Fig. 2.10. 
Load which can be carried by solid plate 

=abt 
=105 x 205 x 12·5 
=270,000 N =27,600 kg 

To find the maximum load which A B 
can be carried by the riveted joint it 
is necessary to investigate all possible 
ways of failure. 

(i) Load to shear all the rivets 
=6 x4330=26,000 kg 

(ii) Load to crush all the rivets 
=6 x4350=26,200 kg. 

(iii) Plate may tear through section 
AA (Fig. 2.12), 

permissible load = a(b - d)t 
=105 x (205 -19) x12·5 
=244,000 N =25,000 kg 

A B 
Fig. 2.12 

c 

(iv) Plate may tear through section BB, at the same time shearing the 
rivet at AA 

permissible load =a(b - 2d)t +4330 
= 105 x (205 - 38) x 12·5/9·81 +4330 
=26,200 kg 
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(v) Plate may tear through section CC, at the same time shearing the 
3 rivets at AA and BB, 

permissible load =a(b - 3d)t + 3 x 4330 
= 105 x (205 - 57) x 12'5/9'81 + 13,000 
=31,500kg 

(vi) Cover plates may tear through section CC, 
permissible load = 105(205 - 57)16/9'81 = 25,000 kg 

. .. Least load to cause failure 
EffiCiency of Jomt =Lo d . db l"d I a carne y so I pate 

= 25,000 =90.70/, 
27,600 0 

2.8. Eccentric Loading. If the load is not applied through the 
centroid of the rivet formation, it will not be equally distributed among 
the rivets. 

Any eccentric load, such as that in Fig. 2.13, may be replaced by an 
equal parallel load at the centroid G, together with a couple of magni­
tude equal to the load P times the perpendicular distance h from the 
centroid on to its line of action. The equivalent loading is shown in 

/A 

Fig. 2.13 Fig. 2.14 

Fig. 2.14, and A represents one of the rivets at a distance r from G. 
The load on the rivet is then made up of two parts as follows: 

(a) Due to Pat G, each rivet has an equal load Pin, in the direc­
tion of P, where n is the total number of rivets. 

(b) Due to the couple Ph, there will be an angular rotation 0 of the 
joint about G. Assuming the plate" rigid," and the load on a rivet 
proportional to the relative "slip" at that point between the members 
joined, the load on the rivet A = krO, where k is a constant for a given 
joint. 
By moments about G 

giving 
Ph =E(krO).r 
M=Ph/Er2 (I) 
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There must be an .. instantaneous centre II I about which the joint 

can be considered to rotate, and since the slip at G is Pink from (a), 
IG is given by 

or 
Plnk=IG.8 

IG=Plnk8 
=Er2lnh from (I), (2) 

and is perpendicular to the line of action of P. The resultant slip at A is 
given by the vector sum of Pink from (a), and r8 from (b) (Fig. 2.15), 

being equal to IA. 8 and perpendicular to 
IA. Similarly the load in the rivet A is 
given by IA.k8, 

=IA.PhIEr2 from (1) (3) 

Fig. 2.15 

In any particular problem the procedure 
is to calculate IG from (2), and mark the 
position of I. The factor k8 is calculated 
from (I), and the load in each rivet is then 
found from (3), the distances IA being 

either calculated or measured. It is clear that the rivet farthest from 
I takes the maximum load. 

EXAMPLB 4. Fig. 2.16,how, a column to which a bracket i, riveted, carry­
ing a load of 10 kN at a dutance of 
8 em from the centre line of the 
column. Examine the distribution of dimns. in 
load among the rivet,. em 

The centroid of the rivet for-
mation is at the centre rivet E, and 
the instantaneous centre of rotation 
of the joint I is found from (2) 
above 

IE = Er2/nh 
4{3v'2)2 +4 x 32 

= 9x8 
=108/72=1·5 em 

Load in any rivet = (Ph/Er2) x 
(distance of rivet from I) from (3) Fig. 2.16 

where Ph/Er2 =(10 x 8)/108 =0·74 kN/cm. 
Load in rivet C =0·74v'{32 +4'52) =3·95 kN. 
Load in rivet B =0'74v'{32 + 1'52) =2·48 kN. 
Load in rivet A =0·74v'{32 + 1'52) =2·48 kN. 
Load in rivet D =0·74 x 1·5 = 1·11 kN. 
Load in rivet E =0·74 x 1·5 =1·11 kN. 
Load in rivet F =0·74 x 4·5 =3 ·33 kN. 

JOhN 



SHEAR STRESS 

SUMMARY 

Shear Stress T=PfA. Area tangential to stress. 
Modulus of Rigidity G = Tfr/>. 
Strain Energy U = (T2jZG) x volume. 

PROBLEMS 

33 

1. Estimate the force required to punch out circular blanks 6 cm diameter 
from plate 2 mm thick. Ultimate shear stress =300 N/mm2• (113 kN) 

2. A copper tube, external diameter 
4 cm, 6 mm thick, fits over a steel rod 1oo;'N 
2·5 cm diameter. The tube is secured to 
the bar by two pins 1 cm diameter fitted 
transversely one at each end. If the 
temperature after assembly is raised by 
50° C. calculate the shear stress in the 
pins. Ec = 100,000 N /mm2; Es = 200,000 
N/mm2 ; <Xc =0·00002;0 C.; as =0·000012/ 
°C. (98·5 N/mm2) 

3. The cottered joint shown in the 
sketch carries a load of 100 kN. The 
socket is of square section of sides x mm 
and the cotter is rectangular, b mm by t 
mm. Find the dimensions d, x, b, and t for the following allowable stresses 
at =110 N/mm2; 7=80 N/mm2; ac=140 N/mm2. Assume double shear 1·875 
times as strong as single shear. (34 mm; 40 mm; 35 mm; 18 mm) 

4. A pressure vessel is made from a cylinder with a welded longitudinal joint 
and dished end plates secured by double-row riveted lap points. Plate thickness 
16 mm, diameter of rivets 22 mm, pitch of rivets 60 mm. If the permissible ten­
sile stress in the plates is 100 N/mm2 and the shear stress in the rivets 75 
N/mm2 find the efficiency of the joint. (59%) 

5. Two steel plates 30 cm wide, 2.5 cm 
thick, are connected by a double-strap 
butt joint. There are ten rivets 2.5 cm 
diameter on each side. If the allowable 
tensile stress in the plate is 75 N/mm2 
and the strengths in tension and shear are 
the same, what is the maximum shear 
stress? (52·5 N/mm2) 

6. A tie bar is attached to a gusset plate 
by four rivets arranged at the corners of 

a square, and the pull is applied symmetrically as shown. If the rivet at A is 
now removed, the load remaining the same, calculate by what percentage the 
loads on rivets B, C, and D are increased. (68%; 18%; 2%.) 
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Compound Stress and Strain 

3.1. Oblique Stress. Previous chapters have dealt with either a pure 
normal, or direct, stress (i.e. tension or compression), or a pure shear 
stress. In many instances, however, both direct and shear stresses are 
brought into play, and the resultant stress across any section will be 
neither normal nor tangential to the plane. If a, is the resultant stress, 
making an angle cp with the normal to the plane on which it acts (Fig. 3.1), 

Fig. 3.1 Fig. 3.2 

it is usually more convenient to calculate the normal and tangential 
components a and 1', then, by equilibrium 

cp = tan-1T/a 
and, from Fig. 3.2, a r "" Y( a 2 + 1'2) 

Several important particular cases will now be considered, followed by 
the general stress system in two dimensions. 

3.2. Simple Tension. If a bar is under the 
action of a tensile stress a along its length then 
any transverse section such as AB in Fig. 3.3 will 
have a pure normal stress acting on it. The 
problem is to find the stress acting on any plane 
AC at an angle 8 to AB. This stress will not be A B 
normal to the plane, and may be resolved into 
two components a9 and 1'9 as outlined in Para. 3.1. 

Fig. 3.4(a) shows the stresses acting on the 
three planes of the triangular prism ABC. There 
can be no stress on the plane BC, which is a F' 3 3 Ig. . 
longitudinal plane of the bar; the stress com-
ponent T~ must act "up" the plane for equilibrium, though if shown 

3. 
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the other way would work out negative in the analysis. Fig. 3.4(b) 
shows the forces acting on the prism, taking a thickness t perpendicular 
to the figure. 

The equations of equilibrium are used to solve for a, and T,. 

A 

Fig. 3.4 

Resolve in the direction of a,: 
a,.AC.t-a.AB.t.cos 8 

o":AB.t 

i.e. a,=a.(ABjAC}.cos 8 
-a cos2 8 

Resolve in the direction of T,: 
T,.AC.t=a.AB.t.sin e 

i.e. T,=a.(ABJAC}.sin 0 

The resultant stress 

=a.cosO.sin 0 
-!a sin 28 

a, = v{ a,2 + T,2) = ay'{cos4 8 + cos2 8 .sin2 8) 
=a cos 8 

(1) 

(2) 

(3) 

From these results it is seen that the maximum normal stress occurs 
at 8 = 0, and is of course equal to the applied stress a. The maximum 
shear stress occurs at 8=45°, and its magnitude is -!a; on these planes 
there is also a normal component =-!a. The variation of stress com­
ponents with 0 is given by the above equations (1), (2), and (3), a, being 
zero when 0=90°, and T, zero when 0=0 and 90°. The resultant stress 
is a maximum when 0 = O. 

The important result here is that in simple tension (or compres­
sion), the maximum shear stress is equal to one-half the applied 
stress and acts on planes at 45° to it. 

3.3. Note on Diagrams. In most problems the stress is varying 
from point to point in the member, and it is necessary to consider the 
equilibrium of an element, which if sufficiently small may be assumed 
to give the values at a .. point." 
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It is clear that the results are independent of the thickM$$ of element 
considered, and for convenience this will in future be taken as unity. 
Also, as the figures will always be right-angled triangles there will be 
no loss of generality by assuming the hypotemue to be 0/ unit length. By 
making use of these simplifications it will be found that the areas on 
which the stresses act are proportional to 1 (for AC), sin 8 (for BC), 
and cos 8 (for AB), and future figures will show the/orce$ acting on such 
an element. 

3 .... Pure Shear. Let the stress on a given plane "AB" be a pure 
shear stress T, then there is an equal complementary shear stress on the 

c 
plane "BC" (Para. 2.2). The problem 
is to find the stress components a, 
and T, acting on any plane" AC" at 
an angle 8 to AB. For purposes of 
convention the applied'shear stresses 
will be shown acting towards the 
"comer" B, and T, acting "up" the 
plane AC. 

Fig. 3.5 In accordance with the note in 
Para. 3.3, taking the area of the plane 

AC as unity, the forces acting on the element are as shown in Fig. 3.5. 

Resolving in the direction of a,: 
a, =(T . cos 8) sin 8 + (T .sin 8) cos 8 

-T.sin 28 

Resolving in the direction of T,: 
Til =(T . sin 8) sin 8 - (T . cos 8) cos 8 

- -T.COS 28 (down the plane for 8 < 45°) 

a,-=V(a.2+T,l)=T at 28 to T, 

Fig. 3.6 

In this system the normal component a, has maximum and minimun 
values +T (tension) and -T (compression) on planes at ±45° to thl 
applied shear, and on these planes the tangential component T, is zero 
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This shows that at a point where there is pure shear stress on two given 
planes at right angles, the aetion aeross the planes of an element taken at 
4SO to the given pltmes is one of equal tension and rompression. In fact the 
two stress systems shown in Fig. 3.6 are identical and interchangeable, 
a conclusion which will be used later in examining the relation between 
the elastic constants E and G (Para. 4.3). 

3.S- Pure Normal Stresses on Given Planes. Let the known 
stresses be a", on Be and ay on AB, then the forces on the element are 
proportional to those shown in Fig. 3.7. 

Resolve in the direction of a,: 
a, = (a,. cos 0) cos 0 + (ax·sinO) sin 0 

=a, cos2 O+ax sin2 0 
Resolve in the direction of T,: 

c 

T, =(a,. cos 0) sin 0 - (ax. sin 0) cosO 
=!(a,-ax) sin 28 A 

a, can be shown to vary between 
the limits of ax and a" which 
become its maximum and minimum 

(Jy casB 

Fig. 3.7 

values; T" however, has a maximum value equal numerically to one­
half the difference between the given normal stresses and occurring on 
planes at 45° to the given planes. This becomes of some significance 
when calculating the maximum shear stress in any complex stress 
system, and it will be found that ax and a, correspond to the Principal 
Stresses (Para. 3.8). 

3.6. General Two-dimensional Stress System. Let the stresses 
on the planes AB and Be be a" a., and T, then the forces are as shown 
in Fig. 3.8. 

~!I cos B 

C! Resolve in the direction of a,: 
0: s' B a, = (a,. cosO)cosO + (ax· sinO) sin 0 
:x;n + ( T • cos 0) sin 0 + ( T • sin 8) cos 0 

_ (1 + cos 20) (1 -cos 20) 
-ay 2 + a", 2 

+T.Sin 20 
=!(ay+ax)+!(ay-ax) cos 20+ 

T.sin 20 (1) 

Fig. 3.8 Resolve in the direction of T : 

TB = (ay.cos 0) sin 8 - (ax. sin 0) cos 8 + (T .sin 8) sin 8 - (T. cos 8) cos 8 
=!(ay -ax) sin 20 - T.COS 28 (2) 
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EXAMPLE 1. If the stresses on two perpendicular planes through a point 
are 60 N/mm2 tension, 40 N/mm2 compression, and 30 N/mm2 shear, 

60cos60" 

Fig. 3.9 

and 

find the stress components and resultant stress 
on a plane at 60° to that of the tensile stress. 

Fig. 3.9 shows the forces on an element. 

Resolving 

0'9 = (60 cos 60°) cos 60° - (40 sin 60°) sin 60° + 
(30 cos 60°) sin 60° + (30 sin 60°) cos 60° 

= 60 x ~ x ! - 40 x y'~ x y 3 + 30 x 1 x y] 
2 2 2 2 2 2 

=15 -30+7·5-y13 +7'5-y13 
=11 N/mm2 

+30 x -yl3 x! 
2 2 

79 = (60 cos 60°) sin 60° + (40 sin 60°) cos 60° - (30 cos 60°) cos 60° + 
(30 sin 60°) sin 60' 

=15-y13 +10-yl3 -7'5 +22·5 

=58,3 N/mm2 

a, = -yI(tt2 + 58.32) 

=59·3 N/mm2 

at an angle to the 

</>=tan- 1 58'3/11 (Fig. 3.10) 

=80° 15', (or 20° 15' to the 60 N/mm2 stress). Fig. 3.10 

3.7. Principal Planes. It can be seen from equation (2) of Para. 3.6 
that there are values of 8 for which 7S is zero, and the planes on which 
the shear component is zero are called Principal Planes. 

O'y-IJx 

Fig. 3.11 

From (2) 
tan 28 = 27/( a, - ax) when T9 = O. 

This gives two values of 28 differing by 180°, and 
hence two values of 8 differing by 90°, i.e. the 
principal planes are two planes at right angles. 

From Fig. 3.11 
. 28 2T SlO ... ± ----.,,.,..------,--::---...,., 

v'[( 0', - O'x)2 +472] 

and cos 28 ... ± (a,-O'x) 

v'[(a, - ax)2 + 472] 
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where the signs are to be taken both positive or both negative (giving 
the values for 28 + 18(0). 

3.8. Principal Stresses. The stresses on the principal planes will 
be pure normal (tension or compression) and their values are called 
the Principal Stresses. 

From equation (1) Para. 3.6, using the above values (Para. 3.7) 

P' . I _1( ) t(ay -ax)2 T.2T 
nnclpa stresses- 2 ay+ax ± y[(ay-ax)2+4T2] ± y[(ay-ax )2+4T2] 

-t[ (ay -ax )2 + 4T2] 
=!(ay+ax)± y[(ay-ax)2+4T2] 

=-t{ay + ax) ±-ty[(ay -ax )2 +4T2] 

The importance of the principal stresses lies in the fact that they 
are the maximum and minimum values of normal stress in the 
two dimensions under consideration, and when they are of opposite 
type they give the numerical values of the maximum tensile and com­
pressive stresses. This can easily be verified by differentiating equation 
(1), Para. 3.6, 

da./d8 - - ( a, - a.) sin 28 + 2T. cos 28 

Equating to zero for a maximum or minimum gives 
tan 28=2T/(a,-a.) 

as before for principal planes (Para. 3.7). 

3.9 Shorter Method for Principal Stresses. If it is assumed that 
principal planes, by definition those on which the shear stress is zero, do 
exist, it is possible to obtain a shorter analysis for their position and the 
values of the principal stresses. It cannot now be shown that the prin­
cipal stresses are the maximum 
values of normal stress, but the 
method may nevertheless be con­
sidered as a treatment from first 
principles. 

Let AC be a principal plane 
and a the principal stress acting A4-"'---=t=~-~ 
on it; ax, ay, and T are the known 
stresses on planes BC and AB as 
before (Fig. 3.12). OJ cosO 

Resolve in the direction of ax: Fig. 3.12 

a .sin (;I =ax • sin {1 + T .cos (;I 

or (1) 
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Resolve in the direction of O'y: 
0'. cos 8 =O'y. cos8 + 'T. sin 8 

or O'-O'y='T.tan 8 (2) 

It is now possible to eliminate 8 by multiplying corresponding sides of 
equations (1) and (2), i.e. 

(0' -O'x)(O' -O'y) ='T2 

In any numerical problem it is advisable to substitute the values of 
O'x' O'y' and 'T at this stage or earlier, and solve the quadratic for the two 
values of the principal stresses, but it is of interest here to proceed in 
symbols: 

solving, 
0'2 - (O'x +O'y)O' +O'xO'y - 'T2 =0 

0' = t{ax +ay ) ±·h/[(ax +ay)2 - 4axay + 4'T2] 
=!(ax +ay) ±!V'[(ax -ay)2 +4'T2] 

as in Para. 3.8. 

A 

01 sine 

B 

Fig. 3.13 

The values of 8 for the principal 
planes are of course found by sub­
stitution of the principal stress values 
in equation (1) or (2). 

3.10. Maximum Shear Stress. 
Let AB and Be be the principal 
planes and 0'1 and 0'2 the principal 
stresses (Fig. 3.13). 

Then, resolving 

'Te =(0'2. cos 8) sin 8 - (0'1. sin 8) cos 8 
=t(0'2 -0'1) sin 28 (compare Para. 3.5) 

Hence the maximum shear stress occurs when 28 = 90, i.e. on 
planes at 45° to the principal planes and its magnitude is 

'T max =t{a2 -0'1) 

=tV'[(O'x-O'y)2+4'T2] From Para. 3.8 

In words: the maximum shear stress is one-half the algebraic 
difference between the principal stresses. 

The same result could be obtained by differentiating equation (2) of 
Para. 3.6. 

It should be mentioned here that, all solids being of three dimensions, 
there must be three principal stresses, although in many cases the third 
principal stress is zero. In calculating the maximum shear stress by 
taking one-half the algebraic difference between the principal stresses 
the zero principal stress will be of importance if the other two are of 
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the same type. The following figures will clarify this, where 0'1> 0'2, and 
0'3 are the principal stresses, compression being shown negative. 

Greatest 
(71 (72 (73 'T 

4 2 0 2 
4 -2 0 3 
4 2 2 1 

-4 2 -2 3 

EXAMPLE 2. At a section in a beam the tensile stress due to bending is 
50 N/mm2 and there is a shear 
stress of 20 N/mm2• Determine 
from first principles the mag­
nitude and direction of the 
principal stresses and calculate 
the maximum shear stress. 

50 sin 8 

Let AC be a principal plane 
and BC the plane on which 
the bending stress acts. There 
is no normal stress on AB, 
which is a longitudinal plane 
Fig. 3.14. 

~
c 

~ 20 sin 8 

A -- B 2.0 cosO 
Fig. 3.14 

of the beam. The forces are shown in 

or 

Resolve in the direction AB: 

a sin (J = 50 sin (J + 20 cos (J 

a - 50 = 20 cot (J 

Resolve in the direction BC: 
(J cos (J = 20 sin (} 

(J =20 tan (J 

Multiply corresponding sides of equations (i) and (ii): 

0'(0' - 50) =202 

0'2 - 500' -400 =0 

solving, 
50 ± 10\1'(25 + 16) 

0'= 2 
50±64 

=-2-

=57 or -7 

(i) 

(ii) 

i.e. the principal stresses are 57 N/mm2 tension, 7 N/mm2 compression, 
the third being zero. 

Substituting in equation (ii) 

tan (J = 0'/20 = 57/20 or - 7/20 
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giving 0 =700 40' and 160° 40' (differing by 90°), being the directions of 
the principal planes. 

Maximum shear stress =t(57 - ( -7)) 
=32 N/mm2 

and the planes of maximum shear are at 450 to the principal planes, i.e. 
0=250 40' and 115° 40'. 

3.n:. Mohr's Stress Circle. In Fig. 3.15, Ul and U2 are the principal 
stresses, on principal planes BC and AB. The stress circle will be 
developed to find the stress components on any plane AC which makes 
an angle 8 with AB. 

In Fig. 3.16 mark off PL=Ul and PM=u2 (positive direction­
tension-to the right). It is shown here for u2>ul' but this is not a 
necessary condition. On LM as diameter describe a circle centre O. 

Fig. 3.16 

Then the radius OL "represents" the plane of ul(BC), and OM 
"represents" the plane of U2 (AB). Plane AC is obtained by rotating 
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AB through 8 anticlockwise, and if OM on the stress circle is rotated 
through 28 in the same direction, the radius OR is obtained, which will 
be shown to represent the plane AC. (Note that OR could equally well 
be obtained by rotating OL clockwise through 180° -28, corresponding 
to rotating BC clockwise through 900 -8.) 

Draw RN perpendicular to PM. 
Then PN=PO+ON 

=!(al + a2) +!(a2 - all cos 28 
-= al(1- cos 28)/2 + a2(1 + cos 28)/2 
""al sin2 8 +a2 cos2 8 
= as, the normal stress component on AC, (Para. 3.5), 

and RN =t( a2 -all sin 28 
-= T" the shear stress component on AC, (Para. 3.5). 

Also the resultant stress 
a,""v(a,2+ T ,2) 

-PR 
and its inclination to the normal of the plane is given by c/J = LRPN. a, is found to be a tensile stress in this case, and T, is considered 
positive if R is above PM, a positive shear stress being that which will tend 
to give a clockwise rotation to a rectangular element (shown dotted in 
Fig. 3.15). 

The stresses on the plane AD, at right angles to AC, are obtained 
from the radius OR', at 180° to OR, 
i.e. a,' = PN' and T,' = R'N' 
the latter being of the same magnitude as T9 but of opposite type, 
tending to give an anticlockwise rotation to the element dotted in 
Fig. 3.15. . 

The maximum shear stress occurs when RN = OR (i.e. 8 = 45°) and 
is equal in magnitude to OR =!( a2 - all. 

The maximum value of c/J is obtained when PR is a tangent to the 
stress circle. 

Two particular cases which have previously been treated analytically 
will be dealt with by this method. 

(1) Pure compression. If a is the compressive stress the other principal 
stress is zero. 

Let 8 be the angle measured from the plane of zero stress (Fig. 3.17). 
In Fig. 3.18, PL=a numerically, measured to the left for com­

pression, PM = O. 
Hence OR=ta 

a9 = PN, compressive 
T9-RN, positive 
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Maximum shear stress c> OR .. !O", occurring when 8 ... 45°. (Compare 
Para. 3.2.) 

L t----+..J~~-Ip 
M 

Fig. 3.17 Fig. 3.18 

(2) Principal stresses equal tmsion and compression. Let 8 be the angle 
measured anticlockwise from the plane of 0" tensile (Fig. 3.19). 

Fig. 3.19 

In Fig. 3.20: 
PM = 0" to the right. 
PL = 0" to the left. 

Hence 0 coincides with P. 

Fig. 3.20 

0"9 =PN and is tensile for 8 between ±45°, compressive for 8 between 
45° and 135°. 

T9=RN. When 8=45°, T9 reaches its maximum value, numerically 
equal to 0", on planes where the normal stress is zero (i.e. pure shear). 
Compare Para. 3.4. 

EXAMPLE 3. A piece of material is subjected to two compressive stresses at 
right angles, their values being 40 Njmm2 and 60 Njmm2• Find the position 
of the plane across which the resultant stress is most inclined to the normal, 
and determine the value of this resultant stress. 



3.11. COMPOUND STRBSS AND STRAIN 

In Fig. 3.21 the angle 8 is inclined to the plane of the 40 tons N/mm2 

compression. 
In Fig. 3.22, PL = 60, PM =40. The maximum angle cp is obtained when 

PR is a tangent to the stress circle. OR = 10, PO = 50. 

Then 

Fig. 3.21 

cp =sin-1t 
=11° 30' 

Fig. 3.22 

a,=PR= -v(502-102)= -49 N/mm2 

28=900 -cp 
•• 8 =390 lS' 

which gives the position of the plane required. 

Mohr's stress circle can also be used in the reverse sense, that is, to 
find the magnitude and direction of the principal stresses in a given 
stress system, as will be shown below. 

EXAMPLE 4. At a point in a piece of elastic material there are three mutually 
perpendicular planes on which the stresses are as follows: tensile stress 

50 N/mm2 and shear stress 40 N/mm2 

on one plane, compressive stress 
35 N/mm2 and complementary shear 
stress 40 N/mm2 on the second plane, 
no stress on the third plane. Find (a) 
the principal stresses and the positions 

LI--=r---==-+*--'--":':".\.--IM of the planes on which they act, (b) the 
positions of planes on which there is no 
normal stress. (U.L.) 

Fig. 3.23 

Then ON=!-NN' 
=42·5 

Mark off PN = 50, NR = 40; 
PN' = - 35, N'R' = - 40. 

(Fig. 3.23). 
Join RR' cutting NN' at O. Draw 

circle centre 0, radius OR. 

OR = v(42·52 +402) =58·4 
PO=PN -ON=7·5 
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(a) The principal stresses are 

PM=PO+OM=65'9 N/mm2, tensile, 

3.11. 

and PL =OL - OP =50·9 N/mm2, compressive. 
28=tan- 140/42'5 =43 0 20' 

8=21° 40' 

This means that the plane 

50 

Fig. 3.24 

of the tensile principal stress has to be 
rotated through 21 ° 40' in an anti­
clockwise direction in order to coin­
cide with the plane of 50 N/mm2 

50.9 tensile stress, and the relative posi­
tions of the planes are shown in 
Fig. 3.24. 

(b) If there is no normal stress, 
then for that plane Nand P coin­
cide, and 
28=180° -cos- 1 7·5/58·4 (dotted 
radius Fig. 3.23) 

=97° 24' 
8 = 48° 42' to the principal plane. 

The following example gives a method of constructing Mohr's 
circle, and hence finding the principal planes and stresses, when the 
direct stresses in any three directions are known. 

EXAMPLE 5. Fig. 3.25 (a) shows the direct stresses in three coplanar directions 
differing by 60°, at a particular point. It is required to find the magnitude 
and directions of the principal stresses. 

First draw a vertical line (i.e. the one through P in Fig. 3.25 (b» and 
measure off distances proportional to the given stresses (positive to the 
right, negative to the left). At these distances draw three vertical lines, one 
for each stress, and starting at an arbitrary point R on the central line draw 
lines at 60° and 120° to the vertical, cutting the other two verticals in 
Q and S. In determining which side of the vertical at R to measure these 
angles, they must be drawn so as to produce a similar figure to the given 
stress directions, i.e. it must be possible to rotate Fig. 3.25 (a) and place it 
over R with the 20 N/mm2 stress in the vertical position. The 60° line 
from R is produced to cut the 100 N/mm2 vertical in S, and the 120° is 
produced (backwards in this case) to cut the - 50 N/mm2 vertical in Q. 

The circle passing through QRS (the centre is constructed by per­
pendicular bisectors on the lines QR and RS) is Mohr's stress circle, the 
stress conditions on the three given planes being related to the points 
Q, R', and S, where R' is on the vertical through R. 

The justification of the construction lies in the fact that the angle at 
the centre of a circle is twice that at the circumference, and it can be seen 
that the angles between the radii OQ, OR', and OS are 120°, which is 
twice the angle between each pair of given direct stresses. 
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The principal stresses are then given by 

and 

(a) 

PM =Ul =112 N/rnrn2 

A 

PL =U2 = - 63 N/mm2 

(b) 

Fig. 3.25 

47 

ul being inclined at tSOM, i.e. 14° to the 100 N/rnrn2 stress and u2 
A 

being inclined at tQOL, i.e. 16° to the - 50 N/mm2 stress. 

3.lz. Poisson's Ratio. If a bar is subjected to a longitudinal stress 
there will be a strain in this direction equal to alE. There will also be a 
strain in all directions at right angles to a, the final shape being dotted 
in Fig. 3.26. 

~- ------iT 
(J ~ ~----------------~ J (J 

Fig. 3.26 

It is found that for an elastic material the lateral strain is proportional 
to the longitudinal strain, and is of the opposite type. The ratio 

lateral strain 
longitudinal strain 

produced by a single stress is called Poisson's Ratio, and the symbol used 
is v i.e. 

Lateral strain - - v. alE 
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If the stress a is beyond the elastic limit, and the total longitudinal 
strain is e, the" elastic" portion is approximately alE and the" plastic" 
portion is e -alE. Poisson's ratio for plastic deformation may be taken 
as 0·5 (corresponding to no change in density or volume-see Para. 
3.18), and hence 

Total lateral strain= -vaIE-O·S(e-aIE) 

EXAMPLE 6. A bar of steel 25 cm long, of rectangular cross-section 25 mmby 
50 mm is subjected to a uniform tensile stress of 200 N/mm2 along its length. 
Find the changes ill dimensions. E=205,000 N/mm2 Poisson's ratio =0·3. 

Longitudinal strain =a/E =200/205,000 

Increase in length =(200/205,000) x 250 

=0·244mm 

Lateral strain = -va/E= -0·3 x 200/205,000 

Decrease in 25 mm side of section = (0·3 x 200/205,000) x 25 

=0·0073 mm. 

Decrease in 50 mm side of section = 0·0146 mm. 

3.13. Two-dimensional Stress System. It has been proved that 
every system can be reduced to the action of pure normal stresses on 
the principal planes, as shown in Fig. 3.27. 

OZt 

~D-OJ 0; 

a} 
Fig. 3.27 

separately, i.e. 

Strain in the direction of alt 

Consider the strains produced by each 
stress separately. 

al will cause 
Strain aIlE in the direction of al' 

Strain -vallE in the direction of a2' 
a2 will cause 

Strain a21E in the direction of a2' 
Strain -va2lE in the direction of al' 

Since the strains are all small, the 
resultant strains are given by the 
algebraic sum of those due to each stress 

el =allE - va21E 

Strain in the direction of a2, 

e2 =a21E -vallE 
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where tensile stress is to be taken positive, and compressive stress 
negative, a positive strain representing 
an increase in dimensions in that direc­
tion. 

3.1:+ Principal Strains in Three 
Dimensions. By a similar derivation 
to the previous paragraph, it can be 
shown that the principal strains in the 
directions of 0'10 0'2, and 0'3 (Fig. 3.28), are 

el = aIlE -v0'21E -v0'3/E 
e2 =0'21E -w31E -vallE 
e3 =0'31E -WIlE -v0'21E Fig. 3.28 

It should be particularly noted that stress and strain in any given 
direction are not proportional where stress exists in more than 
one dimension. In fact strain can exist without a stress in the same 
direction (e.g. if 0'3 = 0, then e3 = -vallE -v0'2IE), and vice versa. 

EXAMPLE 7. A piece of material is subjected to three perpendicular tensile 
stresses and the strains in the three directions are in the ratio 3:4:5. If 
Poisson's ratio is 0·286 find the ratio of the stresses, and their values if the 
greatest is 60 N/mm2 (U.L.) 

Let the stresses be 0'10 0'2, and 0'3, and the corresponding strains 3k, 4k, 
and Sk. 

Then 3kE=0'1- 0·286(0'2+0'3) 
4kE=uz -O·286(U3 +u,) 
SkE=U3 -0·286(UI +0'2) 

Subtract (i) from (iii): 
0'3 -0'1 -0'286(0'1 -0'3) =2kE 

giving 0'3 -0'1 = 2kE/l·286 
Writing (iii): 0'3/0'286 - 0'1 - 0'2 = SkE/0·286 

and (ii): 0'2 -0'2860'3 -0'2860'1 =4kE 
Add (v) and (vi): 3'210'3 -1'2860'1 =21·SkE 
Writing (iv) 1'2860'3 -1'2860'1 =2kE 
Subtract (viii) from (vii): 1·9240'3 = 19· SkE 
or 0'3 =10'14kE 
From (iv): 0'1 =8·S8kE 
From (ii): 0'2 =9·34kE 
Ratio of stresses: 0'1; 0'2: 0'3 =0,847:0,921:1 

If the greatest 0'3 =60 N/mm2 

0'1 =SO'8 N/mm2 and 0'2-SS'3 N/mm2 

(i) 
(ii) 

(iii) 

(iv) 
(v) 

(vi) 
(vii) 

(viii) 
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3.15. Principal Stresses determined from Principal Strains. 
(a) Three-dimensional stress system. Writing the equations of Para. 

3.14. 

Eel =al -va2 - va3 
Ee2 =a2 -va3 -val 
Ee3=v3-vat-va2 

and subtracting (2) from (1) gives 

E(el -e2)=(al -a2)(1 +v) 

From (1) and (3), eliminating a3 

E(el +v(3)=al(1-v2) -a2(1 +v)v 

Multiplying (4) byv and subtracting from (5) 

Rearranging, 

Similarly 

and 

E[(I-v)el +v(ez +(03)] =al(l-v -2v2) 
=al(1 +v)(1-2v) 

E[(1 -v)el +v(e2 +(03)] 
al = (1 +v)(1 - 2v) 

E[(1 -v)e2 +v(e3 +(01)] 
a2 = "':::':"-(-1 -'-+-=y)-( 1'---'-Z""-y-) ~ 

E[(1 -v)e3 +v(el +e2)] 
a3= (1 +v)(1-2v) 

(b) Two-dimensional stress system. a3 = 0 and 
Eel =al - va2 
Ee2=a2 -val 

Solving these equations for at and a2 gives 

E(el +ve2) 
al = 1 -v2 

and 

(1) 
(2) 

(3) 

(4) 

(5) 

3.16. Analysis of Strain. Supposing ex. ey and cp are the linear and 
shear strains in the plane XOY. It is required to find an expression for 
lOS, the linear strain in a direction inclined at 0 to OX, in terms of ex, 
ey,cp and O. 

In Fig. 3.29 OP, oflength T, is the diagonal of a rectangle, which under 
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the given strains distorts into the dotted parallelogram, P moving to 
P'. Remembering that actual strains are very small, 

PP' = PQ cos 8 + QR sin 8 + RP' cos 8 approx. 

But 

=(T cos 8.e,,) cos 8+(T sin 8.ey) sin 8+(T sin 8.rp) cos 8 
= Te" COSZ 8 + Tey sinZ 8 + Trp sin 8. cos 8 

y 

o x 
Fig. 3.29 

e, = PP' /T by definition 
= fe,,( 1 + cos 28) + fey{ 1 - cos 28) + # sin 28 from above 
=t(e" +ey) +f(e" -ey) cos 28 +# sin 28 (1) 

This can be compared with equation (1) of Para. 3.6, and the principal 
strains El and EZ, being the maximum and minimum values of strain, 
occur at values of 8 obtained by equating dEe/d8 to zero. i.e. 

(2) 

Then, as for principal stresses (Paras. 3.7 and 3.8), El and EZ are given 
by 

(3) 

In order to evaluate E", Ey, and rp (and hence the principal strains) it 
is necessary in general to know the linear strains. in any three directions 
at a particular point (if the principal directions are known only two 
strains are required, since rp = 0 and e" = Eh Ey = EZ)' 

Finally, if these strains are caused by stresses in two dimensions 
only, the principal stresses can be determined by the method of Para. 
3.1S (b). 

EXAMPLE 8. The measured stTains in thTee diTections inclined at 60° to 
one another (as in Fig.3.30(a)) aTe 550 xI 0 -6, -100 xI 0 -6, and 150 x 
10-6• Calculate the magnitude and direction of the principal strains in Ihis 
plane. 
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If there is no stress perpendicula, to 1M given plane, determine the principal 
Jtresses at the point. E =200,000 N/nun2.v == 0'3. 

y 

ISOx 10" 

-IOOXIO"" l5o'IO'~ 

Fig. 3.30 

550>' 10" 

5 

Lt-~-+~:::::---lM 

Taking the X-axis in the direction of the 550 x 10 -6 strain, e", e7 and 
", are determined from equation (I), with 8 ",,0,60°, and 120° for the three 
measured strains, i.e. 

eo =550 x 10-6 

=1(e" +e,) +1(6. - e,) 
-~ ro 

B60= -100 x 10-6 

=l(e. +e7) -1<Bx -B7) +it/Jv'3/2 
-1<B. +3B7) +:Uv'3 (ii) 

and B120 == 150 x 10-6 

-l(B" +B7) -i(B" -B7) -it/Jv'3/2 
-=1(B" +3B7) -:Uv'3 (iii) 

Adding (ii) and (iii) 
l(B. + 3B,) = 50 x 10-6 

or B, -;(100 x 10 -6 - ex) 
== -150 x 10 -6 from (i) (iv) 

From (ii), (i), and (iv) :Uv'3 =[ -100 -1<550 -450)]10-6 

giving ", ... -(5001v'3)10-6 (v) 

The direction of the principal strains Bl and e2 (to the X-axis) are given 
by (2) 

tan 28 =rfo/(B;t - B,) 
= - SOO/700v'3 
- -0,4125 

from above 

28- -22'4° or 180° -22'4° 
8- -11'2° or 78·8° 
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The principal strains, from (3), are 

tee. +e7 ) ±h/[(e. -87)2 +4>2] =200 x 10-6 ±h/[7002 +5002/3].10-6 

=(200 ±379)10-6 

i.e. 
and 

81=579x10-6 

82= -179 x10-6 

For a two-dimensional stress system, using the derivation of Para. 
3.15 (b), the principal stresses are 

0'2(579 - 0·3 x 179) 
0'2 = 1 -0,32 

=115 N/mm2 

and 
0'2(0'3 x 579 -179) 

0'2= 1-0'32 

= -1,2 N/mm2 

3.17. Mohr's Strain Circle. By comparison of Paras. 3.6, 3.8, and 
3.16, it will be seen that Mohr's Circle can be used equally to represent 
strains, the horizontal axis for linear strains 81f and 8 y• and the vertical 
axis for half the shear strain,!<p. Fig. 3.31 shows the relations between 

Fig. 3.31 

8X' 8y, cp and O. and the principal strains 81 and 82 as given by eqns. 
(2) and (3) of Para. 3.16. Note that PO =!(8" +8y) and OR =h/[(8" - 81')2 
+cp2]. 

The strain circle can be constructed if the linear strains in three 
directions at a point and in the same plane, are known. The problem 
of Ex. 8 will now be solved graphically. The given strains are 80. 860. 

and 8120 in Fig. 3.30 (a). and the construction is similar to that of EL 5 
for the stress circle. 
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Vertical lines are set off relative to a datum through P (Fig. 3.30 (b». 
and at distances on either side proportional to the given strains. From 
R on the central line (i.e. e120 in this case) lines are set off at 60° and 
120° to the vertical, to cut the corresponding strain verticals in a and 
S. The strain circle then passes through aRS, the principal strains 
being 

el ==PM ... SSO x 10-6 
and 

e2 ... PL- -IS0xl0-6 

The radius OS gives the strain conditions in the X direction, and 
the angle SOM=22°. The direction of el is then t.22=11° clockwise 
from the X-axis, and e2 is at right angles to el' 

Principal stresses can best be obtained from the principal strains by 
calculation, as in Ex. S. 

3.18. Volumetric Strain. Consider a rectangular solid of sides:#, y, 
and :I, under the action of principal stresses 0'., 0'2' and 0'3 respectively 
(Fig. 3.32). Then if e., e2, and e3 are the corresponding linear strains, the 

dimensions become :# + el:#' Y + e2Y, :I + e]:l. 
<12 Volumetric strain 

Increase in volume 
Original volume 

_ :#(1 + el)y(1 + e2):1(1 + e3) - ::y:l 
::y:l 

... (1 + el)(l + e2)(1 + e3) - 1 

... 1 +el +e2+e3+ele2+e21!3+e3el 
+ele2e3 -1 

Fig. 3.32 
... el +e2+ e3 

to sufficient accuracy, since the strains are small. 
Expressing this in words, the volumetric strain is the algebraic 

sum or the three principal strains. 
Substituting for the strains in terms of the principal stresses (Para. 

3.14) it is found that 

V 1 . • (0'1 +u2+ u3)(1-2v) 
o umetnc strain ... E 

3.19. Strain Energy. Strain energy U is the work done by the 
stresses in straining the material. It is sufficiently general to consider a 
unit cube acted on by the principal stresses 0'., 0'2, and 0'3' If the corres-
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ponding strains are el> e2, and e3, then the total work done = E!ae, since 
the stresses are gradually applied from zero, i.e. 

U =!alel +1-a2e2 +!a3e3 
= (lJ2E)[al(al -va2 -va3) +a2(a2 -va3 -val) +a3(a3 -val -va2)] by 

Para. 3.14 

= (lJ2E)[aI2 +a22 +a32 -2v(ala2 +a2a3 +a3al)] per unit volume. 

For a two-dimensional stress system a3 = 0 

and U=(lJ2E)[al2+a22-2vala21 per unit volume. 

EXAMPLE 9. The principal stresses at a point in an elastic material are 
60 N/mm2 tensile, 20 N/mm2 tensile, and 50 N/mm2 compressive. Calculate 
the volumetric strain and the resilience. E = 100,000 N/mm2 ; 

v =0·35 

at =60, a2 =20, a3 = - 50. 

V I . . ( )1 -2v (P 318) o umetnc stram = at + a2 + a3 ~ ara.. 

1-0·7 
=(60 +20 - 50)100000 , 
=9 x 10-5 

Resilience = [1/(2 x 100,000)] [602 + 202 + ( - 50)2 
- 2 x 0·35 (60 x 20 - 20 x 50 - 50 x 60)] 

=8460/200,000 
=0·0423 N mm/mm3 

3.20. Shear Strain Energy. 

Writing 
al =t(al +a2 +a3) +t(al -a2) +t(al -a3) 

a2 =t(al +a2 +a3) +t(a2 -all +t(a2 -a3) 
a3 =t(al +a2 +a3) +t(a3 -all +t(a3 -a2), 

then under the action of the mean stress t(al +a2 +a3) there will be 
volumetric strain with no distortion of shape (i.e. no shear stress any­
where). The strain energy under this mean stress acting in each direc­
tion is obtained from the general formula (Para. 3.19), and may be 
called volumetric strain energy, 

= (3J2E)[(al +a2+a3)/3]2{1-2v) 

The other terms in the rearrangement of all a2, and a3 are propor­
tional to the maximum shear stress values in the three planes, and will 
cause a distortion of the shape. 
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Define Shear strain energy Us as the difference between Total strain 
energy and Volumetric strain energy, i.e. 

Us = (ljZE)[a12 +a22 +a32 - ZV(ala2 +a2a3 +a3al)] 
- [(al +a2 +(3)2(1-Zv)]j6E 

= (lj6E)[(a12 +a22 +(32)(3 -1 +Zv) 

- (ala2 +a2a3 +a3al)(6v + Z - 4v)] 
= [(1 + v)j6E] [Z(a12 +a22 +(32) -Z(ala2 +a2a3 +a3al)] 
= (ljlZG)[(al -a2F +(a2 -(3)2 +(a3 -alF] 

(See Para. 4.3 for relation between E and G.) The quantities in 
brackets are each twice the maximum shear stress in their respective 
planes (Para. 3.10). 

In a pure shear system (stress T), the principal stresses are ±T, 0 
(Para. 3.4 or 3.8), and by substitution 

shear strain energy = (ljlZG)[(ZTF + ( - TF + ( - TF] 
=T2jZG (compare Para. Z.5) 

3.21. Theories or Failure. The theory of elasticity and formulae 
derived are based on the assumption that the material obeys Hooke's 
law. Consequently no information can be derived from them if the 
material has passed beyond its elastic limit at any point in the member. 
In fact, when "permanent" (non-recoverable) deformations occur the 
material is said to have "failed." Note that failure does not imply 
rupture. 

It is natural to consider that, in a simple tensile test, the elastic limit 
is associated with a certain value of the tensile stress j but at this stage 
other quantities, such as shear stress and strain energy, also attain 
definite values, and anyone of these may be the deciding factor in the 
physical cause of failure. 

In a complex stress system these quantities can be calculated from 
the known stresses and material constants, and the problem is to decide 
which quantity is the criterion of failure, i.e. the cause of the material 
passing beyond its elastic limit and taking up a permanent set. Having 
decided, the actual value of that particular factor which corresponds 
to the onset of failure is usually taken to be the value it reaches in the 
simple tension case at the elastic limit. 

The principal theories of failure are outlined in detail below, in which 
u is the tensile stress at the elastic limit in simple tension, and al> a2, U3 
the principal stresses in any complex system. 

(1) Maximum Pritu:ipal Stress Tluory (due to Rankine). According 
to this theory failure will occur when the maximum principal stress in 
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the complex system reaches the value of the maximum stress at the 
elastic limit in simple tension, i.e. 

al=!(ax +al')+'h/[(ax -al')2+472] (Para. 3.8) 
=a in simple tension 

where a,x al" and 7 are the stresses on given planes in the complex 
system. 

(2) Maximum Shear Stress or Stress Difference Theory (due to Guest 
and Tresca). This implies that failure will occur when the maximum 
shear stress in the complex system reaches the value of the maximum 
shear stress in simple tension at the elastic limit, i.e. 

t(U2 -al) ='h/[(ax -al')2 +472] (Para. 3.10) 

on the assumption that the maximum shear is greatest in the XY plane. 

=la in simple tension (Para. 3.2) 

or a2 -Ul =a 

(3) Strain Energy Theory (due to Haigh). This theory is based on the 
argument that as the strains are reversible up to the elastic limit, the 
energy absorbed by the material should be a single-valued function at 
failure, independent of the stress system causing it, i.e. strain energy 
per unit volume causing failure is equal to the strain energy at the 
elastic limit in simple tension. 

(lj2E)[ul2 +ui +U32 -2v(alu2 +u2a3 +U3Ul)] =u2j2E (Para. 3.19) 

or al2 +ui +a32 -2v(ula2 +a2a3 +a3al) =a2 

(4) Shear Strain Energy Theory (due to Mises and Hencky). At 
failure the shear strain energy in the complex system and in simple 
tension are equal, i.e. 

(lj12G)[(ul -u2)2 +(a2 -a3)2 +(U3 -al)2] =u2j6G Para. 3.20) 
or 

(The value in the simple tension case is found by putting the principal 
stresses equal to a, 0, 0.) 

(5) Maximum Principal Strain Theory (due to St. Venant). If el is 
the maximum strain in the complex stress system, then according to 
this theory 

or 

el = (ljE)(al -va2 -VU3) (Para. 3.14) 
=ujE in simple tension 
al -va2 -vU3 =a 

Other theories have been put forward, but have not proved to be 
nearer the truth except perhaps for particular types of loading, and 
discussion will be confined to the theories already outlined. 
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3.32. Graphical Representation. Where only a two-dimensional 
stress system is under consideration the limits of principal stress can be 
shown graphically according to the different theories (Fig. 3.33). 

The axes OX and OY show the values of the principal stresses (11 and 
(12, (13 being zero. Positive directions are to the right for (11 and upwards 
for (12' Using the number references attached to the theories in Para. 
3.21 values are derived within which the principal stresses must lie for 
the material to be below the elastic limit. That is to say, according to 
whichever theory is adopted, failure will occur when the point deter­
mined by the principal stresses lies on or outside the boundary of the 
corresponding figure. J 

at 
Y 

5. 

2.--t-+-h''--? rH--I--2. 

I. 

o 

Fig. 3.33 

It will be assumed that the elastic limit (1 is the same in tension and 
compression. 

(1) Maximum principal stress equal numerically to the elastic limit. 
This produces a square boundary ABeD, the sides being defined by 
(11 =(1, (12=a, al = -a, a2= -a. 

(2) Maximum shear stress equal numerically to the value in simple 
tension (la). Where the principal stresses are alike, the greatest maxi­
mum shear stress is lal (or l(2), obtained by taking half the difference 
between the principal stresses al and 0, or a2 and O. This produces 
lines 
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in the first and third quadrants (HA, AE, FC, CG). When the principal 
stresses are of opposite type, maximum shear stress is 

t(al -a2) = ±!a 
completing the figure in the second and fourth quadrants with the lines 
EF and GH. The boundary is then AEFCGHA. 

(3) In the two-dimensional case, the strain energy theory is defined 
by an ellipse with axes at 45° to OX and OY; the equation is 

al2 +a22 - 2vala2 =a2. 
It passes through the points E, F, G, and H. 

(4) The shear strain energy theory results in an ellipse similar to (3), 
defined by 

al2 -ala2 +ai=a2 

(5) The principal strains are 
(ljE)(al -va2) and (ljE)(a2 -val) 

and failure is assumed to occur when either of these values reaches 
±ajE. For like principal stresses the lines HJ, JE, FL, and LG are 
produced by the equations 

al -va2 =a, a2 -val =a, al -va2 = -a, and a2 -val = -a 

respectively. For unlike stresses EK, KF, GM, and MH complete the 
figure. 

3.33. Conclusions. Considerable experimental work has been done 
on various stress systems, such as tubes under the action of internal 
pressure, end loads, and torsion; also on different materials. So far, 
however, no conclusive evidence has been produced in favour of any 
one theory. 

It must be admitted that the cause of failure depends not only on the 
properties of the material but also an the stress system to which it is 
subjected, and it may not be possible to embody the results for all cases 
in one comprehensive formula. The following general conclusions may 
be used as a guide to design. 

In the case of brittle materials such as cast iron the maximum prin­
cipal stress theory should be used. For ductile materials the maximum 
shear stress or strain energy theories give a good approximation, but 
the shear strain energy theory is to be preferred, particularly when 
the mean principal stress is compressive. The maximum strain theory 
should not be used in general, as it only gives reliable results in 
particular cases. 

It should be noted that, since the shear stress and shear strain energy 
theories depend only on stress differences, they are independent of the 
value of the mean stress and imply that a material will not fail under a 
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.. hydrostatic" stress system (i.e. 0'1 ... 0'2 .. 0'3)' In practice the effect of 
such a stress system, if tensile, is to produce a brittle type fracture in a 
normally ductile material, no plastic deformation having taken place. 
Conversely, a triaxial compressive system will produce a ductile type 
failure in a normally brittle material. In general the tendency to ductility 
is increased as the ratio of max. shear to max. tensile stress under 
load increases. 

EXAMPLE 10. If the principal stresses at a point in an elastic material are 
2f tensile, f tensile, and tJ compressive, calculate the value of f at failure 
according to jive different theories. 

The elastic limit in simple tension is 200 N/mm2 and Poisson's ratio =0·3. 
(1) Maximum principal stress theory 
In the complex system, maximum stress =2f 
In simple tension, maximum stress =200 N/mm2 

Equating givesf=100 N/mm2 

(2) Maximum shear stress theory 
Maximum shear stress = Half difference between principal stresses 

=t[2f - ( - tf)] 
=t/ 

In simple tension, principal stresses are 200, 0, 0, and 
maximum shear stress =t x 200 

=100 N/mm2 (See also Para. 3.2.) 
Equating gives f=80 N/mm2 

(3) Strain energy theory 
In the complex system 

U = (1/2E)[(2f)2 +j2 + ( - tf)2 - 2 x 0·3(2f.J - f.fl2 - f/2.2f)] 

=4·95j2/2E 
In simple tension: 
Equating gives 

U=2002/2E 
f = 200/ V 4·95 

=89·8 N/mm2 

(4) Shear strain energy theory 
In the complex system 

(Para. 3.19) 

Us = {1/12G)[(2f - f)2 +(J +tf)2 +( -tf-2f)2] (Para 3.20.) 
=9·5j2/12G 

In simple tension (principal stress 200, 0, 0) 

Us =2002/6G 

Equating gives .1=200/";4·75 

=91·7 N/mm2 
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(5) Maximum strain theory 
Equating the maximum strain in the complex and simple tension cases 

(I/E)(2f - 0'3f + 0'3f/2) = 200/E 
or f =200/1'85 

=108 N/mm2 

EXAMPLE 11. The load on a bolt consists of an axial pull of 10 kN together 
with a transverse shear force of 5 kN. Estimate the diameter of bolt required 
according to (1) maximum principal stress theory, (2) maximum shear stress 
theory, (3) strain energy theory, (4) shear strain energy theory. Elastic limit 
in tension is 270 N/mm2, and a factor of safety of 3 is to be applied. Poisson's 
ratio =0·3. 

The permissible simple tensile stress is 270/(Factor of safety) 
=90N/mm2. 

Let required diameter be d mm, then the applied stresses are 

_10,000 _~O,OOO N/ 2 
u- TTd2/4 - TTd 2 mm 

and _~OO _ 20,000 2 '. 
T - TTd2/4 - TTd2 N/mm shear (Fig. 3 34), 

assuming uniform distribution over the cross-section. 
(1) Maximum principal stress in bolt 

=tu+-h/(u2 +4T2) (Para. 3.8: ux=u, ~ 
u y =0) .,0' 

=-1' 4O,000/TTd2 + -h/[(40,000/TTd2)2 + 
4(20,000/TTd2)2] 

= (20,000/TTd 2)[1 + v(1 + 1)] 
= 48, 290/TTd2 ~ 

Maximum stress in simple tension = 90 
Equating to above gives 

d = V(48,290/90TT) 
=13"·1 mm. 

Fig. 3.34 

(2) Maximum shear stress =-1V(u2 +4T2) (Para. 3.10) 
= 28,290/TTd2 

=45 in simple tension 
d = V(28,290/45TT) 

=14·2 mm. 

(3) Principal stresses are tu ±tv(u2 +4T2), 0, i.e. 
48,290/TTd2, - 8290/TTd2, 0 

Strain energy = (1/2E)(48,290 2 + 82902 + 2 x 0·3 x 48,290 x 8290)/TT2d4 

=26·4 x 108/(2E TT 2d4) 

=902/2E in simple tension 
. . d = {/(26'4 x 106/81TT2) 

=13·5 mm. 
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(4) Shear strain energy 
=(1/12G)[(48,290 +8290)2 +82902 + 48,2902]/172d4 

=902/6G in simple tension 
d = -¢![(56·0 x 106 x 6)/(81172 x 12)] 

=13·7 mm. 

SUMMARY 

Resultant Stress 0' = y(0'2 +T2) at angle to normalcfo =tan- 1 TIO'. 
Pure Shear equivalent to equal tension and compression on planes at 

45°. 
Principal Planes-zero shear. 
Principal Stresses 0'1> 0'2 =!(O'x +O'y) ±!Y[(O'x -O'y)2 +472] 
Maximum Shear Stress = !y[( 0' x - O'y)2 + 4T2] 

=!(0'1 -0'2) 
Mohr's Stress Circle. 

P . 'R' lateral . d . I Olsson s ano v = I . d' stram uc to a SlOg e stress. 
ongltu mal 

Principal Strains, £1 = (lIE)(O'I -v0'2 -V0'3), etc. 
Volumetric Strain = £1 + £2 + £3 

(0'1 +0'2 +0'3)(1-2v) 
= E 

Mohr's Strain Circle. 
Strain Energy U = (1/2E)[0'12 +0'22 +0'32 -2v(0'10'2 +0'20'3 +0'30'1)] 
Shear Strain Energy Us = (1/12G)[(0'1 -0'2)2 +(0'2 -0'3)2 +(0'3 -0'1)2] 
Theories of Failure. Brittle material: maximum stress. Ductile 

material: maximum shear stress or shear strain energy. 

PROBLEMS 

1. At a cross-section of a beam there is a longitudinal bending stress of 
120 N/mm2 tension, and a transverse shear stress of 50 N/mm2• Find from 
first principles the resultant stress in magnitude and direction on a plane in­
clined at 30° to the longitudinal axis. (Note: there is no normal stress on longi­
tudinal planes.) (106 N/mm2 at 13° 40' to the axis). 

2. In a piece of material a tensile stress It and a shearing stress q act on a given 
plane. Show that the principal stresses are always of opposite sign. If an addi­
tional tensile stressfz acts on a plane perpendicular to that ofJt find the condition 
that both principal stresses may be of the same sign. (U.L.) (flh > q2) 

.3. Direct stresses of 120 N/mm2 tension and 90 N/mm2 compression are 
applied to an elastic material at a certain point, on planes at right angles. 

The greater principal stress is limited to 150 N /mm2. What shearing stress 
may be applied to the given planes, and what will be the maximum shearing 
stress at the point? Work from first principles. (85 N/mm2 ; 135 N/mm2) 
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4. A column rests on a foundation block, the top of the latter being horizontal. 

The column transmits to the block a compressive stress of 174 N/mm2 together 
with a shear st1'ess of 46·6 N/mm2• Find the magnitude and direction of the 
principal stresses at a point just below the top face of the block. 

(185 N/mm2 compression, 14°; 11·7 N/mm2 tension, 104°) 

5. Show that the sum of the normal components of the stresses on any two 
planes at right angles is constant in a material subjected to a two-dimensional 
stress system. 

At a point in a material there are normal stresses of 30 N/mm2 and 60 N/mm2 

tensile, together with a shearing stress of 22·5 N/mm2• Find the value of the 
principal stresses and the inclination of the principal planes to the direction of 
the 60 N/mm2 stress. (72 N/mm2 ; 18 N/mm2 ; 61° 48', 151° 48'.) 

6. Draw and describe Mohr's stress circle. 
If, at a point in a material, the minimum and maximum principal stresses are 

30 N/mm2 and 90 N/mm2, both tension, find the shear stress and normal stress 
on a plane through this point making an angle of tan-1 0·25 with the plane on 
which the maximum principal stress acts. (14·1; 86·5 N/mm2) 

7. The principal stresses at a point are 45 N/mm2 tension and 75 N/mm2 

tension. Working from first principles, determine for a plane at 40° to that of the 
latter stress: (a) the magnitude and angle of obliquity of the resultant stress, 
(b) the normal and tangential component stresses. 

(64·5 N/mm2, 13·5°; 62·7, 14·8 N/mm2) 

8. A bar of rectangular cross-section is in tension under an axial stress of 
100 N/mm2. If v =t for the material, what stresses must be applied to the side 
faces to prevent any change in cross-sectional dimensions? Show that, by the 
introduction of these lateral stresses, the axial strain has been reduced in the 
ratio 2/3. (SO N/mm2) 

9. An axial tensile force of 100 kN is applied to a steel rod 4 cm diameter 
SO cm long. Deduce the change in volume if E =210,000 N/mm2 and the ratio 
of longitudinal to lateral strain is 3 ·8. (0·113 cm3) 

10. A rectangular block of steel is subjected to normal stresses 75 N/mm2 

tensile,90 N/mm2 compressive, and 60 N/mm2 tensile, on each of its three pairs 
of faces. What are the strains in each of the three directions if Poisson's ratio is 
1/3·5 and E is 202,000 N/mm2• (0·000412; - 0·000635; 0·000318.) 

11. A cylindrical bar 1 cm diameter is subjected to an end thrust of 4000 :N 
and is encased in a closely fitting sheath which reduces lateral expansion by one­
half of its value if free. Determine (a) the longitudinal strain in the bar, (b) the 
pressure exerted by the sheath, and (c) the strain energy per unit volume. 
E =210,000 N/mm2 ; v =0·283. (0·00021; 10 N/mm2 ; 0·00515 N/mm2) 

12. A piece of material is subjected to two perpendicular stresses, 0"1 tensile 
and 0"2 compressive. Find an expression for the strain energy per unit volume. 

If a stress of 120 N/mm2 acting alone gives the same value of strain energy 
as the expression already found, find the value of 0"2 when 0"1 is 105 N/mm2 

Poisson's ratio =0·32. (33·75 N/mm2) 
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13. A fiat brass plate was stretched by tensile forces acting in directions 
x and y at right angles. Strain gauges showed that the strain in the x direction 
was 0·00072 and in the y direction 0·00016. Find (a) the stresses acting in the 
x and y directions and (b) the normal and shear stresses on a plane inclined at 
30° to the x direction. E =80,000 N/mm2• Poisson's ratio =0·3. 

(I.Mech.E.) 
«a) 67·5 N/mm2• 33 N/mm2• (b) 41·5 N/mm2• 15 N/mm2.) 

14. In a certain material the maximum strain must not exceed that produced 
by a simple tensile stress of 90 N/mm2• Show that the maximum permissible 
pure shear stress is 90/(1 + v), where v is Poisson's ratio. 

With the same limitation of strain, calculate the energy stored per kg of 
material, (1) when subjected to a simple tensile stress, (2) when subjected to a 
pure shear stress. 

E=205,000 N/mm2 ; v=0·3j density 7600 kg/m3• (2.6 Nm; 4 Nm) 

15. A rectangular rosette strain gauge records the following values for the 
linear strain at a point in a two-dimensional stress system: ex =400 x 10-6, 

ey = -100 x 10-6, and e45 =200 x 10-6, the latter being at 45° to the X and Y 
axes. Determine the principal strains and stresses by analysis and by Mohr's 
strain circle. E=207,000 N/mm2, v =0·3. 

(405 x 10-6, -105 x 10-6, 85, 3·7 N/mm2 

Principal stresses at 5°40' to XY axes.) 

16. A strain gauge rosette has the axes of the three gauges OA, OB and OC 
at 120° to each other. The observed strains are + 0·000554, - 0·000456 and 
+ 0·000064 along OA, OB and OC respectively. 

Determine the inclinations of the principal planes at 0 relative to OA and the 
magnitudes of the principal stresses. Determine also the strain at right angles to 
~A. E =200,000 N/mm2• Poisson's ratio =0·3. (U.L.) 

(-15° 30', 74° 30'j 105,74·5 N/mm2 j -0·000446) 



CHAPTER IV 

Elastic Constants 

4.1. Elastic Constants. These are the relations which determine the 
deformations produced by a given stress system acting on a particular 
material. Within the limits for which Hooke's law is obeyed, these 
factors are constant, and those already defined are the modulus of 
elasticity E, the modulus of rigidity G, and Poisson's ratio v. A 
fourth constant is now to be introduced, which has applications mainly 
to fluids, being the relation between pressure and change in volume. 

4.Z. Bulk Modulus. If a .. hydrostatic" pressure p (i.e. equal in all 

p 

directions), acting on a body of initial 
volume V, causes a reduction in volume 
equal numerically to 8 V, then the bulk 
modulus K is defined as the ratio 
between fluid pressure and volumetric 
strain, i.e. 

-p K ... -
aVIV 

the negative sign taking account of the 
reduction in volume. Fig. 4.1. 

Fig. 4.1 represents a unit cube of 
material (or fluid) under the action of a uniform pressure p. It is clear 
that the principal stresses are - p, - p, and - p, and the linear strain 
in each direction is 

But, by Para. 3.18, 

-p/E+vp/E+vp/E (Para. 3.14.) 

... -(1-2v)pIE 

volumetric strain ... sum of linear strains 

= -3(1-2v)pfE 

Hence, by definition, 

K- -p 
- 3(1 - 2v)plE 

E-3K(I-2v) 
65 
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Strain energy per unit volume (U), in terms of the principal stresses, 
= (1/2E)fp2 +p2+pL2v(p2 +p2+p2)] (Para. 3.19) 
=3(1-2v)p2/2E 

i.e. U = p2/2K from above. 

EXAMPLE 1. A frictionless plunger 6 mm diameter, weighing 1 kg, com­
presses oil in a steel container. A weight of 1·5 kg is dropped from a height of 
5 cm on to the plunger. Calculate the maximum pressure set up in the oil if its 
volume is 5000 cm3 and the container is assumed rigid. K =2800 N/mm2 

for oil. 
Let p N/mm2 be the additional momentary maximum pressure set up 

by the falling weight. Then, neglecting loss of energy at impact: 
Loss of potential energy of falling weight = Gain of strain energy of oil. 

The volumetric strain produced by pis -p/K, and hence the decrease 
in volume of the oil is (p/K) x SOOO cm3, and this is taken up by the 
plunger which will therefore sink a further distance 

=(p/K) x SOOO x 103 x 4/77(6)2 mm 
=p x S x 106/977K 

( p x S x 106) 
Loss of potential energy = l'S x 9·81 SO + 977K N mm 

Gain of strain energy = (P2/2K) x S x 106 N.mm 
Equating these last two quantities, and multiplying through by K/S x 106 

produces the quadratic 

2/2 = 14·7K (so P x 5 x 106) 
P S x 106 + 977K 

or p2/2 -0'S2p -0,412 =0 
Solving p=0'S2 + v(0·S22 +2 x 0-412) 

=1'S6 N/mm2 

Adding the initial pressure due to the 1 kg weight gives the final 
maximum pressure of 

I·S6 +9'81/977 or 1·91 N/mm2 

4.3. Relation between E and G. It is necessary first of all to 
establish the relation between a pure shear 
stress and a pure normal stress system at a 
point in an elastic material. This was dis­
cussed in Para. 3.4, and may also be deduced 
from the principal stress formulae, but for 
completeness it will be treated here from first 
principles. 

A B In Fig. 4.2 the applied stresses are u tensile 
on AB and a compressive on BC. If the stress 
components on a plane AC at 450 to AB are u, 
and T" then the forces acting are as shown, 

Fig. 4.2 taking the area on AC as unity. 
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Resolving along and at right angles to AC, 
'T .... (a/v'2) sin 45° + (a/v'2) cos 45° 

and 

i.e. there is pure shear on planes at 45° to AB and BC, of magnitude 
equal to the applied normal stresses. 

Fig. 4.3 shows a square element ABCD, sides of unstrained length 
2 units under the action of equal normal stresses 0', tension and com­
pression. Then it has been shown that the element EFG H is in pure 
shear of equal magnitude a. 

Fig. 4.3 

Linear strain in direction EG=a/E+va/E 

say e=(1 +v)a/E (1) 

Linear strain in direction HF = - a/ E - va/ E 
= -e 

Hence the strained lengths of EO and HO are 1 + e and 1 - e 
respectively. 

The shear strain 
cfo =a/G (Para 2.4) (2) 

on the element EFGH, and the angle EHG will increase to 7T/2 +cfo. 
Angle EHO is half this value, i.e.7T/4+cfo/2. 

Considering the triangle EOH, 
tan EHO=EO/HO 

i.t". tan(~ +~) ... 1 +e 
4 2 l-e 
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Expanding 

STRENGTH OP MATI!RIALS 

1 +e tan 1T/4+tan cp/2 
l-e I-tan1T/4.tancp/2 

1 +cp/2 
= 1 -cp/2 approx. 

since tan 77/4 = 1 and tan cp/2,,;=r/>/2 for small angles. 
Clearly e=cp/2 
and by substitution for e and cp from (1) and (2): 

(1 +v)a/E=a/2G 
Rearranging E=2G(I +v) 

4.3. 

By elimination of Poisson's ratio between the above and E = 
3K(I-2v) of Para. 4.2, it can be shown that E=9GK/(G + 3K), and 
in fact if any two elastic constants are known, the other two may be 
calculated. Experimentally, however, it is not satisfactory to calculate 
Poisson's ratio by determining E and G separately, as will be illustrated 
by the following example. 

EXAMPLE 2. Show that if E is assumed correct, an error of 1% in the 
determination of G u'ill involve an error of about 5% in the calculation of 
Poisson's ratio when its correct value is 0,25. 

Let the correct values be E, G, and v 
Then E=2G(1 +v) (i) 

If G is increased to 1 ,01 G, let the calculated value of Poisson's ratio be 
v', then 

E =2 xl 'OlG(1 + v') 

Eliminating E between (i) and (ii) 

i.e. 
G(1 +v)=1·0IG(1 +v') 

1 +v=I'OI +1'Olv' 
or v' - v = - 0,01 - O'Olv' 

The percentage error in v is 
, 1 ' 

v -v x 100= -0'01~ x 100 from (iii) 
v v 

= - (1 +0'25)/0'25 approx. 
= -5% 

(ii) 

(iii) 

Alternatively, the problem may be solved by calculus, differentiating 
the equation 

E=2G(1 +v) 
remembering that SE = 0 since E does not vary. 

o =2SG(1 +v) +2G Sv 
SG 

or Sv = - 0(1 + v) tiv) 



Percentage error 

ELASTIC CONSTANTS 

ov 
=- x 100 

v 

= _ ~q (1 +JI) x 100 from 
G· v 

= _ ~ 1 +0·25 x 100 
100· 0·25 

=-5%. 

SUMMARY 

B Ik M d I K Fluid pressure 
u ouus = . 

Volumetric strain 
E = 3K(1 - 2J1) 
U = p2j2K per unit volume. 
E=2G(1 +v) 
E = 9GKj(G + 3K) 

PROBLEMS 
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(i v) 

1. A small light piston 1·29 cm2 in area compresses oil in a rigid container of 
16,400 cm3 capacity. When a weight of 10 kg is gradually applied to the piston 
its movement is observed to be 3·5 cm. If a weight of 4 kg falls from a height of 
16·8 cm on to the 10-kg load, determine the maximum pressure developed in the 
oil container, neglecting the effects of friction and loss of energy. 

(2·59 N/mm2) 

2. Prove from first principles the relation between E, G, and K. 
If two pieces of material A and B have the same bulk modulus, but the value 

of E for B is 1 % greater than that for A, find the value of G for the material B 
in terms of E and G for the material A. (U.L.) (101E Ga/(101Ea - 3Ga).) 

3. Express Poisson's ratio in terms of G and K, and prove the derivation. 
Determine the percentage change in volume of a steel bar 7·6 cm square sec­

tion 1 m long when subjected to an axial compressive load of 20 kN. What change 
in volume would a 10 cm cube of steel suffer at a depth of 4.8 km in sea water? 
E=205,000 N/mm2 ; G=82,000 N/mm2• 

«3K - 2G)/2(G + 3K); 0·00085; 0·35 cm3) 

4. The principal stresses in an elastic material are al tensile and a2 com­
pressive. Derive an expression for the strain energy per unit volume. 

If these principal stresses are caused by a tensile stress a and a shearing stress 
'T on a certain plane find, from the energy equation, the relation between E, G, 
and v. (U.L.) 

5. A determination of E and G gives values of 205,000 N/mm2 and 80,700 
N/mm2. Calculate Poisson's ratio and the bulk modulus. 

Find the change in diameter produced in a bar of this materialS cm diameter 
acted on by an axial tensile load of 1 SO kN. 

If both moduli are liable to an error of ±2% find the maximum percentage 
error in the derived value of Poisson's ratio. 

(0,27; 148,000 N/mm2 ; 0·00505 mm±19%.) 
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6. An element of elastic material is acted upon by three principal stresses and 
the three principal strains lxx, $", and $,. are measured. Show that the principal 
stress in the direction xx is given by 

aL1+2Gsxx 
where a =mEI[(m + l)(m - 2)], L1 is the volumetric strain, G is the modulus of 
rigidity, and 11m is Poisson's ratio. 

In a certain test the principal strains were found to be 0·00071, 0·00140, and 
-0·00185. Determine the three principal stresses. Take E=207,000 N/mm2 

and Poisson's ratio =0·35. (U.L.) 
(155,261, -237 N/mm2, see Para. 3.15.) 



CHAPTI!R V 

Shearing Force and Bending Moment 

5.1. Shearing Force. The shearing force at any section of a beam 
represents the tendency for the portion of beam to one side of the sec­
tion to slide or shear laterally relative to the other portion. 

Fig. 5.1 

Consider the case shown in Fig. 5.1. 
in which a beam carrying loads WI. 
W2• and W3 is simply supported at 
two points, the reactions at the sup­
ports being RI and R2• Now imagine 
the beam to be divided into two 
portions by a section at AA. The 
resultant of the loads and reactions 

to the left of AA is F vertically upwards, and since the whole beam is in 
equilibrium, the resultant of the forces to the right of AA must also be 
F, acting downwards. F is called the Shearing Force (abbrev. S.F.) at 
the section AA and may be defined as follows: the ,hearing force at any 
,ection of a beam is the algebraic sum of the lateral components of the 
force, acting on either sith of the ,ection. 

Where a force is in neither the axial nor lateral direction it must be 
resolved in the usual way, the lateral component being taken into 
account in the shearing force. 

Shearing force will be considered positive rohen the resultant of the force, 
to the left is uproards, or to tIle right is doronroards. 

A ,hearing force diagram is one which shows the variation of shearing 
force along the length of the beam. 

5.:&. Bending Moment. In a similar manner it can be argued that 
if the moment about the section AA of the forces to the left is M clock­
wise (Fig. 5.2), then the moment of 
the forces to the right of AA must Wi Wi W3 
be M anticlockwise. M is called the! 1Jr t A, I i ~~ .. t 
Bending Moment (abbrev. B.M.) at ~r:---J.,-....J....-"':;. 
AA, and is defined as: the algebraic t \. A,,-
sum of the moments about the ,ection Rl R2 
of all the forces acting on either side 
of the ,ection. 

Fig. 5.2 

Bending moment roill be considered positive UJhen the moment on the left 
71 
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portion is clockwise, and on tM right portion anticlockwise. This is referred 
to as ,agging bending moment since it tends to make the beam concave 
upwards at AA. Negative bending moment is termed Iwgging. 

A bending moment diagram is one which shows the variation of 
bending moment along the length of the beam. 

5.3. Types of Load. A beam is normally horizontal, the loads being 
vertical, other cases which occur being looked upon as exceptions. 

A concentrated load is one which is considered to act at a point, 
although in practice it must really be distributed over a small area. 

A distributed load is one which is spread in some manner over the 
length of the beam. The rate of loading w may be uniform, or may vary 
from point to point along the beam. 

5+ Types of Support. A simple or free support is one on which the 
beam is rested, and which exerts a reaction on the beam. Normally the 
reaction will be considered as acting at a point, though it may be dis­
tributed along a length of beam in a similar manner to a distributed 
load. 

A built-in or encastri support is frequently met with, the effect being 
to fix the direction of the beam at the support. In order to do this the 
support must exert a "fixing" moment M and a reaction R on the 
beam (Fig. 5.3). A beam thus fixed at one end is called a cantileTJw; 

when fixed at both ends the reactions are not 
statically determinate, and this case will be 
dealt with later (Chapter X). 

In practice it is not usually possible to 
obtain perfect fixing, and the .. fixing" moment 

F· 5 3 applied will be related to the angular move-Ig •. 
ment at the support. When in doubt about 

the rigidity (e.g. a riveted joint), it is "safer" to assume that the 
beam is freely supported. 

5.5. Relations between w, F, and M. Fig. 5.4 shows a short length 

I"" x )01'" 8:x:4 

fo~--- ~na;.lMCJ-
- I - P+cf;O-

Fig. 5.4 

8~ imagined to be a "slice" cut out from a loaded beam at a distance ~ 
from a fixed origin O. 
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Let the shearing force at the section :c be F, and at :c + 8:c be F + 8F. 
Similarly, the bending moment is M at :c, and M + 8M at :c + 8:c. If fII 
is the mean rate of loading on the length 8:c, the total load is w8:c, acting 
approximately (exactly, if uniformly distributed) through the centre C. 
The element must be in equilibrium under the action of these forces 
and couples, and the following equations are obtained. 

Taking moments about C: 
M +F.8:cj2 +(F+8F)8:c/2=M +8M 

Neglecting the product SF. 8:c, and taking the limit, gives 
F=dMjthe (1) 

Resolving vertically 

w8:c+F+8F=F 
or W= -dF/the (2) 

- -d2Mjthe2 from (1) (3) 

From equation (1) it can be seen that, if M is varying continuously, 
zero shearing force corresponds to maximum or minimum bending 
moment, the latter usually indicating the greatest value of negative 
bending moment. It will be seen later, however, that "peaks" in the 
bending moment diagram frequently occur at concentrated loads or 
reactions, and are not then given by F=dMjthe=O, although they may 
represent the greatest bending moment on the beam. Consequently it 
is not always sufficient to investigate the points of zero shearing force 
when determining the maximum bending moment. 

At a point on the beam where the type of bending is changing from 
sagging to hogging, the bending moment must be zero, and this is called 
a point of injlection or contrajle:xure. 

By integrating equation (1) between two values of :c-a and b, then 

Mt-MII=J:Fthe 

showing that the increase in bending moment between two sections is 
given by the area under the shearing force diagram. 

Similarly, integrating equation (2) 

F.-Ft=f: wthe 

- the area under the load distribution diagram. 

Integrating equation (3) gives 

M.-Mt=f f:flla.a 
These relations prove very valuable when the rate of loading cannot 
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be expressed in an algebraic form, and provide a means of graphical 
solution. 

5.6. Concentrated Loads 
EXAMPLE 1. A cantilever of length I carries a concentrated load W at its 

free end. Draw the S.F. and B.M. diagrams. 
At a section a distance x from the free end, consider the forces to the 

left. 
Then F = - W and is constant along the whole beam (i.e. for all 

values of x). 
Taking moments about the section gives M = - Wx, so that the maxi­

mum bending moment occurs at the fixed end, i.e. 
JC'f = WI (hogging) 

From equilibrium considerations, the fixing moment applied at the 
built-in end is WI, and the reaction is W. 

The S.F. and B.M. diagrams are therefore as shown in Fig. 5.5. 

Wl 

Ex =>1 
l (il 

I W w 
I 

F I !w I 
I I 

M 

~Wl 
Fig. 5.5 

EXAMPLE 2. A beam 10m long is simply supported at its ends and carries 
concentrated loads of 30 kN and SO kN at distances of 3 m. from each end. 
Draw the S.F. and B.M. diagrams. 

First calculate the reactions Rl and R2 at the supports (Fig. 5.6). 
By moments about R 2 : 

R 1 xl0=30x7+50x3 
R 1 =36kN 

and R2=30+50-RJ=44kN 
Let x be the distance of the section from the left-hand end. 

Shearing Force: 
0<x<3, F=Rl =36 kN 
3<x<7, F=R1 -30=6 kN 
7<x<10, F=Rl -30 -50= -44 kN 
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Note that the last value ::0 - R2• which provides a check on the working. 
Bending Moment: 

0<x<3, M =RJx =36x kNm 
3<x<7, M=R Jx-30(x-3)=6x+90kNm 
7 <x< 10, M =RJx - 30(x - 3) - 50(x -7) 

= -44x+440 kNm 

30kN 50kN 

3m ~ 4m ~ 3m 

Rt< 10m 4R2 11 I 
I 36 I 

I 6 
I 
I F 
I 

44 I 
I 
I 

108 I 
I 

M 

Fig. 5.6 

Principal values of Mare: at x = 3 m, 111 = 108 kNm, at x = 7 m, 
M =132 kNm. Note that the latter value can be checked by taking 
R2 x 3 as calculated for the right-hand portion. 

The following general conclusions can be drawn when only con­
centrated loads and reactions are concerned: 

(1) The shearing force suffers a sudden change when passing through a 
load point, the change being numerically equal to the load. 

(2) The bending moment diagram is a series of straight lines between 
the loads, the slope of the lines being equal to the shearing force between 
those points. 

5.'. Unifnrmly Distributed Loads 
EXAMPLE 3. Draw the S.F. and B.M. diagrams for a simply supported 

beam of length I carrying a uniformly distributed load w/unit length across 
the whole span. 

The total load carried = wi, and by symmetry the reactions at the end 
supports are each wl/2 (Fig. 5.7). 

If x is the distance of the section considered from the left-hand end 
F =wl/2 - wx 

=w(l/2 - x) 
giving a ""aigh, line of slope equal '0 the rail! of loading (compare 
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w = -dF/dx of Para. 5.5). End values of S.F. are ± wi/2, with a zero 
value at the centre. 

The B.M. at the section x is found by treating the distributed load as 
acting at its centre of gravity, which is x/2 from the section (Fig. 5.8), 

giving 

W I 

M = (wl/2)x - (wx)x/2 

=(wx/2)(1-x) 

Wl~!:YJ 
2" T--l-+--1 z 

I- x---t I 

F~ ! 
I ~~l 
I I 
I I I 
I I I 
I I 

I-.!:-j 

I 
fl{~------~------~ 

,~ '2 x---l 

Fig. 5.7 Fig. 5.8 

This is a parabolic curve, having zero values at each end and a maximum 
at the centre (corresponding to zero shear, from F=dMldx, Para. 5.5) 

J(1 = (wi/4)(l-1/2) putting x =1/2 
=wi2/8 

5.8. Combined Loads 
EXAMPLE 4. A beam 25 m long is supported at A and B and loaded as 

ShOWll in Fig. 5.9. Sketch the S.F. and B.M. diagrams and find (a) the 
position and magnitude of maximum B.M. and (b) the position of the point of 
contrafiexure. 

By moments about B: 

20Ra = 10,000 x 15 +2000 x 5 - 3000 x 5 

(all loads are taken into account for equilibrium, the distributed load 
acting as its centre of gravity). 

R. =7250 kg=71'1 kN 

Rb = Total load - R. 
=7750 kg=76 kN 

Shearing Force. Starting at the left-hand end, F=71·1 kN at A. As the 
section moves away from A, F decreases at a uniform rate = w (i.e. 
F=71·1 -wx), reaching a value -27 kN at E. 

Between E and D, F is constant (no load on ED), and at D it suffers a 
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sudden decrease of 19·6 kN (i.e. the load at D). Similarly there is an in­
crease of 76 kN at B (the reaction at B), making the value of 1"=29·4 kN 
between Band C (checking with the end load at C). 

loookg/m 2000kg 3000kg 

A~E b 13 k 
mm=:+- 5m +~ om+ 5m~ 

IRa. I I IRz, I 
171-1 I I ~ I 

I I 29-4 I 
I I 

258 46·6 

Fig. 5.9 

Bending Moment. From A to E: 

M =R.x - wx2/2 
=71·1x -4'9x2 kNm 

147 

a parabola which can be sketched by evaluating for several values of x. 
For x beyond E the distributed load may be treated as a single load of 

98·1 kN acting at 5 m from A. 
Between E and D: 

M =7Hx - 98·1(x - 5) 
= -27x+490 

producing a straight line between E and D, similar equations applying 
for sections DB and BC. 

However, it is only necessary to evaluate M at the points D and B (it 
is zero at C), and draw straight lines between these values. 

AtD: M= -27 x15+490=86 kNm 
At B: M = - 29·4 x 5 

= -147 kNm. (calculated for the portion BC). 

(a) The maximum B.M. between A and E is where the shearing force 
is zero, i.e. 7·25 m from A. 

:. l0'=71-1 x7'25 -4'9 x7·25 2 =258 kNm 
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(b) The point of contraflexure (zero B.M.) occurs between D and B 

at 

( 147 ) 
147 +86 x 5 =3,16 m from B. 

EXAMPLE 5. A girder 30 m long carrying a uniformly distributed load of 
w kNjm is to be supported on two piers 18 m apart so that the greatest R.M. 
shall be as small as possible. Find the distances of the piers from the ends of 
the girder and the maximum R.M. 

Let the distance of one pier from the end be d m, the other being 
12 -d m. (Fig. 5.10). 

w 

~ 
I x~j 18m---'j , 
r-- I I I 
I I I I 
I I I I 
I I I I 

I M, I 
I 

Fig. S.10 

By moments about the right-hand support 

18R =30w(3 +d) 
R = (5wj3)(3 +d) 

where (3 + d) m is the distance from the centre of the beam to the right­
hand pier. 

For the overhanging end, M= -wx2/2, giving a maximum value at 
the support 

= -wd2j2 
For the portion between the supports 

M= -wx2j2+R(x-d) 

(x from left-hand end), which is a maximum when 
dM/dx=O= -wx+R 

i.e. :Ie =Rjw =(5/3)(3 +d) from above. 
and l0' = - (2S/18)w(3 +d)2 + (Swj3)(3 + d)[(Sj3)(3 + d) - d] 

= -(2Swj18)(3 +tfl2 + (Swj9)(3 +d)(lS +2d) 

(i) 

=(Sw/18)(4S+12d-d2) (ii) 

For the greatest B.M. to be as small as possible it is necessary to make 
the two possible values equal (numerically), since it is clear that if the 
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supports are moved to the right from this position the value at the left 
pier will be increased. and if moved to the left the value between the piers 
will be increased. 

Equating numerical values (i) and (ii): 
wd2/2 = (5w/18)(45 + 12d -dZ) 

x 18: 9dZ =225 +60d - 5d2 

or 14dL 60d-225 =0. 

Solving 
d = 60 ± ",(3600 +4 x 14 x 225) 

28 
=6·7 m. (one pier) 

and 12 -d=5·3 m. (other pier) 
.l0' =wdZ/2 from (i), numerically 

=22'4wkNm 

EXAMPLE 6. Draw the S.F. and B.M. diagrams for a beam 8 m long 
simply supported at its ends, carrying 
a load of 20 kN which is applied 20kN 
through a bracket. The bracket is fixed ~m 
to the beam at a distance of 6 m from 
one support, the length of bracket in .,. .... ~--6 JI'E Zm ' 
the direction of the beam being 1 m. R r m -, 
(Fig. 5.11.) i-1 _____ -j2~o,..k_N_m__i! 

By moments about the right-hand nf \;t tll '5 

end I kN 
R=(20x3)/8=7'5kN: 20 I 

The effect of the bracket is to 
apply a load of 20 kN, and a B.M. 
of 20 kNm, at a point 6 m from 
the left-hand end. 

Thus Fhas a value of7·5 kN along 
6 m of the beam and -12,5 kN along 
the other 2 m. 

M increases from zero to 7·5 x 6 = 
45 kNm at the bracket on one side, 
and from zero to 12·5 x 2 =25 kNm 

Ir-----,W 
F: c===J 
I ~5 I 

1~ ~~I~~------~~ 
Fig. 5.11 

at the bracket on the other side. There is a sudden change in the B.M. 
at the bracket, equal to 20 kNm. 

5.9. Varying Distributed Loads 
EXAMPLE 7. A beam ABC, 27 m long, is simply supported at A and B, 

18 m apart, and carries a load of 20 kN at 6 m from A together with a dis­
tributed load whose intensity varies in linear fashion from zero at A and C to 
10 kN/m at B. 

Draw the S.F. and B.M. diagrams and calculate the position and mag­
nitude of the maximum B.M. 
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The total load on the beam 
=20 +t x 270 =155 kN 

since the mean rate of loading is t x 10 kN /m. 

20kN 
1okN/m 

90kN 45kN 

~~4----+~~~--~C 

-+---*=--94 
I 
I 
I 
I F ~--F''""''='--+--t----=., 

L7'5S-l 
I I I 
I I 

I 
I 
I 
I 
I 
I 

)£r-----------~~--~~ 

Fig. 5.12 

5.9. 

The total distributed load on AB =t x 18 x 10 =90 kN, and on BC = 
t x 9 x 10 =45 kN, each acting through its centre of gravity, which is 
t x 18 =12 m from A in one case, and t x 9 =6 m from C in the other case 
(these are the centroids of triangles representing the load distribution). 

Then by moments about B for the whole beam 
Rl =(20 x 12 +90 x 6 -45 x 3)/18 =36 kN 

hence R 2 =155 -36=119 kN 
At a distance x( <18) from A, the rate of loading = 10x/18 kN/m. 
The distributed load on this length is 

(mean rate of loading) xx=t(10x/18)x 
=10x2/36 kN 

and its centre of gravity is 2x/3 m from A. 
For 0<x<6, F=36 -10x2/36 

~x=6~ F=UkN 
M =36x - (10x2/36)x/3 

=36x -10x3/108 
at x=6 m, M=196 kNm 
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For 6<x<18 
atx= 12m, 
atx=18m, 

at x=12 m, 
at x=18 m, 

F=36 - 20 -10x2/36 
F= -24 kN 
F= -74 kN 

F=O when x=6v'1'6=7'58 m 
M =36x -20(x -6) -10x1/l08 

= 16x + 120 -10x1/l08 
M=152 kNm 
M=-135 kNm 
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Maximum bending moment occurs at zero shearing force, i.e. x =7·58m 
M=201 kNm 

The portion BC may be dealt with more conveniently by using a 
variable X measured from C. Then, by a similar argument 

F=!(10X/9)X=lOX2/18 kN 
at X=9 m, F=45 kN 

M = - !(10X/9)X(X/3) = -10Xl/54 kNm 
at X=9 m, M=-135kNm (checkx=18m) 

The complete diagrams are sketched in Fig. 5.12, and it is seen that, 
for a uniformly varying distributed load, the shearing force diagram 
consists of a series of parabolic curves, and the bending moment dia­
gram is made up of " cubics," discontinuities occurring at concentnted 
loads or reactions. It was, of course, shown in Para. 5.5 that shearing 
force can be obtained by integrating the loading function, and bending 
moment by integrating the shearing force, from which it foUowa that 
the curves produced will be of a successively "higher order" in •• 

5.10. Graphical Method. In Para. 5.5 it was shown that the change 
of bending moment was given by the double integral of the rate of 
loading. This integration can be carned out conveniently by means of 
a funicular polygon, as iUuatnted in Fig. 5.13 

Suppose the loads carried on a simply supported beam are W .. W2, 

W3, and W4• RI and R2 are the reactions at the supports. Letter the 
spaces between the loads and reactions A, B, C, D, E, and F. 

Draw to scale ab ... Wh bc ... W2, cd ... W3, and de - W4• Take any 
pole 0 to the left of this line and join 0 to a, b, c, d, and e. This is called 
the polar diagram • 

. Commencing at any point p on the line of action of R1, draw pq 
parallel to Oa in the space" A," qr parallel to Ob in the space" B," and 
similarly ra, st, and tu. Draw Of parallel to pu. 

It will now be shown that fa represents Rl and ef represents R2• 

Also that pqratu is the bending moment diagram on a base pu, M being 
proportional to the vertical ordinates. 

WI is represented by ab, and acta through the point q; it can be 
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replaced by forces aD along qp and Db along qr. Similarly Wl can be 
replaced by forces represented by bO along rq and Oc along rs, W3 by 
cO along sr and Od along st, etc. All these forces cancel each other out, 
except aD along qp and De along tu; and these two forces must be in 
equilibrium with RI and Rz. This can only be so if RI is equivalent to 
a force Oa along pq and fO along up, Rz being equivalent to eO along 
ut and Of along pu. Hence RI is represented by fa, and Rz by ef. 

a 
fR2 
I 
I 
I 

f~F~1 --t---i===~------II 
u I 

I 
I I 
I I 
I Ie I 
l--h~ I 

I 
B.M~I ~_--tr-t-----tz:v---' 

p Z 
Fig. 5.13 

Triangles pqv and Oaf are similar, hence 

qv=af.pv/Of 
or ocaf,xI/h 
where Xl is the distance of WI from the left-hand end of the beam and 
h is the length of the perpendicular from ° on to ae. 

But af,XI ocRlxh i.e. the B.M. at Xl' 
Hence, for a given position of the pole 0, qv represents the B.M. at 

Xl to a certain scale. 
If qy is drawn parallel to pu, then the triangle qry is similar to Obf 

and 
ry=bf.qy/Of 

.,. bf. (xl - xI)/h 
:. rz=-qv+ry 

which is 

i.e. the B.M. at Xz. 

-af,xI/h + bf(Xl -xI)/h 
ocRIXI +(RI - WI)(Xl -Xl) 

-RIXl - WI(Xl -Xl) 
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Similarly the ordinates at the other load points give the bending 
moments at those points, the scale being determined as follows: 

If the load scale of the polar diagram is 1 cm=sl N, the length 
scale (along the beam) is 1 cm=s2 m, and the bending moment scale 
required is 1 em =S3 Nm, then the length 

qvocaf.xl/h as shown above 
-R1xJSIS2h -MI/sIs';' 

But qv .... MI/s3 
:. h .... S3/SIS2 em 

If a base on the same level as f is drawn and the points a, b, c, d, and 
e are projected across from the polar diagram the shearing force diagram 
is obtained. 

This method can equally well be used for distributed loads by divid­
ing the loading diagram into .. strips" and taking the load on a strip to 
act as concentrated at its centre of gravity. 

For cantilevers, if the pole 0 is taken on the same horizontal level as 
the point a, the base of the bending moment diagram will be horizontal. 

SUMMARY 
Shearing Force F. 
Bending Moment M. 
Rate of Loading fD. 

F=tlMldx. 
fD ... -tlFldx .... -tl2M/dx2• 

Positive senses: 

The following table of maximum shearing force and bending moment 
in standard cases is given for reference. 

Loading P :it 

~( l~ W WI (fixed end) 

W 

~ I--l ' 
W (fixed end) WlI2 (fixed end) 

W 
1.. i f 2 W/2 WI/4 (centre) 

fa iW "6 t 
f W=wl t Wb/I Wai/I(loac:l) 

~ W/2 (IUpport) WIIS (centre) 

--
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PROBLEMS 

1. A beam ABCDEF, in which AB =2m, BC =2 m, CD =2'33 m, DE =2 m 
and EF =2 m, carries loads of 50 kN, 50 kN, 40 kN, and 40 kN at A, C, D, and 
F respectively, and is supported at Band E. 

Draw the S.F. and B.M. diagrams and find (a) maximum S.F., (b) maximum 
B.M., (c) point of inflection. (50 kN; 100 kNm; none.) 

2. Sketch the B.M. and S.F. diagrams for the beam shown and state (a) the 
position and magnitude of the maximum bending moment, (b) the position of 
the point of contraflexure. (3·63 m; 238 kNm; 2·66 m.) 

20kN :l.OkN 1skN 

*~i t 
3. Draw the S.F. and B.M. diagrams for the propped cantilever shown and 

find the position and magnitude of the maximum B.M. (8 m; 240 kNm.) 

40kN skNim 30kN 

~~:-~--".§i 
BokN 

4. A horizontal beam AD, 10 m long, carries a uniformly distributed load of 
360 N 1m run, together with a concentrated load of 900 N at the left-hand end A. 
The beam is supported at B, 1 m from A, and at C, which is in the right-hand 
half of the beam, x m from D. Determine the value of x if the mid-point of the 
beam is a point of inflexion, and plot the B.M. diagram. Locate any other points 
of inflexion. (3 m) 

5. A horizontal beam, simply supported on a span of 10 m, carries a total 
load of 1000 kg. The load distribution varies parabolically from zero at each end 
to a maximum at mid-span. Calculate the values of the B.M. at intervals of 1 m 
and plot the B.M. diagram. State the values of (a) maximum B.M., (b) shearing 
force at quarter span. (U.L.) (15,400 Nm; 3380 N) 

6. A beam ABC is simply supported at Band C and AB is a cantilevered 
portion. AB = 5 m, BC = 15 m. The loading consists of 2000 kg concentrated at 
A, 3000 kg concentrated at D, 11 m from C, and 4000 kg concentrated at 5 m 
from C. In addition the beam carries a uniformly distributed load of 2000 kg/m 
over the length DC. Draw dimensioned sketches of the S.F. and B.M. diagrams. 

7. A beam ABCD is 24 m long and is simply supported at Band D, 18 m 
apart. A concentrated load of 20 kN at A and a total distributed load of 120 kN, 
which varies linearly from p kN/m at the centre C to q kN/m at D, is spread 
from C to D. Find the values of p and q for the reactions at Band D to be equal. 
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Find also the point of contraflexure and the position and magnitude of the 
maximum bending moment. 

(12·5 kN/m; 7·5 kN/m; 2·4 m B; 7·7 m D; 285 kNm) 
8. A horizontal beam is simply supported at its ends and carries a uniformly 

distributed load of 40 kN/m between the supports, which are 7·5 m apart. 
Counter-clockwise moments of 100 and 80 kNm are applied to the two ends. 
Draw the B.M. diagram and find (1) the reactions at the supports, and (2) the 
position and magnitude of the greatest B.M. 

(174,126 kN; 4·35 m, 280 kNm) 



CHAPTER VI 

Bending Stress 

6.1. Pure Bending. If a length of beam is acted upon by a constant 
bending moment (zero shearing force), the stresses set up on any cross­
section must constitute a pure couple equal in magnitude to the bending 
moment. Hence it can be deduced that one part of the cross-section is 
in compression and the other part in tension. Referring to Fig. 6.1(a), 
subject to the condition that the end sections remain plane, it is clear 
that for an initially straight beam the inside or concave edge will be in 
compression and the outside or convex edge will be in tension. There 
will be an intermediate surface at which the stress is zero (" neutral" 
surface); the neutral surface cuts any cross-section in the neutral 
axis. 

The following theory will not be strictly correct when the cross­
section is subjected to a shearing force, as this will cause a distortion of 
transverse planes. However, this will be dealt with separately in 

xc~ 
Tension 

((1.,) (c) 

Fig. 6.1 

Chapter VII, and the theory of pure bending is accepted as being suffi­
ciently accurate even when the bending moment is varying. 

The problem will be treated as one of one-dimensional stress, lateral 
stresses being neglected. There must, however, be lateral strains, 
which will cause a distortion of the cross-sectional shape known as anti­
clastic curvature, but the effect of this on the dimensions will be 
neglected. 

86 
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A summary of the assumptions is as follows: 
(1) The material is homogeneous, isotropic, and has the same value 

of Young's modulus in tension and compression. 
(2) The beam is initially straight and all longitudinal filaments bend 

into circular arcs with a common centre of curvature. 
(3) Transverse cross-sections remain plane and perpendicular to the 

neutral surface after bending. 
(4) The radius of curvature is large compared with the dimensions 

of the cross-section. 
(5) The stress is purely longitudinal and local effects near concen­

trated loads will be neglected. 

Fig. 6.1(a) shows a length of beam under the action of a bending 
moment M. 0 is the centre of curvature, and R is the radius of curvature 
of the neutral surface NN. The beam subtends an angle 8 at O. 

Let a be the longitudinal stress in a filament ab at a distance y 
from NN. Then the strain in ab is 

a jE "'" (ab - NN)jNN 
(since originally all filaments were of the same length NN) 

- [(R +y)8 - RU]jR8 
-yjR 

or ajy-EjR (1) 

It is apparent at this stage that, since EjR is constant, the stress is 
proportional to the distance from the neutral axis XX (Fig. 6.1(c» 
and that for purposes of economy and weight reduction the material 
should be concentrated as much as possible at the greatest distance 
from the neutral axis. Hence the universal adoption of the I-section for 
steel beams. 

Three equilibrium equations can be obtained for the system of parallel 
stresses on any cross-section. 

If SA is an element of cross-sectional area at a distance y from the 
neutral axis XX (Fig. 6.1(b» then for pure bending the net normal force 
on the cross-section must be zero, i.e. 

Ja.dA=O 
or (EjR)JydA =0 from (1) 

This is the condition that XX passes through the centroid of the 
section. 

The bending moment is balanced by the moment of the normal 
forces about XX, i.e. 

M-Jay.dA 
-(EjR)Jy2.dA from (1) 

-EljR 
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where I (Jy 2. dA) is a propelty of the cross-section known as the 
moment of inertia or second moment of area (Para. 6.2) or 

MjI=EjR (2) 

Equations (1) and (2) may now be combined and written in the 
convenient form 

a/y=Mjl=EjR (3) 

In order to satisfy the convention of signs, y should be taken as 
positive when measured outwards from the centre of curvature, and 
negative when inwards. 

The ratio IJy is called the section modulus Z, so that a .. Mj Z. The 
bending moment which can be carried by a given section for a limiting 
maximum stress is called the moment of resistance. 

A further condition which should not be overlooked is obtained by 
integrating the moments about the axis YY, perpendicular to the 
neutral axis and through the centroid. For pure bending about the 
neutral axis this moment must be zero, i.e. 

JaxdA .. O 
or JxydA ",,0 from (1) 

This integral is referred to as the product of inertia, and the axes for 
which it is zero are called the Principal Axes of the cross-section. The 
limitation on the above theory is that it shall only be applied for 
bending about a principal axis. A bending moment in any other 
plane must be resolved into components about the two principal axes, 
the resulting stresses being calculated separately. If the cross-section 
has an axis of symmetry (as is normally the case), then it is easy to show 
that this satisfies the condition for a principal axis, the other principal 
axis being at right angles through the centroid. The subject will be 
dealt with more fuily in Paras. 6.11 and 6.12. 

It is important to use consistent units in the bending formula, e.g. 

a Njmm2 

ymm 
MNmm 
Imm4 

ENjmm2 

Rmm 

6.:z. Moments of Inertia. Readers may be familiar with the moment 
of inertia of a rigid body, which is a property obtained by summing the 
products of particle mass and the square of its distance from a given 
axis, for all the particles in the body. This function is involved in all 
problems of angular motion. 
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By analogy with mass moment of inertia the summation of areas 
times distance squared from a fixed axis, which arose in the proof of 
the previous paragraph, is called the moment of inertia (I) of the cross­
section about that axis. An alternative 
name is second moment of area, the Y 
first moment being the sum of the 
areas times their distance from a given 
axis. 

By definition Ix = fy2. dA about the 
XX' axis (Fig. 6.2), and I y = f x2 • dA. 
The moment of inertia about an axis 
through 0 perpendicular to the figure 
is called the Polar Moment of Inertia 

J=fr2.dA 
"" f(x2+y2)dA 

(1) 

X' 

y' 
Fig. 6.2 

x 

This relation is referred to as the perpendicular axes theorem, and may 
be stated as follows: the sum of the moments of inertia about any two axes 
in the plane is equal to the moment of inertia about the axis perpendicular 
to the plane, the three axes being concu"ent. 

It follows as a corollary that the sum of the moments of inertia about 
any two perpendicular axes through a given point in the plane is constant. 

Circular Section. To calculate the polar moment of inertia about 
o (Fig. 6.3), 3A = 21T1' . 8r. 

!Y' 

Fig. 6.3 

Idll J = 0 r2.21T1' .dr 

= 27T[r4j4]g/2 
=7Td4j32 

But J =1,. + If, by the perpendicular axes 
X theorem, and since I,. and If are both equal, 

being moments of inertia about a diameter 
IdJa. =!J =7Td4j64 

For a hollow circular section of diameters 
D, d 

J=(1T/32)(D4_d4) and I =(1T/64)(D4-d4) 

The parallel axes theorem will now be proved. If ZZ is any axis in 
the plane of the cross-section and XX is a parallel axis through the 
centroid G (Fig. 6.4), then 

I. = f (y + II )2dA by definition 
"" fy2 .dA + Zhfy.dA.+h2fdA 
-I.+Ahl (2) 
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since fy. dA = 0 for an axis through the centroid and A .. total area. 
Stating in words, the moment of inertia about any axis is equal to the 
moment of inertia about a parallel axis through the centroid plus the area 
times the square of the distance between the axes. 

It should be noted from the above U 
that the moment of inertia about the U 
axis through the centroid is the mini­
mum value for an axis in that particular 
direction. If it is required to transfer X - ..x 
from one axis ZZ to a parallel axis UU, 
neither being through the centroid, the 
operation must be done in two stages, Z 
i.e. -----F-ig-. -6-.4---J:"'= 

Iz =IG+Ah2 
and Iu=IG+Ak2 
where k"" distance between axes XX and UU. 
From which I u =Iz -Ah2+Ak2 (3) 

Fig. 6.5 

Rectangular Section. For bending about the 
XX' axis, let the width be b and the depth d 
(Fig. 6.5). 

Then fdll 
Ix"'" y2.bdy 

-dll 

-b -[y3]dll 
3 -"2 

-bd3j12 
For a hollow rectangular section, of outside 

dimensions B, D, and inside dimensions b, d, 
Ix = h(BDL bd3). 

I-section. In the case of standard sections the moments of inertia are 
computed graphically from the actual shape y 
of the cross-section as rolled (see Para. 6.3), J.. I--B I .. , 
but a reasonable approximation may be t . 1 
obtained by estimating a mean flange thick- ~T 
ness and working from a series of rectangles tz X 
as shown in Fig. 6.6. -- 1) 

Using the dimensions shown, the moment 1 
of inertia about XX' may be obtained by 
subtracting that for rectangles (B - t2) wide 
and d deep from the overall figure B by D, 
i.e. 

I x -n[BD3 -(B -t2)d3] 

r' 
Fig. 6.6 

Alternatively, and for greater accuracy of computing, the web and 
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flange areas may be treated separately, using the parallel axis theorem 
for the flanges. 

Then Ix ... 2{(BtI 3J12) + Bt1[(d + t1)/2)2} + (t2d3/12) 
where (d + '1)/2 is the distance between the centroid axis of the flange 
itself and the principal axis of the whole cross-section XX'. The term 
Bt13/12 is very small and can usually be neglected. 

I y =-h(2t1B3 +dt23) 

the "width" being the dimension parallel to YY', and the "depth" 
parallel to XX'. 

A table of moments of inertia for standard sections is given in the 
summary at the end of this chapter. 

6.3. Graphical Determination of Moment of Inertia. Suppose 
it is required to find the moment of 
inertia about the centroid axis XX of 
the irregular figure shown in Fig. 6.7. 
Let ZZ be any convenient axis outside 
the section parallel to XX. 

Divide the figure into strips of area 
8A parallel to ZZ and at a distance y 
from it. If each strip is the same thick. 
ness 8y then the areas 8A will be Z Z 
proportional to their widtIls x. 

Tabulate the values as follows: Fig. 6.7 

Ie M , y 

I 
yM y2~A 

I 

I I 

Total. -I~ i 2'yM Ey28A -Iz 

If h is the distance of the centroid axis from ZZ, then 
Ah =L'y8A by moments 

i.e. h-L'y8AjA 

and I -Iz - Ah2 by the parallel axes theorem (Para. 6.2, Eq. (2», 
1 z being given by L'y28A. 

6.... Bending Stresses 
EXAMPLE 1. The beam of symmetrical I-section shown in Fig. 6.8 is simply 

supported over a span of 9 m. If the maximum permissible stress is 75 N/mm2 
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what concentrated load can be carried at a distance of 3 m from one support? 

It is understood that XX is the axis of bending, the bending moment 
being in the plane YY. 

Fig. 6.8 

MI~I 
~ 
w m 
3 3 

Fig. 6.9 

If W kN is the load, the maximum bending moment is 

M =6W/3 kNm. (see Chap. V) 

=2x106 WNmm 
I -2[100 x 11'5 3/12 + 100 x 11'5(112·5 -11·5/2)2] + 7·5 x 202.2003/12 

(compare Para. 6.2) 
=2[1·25 + 1300] x 104 + 515 x 104 

=31 x 106 mrn4 

aly =](1/1 (Eq. (3) Para. 6.1) gives 

75/112·5 =2 x 106W/31 x 106 

W=10'3 kN 

EXAMPLE 2. The cross-section of a cast-iron beam is shown in Fig. 6·10, the 
loading being in the plane of the 
web, the upper portion of the sec­
tion being in compression. If the 
maximum permissible stresses are 
2000 kg/cm2 tension and 3000 
kg/cm2 compression,jind the moment 

----'r--- of resistance of the section and the 
actual maximum stresses 

Since the neutral axis XX 
passes through the centroid it is 

Fig. 6.10 necessary first to find its position. 
This and the total moment of 

inertia about XX can be evaluated conveniently by tabulating as follows, 
in which y is the distance of the centroid of each area from the bottom 
edge of the section, Ie the moment of inertia of each area about its own 
centroid axis parallel to XX, and h the distance between each centroid 
axis and XX. 



6 ..... 

Part 

I 
Top Bange 
Web 
Bottom flange 

Totals. 

By moments 

BBNDING STRESS 

A I y I Ay 10 
em2 em· em3 em4 

12 11 132 (6 x 23)/12 
10·5 6·5 68·25 (1·5 X 73)/12 
27 1·5 40·5 (9 x 33)/12 

L'A=49.5\ J:Ay-24O·75 67-1 

y =;EAy/;EA =240·75/49·5 
=4·87 cm. 
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1 h i AhZI/C.+ 
em em4 Ah2 

em4 
--I-

6·13 452 456 
1-63 27·8 70·7 
3·37 306 326·2 --I-

785·8 852-9 

For the whole section about the neutral axis 1=853 cm4• The maxi­
mum distances from the neutral axis are 4·87 cm on the tension side and 
7·13 cm on the compression side. Working out the moment of resistance 
for each limiting stress individually: 

for tension, 

for compression, 

M =(2000 x 853)/4·87 =351,000 kg cm 

M =(3000 x 853)/7·13 =359,000 kg cm 

The limiting value is therefore 351,000 kg cm, corresponding to a maxi­
mum tensile stress of 2000 kgjcm2 and a maximum compressive stress 
=2000 x 7·13/4·87 =2930 kg/cm2 by proportion of distances from the 

neutral axis. 
Alternatively, it may be argued that the actual maximum stress ratio 

must be determined by the distances from the neutral axis, i.e. 7·13/4·87, 
from which it can be deduced that the tensile stress is the limiting one, 
the maximum compressive stress being less than the permissible value. 
The moment of resistance is then calculated on the basis of 2000 kg/cm2 

tensile stress. 
Unsymmetrical sections are used for cast-iron beams because the 

material is stronger in compression than in tension. The beam must be 
placed so that the larger flange is on the tension side. 

EXAMPLE 3. A 300 mm by 125 mm I-beam is to be used as a cantilever 
3 m long. If the permissible stress is 120 N/mm2 what uniformly distributed 
load can be carried? I =80 x 106 mm4. 

If the cantile"uer is to be strengthened by steel plates 12·5 mm thick, welded 
to the top and bottomjfanges,jind the width of plates required to withstand an 
increase of 50% in the load, and the length over which the plates should 
extend, the maximum stress remaining the same. 

(where W N = total load) 

M=Wlj2 

=1500WNmm 
y=150 mm 
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L~b-+l applying u/y =JS?I/I 
12-5 120 1500W 

Tx~ 12_5~xl 150 = 80 x 106 

W=42'7 kN 
- or =14·3 kN/m 

!limns_ in 300 
tnm J If the load is increased by 50%, JS?I becomes 2250W 

=96 x 106 N mm;y increases to 162·5 mm 
I =96 x 106 x 162'5/120 = 130 x 106 mm4 

Fig. 6.11 The increase in moment of inertia is 50 x 106 mm4, 

and is the moment of inertia about XX of the two 
flange plates. If their width is b mm, then 

2[flib x (12'5)3 +(b x 12'5)1562] =50 x 106 mm4 

or b =50 x 106/(2 x 30-4 x 104) =82-5 mm. 

The length over which the plates must extend is determined by the 
position at which the maximum stress in the beam itself is equal to 120 
N/mm2 under the increased loading. 

If x m is the distance from the free end 

M=wx2/2=21'45 xx2/2 kNm 
=10·72 x 106x2 N mm 

Substituting in the bending stress equation 

120/150 = 10-72 x 106x 2/80 x 106 

giving x =2·45 m. 

The maximum bending moment is at the fixed end, and the plates 
should extend a distance of 0·55 m from this end. 

EXAMPLE 4. The I-beam shown in Fig. 6.12 is simply supp01-ted at its ends 
over a 2 m span and carries a central load of 500 kg which acts through the 
centroid, the line of action being as shown. Calculate the maximum stress. 

The section being symmetrical, the centroid is at the centre of the web, 
and the principal axes are XX' and YY'. 

Ix=2[l2 x 6 x 13 +6 x 1 x 5'5 2] for the flanges 
+n-·!·103 for the web 

=426·5 cm4 

I y =2 xn·l x63+f:r·10 x(l)3 
=36'35 cm4 

The maximum bending moment = WI/4 
=500 x 200/4=25,000 kg cm. 

This must be resolved into 
Mx=25,000 sin 60° 

=21,700 kg. cm in the plane YY' 
and My =25,000 cos 60° 

=12,500 kg cm in the plane XX' Fig. 6.12 
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Then the bending stress at any point (x, y) in the section is made up of 
two parts, one due to bending about axis XX' and the other due to 
bending about YY'. i.e. 

u=Mx.y/lx +My.x/ly 
where x and yare to be reckoned positive to the right of YY' and below 
XX' respectively. This will ensure tensile stresses positive and com­
pressive stresses negative. 

It is clear, then, that the maximum tensile stress occurs at the bottom 
right-hand tip of the lower flange, where x = 3 cm, y = 6 cm. 

=21,700 x 6/426·5 + 12,500 x 3/36·35 
=305 + 1030 
=1335 kg/cm2 =131 N/mm2 

6.5. Stress Concentrations in Bending. The following is a selection 
of values obtained by Frocht by photo-elastic analysis (Para. 19.11) for 

Fig. 6.13 

the stress concentration factor k at a change in cross-section in a round 
or flat bar subjected to a bending moment. In all cases the ratio Did 
(Fig. 6.13) was 1·5. 

rId ~ 
0·2 0'4 0·7 

k 1·77 1-48 1·27 HS 

6.6. Combined Bending and Direct Stress. Consider the case of a 
column acted on by a thrust Pwhose line of action cuts the cross-section 
at a point on the XX axis at a distance h from the centroid 0 (Fig. 6.14). 

Then P is equivalent to an equal load at 0, which produces a uni­
form direct stress, together with a bending moment Ph about YY, 
which produces a varying bending stress. 

The combined stress, at any point at a distance x from YY, is given 
by 

a-PIA +Ph.xlly 

where A is the cross-sectional area. 
If x u reckoned positive 011 the same side of YY as the load, so that 
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the bending stress is of the same type as the direct stress, the equation 
for compressive loads will give a positive value for compressive stress. 
The same notation used for tensile loads will produce a positive value 
for tensile stresses. 

Proceeding with the case under consideration, it is clear that the 

y 

(a, -cifj~Pj;% 
_____ ~1tx 
(D~~ 

Fig. 6.14 

maximum compressive stress will occur at the right-hand edge of the 
section. At the left-hand edge of the section x is negative, and if PjA> 
Ph.xjly the stress will remain of the same type, i.e. compressive 
(Fig. 6.14(a». If the bending stress is greater than the direct stress, 
then the tensile stress at the left-hand edge may be written 
Ph.xjly-PjA (Fig. 6.14(b». 

Other points to note from the stress variation diagrams are that the 
stress at the centroid is PjA, and the usual bending stress diagram is 
then plotted about this base. Whether there is a reversal of stress 
depends on the magnitude of the eccentricity h (see Paras. 6.7 and 6.8). 

EXAMPLE 5. A cast-iron column of 8 em outside diameter and 6!- em inside 
diameter carries a central axial load of 10,000 kg and a load of W kg at 
13 em from the axis. If the allowable stresses are 1200 kg/cm2 compressive 
and 300 kg/em2 tensile,jind the value of W. 
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All diameters being principal axes, assume W lies on XX (Fig. 6.15). 

A = (1T/4)(8 2 -6.52) =17·1 cm2 

Iy = (1T/64) (84 - 6'54) 

= (1T/64) (82 - 6'52)(82 + 6'5 2) 

=113 cm4 

Fig. 6.15 

Bending moment = 13 W kg cm 
Maximum bending stress = ±(13W x 4)/113 kg/cm2 

Total "direct" stress =(10,000 +W)/17'1 kg/cm2 
Allowable compressive stress 1200 =(10,000 + W)/17'1 + 52W/113 

giving W=1190 kg 

Allowable tensile stress 300 = - (10,000 + W)!17'1 + 52W/113, changing 
the sign giving 

W=2200 kg 
Taking the smaller value, W = 1190 kg, and the stress varies from 

1200 kg/cm2 compressive to 
11,190/17'1 -(52 x 1190)/113 =106 kg/cm2 compressive 

(i.e. there is no tensile stress). 

EXAMPLE 6. The tie bar shown in Fig. 6.16 is 3 m long and of rectangular 
section 25 mm thick. The longitudinal section is tapered from a depth of 
150 mm to 50 mm at the ends. A load of 50 kN acts through the centroid of the 
smaller end and parallel to the edge AB. Find the position and magnitude of 
the maximum tensile stress. 

A IE 3m "I B 
50~50 kN ~ nomkN 

t:l5mm J 
~ k--xm 

Fig. 6.16 

At x m from the smaller end of the depth of the section is 

50 + 100· x/3 = 50(1 + 2x/3) mm 
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The centroid is at half the depth, i.e. 25 + 50x/3 mm from the top edge, 
so that the line of action of the load is at an eccentricity of 50x/3 mm. 

Area of section = 25 x 50(1 + 2x/3) mm2 

.. (1 +2x/3}3 
Moment of mertIa =25 x 503 12 =26 x 104(1 +2x/3)3 mm4 

. _ 50 X 103 3 (25 + 50x/3) 
TensIle stress 0'-25 x 50(1 +2x/3) + 50 x 10 x 50x/326 x 104(1 +2x/3)3 

at top edge 

40 80'3x 
= (1 + 2x/3) + (1 + 2x/3)2 

For a maximum, du/dx =0. 
40 ~ 80'3[(1 +2x/3)2 ·-x·2(1 +2x/3Hl_0 

i.e. (1 + 2x/3)2 . 3 + (1 + 2x/3)4 -

x 3(1 +2x/3}3: - 80(1 +2x/3) +80'3[3 +2x -4x] =0 
:. x=0·75 m 

50 x 103 50 X 103 X 50 x 0·25 x 37·5 
0' 25 x 50 x 1'5 + 26 x 104 x 1.53 

=53·5 N/mm2 

Load Eccentric to both Axes. Let the line of action of the load P 
be at distances of hand k from the principal 

IT axes OY and OX (Fig. 6.17). 
Then the eccentric load is equivalent 

to a central load P, together with a 
bending moment Ph about OY and a 

_ bending moment Pk about OX. 
X The stress (j at any point in the section 

defined by the co-ordinates x, y is made 
up of three parts, i.e. 

Fig. 6.17 a=PjA+Ph.*jly+Pk.yjI. 

where * and y are to be reckoned 
positive when on the same side of their respective nes OY 
and OX as the load. 

It follows that the maximum stress occurs at a point in the 
same quadrant as the load, and the minimum stress in the 
opposite quadrant. 

EXAMPLE 7. A short column of rectangular cross-section 8 em by 6 em 
carries a load of 40 kN at a point 2 emfrom the longer side and 3·5 emfrom 
the shorter side. What are the maximum compressive and tensile stresses in 
the section? 
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The eccentricities of the load are -! cm from OY and 1 cm from OX 

(Fig. 6.18). 
iy A=48 cm2 

I 4--1B Ix=(8 x 63)/12 =144 cm4 

t Iy=(6 x 83)/12 =256 cm4 

! 1 I Maximum bending stress 

~'1i.P 3·5-- 3 bending about OX 
4- _____ 7_. ___ L~ =(40,000xl)3/144x100 

0, i =8'33N/mm2 

A 1---4 

due to 

I 1 being compressive along the edge 
AB and tensile along the edge CD. 

.D jy dimns.in fin 
Fig. 6.18 

Maximum bending stress due to 
bending about OY 

= (40,000 x !-)4/256 x 100 = 
3-13N/mm2 

being compressive along the edge BC and tensile along the edge AD. 
Direct stress =40,000/48 x 100 = 8·33 N/mm2 compressive 

The maximum compressive stress occurs at B, of magnitude 
8'33 +8·33 +3·13 =19·8 N/mm2 

The maximum tensile stress occurs at D, of magnitude 
-8·33 +8·33 +3-13 =3-13 N/mm2 

6.7. Middle Third Rule for Rectangular Sections. In the case 
of masonry columns it is usual to design so that no tensile stresses will 
be set up. It will now be shown that for an axial load on a rectangular 
section the line of action must lie within a central area of the section. 

Referring to Fig. 6.19, let the eccentricity of the load be h from OY 
and k from OX. 

Then the combined stress at any point :!C,y in the section is given by 
G""P/A + Ph.x/ly + Pk.yjlx (para. 6.6) 

""Pjbd+ 12Ph.xjb3d+ 12Pk.yjbd3 

The limiting condition for no 
tensile stress to be set up is 
obtained by taking extreme nega­
tive values of :!C and y, i.e. x 
= - bj2, Y = - d/2 (compare Ex­
ample 7), and equating the stress 
to zero, i.e. 
Pjbd -(6Ph.b)fb3d ·-(6Pk.d)fbd3 

=0 
Simplifying and rearranging 

dh+bk=bd/6 

Iyl 
Fig. 6.19 

gives the limiting values of hand k. In each quadrant the load must lie 
within the line produced by this equation. When k - 0 (load on OX), 
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h ... b/6, and when h == 0 (load on OY), k = d/6, so that when the load is on 
either axis it must lie within the" middle third" for the stress to be every­
where compressive. 

For intermediate positions it must lie within the diamond area. 
Note that for given values of h and k 

1-12h.x/b2 -12k.y/d2 =O 

is the equation of the neutral axis (zero stress). 

6.8. Middle Quarter Rule for Circular Sections. Let d be the 
diameter of the circle, and OX the diameter through which the line of 
action of the load passes at an eccentricity e from the centre O. 

x 

The limiting condition for no tensile stress 
to be set up is when the maximum tensile 
bending stress is just equal to the direct 
compressive stress, i.e. 

Pe d P 
rrd4/64 . 2 "" rrd2/4 

or e=d/8 

Fig. 6.20 

For all possible positions of the load this 
produces a circle of diameter d/4 with centre 
o ("middle quarter"), within which the 

load must lie for no tensile stress to be set up (Fig. 6.20). 

6.9. Composite Beams. In the case of beams made up of two dif­
ferent materials, such as timber beams reinforced by steel plates, if the 
parts are assumed to be rigidly connected together the strain at the 
common surfaces will be the same for both. 

Then, if transverse sections remain plane after bending, strain will 
be proportional to the distance from the common neutral axis. 

Denoting the two materials by suffixes 1 and 2, the following equa­
tions are obtained from these assumptions. 

Strain=at/El =a2/E2 at any common surface (1) 

In general, as stress = E x strain, and strain is proportional to distance 
from neutral axis 

(2) 

where a'l is the stress in material 1 at a distance Yl from the neutral 
axis, and a' 2 is the stress in material 2 at Y2 from the neutral axis. 

Ml =allt!y (Eq. (3), Para. 6.1) (3) 
and M2 =a212/Y (4) 

where y is the distance from the neutral axis to the common surface 
and al and a2 are as equation (1). 
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The total moment of resistance 
M =M1 +M2 =(0'1/1 +O'z/z)/y from (3) and (4) 

= (O'I/y) [11 + (Ez/E1)/z] from (1) 
= (O'I/y)(I1 +mlz) (5) 

where m=modular ratio Ez/E1 

II + mIz can be treated as the equivalent moment of inertia of the cross­
section, as if all made of material 1, which will give the same moment of 
resistance as the composite beam. It is frequently convenient to produce 
an equivalent section with 1=11 +mIz, which can be achieved by multi­
plying by m the dimensions of material 2 in the direction parallel to the 
neutral axis. 

The equivalent figure can be used for finding the position of the 
neutral axis and the equivalent moment of inertia, but equation (2) 
should be used for the stresses, taking care to relate corresponding 
0' and y values for the separate materials. 

EXAMPLE 8. A timber beam 6 em wide by 8 em deep is to be reinforced by 
bolting on two steel flitches, each 6 em by t em in section. Calculate the 
moment of resistance in the following cases: (a) flitches attached symmetrically 
at top and bottom; (b) flitches attached symmetrically at the sides. Allou'able 
timber stress 8 N/mm2 

What is the maximum stress in the steel in each case? E.=210,OOON/mm2 
Et =14,000 N/mm2 

_~6~1 1 
·6 

J ~mzjjL 
........ 12 dim'-n-s'-=. jn-c-m-~--lh-

(h) Z (a) 
Fig. 6.21 

Since the allowable stress in the timber is gi\'('n, it is convenient to 
calculate on a basis of equivalent timber section. 

(a) 1=1, + mI. 
6 x 83 [6 x (t)3 ] . =12+15 2 Xu:- +2 x(6 x;) x4·252 . FIg.6.21(a) 

=1884 cm4 

M =ai/Yt, from (5) 
=8 x 1884 x 104/40 
=3,768,000 N.mm =3768 N.m 
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Maximum stress in steel 

as=~ Y'.at from (2) 
E t YI 

=15 x (4·5/4) x8 
=135 N/mm2 

(b) Again working on equivalent timber 
I =6 x 83/12 +15 x 2 x t x 63/12, Fig 6.21(b) 

=526 cm4 

M =8 x 526 x 104/40 
=1,052,000 N.mm =1052 N.m 

as=15 xi x8 
=90 N/mm2 

6.9. 

ExAMPLE 9. Two rectangular bars, one steel and one brass, each 38 mm by 
9·5 mm are placed together to form a beam 38 mm wide by 19 mm deep, on two 
supports 760 mm apart, the brass on top of the steel. Determine the maximum 
central load if the bars are (a) separate and can bend independently, or (b) 
firmly secured throughout their length. Maximum allowable stress in the 
brass=70 N/mm2• Maximum allowable stress in the steel=105 N/mm2; 

Eb =87,500 N/mm2; Es =210,000 N/mm2 (U.L.) 
(a) Since the two materials bend in-

I~ 3SIIIm -----+-I dependently, each will have its own 
l---------,---r neutral axis. 

-----.Brass--- g'5mm a/y=E/R 
t---------I-+ and assuming the radius of curvature the 

- --- -Stee/--- 9·5 mm same for both, then 
'-_______ -I.J.. as/ab =E,y./EbYb 

Fig. 6.22 =210/87'5 (since Y. = Yb) 
=2'4 

Referring to the allowable stresses, it follows that the actual stresses 
must be 105 N/mm2 steel and 105/2'4 =43·75 N/mm2 brass. 

Moment of resistance of brass 

Mb=ab Ib/Yb 
=43·75 x i2 x 38(9,5)3/4·75 
=25,000 N mm 

Moment of resistance of steel 
M. =105 x la x 38(9'5)3/4'75 

=60,000 Nmm 
Total moment of resistance 

=85,000 Nmm 
-= WI/4 for a central load 

W =85,000 x 4/760 =450 N 
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Note that the section could be treated as equivalent brass with a total 
moment of inertia 

=Ib +mIs =fi x 38(9·5)3(1 +2·4) 

The stress variation is as shown in Fig. 6.23. 

Tension 

Fig. 6.23 

~f 

(b) Fig. 6.24 is the equivalent section, as of all brass, and if the parts are 
rigidly fixed together along their length they will bend about a common 
neutral axis XX. The dimension of the steel parallel to the neutral axis 
has been increased in the modular ratio 2·4, and the position of XX is 
found by moments in the usual way, i.e. 

_ (38 x9·5) 14·25 +(91 x9·5) 4·75 
Y= 38x9·5+91 x9·5 

=7·6 mm 
I =n x 38(9·5)3 + (38 x 9.5)6.65 2 + b. x 91(9·5)3 + (91 x 9.5)2.85 2 

=2750 + 16,000 +6,700 + 7000 
=32,500 mm4 

f---3Sm---l 

I I rFsmm 
Xf--~-=-~---+---SF--I¥-m 

IE 91mm ~I 

Fig. 6.24 

The maximum stress ratio is again determined by the modular ratio 
and the maximum distances from the neutral axis (Eq. (2)), i.e. 

Us/ub =2·4 x 7·6/11-4 
=1·6 

from which it follows that the allowable steel stress is still the limiting 
factor, and the maximum stress in the brass is 105/1·6 =65·5 N/mm2• 
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Tension 
Total moment of resistance 

=(65'5 x 32,500)/11'4 x 1000 
(Eq. (5)) 

=187 Nm 
Central load =(187 x 4)/0'76 

=985 N 

Fig. 6.25 

The stress variation is shown in 
Fig. 6.25, the brass being all in 
compression, the steel being mainly 
in tension, but in compression 
above XX. At the common surface 
the stress ratio is 2·4. 

EXAMPLE to. A steel rod, 3 cm diameter, is placed inside a brass tube 
having outside and inside diameters of 6 cm and 5 cm. The rod and tube have 
the same length and their axes are parallel and 
t cm apart. The ends are covered by rigid plates 
through which a compressive force of 60 kN is 
applied, acting along the axis of the tube. Deter­
mine the maximum and minimum longitudinal 
stresses in the rod and tube. Es =205,000 N/mm2 

Eb =95,000 N/mm 2• 

Let p. and Pb be the direct loads at the axis 
of the steel rod and brass tube respectively, 
and Ms and Mb the corresponding bending 
moments on each (Fig. 6.26). 

Then for equilibrium, 

Ps + Pb = 60,000 (i) 

and 

The area of steel 

As = (1T/4)30 2 =707 mm2 

and the area of brass 

(ii) 

b 

Ab = (1T/4)(60 2 - 502) =864 mm2 

The corresponding moments of inertia are 

Is =1T x 304/64 =39,700 mm4 

and Ib =1T(604 - 504)/64 = 329,000 mm4 

60 kN 

Fig. 6.26 

Since the end plates are rigid, the rod and tube may be assumed to 
bend together with the same radius of curvature, 

Ms/E.Is =Mb/EbIb 
i.e. 3'84Ms =Mb (iii) 

Equating the linear strains for rod and tube at the centre-line of the 
tube, the compatibility equation is 

Ps/EsAs +Ms xyJEsIs =PbJEbAb (iv) 
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From (ii) and (iii) 
Ms = (5/4'84)Ps = 1·03 Ps 

Substituting from (i) and (v) in (iv), 
Ps 1·03 Ps x 5 

205,000 x 707 + 205,000 x 39,700 
60,000 -P, 
95,000 x864 

x 205,000 x 707: 

giving 
p. +0'0917 Ps =106,000 -1·765P. 
P.=37,100 N 

From (i) Pb=22,900 N 
From (v) and (iii) 

M.=38,200 N.mm and Mb=147,000 N.mm 

lOS 

(v) 

The maximum and minimum stresses in the steel rod are given by 

Ps/A, ±M.d/2I. 
=37,100/707 ±38,200 x 30/2 x 39,700 
=52·5 ±14·4 
=66·9 and 38·1 N/mm2 compression. 

Similarly, the maximum and minimum stresses in the brass tube are 

22,900/864 ± 147,000 x 60/2 x 329,000 
=26·5 ±13·4 
=39·9 and 13·1 N/mm2 compression. 

EXAMPLE 11. A straight bimetallic strip consists of a strip of brass of 
rectangular section of width b and thickness t joined along its length by a strip 
of steel of the same dimensions, thus forming a composite bar of width band 
thickness 2t. If the bar is uniformly heated and is quite free to bend, show 
that it will bend to a radius 

R= En2 +ES2 + 14EnEs . ~ 
12EnEs(an -as) T 

where an and as are the coefficients of linear expansion and T is the rise 
in temperature. 

Such a strip 200 mm long with the steel and brass each 1·5 mm thick rests 
on a level surface with the brass uppermost. If the strip is initially straight, 
find the maximum clearance between it and the surface due to a rise in temper­
ature of 100° C. aB = 19 x 10-6 per °C. as = 11 x 10-6per °C. En =95,000 
N/mm2. E.; -205,000 N/mm2 (U.L.) 

The interaction between the two strips produces a force at the common 
surface tending to compress the brass and extend the steel. If this internal 
force is P, it gives rise to a "direct" load P at the centre of each section, 
together with a bending moment in each strip (as in Fig. 6.27). Assuming 
R is the same for both strips (i.e. large compared with t) 

Mn = (EB/R)In =bt3En/12R (i) 

and Ms = (Es/R)Is = bt3Es/12R (ii) 
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For equilibrium of the cross-section, 

~+~=n ~ 
i.e. Pt = (bt3/12R)(EB +Es) from (i), (ii) and (iii) (iv) 

Fig. 6.27 

The difference in linear strains at the central axis of each strip is tiR. 
and allowing for load and temperature, the compatibility equation is 

tlR.,. -P/btEB +aBT - (PlbtEs +asT) 

i.e. (aB -as)T=~(.! +.!) +..!. 
ht EB Es R 

t (EB + Es)2 t 
=-----+- from (iv) 

12R EBEs R 

t EB2 + Es2 + HEBES 
= 

12R EBES 
Re-arranging, 

R-EB2 +Es2 + 14EnEs • .! 
12EBEs(aB -as) T 

(95,0002 + 205,0002 + 14 x 95,000 x 205,000) xl·5 
=--:-::----::-~-:-:---:c=_:_::_::__=____=__::""""C::__..,.."..,::__--

12 x 95,000 x 205,000 x 8 x 10-6 x 100 

-2740mm 

The clearance h is given by 
(2R - h)h = 100 x 100 for a circular arc 

or h - 10,000/2 x 2740 approx. 
-1·83 mm 
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6.10. Reinforced Concrete Beams. Concrete is a material which 
has a useful compressive strength, but is weak in tension, and in fact 
may develop minute cracks which reduce its tensile strength to 2'ero. 
Steel reinforcement is therefore placed on the tension side of the beam, 
and by concentrating this at the greatest distance from the neutral axis 
the material is used to the best advantage. 

It must be determined prior to erection which will be the tension 
side, but as the concrete is usually poured on site this is no disadvantage. 
Also, apart from being economical in the use of steel, concrete is useful 
as a protection against corrosion and in case of fire. 

The following assumptions are made in the theory: 
( 1) The stress in the concrete is zero on the tension side. 
(2) The stress in the steel is uniform. 
(3) Strain is proportional to distance from neutral axis. 
(4) Stress is proportional to strain in the concrete. 
Assumption (3) has been found to be true for pure bending, and 

implies also that there is no relative slip between steel and concrete. 
The last assumption is not true, since concrete does not obey Hooke's 
law, but it is possible to take a mean value of the modulus over the 
range of stress used. Values to be used, and also for allowable stresses, 
depend on the type and mix of concrete used. 

Rectangular Section 
In Fig. 6.28 d is the depth of reinforcement measured from the 

compression face. 
Let h be the distance of the neutral axis from the compression face, 

u, the maximum stress in the concrete, and u, the stress in the steel. 
On the assumption of strains proportional to distance from neutral 

axis 
as/a, = (E, x strain)/(E, x strain) 

=m(d-h)jh where m=Es/Ec (1) 
If the beam is under the action of a pure bending moment M, then 

the resultant forces P in the steel and concrete must be equal and 
opposite, i.e. 

--e--& 0 0 

Strains 
Fig. 6.28 

p 

(2) 

(fs----+! P 

Stresses 
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where As is the area of steel reinforcement and la, is the mean stress in 
the concrete. 

The moment of resistance is given by the force P times the couple 
arm, and noting that the force in the concrete acts at the centroid of 
the area on the stress diagram 

M=P(d-h/3), which from (2) 
=asA,(d - h/3) 
=la,.bh(d -h/3) (3) 

If the ratio as/a, is known, then h can be determined, for a beam of 
given dimensions, from equation (1). The area of steel reinforcement 
is then found from equation (2), and the moment of resistance from (3). 
This is known as the "economic" section, the limiting values of stress 
being realised. Any increase in reinforcement above this amount, 
although resulting in an increase in M, will restrict the stresses 
attainable. 

If the dimensions and A are given, then by eliminating as/a, between 
equations (1) and (2) a quadratic in h is obtained. The actual stresses 
are then determined from the bending moment equation. 

EXAMPLE 12. A reinforced concrete beam of rectangular section is 12 em 
wide and 18 cm deep, with the steel placed 2 cm above the tension face. 
Find the position of the neutral axis if the area of the steel is 2 cm2 and the 
modular ratio 16. 

Find the maximum stresses produced in the steel and concrete when such a 
beam 2 m long is simply supported at its ends and carries a central load of 
1000 kg. 

Strain equation: 

Load equation 

as/a, = m x (d - h)/h 
=16 x (16 -h)/h 

asAs=-!;a,'bh 
as/a, = 12h/(2 x 2) 

Eliminating as/a, between (1) and (2), 
16 x(16 -h)/h=3h 

or 3h2 + 16h - 256 =0 

solving h = [ -16 + v'(256 + 3072)]/6 

But 

and 

=6·95 em 
M = WI/4 =(1000 x 200)/4 

= 50,000 kg. cm. 
M =asAM -h/3) = to', bh(d -h/3) 

_ 50,000 _ 2 
as - 2(16 -2'32) -1830 kg/em 

_ 50,000 _. / 2 
a, - t x 12 x 6'95(16 _ 2'32) -88 I.g em 

(1) 

(2) 

from (3) 
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Frequently reinforced concrete beams are of T -section, such as 
occurs where floor slabs are integral with rectangular sections which are 
parallel and at fixed distances apart. The lame basic equations can be 
applied as above, with modification to the area of concrete in 
compression. 

Cases where the beam is further strengthened by reinforcement on 
the compression side will be found in the reference book quoted at the 
end of this chapter. 

6.11. Principal Moments oClnertia. It was pointed out in Para. 6.1 
that the principal axes of any area are those about which the product of 
inertia is zero. Axes of symmetry 
through the centroid are auto- Y 
matically principal axes, the pro- V 
duct moments for opposite quad­
rants cancelling each other out. 

When the direction of the 'C1 
principal axes is unknown, let OX 
and OY be any two perpendicular 
axes through the centroid, and OU, X 
OV the principal axes (Fig. 6.29). 

Let 3A be an element of area 
with co-ordinates u, v relative to OU, av, and x, y relative to OX, 
OY. L UOX-8. 

Then 
and 

u ... x coa8+y sin 8 
v ... y oos 8 -x sin e 

The product of inertia 
Ivv = fuvdA 

... f(x cos 8 +y sin 8)(y cos 8 - x sin 8)dA 
= sin 8. cos 8Uy2dA - f x2dA] + (cos2 8 - sin2 8)f xydA 
=H sin 28)(Ix-Iy) + cos 28.Ixy (1) 

Condition for principal axes is I VI'''' 0, i.e. 

tan 28=2Ixy/(Iy-Ix) from (1) 

IV'" fv2 .dA 
_coa2 e.Ix+sin2 e.Iy-sin 28.IXY 

and substituting for I xy from (2) 

(2) 

= t(Ix + Iy}+t cos 20(Ix - Iy}+t(sin2 20jcos 20}(Ix - Iy} 
... ;(Ix+Iy)+!(Ix-Iy) sec 28 (3) 

I v ... Ju2 .dA 
... cos2 O.ly +sin2 e.lx+sin 28.lxr 
... !(Ix + Iy) -;(Ix -Iy) sec 28 (4) 
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Adding (3) and (4) 
(5) 

If Ix, I y, and Ixy are calculated or determined graphically, 8 can be 
found from equation (2), Iu from (3), and Iv from (5). 

For a rectangle of dimensions band d with sides parallel to the axes 
OX and OY (Fig. 6.30) 

1-0-1 m'l hi - :·d 
., ~ 

1 I 

o 
Fig. 6.30 

x 

IXY = ffxy·dy.dx 

... [~] h+6/2 X [y2] 1t+l/2 
2 h-bl2 2 lI-il2 

(where h, k are the co-ordinates of the cen­
troid) 

-hbxkd 
=bdxhk 
-AM (6) 

EXAMPLE 13. Find the position of the principal axes and the values of the 
principal moments of inertia for an unequal angle 5 em by 3 em by 0·5 em 
(Fig. 6.31). 

O·5cm ...-'--+-_-+_1.'1. 

-

To find the centroid 0, by moments: 
_ (4'5 x 0'5) x 0·25 + (3 x 0·5) x 1·5 
x= (4·5 +3) xO'5 

=0·75 em 

_ (4'5 x 0'5) x 2·75 + (3 x 0·5) x 0·25 
y (4·5+3)xO·5 

=1·75 em 
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0·5 x 4.53 3 x 0.5 3 
Ix =---u-+(0'5 x4'5) xt2+12 +(3 xO'5) x1·52 

=9·44 cm4 

4·5 x 0.5 3 0·5 X 33 
I y = 12 +(4'5 xO'5) xO.5 2 +12+(0·5 x3) xO·75 2 

=2'58 cm4 

In =(4'5 x 0'5) x ( - 0'5) x ( -1) + (3 x 0·5) x (0'75) x (1'5) from (6) 
=2·813 cm4 

2 x2·813 
From (2) tan 28=2'58 -9,44 = -0·820 

giving 
or 

From (3) 

28=140° 40' 
8 =70° 20' 

Iv =1(9'44 + 2'58) + t(9'44 - 2'58) sec 140° 40' 
=1·59 cm4 

Iv=Ix+Iy-Iv from (5) 
=10·43 cm4 

6.u. Unsymmetrical Bending. The following is a further example 
of an applied bending moment not in a principal plane, being a more 
general case than Example 4, where the cross-section was symmetrical. 

EXAMPLE 14. A 5 em by 3 em by 0·5 em angle is used as a cantilever of length 
50 em with the 3 em leg horizontal. A load of 1000 N is applied at the free 
end. Determine the position of the neutral axis and the maximum stress set up. 

The position of the centroid a and the inclination of the principal axes 
UU' and VV' (Fig. 6.32) have been determined in Example 13. 

The ma.'l:imum bending moment about XX' is 1000 x 500 N mm. 

Resolving about VV' and UU' respectively, gives 

Mv=500,000 sin 70° 20'=470,080 N mm 
and M u = 500,000 cos 70° 20' = 160,830 N mm 

The combined bending stress at any point defined by co-ordinates 
u,vmmis 

a =Mv.ujIv +Mu.vjIu 

(where u and v are both positive in the quadrant DaV) 

= (470,080jl04,300)u + (160,830j15,900)v (values from Ex. 13) 
=4'51u +10'6v 

The equation of the neutral axis is a = 0, which reduces to 0'426u + v = O. 
This is a line through a inclined at tan-1 ( - 0'426), or - 23° 4' to UU'. 

The stress will be tensile" above" the N.A., and compressive "below". 
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The maximum tensile stress is at the outside of the corner of the angle, 
where u and v are both positive, and is given by 
4·51(17·5 sin 70° 20' -7·5 cos 70°20') + 

10'6(17·5 cos 70° 20' +7'5 sin 70° 20') from (i) 
=4·51 x 13·9 + 10·6 x 13 =203 N/mm2 

Fig .. 6.32 

The maximum compressive stress occurs at the inside bottom edge of 
the vertical leg, where u and v are both negative, and is given by 

-4·51(32'5 sin 70° 20' +2·5 cos 70° 20')-
10·6 (32'5 cos 70° 20' - 2·5 sin 70° 20') 

= -4·51 x 31'4 -10'6 x 8'62 
=233 N/mm2 

(For deflection of this beam, see Chapter IX, Problem 20.) 
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SUMMARY 
Bending Stress Formula: u/y=M/I=E/R 
Moments of Inertia: 

Section Am I 

ffi Diameter ml4/M 

I ! 
i--=1t::....J Polar "d4/32 

IY 

xiJ XX bd3/t2 
=---t--It 

+-0,-1 yy db3/t2 
Iy 

IY 
r---.B~ 

X~\1~~;Jrx 
XX i'r(BD3-bd3) 

i~ yy h[(D-d)B'+d 

/y 
(B-6)'] 

£ 1-' XX 6,,3/36 , h 

2£ ! -21 
D.--l 
IY yy hb3/48 
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Z 

"d3/32 

"d3/t6 

bd2/6 

db2/6 

(BD3-IN/3)/6D 

(D-d)B'+d(B-b)3 
6B -

bh2/24 

hb2/24 

Combined Bending and Direct Stress u=P/A +M~/l1C+Mr:/lr 
Composite Beams.-Equivalent Section. 
Reinforced Concrete Beams.-Strain and Load Equations. 
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PROBLEMS 
1. A long rod of uniform rectangular section and thickness t, originally 

straight, is bent into the form of a circular arc and the displacement d of the 
mid-point of a length L is measured by means of a dial gauge. If d is regarded 
as small compared with L, show that the longitudinal surface strain e in the 
rod is given by e=4td/LZ. (note that e=t/2R by Para. 6.1) (V.L.) 

2. Calculate the moments of 1I1ertia about XX and YY for the built-up 

dimns.incm 

-L z 

section shown. (738 cm4 ; 790 cm4) 

3. A beam of I-section of moment 
of inertia 954 cm4 and depth 14 cm is 
freely supported at its ends. Over what 
span can a uniform load of 500 kg/m run 
be carried if the maximum stress is 
60 N/mm2.? 

'What additional central load can be 
carried when the maximum stress is 
90 N/mm2? (3·65 m; 456 kg.) 

4. A cantilever has a free length of 
2·5 m. It is of T-section with the flange 

100 mm by 19 mm, web 200 mm by 12·7 mm, the flange being in tension. What 
load per m run can be applied if the maximum tensile stress is 30 N /mm2? What 
is the maximum compressive stress? (310 kg/m; 61 N/mm2.) 

5. A welded girder, of cross-section shown, is to span 9 m, being simply 
supported at its ends. 

A uniformly distributed load of 120 kN/m is to be L ~300mm-l 
carried with a maximum bending stress of 120 N /mm2, 32 mm r 1 
the beam being strengthened where necessary by the 
addition of flange plates 12'7 mm thick. Find the 19mm 
length of plates and their width. (4 m; 0·24 m) 

6. A vertical flag staff 9 m high is of square section 
150 mm by 150 mm at the ground, tapering to 75 mm 
by 75 mm at the top. A horizontal pull of 1000 N is 
applied at the top in the direction of a diagonal of the 
section. Calculate the maximum stress due to bend­
ing (27 N/mm2 at 4·5 m down.) 

760mm 

7. A short cast-iron column is of hollow section, 200 mm external diameter, 
38 mm thick. A vertical compressive load acts at an eccentricity of 63 mm from 
the axis. If the maximum permitted stresses are 75 N/mm2 compression and 
20 N /mm2 tension find the greatest load. 

Plot a diagram of stress variation. (V.L.) (5 x 104 kg) 

Y! --1 
35......, 8. The figure shows the section of a beam. What is 

the ratio of its moment of resistance to bending in the 
plane YY to that for bending in the plane XX, if the 
maximum stress due to bending is the same in both 
cases? For a semicircle of radius r the centroid is at a 
distance 4r/3rr from the centre. (V.L.) 
(Ix =32·5 cm, I; =8·0 cm4, 2'85) 
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9. A 50 mm by 12·5 mm flat steel bar was placed in a testing machine and 

subjected to a 60 kN load acting as shown. An extensometer placed in line with 
the load recorded an extension of 
0·16 mm on a gauge length of 200 

60kN 60kN 
37·5tnm 

mm. Calculate the maximum and 
minimum stresses set up, and the 
value of Young's modulus. (U.L.) 
(240 N/mm2 ; 48 N/mm2 ; 

210,000 N/mm2 

10. A short column is of hollow circular section, the centre of the inside 
hole being 6 mm eccentric to that of the outside. The outside diameter is 
96 mm and the inside 48 mm. The line of action of the load intersects the cross­
section at a point in line with the two centres. What are the limiting positions of 
the load for there to be no tensile stress set up? (15·2 mm; 14·0 mm) 

11. The cross-section of a masonry column is an equilateral triangle ABC of 
2 m sides. The column is subjected to a vertical load of 2 x 105 kg, the resultant 
of which cuts the cross-section at a point on the median AD, distant !v'3 m 
from BC. Find the stress at each corner of the cross-section. 

(A=O; B=C=1'7 N/mm2) 

12. A tie bar of rectangular section, originally 75 mm by 25 mm, has these 
dimensions reduced by l/nth of their original values by removal of material 
from two adjacent faces. If an axial load of 100 kN is applied through the centre 
of the original section find the value of l/n for a maximum tensile stress of 128 
N/mm2• 

Determine also the magnitude of the last stress. (U.L.) 

13. A timber beam, simply supported over a span 
of 6 m, is to be strengthened by the addition of 
steel flitches fixed as shown. 

With the original timber beam a load of 3500 N/m 
gave a maximum stress of 4 N/mm2• If the flitched 
beam is to carry an additional load of 900 N /m with a 
maximum stress in the steel of 55 N/mm2, the 
timber stress remaining the same, find the dimen-

0·123; 10·2 N/mm2 

sions. Es/ Et = 20. tt.IJ 
(B =262 mm; t =10·3 mm; d =207 mm) 2 '----'----' 

14. A timber beam 72 mm wide by 144 mm deep is to be reinforced by bond­
ing strips of aluminium alloy 72 mm wide on to the top and bottom faces, over 
the whole length of the beam. If the moment of resistance of the composite 
beam is to be 4 times that of the timber alone with the same value of maximum 
stress in the timber, determine the thickness of alloy strip and the ratio of maxi-

mum stresses in alloy and timber. Ea =7·15E,. 
t---140mm-1J (V.L.) (9 mm; 8'04). 

1:J.'7",. 15. The composite beam of steel and timber 1 shown is supported over a span of 6 m and carries 
a load Wat its mid-point. If the maximum stresses 

127mm in steel and timber are not to exceed 128 N/mm2 

l and 12 N/mm2 respectively, find the greatest value 
.... 1+-12'7mm of W.Es/E, =20. (770 kg) 

'-__ ..... __ --' 16. A compound beam is formed by joining two 
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bars rigidly together, one of steel and the other of brass, each 50 mm wide. The 
bars are of thickness tl and t2 respectively, so that the total depth of the beam 
is tl +t2' If Es =2Eb find the ratio tl/t2 so that the neutral axis is at the dividing 
line of the two bars. 

H the total depth of the section is 25 mm and the stresses in the steel and brass 
are not to exceed 114 N/mm2 and 42·5 N/mm2 respectively, determine the 
maximum moment of resistance. (U.L.) (0'707; 260 Nm) 

17. A compound beam consists of a steel and a copper bar, each 75 mm by 
25 mm section, one resting on the other with the 75 mm sides in contact. They 
are securely fastened together at the ends so that no relative movement or rota­
tion can take place. The beam is now heated through 1000 C. Assuming that both 
bars bend into an arc of the same radius, but that stresses are only transmitted 
through the end connections, find the radius of this arc and the maximum tensile 
and compressive stresses in both materials. For steel, E=208,OOO N/mm2, 

tt = 11 x 10-6 per °C. For copper, E =104,000 N/mm2, tt= 18 x 10-6 per °C. 
(U.L.) 

(Compare Ex. 11. 49·5 m. Steel 66, 40 N/mm2• Copper 13·2, 
40/mm2) 

18. A reinforced concrete beam is to be 225 mm wide and 400 mm deep. The 
maximum allowable stresses are 7 N/mm2 concrete, 126 N/mm2 steel. What area 
of reinforcement is required if both these stresses are developed and the steel is 
50 mm above the tension face? Modular ratio 1 S. 

What uniformly distributed load may be carried over a span of 6 m. Concrete 
weighs 2400 kg/m3, neglect weight of steel. (1000 mm2 ; 620 kg/m) 

19. A reinforced concrete beam of rectangular section is 25 em wide and 50 cm 
deep. Steel reinforcement of 11 cm2 is placed at 5 cm above the tension face. 
The maximum compressive stress in the concrete is 4'2 N/mm2• The modular 
ratio is 15. Calculate the moment of resistance and the stress in the steel. 

(38 kNm; 89 N/mm2) 

20. The reinforced concrete beam shown in the figure has maximum stresses 
of 4·2 N/mm2 in the concrete and 112 N/mm2 

in the steel. Modular ratio 15. Assuming the It-EE----76cm------c ... :>-f1 

neutral axis to be inside the full width of the I 11 
section, find its position and the sectional ~ 30em 
area of the steel. Calculate also the moment 15cm 1 
of resistance. - -----

(10·8 em; 15·2 cmz; 45 kNm) 
U V" 21. A cantilever consists of a 72 mm by 72 mm 

.."... .... +----,""/---.B by 12 mm angle with the top face AB horizontal. It 

«,~-X 
vi I u 

C I 

)~"rn~! y 

carries a load of 1 kN at 1 m from the fixed end, the 
line of action passing through the centroid and is 
inclined at 300 to the vertical. Determine the 
stresses at A, B, and C, and the position of the 
neutral axis. A =1590 mm2 ; Ix =Iy =72·3 x 
104mm4, Iu =114 x 104 mm4 ; Iv =30·5 x 104 mm4 

(100; -51; -75 N/mm2 ; v/Il= -14'0.) 



CHAPTER VII 

Shear Stress in Beams 

7.1. Variation of Shear Stress. The shearing force at any cross­
section of a beam will set up a shear stress on transverse sections which 
in general will vary across the section. In the following analysis it will 
be assumed that the stress is uniform across the width (i.e. parallel to 
the neutral axis), and also that the presence of shear stress does not 
affect the distribution of bending stress. The latter assumption cannot 
be strictly true, as the existence of shear stress will cause a distortion 
of transverse planes, which will no longer remain plane (see Para. 9.7). 

Fig. 7.1 

Due to the shear stress on transverse planes there will he a com­
plementary shear stress on longitudinal planes parallel to the neutral 
axis. In Fig. 7.1 two transverse sections are shown, at a distance Sx 
apart, the shearing forces and bending moments being F, F + SF, and 
III, M +SM respectively. 

Let T be the value of the complementary shear stress (and hence the 
transverse shear stress-Para. 2.2), at a distance Yo from the neutral 
axis. z is the width of the cross-section at this position, and A the area 
of cross-section cut off by a line parallel to the neutral axis. j is the 
distance of the centroid of A from the neutral axis. 

If a, a + aa are the normal stresses on an clement of area oA at the two 
transverse sections (Fig. 7.2), then there is a difference of longitudinal 
forces equal to oa. oA, and this quantity summed over the area A is in 
equilibrium with the transverse shear stress .. on the longitudinal plane 
of area zox, i.e. 

T.ZOX= fda.dA 
117 

(1) 
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but 
and 
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a = Myjl 
a + oa =(M + oM)yjl 

:. oa=oM.yjl 

Fig. 7.2 

Substituting in (1) 
T.Z . Sx = (SMj l)fydA 

or T-(SM/8x)Ayjz/ 
-F Ay/zI (F=dM(dx, Para. 5.5) (2) 

7.1. 

Note that % is the actual width of the section at the position where T is 
being calculated, and I is the total moment of inertia about the neutral axis. 
In many cases it will be convenient to determine Ay as several parts. 

7.Z. Rectangular Section. At a distance y from the neutral axis 
(Fig. 7.3), A =b(dj2-y),y=t(d(2+y), and z=b. 

~b~ I ~,~~ ~// 

jN;;:;;;' !1:; ~' A 

Fig. 7.3 

I =hd3/12, hence from (2), Para. 7.1 
F x b(dj2 - y)(dj2 + y) 

T'" b x (bd3/12) x 2 -
_ (6Fjbd3)(d2/4 _ y2) 
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This shows that there is a parabolic variation of shear stress with y, 
the maximum shear stress being T = 3Fj2bd, at the neutral axis. If 
Fjbd is called the mean stress, then 

T -= 1·5 x T meaa 

EXAMPLE 1. A timber beam 10 em wide by 15 em deep carries a uniformly 
distributed load over a span of 2 m. If the permissible stresses are 28 N/mm2 

longitudinally and 2 N/mm2 transverse shear, calculate the maximum load 
which can be carried. 

If W kg is the total load, 

and 

zer = WI/S =9·S1 W x 2/S N.m 
= 2450W N.mm at the entre, 

po =9·S1 W/2 N at the supports. 
Ma.""imum bending stress 

from which 

Maximum shear stress 

=2450W x 6/100 x 1502 

=2S N/mm2 

W=4290 kg 

=1·5F/bd from above 
i.e. 2 =1·5 x 9·S1 WJ(2 x 100 x 150) 
giving W =40S0 kg 

The permissible load is therefore 40S0 kg t:>tal, or 2040 kgJm. 

7.3. I-Section. Using the dimensions shown in Fig. 7.4, to find an 
expression for the shear stress in the roeb, Aj is made up of two parts, i.e. 

\ 

Fig. 7.4 

Aj ... B(D;i(D:d) for the Bange area 

+b(d/2-y)d/~+y for part of the web. 

:I ..,. b, giving 
T - (F/61)[B(D2 - d2)/8 + (b/2)(d2j4 - yl)] 
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As with the rectangular section, the maximum transverse shear stress 
i. at the neutral axis 

T =- (F/8bI)[B(D2 - d2) + bd2] 

At the top of the web 
T'" (F/8bI)B(D2 - d2) 

Since the shear stress has to follow the direc­
tion of the boundary (Para. 2.2), the distribution 
must be of the form shown in Fig. 7.5, be­
coming horizontal in the flanges. Consequently 
the complementary shear stress in the flanges is 
on longitudinal planes perpendicular to the 
neutral axis, and the "width z" is replaced by 
the flange thickness (D - d)/2. 

Then 

F.Aj (F' 76) 
T = [(D _ d)/2]I Ig.. 

Fig. 7.5 

showing that the shear stress in the flanges varies from a maximum at 
the top of the web to zero at the outer tips. 

,'~------~-t-------­
'------, r" 

::-.J4. 
i: Y 
, I 

_._J--I,-_ ---

Fig. 7.6 

In practice, however, it will be found that 
most of the shearing force (about 95%) is 
carried by the web (see Example 2), and the 
shear stress in the flanges is negligible. As the 
variation over the web is comparatively small 
(about 25%), it is convenient for design pur­
poses, and also in calculating deflection due 
to shear (Para. 9.7), to assume that all the 

shearing force is carried by the web and is uniformly distributed over 
it. Similarly it may be assumed as a first approximation that the 
bending moment is carried wholly by the flanges .. 

EXAMPLE 2. A 12 cm by 5 em I-beam is subjected to a shearing force of 
10 kN. Calculate the value of the transverse shear stress at the neutral axis 
and at the top of the web, and compare with the mean stress on the assumption of 
uniform distribution over the web. What percentage of shearing force is carried 
by the web? 1=220 cm4; area =9,4 cm2; web thickness =0·35 cm; flange 
thickness 0·55 cm. 

Aji =(5 x 0'55)5'725 + (5'45 - y)0'35[(5'45 +y)/2] (Fig. 7.7) 
=15·75 +(5'45 2 -y2)O'35/2 

=20·95 -0'175y 2 em3 

T = F A -/ 1= 10,000(20'95 - 0'175y 2) N/ 2 
. y z 0.35 x 220 em 
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At the neutral axis 
10,000 x 20·95 

'T 0'35 x 220 x 100 
=27·2 N/mm2 

At the top of the web 
100 x 15·75 

'T 0.35 x 220 (y =5·45 cm) 

=20·1 N/mm2 

Assuming all the shearing force carried uni­
formly by the web 

10,000 
'TmtalI ~ 0'35 x 10·9 x 100 

=26·2 N/mm2 

Fig. 7.7 

The total shearing force carried by the web is given by 

J"2 bd =fH5 0·35 x 10{20'95 - 0.175y2)dy 
'T. Y 0.35 x 220 

-'/2 -5045 

kN 

1 [ 0.175y3]5045 
=- 20'95y ---

22 3 -5-45 

={228 -18'9)/22 
=9,5 kN, i.e. 95% of the total. 
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The remaining 5 % of vertical shearing force is presumably accounted 
for by the component of shear stress at the junction of the flange and 
web. 

Failure due to shear stress in the web usually takes the form of 
buckling brought about by the compression stresses on planes at 45° to 
the transverse section (see Para. 3.4). For this reason deep webs are 
often supported by vertical stiffeners. 

7.4. Principal Stresses in I-Beams. When an I-section beam is 
subjected to bending and shear stresses it will usually be found that 
the maximum principal stress is at the top of the web, the other 
possible value being the maximum bending stress, which occurs at the 
outer edge of the flange. 

EXAMPLE 3. A short vertical column is firmly fixed at the base and projects 
a distance of 30 emfrom the base. The column is of I-section 20 em by IOcm, 
flanges 1 em thick, web O' 7 em thick. 1= 2150 cm4 and area = 33 em2• 

An inclined load of 80 kN acts on the top of the column in the centre of the 
section and in the plane containing the centre line of the teeb. The line of 
action is dt 30° to the vertical. Determine the position and magnitude of the 
greatest principal stress on the base of the column. 
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The inclined load will intersect the base cross-section at a distance of 

30 tan 30° = 17·3 cm from the centroid. 
Resolving the load into vertical and horizontal components, there is a 

direct load =80 cos 30° =69·2 kN, a shearing force =80 sin 30° =40 kN, 
and a bending moment =69·2 x 0·173 =12 kNm. 

At the top of the web 
T =F. A -/~I = 40,000 x (10 x 1) x 9·5 

Y.. 0·7 x21S0 x 100 

=25·3 N/mm2 

Bending stress =12,000 x 9/2150 =50·2 N/mm2 

Direct stress =692/33 =21 N/mm2 

Total normal stress a=71·2 N/mm2 

Maximum principal stress =a/2 +-h/(a2 +4T2) (Para. 3.8) 

=35·6 +-h/(S070 +2570) 
=79·3 N/mm2 compression, 

at the top of the web 

Check also the value of the maximum bending stress, which is 

12,000 x 10/2150 = 55·8 N/mm2 

which together with the direct stress gives a maximum stress of 76·8 N/ 
mm2 at the outside of the flange, less than the value at the top of the 
web. 

7.5. Pitch of Rivets in Built-up Girders. The load to be carried 
by one rivet in a beam section built up as in Fig. 7.8(a), is determined 

Fig. 7.8 

--j I I :--­
I I t I 

'''"' ,..' Lv 
(b) 

e2222~ 

... 
(e) 

by the difference of normal stresses on certain areas of two transverse 
sections at a distance apart equal to the pitch of the rivets. 

The area to be used is that part of the cross-section which "comes 
away" when the particular set of rivets is removed. Hence in the case 
of the rivets holding the flange to the angle sections the area is as 
shaded in (b), and for the rivets holding the angles to the web the area 
is shown in ( c). 
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If P is the pitch of the rivets and R the force on the rivets over a 
length p of beam, then proceeding as in Para. 7.1 

R~l:8cr8A 

-E(8M.yJI)8A 
-(8MJI)Ey8A 
-FpAj/I appro!:. 

(compare F-dM/dx, and let dx-p). 
Note that for the flanges there are two rivets to a pitch length, 

usually staggered so as not to occur together in one cross-section. Also, 
the web rivets are in double shear. 

EXAMPLE 4. An I-section beam is built liP of a web plate 240 111111 by 12 mm 
1t'ith fiange plates 144 111111 by 24 mm secured by ri'vets through angle sections 
48 mm by 48 mm by 6 mm, as in Fig. 7·8. 

If the bending stress is limited to 100 N/mm2 estimate the maximlllll 
uniformly distributed load which can be carried over a span of 12 m. 

Assuming 12 nlln diameter rivets, calculate their pitch if the all07cable 
shearing stress is 75 N/mm 2 and bearing pressure 150 N/mm 2• 

w x 122 
M =w12/8 =--8- for w N/m 

=18wNm 
1=12 x 216 3/12 for the web, allowing for two rivet holes 

+4[36 x (6)3/12 + (36 x 6) 1172 + 6 x 303/12 + (6 x 30)932] 

for the angles 
+2[132 x 243/12 +(132 x 24)1322] for the flanges, allowing for one 

rivet 
=(10,1 +0·003 +11·8 +0·053 +6·23 +0·3 +110) x 106 

=138 x 106 mm4 

A=100=.l0"Y = 18 x 103w x 144 
u I 138 x 106 

w=534O N/m 
Permissible load per pitch length: 

For one rivet in double shear in the web, or two rivets in single shear 
in the flange 

=2 x (1T/4) x(12)2 x75=17,000 N 
Crushing of the rivets (one in web, or two in flange) 

=(dt) x 150 
=(12 x 12) x 150 =21,600 N 

For the flange rivets: Aji=132x24x132 (Fig.7·8(b)) 
=41·7 x 104 mm3 

Load per pitch length =17,000, smaller of (i) and (ii) 
= FpAji/I 
=(5340 x 12/2) P 41·7 x 104/138 x 106 

p=176 mm 

(i) 

(ii) 
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For the web rivets: 

Aji =41·7 x 104 +2 x (36 x6)117 +2 :-«30 x 6)93 (Fig. 7.8 (c» 
=50 x 104 mm3 

_ 17,000 x 138 x 106 

.. p=R1/FAy= 32,000x50xl04 

=147 mm 

7.6. Solid Circular Section. Let T be the average shear stress across 
a chord parallel to XX, defined by the angle 8 (Fig. 7.9). 

T-FAj/zl (Para. 7.1) 
F.f(lxdy)y 

"" 2R c"Os lF1TR4/4 
4F JR = y(R2 -y2).ydy 

1TRs cos (J. Rlln' 

__ ~_ [~(R2_y2)3/2] RslnB 

1TRs cos 8 3 R 

x 

4F 1(1 _ . 28)3/2 _____ x- sm 
1TR2 cos 8 3 

Fig. 7.9 

4F cos2 8 
--;X;R2-

f =4F/37rR2 at the neutral axis 
= (4/3) x mean shear stress 

The directional distribution of shear stress 
must be as indicated in Fig. 7.10, though 
this does not affect the magnitude of the 
greatest shear stress, which is usually the 
value required. 

This particular case is applicable to rivets 
in shear, but the ratio 4/3 may be assumed 
to be incorporated in the allowable stress 
value, which is then taken as uniform over 
the section. 

Fig. 7.10 

7.7. Thin Circular Tube. It is necessary here to make use of the 
fact that the shear stress has to follow the direction of the boundary, 
that is tangential, if the thickness is small compared with the radius 
(Fig. 7.11). 

If the bending is about XX let P and Q be two symmetrically placed 
positions defined by the angle 8, the shear stress being T. 

The complementary shear stress is again on longitudinal planes, and 
is balanced by the difference of normal stresses on the shaded area 
subtending the angle 28. 
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Fig. 7.11 
For a length of beam S~ 

21' . ~~ co [~Sa. tRd4> 

'T-H(SaJS~).Rdq, 

But oajSx=(SMjSx).yjI" 
F.Rcosq, 

- !(21TRt)R2 
where I z =! Polar M.l. =! (Area) x (Mean Radius)2 (Para. 6.2) 

FR2 f' 1'''' --3 cos q,. d4> 
21TR t -8 

.. (FJ21TRt).2 sin 8 
-F sin O/1TRt 

T =FJ7TRt at the neutral axis 
... 2 x mean shear stress 
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7.8. Miscellaneous Sections. The shear stress at any point in a 
cross-section can always be calcu­
lated from the basic formula 
T=FAjJ:.I of Para. 7.1, and the 
following example will illustrate the 
method of attack. 

EXAMPLE S. For the section shown 
in Fig. 7.12 determine the average 
shearing stress at A, B, C, and D for 
a shearing force of 20 kN, and find 
the ratio of maximum to mean stress. 
Draw to scale a diagram to show the 
variation of shearing stress across the 
section. (V.L.) 

1=5 x 63/12 -1T x 44J64 
=77·4 cm4 

Fig. 7.12 
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AtA: 

At B: 

At C: 

A 

At D: 

STRENGTH OF MATBRIALS 

Aji=O 

:. 7=0 

Aji =(5 x 1) x 2·5 = 12·5 em3 

z=5em 

20,000 x 12·5 --6,47 N/ 2 
7 5 x 77.4 x 100 - I mm 

Ay=(5 x2)2-f 2x .dY .). 

=20 - f v'(4 -y2).2ydy 

=20 +H<4 _y2)3/1H 
=20-3·47 
=16·53 em3 

7.8. 

20,000 x 16·53 
7=~[5~-~2~v~(~4--~1~)]=77~'4~x~10~0 

Fig. 7.13 =27·7 N/mm2 

Ay =(5 x 3)1'5 - BI(4 -y2).2ydy 

=22·5 - f X 43/2 

=17·17 em3 

20,000 x 17'17 
7 = 1 x 77·4 x 100 

=44'4 N/mm2 

The variation of shearing stress is shown in Fig. 7.13. 

7.9. Shear Centre. For unsymmetrical sections, in particular angle 
and channel sections, summation of the shear stresses in each "leg" 
gives a set of forces which must be in equilibrium with the applied 
shearing force. 

Consider the angle section, bending about a principal axis, with 
shearing force F at right angles to this axis. The sum of the shear 
stresses produces a force in the direction of each leg as shown in 
Fig. 7.14(a). It is clear that their resultant passes through the corner of 
the angle, and unless F is applied through this point there will be a 
twisting of the angle as well as bending. Consequently this point is 
known as the shear centre or centre of twist. 

For a channel section with the loading parallel to the web (Fig. 7.14(b)), 
the total shearing force carried by the web must equal F, and that in the 
flanges produces two equal and opposite horizontal forces. It can be 
seen that for equilibrium the applied loads causing F must lie in a plane 
outside the channel, as indicated, its position being calculated as in the 
following example. 
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(a) (0) 

Fig. 7.14 

EXAMPLE 6. Explain why a single channel section with its web vertical 
subjected to vertical loading as a beam, will be in torsion unless the load is 
applied through a point outside the section known as the shear centre. 

Find its approximate position for a channel section 6 em by 6 em outside 
by 0·5 em thick. 

If F is the shearing force at the section, then the total vertical force in 
the web can be taken equal to F. It should be mentioned that, integrating 
for the height of the web only will give a value slightly less than F (com­
pare Example 2, Para. 7.3), but the remaining vertical force is assumed to 
be carried by the " corners" of the section. 

Ix =0·5 x 63/12 + 2[5,5(0'5)3/12 + 5·5 x 0·5 x 2'752] 

=9 +2(0,055 +20,85) 

==50,7 cm4 

Proceeding as Para 7·3 (flanges), the shear stress in the flanges at a 
distance z from the tip is 

T=F.AY/tI (t=0'5 cm) 
=F(zt)2'75/tI (Fig. 7.15) 
=0'0543Fz 

Total force in each flange 
R=JTtdz 

= 0·0543 F [Z2] 5'75 
2 2 0 

=0'448F 

g 
,.-- ---x 

Fig. 7.15 

If h is the distance of the shear centre (through which the applied 
shearing force must act for no twisting of the section) from the centre 
line of the web, then for equilibrium 

Fh=R x5·5 

or h=2'47 cm 
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SUMMARY 

Transverse Shear Stress .,-FAY/tll. 
Rectangular Section T = 1·5 x ., mean' 

Circular Section T = 4/3 x., meaa' 

Thin Tube T = 2 x., meaa' 

I-Section: web carries 95% of shear. Maximum principal stress at 
top of web. 

Loading plane through shear centre for no twist. 

REFERENCE 

TERRINGTON, J. S., The Torsion Centre of Girders. Engineering, Nov. 26, 1954. 

PROBLEMS 

1. A rectangular beam of depth d, width h, and length I, is simply supported 
at its ends and carries a central load W. Show that the principal stresses at a 
point in the central cross-section at a distance d/4 from the top are 

~~;[1 ±v( 1 + !~)] 
2. Show that the difference between the maximum and mean shearing stress 

in the web of an I-beam is Fd2/24I, where d is the height of the web. 
3. A water main of mean radius r and thickness t is subjected at a particular 

cross-section to a bending moment M and a shearing force F. Show that, at a 
point in the section where the radius is inclined at an angle 8 to the neutral axis, 
the principal stresses are (1/21TT2t)[M sin 8 ±v (M2 sinl 8 +4F2rl cosl 8)]. 

4. A 30 cm by 12·5 cm RS.J. of I-section, flanges 12·5 mm thick, web 8·25 mm 
thick, is subjected to a bending moment of 30 kNm and a shear force of 100 kN 
at a particular cross-section. Calculate the values of the maximum principal 
stress at (a) neutral axis, (b) top of web, (c) outer edge of flange. 

(46·5 N/mm2; 69 N/mm2 ; 56 N/mm2.) 
5. A simply supported beam of span 3 m carries a point load of 10,000 kg at a 

distance of 1 m from one support. The beam is of hollow square section with 
outer dimensions of 150 mm and wall thickness 37·5 mm. Determine the greatest 
bending stress and transverse shear stress in the beam at 37·5 mm from the 
neutral axis, and from these values find the maximum principal stress and maxi­
mum shear stress at this point. (65; 7 N/mm2 ; 66; 33 N/mm2.) 

6. A beam is of T-section, flange 12 cm by 1 cm, web 10 cm by 1 cm. What 
percentage of the shearing force at any section is carried by the web? 

(93·5%.) 
7. Two beams, particulars of which are given below, are simply supported at 

the ends over equal spans and carry central loads to give the same maximum 
bending stress. Determine the ratio of maximum shear stress in the webs. 
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I I I 

1 I 
Section Web Flange 

I 
Flange Total Distance of N.A. from 

tho tho width depth outer edge of flange 

I I 5 I 8·75 62·5 125 62·5 mm 

T I 12·5 I 12·5 125 100 26·2 mm 
I 

(3'38.) 

8. Two steel flats of cross-section 10 cm by 3·75 cm are joined together by a 
single row of 20 mm diameter rivets so as to form a beam of breadth 10 cm and 
depth 7·5 cm. The beam is supported at the ends and has a load of 2000 kg at the 
centre. Find the pitch of the rivets if each is subjected to a shearing stress of 
70 N/mm2• (11 em.) 

9. A girder of effective span 8 m has to carry a uniformly distributed load, 
including its own weight, of 27,000 kg. A 45 cm by 15 cm R.S.J. with one 10 mm 
plate riveted to each flange is to be used. Find the width of the plates and the 
pitch of the rivets. Allowable bending stress 120 N/mm2• Safe load per rivet 
30 kN. Rivet diameter 22 mm; I =3·5 x 108 mm4 for the R.S.}.; effective thick­
ness of flanges 18 rom. (214 mm; 680 mm, double row.) 

10. A hollow steel cylinder 20 em external diameter, 10 cm internal diameter 
acting as a beam is subjected to a shearing force F perpendicular to the axis. 
Determine the mean stress, and the average shearing stress at the neutral axis 
and at 25 mm, 50 rom, and 75 rom from the neutral axis as fractions of the mean 
value. Draw a diagram to show the variation of average shearing stress across the 
section. (F/751T; 1·87; 1'65; 0'80; 0·465.) 

11. A rectangular wooden beam 5 cm wide and 15 cm deep is reinforced by 
screwing a steel plate 6 mm thick and 5 cm wide on to the bottom. The screws 
are 6 mm diameter and are pitched 7·5 em apart. They are a close fit in the plate. 
The beam is simply supported at the ends over a span of 3 m and is loaded at the 
centre by a load of 100 kg. 

Calculate the maximum stresses in the steel plate and timber, and the maxi­
mum shearing stress in the screws. Neglect the weight of the beam itself and any 
weakening of the plate due to the screw holes. Es =210,000 N/mm2• Et = 

14,000 N/mm2• 

(18·4 N/mm2 tension, 2·5 N/rom2 compression. 9·2 N/mm2 shear. See 
Para. 6.9 for equivalent section.) 

12. A beam of channel section carries a vertical load and is supported so that 
the two flanges are horizontal. The flanges and web have equal thicknesses which 
are small compared to the depth of the web (D) and the width of the flanges (B). 
Show that the shear centre is at a distance 3B2/(6B +D) from the web. (U.L.) 

13. A channel section has a web 192 rom deep and 6 mm thick and flanges 
84 rom wide and 12 rom thick. Used as a horizontal cantilever with the web in a 
vertical plane, it carries an end load W. Determine the position of W relative to 
the web in order that the cantilever shall not be subjected to torsion. 

(31 rom from back of web.) 



CHAPTER VIII 

Torsion 

8.1. Circular Shafts. If a shaft is acted upon by a pure torque T 
about its polar axis, shear stresses will be set up in directions per­
pendicular to the radius on all transverse sections (Fig. 8.1). 

The complementary shear stress on longitudinal planes will cause a 
distortion of filaments which were originally in the longitudinal 
direction. It will be assumed that points lying on a radius before twisting 
will remain on a radius, the angle of twist being 8 over a length 1 of 
shaft. This assumption is justified by the symmetry of the cross-section. 

0;1' ~ 

~r--I ~_~ -----.....110 ~~~0;T 
I.., l----~>I.~ 

d 
Fig. 8.1 

The left-hand figure shows the shear strain q, of elements at a distance 
, from the axis (q, is constant for constant T), so that a line originally 
OA twists to OB, and LACB =8, the relative angle of twist of cross­
sections a distance 1 apart. 

Arc AB = r8 = Iq, approx. 
But q,=T/G, where G is the modulus of rigidity (Para. 2.4). 
By substitution and rearranging 

T/r=G8/1 (1) 
The torque can be equated to the sum of the moments of the 

tangential stresses on the elements 27T1'8r, i.e. 
T= fT(27T1'dr)r 

=(G8/1)f(27T1'dr)r2 from (1) 
= (G8/1)J (2) 

where J is called the polar moment of inertia. 
Combining (1) and (2) 

T/J=-r:/r = G8/1 
130 

(3) 
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Showing that, for a given torque, the shear stress is proportional 
to the radius. 

For a solid shaft: 
J -1TlJ4/32 

and the maximum stress 

~=16T/1TD3, at r.",D/2 
For a hollow shaft: 

and 

J -(1T/32)(lJ4 - d4) 

.f-- 16D. T , at r=-D/2 
1T(D4 -d4) 

Torsional stiffness k is defined as torque per radian twist, i.e. 

k-T/8-GJ/l 

EXAMPLE 1. The working conditions to be satisfied by a shaft transmitting 
power are (a) that the shaft must not twist more than 1 degree on a length of 
15 diameters, and (b) the shear stress must not exceed 55 N/mm2• 

If G =80,000 N/mm2 what is the actual working stress, and the dia­
meter of shaft to transmit 1 MWat 240 r.p.m.? 

Calculate the torque which can be transmitted for a given diameter 
according to the two conditions. 

(a) T=(G()/I)J from (2) 

(b) 

80,000 x 7T x 7TD4 
ISDxI80x32 

=9·16D3 N. mm 
T=(2f-jD) xJ from (3), putting r =D/2 

2 x SS x7TD4 
Dx32 

=10·8D3 N. mm 

Taking the smaller value, (a), it follows that the working stress is less 
than permitted by condition (b), in fact 

T =(9'16/10'8) x SS =46'S N/mm2 

since stress is proportional to torque. 

giving 

06 T.27Tn / 
Power =1 = 1000 (Nm)s 

9·16D3 x 27T x 240 
1000 x60 

D = ~(4'3S x 106) =163 mm 

EXAMPLE 2. Compare the weights of equal lengths of hollow and solid 
shaft to transmit a given torque for the same maximum shear stress if the 
inside diameter is ! of the outside. 
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TIT =2J/D from (3) 
=1TD3/16 for the solid shaft of diameter D, 

and = 1T(D1Ld4)/16D1 or (1TD13/16)[1 _(,)4] 
i.e. (65 x 1TD13)/(81 x 16) for the hollow shaft of outside diameter Dl 

Equating these two gives 
Dl =D.~(81/65) 

=1'075D 
Ratio of weights of equal lengths 

=(D12 -tfl)/D2 
=(D1/D)2[1 -4/9] 
== (5/9) x 1.0752 

=0·642 

8.2. Strain Energy in Torsion. Total strain energy of a shaft of 
length I under the action of a torque T is the work done in twisting, i.e. 

T 

Fig. 8.2 

U .. tT9 
for a gradually applied torque (Fig. 8.2). 

This form is most useful if T and 9 have been 
previously found. 

Expressed in terms of the maximum stress f, for 
a solid shaft 

U =! x (7TD3f/16) x (UI/GD) (see Para. 8.1) 
= (f2j4G) x 7TD21j4 
= (tt2j 4G) x volume 

Note that this gives the total strain energy over the whole shaft, for 
which the shear stress is varying from zero at the axis to f at the outside. 
The maximum strain energy per unit volume is f 2j2G (Para. 2.5). 

For a hollow shaft: 

U=!T8 
=1- x [7T(D4 - d4)fj16D] x (2Tl/GD) 
= (f2/4G) x [(D2 +d2)/D2] x volume 

EXAMPLE 3. A hollow shaft, subjected to a pure torque, attains a maxi­
mum shear stress of 7. Given that the strain energy per unit volume is 72/3G, 
calculate the ratio of shaft diameters. 

Determine the actual diameters of such a shaft to transmit 4 MW at 
110 r.p.m. when the energy stored is 20,000 Nmjm 3 G =80,000 N/mm2• 

Referring to the derivation just proved 

U 
--= (72j4G) X (D2 +d2)/D2 
volume 

=72j3G, given 
(D2 +d2)jD2 =4/3 
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i.e. 

or 

If 

then 

TORSION 

d/D=vt 
D/d=1·732 

T2/3G =20 x 10-3 Nmm/mm3 

T = v(3 x 80 x 20) =69·3 N/mm2 

4 x 106 x 60 
T= 27T X 110 from the power 

=348,000 Nm 

T=(T/J) xD/2 
= (16D. T)/TT(D4 -d4) (Para. 8.1) 

Substituting values: 

and 

69.3 = 16D x 348,000 x 103 

7T D4(1 -t) 
D = 3/16 x 348 x 106 x 9 

tV 7Tx69'3x8 

=306 mm 
306 

d=-=l77 mm v3 
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EXAMPLE 4. A tube of mean diameter 5 em and thickness 2 mm is made 
of mild steel with an elastic limit of 250 N/mm2 under simple tension. 
Calculate the torque which may be transmitted by the tube with a factor of 
safety of 2·5 if the criterion of failure is (a) maximum shear stress, (b) maxi­
mum strain energy, (c) maximum shear strain energy. Poisson's ratio =0·3. 

Treating the tube as "thin," it may be assumed that the cross-section 
is sOTT x 2 mm 2 and is situated at 25 mm from the axis, giving a polar 
moment of inertia 

J = 100TT x 252 = 196,000 mm4 

Maximum shear stress 

f = (1000T/196,000) x 26 (T in N.m.) 
=0'133T 

Applying the factor of safety to the stress, the limiting simple tensile 
stress =250/2'5 =100 N/mm2 

(a) Maximum shear stress in simple tension 

=100/2 =50 N/mm2 (Para. 3.2) 
=0'133T, from above 

T=377 N.m 

(b) Maximum strain energy/unit volume 

=f2/2G in torsion (Para. 2.5) 
= fj2j2E in tension (Para. 1.9) 
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Substituting and equating 
(0'133T)2/2G = 1002/2E 

T2=1002/2[0·133 2 x(1 +0·3)] (see Para. 4.2) 
:. T =100/(0'133 x '\12·6) 

=466 N.m 

8.2. 

(c) Shear strain energy=(1/12G)[(at-a2)2+a22+at2] for a two 
dimensional stress system (Para. 3.20). 

In pure torsion at = + 7, a2 = - 7 (Para. 3.4), and in simple tension 
at =a, a2=0. 

Substituting and equating 

I.e. 

giving 

(7 +7)2 +72 +72 =2a2 

6(0·133T)2=2 x 1002 

T=434 N.m 

8.3. Shafts of Varying Diameter. 

EXAMPLB 5. A shaft taPeTl uniformly from a raditU r +a at one end to 
r - a aUhe other. If it is under the action of an axial torque T, and a =O·lr, 
find the percentage error in the angle of twist for a given length when caL­
culated on the assumption of a constant raditU r. (UL.) 

If I is the length of shaft the radius at a distance x from the small end 
is r - a + 2ax/l, and the angle of twist of a length 8x 

T.8x T x28x 
= GJ = G.'IT(r -a +2ax/l)4 

Total 8 - ~If' ax 
- OTT 0 (r - a + 2axfl)4 

2T I [1 1] 
=3Grr'2a (r -a)3 - (r+a)3 

= Tl x 10(1000 _1000) when a =r/10 
3G~ 729 1331 

=2·065TI/G1TT4 

For a shaft of uniform radius, 

8 = Tl/GJ 
= 2 Tl/Grrr4 

Percentage error =[(2·065 -2)/2] x 100 
=3·25% 

EXAMPLE 6. A steel shaft ABCD has a total length of 51 em made up as 
follows: AB=12 em, BC=15 cm, CD =24 em. AB is hollow, outside dia­
meteT 4 em, inside d cm. BC and CD are solid, having diameters 4 cm and 
3·5 em respectively. If equal opposite torques are applied to the ends of the 
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shaft, find to the nearest 0-05 em the maximum permissible value of d for the 
maximum shearing stress in AB not to exceed that in CD. 

If the torque applied is 500 Nm what is the total angle of twist? G = 

80,000 N/mm2• 

For AB: 

For CD: 

T = (TJ:f)D/2 
T = [32 T/7T( 44 - d4)] x 4/2 

=64T/7T(256 -d4) 

T(32T/7T x 3-54) x 3·5/2 
= 16T/(7T x 42'9) 

Equating and multiplying out 

256 -d4 =4 x 42·9 = 171·6 
giving d= {l84·4 =3-05 em 

8 = 'i:.. Tl/GJ 

500 [ 32 x 12 32 x 15 32 x 24] . 
= 80,000 7T(256 - 84-4) + 7T x 256 + 7T x 150 radIans 

500 x 32 x 180 
= 80,000 X7T2 (0-07 +0-0586 +0-16) degrees 

=1,15° 

8+ Stress Concentrations in Torsion. Some results obtained by 
theoretical analysis, due to Willers and others, for the stress concentra­
tion factor at semi-circular fillets (Fig. 8.3 (a» are tabulated below. 

rId 0-1 I 0-2 I 0-3 

I 
0·4 

k 1-27 I 1-20 I 1-17 I 1-16 

The effect of keyways in circular shafts depends on the radius r at 
the bottom of the keyway (Fig. 8.3 (b». If r>0'4 h stress calculations 

(0) (b) 

Fig. 8_3 

based on the minimum metal (diameter d) will be on the" safe" side. 
For smaller values of r stress concentration should be allowed for, e.g. 
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at , - 0·1 h the strength is reduced to about 50% of that of a shaft 
of diameter d. 

The same arguments as in Para. 1.15 apply to the redistribution of 
stress in ductile materials under steady loading. 

8.S. Shafts under the Action of Varying Torque. 

EXAMPLE 7. A horizontal shaft, securely fixed at each end, has a free 
length of 9 m. Viewed from one end of the shaft axial couples of 30 kNm 
clockwise and 37·5kNm counter-clockwise act on the shaft, at distances of 
3·6 m and 6 m from the viewed end. Determine the end fixing couples in 
magnitude and direction and find the diameter of solid shaft for a maximum 
shearing stress of 60 N/mm2• 

Draw a diagram to show how a line, originally parallel to the axis and on 
the outer surface of the shaft, will appear, and find the position where the 
shaft suffers no angular twist. 

If T is the fixing torque at the viewed end, the torque will be T - 30 
in the middle portion and T - 30 +37·5 at the far end (Fig. 8.4) 

() = Tl/GJ cc Tl for a uniform shaft 

hence for no resultant twist 
T x 3·6 + (T - 30) x 2·4 + (T + 7'5) x 3 =0 

giving T=5·5 kNm 

The other fixing couple = T + 7'5 = 13 kNm 
Maximum torque = T - 30 =24·5 kNm numerically. 
Maximum shearing stress, 60 =16 x 24·5 x 106/71D3 

T 

D=145 mm 

7-30 

30 
37-5 

3·6m-~Hm-l T+ 7·5 
,A ~3m 

No twist 

c 
Fig. 8.4 
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In Fig. 8.4, AB cx:5·5 x 3'6 =19'8, CD cx:13 x 3 =39 
By proportion 

X=3'6+( 19·8 ) x 2'4=4'41 m 
19'8 +39 
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8.6. Compound Shafts. For shafts made up of different material. 
two cases will be examined, one where the shafts are joined in "series," 
and the other where they are joined in "parallel." 

EXAMPLE 8. A solid alloy shaft 5 em diameter is to be coupled in series 
with a hollow steel shaft of the same external diameter. Find the internal 
diameter of the steel shaft if the angle of twist per unit length is to be 7S% 
of that of the alloy shaft. Determine the speed at which the shafts are to be 
driven to transmit 200 k W, if the limits of shearing stress are to be S5 N /mm 2 

and 75 N/mm2 in alloy and steel respectively. GSlttl =2'2GaIlOY' 

Angle of twist per unit length = 0/1 

i.e. 

or 
giving 

=T/GJ 
(T/Gj)SUd ';'0'75(T/GJ)QjItry 

32T 0·75 x 2·2 x 32T 
1T(54 - d4) 1T X 54 

625 -d4 =625/(0'75 x 2·2) =379 
d = {l246 =3·96 cm 

2-r/D = GO/I 
and since 0/1 for the steel is 0·75 of that for the alloy 

-rSlttJ!-raIlOY = (G./G.)(D./D.) x 0·75 
=2·2 xO'75 
=1,65 

The limits of shearing stresses are 75 N/mm2 steel and 55 N/mm2 

alloy, but the actual maximum stresses must be 75 N/mm2 steel and 
75/1.65=45.4 N/mm2 alloy. 

Calculate the torque from the solid shaft, i.e. 

T=1TD3-r/16 
1T x 125 x 45·4 

=--"'1:-::6--

=1100 N.m 

Power =200,000 == 11106~21TN 

:. N =1720 r.p.m. 

EXAMPLE 9. A gun-metal sleeve is fixed securely to a steel shaft and the 
compound shaft is subjected to a torque. If the torque on the sleeve is twice 
that on the shaft find the ratio of external diameter of sleeve to diameter of 
shaft. 
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If the limits of shearing stress in the gun-metal and steel are 45 and 
80 N/mm2 respectively, find the torque that may be transmitted by the com­
pound shaft when the steel shaft diameter is 50 mm. Gslttl =2·5 Gem (U.L.) 

Since the shafts are securely fixed together it can be assumed that 
strain is proportional to distance from the central axis (compare com­
posite beams, Para. 6.9), being the same for each at the common surface. 
This implies that the twist per unit length is the same for shaft and sleeve, 
hence 

(T.,/T ",.)(JIfI.lJ.,) = (T.,ITgm)(r",./r.,) =G.,/G",. = 2'5 
giving the ratio of torques T.,/T",., i.e. 

1 7Td4 x 32 x 2.5 
2 32 x 7T(D4 - d4) 

D4 -d4 =5d4 

D/d= {l6 =1·565 
The ratio of maximum stresses is found by putting 

rgm/rs/ = 1·565 
T.,/Tgm =2·5/1·565 = 1·6 

so that the actual maximum stresses are 45 N/mm2 gun-metal and 
45 x 1·6 =72 N/mm2 steel. 

The torque carried by the steel shaft 
=7T x 503 x 72/16 N.mm 
= 1760 Nm 

Total torque of composite shaft 
=3 x 1760 
=5300 Nm 

8.7. Torsion Beyond the Yield Point. It has been shown that the 
maximum shear stress when a circular shaft is twisted occurs at the 
outside surface. If the torque is increased until the yield stress is reached, 
plastic strain will take place in the outer metal. For an ideal elastic­
plastic material (appro..wnately true for mild steel), the strain obeys 
Hooke's law up to the yield point, and beyond this the stress remains 
constant for a considerable increase in strain (see Fig. 12.1, Para. 12.2). 
If it is further assumed that strain is proportional to the distance from 
the axis of the twisted shaft (even in the plastic region), then the angle 
of twist can be determined from the stress in the elastic core. The total 
torque is obtained from first principles by integration of the moment 
of the forces on elemental rings about the axis. 

EXAMPLE 10. A steel shaft 84 mm diameter is solid for a certain distance 
from one end but hollow for the remainder of its length with an inside diameter 
of 36 mm. If a pure torque is transmitted of such a magnitude that yielding just 
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occurs at the surface of the solid part of the shaft, find the depth of yielding 
in the hollow part and the ratio of the angles of twist per unit length for the 
two parts of the shaft. (U.L.) 

Let T be the shear stress at yield, and d mm the diameter of the hollow 
section at which yielding commences. It may be assumed that the shear 
strain in the outer layers of this shaft is insufficient to cause strain harden­
ing (this will be true of any steel with a plastic strain at yield several times 
the value of the elastic strain) and that the stress is uniform and equal to T. 

Torque in the yielded part =TJ.42 27Trdr.r 
dl2 

= (843 - d3)7TT/12 (i) 

Torque in the unyielded part =(d4 - 364)7TT/16d (ii) 

Equating 

or 

Torque in the solid shaft = 8437TT/16 

(i) + (ii) = (iii) 

4(843 - d 3) + 3(d4 - 364)/d = 3 x 843 

d4 - 59 x 104d + 5 x 106 =0 

By trial and error, d=81 mm 

Ratio of angles of twist per unit length, 

Hollow = T/d =1.04 
Solid T/84 

(this is based on the" elastic" part of each shaft). 

(iii) 

8.8. Combined Bending and Twisting. This condition occurs 
frequently in practice, shafts being subjected to bending moments due 
to gravity or inertia loads. Stresses are set up due to bending moment, 
torque, and shearing force, but the latter is usually unimportant, parti­
cularly as its maximum value occurs at the neutral axis (Para. 7.6), 
where the bending stress is zero. Sometimes, for instance propeller 
shafts, there is also an end thrust, which is assumed to be distributed 
uniformly over the cross-section. 

For design purposes it is necessary to find the principal stresses, 
maximum shear stress, strain energy, etc., whichever is to be used as a 
criterion of failure (see Para. 3.21). The importance of these applications 
is sufficient to warrant the derivation of formulae for these quantities. 

If ab is the greatest bending stress and T the greatest shear stress due 
to torsion, then 

ab~32M/1TD3 

(where M is the bending moment), and 

T -16T/1TD3, for a solid shaft. 
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These stresses will occur together at the ends of a vertical diameter, 
for loading in a vertical plane, and since there is no normal stress on 
longitudinal planes of the shaft, the maximum principal stress 

O'=tO'b +h/(O'b2 +472) (Para. 3.8) 
= 16M/TTD3 + 1V[(32M/TTD3)2 + 4(16T/TTD3)2] 
= (16/TTD3)[M + V(M2 + T2)] (1) 

Note that ·HM + V(M2 + T2)] is the equivalent bending moment 
which would give the same maximum stress. 

Maximum shear stress 

T =h/(O'b2 +472) (Para. 3.10) 
= (16/TTD3)V(M2 + T2) (2) 

This is the same as the shear stress produced by a pure torque of 
magnitude V(M2 + T2). 

The resilience 

U = (1/2E)(0'12 +0'22 - 2VO'l 0'2) (Para. 3.19) 

where a 1 and 0'2 are the principal stresses, i.e. 

(16/TTD3)[M ± V(M2 + T2)] from (1) 

giving U = (256/TT2D6E)[2M2 + T2(1 +v)] (3) 

EXAMPLE 11. A flywheel weighing 500 kg is mounted on a shaft 75 mm 
diameter and midway between bearings 0·6 m apart. If the shaft is trans­
mitting 30 kW at 360 r.p.m. calculate the principal stresses and the maximum 
shear stress at the ends of a vertical and horizontal diameter in a plane clasp 
to the flywheel. 

M = Wl/4 =(500 x 9'81 x 0'6)/4 
=736 Nm 

T=power x60 
2TTN 

= 30,000 x 60 =796 Nm 
2TT x 360 

At the Cllds of a vertical diameter 
Principal stresses = (16/TTD3)[M ± V(M2 + T2)] from (1) 

= [16/(TT x 75 3)][736 ± V(736 2 +7962)] 103 N/mm2 

=0,0121(736 ±1083) 
=22 N/mm2 and -4'2 N/mm2 

i.e. on the" tension" side of the shaft the principal stresses are 22 N/mm2 

tension and 4·2 N/mm2 compression. On the "compression" side the 
principal stresses are 22 N/mm2 compression and 4·2 N/mm1 tension. 
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Maximum shear stress =(16/1I'D3)'\I'(M2 + T2) from (2) 

=13-1 N/mm2 

At the ends of a horizontal diameter the bending stress is zero and the 
torsional shear stress has a value 

16T/1I'D3 =0·0121 x 796 
=9·6 N/mm2 

This is a II pure shear stress" system, and the principal stresses are 
±9·6 N/mm2, the maximum shear stress being 9·6 N/mm2 (Para. 3.4). 

EXAMPLE 12. A hollow steel shaft 10 em external diameter, 5 em internal 
diameter, transmits 600 kW at 500 r.p.m. and is subjected to an end thrust 
of 50 kN. Find what bending moment may be safely applied to the shaft 
if the greater principal stress is not to exceed 100 N/mm2• What will then be 
the value of the smaller principal stress? 

Let the greatest normal and shear stresses on transverse planes be 
a and 7. Then 

7 = (T/J)'D/2 
32 x 600,000 x 60 x 10 

211' X 50011'(104 - 54) x 2 

=62·4 N/mm2 

Maximum principal stress 

i.e. 
=a/2 +h/(a2 +472) 

100 =a/2 +t'\l'(a2 + 15,600) 

Rearranging and squaring 

giving 

a 1 + 15,600 =(200 :-a)2 

=40,000 -400a +a2 

a =24,400/400 =61·0 N/mm2 

The limiting case is obtained when both the end thrust and bending 
stress are compressive, the maximum principal stress being also 
compressive. 

Normal stress accounted for by end thrust 

_ 50,000 x4 -8.5 N/ 2 
- 11'(1002 _ 502) - mm 

Stress due to bending = 61·0 - 8·5 
=52,5 N/mm2 

=My/I 
= (64M x 5)/11'(104 - 54) 

M=52·5 X 11' x 9375j320 
=4830 N.m 

(Min N.m) 
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8,9. Rectangular Shafts. For shafts of non-circular section warping 
of the cross-section takes place under the action of a torque, and the 
analysis of stresses and angle of twist is outside the scope of this book. 
Results are quoted here for rectangular and square sections. 

The maximum shear stress is found to occur at the mid-point of the 
longer side. If the dimensions are b and d, with d greater than b, then 

The angle of twist 

.p.,<1'8b+3d).T 
b2d2 

e_7Tl(b2+d2) 
2Gb3d3 

8.10. Torsion of Thin Tubular Sections. (Bredt-Batho Theory). 
Consider a closed tube of small thickness acted upon by a torque T 
in a transverse plane (Fig. 8.5). If it is assumed that the shear stress T 

Fig.8.S 

at a point P where the thickness is t is constant across the tube wall, 
then if T' is the shear stress at Q and t' the thickness, it follows from the 
equilibrium of the complementary shear stresses on PS and QR that 

Tt=T't' =k say (1) 

If dz is an element round the circumference, then the force on this 
element is Ttdz. and taking moments about 0, 

T= JTldz.r sin rfo 
=kfh.dz 
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where h is the perpendicular distance from 0 on to T; hence 

T=2kA 
where A = area enclosed by the mean circumference. 

The strain energy of a length I of tube is 

U = J( 7 2/2G)ltdz 
= (kl/2G)J rdz from (1) 

But U = 1-TO, where 0 is the angle of twist, hence 

0= (kIJTG)JTdz 
=(lJ2GA)Jrdz from (2) 

If t is constant 

O=lTz/2GA 

=ITz/4GA2t from (2) 
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(2) 

(3) 

(4) 

(5) 

EXAMPLE 13. Show that, for a uniform hollow tube of outside and inside 
diameters D and d, the Bredt-Batho theory underestimates the maximum 
shear stress due to a given torque by about 5% when d/ D = O· 9. Show that 
the error in the angle of twist, however, is less than 1%. 

From (1) and (2) 

T=T/2tA 

TX2X4( 2 )2 
=2(D-d);'D+d 

16T 
-= 17D3(1 - 0'9)(1 + 0·9)2 

16T 
-0'3611TD3 

Applying the normal theory for hollow shafts, 

A 16DT -r=--,-----, 
1T(D4 - d4) 

16T 
(d=0'9D) 

From (i) and (ii) 

i.e. T is 5% less than i. 

(i) 

(ii) 
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From (5) 

By shaft theory 

STRENGTH OF MATERIALS 

GO Tz 
T =4A2t 

= Tn(D + d) x 42(_~_ ) 4~_ 
4 x 2 x n 2 D + d D - d 
64T 

=O·6847TD4 

GO 32T 
T = n(D4 - d4) 

32T 

8.10. 

(iii) 

(iv) 

The ratio between (iii) and (iv) is 0·995, i.e. a difference oi about 0·5%. 

EXAMPLE 14. Fig. 8.6(a) shows a circular tube for zvhich the inside is 
eccentric to the outside. Calculate the maximum shear stress and twist per 
metre lengthfor a torque of 100 Nm. G =80,000 N mm2• 

1----33mmcJia ----..j 

(0) (b) 
Fig. H.6 

From (1) and (2) 

T=T/2tA 
100xl03 x4 

taking the least thickness 
2 x 3 x n x 292 

=25·3 N/mm2 

Since T is varying continuously, 8 must be obtained from (3), where 
dz=14·5dlj> and JTdz=1800 N/mm (graphically from Fig. 8.6(b». 

Then, for 1 m length 

8 = 1000 x 4 x 1800 x 57.3 
2 x 80,000 x n x 292 

=0·98° 
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8.11. Torsion of Thin-Walled Cellular Sections. Consider the 
twin-celled section shown in Fig. 8.7, the mean area of the two cells 
being Al and A2• If the length ABC is of uniform thickness tl and 

Fig. 8.7 

stress '7'11 CDA of thickness t2 and stress '7'2, and CA of thickness '7'3 and 
stress '7'3, it follows from the equilibrium of complementary shear stresses 
on a longitudinal section through PQR that 

(1) 

The total torque on the section by using eqn. (2) of Para. 8.10 and 
adding for the two cells, i.e. 

T=2('7'ltlAl +'7'2t2A2) (2) 

Applying eqn. (4) of Para. 8.10 to each cell in tum gives 

2G8/1 = ('7'IZl + '7'3Z3)/A1 (3) 
=('7'2Z2-'7'3z3)/A2 (4) 

where Zh Z2 and z3 are the mean perimeters ABC, CDA, and CA 
respectively, the negative sign indicating a traverse against the direction 
of stress. 

EXAMPLE 15. In Fig. 8.7 the mean dimensions of the two cells are 5 em x 
2·5 em and 2·5 em square, tl =2·5 mm, t2 =5 mm, and t3 =3mm. Calculate 
the shear stress in each section, and the angle of troist per metre length for a 
torque of 200 Nm. G =80,000 N/mm2. 

From the dimensions given, 

At =1250 mm2 and A2 =625 mm2 

Zt =125 mm, Z2 =75 mm, Z3 =25 mm 
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Equation (1) gives 

l.e. 

STRENGTH O' MATERIALS 

1'1 x 2·5 =TZ x 5 +1'3 x 3 

2'51'1 =5~z +31'3 
Equation (2) becomes 

200,000 ... 2(T1 x 2'5 x 1250 +7'2 x 5 x 625) 

i.e. 

Equating (3) and (4) gives 

1'1 x 125 +7'3 x25 =2(7'z x75 -7'3 x25) 

i.e. 

Eliminating 7'3 between (i) and (iii) gives 

7·57'1 = 117'2 

and from (ii) and (iv) 

From (i) 

1'1 =(11/18,5)32 

=19 N/rnm2 

1'2 =32 -1'1 

=13 N/rnm2 

7'3 = - 5·8 N/mm2 

(i.e. in the opposite direction to that assumed). 

From (3) 8 = (T1Z1 + T3Z3)l 

2GA 1 

= (19 x 125 - 5·8 x 25)1000 x 57.3 
2 x 80,000 x 1250 

=0'638° 

8.11. 

(i) 

(0) 

(iii) 

(iv) 

8.lz. Torsion of Thin Rectangular Members. In a rectangular 
cross-section the shear stress must flow as in Fig. 8.8, being a maximum 
7 along the long edge d, and a value 7" along the short edge t. It will 
be assumed that the variation of stress in both the OX and OY direc­
tions is linear, being zero in both directions at 0 by symmetry. It will 
be further assumed, and this has been confirmed by experiment, that 
the ratio 

7'f7'" tfd (1) 

The total torque on the cross-section is found by adding together the 
sum of the moments about OY of the forces on elements parallel to d 
and the sum of the moments about OX of the forces on elements 
parallel to t, i.e. 
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(t/2 
T=2 Jo (2TXJt)d.dx.x + 

(d12 
2 Jo (2T'yJd)t.dy.y 

= 1;Tdt2 + 1;T'd2t 
= lTdt2 from (1) (2) 

where T is the maximum stress in the 
section. 

If (J is the angle of twist of a length I, 
equating the strain energy from the 
torque and from the stresses, 

(t/2 
tT(J=2Jo (2TxJt)2(dIJ2G)dx+ 

fdl2 
2 Jo (2T'yJd)2(tIJ2G)dy 

=1;(T2JG)dtl +!(T'2fG)dtl 
=1;T2dtl(1 +t2fd2)fG from (1) (3) 

For a long thin rectangle t2fd2 can be 
neglected, and by substitution from (2) 

(J=TlftG (4) 
= 3 TIJdt3G (5) 

---
T r t~ l 

1f li 
to ~ d 

t t P 
t t d l 
t ~-' ! ... --

:\ 
y 

.,. 

\ .,. 

Fig. 8.8 

, 
'T 
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These results should be compared with those of Para. 8.9, in which 
the dimension b can be neglected in comparison with d. 

8.13. Torsion of Thin Open Sections. I, channel and angle sections, 
and curved sections which do not form closed tubes may be treated 
approximately by the methods of Para. 8.12, equations (2) and (5) 
becoming 

T = 1T .l::dt2 
and (J = 3 TlfGl::dt3 

(for curved sections d = mean perimeter). 

EXAMPLE 16. An I-section 120 mm x 80 mm has flanges 5 mm thick and 
web 4 mm thick and is subjected to a torque T. Find the maximum value of T 
if the shear stress is limited to 35 N/mm2 and the twist per metre length to 
6°.G =82,000 N/mm2 

hence 

~dt2 = 120 x 42 + 2 x 80 x 52 

=5920 mm3 

T=t x 35 x 5920 

=69,000 Nmm 
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~dt3 = 120 x 43 + 2 x 80 x 53 

=27,700 mm4 

8.13. 

hence o =3T x 1000/(27,700 x 82,000) 

T=6 x 27,700 x 82/3 x 57·3 

=79,000 Nmm 

or 

The permissible torque is therefore 69 Nm. 

SUMMARY 

Torsion of Circular Shafts T/J = T/T = GO/I. 
Maximum shear stress T = 16T/7TD3, for solid shafts. 
Strain Energy U =·1 TO 

-T2//2GJ 

.. (tT2/4G) x volume, for solid shafts. 

Stiffness k = TJD = GJJI. 
Combined Bending and Twisting: 

Maximum Principal Stress a =-(16/7TD3)[M + v(M2 + T2)J. 

Maximum Shear Stress T = (16/7TD3)V(M2 + T2), for solid shafts. 

PROBLEMS 

1. Two lengths of ~haft, 15 cm diameter, are connected by a Hange coupling, 
with 6 bolts on a 25 cm diameter pitch circle. If the limits of shearing stress are 
48 N/mm2 in the shaft and 40 N/mm2 in the bolts (assumed uniform), calculate 
the power transmitted at 280 r.p.m., and the diameter of bolt required. 

(933 kW; 37 mm.) 

2. A solid steel shaft transmits 560 kW at 300 rev./min with a maximum shear 
stress of 60 N/mm2• What is the shaft diameter? 

What would be the diameters of a hollow shaft of the same material (diameter 
ratio 2), to transmit the same power at the same speed and stress? 

Compare the stiffness of equal lengths of these shafts. 
(115 mm; 117 mm; 58·5 mm; 0·98.) 
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3. A hollow steel shaft has to transmit 6000 kW at 110 r.p.m. If the allowable 

shear stress is 60 N/mm2 and inside diameter =% of outside, find the dimensions 
of the shaft, and the angle of twist on a 3 m length. G=80,000 N/mm2• 

(370 mm; 222 mm; 42'.) 

4. A shaft 3 m long stores 300 Nm of energy when transmitting 1500 kW at 
360 r.p.m. What is the shaft diameter and maximum shear stress? G =80,000 
N/mm2• (178 mm; 35·9 N/mm2.) 

5. A solid phosphor-bronze shaft,S cm diameter, rotating at 400 r.p.m., is 
subjected to torsion only. An electrical resistance strain gauge is mounted on the 
shaft with the axis of the gauge at 45 0 to the axis of the shaft. Determine the 
power being transmitted if the strain gauge reading is 4·17 x 10-4• For phosphor­
bronze E=105,000 N/mm 2• (45 kW.) 

6. A hollow marine propeller shaft turning at 110 r.p.m. is required to propel 
a vessel at 25 knots for the expenditure of 6300 kW, the efficiency of the pro­
peller being 68 %. The diameter ratio is i and the direct stress due to the thrust 
is not to exceed 7·72 N/mm2• Calculate (a) the shaft diameters, (b) maximum 
shear stress due to torque. 1 knot =0·515 m/s. (U.L.) 

(315 mm, 210 mm; 112 N/mm2) 

7. A hollow steel shaft 200 mm external diameter and 125 mm internal dia­
meter transmits 1600 kW at 180 rev./min. Calculate the shear stress at the inner 
and outer surfaces and the strain energy per metre length. G =84,000 N/mm2 • 

(40'5; 64·5 N/mm2 ; 325 Nm.) 

8. A hollow shaft of diameter ratio 3/5 is required to transmit 600 kW at 
110 r.p.m., the maximum torque being 12% greater than the mean. The shear 
stress is not to exceed 60 N Imm2 and the twist in a length of 3 m not to exceed 10. 
Calculate the minimum external diameter satisfying these conditions. G = 

80,000 N/mm2• (195 mm.) 
9. The figure shows a steel shaft 

25 mm diameter which is rigidly 
joined at D to a tube 38 mm outside 
diameter which is anchored at C. The 
shaft is carried in a bearing at B and a 
load of 500 N is applied at A per­
pendiculilr to the plane of the figure. 
Calculate the bore of the tube so that 
the maximum stress in tube and shaft 
are equal, and calculate the movement 
of A assuming the lever rigid. 
G =80,000 N/mm2• 

(35 mm; 5·58 mm.) 

10. A case-hardened shaft is 25 mm diameter with a case depth of 1·5 mm. 
Assuming the case remains perfectly elastic up to its failing stress in shear of 
300 N/mm2 and that the inner core becomes perfectly plastic at a shearing stress 
of 180 N/mm2, calculate (a) the torque to cause elastic failure in torsion in the 



150 STRl!NGTH OP MATl!RIALS 

case and (b) the angle of twist per metre length at failure. G = 84,000 N/mm2 for 
all the material while elastic. (820 Nm, 16'4°.) 

11. A hollow steel shaft having outside and inside diameters of 45 mm and 
19 mm respectively is subjected to a gradually increasing axial torque. The yield 
stress is reached at the surface when the torque is 1 kNm, the angle of twist per 
metre length then being 2'43°. Find the magnitude of the yield stress. 

If the torque is increased to 1·08 kNm calculate (a) the depth to which yielding 
will have penetrated, (b) the angle of twist per metre length. State any assump­
tions made and prove any special formula used. (58 Nmm2, 2·3 mm, 2'7°.) 

12. A steel shaft ABCD of circular section is 2 m long and is supported in 
bearings at the ends A and D. AB =0,75 m, BC =0·5 m, CD =0·75 m. The shaft 
is horizontal, and two horizontal arms, rigidly connected to it at Band C, project 
at right angles on opposite sides. Arm B carries a vertical load of 2000 kg at 
0·333 m from the shaft axis, and C carries a vertical balancing load at 0·417 m 
from the axis. If the shear stress is not to exceed 80 N /mm2 find the minimum 
diameter of shaft. Assume the bearings give simple support. (99 mm.) 

13. The 300 mm diameter steel tail shaft of a ship which runs at 200 r.p.m., 
has a 25 mm thick bronze bushing shrunk over its entire length of 8·5 m. If the 
shaft has been designed for a maximum shearing stress in the steel of 10 N/mm2 

find (a) the torsional stiffness of the tail shaft, (b) the power of the engine. 
Gs =84,000 N/mm2 ; Gb =42,000 N/mm2• (13 x 106 Nm/rad.; 16,000 kW.) 

14. A solid shaft transmits 1000 kW at 107 rev/min, the maximum torque 
being 1·8 times the mean. The bearings are 1· 54 m apart with a 9000 kg flywheel 
midway between bearings. There is also a bending moment due to steam pres­
sure which is numerically equal to 0·8 of the mean twisting moment. Find the 
shaft diameter if the maximum permissible tensile stress is 60 N/mm2 . 

(290 mm.) 

15. In a shaft subjected to bending and twisting the greater principal stress is 
numerically 5 times the lesser one. Find the ratio of M: T and the angle which 
the plane of greater principal stress makes with the plane of bending stress. 
(U.L.) (2/yl5; 24° 5'.) 

16. A solid shaft 127 mm diameter transmits 600 kW at 300 r.p.m. It is also 
subjected to a bending moment of 9·1 kNm and an end thrust. If the maximum 
principal stress is limited to 77 N/mm2 find the end thrust. (39 kN.) 

17. A horiz:mtal shaft of 76 mm dia. projects from a bearing and, in addition 
to the torque transmitted, the shaft carries a vertical load of 7·5 kN at 300 mm 
from the bearing. If the safe stress for the material, as determined in a simple 
tension test, is 140 N/mm2, find the torque to which the shaft may be subjected 
using as a criterion (a) the maximum shear stress, (b) the maximum strain energy. 
Poisson's ratio =0·29. «a) 5·6 kNm. (b) 6·9 kNm.) 

18. A tube subjected to torsion is of rectangular form, the outside dimensiom 
being 50 mm x 25 mm and the thickness 1·6 mm. Show that for calculating both 
shear stress and angle of twist such a section may be treated as practically equi· 
valent to a thin circular tube in which the mean radius is 2.1/8 and with a thick· 
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ness S2t/47TA, where A is the cross-sectional area, S the perimeter and t the 
thickness of the non-circular tube. 

If the material is brass (G=34,500 N/mm2) calculate the safe torque and 
maximum angle of twist per metre if the shear stress is not to exceed 27·5 N /mm2. 

(100 Nm, 2'9°.) 
19. The figure shows the dimensions of a double-celled cross-section in the 

150 .... 

5mm 

100m .. 

5/II1II 

form of a triangle and rectangle of thin section. If a torque of 10,000 Nm is 
applied, calculate the shear stress in each part and the angle of twist per metre 
length. G =83,000 N/mm2• 

What thickness of the internal web would make the stress in it zero? 
(49·5 N/mm2 "rectangle", 65 N/mm2 "triangle" 

34 N/mmD "internal", 0'965°, 7'15 mm.) 
20. The dimensions of an angle section are 75 mm x 50 mm x 3·2 mm. 

Calculate the maximum shear stress and twist per metre length if a torque of 10 
Nm is applied. G =83,000 N/mm2• (23'5 N/mm2, 5'1°.) 

21. An extruded section in light alloy is in the form of a semicircle 50 mm 
mean diameter and 2·5 thick. If a torque is applied to the section and the angle 
of twist is to be limited to 4° in a length of 1 m estimate the torque and maximum 
shear stress. G =26,000 N/mm2• (0·745 Nm, 4·56 N/mm2.) 



CHAPTER IX 

Deflection of Beams 

9.1. Strain Energy due to Bending. Consider a short length of beam 
ax, under the action of a bending moment M. If (J is the bending stress 
on an element of the cross-section of area SA at a distance y from the 
neutral axis, the strain energy of the length Sx is given by 

But 
hence 

SU = f( (J2j2E) x volume (Para. 1.9) 
=8xJ(J2.dAj2E 
= (8xj2E)f M2y2dAjI2 

Jy2.dA=I 
SU = (M2j2EI)8:e 

For the whole beam: 
U = JM2.dx/2EI 

The product EI is called the Flexural Rigidity of the beam. 

EXAMPLE 1. A simply supported beam of length 1 carries a concentrated 
load W at distances of a and b from the two ends. Find expressions for the 
total strain energy of the beam and the deflection under the load. 

The integration for strain energy can only be applied over a length of 
beam for which a continuous expression for M can be obtained. This 
usually implies a separate integration for each section between two con­
centrated loads or reactions. 

A a. *W b C 
Wb+;"'---=:::'--.B~----i.,. Wa 
l ~"' .. -----l ---l,. ... ~ l 

Referring to Fig. 9.1, for 
the section AB, 

M=(Wbfl)x 

f ·W2b2X2 
V.::; 0 2J2EI .tbc 

= W2b2[~!]. 
212EI 3 0 

= Wla3b2j6EIl2 

Fig. 9.1 Similarly, by taking a 
variable X measured from C 

fOw2a2x2 
Vb ::;--212EI .dX = Wla2b3j6EIl2 

o 
Total V = V. + Vo = (W2a2b2j6EI12)(a +b) 

::_ W 2a2b2j6EIl 
152 
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But, if a is the deflection under the load, the strain energy must equal 
the work done by the load (gradually applied), i.e. 

twa = W 2a2b2/6EIl 
:. a=Wa2b2/3EIl 

For a central load, a =b =1/2, and 
a = (W/3EIl)(l2/4)(l2/4) 

=W[3/48EI 

It should be noted that this method of finding deflection is limited 
to cases where only one concentrated load is applied (i.e. doing work), 
and then only gives the deflection under the load. A more general 
application of strain energy to deflection is found in Castigliano's 
theorem (Para. 11.4). 

EXAMPLE 2. Compare the strain energy of a beam, simply supported at its 
ends and loaded with a uniformly distributed load, with that of the same beam 
centrally loaded and having the same value of maximum bending strels. 

(U.L.) 

If I is the span and EI the flexural rigidity, then for a uniformly dis­
tributed load w, the end reactions are wl/2, and at a distance x from one 
end 

M={wl/2)x -wx2/2 
=(wx/2)(l-x) 

_fIW2X2{I-X)2dx 
U1 - 4 x2EI 

o 

=- (l2xZ -21x3 +x4)dx w2~1 
8E 0 

= (w2IS/8El)(t - i +t) 
= w21s /24{)EI 

For a central load of W, 

see also Example 1. 

uz=twa 
=W213/96EI 

(i) 

(ii) 

Maximum bending stress =kt/Z, and for a given beam depends on the 
maximum bending moment. 

Equating maximum bending moments, 
w12/8 = WI/4 (Chap. 5) (iii) 
:. wl=2W 

Ratio U 1/U2 = (w2Is/240)(96/WZz3) from (i) and (ii) 
= (96/24{)(w2l2/W2) 
=(96/24{)4 from (iii) 
=8/5 
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9.Z. Application to Impact. 

EXAMPLB 3. A concentrated load W gradually applied to a hori:8ontal 
beam simply supported a. its ends produces a deflection y at the load point. 
If this loadfalls through a distance h on to the beam find an expression for the 
maximum deflection produced. 

In a given beam, for a load W, y =0·5 em and the maximum stress is 
60 N/mm2• Find the greatest height from which a load of 0·1 W can be 
dropped without exceeding the elastic limit of 270 N/mm2• (U.L.) 

Loss of P .E. of load = Gain of S.E. of beam 
i.e. W(h +0) =;Po 
where 0 is the maximwn deflection produced by dropping the load W on 
to the beam and P is the equivalent gradually applied load which would 
cause the same deflection. But a gradually applied load of W produces 8 

deflection y, hence 0 = (P/W) xy by proportion, or P='W8/y. 
Substituting in above 

W(h +0) = W02/2y 
Rearranging 02/2 - yo - hy =0 
Solving 0 =y + v'(y2 +2hy) 

Energy equation for dropping 0·1 W is 
0·1 W(h' +0') =;P'o' 

But the equivalent gradually applied load (and hence the deflection 8') 
is proportional to the maximwn stress, i.e. 

P' = W x 270/60 =9W/2 
and 0' =y x 270/60 =2·25 em 
Substituting, 0·1 W(h' +2·25) =t(9Wj2)2·25 
giving O·lh' =5·065 -0·225 
I.e. h' =48·4 cm 

9.3. Deflection by Calculus. It was proved in Para. 6.1 that, for 
bending about a principal axis 

M/EI = l/R 0) 
and in terms of co-ordinates x and y 

y 

o 

1 ±d2y/dx2 

R = [1 + (dy/dx)2]3/l 
(2) 

where the sign depends on the con­
vention for axes. For beams met with 
in engineering practice the slope dy/dx 
is everywhere small, and may be neg-

X lected in comparison with 1 in the 
denominator. Fig. 9.2 

Taking y positive upwards, under the 
action of a positive bending moment the curvature of the beam is as 
shown in Fig. 9.2. It can be seen that dy/dx is increasing as x increases, 
i.e. d2yldx2 is positive, and 1/R-d2y/dx2 from (2). 



9.3. 

Hence 

or 

DIIPLBCTION OP BHAMS 

M/EI-dLyjdx2 from (1) 

EI.d1y/dx1_M 

lSS 

(3) 

Provided Jl.J can be expressed as a function of x equation (3) can be 
integrated to give the slope dy/dx, and the deflection y, of the beam for 
any value of x. Two constants of integration will be involved, and these 
can be obtained by substituting known values of slope or deflection at 
particular points. A mathematical expression is thus obtained for the 
form of the deflected beam, or "elastic line." 

Differentiating (3) 

and 

EI. d3y/dx3 - dMjdx - F 

EI.d4y/tJx4-dF/dx= -w (Para.5.S) 

(4) 

(5) 

These forms are of use in some cases, though generally the bending 
moment relation is the most convenient. 

Notes on application 

(i) Take the X axis through the level of the supports. 
(ii) Take the origin at one end, or at a point of zero slope. 
(iii) For a built-in or fixed end, or where the deflection is a maximum, 

the slope dy / dx = O. 
(iv) For points on the X axis, usually supports, the deflection y=O. 
Units. It is convenient to measure: 

E in N/mm2 

I in mm4 

yinmm 
MinNm 
xmm 

In numerical problems it will then be necessary to apply correction 
factors to the slope and deflection equations. 

EXAMPLE 4. Obtain expressions for yp 
1M maximum slope and deflection of a l---:~ 
cantilefJeT of length 1 carrying (a) a 0 _ ::=::j:__ __ _ X 
concentrated load W a' its free end, - --x~ ~ 
(b) a uniformly distributed load w along 
its whole length. W 

(a) Taking the origin at the free Fig. 9.3 
end, the X axis through the fixed end, 
then at a distance x from the origin M = - Wx (Fig. 9.3) and 

EI.d2y/dx2 =M= - Wx from (3) 

Integrating EI.dy/dx= -Wx2/2+A 
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But dy/tb =0 at :¥ =1 

Integrate again 

At :¥ =1, y =0 

:. A=WP/2 

Ely = - Wx3/6 + W12:¥j2 +B 

:. B = W13/6 - W13/2 
= - W13/3 

9.3. 

The slope and deflection at the free end (where they are a maximum) 
are given by the values of dy/dx and y when x =0, i.e. 

slope = WI2/2EI 
Deflection = - Wi3/3EI (indicating downward) 

Fig. 9.4 

Integrating EI.dy/dx= -wx3/6 +A 
when :¥ =1, dy/dx =0 

:. A. =wI3/6 

when :¥ =1, y =0 
:. B = - w14/8 

Putting :¥ =0, maximum slope =wI3/6EI 
and maximum deflection = - ro14/8EI 

It is left to the retuUr to perform the analysis for the two standard 
cases of simply supported beam, the results of which are quoted in the 
summary at the end of this chapter. They will be treated by a different 
method under Para. 9.5. 

9+ Macaulay's Method. In applying the method of Para. 9.3 
normally a separate expression for bending moment must be obtained 
for each section of the beam between adjacent concentrated loads or 
reactions, each producing a different equation with its own constants 
of integration. It will be appreciated that in any but the simplest 
cases the work involved will be laborious, the separate equations being 
linked together by equating slopes and deflections given by the ex­
pressions on either side of each "junction" point. However, a method 
devised by Macaulay enables one continuous expression for bending 
moment to be obtained, and provided certain rules are followed the 
constants of integration will be the same for all sections of the beam. 

For the purpose of illustration, it is advisable to deal with the differ­
ent types of loading separately. 

(1) Coneentrated loads 
Measuring ~ from one end, write down an expression for the bending 
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moment in the last section of the beam, enclosing all distances less than x 
in square brackets, i.e. 

EI.d2y/dx2=M = - W1x +R[x -a] - W 2[x -b] - W3[X -c] (Fig. 9.5) 

Subject to the condition that "" C ____ .... 

all terms for which the quantity ~Wi b =Wz t W3 
inside the square brackets is nega-~ ~ ! 
tive are omitted (i.e. given a L---i---1..-x-----I'--,..-+I--Jl 
value zero), this expression may R I 
be said to represent the bending 
moment for all values of x. If x 

Fig. 9.5 

is less than c the last term is omitted, if x is less than b then both the 
last two terms are omitted, and so on. 

The brackets are to be integrated as a whole, i.e. 
EI.dy/dx- - W 1x2/2+(R/2)[x-a]L(W2/2)[x-b]2-

(W3/2)[X - c)2 +A 
and 
Ely = - W 1x3/6 + {R/6)[x -a]3 -(W2/6)[x -b]3-

(W3/6)[X -c]3 +Ax +B 

By so doing it can be shown that the constants of integration are 
common to all sections of the beam, e.g. if x = b - .1 

EI.dy/dx= -(Wl/2)(b-J)2+(R/2)(b-J -a)2+A 
and Ely = - (Wl/6)(b -.1)3 + (R/6)(b -.1 -a)3 +A(b -.1) +B 

and if x=b+J 
EI.dy/dx= -(Wl/2)(b +.1)2 + (R/2)(b +.1 -a)2-(W2/2)J2+A' 

and 
Ely= - (Wl/6)(b +.1)3 + (R/6)(b +.1 -a)3 - (W2/6)J3 +A'(b+J) +B' 

Now as .1-0 these slope and deflection values must correspond (i.e. 
at x=b), from which it is seen that A=A' and B=B'. 

The values of A and B are found as before. 

(2) Uniformly distributed loads 

Supposing a load w is stretched from a distance a to a distance b from 

Fig. 9.6 

one end (Fig. 9.6). Then in order to 
obtain an expression for the bending 
moment at a distance x from the end, 
which will apply for all values of x, it 
is necessary to continue the loading 
up to the section x, compensating with 
an equal negative load from b tl) x, i.e. 

M ~ Rx - (w/2)[x - a]2 + {w/2)[x - b)2 
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each length of loading acting at its centre of gravity, square brackets 
being interpreted as before. 

Forx>a but <h, omit [x-b], andM=Rx-(w/Z)(x-a)2, which is 
clearly correct. 

The remaining steps of integration and constant enumeration are as 
before. 

(3) Concentrated bending moment 
As shown in Fig. 9.7, write 

EI.dly/dx2 =M= -Rx+Mo[x-a]O 

then EI.dy/dx ... -Rx2/Z+Mo[x-a] +A, etc. 

EXAMPLB S. A simply supported beam of length L carries a load Wat a 
distance afrom one end,bfram the other (a>b). Find the position and magni­
tude of the maximum deflection and show that the position is always within 
L/13, approximately, of 'he cen're. (U.L.) 

Fig. 9.7 Fig. 9.8 

The maximum deflection (i.e. zero slope) will occur on the length a 
since a>b. 

Taking the axes as shown in Fig. 9.8, 
EI.d2y/dx2 =M=(Wb/L)x - W[x -a] 

EI.dy/dx=(Wb/L)(x2/2) -(W/2)[x -a]2 +A (i) 

Ely = (Wb/L)(x3/6) -(W/6)[x -a]3 +Ax +B (ii) 

Atx=O,y=O, 
Atx=L,y=O, 

giving 

:. B=O 
:. AL = - (Wb/L)(V /6) + (W/6)b3 

A = -(Wb/6L)(V -bl) 

dy/dx =0 at a value of x given by 
(Wb/L)(xl/2) - (Wb/6L)(V - b2) =0, from (i), omitting [x - a] 

since x<a for zero slope when a>b. 
This gives x = V[(V - b2)/3] at the point of maximum deflection. 
Substituting in (ii) to find the value of the maximum deflection: 

Wb (V - b2 )3/2 Wb (V - b)3/2 

ElY=T' 6x3.y3 -6L' '\13 
Wb(V - bl)3/2 

iivine Y = - 9.y~EIL 
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Distance of point of maximum deflection from centre 
= V[(V - 62)/3] - LI2 

which has a maximum value of LI v3 - L12, or approximately L113. 

EXAMPLE 6. A simply supported 
beam of span 20 m carries two Y 
concentrated loads 4 kN at 8 m 
and 10 kN at 12 m from one end. 
Calculate (a) the deflection under 
each load, (b) the maximum deflec­
tion. E=200,000 N/mm2; 1= 
109mm4• 

Fig. 9.9 

. 4)( 12 + 10 x 8 . 
Reactlon at 0 = 20 =6·4 kN. Fig. 9.9 

EI.d2y/tbil =M 
=6·4x -4[x -8] -10[x -12] 

Integrating EI. dy/ik = 3·2x2 - 2[x - 8]2 - 5[x -12]2 + A 
Integrating again 

Ely = (3 '2/3)x3 - i[x - 8]3 - t[x -12]3 + Ax + B 
When x =0, y =0, :. B =0 
When x =20, y=O 

=(3·2/3) x2()3 -i )(123 -t )(83 +20A 
giving A = - (3 ,2/3) x 400 + (2 x 1728)/60 + (5 x 512)/60 

= -326,5 kNm2 

(a) Under the 4 kN load, x =8 m, and 
Ely =(3'2/3) x 83 - 326·5 x 8 = - 2066 kN-m3 

2066 x 103 x 109 
Deflection y = - 200,000 x 109 =10,3 mm downwards 

Under the 10 kN load, x=12 m, and 
Ely =(3·2/3) x 123 -t x 43 - 326·5 x 12 = - 2118 kN-m3 

2118 x 103 x 109 
Deflection y = - 200,000 x 109 =10·6 mm downwards 

159 

(b) The maximum deflection can be judged to lie between the loads, 
and, omitting the term in [x -12], the following equation is obtained for 
zero slope: 

i.e. 

giving 

3·2x2 -2(x - 8)2 -326,5 =0 
1·2x2 +32x -454,5 =0 

- 32 + v(322 +4 )( 1·2)( 454·5) 
x = ---'--'-::-2 )( 1.2 

=10·3 m 

(Note that this does lie within the section assumed.) 
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. . «3·2/3) x 10.33 - t x 2.3 3 - 326·5 x 10.3)1012 

Maximum deflection = 200,000 x 109 

2203 x 1012 

200,000 x 109 

=11 mm 

EXAMPLE 7. A cantilever 4 mlong is supported at the free end by a prop, 

~~ 5000kg 

_ ,.~X o p1m~4mT_m_~ __ ~lli 

at the same level as the fixed end. 
A uniformly distributed load of 
6000 hg/m is carried along the 
middle half of the beam, together 
with a central concentrated load 
of 5000 kg. Determine the load 
on the prop and the maximum 
bending moment. Fig. 9.10 

Let P be the load on the prop. 
Taking the origin at the prop 

El'd2y/dx2 =Px -6000[x -1]2/2 +6000[x - 3]2/2 - 5000[x -2] 
El'dy/dx =Px2/2 -1000[x -1]3 + 1000[x - 3]3 -2500[x -2]2 +A 
Ely =Px3/6 - 250[x _1]4 + 250[x - 3]4 - 2500[x - 2]3/3 +Ax +B 

When x=4m, 
dy/dx =0 =8P - 27,000 +1000 -10,000 +A 

i.e. A = 36,000 - SP (i) 
also y=0=10·67P -26,670 +4A +B 
From (i) B = -10'67P +26,670 -4 x 36,000 +4 x 8P 

=21'33P-117,330 (ii) 
When x=O, y=O, :. B=O 

giving P=117,330/21'33 from (ii) 
=5500 kg 

A point of maximum bending moment occurs at a value of x giving 
zero shear force (Para. 5.5), which will be in the distributed load such 
that the downward load equals the load on the prop, i.e. at 

where 

x = 1 + 5500/6000 
= 1·917 m from the prop 

M = 5500 x 1·917 - 6000 (1'917 -1)2/2 
=8020 kg m 

Check against the value at the built-in end 
M = 5500 x 4 - 3000(4 _1)2 + 3000(4 - 3)2 - 5000(4 - 2) 

=12,000 kgm 
The greatest bending moment is therefore 12,000 kgm 

EXAMPLE 8. A horizontal beam, simply supported at its ends, carries a 
load which varies uniformly from 1000 kg/m at one end to 5000 kglm at the 
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other. Estimate the central deflection if the span is 10 m, the section 0'4 m 
deep, and the maximum bending stress 90 N/mm2 E =205,000 N/mm2• 

Divide the loading diagram (Fig. 9.11) into a uniform rate of 1000 kg/m 
together with a varying load 
(from 0 to 4000 kg/m), which has I 
a value 4000x/10 =400x kgJm Y 
at x m from the end. Let R be the 
reaction on the support at that 1000 
end. 01---+--1---1-----1: 

Taking moments about the 
other end R 
lOR =(1000 x 10) x 5 +(1- x Fig. 9.11 

4000 x 10) x 10/3 

where the varying load has a total value given by the mean intensity times 
the span, and acts at the centroid of the triangular figure 

R=11,670 kg =114 kN 

Repeating the same method to obtain an expression for the bending 
moment at a distance x from the support 

EI·d2y/dx2 =114x - 9'81x2/2 - [!(3'92x)x]x/3 
= 114x - 4'9x2 - 0'655x3 kNm 

EI'dy/dx =57x2 -1'63x3 -0'164x4 +A 
Ely = 19x3 - 0-408x4 - 0'0327x5 + Ax + B 

Atx=O,y=O, B=O 
At x~10 m, y~O, 

or 

A = - 1900 + 408 + 327 
= -1165 kNm2 

The maximum bending moment occurs at zero shear force 

d3y/dx3 =0 ~ 114 - 9·81x -1'96x2 from above, 

l'96x2 +9'81x -114~0 

giving - 9'81 + v(96·3 + 894) ___ 5.54 
x= 3'92 m 

giving 

M -114 x 5·54 -4·9 x 5.542 -0·655 x 5.543 =362 kNm 

Maximum stress 90 =M x (J depth)/l 

I =362 x 106 x 200/90 =8·05 x 108 mm4 

At the centre 

giving 

Ely =19 x 53 -0'408 x 54 -0·0327 x 55 -1165 x 5 

= -3807 kNm3 

3807 x 1012 

y = - 205000 x 8.05 x 108 =23 mm , 
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Alternatively, the above problem may be commenced from the rate 
of loading equation 

EI'd4yldx4 = -9'Sl-3'92x kN/m 
integrating twice to obtain the bending moment equation, the constants 
of integration being found from M = 0 at x = 0 and x = 10m. 

EXAMPLB 9. If the rate of loading on a beam of length I, simply supported 
at its ends, is given by w =p sin 1Txll, where x is the distance from one end,find 
the reactions at the supports and the maximum bending moment. 

dFldx = - w = - P sin (1Txll) (Para. 5.5) 

F=(pII1T) cos (1Txll) +A 
=dMldx 

M = (PPI1T2 ) sin (1Txll) + Ax + B 

But M=O at x=O and at x=l, 
•• B=O and A=O 

Maximum bending moment =pI211T2 from (ii) 

Reaction at support =value of F at x =0 
=pll1T from (i). 

(i) 

(ii) 

EXAMPLB 10. A beam, which is 
supported through pin joints at its 
ends, is acted upon by a couple M 
in a plane containing the axis of 
the beam, applied at a point ,",0-

thirds of the span from one end. 
Find an expression for the slope 
and deflection a' the poin' of 
application, and indicate the shape 
of the deflected beam. 

The reactions must be equal 

Fig. 9.12 and opposite, i.e. 

R=MII 
The bending moment diagram is shown in Fig. 9.12, giving 

EI.d2yldx2= -Rx+M[x-2113]O 
EI.dy/dx = _Rx2/2 +M[x -2113] +A 

Ely = -Rx3/6 +M12[x -2113]2 +Ax +B 
Whenx=O,y=O B=O 
When x=l, y=O AI=RP/6 -(M/2)(l13)2 

giving A = Ml/9 
At x =21/3 

E1. dyldx = - (R/2)(21/3)2 + Ml/9 
= -MI/9 

i.e. slope = - MI/9E1, indicating downwards to the right 
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Ely = - (R/6)(21/3)3 + (MI/9)(21/3) 

Deflection =2M[2/81El, upwards 

There must be a point of zero slope for x <2//3, given by 
-Rx2/2+A =0 

i.e. x =C\!2/3)1 
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The maximum deflection = [- (M/61)(2y2/27)[3 + (MI/9)( y2/3)l]/El 
=2y2MI2/81EI 

At x=l 
slope = [- (M/I)(i2/2) +MI/3 +Ml/9]/EI 

= -MI/18EI 
so that the beam lies entirely" above" the OX axis, its shape being similar 
to the dotted line in Fig. 9.12. 

9.5. Moment-area Method. Fig. 9.13 shows the bending moment 
diagram and the shape of the 
deflected beam between two 
chosen points P and Q. M 

The area of the B.M. diagram 
is A, and its centroid is at a 

I' distance x from a chosen line ~ j 

OY. The tangents at P and Q to .. );;.t58 
the elastic line cut off an inter- ozt--_-=:::;tr=~s!.JI~R~ ....... ...l 
cept z on OY. 

d2yjdx2 =MjEI Y 

Integrating between P and Q 

[~]Q =fA!dX 
dx p EI 

If EI is constant 

o x 
Fig. 9.13 

(dY) (dY) A 
dx Q - dx p ... EI (1 ) 

i.e. The increase of slope between any two points on a beam is equal to the 
net area of the bending moment diagram between those points divided by EI. 

If R is the radius of curvature of the beam at some point between P 
and Q, then the angle between the tangents at the ends of a short length 
ox is 08, where ox = R .08. The intercept of these tangents on OY is oz, 
and since the slope is every\\'herc small, 

oz~x08 
= xox/ R = Mxoxj EI 

Integrating z = f Ms. dsj EI 
... AijEI if EI is constant (2) 
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i.e. The intercept on a given line between the tangents to the beam at any 
points P and Q is equal to the net moment about that line of the bending 
moment diagram between P and Q divided by EI. 

Account is to be taken of positive and negative areas, and frequently 
it is convenient to break down the bending moment diagram into a 
number of simple figures, so that the moment is obtained from 
EAi. 

The intercept z is positive when the tangent at Q strikes OY below 
the tangent at P. 

This method will only be used for particular applications in which it 
produces a quicker solution than the mathematical treatment. These 
cases can generally be labelled as those for which a point of zero slope 
is known. If this point is chosen as "Q," and OY is taken through 
P (Fig. 9.14), then (1) reduces to 

Slope at P co - AIEl 
and (2) 

Deflection of P relative to Q co AxlEI 

Y i.e the deflection at any point can be 
found by working between there and a 
point of zero slope, and taking moments 
about the point where the deflection is 
required. 

Q It is very helpful in applying these 
"'="1------....::::==--- theorems to sketch the approximate 

Fig. 9.14 shape of the deflected beam, and then 
by drawing the tangents at chosen 

points it should be clear which intercept gives the relative deflection 
(e.g. if OY is taken through Q in Fig. 9.14 the intercept does not give 
the deflection). 

Summarising the cases in which this method proves advantageous: 
(a) most cantilever problems (zero slope at fixed end); 
(b) symmetrically loaded simply sup­

ported beams (zero slope at 
centre); 

(c) Built-in beams (zero slope at each 
end) (Chapter X). 

For uniformly distributed loads the 

b 

d 

B.M. diagram is a parabola, and the Gz 
following properties of area and centroids '----F-ig-, -9-,1-5--=:::::".1 

should be known. 
In Fig. 9.15, bd is the surrounding rectangle, and the parabola is 

tangential to the base. 
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Xl-ib 
A2 ... tbd 
X2=jb 
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EXAMPLE 11. Obtain expressions for the maximum slope and deflection of a 
limply lupported beam of span 1 (a) with a concentrated load W at mid-span 
(b) with a uniformly distributed load 10 over the whole span. 

In both cases, by symmetry, the slope is zero at the centre, and the 
maximum slope and deflection can be found from the area of the bending 
moment diagram over half the beam, i.e. "P" at support, "Q" at centre 
(cf. Fig. 9.14). 

(a) If A is the area of B.M. diagram for half the beam 
A =!(Wl/4)(lf2) (Fig. 9.16) 

=Wi2/16 
"'len from (1) 

}<'rom (2) 

Slope at support = - A/EI 
= - Wi2/16EI 

Deflection of support relative to centre = Ai/EI 
Wi2 l/3 

=16·EI 

Fig. 9.16 

=W13/48EI 

w 

Fig. 9.17 

(b) Shaded area A =i(wi2/8)(l/2) (Fig. 9.17) 
=10[3/24 
Slope at support = - A/EI 

= -w[3/24EI 

Deflection of support relative to centre =A%/EI 
(w[3/24)(hl) 

EI 
=S",,14/384EI 
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EXAMPLE 12. A horizontal cantilever ABC, 15 m long, is built in at A 
and supported at B, 12 mfrom A, by a rigid prop so that AB is horizontal. 

fkN/m 
00&:, B o·,hll/m 1 
r3~/ 

72P 

If AB and BC carry uniformly 
distributed loads of 0·5 kN/m 
and 1·0 kN/m respectively, find 
the load taken by the Drop. 

If the bending moment 
diagram is broken down into 
the areas shown in Fig. 9.18, 
each area can be dealt with as 
a triangle or parabola of stan­
dard type. 

If P is the load on the prop 

Al =! 12P x 12 
=72PkNm2 

Due to the load on Be, the 
bending moment at B = - 3 x 

Fig. 9.18 3/2= -9/2 kNm, and at A 
= -3 x 27/2 = -81/2 kNm, 

the trapezium between A and B being split up into two triangles 

A z = -! x (9/2) x 12 = - 27 kNmz 

and A3 = -! x (81/2) x 12 x - 243 kNm2 
Due to the load on All, the area A4 is a parabola with a maximum value 

of (0'5 x 122)/2, or 36 kNm, i.e. 
A4 =t x 36 x 12 =144 kNmz 

Slope is zero at the built-in end A, and deflection is zero at B, i.e. 
z =EAX/EI =0 (from (2)) 

for the portion All about B, or 

Alxl =A2X2 +A3X3 +A4X4 
giving 

from which 

72P x 8 = 27 ~ 4 + 243 x 8 + 144 x 9 
P=93/16 =5,81 kN 

EXAMPLE 13. A horizontal 
beam rests on two supports at the 
same level and carries a uniformly 
distributed load. If the supports 
are symmetrically placed find their 
positions zvhen the greatest down­
ward deflection has its least value. 
(U.L.) 

w(l+d) I 

w(l+d)l 

Let the distance between the 
supports be 2l, and the over­
hanging distance d (Fig. 9.19). 

Fig. 9.19 

Then the reaction at each support =2U(l +d). 
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The condition for the greatest downward deflection to have its least 
value occurs when the deflections at the end and centre are the same, 
since any variation of the supports from this position will increase either 
one or other of these values. Since the slope is zero at the centre then 
EAi =0 for half the beam about one end. 

Breaking down the bending moment diagram into Al due to the 
support, and A2 due to the load, then 

AIXI =A2x2 

i.e. [;.w(1 +d)I.l](d +il) = [t(w/2)(1 +d)2(l +d)]l(l +d) 
x 24: 513 + 3/2d - 91d2 - 3dl =0 

By trial and error: 1= 1·24d 

EXAMPLE 14. A long steel strip of uniform width alld 3 mil! thick is laid 
on a level floor, but passes over a 5 cm diameter roller lying on the floor at 
one point. For what distance 011 

either side of the roller will the strip 
be clear of the ground and what will 
be the maximum stress induced? 
Density of steel = 7950 kg/m 3 

E =205,000 N/mm2• 

For that part of the strip lying 
on the floor, the ground reaction 
just balances the weight, and, 
since there is no change of slope, 
there is no bending moment in 
this length. However, where the 
strip leaves the floor, there will be 
a point reaction R, and the con­

Fig. 9.20 

ditions are as though the surplus length in contact with the floor were 
cut off. 

The forces and bending moment diagram are shown in Fig. 9.20, w 
being the weight per unit length. 

Since there is no change of slope between R and the top of the roller, 
equating areas gives 

i.e. 
;RI.l -i(w12/2)1 

R-trol 
By moment areas about the roller, 

i.e. 

~i~.l.~ -3w;22·1.~)-S 
14 = 5EI x 72/w from (i) 

5 x 20S,000b x 33 x 72 x 106 

12 x 3b x 7950 x 9·81 
=7·3 x 108 cm4 

1=I64cm 

(bmm = width of strip) 

(i) 

(ii) 

It should be noted that equation (ii) can be obtained by treating the 
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roller as a 'fixed end' and taking the difference between the 'cantilever' 
deflections due to R and "". 

The maximum bending moment is at the roller, where 

M-RI-wI2/2 
~w12/6 numerically, from (i) 

(there is a point of zero shearing force at 1/3 from R, but here M­
RII3 - w12/18 -wI2/18) 

~=6Mlbd2 
6 x 3b x 7950 x 9·81 x 1642 

107x6xbx32 

=68·5 N/mm2 

EXAMPLE 15. A cantilever 0/ uniform strength is to be turned from a mild­
steel bar 50 mm diameter. A load 0/4000 N is to be supported/rom the/ree 
end, and the maximum stress is limited to 70 Nlmm2. Determine the maximum 
length 0/ the cantilever and its end deflection. E=205,000 N/mm2. 

The maximum bending moment is 40001, at the fixed end, and the 
strongest section is 50 mm diameter. Applying the bending stress formula 

70 = (40001) x 25 
(7T/64) x 504 

from which 1=214mm 

Let the diameter be d mm at x mm from the frec end, then, applying the 
condition for uniform strength (i.e. constant maximum stress) 

4000x d 
70 = 7Td4/64."2 

or d3 =583x 

The I value is varying along the bar, but the deflection can be found by 
the moment-area method, using the form z = JMxdxIEI, z giving the end 
deflection if moments are taken about the free end, i.e. 

. 64( 4000x)x. dx fl 

DeflectIOn = 0 205,000 x 7Td4 

= 64 f2l4 x2. dx from above 
51·257T(583)4I3 0 x4l3 ' 

64 3 (214)513 
51·257T x (583)4/3' f 

=0·375 mm 

9.6. Method of Deflection Coefficients. It should be realised that 
any beam of length I and flexural rigidity EI carrying a total load W, 
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however distributed, will have a maximum deflection - k. Wl3 / El, the 
value of k depending on the type of loading and supports. 

k has been found for standard cases of cantilever and simply sup­
ported beam (Examples 4 and 11), and deflection in other cases may 
frequently be built up by the principle of superposition (see 
Para. 1.5.) 

Two types of problem will be solved by this method. 
EXAMPLE 16. A beam of uniform section and length 21 is simply supported 

at its ends and by an elastic prop at the centre. If the prop deflects an amount 
ex times the load it cames and the beam cames a total uniformly distributed 

load W show that the load camed by the prop = 8(1 + ~~ex/[3)' 
If 1=3 m, 1=6 x]06 mm4, W=50 kN, and a=4 x ]0-3 mm/N, find the 

position and value of the maximum bending moment. E=200,000 NJmm 2• 

(U.L.) 
If P is the load on the prop, then its deflection is exP. 
Downward deflection due to load only 

=(5/384)[W(21P/EJ] (see Ex. 11, part (b» 
Upward deflection due to prop only 

=:.P(21)3 /48EI (Ex. 11, part (a» 

By superposition, the net downward deflection 
exP=(5/384)[W(2l)3/EJ] -P(2l)3/48EI 

from which P(ex + Zl/6El) = (5/48)(W[3/El) 

and 
5W 

P 8(6EIex/Zl + 1) 

Substituting the numerical values gives 
P= 5 x 50,000 

8[(6 x 200,000 x 6 x 106 x 4 x 10-3)/30003 + 1] 
=15,000 N 

The reaction at the end supports 
=t(50,000 -15,000) =17,500 N 

and for x<3 m 
M = 17,500x - (50,000/6)(x2/2) 

For a maximum dM/dx =0, giving 
x = 17,500 x 6/50,000 = 2·1 m 

and 1Q'=18,400 Nm 

EXAMPLE 17. A horizontal steel beam, 1=80 x 106 mm4, carries a uni­
formly distributed load of 50 kN over its length of 3 m. The beam is supported 
by three vertical steel tie rods, each 2 m long, one at each end and one in the 
middle, the end rods having diameters of 24 mm and the centre rod 30 mm. 

Calculate the deflection at the centre of the beam below the end points and 
the stress in each tie rod. E=208,000 N/mm2• (UL.) 
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Let P kN be the load in the centre rod (Fig. 9.21). 
Then by superposition the following compatibility equation is obtained: 

Stretch of centre rod - Stretch of end roJ 
= Deflection of beam due to load - Deflection due to centre rod 

i.e. P x 2000 (50 - P) x 2000 5 x 50 x 30003 P x 30003 

7r x 152E 2(7r x 122)E 384E x 80 x 106 48E x 80 x 106 

or 2·83P-ll1 +2·22P=219 -7·05P 
giving P=330/12·1 =27·5 kN 

S· 27,500 2 
tress In centre rod = 7r X 152 =39 N/mm 

S. (50,000 - 27,500) 2 
tress In end rods = 2 X7r X 122 =25 N/mm 

24 
di 

mm 
t,m 

30mmtliQ. a. 

P so­
T 

50kN p 
--'-

!--1·5m __ jE 

Fig. 9.21 

Deflection of centre relative to ends 

~ 50 
2. 

1·5m-1 

= Difference of stretches of tie rods 
39 x 2000 - 25 x 2000 

208,000 
=0·135 nun 

9.7. Deflection due to Shear. It was shown in Chapter VII how a 
shear stress was set up on transverse sections of a beam, and the accom­
panying shear strain will cause a distortion of the cross-section, and, 
since the shear stress varies from zero at the extreme fibres to a maxi­
mum at the neutral axis, cross­
sections can no longer remain 
plane after bending. 

In fact the "warping" will be 
of the form shown in Fig. 9.22, 
the left-hand view being for 
positive shear and the right-
hand for negative shear. These Fig. 9.22 
strains are incompatible with 
the theory of pure bending. but nevertheless a good approximation to 
the deflection due to shear can be obtained by strain energy methods. It 
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should also be noted that the shear distribution near to the application 
of a concentrated load must differ considerably from that given by the 
theory in Para. 7.1, since there can be no sudden change of shear strain 
from one type to the other, as would be implied for a simply supported 
beam with a central load. 

Strain energy due to shear = (72 /2G) x volume (Para. 2.5) 
For the whole beam 

U, -= {1/2G)JJ 7 2dA . dx (I) 
where dA is an element of cross-section and dx an element of length. 

The integration can only be performed for particular cross-sections 
over which the variation of 7 is known, and rectangular and I-sections 
will be dealt with below. 

Rectangular Section 
It was shown in Para. 7.2 that 7 -(6F/bd3){d2/4 - y2) where y is the 

distance from the neutral axis. dA -bdy, then 

1 I [ItltZ 36F2(d4 d2y2 ) 1 u, = 2G _tlt2d6 16 - 2 + y4 bdy . dx from (I) 

_ ~J36F2 [d"Y _ d2y~ ~J "z 
2G bd6 16 6 + 5 _m' dx 

-=~fF2 2(~ -! +_1 ) dx 
Gbd . 32 48 160 . 

3 f' - SGbd 0 F2.dx 

Cantilever with load W at free end. 
F=W 
3W21 

U, - 5Gbd from (2) 

But U, -! ~,. where 8~ is the deflection due to shear 
:. 8,=6Wl/5Gbd 

(2) 

Fig. 9.23 

CantiiefJer with uniformly distributed 
load. The load wSx, on a length Sx at a 
distance x from the fixed end, treated 
as a concentrated load, will produce a 
deflection due to shear = (6w8x. x)/5Gbd 
at this point. For this load alone the 
distortion produced is indicated in 
Fig. 9·23, being uniform shear force 

over the length x and zero over I - x, hence the total deflection due 
to shear for all the distributed load 
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f'6wXdx 
= 0 5Gbd 

... 3wJ2jSGbd 

Simply supported beam with central load W. 
F= ±Wj2 

U =f' 3(W2j4) dx from (2) 
, 5Gbd . 

o 
= 3 W2lj20Gbd 
=!WS, 

8, = 3 Wljl OGbd 
The .. simplified" deflection is as 

shown in the upper diagram of Fig. 9.24, 
and since the shearing force is constant 
over each half this case is equivalent 
to a cantilever of length Ij2 carrying an 
end load of Wj2. 

If the load is not centrally applied, 
but divides the length into /1 and 12 
then treating either section as a canti­
lever with an end load equal to the 

Fig. 9.24 reaction on that side 
8 = 6(WI2jl)11 
, 5Gbd 

= 6 W1112/5Gbdl under the load (Fig. 9.24). 
Simply supported beam with uni­

~ formly distributed load. Due to a load 
wax w8x only, at a distance x from one end 

(x<lj2), the deflection at the load 

Fig. 9.25 -= 6wSx(l- x)xjSGbdl just proved. 

By proportion, the deflection at the centre of the beam 

... 6wSx(l-x)x. ( 1/2) (Fig. 9.25) 
5 Gbdl I-x 

Then the total central deflection due to shear 

..,2fIJZ3WXdx 
SGbd 

o 
.. 3wl2j20Gbd 
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Treating the shearing force as uniformly distributed over the web 
area bd (see Para. 7.3), then 7'''' F/bd and fdA = bd. 

U, =(1/2G)f(F2/b2d2)bd.dx from (1) 
_(fF2.dx)/2Gbd (3) 

By similar methods to those employed for a rectangular section the 
deflections due to shear may be obtained as follows: 

Cantilever with end load, 8, = WljGbd 
Cantilever with distributed load, 8, = Wlj2Gbd 
Simply supported beam with central load, 8, = Wlj4Gbd 
Simply supported beam with distributed load, 8, = Wlj8Gbd. 
The strain energy method known as .. Castigliano's Theorem" 

(Para. 11.4) may be used where a number of loads exist concurrently, 
or to find the deflection due to a distributed load by imposing a con­
centrated load at the deflection point and later giving it a value zero 
(i.e. 8,- (8U,/8P)p_o). 

EXAMPLE 18. For a given cantilever of rectangular cross-section, length l, 
and depth d, show that, if S. and Sb are the deflections due to shear and bend­
ing due to a concentrated load at the free end, S,/Sb =k· (d/l)2, and find the 
value of kfor steel. E=205,000 N/mm2; G=80,000 N/mm2. 

Hence find the least value of lid if the deflection due to shea,. is not to 
exceed 1 % of the total. 

It has been shown that 

Ss=6Wl/5Gbd 
and Sb = WP/3EI =4WP/Ebd3 

for a rectangular section. 

where 

i.e. 

Ss/Sb = [6/(5 x 4)](E/G)(d/I)2 = k(d/l) 2 

k = (3/1 O)(E/G) = (3/10)(205/80) 

=0·77 

SS/Sb =0·01/0·99 
=0'77(d/I)2 from above, 

Least value of lid = v(0·77 x 99) 
=8,7 

EXAMPLE 19. A 250 mm by 150 mm R.S.J. with web 10 mm, flanges 
17·5 mm thick, acts as a horizontal cantilever 4 m long and carries a load of 
2000 kg at 2 m from the end. Assuming the shear force is carried by the web 
and is uniformly distributed, calculate the deflection at the end. E =200,000 
N/mm2; G=78,000 N/mm2. (U.L.) 

1 =(150 x 2503 -140 x 215 3)/12 =78·5 x 106 mm4 
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By the moment-area method (Para. 9.5), end deflection due to bending 

( .1 2000 2 10,000 
2 X x 9·81 x 2000 )3 x 200,000 x 78.5 X 106 8·34 mm (Fig. 9.26) 

~1~~------4m / 

Mlf+-E --1~">;J 
Fig. 9.26 

Combined deflection at free end 

Deflection due to shear at the 
load is given by 

Wl 2000 x 9·81 x 2000 
Gbd 78,000 x 10 x 215 

O'234mm 
But since the shearing force is zero 
beyond the load this is also the 
deflection due to shear at the free 
end (see also Fig. 9.23). 

=8·34 +0·234 =8·57 mm 

9.8. Deflection by Graphical Method. It was shown in Para. 5.10 
how a "funicular polygon" could be used to perform a double integra­
tion of the load curve and produce the bending moment diagram. Since 
d2y/dx2 .... M/EI it follows that a double integration of the bending 
moment curve will produce the deflection curve. 

Fig. 9.27 

If EI is constant, draw the B.M. diagram and divide into a number of 
strips 8:e (Fig. 9.27). Draw a vertical line to represent the areas M8:e and 
join to a pole 0, on the right of this line. Proceed in the normal way to 
draw the funicular polygon, being a series of straight lines to be 
smoothed out into a curve. The vertical ordinates on this diagram 
represent deflection, and it will usually be necessary to "shear" the 
diagram through an angle in order to produce a horizontal base (e.g. 
for a simply supported beam). 

If the scales are 1 mm =SI Nm2 "M?>x" units, 1 mm =S2 m length, 
and 1 mm =S3 Nm3 " Ely" units, then the distanceh is given by S3/S1S2 mm. 
If then the deflection scale required is 1 mm =S4 mm =s3/El, h =EIs4/S 1S2. 
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SUMMARY 

Strain Energy U ... JM2.dx/ZEI. Applications to deflection and 
impact. 

Deflection by Calculus Eld2yldx2 "",M. Macaulay'. method. 
Moment-Area Method. Increase of slope =EAIEI 

Intercept z"",EAiIEI 
Deflection Coefficients. Maximum slope ... kI . W12IEI 

Maximum deflection -k2 • Wl31EI 

Beam and Loading kJ 

)~ 
1/2 

wf l 

~ 
1/6 

r-i 
w f-l .~. 

1/16 

f t 
W=wl 

~ 1/24 

Deflection due to Shear. Strain energy method. 
Graphical Method. 

PROBLEMS 

k2 

1/3 

1/8 

1/48 

5/384 

1. Prove that the strain energy of a beam is given by il 
:;; dx. 

Strain energy may also be expressed in the form C.(a2/E) x volume, where a 
is the maximum stress. Find the value of C for a beam of square section simply 
supported at the ends and carrying a uniformly distributed load. (U.L.) (4/45.) 

2 .. A timber beam of rectangular section 8 cm deep and 5 cm wide was simply 
supported at its ends over a span of 1 m. The following readings were taken from 
a test in which the beam was loaded at the centre. 
Load (kg) 0 250 500 750 1000 1250 1500 1750 1880 
Deflection (mm) 0 1·9 3·8 5·6 7·5 9·6 12·0 15·0 Broke 

Find the load which, falling from a height of 15 cm on to the middle of a 
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similar beam, (1) would just not overstrain the beam, (2) would just cause 
fracture. (V.L.) (30 kg; 110 kg.) 

3. Prove, by the method of resilience, that the deflection of a cantilever of 
length I due to a load Wat its free end is W[3/3EI. 

What load falling through 25 mm on to the end of a cantilever 3 m long will 
cause a maximum deflection of 12 mm? 1=80 x 106 mm4; E=200,000 N/mm2• 

(353 kg.) 
4. A horizontal steel beam of I-section rests on a rigid support at one end, the 

other end being supported by a vertical steel rod 18 mm diameter whose upper 
end is rigidly held in a support 2·5 m above the end of the beam. The beam is 
200 mm by 100 mm for which 1 =22 x 106mm4 and the distance between the 
points of support is 3 m. A load of 200 kg falls on to the beam at mid-span from 
a height of 18 mm. Determine the ma.'{imum stresses set up in the beam and 
rod and find also the deflection at mid-span measured from the unloaded posi­
tion. E=207,000 N/mm2• (V.L.) 

(125 N/mm2 ; 67·5 N/mm2 2·53 mm.) 
5. A beam simply supported at its ends over an 8 m span is loaded with 40,80, 

and 120 kN at 2, 4, and 6 m respectively from one end. The maximum stress is 
90 N/mm2 and the beam is 300 mm deep. If E=203,000 N/mm2 find the 
maximum deflection and state where it occurs. (18.5 ~m; 4·1 m.) 

6. A girder 6 m long is supported at one end and at 1·5 m from the other end. 
It carries a uniformly distributed load of 100 kN/m along its whole length and a 
concentrated load of 60 kN at the overhanging end. Calculate the maximum 
downward deflection and state where it occurs. EI = 16·7 x 1012 N mm2• 

(16·8 mm; 2·0 m) 
7. A beam of uniform section and 12 m span is freely supported at its ends 

and carries a load varying from 30 kN/m at the left-hand end to 20 kN/m at the 
right. Find the position and magnitude of the maximum deflection. 1 =20 x 
108 mm4; E =208,000 N/mm2 (6·03 m from right; 16 mm.) 

8. A beam of uniform cross-section and flexural rigidity EI, length 3/, is 
hinged at one end and rests on a support distant 21 from the hinge. There is a 
load W at the free end and a uniformly distributed load of total W spread over a 
I ength between I and 21 from the hinge. Show that the deflection of the con­
centrated load is (13/16)(Wl3/EI). 

9. A horizontal propped cantilever of length L is securely fixed at one end and 
freely supported at the other, and is subjected to a bending couple M in the 
vertical plane applied about an axis O·75L from the fixed end. Determine the end 
fixing moment and the reaction at the prop. 

Sketch the B.M. diagram. (V.L.) (13/32)M; (45/32)(M/L).) 
10. An initially straight and horizontal cantilever of uniform section and 

length L is rigidly built-in at one end and carries a uniformly distributed load of 
intensity w for a distance L/2 measured from the built-in end. The second 
moment of area is 1 and the modulus of elasticity E. Determine, in terms of w L 
E and I, (a) an expression for the slope of the cantilever at the end of the load, 
(b) the deflexion at the free end, (c) the force in a vertical prop which is to be 
applied at the free end in order to restore this end to the same horizontal level as 
the built-in end. (V.L.) 

«a) wV/48 EI, (b) 7wL4/384 EI, (c)7wL/128) 
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11. A beam of constant cross-section 10 m long is freely supported at its ends 

and loaded with 10 kN at points 3 m from each end. Find the ratio of central 
deflection to that under each load. (33/27.) 

12. A beam 9 m long is symmetrically placed on two supports 6 m apart. The 
loading is 16·5 kN/m between the supports and 20 kN at each end. What is the 
central deflection and the slope at the supports? E = 200,000 N /mm2 in.; 1= 
175 x 106 mm4. (4·3 mm; O·P.) 

13. A cantilever of length l carries a total distributed load Wand is propped at 
a distance of nl from the fixed end so that the load on the prop is W. Find the 
ratio between the deflection at the free end of the propped cantilever and that at 
the free end of an unpropped cantilever. Plot a curve of this ratio against nand 
hence find the position of the prop when the end deflection is zero. 

(1 -4n2 +4n3/3; 0·555.) 
14. A horizontal cantilever 2 m long has its free end attached to a vertical tie 

rod 3 m long and 300 mm2 area, initially unstrained. Determine the load taken 
by the tie rod and the deflection of the cantilever when a distributed load of 
30 kN/m is applied to the outer 1 m of the beam 1=6 xl06mm4; E=205,OOO 
N/mm2 for both. (18'8 kN; 0·915 mm.) 

15. A beam is simply supported on two supports a distance L apart, and over­
hangs each support by L/3. It carries a distributed load of W spread between the 
supports, and a load of W/4 at each end. If the deflection at the centre is equal to 
that at the free ends, find the value of the second moment of area for the over­
hanging portions when that between the supports is I. (U.L.) «32/27)1.) 

16. A long flat strip of steel 50 mm wide and 3·2 mm thick is lying on a flat 
horizontal plane. One end of the strip is now lifted 25 mm from the plane by a 
vertical force applied at the end. The strip is so long that the other end remains 
undisturbed. Calculate (a) the force required to lift the end, (b) the maximum 
stress in the steel. Take the weight of steel as 7800 kg/m3• E = 205,000 N /mm2. 
(U.L.) «a) 6·7 N; (b) 21 N/mm2.) 

17. A circular steel pipe 450 mm bore and 6·4 mm thick is supported freely at 
each end and at the centre over a span of 15 m. When the pipe is full of water the 
central support sinks 12'S mm below the ends. Find the load on each support 
and draw the B.M. diagram. Determine also the maximum bending stress in the 
pipe. Steel =7800 kg/m3 ; E=208,000 N/mm2 ; water =1000 kg/m3• (U.L.) 

(13 kN centre; 11 kN; 24 N/mm2.) 

18. An aluminium cantilever of length 250 mm and rectangular cross-section 
40 mm wide by 25 mm deep carries a concentrated load at its end. Show that 
deflection will be underestimated by less than 1 % if shear strains are neglected. 
E~70,OOO N/mm2 ; G=27,OOO N/mm2• (U.L.) 

19. A cast-iron cantilever 0·6 m long consists of an I-section 150 mm deep by 
100 mm wide, having flanges 50 mm deep and web 25 mm thick. If a load of 
2000 kg is carried at the free end find the deflection due to shear. G =38,000 
N/mm2• (U.L.) (0·25 mm.) 

20. Determine the end deflection, in magnitude and direction, for the un­
symmetrical angle used as a cantilever in Ex. 14, Para. 6.12. E =208,000 N/mm2• 

(Ii" = 1·8 mm. Oy =4·2 mm. Total deflection 4·6 mm at 47° to the vertical.) 



CHAPTBR X 

Built- In and Continuous Beams 
10.1. Moment-Area Method for Built-in Beams. A beam is said 

to be built-in or encastre when both its ends are rigidly fixed so that the 
slope remains horizontal. Usually also the ends are at the same level. 

It follows from the moment-area method (Para. 9.5) that, for a beam 
of uniform section, since the change of slope from end to end and the 
intercept :r are both zero 

EA-O 
and EAi""O 

Fig. 10.1 

(1) 
(2) 

It will be found con­
venient to show the bend­
ing moment diagram due 
to any loading such as Fig. 
10.I(a) as the algebraic sum 
of two parts, one due to the 
loads, treating the beam as 
simply supported (Fig. 
10.I(b», and the other due 
to the end moments intro­
duced to bring the slopes 
back to zero (Fig. 10.I(c». 

The area and end re­
actions obtained if freely 
supported will be referred 
to as the free moment 
diagram and the free re­
actions, Ab Rl and R2 
respectively. 

The fixing moments at 
the ends are M. and M., 
and in order to maintain 
equilibrium when M. and 
M. are unequal, the re­
actions R = (M. - M.)/l are 

introduced, being upwards at the left-hand end and downwards at 
the right-hand end. Due to M., M., and R, the bending moment at a 
distance:: from the left-hand end 

- - M. + R:: - - M. + [(M. - M.)/Ij3l. 
17. 
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This gives a straight line going from a value - M. at :II: - 0 to - M. at 
x-I, and hence thefixing moment diagram, A2 (Fig. lO.l(d». 

For downward loads, At is a positive area (sagging B.M.). and A2 a 
negative area (hogging B.M.) consequently the equations (1) and (2) 
reduce to 

A 1 -A2 

and A1x1 .. A2x2 (numerically) 

i.e. Area of' free moment diagram -

(1) 
(2) 

Area of' fixing moment diagram 

and Moments of' areas of' f'ree and fixing diagrams are equal. 

It may be necessary to break down the areas still further to obtain 
convenient triangles and parabolas. 

These two equations enable M. and M. to be found, and the total 
reactions at the ends are 

and 

R.-Rl +R 
-R1 +(M.-M.)/l 

R.-R2 -R 
-R2 -(M.-M.)/1 

Finally, the combined bending moment diagram is shown in Fig. 
10.1(e) as the algebraic sum of the two components. 

EXAMPLB 1. Obtai" "pr"riom 
for Uu maximum bending moment 
and deflection 0/ a beam o/Iength I 
a"d flexural rigidity EI, fixed hon­
flontally at both enM, carrying a 
load W (a) concentrated a. mid­
span, (b) uniformly distributed OfJer 
the whole beam. 

(a) By symmetry M. =M. =M, 
say (Fig. 10.2). 

The free moment diagram is Q 

triangle with maximum ordinate 
WI/4 (Chap. V). 

• Area Al =!(WI/4)1 
=WP/8 

Area Al=MI 

Equating At =Al from (1), gives 

W 

r=:! .... t.---i==1 
~ Al 4 

M~i 

Fig. 10.2 

M=WI/8 
The combined bending moment diagram is therefore 88 shown in the 

lower diagram, Fig. 10.2, and the maximum bending moment is WI/S, 
occurring at the end (hogging), and the centre (lagging). 
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By taking moment-areas about one end for half the beam, the intercept 
gives the deflection, i.e. 

a = [t( Wl/4 )(l/2m .l/2 - M(I/2)l/4 
EI 

=WI3/192EI 
(b) Free moment area 

Al =i(wl2/8)1 =wL3/12 (Fig. 10.3) 
(properties of parabola, Para. 9.5). 

Fixing moment area 
Az=MI. 

Equating gives M =wI2/12 
and this is the maximum bending 
moment. 

Again, for half the beam, the 
intercept about one end gives the 

~Wl2 deflection, i.e. 

,-:n---::....=_--r-_2;::.'4"'c-----,~ 8 = [i(wI2/8)(1/2)Ji .1/2 - M(lJ2)1/4 ,:flV"J EI 
=wl4/384EI 

Fig. 10.3 
EUMPLB 2. A beam of span 1 

has its ends fixed hori1lontally a' the same level and carries a load W at a 
distance a from one end and b from the other. Deduce expressions for 
the fixing moments at the ends. Hence show that, for a distributed load on 

tIu ........... tIu fo<ing ........ at ... mJ u ,w .. by J.p.~ -.j' .do 

where p = rate of loading at a distance 
of x from the end considered. 

Apply the above resuz' to find 
the fixing moments when 1=20 m 
and p varies uniformly from zero at 
one end to 20 kN/m a. the other. ~ 

The free moment diagram is a Wah 
triangle of height Wab/l, and the l 
fixing moments are M. and M. ML====-===== 
(Fig. 10.4). Me 

Equating areas 
t(M. +M.)l =t(Wab/l)l Fig. 10.4 

i.e. M.+M.=Wab/1 (1) 
By moment-areas about the left-hand end, splitting each figure into 

two triangles 

i.e. 
or 

(tM •. l)lI3 + (tM •. l)21/3 = [t(Wab/l)a]2a/3 + [t(WOO/l)b](a +b/3) 
(M. +2M.)l2/3 =2Wa3b/31 + (Wab2/l)(a +b/3) 

Ma + 2Mb = (WOO/L3)(2a2 +300 +62) (2) 
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Subtract (1), giving 

From (1) 

Mb = (Wab/P)(2a2 +3ab +b2 - [2) 
= (Wab/J3)(a2 +ab), 1 =a +b 
= (Wab/P)a(a +b) 
=Wa2b/[2 

M. = Wab/I- Wa2b/12 = Wab2 /12 
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For a distributed load the fixing moment oM. due to the load pox on a 
short length at a distance x from that end =pox.x(l-x)2/12 from above. 

Integrating for all the load 

p=xkN/m 

Similarly 

M =f'px(l-X)2dX 
• 12 

o 

flO x2(20 - x)2 
M- d .- 202' x 

o 

=_1_ (2°(400x2 -40x3 +x4)dx 
400 Jo 

=267 kNm 

f lO x3(20 - x) 
M- d ~- 202 ' x 

o 

=_1_ e(20x3 _ x4)dx 
400Jo 

=400kNm 

It will be seen from Examples 1 and 2 that for standard cases the 
maximum bending moment occurs at one of the fixed ends. More 
complicated loadings may be built up by superposition (see Example 3, 
below), and it may be accepted in general that, for any combination 
of downward loads the maximum bending moment is given 
by the greater fixing moment. 

EXAMPLE 3. A built-in beam of span 12 m carries a uniformly distributed 
load of 10 kN/m over its whole length together with concentrated loads of 
20 kN at 3 m and 30 kN at 8 mfrom one end. If the bending stress is limited 
to 100 N/mm2 calculate the section modulus required, and sketch the bending 
moment diagram. 

For each concentrated load Ma = Wab 2Z2, Mb = Wa 2b/Z2 (Example 2), 
and for the distributed load M =wZZ/12 (Example 1). 

By combination 

total Ma = (20 x 3 x 92)/122 + (30 x 8 x 42)/122 + 10 x 122/12 
=180kNm 
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and Mb = (20 x 32 x 9)/122 + (30 X 82 x 4)/122 + 10 x 122/12 
=185 kNm 

Maximum bending moment = 185 kNm 
=aZ 

Section modulus Z = 185 x 106/100 
=1·85 xl06 mm3 

In Fig. 10.5 the combined bending moment diagram has been built up 
from its component parts, and the main values are shown. 

180 185 

180 

Fig. 10.5 

The effects of complete 
and perfect end fixing are to 
reduce the maximum bend­
ing moment (and hence the 
stress) and to reduce the 
deflection, as may be 
appreciated from the pre­
vious examples. In practice, 
however, it is almost im­
possible to ensure no change 
of slope at the ends, so that 
usually the degree of fixing 
is imperfect and indetermi­
nate. A rotation of the ends 
proportional to the fixing 
couples may be allowed for, 
as occurs in Example 4, the 
"stiffness" of the built-in 
end being estimated em­
pirically. 

A further disadvantage 
is the danger of "settle­
ment" of one end relative 
to the other, which will 
cause an appreciable change 

in the values of the fixing moments. This will be illustrated in 
Example 5. 

EXAMPLE 4. A rung of a vertical ladder is in a horizontal plane and has the 
form of three sides of a rectangle, the short sides of length b and the long side 
4b. The rung is made of steel of circular section and the short sides are securely 
built in to the vertical sides of the ladder. If a vertical load W is carried in the 
middle of the long side, find the twisting moment on each of the short sides in 
terms of Wand b. E=208,000 N/mm2; G=80,000 N/mm2• (U.L.) 

Let T be the twisting moment on each of the short sides; then this acts 
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as a bending moment on each end of the long sides, and if (J is the angle of 
twist of the short sides it is also the angle of slope of the long side (see 

Fig. 10.6). 
For twisting a short side 

T/J = G(J/b 
or (J=Tb/GJ (i) 

~ 
Treating the long side as a 

W. centrally loaded beam with "incom-
7j X4b plete" fixing moments T, -,If"------L-----""Io- increase of slope from end to 

1'._.7 end=EA/EI 
Fig. 10.6 i.e. 2(J=t(W/4)4bE~4b-T.4b 

or (J=(Wb2 -2Tb)/EI (ii) 

Equating (i) and (ii) and noting that J = 2I 
Tb/2GI = (Wb2 -2Tb)/EI 

from which 

and rearranging 

T=2GWb/E-4GT/E 
2(G/E)Wb 

= 1 +4G/E 
(160/208)Wb 

= 1 +320/408 
=O·303Wb 

EXAMPLE 5. Find an expressi011for the change infixing momtmts and end 
reactions when one end of a built-in M 
beam of span I sinks an amount u 
below the other, the ends remainiflg 
horizontal. 

If M is the change of fixing 
moment, it must be hogging at 
one end and sagging at the other. 
The change in end reactions R 
must then be given by R = 2M/1 
for equilibrium. 

The bending moment is shown 
in Fig. 10.7, and Fig. 10.7 

u =EAi/EI about the left-hand end 

(tM .1/2)il - (tM .1/2)//6 

or 
and 

EI 
= Mi2/6EI 
=RP/12EI since R = 2M/l 

M=6Elu/i2 
R=12Elu/P 
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Altemativ,/y, treating as two cantilevers of length 112 carrying end 
loads R, 

and 

2.R(l/2)3 
u= 3EI 

= Ri3/12EI 
M=R.112 as before. 

10.2. Macaulay Method. When the bending moment diagram does 
not lend itself to simplification into convenient areas it may be quicker 
to use the calculus method (Para. 9.4); it also has the advantage of 
giving directly the fixing moments and end reactions, and enables the 
maximum deflection to be found. 

EXAMPLE 6. A beam of uniform section is built in at each end and has a 
span of 20 m. It carries a uniformly distributed load of 8 kN/m on the left­

hand half together with a 120 kN 
load at 15 m from the left-hand end. 
Find the end reactions and fixing 
moments and the magnitude and posi­
tion of the maximum deflection. 
E =200,000 N/mm2; I =5 x 108 mm4 

Fig. 10.8 Take the origin at the left-hand 
end, and let the fixing moments be 

M and M b, the reactions Ra and Rb (Fig. 10.8). 

Then EIdZy/dx2 = -Ma +Rax -8x2/2 +8[x -10]2/2 -120[x -15] 
Integrating 

EI.dy/dx= -Max + Rax2/2 -4x3/3 +4[x -10P/3 -60[x -15]2 +A 
when x=O, dy/dx=O :. A =0 
Integrating 

Ely = -MaX2/2 + Rax3/6 -x4/3 +[x -10]4/3 -20[x -15P +B 
whenx=O,y=O :. B=O 

When x =20, dy/dx =0 and y =0, i.e. 

-Ma.20 +Ra.202/2 -4 x 203/3 +4 x 103/3 - 60 x 52 =0 

or 

and 

lORa -Ma=542 
-Ma.202/2 +Ra.203 /6 - 204/3 + 104/3 -20 x 53 =0 

(20/3)Ra -Ma =262 or 
Subtract (ii) from (i): (10/3)Ra =280 

giving Ra = 84 kN 

From (i): Ma = 298 kNm 
But Ra + Rb = Total downward load 

=200kN 
:. Rb=116kN 

(i) 

(ii) 
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and - Mb = value of B.M. at x =20 
= - 298 + 84 x 20 - (8 x 202)/2 + (8 x 102)/2 -120 x 5 
= -420 kNm 

Since the concentrated load is greater than the total distributed load 
and acts at an equal distance from the nearest end, it may be deduced that 
zero slope occurs at a value of x between 10 and 15 m., i.e. 

or 
Eldy/dx = - 298x + 84x2/2 -4x3/3 +4(x -10)3/3 =0 

2x2 + 102x -1333 =0 

-102 + v(10,400 + 10,650) 
X= 4 Solving 

=10m 

Substituting this value in the deflection equation gives 

Ely = - (298 x 102)/2 + (84 x 103)/6 -104/3 
= -4230 kNm3 

Maximum deflection =(4230 x 1012)/(200,000 x 5 x 108) 

=42·3 mm 

10.3. Continuous Beams. When a beam is carried on more than two 
supports it is said to be continuous. It is possible to employ an extension 
of the moment-area method given in Para. 9.5 to obtain a relation be­
tween the bending moments at three points (usually supports). 

In Fig. to.9 the areas A 1 and A2 are "free" bending moment areas, 
treating the beam as simply supported over two separate spans II and [2' 

If the actual bending mo­
ments at these points are Mh 
M 2, and M 3, a "fixing" 
moment diagram consisting 
of two trapezia will be intro­
duced, the actual B.M. being 
the algebraic sum of the two 
diagrams. 

In the lower figure the 
elastic line of the deflected 
beam is shown, the deflec­
tions 81 and 82 beipg relative 
to the left-hand support and 

Fig. 10.9 positive upwards. () is the 
slope of the beam over the 

centre support, and zl and Zz the intercepts for II and 12, 

Then () = (ZI +(1)/11 = (Z2 +82 - ( 1)/12 
(slopes being everywhere small) 
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t.e. A 1X1 - (1111/1/2)(/1/3) - (1112/1/2)(211/3) +~1 
El111 11 

= _ A2X2 - (111312/2)(12/3) - (111212/2)(21213) + 82 - 81 

EI212 12 
(note that %2 is a negative intercept) 

or 1111/1/11 +21112(11/11 +12/12)+111312/12 
-=6(A1X1/ll11 +A2x2/1212) +6E[81fll +(81 -82)/121 (1) 

If II =12 
MIll +2Mil1 +12)+Mi2 

-= 6(A1Xlfll +A2X2/i2) + 6EI[81/11 + (81 -82)/121 (2) 
If the supports are at the same level 

MIll +zMi'l +~)+M3~=6(Alil/11 +A:zx:z/l:z) (3) 
and if the ends are simply supported (1111 = 1113 = 0) 

1112(11 +12)=3(A1Xlfll +A2x2/12) (4) 

Equation (1) is the most general form of the equation of three moments, 
also called Clapeyron's equation. The others are simplifications to meet 
particular cases, (3) being the form in which it is most frequently 
required. 

EXAMPLE 7. A beam AD, 20 m long, rests on supports at A, B, and Cat 
the same level. AB =8m; BC =10 m. The loading is 3000 kg/m throughout 
and in addition a concentrated load of 5000 kg acts at the mid-point of AB 
and a load of 2000 kg acts at D. Draw the S.F. and B.M. diagrams. 

Ma=O. 
M, =2000 x 2 +6000 x 1 =10,000 kg.m 

Applying equation (3) to the spans ABC (Fig. 10.10). 

2Mb x 18 + 10,000 x 10 

=6[(! 5000 x 8 8) ~ (~3000 x 82 x 8) ~ 
2' 4 • x 8+ 3' 8 x 8+ 

( 2 3000 ) 5] 3 '-8- X 102 x 10 X 10 =6 x 209,000 

Mb = 32,000 kg.m 

B.M. at mid-point of AB 
= 5000 x 8/4 + 3000 x 82/8 - Mb/2 
=18,000 kg.m 

B.M. at mid-point of BC 
=3000 x 102/8 -tcMb + 10,000) 
=16,500 kg.m 
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To find the reactions at the supports, note that 
Mb = - Ra x 8 + 24,000 x 4 + 5000 x 4 for AB 

= -Re x 10 +36,000 x6 +2000 x 12 for BCD 
:. R. =10,500 kg 

and He =20,800 kg 

5000 kg /, zoookg 
~ B ,3<>OO'J,. CyJ,D 

8m-~~ 
!~~OX8 I 
~-- I 

I I I 
I 3000)(8~ I I 

8 I I 

10,500 
~--~~---4~----~----~~~ 

Fig. 10.10 
By difference 

Rb = 60,000 + 5000 + 2000 -10,500 - 20,800 
=35,700 kg 
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From the shear force diagram it can be seen that the maximum bending 
moment occurs either at a distance of 4·27 m from C, where 

M =20,800 x 4·27 - 3000 x 6.272/2 - 2000 x 6·27 = 18,500 kg.m, 
or at a distance of 3·5m from A, where 

M = 10,500 x 3·5 - 3000 x 3.52/2 = 18,400 kg.m 
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Fig. 10.11 

The combined B.M. diagram 
is shown in Fig. 10.10. 

EXAMPLE S. A beam ABC of 
uniform cross-section rests on elastic 
supports at A, B, and C, each 
support sinking by 1/100 mm per 
kN of load carried. If AB = 10m 
and BC =8 m, and the loading is 
12 kN/m, find the reactions at the 
supports and the maximum bending 
moment. E=200,000 N/mm2 ; 

I =5 x 108 mm4. 
Applying the theorem of three 

moments (equation (2», and 
noting that M. =Me =0 (Fig. 
10.11) 

['(2 12 x 102 ) 5 (2 12 x 82 ) 4] 2Mb x 18 ==6 3'--8- x 10 x lO + 3'-S- x8 Xg 

+6EI[1~~~~+ ~0-xR;]1~00 kNm1 

where 
and 
i.e. 
But 

also 

15 1 =(R" -Rb)/100 mm 
15 1 - 02 = (Re - Rb)/lOO mm upwards 
Mb =126 +0'00417(4Ra - 9Rb + SR.) 

Mb = hogging B.M. at B 
= -lOR.+12.102/2 

:. Ra=60 -Mb/10 
Mb= -8Re+12 82/2 

:. Rc =48 - Mb/S 
Hence Rb =12 x 18 -R. -Rc=108 +9Mb/40 

Substituting in (i) 

(i) 

(ii) 

(iii) 
(iv) 

Mb=126 +0'00417[240 -2Mb/5 -972 -(81/40)Mb +240 -(5/8)Mbl 
= 126 + O'00417[ - 492 - (122/40)Mbl 

giving Mb = 124/1'013 = 122 kNm 
From (ii) R. = 47·8 kN 
From (iii) Re = 32·8 kN 

From (iv) Rb=135-4kN 
Zero shear force occurs at 47'8/12 =4 m from A and at 32'8/12 =2·73 m 

from C. 
Maximum bending moment between A and B 

=47·8 x 4 -12.42/2 =95 kNm 
Maximum bending moment between B and C 

=32·8 x2·73 -12.2'732/2=45 kNm 
122 kNm is the maximum bending moment. 
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Where the beam extends over more than three supports the 
equation of three moments is to be applied to each group of three in 
turn. In general, if there are n supports there will be n - 2 unknown 
bending moments (excluding the ends), and n - 2 equations to solve 
simultaneously. 

10+ Beams on Elastic Foundations. There are many problems in 
which a beam is supported on a compressible foundation which exerts 
a distributed reaction on the beam, of intensity proportional to the 
compressibility. In some cases the foundation can exert upward forces 
only, and the beam may, if sufficiently long, lose contact with the 
foundation; in others pressure may be exerted either way. Again, the 
support may not be truly continuous (such as holding down a railway 
line) but can be replaced by an equivalent distributed support. 

If y is the upward deflection of the foundation at any point, the rate 
of upward reaction is - ky, and by Para. 9.3 

EId4y j dx4 = - ky 
or d4yjdx4= -4a4y (1) 
where 0;4 = kj4EI 

A number of standard cases will now be considered. 

(a) Long Beam Carrying Central Load W (Fig. 10.12 (a». 
Assuming that the foundation can exert upward forces only, let 21 

y 

(")~If:l' 
y W 

(b) -k_f_..r....:lw-=----I:::;::t77){ 

Fig. 10.12 

be the length of beam in contact with the foundation, and take the origin 
o at the left-hand end. 
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The solution to (1) can be written 

y=A sin ax. sinh ax+B cos ax. sinh ax 

10.4. 

+ C sin ax. cosh ax + D cos ax. cosh ax 
At x=O,y=O :. D=O 

:. A=O and M=EId2y/dx2 =0 
also F -= EId3y/dx3 -= 0 
giving 
EI.2a3[B( -cos O.cosh 0 -sin O.sinh 0) 

+C( -sin O.sinh 0 + cos O.cosh 0)] =0 
L~ C=B 
The equation is now reduced to 

y -= B( cos ax. sinh ax + sin ax. cosh ax) 
At x=l, dy/dx=O 

:. Bacosal.coshal=O 

The least solution of this is a.l =7T/2 which determines the length in 
contact with the ground. The value of the constant B is obtained from 
the condition that the shear force at the centre is WJ2, since by sym­
metry it must be numerically the same on either side of the load and it 
must change by an amount Won passing through the load. Hence 

W/2 =EId3y Jdx3 
-= -EI.4a3B sinal.sinh al 

or B -= - Wa/2k sinh tn-
The maximum deflection and bending moment are at the centre, 
ax=7T/2, 

y -= - (WaJ2k) coth tn­
M -=EI(Wa3Jk) coth tn­

= (W/4«) coth tn-
(b) Short Beam Carrying Central Load W (Fig. 10.12 (b». 

If al<7TJ2 in case (a), the beam will sink below the unstressed level 
of the foundation at all points. Again taking the origin at the left-hand 
end and the overall length of beam as 21, the following conditions are 
obtained for the constants of integration of the general solution of the 
previous paragraph. 

At x =0', d2y/dx2 =0 A =0 
and J3y/dx3-=0 B=C 
and 

y = B( cos ax. sinh ax + sin ax. cosh ax) + D cos ax. cosh ax 



10.4. BUILT-IN AND CONTINUOUS BEAMS 191 

At x=l, dyjdx=O giving 
B. 2 cos al. cosh al + D( - sin al. cosh al + cos al. sinh al) = 0 

and Eld3y j dx3 = Wj2 
giving 

- B. 2 sin al. sinh al- D(sin al. cosh al + cos al. sinh al) = Wj4EIa] 
= Wajk 

Solving for Band D gives 

B = _ Wa sin al. cosh al - cos al. sinh al 
k sin 2a1 + sinh 2a1 

and 
2 Wa cos al. cosh al 

D = - -k- sin 2al + sinh 2al 

The complete solution for y is now known, the maximum deflection 
and bending moment being under the load. 

(c) Infinite Beam Carrying Load W (Fig. 10.12 (c)). 
Assuming that the support can exert pressure either upwards or 

downwards, and taking the Y axis through the load and the X axis 
at the undeformed level, a solution of equation (1) can be written in 
the form 

y =e=(A sin ax +B cos ax) +e-=(C sin ax +D cos ax) 

For the length to the right of W, since y-+O as x-+oo, A =B =0. 

Atx=O, dyjdx=O :. C=D 
Eld3yjdx3 = - Wj2 and 

giving 
and 

C = - Wj8a3EI = - Waj2k 
y= -(Waj2k)e-=(sinax+cosax) 

The distance from the load at which y = 0 is given by 
sin al + cos al = 0 

the least soluti('ln being 

The maximum deflection and bending moment are at x = 0, 
y ... - Waj2k 

and M=EIWa3jk= Wj4a. 

EXAMPLE 9. A steel railway track is supported on timber sleepers which 
exert an equivalent load of 2800 NJm length of rail per mm deflection from 
its unloaded position. For each rail 1=12 x 106 mm4, Z=16 x 104 mm3 
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and E =205,000 N/mm2• If a point load of 100 kN acts on each rail, find 
the length of rail over which the sleepers are depressed and the maximum 
bending stress in the rail. 

a 4 =k/4EI 
2800 

4 x 103 x 205,000 x 12 x 106 

giving a =0·731 x 10-3 mm-l 

Each rail can be treated as an infinitely long beam, for which the length 
over which downward deflection occurs is given by paragraph (c), 

2l = 37T/2a 
=37T x 103/2 x 0·731 
=6440 mm =6·44 m 

and M=W/4a 
= 100 x 103/4 x 0·731 
=34,200 Nm 

a=M/Z 
=214N/mm2 

10.5. Portal Frames. Fig. 10.13 shows a portal frame ABCD, in 
which the ends A and D are fixed vertically, and a distributed load w is 
carried on BC. 

2l 

\ 
\ 

A' 
Zl- / 

Fig. 10.13 

w 

If Ml and M2 are the bending moments at A and B, then the B.M. 
diagrams for AB and BC are as shown. The joints at Band C being 
rigid, the angle tP is the same for AB and BC. 
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For AB: Intercept at B = 0, i.e. by moment-areas about B (Para. 9.5) 
!(Ml +M2)21.41/3 -M221.1=O 

giving Ml =!M2 (i) 

c/> = '!! = M221.1-!(Ml + M2)21. 21/3 
21 2EIl 

... M21/2EI 

For BC: rp =!~ = [t(wl2/8)1]1/2 - M21.1/2 
1 Ell 

"" wJ3/24 - M21j2 
EI 

Equating (ii) and (iii) 
and from (i) 

M2=wl2j24 
Ml =wl2/48 

(ii) 

(iii) 

The maximum bending moment occurs at the middle of BC, and 
i1 = wl2/8 - wl2/24 

=w12j12 

SUMMARY 
Built-in Beams: 

Area of fixing moments = Area of free moments (1). 
Moment area of fixing diagram = Moment area of free diagram (2). 
For single concentrated load: Ma = W 002/12, Mb ... Wa2bj12. 

If a = b = 1/2, M = WI/8, S = Wl3/192EI. 
For distributed load: M =w12j12 

8 =w14j384EI 
Reactions: R. = Free reaction +(Ma -Mb)jl 

R. = Free reaction - (M. - M.)jl. 
Continuous Beams: 

Mlll +2M2(11 +12)+M312=6(AIXlfll +A2X2/12)+6EI[81/11 + 
(81 - 82)/liJ 

Beams on Elastic Foundations-solution for point loads. 
Stiff-jointed Frameworks-application of moment-area. 

REFERENCES 
BUTrBRWORTH, S., Structural Analysis by Moment Distribution. Longmans, 1949. 
FISHER CASSIB, W., Structural Analysis. Longmans, 1948. 

PROBLEMS 
1. A beam of 8 m span is built in horizontally at the ends and carries a dis­

tributed load of 16 kN 1m in addition to a concentrated load of 60 kN at 3 m from) 
one end. Find the reactions and fixing moments and the position of the points of 
contraflexure. (105, 83 kN; 155·6, 127·5 kNm; l·n, 6·13 m. 
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2. A beam, fixed at its ends, span 3 m, carries a load of 60 kN at 1 m from one 
end. Find the fixing moments at the ends and the deflection of the load. E = 
205,000 N/mm2 ; 1=8000 cm4. (26·7, 13·3 kNm; 0·362 mm.) 

3. A beam of 6 m span, fixed horizontally at the ends, supports concentrated 
loads of 80 kN and 40 kN at 2·25 m and 4·5 m respectively from the left-hand 
end. Calculate the central deflection if 1=5500 cm4 and E = 204,000 N Imm2• 

(8·7 mm.) 
4. A steel beam of 9 m span is built-in at both ends and carries two point loads 

each of 90 kN at points 2·4 m from the ends of the beam. The middle 3 m has a 
section of second moment of area 2·4 x 108 mm4 and the 3 m lengths at either 
end have second moment of area 3·2 x 108 mm4. Find the fixing moments at the 
ends and calculate the central deflection. E =205,000 N/mm2. 

(Equate areas of MIE1 diagrams for "fixing" and "free" moments. 
M = 164 kNm. Deflection =1:MxIE1 for half beam about one end =6·3 mm.) 

5. A horizontal steel bar 63·5 mm diameter is rigidly fixed at each end, the 
fixings being 1·22 m apart. A rigid bracket is fixed to the middle of the bar at 
right angles to the axis and in the same horizontal plane. Determine the maxi­
mum radius arm of the bracket at which a vertical load of 1330 N can be sus­
pended if the deflection of the load is notto exceed O· 5 1 mm. E = 206,000 N Imm2; 
G =79,000 N/mm2• (0·37 m.) 

6. A beam of uniform section 9 m long is carried on three supports at the 
same level, one at each end and one at 6 m from the left-hand end. A uniformly 
distributed load of 16 kN/m is carried across the whole span, and a point load of 
20 kN at 4· 5 m from the end. Calculate the magnitude and position of the 
maximum bending moment. (68 kNm at support.) 

7. A beam of length 21 is continuous over two equal spans and carried on three 
supports at the same level. If one span has moment of inertia I and supports a 
uniformly distributed load of w, the other span has moment of inertia 21 and 
carries a central load of wI, show that the maximum bending moment is wI2/6. 

8. A beam ABCD rests on four supports at the same level. AB =3·6 m, 
BC =7·2 m, CD =4·8 m. There is a load of 40 kN at the centre of AB, a distri­
buted load of 16 kN/m along BC, and a load of 30 kN at the centre of CD. Deter­
mine the reactions at the supports and the maximum bending moment. 

(10,88,80,8 kN; 72·5 kNm.) 
9. A beam rests on three supports A, B, and C. A and C are rigid, but B com­

presses 0·0005 mm per kg of load carried. If AB =BC =4·5 m, what is the 
deflection at B when the beam is loaded with 16 kN 1m run? What is the maximum 
bending moment and where does it occur? E=204,000 N/mm2; 1=9350 cm4. 

(4·2 mm; 28·5 kNm, 1·85 m.) 
10. A timber beam 15 em wide by 10 em deep, rests on compressible ground 

which exerts an upward pressure of 7000 N 1m2 per mm compression. It sup­
ports a load of 1000 kg at its mid-point. Compare the maximum bending stresses 
when the beam is (a) 1·8 m long, (b) 3 m long. E=10,OOO N/mm2• 

(a =0·0012 mm-t , (a) 12·6 N/mm2 ; (b) 9·3 N/mm2.) 

11. A rigid frame ABCD forms three sides of a rectangle and is hinged to the 
ground at A and D. If AB=CD=112 and BC=1 and two loads each Ware 
carried at 113 and 2113 from B, show that the bending moment at B is W116. 



CHAPTER XI 

Bending of Curved Bars and Rigid 
Frames 

11.1. Stress in Bars of Small Initial Curvature. Where the radius 
of curvature is large compared with the dimensions of the cross-section 
the analysis of stress is similar to that for pure bending (Para. 6.1). 

Assume plane sections remain plane after bending. 
Let Ro be the initial (unstrained) radius of curvature of the neutral 

surface, and R the radius of curvature under the action of a pure bending 
moment M (Fig. 11.1). 

The strain in an element at a distance y 
from the neutral axis 

PQ'-PQ (R+y)(O+SO)-(Ro+Y)O 
== PQ = (Ro +y)O 

R(O + SO) - RoO +ySO 
(Ro +y)O 

ySO 
(Ro+Y)O 

since R(O +SO) = RoO = length along neutral Fig.1Ll 
surface. 

If y is neglected in comparison with Ro, and noting from R(O + SO) = 

RoO that SO = [(Ro - R)jR]O, 
then strain = (yjRo)[(Ro - R)jR] =y(ljR -ljRo) (1) 

Neglecting lateral stress, normal stress 
u=E x strain 

=Ey(ljR-1jRo) from (1) (2) 

Total normal stress = 0 

i.e. fa .dA =E(1jR -1jRo)fydA =0 from (2), 

which shows that the neutral axis passes through the centroid of the 
section. 

Moment of resistance M = f aydA 
=E(1jR -1jRo)fy2.dA 
== EI(tjR -tjRo) 

195 

from (2) 
(3) 
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Combining equations (2) and (3) 

aly=MII=E(lIR -lIRo) 
Strain energy of a short length Ss (measured along the neutral sur­

face), under the action of bending moment M, is 

Fig. 11.2 

SU=;MS8 
=;M[(Ro-R)/R]8 
=;MR08(1/R -lIRo) 
=;MSs.M/El from (3) 
= (M2IZEl)Ss (4) 

(See also Para. 9.1.) 

Application to piston ring. Suppose it is 
required to design a split ring so that its 
outside surface will be circular in the 
stressed and unstressed condition, and 
that the radial pressure exerted is uniform. 

If p is the uniform pressure on the out­
side, then the bending moment at B 
(Fig. 11.2) is 

M = 1"-S (p. dRdcfo)R sin cp approx., 

where d is the depth of the ring in the 
axial direction. 

Integrating 

But 

i.e. 

M =pR2d(1 + cos 8) 
MIl =E(lIR -l/Ro) = constant for given conditions. 

pR2d(1 + cos 8) 
dt3/12 = constant 

= 24pR21t03 when 8 = 0, t = to 
giving 'Ito = ~ [(1 + cos 8)/2] 
the required variation of thickness. 

Maximum bending stress at any section 
= (M/l)(tI2) = (6pR2It2)(1 + cos 8) from (5) 
= l2pR2tft03 from (6), 

and has its greatest value at 8 = 0, i.e. 

(5) 

(6) 

0= 12pR21t02 (7) 
IfR-lfRo=o/Ey=24pR2fEt03 from (7) 
:. 1/Ro=(1/R)[I-24pR3/Et03] 

=(lfR)[1-2oR/Eto] 
which determines the initial radius when values for to and a are assumed. 
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II.Z. Stresses in Bars of Large Initial Curvature. When the radius 
of curvature is of the same order as the dimensions of the cross-section 
it is no longer possible to neglect Y in comparison with R, and it will be 
found that the neutral axis does not pass through the centroid, and 
stress is not proportional to distance from the neutral axis. 

Referring to Fig. 11.1, and writing 
u=E x strain =E. QQ'/PQ 

Ey.M 
- (Ro+Y)O 

(1) 

where y is the distance from the neutral axis as before, and Ro the 
initial radius of the neutral surface. 

Total normal force on cross-section = 0 for pure bending, i.e. 

Ju.dA=EM( ydA =0 (2) 
OJ Ro+y 

But 

Moment of resistance M = J uydA 

=EM(!2dA from (1) 
OJ Ro+y 

f
y2dA =fCY(Y + Ro) - RoY] . dA 
Ro+y Ro+y 

= JydA -RoJy.dA/(Ro +y) 
= Ae - 0 from (2), 

(3) 

where e is the distance between the neutral axis and the principal axis 
through the centroid (e being positive for the neutral axis to be on the 
same side of the centroid as the centre of curvature). 

Substituting in equation (3) gives 
M = (ESO/O)Ae 

"" [u(Ro +y)/y]Ae from (1). 
Rearranging o=My/Ae(Ro+Y) (4) 

In this equation y is positive measured outwards, a positive bending 
moment being one which tends to increase the curvature. 

The above derivation neglects lateral stresses and strains, but it can 
be shown that allowance for these does not materially affect the results. 

Rectangular Cross-section. Working from equation (2) 

f
YdA =0 
Ro+y 

Let z = y - e = distance from centroid axis (Fig. 11.3), 

also mean radius of curvature Rm = Ro + e 
and dA=bdz 
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Then 

Ro 

T 
d 
2 j-- - -+ --1.-; - if 
d ~. 

2 ~z -L 

Fig. 11.3 
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f z+e 
D -. bdz = 0 from above, 
.. .".+z 

R m i.e. fl /2 Rm+z-(Rm-e) .1 __ 

D .ws-O .. .".+z 
-4/2 

I- f::-(Rm -e)fI/2 .:':z =0 
-4/2 -1/2 

or d - (R - ) I Rm + d/2 = 0 
m e og Rm-d/2 

• • D d'/l R". +d/2 
glvmg e= .. .".- I ogR".-d/2 

11.2. 

(5) 

As e is small compared with Rm and d, it is difficult to calculate with 
sufficient accuracy from this expression, and an expansion of the log 
term into a convergent series is of advantage. 

Then 
d 

e=R". - 2 [d/2Rm +t(d/2Rm)3 +t(d/2Rm)S + ... J 
R Rm 

... m -1 +-b(d2/R".2) +io(d4/Rm 4) + ... 
=R". - R",[1--h(d2/Rm2) +m(d4/Rm 4) -io(d4/R".4) . .. ] 
* (d2/R".)[n +rlo(d2/Rn,2)] (6) 

EXAMPLE 1. A curved bar of square section, 3-cm sides and mean radius of 
curvature 4t cm is initially unstressed. If a bending moment of 300 Nm is 
applied to the bar tending to straighten it, find the stresses at the inner and 
outer faces. (U.L.) 

Rm =45 mm d =30 mm 

At the inside face 

Rm+d/2 
e=Rm -d/log Rm -d/2 (Eq. (5)) 

=45 - 30/log, 2 = 1·72 mm 
Ro=Rm -e=43'28 mm 
M = -300 x 103 Nmm 
a = My/Ae(Ro +y) (Eq. (4)) 

y= -(d/2 -e) 
= -13·28 mm 

.. a=[ -300 x103 x( -13'28)]/[900 x 1'72(43'28 -13'28)] 
=86 N/mm2 tension. 
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At the outside face 
y =d/2 +e 

=16·72mm 
:. a =( - 300 x 103 x 16'72)/[900 x 1·72(43'28 + 16·72)] 

=54,5 N/mm2 compression. 
The actual stress distribution is shown in Fig. 11.4. 

Fig. 11.4 

r 
f-

Trapezium Cross-section. By moments 

d1 = [(Bl +2B2)/(B1 +B2)](D/3) 

Ro 

Fig. 11.5 

and d2 = [(2Bl + B2)/(B1 + B2)](D/3) (Fig. 11.5) 

Putting z=y-e and Rm=Ro+e, equation (2) becomes 

f z+e .dA=O 
Rm+ z 

i.e. A -(Rm -e)JdA/(Rm +z) =0 

or A 
e=Rm - fdA/(Rm +z) 

dA =b.dz={B2 + [(Bl -B2)/D](d2 -z)}dz 

(7) 

:. f dA =fB2 + [(Bl - B2)/D]d2 - [(Bl - B2)/D]z . dz 
Rm+z Rm+z 

J4
2 B Bl -B2 d Bl -B2 R B1 -B2(R ) 

c: 2+---V-' 2+--V' m--V m+ z 
------------~---------------.dz 

Rm+ z 
-41 

{ } Rm+d2 
c: B2+ [(BI-B2)/D] .d2+ [(BI-B~/D]·Rm log Rm-dt -

[(B1 -B2)/D](d2+d1) 

... {B2 + [(Bl -Bv/D](R.+d2)} log ~~~:-(BI-B~ (8) 
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and since A = [(Bl + B 2)J2] . D, e can be evaluated from (7) and (8) 
A 

e=Rm- JdAJ(Rm+z) 

EXAMPLE 2. A crane hook whose horizontal cross-section is trapezoidal, 
50 mm wide at the inside and 25 mm wide at the outside, thickness 50 mm, 
carries a vertical load of 1000 kg whose line of action is 38 mm from the inside 
edge of this section. The centre of curvature is 50 mm from the inside edge. 
Calculate the maximum tensile and compressive stresses set up. 

Referring to Fig. 11.5 
d1 = [(50 + 2 x 25)/(50 + 25)](50/3) =22·2 mm 
d2 =[(2 x 50 +25)/(50 +25)](50/3) =27·8 mm 

R", =50 +d1 =72·2 rom 
JdA/(Rm + z) ={25 + [(50 - 25)/50](72'2 + 27'8)} loge [(72·2 + 27'8)/ 

(72'2 - 22·2)] - (50 - 25) from (8) 
=75 loge 2 - 25 =27 mm 

A =[(50 +25)/2]50 =1875 mm2 

:. e =72·2 -1875/27 =2·75 mm from (7) 
Direct stress = Load/Area =1000 x9'81/1875 =5·23 N/mm2 

Bending stress =My/Ae(Ro + y), Eq. (4) 
=M(z +e)/Ae(Rm +z) 

At the inside edge 

z= -d1 = -22'2mm 
M = -1000 x 9,81(38 +d1) 

= - 59 x 104 Nmm (tending to decrease the curvature) 
. - 59 X 104( - 22·2 + 2'75) 

Bendmg stress = 1875 x 2·75(72'2 - 22.2) 

=44·5 N/mm2 tensile 
Combined stress =44·5 + 5·23 =49·7 N/mm2 tensile. 

At the outside edge 
Z =d2 =27·8 mm 

. - 59 x 104(27'8 + 2·75) 
Bendmg stress 1875 x 2·75(72·2 + 27'8) 

= -34,9 N/mm2 

Combined stress = - 34·9 + 5·23 
=29·7 N/mm2 compressive. 

Circular Cross-section. Following the method already established 
(see "Trapezium Cross-section") 

A 
« - R - -;;-:--:-:-:-=---

m JdAI(Rm +:1) 
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where 

Hence 

BBNDING OF CURVBD BARS 

r dA = 2f' y(r2 - z2)dz (Fig. 11.6) 
R",+z R",+z . -, 

= 27T[R", - Y(R.,? - r2)] by calculus methods 
e ... R", - r2/{2[R", - y(R",2 - r2)]} 

r2 Rm+y(Rm2-r2) 
=Rm- z· Rm2-(Rm2- r2) 

![Rm - y(Rm2 - r2)] 
![Rm-Rm+ !Rm(r2/Rm2)+ lRm(r4/Rm4)+ •.. ] 
lRm(r2/Rm2)[1 + 1(r2/Rm2) + t(r4/Rm4) + ... ] 

and u=My/Ae(Ro+Y) as before. 

Fig. 11.6 Fig. 11.7 
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11.3. DellectioD of Curved Bars (Direct Method). If a length 8s of 
an initially curved beam is acted upon by a bending moment M, it 
follows from (3), Para. 11.1, that M8s/EI =8s(I/R -IIRo). 

But 8slR -&IRo is the change of angle subtended by 8s at the centre 
of curvature, and consequently is the angle through which the tangent 
at one end of the element rotates relative to the tangent at the other end, 
i.e. 

&f>=M8sIEI (Fig. 11.7) (1) 
Fig. 11.7 shows a loaded bar AB which is fixed in direction at A, and 

it is required to find the deflection at the other end B. 
Due to the action of M on 8s at C only, the length CB is rotated 

through an angle &P=M8sIEI. B moves to B', where BB' =CB.&f>. 
The vertical deflection of B ... BB' . cos () 

-= CB . cos ().&f> 
=:IC.&p. 
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The horizontal deflection of B = BB' . sin (J 
=y.8r/>. 

Due to the bending of all the elements along AB 
Vertical deflection at B = f x . dr/> 

= JMxdsjEI from (1) (2) 

Horizontal deflection at B = fy. dr/> 
= fMydsjEI (3) 

It is interesting to compare this with the moment-area method for 
deflection of initially straight beams, given in Para. 9.S. 

The advantage of this method, as against that of the following 
paragraph, is that the deflection can readily be found at any point and 
in any direction, even when there is no load at that point. 

EXAMPLE 3. A steel tube having outside diameter 5 cm, bore 3 cm, is bent 
into a quadrant of 2 m radius. One end is rigidly attached to a horizontal base 
plate to which a tangent to that end is perpendicular, and the free end supports 

Fig. 11.8 

a load of 100 kg. Determine the vertical 
and horizontal deflections of the free end 
under this load. E =208,000 Njmm2• 

(U.L.) 
I = (7Tj64)(5 4 - 34) 

=(7Tj64)(25 -9)(25 +9) 
=26·7 cm4 

x = 2000 sin 6 mm (Fig. 11.8) 
y =2000(1 - cos 6) mm 

M =100 x 9·81x Nmm 
8s = 200086 mm 

Vertical deflection = JMxdsjEI (Eq. (2» 

f"'2 
== 981 x 20003 sin2 6. d6 

208,000 x 26·7 x 104 

o 

fr.'2 

= 141 0 1-;OS26.d8 

=141 x7Tj4 
=110mm 

Horizontal deflection = SMydsjEI (Eq. (3» 
981 x 20003 . ("/2 

= 208,000 x 26·7 x 104) 0 sin 6(1 - cos 6)d6 

= 141[ - cos 6 +t cos 26]~/l 
=141xt 
=70·5 rom 
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11.4. Deflection from Strain Energy (Castigliano'8 Theorem). 
Theorem: If U is the total strain energy of any structure due to the 

application of external loads WI, W2 • .. at 01,02 •.. in the directions 
0IXl> 02X2 .•. , and to couples Ml> M2 .•. , then the deflections at 0l> °2 , .. in the directiolls 0IXl, 02X2 .•. are au/aWl> au/aw2 •.. , and 
the angular rotations of the couples are au/aMl> aU/aM2 • •• at their 
applied points. 

Proof for concentrated loads. If the displacements (in the direction 
of the loads) produced by gradually applied loads Wi> W2, W3 .•. are 
Xl> x2, x3 ..• , then 

U =!W1xl +!W2X2 +!W3x3 + . . . (1) 
Let WI alone be increased by OWl' then 

o U = increase in external work done 

=(WI +8Wl/2)8xl + W28x2 + W38x3 + ... 

where 8XI' 8X2' 8X3 are the increases in xl> x2 and x3' 
'=' Wl8xI + W28x2 + W38x3 + . • • (2) 

neglecting the product !8W18xI' 
But if the loads WI +8Wl> W2, W3 • •• were applied gradually from 

zero, the total strain energy 

U +8U =!(WI +8WI)(XI +8XI) +!W2(X2 +8X2) +!W3(X3 +8X3) + ... 

Subtracting (1), and neglecting products of small quantities 

8U =!WI8xI +!OWIXI +!W20X2 +!W3ox3 + . . . (3) 
or 20U = WIOXI +OWIXI + W2ox2 + W30X3 + ... 

Subtract (2), then oU =OWIXI 
and in the limit aU/OWl =xI 

Similarly for X2 and X3, and the proof can be extended to incorporate 
couples. 

It is important to stress that U is the total strain energy, expressed 
in terms of the loads and not including statically determinate reactions, 
and that the partial derivative with respect to each load in turn (treating 
the others as constant) gives the deflection at the load point in the 
direction of the load. 

The following principles should be observed in applying this 
theorem: 

(1) In finding the deflection of curved beams and similar problems, 
only strain energy due to bending need normally be taken into account 
(i.e. JM2.ds/2EI (4), Para. 11.1). 

(2) Treat all the loads as "variables" initially, carry out the partial 
differentiation and integration, putting in numerical values at the final 
stage. 
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(3) If the de1lection is to be found at a point where, or in a direction 
in which, there is no load, a load may be put in where required and 
given a value zero in the final reckoning (i.e. x=(au/aw)w_o)' 

Generally it will be found that the strain energy method requires less 
thought in application than the direct method of Para. 11.3, it being 
only necessary to obtain an expression for the bending moment; also 
there is no difficulty over the question of sign, as the s~ energy is 
bound to be positive, and deflection is positive in the direction of the 
load. The only disadvantage occurs when a case such as note (3) above 
has to be dealt with, when the direct method of Para. 11.3 will probably 
be shorter. 

f+--+-2' 5 a---'Wh'. 
ExAMPLE 4. Obtain an expression for 

IDE " the vertical displacement at A of the 
U~it breadth beam shown in Fig. 11.9. 

W 
Fig. 11.9 

U=fM2·ds/2EI 

The bending moments in the various 
sections can be written as follows: 

AB, M = Wx, <at x from A) 

BC, M = Wa, constant 

CD, M = Wx', <at x' from D) 

DE, M=Wx", <at x" from D) 

f · W2x2.dx JZII W 2a2.ds J' W 2x'2.dx' f1-511 W2x"2.dx" 
= 0 2E x t3/12 + /E x <2t)3/12 + /E x t3/12 + 0 2E x t3/12 

= (6W2/Et3)[a3/3 +2a3/8 +a3/3 + 1·53a3/3] 

= 24·5 W2a3/2Et3 

Displacement of load at A =oU/oW vertically 

=24'5Wa3/Et3 

An allowance could be made for the linear extension of the portion BC 

= <W. 2a)/(2t. E) 

which is clearly negligible compared with the deflection due to bending. 

EXAMPLE 5. Fig. 11.10 shows a steel rod of 12 mm diameter with one end 
fixed into a horizontal table. The remainder of the rod is bent into the form of 
three-quarters of a circle and the free end is constrained to move vertically. 
Determine the vertical deflection for a load of 10 kg. E=208,OOO N/mm2• 

(U.L.) 
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Let the vertical load be W, and the normal reaction due to the con­
straint be R. 

Then M =R x 150(1 - cos 0) - W x 150 sin 0 
8s=15080 
U =JM2.ds/2EI 

= (150 3/2EI) 13Tr/2 [R(1 -cos 0) - WsinO]2.dO 

Since there is no horizontal displacement, 
oU/oR =0, i.e. R 
e"/2 Jo 2[R(1 -cos 0) - WsinO](I-cosO)dO =0 

w 
or L3Tr/2 [2R - 4R cos 0 + R(1 + cos 28) -

2W sin 0 + W sin 20]dO =0 
Fig. 11.10 

i.e. 
3R x (371/2) - 4R x ( -1) + (R/2) x (0) +2W(0 -1) - (W/2)( -1 -1) =0 

giving 
W 

R=-- =0·55 kg=5·4N 
971/2 +4 

Vertical displacement 

=oU/oW 
(3"/2 

= (1503/2EI) Jo 2[R(t - cos 0) - W sin OJ( - sin O)dO 

= (1 503 /2EI) e/2 [ - 2R sin 0 + R sin 20 + W(t - cos 20)]dO 
.0 

=(1503/2EI)[2R x ( -1) - (R/2)( -1 -1) + W(371/2) - (W/2) x (0)] 

- 5·4 + ---::--3·375 x 106 x 64 [ 98·1 X 371] 
2 x 208,000 X1T x124 2 

=3·65 mm 

EXAMPLE 6. If a ring of mean radius R is acted upon by equal and opposite 
pulls P along a diameter, find expressions for the maximum bending moment 
and the deflection along the line of P. 

The bending moment cannot immediately be obtained in terms of P 
and R, but, making use of the symmetry, let Mo be the bending moment 
on cross-sections perpendicular to P (Fig. 11.11). There will also be a 
normal pull of P/2 on these cross-sections. 

At an angle 0 
M=(PR/2)(t-cos 8) -Mo 

and fft/2 

U=4 JPR(l -cos 8) -2MoERdO 
4x2EI 

o 
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(,,/2 
8U/8Mo = (R/2El) Jo 2[PR(1 -cos 8) - 2Mo]( -2)d9 

p 
=rotation of Mo 
=0 by symmetry. 

• fO"/2(PR - PR cos 8 -

2Mo)d8=0 
i.e. PR.17/2 -PR -2Mo.17/2=0 
giving Mo=PR(i -1/1r) 

Fig. 11.11 

The maximum bending mo­
ment occurs when 8 =17/2, and 

]Q=PR/2-Mo 

The deflection of P 
=8U/8P 

=PR/l7 

= (R/2El) Lr/22 [PR(1 -cos 8} -2Mo](1 -cos 8}Rd8 

("/2 = (R2/2El) Jo [2PR -4PR cos 8 +PR(l + cos 28) - 4Mo +4Mo cos 8]d8 

= (R2/2El)[PRl7 -4PR +PR(17/2) + (PR/2)(O) -2Mol7 +4Mo1 
= (PRl/2El) [17 -4 +17/2 -17 +2 +2 -4/17] 

PR3 172 -8 
=4EI'-;-

u.s. Portal Frame by Strain Energy. In Para. 10.5 it was shown 
how a framework with stiff joints could be analysed by a "direct" 
method based on the moment-area equations. It is frequently simpler 
to make use of Castigliano's theorem to 
solve this type of problem, as the following 
example will illustrate. 

EXAMPLE 7. The framework IhofIJn in w 
Fig. 11.12 is pin-jointed io the ground at A and 
D and il loaded along AB with a distributed 
load rD. If the flexural rigtdity EI il constant 
throughout, obtain exprelnonl for the reac- Hz 
tiom a' A and D. 

Resolving vertically, the vertical com­
ponents of reaction, V, must be equal and 
opposite at A and D, and by moments about A 

V=rDd2/2b 
Reaolving horizontally 

V 
Fig. 11.12 

(i) 

(ii) 
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Bending moment along AB, at a distance x from A, is 
Ml =H1x -wx2/2 

Bending moment along BC, at a distance x' from B, is 
M2 =H1d - Vx' -wd2/2 

=H1d -wd2x'/2b -wd2/2 from (i) 

Bending moment along CD, at a distance x" from D, is 
M 3 =H2 ·x" 

=(wd-H1}x" from (ii) 

Total strain energy due to bending 

U =fdM12 .dX f&M2 2.dx' fdM32.dx" 
2EI + 2EI + 2EI 

o 0 0 

But, since the supports are fixed in position 
OU/OHI =0 

207 

:. f: M1(oM1/oH1)dx + f M2(OM2/OH1)dX' + fM3(OM3/OH1)dx" =0 

i.e. f(H1X -wx2/2)x.dx + J:[H1d - (wd2/2b)x' -wd2/2]d.dx' + 

[(Wd -H1)x"( -x'')dx' =0 

H 1d3/3 -wd4/8 + H 1d2b -wd3b/4 -wd3b/2 -wd4/3 + H 1d3/3 = 0 
giving 

From (ii) 
HI = (wd/8)[(l1d + 18b)/(2d +3b)] 
H2 = (wd/8)[(5d +6b)/(2d +3b)] 

SUMMARY 

Curvature Small: ujy -Mjl =E(ljR -ljRo). 
Curvature Large: u=MyjAe(Ro+Y). 
e found from fydAj(Ro+Y) =0. 
Vertical Deflection = JMxdsjEI. 
Horizontal Deflection = JMydsjEI. 
Castigliano: Displacement = 0 UjoW 

Rotation = oUjoM. 

PROBLEMS 
1. A curved bar of rectangular section 38 mm wide by 50 mm deep and of 

mean radius of curvature 100 mm is subjected to a bending moment of 1·5 kNm 
tending to straighten the bar. Find the position of the neutral axis and the 
magnitudes of the greatest bending stresses. Draw a diagram to show the varia­
tion of stress across the section. E = 206,000 N /mm2. 

(e=2·1 mm; 115, 81 N/mm2.) 
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2. A bar 5 cm diameter, curved to a mean radius of 5 cm, is subjected to a 
bending moment of 760 Nm tending to open out the bend. Plot the stress dis­
tribution across the section. (e =3,32 mm; limiting stresses 101 N/mm2 tension 
at inside, 44 N/mm2 compression at outside.) 

3. A bar of diameter d is bent as shown. Prove that the stiffness 

s = P = 37TEd4/32 
Il 413 + 67TR12 + 24R21 + 37TR3 

p 

~--l .,,1 

If s=1650 N/m, d=6 mm, R=36 mm, find I. E=206,000 N/mm2• (U.L.) 
(175 mm.) 

4. A steel ring of rectangular cross-section 7·5 mm wide by 5 mm thick has a 
mean diameter of 300 mm. A narrow radial saw cut is made, and tangential 
separating forces of 1 N each are applied at the cut in the plane of the ring. Find 
the additional separation due to these forces. E =206,000 N/mm2• (2 mm.) 

5. A proving ring is 250 mm mean diameter, 38 mm wide and 6·35 mm thick. 
The maximum stress permitted is 550 N/mm2. Find the load to cause this stress, 
and the load to give a 1 mm deflection in the direction of loading. E = 206,000 
N/mm2• (3500 N; 585 N.) 

6. A chain link made of circular section has the dimensions shown. Prove that 
if d, the diameter of the section, is assumed small compared with R, then the 

maximum bending moment occurs at the point of application of the load and is 
equal to 

Pl!(l +2R) 
2 1 + 7TR 

If R =24 mm, d=6 mm, and 1=42 mm calculate the ratio of the maximum 
tensile stress at the section where the load is applied to that at a section half way 
along the straight portion. (U.L.) (2'89) 

7. A portal frame is of height 2l and width l, and is loaded with Wat the centre 
of the top member. Show that the maximum bending moment is 11 WI/56 if the 
base is pin-jointed, and 3Wl/16 if fixed into the ground. 



CHAPTER XII 

Plastic Theory of Bending 

IZ.I. Bending beyond the Yield Stress. In the elastic theory of 
bending, as discussed in previous chapters, the method of design has 
been to calculate the maximum stresses occurring, and to keep them 
within the limits of working stresses in tension and compression, the 
working stresses being obtained by dividing the yield (or ultimate) 
stress by a factor of safety. However, mild-steel structures do not fail 
as soon as the edge stress at any cross-section reaches the yield point, 
and will continue to withstand the load as long as a central core of the 
section remains in the elastic state. 

In any particular loaded beam, if the load system were increased 
gradually, yielding would first occur at the extreme fibres of the" weak­
est" section (if the material exhibits a drop in stress at yield, the lower 
yield stress is taken to apply-Para. 1.7). These fibres are then said to 
be in the plastic state, and further increase in loading will bring about 
a considerable increase in strain (and hence deflection) at that section 
of the beam, with a redistribution of stress. With mild steel this increase 
in strain can take place without the stress rising above the yield point 
(i.e. strain hardening effects can be neglected, the plastic strain at yield 
being of the order 10/20 times the elastic strain), so that the stress in 
the plastic region may be assumed constant. When the whole cross­
section at any point in a structure becomes plastic, no further increase 
in the moment of resistance is possible without excessive strain (equiva­
lent to an increase in curvature at that section) and a plastic hinge has 
been developed. Depending on the type of structure (e.g. simply 
supported beam, built-in beam, rigid frame, etc.) one or more plastic 
hinges are required to cause complete collapse. The value of the load 
to produce this state is called the collapse load, and the ratio collapse 
load: working load is called the load factor. In plastic design this factor 
is used to replace the normal factor of safety. 

IZ.2. Assumptions in the Plastic Theory. The main aim is to 
calculate the bending moment required to form a plastic hinge for any 
particular cross-section, and to determine the distribution of bending 
moment along the beam at the collapse load. To that end the following 
assumptions are made: 

(I) The material exhibits a marked yield, and can undergo consider-
209 
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able strain at yield without further increase in stress. This limits applica­
tion of the theory generally to mild steels, and as there is a drop in stress 
at yield the lower yield stress is used in calculations (see Para. 1.7). 

Fig. 12.1 shows the idealised stress­
strain diagram for such a material. 

StN.SS (2) The yield stress is the same in 
tension and compression. 

(3) Transverse cross-sections re­
main plane, so that strain is propor­
tional to the distance from the neutral 

Strain axis, though in the plastic region stress 
Fig. 12.1 will be constant, and not proportional 

to strain. 

(4) When a plastic hinge has developed at any cross-section the 
moment of resistance at that point remains constant until collapse of 
the whole structure takes place due to the formation of the required 
number of further plastic hinges at other points. 

:12.3. Moment of Resistance at a Plastic Hinge. Fig. 12.2(a) shows 
the variation of stress and strain in a symmetrical cross-section under 
the working load, by the simple theory of bending, Para. 6.1 (G1II is the 
maximum working stress). If the load is increased until yielding occurs 

Sll'ain Stress 

Workinq smtQ. 
(a) 

Strah> Stress 

Part-ially-plastic. stat-eo 
(b) 

Fig. 12.2 

Strain 5trc>ss 

Fully - plasH" srQ\-e 
(c) 

in the extreme fibres the partially plastic state of Fig. 12.2(b) would 
be obtained, where Gy is the lower yield stress (note how the assumptions 
of Para. 12.2 are applied). Further increase in load produces the fully 
plastic state of Fig. 12.2(c), in which the stress is assumed uniform and 
equal to uy• There will still be a very small elastic region around the 
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neutral axis, as indicated in the diagram, but the effect of this on the 
value of the moment of resistance is very small and will be neglected. 

(a) Rectangular 8ection. If b is the width and d the depth, the total 
loads above and below the neutral axis are (bd/2)uy each, acting at d/4 
from the neutral axis; hence the fully plastic moment 

M, = (bd/2)uy x d/2 
= (bd2/4)uy 

This compares with a working moment 

(1) 

Mw=Zuw=(bd2/6)aw (2) 
from elastic theory (Z is the normal section modulus), and a moment 
at first yield of 

My = (bd2/6)uy (3) 

The ratio M,/My is called the shape factor 8, since it depends only on 
the shape of the cross-section, i.e. for a rectangular section, from (1) 
and (3) 

From (2) and (3), 

My/M",=u,/u" 

8=1·5 (4) 

= normal factor of safety based on initial yield (5) 

From (1) and (2), 
M, = 8 x (uy/u",) x M", = 8Zuy (6) 

Note that equations (5) and (6) will apply to any section. 

EXAMPLE 1. A steel bar of rectangular section 72 mm by 30 mm is used as a 
simply supported beam on a span of 1·2 m and loaded at mid-span. If the 
yield stress is 280 N/mm2 and the long edges of the section are vertical, find 
the load when yielding first occurs. 

Assuming that a further increase in load causes yielding to spread inwards 
towards the neutral axis, with the stress in the yielded part remaining at 
280 N/mm2, find the load required to cause yielding for a depth of 12 mm at 
the top and bottom of the section at mid-span, and find the length of beam over 
which yielding has occurred. (U.L.) 

If W, is the load at first yield, then 
M, = (bd2/6)a, from (3) 

i.e. W, x 300 =(30 x 722/6)280 
giving W, =24·2 kN (i) 

Under a higher load W, the central section of the beam is in a partially 
plastic state, the stress distribution being similar to Fig. 12.2(b), the outer 
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12 mm on each side of the neutral axis being under constant stress of 280 
N/mm2 with no drop of stress at yield. The moment of resistance cal­
culated from the stress diagram is 

giving 

M =(280 x 12 x 30)60 + (t x 280 x 24 x 30)32 

=928 x 104 Nmm 

= W x 300 since the end reactions are W/2 

W=31 kN (ii) 

At first yield the moment of resistance is Wy x 0'3, i.e. 7·26 kNm from 
(i), and if this occurs at a distance x from either end under a central load W 
then 

tWx =7·26 

i.e. x=0·468m from (ii) 

The length of beam over which yielding occurs 

=1·2 -2x 

=0'264m 

(b) I-section. The shape factor will vary slightly with the proportions of 
flange to web, an average value being about 1'15, as illustrated by the 
example below. 

EXAMPLE 2. A 300 mm by 125 mm I-beam has flanges 13 mm thick and 
web 8·5 mm thick. Calculate the shape factor and the moment of resistance in 
the fully plastic state. Take Uy =250 N/mm2 and Ix =85 x 106 mm4. 

At first yield, 

My = (//y)uy 

=(85 x 106/150)250 =141 x 106 Nmm (i) 

In the fully plastic state the stress is equal to 250 N/mm2 everywhere, 
being tensile on one side and compressive on the other side of the neutral 
axis. By moment of the stress x area products, dividing the web into two 
parts, 

Mp = (250 x 125 x 13)287 for the flanges 

+(250 x 8·5 x 137)137 for the web 

=156 x 106 Nmm=156 kNm 

The shape factor 

S=Mp/My 

= 1·11 from (i) and (ii) 

(ii) 
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(c) Unsymmetrical Section. If A is the total area of cross-section, 
then it is clear that for pure bending in the fully plastic state the 
"neutral axis" must divide the area into equal halves. If the centroids 

Fig. 12.3 

of these halves are G1 and G2 (Fig. 12.3) at a distance Yl +Y2 apart, 
then 

(7) 

But at first yield 

My = ZUy where Z is the section modulus 

Hence MI'IMy=A(yl +Y2)/2Z (8) 

... S by d~finition. 

EXAMPLE 3. Find the shape factor for a 150 mm by 75 mm channel in pure 
bending with the plane of bending perpendicular to the web of the channel. 
The dimensions are shown in Fig. 12.4, and A =2300 mm2 and Z =21,000 
mm3. 

6·25 mm 

p 

~, 

Q'5mm 4, 

Fig. 12.4 

Let PP be the neutral axis under fully plastic conditions, then this 
divides the total area equally. Assuming all corners are "square", then 

2 x9·5 xh=150 x6·25 +2 x 9·5(75 -h -6·25) 
giving h=59mm 
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The centroids of the two areas on either side of PP are G1 and G2 at 
distances Yl and Y2, where 

and 

from (8), 

Yl =h/2 =29·5 rnm 

(150 x 6·25)(16 - 3·125) +(2 x 9·5 x 9·75)4·875 
Y2= 150 x 6·25 +2 x 9·5 x 9·75 

=11·8 mm 

S=A(YI +Y2)/2Z 
=2300 x 41·3/2 x 21,000 
=2·26 

12+ Collapse Loads. Having determined the moments of resist­
ance at a plastic hinge for the section of beam being used, the next step 
is to decide from the conditions at the supports how many such hinges 
are required to cause collapse, and to find the corresponding load in 
this condition. If there are a number of points of "local" maximum 
bending moment along the beam (under working load conditions) it is 
clear that the first plastic hinge will occur at the numerical maximum 
point. If further plastic hinges are necessary for collapse, these will 
occur at the next lower values chosen from the remaining local maxima. 
When sufficient plastic hinges have been formed to convert the structure 
into a "mechanism" (hinges to be considered as pin-joints), the state 
of collapse has been reached. The principal cases for a single beam 
will now be examined. 

partially ~tic 

rz~~ I 

a-· ..... I·-- b 

M 

Fig. 12.5 

(a) Simply Supported Beam. Let the load divide the length I in the 
ratio a:b (Fig. 12.5). There is only one point of maximum B.M. (i.e. 
Wabjl under the load), and the collapse condition will be reached when 
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a plastic hinge is formed at this point. The B.M. is then Mil' and hence 
the collapse load is given by 

W,=M"I/ah 
... Sx(uy/ulII)xMIII1/ah (1) 

from Para. 12.3 (a), eqn. (6). 
But Mill = Wab/l where W is the working load. Rearranging (1) gives 

W,=S(uy/u",)W 
or Load factor = W,/W 

=S(uy/u",) (2) 

This is the simple result which will always be obtained when only 
one plastic hinge is required for collapse. For a given material and work­
ing stress it is seen that the load factor is greater than the normal factor 
of safety on elastic design (which considers failure to occur at first yield) 
by the shape factor, and that a different load factor will be obtained for, 
say, rectangular and I-sections, even under the same system of loading. 
Alternatively, basing the design on a constant load factor, the working 
stress may be varied to suit the particular section, e.g. from (2), 

u'" = SUy/load factor (3) 
= l·Suy/load factor for rectangular section 

= 1·15 uyfload factor for I-section. 

The results for distributed load and for a simple cantilever are also 
as (2) and (3) above. 

(b) Propped Cantile'lJer. Consider the case of a cantilever carrying a 
central load Wand propped (to the same height as the fixed end) at 
the free end (Fig. 12.6). It can be shown by the methods of Chap. IX 

Fig. 12.6 
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that the load on the prop under elastic conditions is (5/16)W and the 
B.M. diagram is shown immediately underneath. There are local 
maxima at the fixed end and under the load, and a gradual increase in 
load will cause a plastic hinge to form first at the fixed end, the central 
B.M. being somewhat less. However, due to the support at the free end, 
a collapse condition will not be reached until a second plastic binge 
has formed under the load, i.e. the B.M.'s at the end and centre are 
numerically M, and the distribution is as shown in the lower diagram. 
Note that the shape of the B.M. diagram at collapse is not similar to 
that under working conditions, due to a redistribution of stress and 
strain when a plastic hinge is formed, the value of M, being assumed 
the same at each binge by Para. 12.2 (4). If P is the load on the prop at 
collapse, then equating the numerical value of B.M.'s at the end and 
centre: 

i.e. 

and 

M, ... W,xl/2-Pl=Pl/2 

P=WJ3 

M.=WJ/6 

The maximum bending moment under working conditions is 

M",=(3/16)Wl 

Hence W, = 6M,/1 from (4) 

=6S(ay/a",)M",/1 (para. 12.3 (6» 

=(9/8)S(ay/a",)W from (5) 
Load factor 

L = R'e/W = (9f8)S( a,l/a",) 

(4) 

(5) 

(6) 

i.e. an increase of 9: 8 over the simply supported beam for the same 
working stress conditions. 

(c) Built-In Beam, Uniformly Distributed Load (Fig. 12.7). For 
collapse, three plastic hinges must be formed, i.e. at each end and the 
centre, for this loading. The B.M. diagram at collapse is then formed 
by making the values equal to M, at these points. By symmetry the 
reactions at the ends are then W,/2, hence at the centre 

giving 

Hence 

giving 

Mp = (We/2)(1/2) - (We/2)(l/4) - Mp 
M .... WJI16 

M", = WII12 from elastic theory 

W,=16M,/1 from (7) 

-16S(ay/a",)M,.,/1 
-(4/3)S(ay/a",)W from (8) 

Load factor - (4/3)S( aria.) 

(7) 

(8) 
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Fig. 12.7 

For all cases of built-in beams the collapse load is not affected by 
sinking of the supports or lack of rigidity of the fixed ends, provided 
that the rigidity is sufficient to allow the fully plastic moment to develop. 

EXAMPLE 4. A 300 mm by 125 mm I-beam is carried over a span of 20 m 
the ends being rigidly built-in. Find the maximum point load which can be 
carried at 8 m from one end, and the maximum working stress set up. Take a 
load factor of 1·8 and u, =250 Njmm2• Z =56·6 x 104 mm3 and S =1·11 
(see Ex. 2). 

Under elastic conditions the maximum B.M. is at the end nearer the 
load, and by Ex. 2, Chap. 10, 

M .. =W x 122 X 8/202 

= (72/25)W (i) 

At collapse, hinges must be formed at each end and under the load 
(Fig. 12.8) and it is clear that the collapse load We is given by equating 
the numerical B.M.'s, i.e. 

We X 12 x 8/20 -Mp=Mp 

or We = (5j12)Mp (ii) 

t=8m 12m=) 

Fig. 12.8 
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Since load factor = 1·8, working load 

from (i) 

W-Wc/1'8 
= (25/108)Mp from (ii) 

= (25/108)8Zuy 
=(25/108)1-11 x 56·6 x 104 x 250/103 

= 36,000 N = 36 kN 

MVI = (72/25)36 kNm 
giving a working stress 

uVl=MVI/Z 
72 x 36,000 x 103 

25 x 56·6 x 104 

=183 N/mm2 

12.4. 

12.5. Combined Bending and Direct Stress. For a beam or column 
subjected to an axial stress as well as a bending moment, the neutral 
axis will be displaced to one side of the centroid axis, the variations in 
working stress being shown in Fig. 12.9(a). An increase in load will 
cause the stress to reach the yield point on one side first, and spread 

B A 

1.\ -----.9.:-
c J.. D 

~~~--~ ~ I 

~----:7t--"-----..,1 J 

WOl"'kinq sl-ressl1.s. PQI"'lidlly plQsric. • 

(0) (b) 

Fig. 12.9 

K 

FI--_---'E 

fully plQst-ic . 

(c) 

over the section to give the fully plastic state of Fig. 12.9(c). It is clear 
that the displacement of the neutral axis in the plastic state is given by 
h such that 

2h x b x uy=axialload x load factor-PL (1) 
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(where b is the width of the section near the centroid axis) and the plastic 
moment of resistance 

M, ... that given by ABCDEF -that given by GHCDJK 
... SZu" - (bhu,,)h 
... SZu"-p2L2/4bu,, from (1) (2) 

Comparing this with equation (6) of Para. 12.3, it is seen that the 
plastic moment is reduced by a term depending on the axial load, the 
load factor, and the shape of the section. The permissible working 
moment for a single plastic hinge is then obtained from M, by dividing 
by the load factor L, 

i.e. (3) 

EXAMPLE 5. A 300 mm by 125 mm I-beam has to withstand an axial 
load of 100 kN. If a load factor of 1·8 is to be applied, determine the maxi­
mum permissible bending moment. Web thickness =8·5 mm, Z =56·6 x 
104 mm3, S =1,11 (see Ex. 2). Take u, =250 N/mm2• 

At collapse, axial load = l·S x 100 =lS0 kN, which requires a depth of 
web = ISO x 103/(S'5 x uy) =S4'S nun. This will be spaced equally about 
the centroid, i.e. 42·4 nun either side (h of eqn. (1)). 

The reduction in l.V1p is given by the product of half the axial load and 
the distance between the centres of areas of each half load (i.e. GHCDJK 
of Fig. 12.9). Giving 

(check from eqn. (2)). 

=1·11 x 56·6 x 104 x 250 -90 x 103 x42·4 

=151 x 106 Nmm=151 kNm 

Then Mw=Mpj1'8 =84 kNm. 
Note that the reduction in Mw in this case is only about 21%, whereas 

on the elastic theory, with a working stress of 1 SO N/mm2, the permissible 
bending stress 

Ub = 1 SO - axial load/area of beam 

=131'2N/mm2 (A=5S00mm2) 

and the reduction in Mw due to the existence of the axial load is 

(150 -131·2)100 =12.5°/ 
150 /0 

EXAMPLE 6. A rectangular bar of mild steel, 72 mm by 48 mm in cross­
section, is subjected to an axial load applied eccentrically and cutting all 
sections at a point mid-way between the 72 mm sides and 24 mm from a 48 mm 
side. Calculate the maximum load which can be carried using a loadfactor of 2 
and a yield stress of 270 N/mm2• 
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Applying equation (3), S =1'5, Z =bd2j6, 0", =270, L =2, b =48, d =72 
giving 

1·5 x 48 x 722 x 270 
Mw= 6 x2 

P2 x 2 
4 x 48 x 270 

=84 x 105 -P2j25,900 

But Mw =P x 12 from the eccentricity, 

Hence P2j25,900 + 12P - 84 x 105 =0 

from which P=[ -12 + v(144 + 1300)]12,950 

=337,000 N =337 kN. 
The working stress is then 

PjA +Pe/Z =337,000/48 x 72 +337,000 x 12 x 6/48 x 722 

=195 N/mm2 

Note that the neutral axis (zero stress) is at the 48 mm edge opposite 
the load under elastic conditions with this eccentricity, but is at a distance 
of -!-(337,000 x 2)/48 x 270 =26 mm from the centre of the section under 
fully plastic conditions (eqn. (1». 

12.6. Portal Frames-Collapse Loads. In a framework with rigid 
joints, points of local maximum bending moment will occur at the 
joints and under any applied load. At the collapse load some or all of 
these points will become plastic hinges. 

Consider a portal of height h and span I as shown in Fig. 12.10. Under 
a central vertical load V and a horizontal load H, plastic hinges may 
form at any combination of the points ABCDE (if A and E are pin-

kam Collapse SWCly Collapse Combined CoIIClpse.. 

E 

Fig. 12.10 

joints they will rotate under zero bending moment). A collapse condi­
tion is reached when sufficient hinges are formed to create a "mechan­
ism". The only three distinct forms of collapse mechanism are shown 
as beam collapse (hinges at B, C and D), sway collapse (hinges at A, 
B, D, and E) and combined collapse (hinges at A, C, D, and E). If one 
link of the mechanism is given a rotation 8 (under the action of the 
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plastic moment MJI), then the value of the collapse load can be calcu­
lated by the principle of virtual work, choosing the least load for all the 
possible mechanisms. Some standard cases will be considered below, 
and to allow for different section beams, the plastic moments will be 
indicated by MJlJ for the stanchions AB and DE, and MJlb for the beam 
BD. At the comers B and D, the smaller plastic moment will be written 
MJI'. 

(a) Hinged Base Portal. 
(1) VeI·tical Load Only. The symmetrical beam collapse will apply, 

the joint rotations being 0 at B and D, and 20 at C. Neglecting the elastic 
strain and assuming that the whole strain takes place under a constant 
collapse load, the work done by the load is V.t/O and the energy dissi­
pated in the plastic hinges is MJlb20+UlJ1'0. 

Equating, and dividing by 20 

(1) 

(2) Horizontal Load Only. Sway collapse will apply here, with 
rotations 0 at Band D. Equating the work done by the load and at the 
plastic hinges, 

or 
H.h8=2M;P 
tHh=MP' (2) 

(3) Combined Loading. Generally, collapse will be by forming plastic 
hinges at C and D, there being no rotation of the joint at B. 

The work equation becomes 

V.tIO+H.hO=MJlb.28 + Mp'.28 
or iVI+tHh=MJlb+MJI' (3) 

It can be shown that, if the section is uniform throughout, collapse 
will occur by sway when Hh>tVI, the collapse load being given by 
(2). In no event can the beam collapse occur under combined loading, 
by comparison of the corresponding sides of equations (1) and (3). 

EXAMPLE 7. If, in Fig. 12.10,H=tVandh=tl,obtainanexpressionfo, 
the horizontal and vertical collapse loads when the plastic moment M" is the 
same for beam and stanchions. 

From equation (3) 

i.e. 

Then 

lVl+t.tV.tl=2M" 
V=16M,,/31 

H-tV 
-SMJ31 
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If the other two modes of collapse are checked, it will be found that 
higher collapse loads are required, and consequently the combined col­
lapse mechanism gives the least values. 

The most economical sections for a given loading are calculated by 
satisfying equations (2) and (3) simultaneously. 

EXAMPLE 8. A portalframe with hingedfeet is 3 m high and 5 m wide and 
carries a central vertical load of so kN together with a horizontal load at 
beam height of 20 kN. Using a load factor of 2, determine the plastic moments 
required. 

Find the section moduli required, assuming a shape factor of 1·15 and a yield 
stress 280 N/mm2• 

From (2), 

From (2) and (3) 

Mp' =tHh at collapse 

=t x2 x20 x3 

=60kNm 

MPb=tVI 
=t x 2 x 50 x 5 

=125 kNm 

The section moduli required are, for the stanchions 

Z=Mp'/Suy 

and for the beam 

(b) Fixed Base Portal. 

=60 x 106/1.15 x 280 

=18·7 x 104 mm3 

Z=Mpb/Suy 
=39 x104 mm3 

(1) Vertical Load Only. The beam collapses in the same manner as 
a hinge-based portal giving 

!VI=M,b+M,' (4) 

(2) Hori%ontal Load Only. Sway collapse now requires the formation 
of 4 hinges, and the work equation is 

Hh8=2M"O+2M,'O 
i.e. (5) 

(3) Combined Loading. The combined collapse mechanism gives 

V.tIO'+H.h8 = 2M'J.8 +Mr/.28 +MDb .28 
or iVl+!Hh ""M",+M,,' +MDl! (6) 
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For economical design equation (6) and either (4) or (5) should be 
satisfied simultaneously. 

EXAMPLE 9. For the same dimensions and loading as Example 8, determine 
a suitable section if the base of the portal is fixed. 

Again, if H and V are the collapse loads, 

!Hh=60 and iVl=125 kNm 

If (4) and (6) are to be satisfied 

and 
Mps=60 kNm 
Mj>b=65 kNm 

Alternatively, if (5) and (6) are satisfied 

Mpb=125 kNm 
and 

Choosing the first solution, 

Z=Mp/Suy 
=18·7 x 104 mm3 for the stanchions, and 

20·2 x 104 rom3 for the beam. 

SUMMARY 

Collapse Load 
Load Factor = Working Load 

Plastic Moment Mp 
Shape Factor = Moment at First Yield M 

My=Zuy 
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PROBLEMS 

1. The figure shows the section of a beam which is subjected to a bending 
moment of such magnitude that yielding occurs at the lower part of the web over 
a depth of 2 cm. The yield stress of 280 N/mm2 may be assumed constant over 
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the yielded area, while over the remainder of the section the stress is proportional 
to the distance from the neutral axis. Determine: 

(a) the position of the neutral axis, 
(b) the stress at the top of the section, 
(c) the moment of resistance of the section. (U.L.) 

(Note: for (a), equate the tensile and compressive forces on either side of 
NA.) 

«a) h =5·42 cm; (b) 210 N/mm2 ; (c) 4350 Nm.) 
2. Show that the shape factor for a circular cross-section bending about a 

diameter is approximately 1·7. 
3. A 15 cm by 7·5 cm I-beam is built-in at one end and propped at the same 

level at the other. It carries a uniformly distributed load over the whole length. 
Determine the load factor using values of <Ty = 240 N /mm2 and <Tw = 1 SO N /mm2 

The web thickness is 5·75 mm flange thickness 9·4 mm, and 1=820 cm4• (2·63). 
4. Show that the plastic moment for a rectangular section beam carrying an 

axial stress p is given by 

( <Ty2 - L2P2) bd2 

<Ty 4 
where <Ty is the yield stress, L the load factor, and band d the dimensions. 

5. A portal frame of height h and span l carries a central vertical load V to­
gether with a horizontal load H at beam level. If Mp is the plastic moment of the 
section (uniform throughout) and Vl =6Hh, find expressions for the collapse 
loads when the base is hinged or fixed in direction. (Hinged, V =6Mp/l, 
H = Mp/h. Fixed, V =8Mp/l, H =4Mp/3h.) 

6. In Problem 5, if h =3 m and l =6 m, calculate the minimum plastic 
moments required in the stanchions and beam for collapse loads of 150 kN 
vertical and 50 kN horizontal. 
(Hinged, Mp$ =75, MPb =225 kNmj Fixed, Mps =75, MPb =150 kNm.) 



CHAPTER XIII 

Springs 

13.1. Close-coiled Helical Springs. In Fig. 13.1 
D == mean coil diameter 
d == wire diameter 
n = number of coils 

(a) Under axial load W. Since the angle of the helix is small the action 
on any cross-section is approximately a pure 
torque = W.D/2, and the bending and shear 
effects may be neglected. 

The wire is therefore being twisted like a shaft, 
and if () is the total angle of twist along the wire, 
and x the deflection of Walong the axis of the coils, 
x = (D/2)(} approximately. 

Applying the formula for torsion of shafts 
(Para. B.1), making the above substitutions and 
also noting that I =1TDn approx., 

or 

W.D/2 =2T/d= G.2x/D 
1Td4/32 1TDn 

8WD/-rrdf. = r/d = Gx/-rrD'Jn (1) 

The spring stiffness k = W/x = Gd4/BD3n 
The strain energy U =tWx 

Fig. 13.1 

which, by substitution in terms of T from (1), can be reduced to 

U = (f2j4G) x volume (see also Para. 8.2). 

(b) Under axial torque T. This will produce approximately a pure 
bending moment of magnitude T at all cross-sections. The total strain 
energy is therefore 

T21 T2.1TDn 
U == 2EI= 2E x1Td4j64 (Para. 11.1) 

==32T2DnjEd4 (2) 

But if T causes a rotation of one end of the spring through an angle cp 
about the axis, relative to the other end, 

U-tTcp 
225 
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Equating to (2) gives 
4>= TljEI 

-64TDnjEd4 

M · b d· Txdj2 32T 
axunum en mg stress = ."d4j64 = ."d3 

13.1. 

(3) 

EXAMPLE 1. A close-coiled helical spring has to absorb 50 Nm of energy 
when compressed 5 cm. The coil diameter is eight times the wire diameter. If 
there are ten coils, estimate the diameters of coil and wire and the maximum 
shear stress. G =85,000 N/mm2• 

i.e. 

D=8d; n=10. 
Substitute in 

u=tWx 
50 x 100 =1- x W x 5 

W=2000N 

8WD/7Td4 = GX/7TD2n 
(8 x 2000 x 8d)/d4 =(85,000 x 50)/[(8d)2 x 10] 

from which d =(8 x 2000 x 8 x 64)/(85,000 x 5) 
=19·3 mm 

D=8d=154mm 
8WD/."d4 =Tjd from (1) 

-T = (8 x 2000 xl 54 X 19·3)/(." x 19'34) 

=108 N/mm2 

EXAMPLE 2. A close-coiled helical spring is to have a stiffness of 900 N/m 
in compression, with a maximum load of 45 N and a maximum shearing stress 
of 120 N/mm2• The" solid" length of the spring (i.e. coils touching) is 45 mm. 
Find the wire diameter, mean coil radius, and number of coils. G =40,000 
N/mm2• (U.L.) 

Stiffness 

i.e. 

or 

i.e. 

or 
i.e. 
i.e. 

k = Gd4/8D3n 

900 x 10-3 = 40,000 x d4 

8D3n 

d4 9 D3 
= 5 x 104 n 

Maximum stress =8WD/7Td3 from (1) 
120 = (8 x 45 x D)/."d3 

D=1'05d3 
Solid length = nd 

45=nd 
Substitute from (ii) and (iii) in (i) 

giving 

d4 __ 9_ (1'05)3d9 45 
-5 x 104 ' . d 

d=3'22 mm 

(i) 

(ii) 

(iii) 



13.1. 
From (ii) 

i.e. 
From (iii) 

SPRINGS 

D=35'2mm 
Mean coil radius = 17·6 mm 

n=14 

227 

EXAMPLE 3. In a compound helical spring the inner spring is arranged with­
in and concentric with the outer one, but is 9 mm shorter. The outer spring has 
ten coils of mean diameter 24 mm, and the wire diameter is 3 mm. Find the 
stiffness of the inner spring if an axial load of 150N causes the outer one to 
compress 18 mm. 

If the radial clearance between the springs is 1·5 mm find the wire diameter 
of the inner-spring when it has eight coils. G =77,000 N/mm2• (U.L.) 

The load carried by the outer spring for a compression of 18 mm 

= 77,000 x 18 x 34 from (1) 
8 x 243 x 10 

=102N 

Hence the load carried by the inner spring =150 -102 =48 N, for a 
compression of 18 - 9 = 9 mm. 

Stiffness of inner spring =48/9 = 5·33 N/mm 

D = 24 - 3 - 2 x 1· 5 - d = 18 - d 
n=8. 

or 

. 77,000 xd4 

Stiffness 5·33 = 8(18 _ d)3 x 8 

226d4 =(18 -d)3 
Since d is small compared with 18, for a first approximation 

d=[5830/226]i =2,26 mm 
Second approximation 

d = (15'743/226)! =2·05 mm 
Final trial 

d = (15'95 3/226)! =2·06 mm 

EXAMPLE 4. A composite spring has two close-coiled helical springs con· 
nected in series; each spring has twelve coils at a mean diameter of 25 mm. 
Find the wire diameter in one if the other is 2·5 mm and the stiffness of the 
composite spring is 700 N/m. 

Estimate the greatest load that can be carried by the composite spring, and 
the corresponding extension, for a maximum shearing stress of 180 N/mm2• 

G =80,000 N/mm2• (U.L.) 

For springs in series the load is common to both, and the total extension 
is the sum of that for each, i.e. 

X=Xl +X2 

or W/k = W/k 1 + W/k2 

where k is the equivalent stiffness of the composite spring, 

or 1/k = l/kI + 1/kz 
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Here 
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103 8x2S3 x 12 8x2S3 x 12 
700 = 80,000 X 2·S4 + 80,000 x d 4 

18·7 1 18·7 
d4 = 0·7 - 2·S4 

=0·9S 
d=2·1 mm 

13.1. 

Since W =1Td3f/8D, the limiting load will be found in the spring with 
the smaller wire aiameter, i.e. 

1T x 2·13 x 180 
W= 8 x2S 

=26·3 N 

Total extension = W/k 
=26·3/0·7 
=37·S mm 

EXAMPLE S. A close-coiled helical spring of circular section extends 1 cm 
when subjected to an axial load W, and there is an angular rotation of 
1 radian when a torque T is independently applied about the axis. If D is the 
mean coil diameter, show that T/W =D2(l +JI)/4, where JI is Poisson's ratio. 

Determine Poisson's ratio if D =3 em, a load of ss N extends the spring 
S·4 cm, and a torque of 300 Nmmproduces an angular rotation of 60°. (U.L.) 

It has been shown that 
W = Gd4x/8D3n 

and cp = Tl/ EI = 64 TDn/ Ed4 

Since here x =cp = 1, then 
T/W=D2E/8G 

or 

=D2(1 +JI)/4 (Para. 4.3) 

D=3cm; T=300x3/1TNmm/radn.; W=SS/S·4N/cm 

(90 x S·4)/(1T x SS) =(32/4)(1 +JI) 

JI =216/SS1T -1 
=0·2SS 

(1) 

13.2. Open-coiled Helical Springs. Let ex be the angle of the helix, 
then the length of wire I =1TDn/cos ex. 

In Fig. 13 .2, OX is the polar axis (axis of twisting) at any normal cross­
section, and is inclined at ex to the horizontal OH. OY is the bending 
axis, and is inclined at ex to the vertical OV. All the axes OX, OY, OH, 
and OV are in the vertical plane which is tangential to the helix at O. 

If now an axial load Wand an axial torque T are applied to the spring, 
the latter tending to increase the curvature, the actions at 0 are couples 
WD/2 about OH and T about OV (effect of shearing force W may be 
neglected). 
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Resolving these couples about the axes OX and OY, the combined 
twisting couple 

= (WD/2) cos ex + T sin ex 
and the combined bending 
couple 

= T cos ex - (WD/2) sin ex 
tending to increase the curva­
ture. 

The total strain energy due to 
bending and twisting WD 
U=[(WD/2)cosex+Tsinex.]21 yCOS(1, ~ 

2GJ + xV 
[Tcosex-(WD/2)sinexFI TsinCL 6T 

2EI l} 
(Summary, Chapters VIII and W 
IX) Fig. 13.2 

By Castigliano's theorem (Para. 11.4), the axial deflection x = o U/o W, 
and the axial rotation ep = o U/o T. The general case may be derived from 
the above expression, but usually the loading is either W only or T 
only, and the solution of these cases is given below. 

(a) Axial load only. 
x=(oU/oWh_o 

2[(WD/2) cos ex](D/2) cos ex.l 2[ - (WD/2) sin ex.][ - (D/2) sin ex]1 
= 2GJ + 2EI 
= (WD21/4)(cos2 ex/GJ+sin2 ex/EI) 
= (8WD3n/d' cos rx)( cos2 rx/G + 2 sin2 rx/E) 

(J =7Td4/32; I =7Td4/64) 
ep=(oU/oTh_o 

2[(WD/2) cos ex] sin ex.1 2[ -(WD/2) sin ex] cos ex.1 
= 2GJ + 2EI 
= (WDl/2) sin ex. cos ex(I/GJ -l/EI) 
= (16WD2n sin ex/d4)(I/G - 2/E) 

(b) Axial torque only. 
ep = (oU/oThr_o 

2(T sin ex) sin ex..1 2(T cos ex) cos ex .1 
= ZGJ + ZEI 
-= TI( sin2 ex/GJ + cos2 ex/EI) 
-(3ZTDn/d4 cos ex)(sin2 ex/G +Z cos2 ex/E) 
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x = (aujaW)w_o 

2(T sin a.)(Dj2) cos a..l 2(T cos IX) [ - (Dj2) sin a.]l 
- 2GJ + 2EI 
r= [(TDlj2) sin a..cos 1X](ljGJ -ljEI) 
r= (16TD2n sin ajd4)(ljG - 2jE) 

EXAMPLE 6. An open-coiled helical spring is made having ten turns wound 
to a mean diameter of 120 mm. The wire diameter is 10 mm and the coils make 
an angle of 30° with a plane perpendicular to the axis of the coil. Find (a) the 
axial extension with a load of 100 N, and (b) the angle the free end will turn 
through with this load if free to rotate. E =208,000 N/mm2 ; G =83,000 N/ 
mm2• 

(a) Axial extension 

x = 8 WD3n (~~21X + 2 Sin21X) 
d4 cosIX G E 
8 x 100 x 1203 x 10 (~OS2 30° 2 sin2 300) 

104 cos 30° 83,000 + 208,000 

= 800 x 1728 x 2(0'0905 0.024) 
y3 xl04 + 

=18-3 rum 

(b) Angle of rotation of free end 

4>=16WD2nSinlX(1 _~) 
d4 G E 

= 16 x 100 x 1202 X 10 sin 30°(_1 ____ 2_) 
104 83,000 208,000 

= 16 x 144 x 5(0-1205 _ 0-098) 
104 

=0-026 radian 
=1-48° 

13.3. Leaf Springs. This type of spring is commonly used in carriages 
such as cars, lorries, and railway wagons. It is made up of a number of 
leaves of equal width and thickness, but varying length, placed in 
laminations and loaded as a beam. 

There are two main types, the "semi-elliptic," simply supported at 
its ends and centrally loaded, and the "quarter-elliptic" or cantilever 
type. 

(1) Semi-elliptic type. In Fig. 13.3, let 
l=the span (assumed constant) 
h - width of leaves 
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t =- thickness of leaves 
W -= central load 

SPRINGS 

y = rise of crown above level of ends 
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It is assumed for the development of a simplified theory that the 
ends of each leaf-where it extends beyond its neighbour-are tapered 
uniformly to a point; also, in order to complete the set, the shortest 
leaf should be a diamond shape. Neither of these assumptions will be 
realised in practice, in particular the main leaf requiring to be main­
tained at the full width where it is supported, but slight departures from 
this design will not seriously affect the theory. 

W 

Fig. 13.4 

If the leaves are initially curved to circular arcs of the same radius 
Ro, contact between the leaves will only take place at their ends, and 
consequently anyone leaf will be loaded as shown in Fig. 13.4. Over the 
central portion both M and I are constant. Over the end portions both 
M and I are proportional to the distance from the end. Consequently 
for the whole leaf Mjl is constant. 

But MjEl = ljR -ljRo (Para.l1.1) 

and since Ro is assumed constant, the radius of curvature R in the 
strained state must be the same for all leaves, and contact continues 
through the ends only. 

Friction between the plates being neg­
lected, each leaf is free to slide over its 
neighbour, and since they all maintain the 
same radius of curvature they can be 
imagined to be arranged side by side to 
form a beam of constant depth and varying 
width, as shown in plan, Fig. 13.5. 

As the bending moment for the equivalent 
Fig. 13.5 

section is directly proportional to the distance from either end, and I 
also varies uniformly, it can be seen that the spring is equivalent to a 
beam of uniform strength (i.e. same maximum stress at all sections). 
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The results can now be obtained by consideration of any convenient 
section, and in the following analysis the central section will be used. 

M = - W114, tending to decrease the curvature 
I =nbt3/12, n=number of leaves 

By the geometry of a circle 
y(2R - y) = (112)(112) 

and treating y as small compared with R, this gives 
I/R=8yI12 

Substituting in MIEI = IIR -IIRo 
- Wl14 8 

E.nbt3/12 = ji(y-yo) 

Deflection 8 = Yo - Y = 3W13/8nbt3 E 
The load required to straighten the spring is called the .. Proof 

Load," and is given by 8nbt3EYo/313. 

Fig. 13.6 

The maximum bending stress 

u=(M/I)(t/2) 
(WI/4)(t/2) 

nbt3/12 
=3Wl/2nbt'l 

(2) Quarter-elliptic type. By a similar 
argument, the equivalent plan section 
varies in width from zero to nb at the fixed 
end (Fig. 13.6), and the other values at this 
end are 

M=-Wl 
I=nbt3/12 
l1R=2y1I2 

By substitution in M/EI = l/R -l/Ro 
-WI 2 

E.nbt3/12 =T2(Y -Yo) 

8=Yo-y=6WI3/nbt3E from above 
and u=(MfI)(t/2)=6Wl/nbt' 

EXAMPLE 7. A laminated steel spring, simply supported at the ends and 
centrally loaded, with a span of 0·75 m, is required to carry a proof load of 
750 kg, and the central deflection is not to exceed 50 mm; the bending stress 
must not exceed 380 N/mm2• Plates are available in muliples of 1 mm for 
thickness and 4 mmfor width. Determine suitable values for width, thickness, 
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and number of plates, and calculate the radius to which the plates should be 
formed. Assume width =12 x thickness. E =208,000 N/mm2• 

Deflection 0 = 3 W[3 /8nbt3 E (" semi-elliptic") 

. 50=3 x 750x9'81x7503 
I.e. 

8n(12t)t3 x 208,000 
giving nt4 =9340 (1) 

Maximum stress a = 3 Wl/2nbt2 

3 x 750 x 9·81 x 750 
i.e. 380 = -~--:-,,-,--,:--

2 x n(12t)t2 

giving nt3 = 1810 (2) 

Dividing (1) by (2) 

From (2) 

t =9340/1810 
=5'16, say 6 mm 

b =12t=72 mm 

n=1810/6 3 

= 8'4, say 9 leaves 

The actual deflection under the proof load of 750 kg 

3 x 750 x 9·81 x 7503 

8 x 9 x 72 X 63 x 208,000 
=4Omm 

Since the spring is now straight, the initial radius of curvature is given 
by 

Ro =[2/80 
=7502/(8 x 40) 
=1750mm=I·75 m 

EXAMPLE 8. A laminated spring of the quarter-elliptic type, 0·6 m long, is 
to provide a static deflection of 75 mm under an end load of 200 kg. If the leaf 
material is 60 mm wide and 6 mm thick, find the number of leaves required 
and the maximum stress. 

From what height can the load be dropped on to the undeflected spring to 
cause a maximum stress of 750 N/mm2? E =208,000 N/mm2• (U.L.) 

i.e. 

0= 6 W[3 /nbt3 E ("quarter-elliptic") 

75 6 x 200 x 9·81 x 6003 

n x 60 x 63 x 208,000 

n = 12'6, say 13 leaves. 
a=6Wl/nbt2 

6 x 200 x9·81 x 600 
= 13x60x62 

=252 N/mm2 
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The equivalent gradually applied load to cause a maximum stress of 
750 Njmm2 

= 200 x 9'81 x 750 = 5850 N 
252 

and the corresponding deflection 
6 x 5850 x 6003 

= 217mm 

i.e. 
giving 

13 x 60 x 63 x 208,000 
Loss of P.E. = Gain of S.E. 

200 x 9'81(h +217) =!- x 5850 x 217 

h=323 -217 
=106mm 

13.4. Flat Spiral Springs. This is the type of spring used in clock­
work mechanisms, and consists of a uniform thin strip wound into a 

Fig. 13.7 

spiral in one plane, and pinned 
at its outer end. The spring is 
"wound up" by applying a 
torque to a spindle attached to 
the centre of the spiral. 

Let T be the torque tending 
to wind- up the spring, and X 
and Y the components of re­
action at the outer end of the 
spring 0 (Fig. 13.7). 

By moments about the 
spindle axis 

T= YR (1) 
where R is the maximum radius 
of the spiral. 

At any point in the spring, defined by co-ordinates x and y, the 
bending moment = Y x - Xy tending to increase the curvature. 

The strain energy 
U=f(Yx-Xy)2ds/2EI 

... f[(T/R)x - Xy]2ds/2EI from (1) 

Since 0 is a fixed point au/ax =0 (Para. 11.4) giving 

X=(T/R)fxyds/fy2ds=O by symmetry. 

Then 8 = au/aT = (2T/R2)fx2ds/2EI 

But fx2ds ... (R2/4 + R2)1 approximately, treating the spiral as a uni­
form .. disc". 
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6= 1·25 Tl/EI (2) 
Strain energy '"' 1-TO 

- 1·25 T21/2EI from (2) (3) 
Maximum bending moment ... Y. 2R at the left-hand edge 

... 2T from (1) 

Maximum stress a=2T/Z 
= 12T/bP (4) 

where b = width and t = thickness of spring material. 

EXAMPLE 9. A flat spiral spring is 6 mm wide, 0·25 mm thick, and 2·5 m 
long. Assuming the maximum stress of 800 Njmm2 to occur at the point of 
greatest bending moment, calculate the torque, the work stored, and the num­
ber of turns to wind up the spring. E =208,000 Njmm2• (U.L.) 

Maximum stress 8-= 12 Tjbt2 from (4) 
i.e. 
giving 

800 = 12Tj(6 x 0.252) 

T=25Nmm 
Angle of rotation 8 = 1·25 TljEI from (2) 

1·25 x 25 x 2500 x 12 
208,000 x 6 x 0.25 3 

=48 radians 
= 7·6 turns of the spindle. 

Work stored in spring =!T8 
=t x 25 x 48 =600 Nmm 

REFERENCES 
BERRY, W. R., Spring Design Emmott 1961. 
WAHL, A. M., Mechanical Spring'. Penton Publishing Co. 1963. 
AsHWORTH, G., The Disk Spring or Belleville Washer. J.I.Mech.E. Vol. ISS, 

1946, p. 93. 

SUMMARY 

Close-coiled Springs: 
8WD/1Td4 =1-/d=GX/1TD2n under axial load. 
4> = TI/EI under axial torque. 

Open-coiled Springs: x=(8WD3n/d4 cos ot)( cos2 ot/G +2 sin2 ot/E) 
under axial load. 

Leaf Springs. Semi-elliptic: 
8 = 3 W13 /8nbt3 E 
(j = 3 WI12nbt2 

Spiral Springs: 
8 ... 1·25 TI/EI 
(j-12T/b,2 

Quarter-elliptic: 
8 = 6 Wl31nbt3E 
(j ... 6 WI/nbt2 
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PROBLEMS 

1. Determine the weight of a close-coiled helical spring to carry a load of 
5000 N with a deflection of 5 em and a maximum shearing stress of 400 N/mm2 

If the number of active coils is eight, determine the wire diameter and mean coil 
diameter. G =83,000 N/mm2 j p =7700 kg/m3• (2 kgj 13·6 mmj 75 mm.) 

2. Close-coiled helical springs having n turns are made of round wire such 
that the mean diameter of the coils D mm is ten times the wire diameter. Show 
that the stiffness in N /mm for any such spring is (D /n) x constant, and deter­
mine the constant when G =83,000 N/mm2• 

Such a spring is required to support a load of 1000 N with an extension of 
10 em and a maximum shear stress of 350 N/mm2• Calculate (1) its weight, 
(2) mean coil diameter, (3) number of turns. The material weighs 7700 kg/m3• 

(1·04; 1·05 kg, 85·3 mm, 9.) 
3. A close-coiled helical spring of circular section has a mean coil diameter of 

76 mm. When subjected to an axial torque of 6·1 Nm there is an angular rotation 
of 90°, and when an axial load of 265 N is applied the spring extends 125 mm. 
Find Poisson's ratio. (D.L.) (0'26.) 

4. The spring load against which a valve is opened is provided by an inner 
helical spring arranged within and concentric with an outer spring. The free 
length of the inner spring is 6 mm longer than the outer. The outer spring has 
twelve coils of mean diameter 25 mm, wire diameter 3 mm, and initial compres­
sion 5 mm when the valve is closed. Find the stiffness of the inner spring if the 
greatest force required to open the valve 10 mm is 150 N. 

If the radial clearance between the springs is 1· 5 mm, find the wire diameter 
of the inner spring if it has ten coils. G =80,000 N/mm2• (4 N/mmj 2·1 mm.) 

5. A composite spring has two close-coiled springs in series. Each spring has 
a mean coil diameter eight times its wire diameter. One spring has twenty coils 
of wire diameter 2·54 mm. Find the diameter of wire in the other spring if it has 
fifteen coils and the stiffness of the composite spring is 1·26 N /mm. Find the 
greatest axial load that can be applied, and the corresponding extension, for a 
maximum shearing stress of 310 N/mm2. G =80,000 N/mm2. (D.L.) 

(2 mmj 60·5Nj 48 mm) 
6. Determine the maximum angle of helix for which the error in calculating 

the extension of a helical spring under axial load by the "close-coiled" formula 
is less than 1 %. (10° 20'.) 

7. In an open-coiled spring of ten coils the stresses due to bending and twist­
ing are 140 N/mm2 and 150 N/mm2 respectively when the spring is loaded 
axially. Assuming the mean diameter of the coils to be eight times the wire 
diameter, find the maximum permissible axial load and the wire diameter for a 
maximum extension of 18 mm. E=206,000 N/mm2 j G=76,000 N/mm2. 

(125 Nj 3·9 mm.) 
8. An open-coiled spring carries an axial load W. Derive expressions for dis­

placement and angular twist of the free end. 
Find the mean radius of an open-coiled spring of helix angle 30°, to give a 

vertical displacement of 23 mm and an angular rotation of the load end of 
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0·02 radians under an axial load of 35 N. The material available is steel rod 6 mm 
diameter. E=200,000 N/mm2 ; G=80,000 N/mm2• (U.L.) (105 mm.) 

9. Prove than in an open-coiled helical spring, subjected to an axial load, the 
value of the maximum shear stress is the same as in a close-coiled spring of the 
same dimensions. 

An open-coiled helical spring made of steel rod 12·7 mm diameter has 10 coils 
of mean diameter 76 mm and pitch 50 mm. If the axial load is 890 N, find the 
deflection and maximum shear stress. E=206,000 N/mm2 ; v=0·3. (U.L.) 

(Combined bending and twisting, Para. 8.8.15·5 mm 84 N/mm2.) 

10. A carriage spring, centrally loaded and simply supported at its ends, has 
ten steel plates each 50 mm wide by 6 mm thick. If the longest plate is 0·7 m, 
find the initial radius of curvature if the maximum stress is 150 N/mm2 and the 
plates are finally straight. 

Neglecting loss of energy at impact, determine the height from which 20 kg 
can be dropped centrally on to the spring without exceeding the stress of 
150 N/mm2• E=206,000 N/mm2• (4-15 m; 82 mm.) 

11. A cantilever leaf spring of length 0·43 m has four leaves of thickness 9 mm. 
If an end load of 2·5 kN causes a deflection of 36 mm find the width of the leaves. 
E =200,000 N/mm2• (57 mm.) 

12. A leaf spring spans 1 m and is supported at each end. It carries two con­
centrated loads of 180 kg each at points 0·3 m from each end. It is made from 
leaves 5 cm wide and 6·3 mm thick. 

Design the number and length of the leaves in order that the maximum stress 
in the material shall not exceed 280 N/mm2• 

(6 leaves, lengths 50, 60, 70, 80, 90, and 100 cm.) 
13. Obtain from first principles the expression for energy stored in a flat 

spiral spring per unit volume in terms of maximum stress and E. 
Hence find the length of a spring 25 mm wide by 0·5 mm thick to store 8 Nm 

of energy for a limiting stress of 800 N/mm2• Find also the torque required, and 
the number of turns of the winding spindle to wind up the spring. E = 

205,000 N/mm2• (U.L.) (5a2/96E; 4 m; 0·417 Nm 6'2.) 
14. A flat spiral spring is made of steel 12·5 mm broad and 0·5 mm thick, the 

length of spiral being 6 m. Determine (a) the maximum turning moment which 
can be applied to the spindle if the stress is not to exceed 550 N/mm2, and (b) the 
number of turns then given to the spindle, and (c) the energy stored. 
E=205,000 NJmm2• (0·143 Nm; 6'4; 2·88 Nm.) 



CHAPTER XIV 

Struts 

14.1. Definition. Any member of a structure which is in compression 
may be called a strut, but the term is usually reserved for" long slender" 
members which are liable to fail by buckling, as distinct from "short 
columns" (Para. 6.6), which fail by compressive stress. 

The resistance of any member to bending is determined by its flexural 
rigidity EI, and I may be written as Ak2 (A = cross-sectional area, 
k = radius of gyration). For a given material, the load per unit area 
which the member can withstand is therefore related to k. There will 
be two principal moments of inertia, and if the least of these is taken, 
the ratio 

length of member 
least radius of gyration 

is called the slenderness ratio. Its numerical value indicates whether the 
member falls into the class of columns or struts. 

Struts which fail by buckling, before the limiting compressive stress 
is reached, can be analysed mathematically by the Euler theory, and 
several standard cases will now be treated. 

14.2. Pin-ended (hinged) Strut Axially loaded. The strut is 
assumed to be initially straight, the end load being applied axially 
through the centroid. The usual assumptions about the elasticity of the 

Fig. 14.1 

material are made. 
In Fig. 14.1 the strut is shown 

deflected under an end load P, 
the origin 0 being taken at one 
end and the OX axis through the 
centroids of the end sections. 

Applying the equation of bending of beams 
EI.d2y/dx2 =M (Para. 9.3) 

~ -Py 
which can be written 

d2y/dx2 +a2y=O where a2 =P/EI 
The solution is 

y-A ain a.x +B cos a.x 
238 
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At .¥-O,y-O . B-O . . 
At .¥-l,y-O 

Asintxl-O 

Either A a: 0, in which case y == 0 for all values of .¥ and the strut will 
not buckle, or sin «I = 0, which leaves A indeterminate. The least value 
to satisfy sin txl=O is «1=1T, corresponding to 

«2 =1T2/12=P/EI 
From this is obtained the least value of P which will cause the strut 
to buckle, and it is called the "Euler crippling load" Pc. From 
above 

p. == 'fiJEI/P 
The value of I here is the least mottmIt of inertia. 

The interpretation of this analysis is that for all values of the load P, 
other than those which make sin «I == 0, the strut will remain perfectly 
straight (y = A sin otX = 0). For the particular value Pc =1T2EI/12, sin «I = 0 
and y = A sin me/I. The strut is in a state of neutral equilibrium, and 
theoretically any deflection which it is given will be maintained. 
This is subject to the limitation that I remains sensibly constant, 
and in practice any slight increase in load at the critical value will 
cause the deflection to increase appreciably until the material fails by 
yielding. 

It should be noted that deflection is not proportional to load, and this 
applies to all strut problems; likewise it will be found that maximum 
stress is not proportional to load. 

The higher solutions of sin «I = 0 correspond to higher harmonics of 
the deflected strut, and are of no practical importance. 

EXAMPLE 1. A straight bar of alloy, 1 m long and 12·5 mm by 4·8 mm in 
section, is mounted in a strut-testing machine and loaded axially until it 
buckles. Assuming the Euler formula to apply, estimate the maximum central 
deflection before the material attains its yield point of 280 N/mm2• E = 
72,000 N/mm2• (U.L.) 

There will be no deflection at all until the Euler load is reached, i.e. 
load =1T2EI/12 

1T2 x 72,000 x 12·5 x 4.83 

10002 x 12 

(using the smaller moment of inertia) 
=82N 

Maximum bending moment occurs at centre, =P8 =828, where 8 is 
the central deflection. 
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Maximum stress is the sum of direct and bending stresses at the centre 
(Para. 6.6), i.e. 

280 = 82 + 828 x 6 . 
12·5 x 4·8 12·5 x 4.82 

=1·37 +1·718 

:. 8 =278'6/1·71 
=163 mm 

EXAMPLE 2. A uniform bar of cross-sectional area A andftexural stiffness 
EI is heated so that its temperature varies linearly from 'it at one end to , 
at the other end. One end is pin-jointed to a rigid foundation; the other end 
is pin-jointed so that it can slide in the direction of the length of the bar, the 
thermal expansion of which is resisted by a compression spring of stiffness k. 
If there is no load in the spring when, - 0, obtain an expression for the st,ell 
in the bar when it is heated and show that it buckles in flexure when 

where IX = coefJicient of linear thermal expansion. 
The average temperature along the bar is it, and hence the thermal 

expansion of the bar is ialt. 
If P is the force exerted by the spring on the bar, the compression pro­

duced is PIIAE, and the compression of the spring is Plk. 

i.e. 

from which 

Net expansion of bar = compression of spring, 

ialt -Pl/AE=Plk 
ialt 

P=I/AE+1/k 

Stress in bar -PIA 

ial' 
-l/E+A/k 

The bar will buckle when P-=7T2EI/12, and substitution in above gives 

7T2EI ialt 
---P:--lIAE+1Ik 

rearranging, 

14.3. Direction-fixed at Both Ends. Suppose the strut to have de­
flected. and let M be the end fixing moment (Fig. 14.2). 

Then EI.d2y/dx2 r::a -~+M 

or d2y/dx2 +rx.2y=M/EI, rx.2 =P/EI 
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Complete solution is 
y=A sinocx+B cosocx+M/EI(l.2 

When x=O, y=O 

and dy/dx=O 

When x=l,y=O 

The least solution is 

B= -M/EI(l.2= -M/P 

A==O 
y=(M/P)(l -cos ocx) 

cos (1.1=1 

giving 

(1.1=217, 
buckling load P, = 41T2EI/12 

241 

Note that this case is equivalent to a pin-ended strut of length 1/2. To 
allow for imperfect fixing an equivalent length of 0·61 to 0·81 is fre­
quentlyemployed (see also Para. 14.4. below). 

YI 
p O~t;;=== X ~ 

~IE~------l ~I 

Fig. 14.2 Fig. 14.3 

14+ Partial Fixing of the Ends. 
EXAMPLE 3. A strut of length 2a has each end fixed in an elastic material 

which exerts a restraining moment IL per unit angular displacement. Prove 
that the critical load P is given by the equation ILn tan na + P = 0, where 
n2 =P/EI. Such a strut, 2·5 m in length, has a theoretical critical load of 
15 kN on the assumption of pinned ends. Determine the percentage increase in 
the critical load if the constraint offered at the ends is 170 Nm per degree of 
rotation. (U.L.) 

Let M be the restraining moment at each end, then the general solu­
tion is obtained as in Para. 14.3, 

y =A sin nx +B cos nx +M/P 

using the notation given in the question. 
At x=O, y=O 

also 
B- -M/P 

M =JL(dy/dx}o 
-JL.An 

A-M/JLn i.e. 
giving y=(M/lLn) sin nx+(M/P)(l-cos nx) 
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At the centre, x=a, dyjdx=O, 
i.e. (M/p.) cos na + (Mn/P) sin na =0 

or 
For pinned ends 

giving 

p.n tan na +P=O 

7T2Elj(2a)2 = 1 5,000 

EI=9500Nm2 

n = Y(P)j97·5 
p.=170 x 57·3 Nmjradn. 

Condition (i) can now be written 

tan (0'0128yP) = - 0·01 yP 

14.4. 

(i) 

The least solution of this equation is for yP=166, i.e. P=27,500N, 
an increase of 83 % over the value for pinned ends. 

14.5. Direction-fixed at One End and Free at the Other. This is 
clearly equivalent to a pin-ended strut of length 21 (see Fig. 14.3). 

Hence P, =1T2EI/412 

14.6. Direction-fixed at One End and Position-fixed at the 
Other. Let Vbe the lateral force required to maintain the position of the 
pinned-end. 

or 

Then EI.d2y/dx2 = -Py- Vx (Fig. 14.4) 

d2y/dx2 +a.2y= - Vx/EI, a.2 =P/EI 

Complete solution is 
y=Asina.x+Bcosa.x- Vx/P 

When x=O, y=O. 
:. B=O 

When x=l,y=O 
A sin a.l = Vl/P 

and dy/dx-O 
Aa.. cosa.l=V/P 

By dividing corresponding sides of (1) and (2) 
tan a.l=a.l 

the least solution of which is 

or 
a.1-4·49 

P,=20'2EI/12 
= 2·0S7T2Elj12 

(1) 

(2) 
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As a departure from the "perfect" strut of Para. 14.2, the effects of 
eccentricity of load and initial curvature of strut will now be examined. 

Fig. 14.4 

~---l---~ 

Fig. 14.5 

1+7. Strut with Eccentric Load. Let e be the eccentricity of the 
applied end load, and measure y from the line of action of the load 
(Fig. 14.5). 

Then 
or 
giving 

EI.d2yldx2 = -Py 
d2yldx2 +«2y=O 

y=A sin OtX+B COSOtX 

When :lC=O,y=e 

When :lC=112, dyldx=O 
:. A cos «112 - B sin «112 - 0 

i.e. A = e tan «112 
giving y=e[(tan«.l/2)sinOtX+ COSOtX] 

Note that with an eccentric load the strut deflects for all values of P, 
and not only for the critical value as was the case with an axially applied 
load. The deflection becomes infinite for tan «112 = 00, i.e. «I =1T, giving 
the same crippling load Pe =1T2EII12. However, due to the additional 
bending moment set up by deflection, the strut will always fail by com­
pressive stress before the Euler load is reached. 

Y '"" e[(tan «112) sin «.112 + couI12], at the centre 

_ e (Sin2 «.112 + cos2 «112) 
cos «.1/2 

-e sec «.112 

The maximum bending moment is 
A 

M=Pj 
... Pe. sec «112, from above 

and the maximum stress is then obtained by combined bending and 
direct stress 

a-P/A+MIZ 
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Using Webb's approximation for sec a.1/2 

M=Pe.l +0·26(4/172)(a.1/2)2 
1- (4/172)(a.1/2)2 

D 1 + 0·26. PIPe 
=ce. I-PIPe 

= Pe. (Pe + 0·26P)/{Pe - P) 

14.7. 

which is a more convenient expression to use for calculating the value 
of P corresponding to a given maximum stress. 

14.8. Strut with Initial Curvature. Treating as a beam with initial 
radius of curvature 

Ro = d2y:/dx2 approximately 

and using the form 

EI(l/R -l/Ro) =M (Para.lLl) 
then EI.d2y/dx2 =M +EI.d2yo/dx2 
or d2y/dx2 +a.2y =d2yo/dx2 

under an end load P. 
The initial shape of the strut Yo may be assumed circular, parabolic, 

or sinusoidal 'without making much difference to the final result, but 
the most convenient form is 

Yo = c. sin 17x/1 
which satisfies the end conditions and corresponds to a maximum 
deviation of c. Any other shape could be analysed into a Fourier series 
of sine terms. 

Then d2yjdx2+a.2y= -(c.1T2jI2)(sin17xjl) 

The complete solution is 
. C.172j12 . 17X 

y=A sm a.x+B cos a.x- 12 .sm-
-172j +a.2 1 

When x=O,y=O 

When x=I/2, dyjdx=O 
A=O 

and hence 
c.172/12 . 17X 

y= 172/12_a.2 •sm / 

~ [cP,/{Pe - P)](sin 1Tx/l) 
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The crippling load is again P-P,=1T2EI/J2, 
and S1=py 

c=c.PP./(P.-P) 

By comparison with Para. 14.7, it may be said that an initial curvature 
of maximum deviation c is equivalent to an eccentricity of load 

=cP,!(P, + O·26P) 

which lies between 1 and 1/1·26 (approx. 0·8). The total eccentricity due 
to both causes can then be taken as t+0·8c for purposes of calculation 
of bending moment and stress. 

To allow for imperfections due to loading and initial curvature Case 
(Strength of Materials) gives an equivalent eccentricity = 1/500 + B/50 
where B is the width of the section in the plane of 
bending. 

EXAMPLl! 4. A strut of length I is etJCastered a' its lower kYo 
end j its upper end is elasiically supported against lateral 
deflection so that the resisting force is k times the end 
deflection. Show tha' the crippling load P is given by 

tan «l P ----aT =1 - hi where rx.2 =P/El 

Taking axes as shown in Fig. 14.6 
EI.d2y/dx2 =P(Yo -y) -kY~ 

where Yo is the end deflection, i.e. 
d2y/dx2 +1lt2y =1lt2 Yo - k YoX/EI 

The complete solution is 

(U.L.) 

x 

y =A sin 0tX +B COIIXX + Yo -k YoX/P 

When * -0, y = Y. 
:. B=O 

When * =/, y =0 
:. A sinrd + Yo -kYol/P =0 

and dy/dx=O 
:. Act ~«l-kYo/P=O 

Substituting for A =k Yo/Fa. cos «l from (u) 

in (i) gives kYo tan «l/PIlt + Yo-kYol/P=O 
Multiply by P/k Yol and rearrange 

tan«l =1-~ 
«l kl 

Fig. 14.6 

(i) 

(ii) 

EXAMPLE 5. A tubular steel strut is 60 mm external diameter and 48 mm 
internal diameter. It is 2·2 m long and has hinged ends. The load is parallel to 
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the axis but eccentric. Find the maximum eccentricity for a crippling load of 
0·75 of the Euler value, the yield stress being 310 N/mm2• E=207,OOO 
N/mm2• (U.L.) 

The Euler load p. =rr2EI/12 

I = (rr/64)(602 -482)(602 +482) 

=37·6 x 104 mm4 

:. p. =(rr2 x 207,000 x 37·6 x 104)/22002 

=158,000 N 

Actual load to cause failure =0·75 x 158,000 N 

For an eccentricity e 

M =Pe sec al/2 (Para. 14.7) 

(J 0·75 x 158,000 ) 2200 
=0·75 x 158,000e sec 207,000 x 37.6 x 104 -2-

= 119,000e sec 1·36 

Maximum stress 310=P/A +M/Z 

119,000 119,000e sec 1·36 60 = + x-(rr/4) x 1300 37·6 x 104 2 

=117 +45·4e 

•. e=193/45·4 

=4·25mm 

14.9. Limitations of Euler Theory. In practice the ideal case of 
Para. 14.2 is never realised, and there is always some eccentricity and 
initial curvature present. These factors can be dealt with according to 
Paras. 14.7 and 14.8 provided the magnitude of these deviations is 
known. There is, however, usually considerable uncertainty as to their 
values, and it is necessary to apply an empirical formula. 

It will be realised that, due to the above-mentioned imperfections, 
the strut will suffer a deflection which increases with the load, and con­
sequently a bending moment is introduced which causes failure before 
the Euler load is reached. In fact failure is by stress rather than buckling, 
and the deviation from the Euler value is more marked as the slender­
ness ratio I/k is reduced. For values of l/k<120 approx. the error in 
applying the Euler theory is too great to allow of its use. 

In Fig. 14.7 the stress to cause buckling, from the Euler formula for 
pin-ended struts, is 



14.9. STRUTS 

giving the curve ABC. If, how­
ever, 0', exceeds 0'" the elastic 
limit or yield stress in com- ~J, 

. th f'_!1 b v .. 'I"ess 

c 

preSSIOn, e strut must au Y at: a 
crushing along the line BD (this failure I-:D=--...:C_.......:"B 
is the region of short columns). (0'= I) 
Allowing for imperfections of 
loading and strut, actual values 
at failure must lie within and 
below the line ABD. Practical 
strut formulae, of which the 

Fig. 14.7 
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main types are given below, have been devised to cover the intermediate 
zone between "columns" and "struts," and to allow for imper­
fections. 

Note that for structural steel, taking 0',=320 N/mm2 and E= 
205,000 N/mm2, the point B corresponds to 

l/k =1Tv(205,OOO/320)~ 80 

14.10. Rankine-Gordon Formula. If 0' is the actual stress to 
cause failure, and 0', and 0'. have meanings as in Para. 14.9, the equation 

will produce a curve which is tangential to 0', as I/k-')-(), and tangential 
to 0', as I/k-H/J (since 0'. is very large in one case and very small in the 
other). This satisfies both limiting conditions, and for intermediate 
values 0' will be less than both 0' and 0' •. 

Proceeding 

For a pin-ended strut 

0',0'. 0'=--
0',+0', 

0'. =1T2Ek2/12 

hence 
0' = 1 + (O',/:;E)(I/k)2 from above 

0',/1T2E is now replaced by a constant a, to make allowance f<5r un­
known imperfections, the value of a depending on the material and on 
the end conditions. 
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The permissible load is then given by 

P=aA ... ~L 
1 +a(l/k)l 

Material a, 4 

N/mm2 Pinned ends Fixed ends 

Mild steel 320 1/7500 1/30,000 
Wrought iron 250 1/9000 1/36,000 
Cut iron 550 1/1600 1/6-400 
Timber 3S 1/3000 1/12,000 

Note that the ratio for a between the two end conditions is maintained 
at 4, as in the Euler analysis; other end conditions may be treated by a 
similar argument. 

If the quantity U,/7T2E is calculated for steel, a value of about 1/6400 
is obtained, to compare with a = 1/7500. 

A factor of safety may be included in the Rankine formula by reducing 
the value of u,' which then becomes the" working stress. II 

EXAMPLE 6. A compound stanchion is made up of two 20 em by 7·5 cm chan-
I nel sections placed back to back 10 em 

,*-_Y-l-__ Z...j.' %5'~ 'j'Z5an apart, and two 25 em by 1·25 em plates 
-1 riveted one to each flange. Calculate the 

x 
~ 

safe load to be carried on a length of 
6 m with a factor of safety of 3·5. 
Assume fixed ends, 0', =320 N/mm2, 

_ X and a =1/30,000. For each channel 
Z.Oem A=30 em2, Ix=1900 em4, I y = 

j 150 cm4, and distance of centroid from 
back of web =2·1 em. 

t:::::::l==::i==:::~=j The principal axes of inertia are 

Fig. 14.8 

XX and ZZ (Fig. 14.8), and it is 
necessary to determine which gives 
the smaller I value (and hence the 
least k2). 

Ix =2 x 1900 + 2[25(1'25)3/12 + (25 x 1,25)10'632] 

=10,850 cm4 

I z =2(150 + 30 x 7·12) +2 )( 1·25 x 25 3/12 
=6570 cm4 

Total Area = 2(30 + 25 x 1'25) 

=122·5 cm2 
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Least k2 =6570/122'5 =53·7 cm2 

1 <TeA 
Safe load = 3.5 '1 +a(lfk)2 

320 x 122·5 x 102 

= 3,5(1 +6002/53'7 x 30,000) N 
=915 kN 
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EXAMPLE 7. A hollow cast-iron column, with fixed ends, supports an axial 
load of 1 MN. If the column is 5 m long and has an external diameter of 
0·25 m, find the thickness of metal required. 

Use the Rankineformula, taking a constant of 1/6400 and a working stress 
of 80 MN/m2• (U.L.) 

and 
or 

Solving 

A = (1T/4)(0·0625 -d2), d = internal diameter 
k 2 = (1T/64)(0·254 - d4)/A =(0,0625 +d2)/16 

80 x 1T(0·0625 - d2) 

Load 1 4{1 + (1/6400)[52 x 16/(0'0625 +d2)]} 

.. 1 +1/16(0'0625 +d2)=2O?T(0'0625 -d2) 

1 + 16d2 + 1 =3,93 -1000d4 

1000d4 + 16d2 -1·93 =0 

d2 = [ -16 + v(256 + 7700)]/2000 
=0·0366 

.. d=0·191 m 
Thickness of metal =(250 -191)/2 

=29·5 mm 

I4.I I. Johnson's Parabolic Formula. 

P=ocA [l-b(lfk)2] 

300~~~~ ______ ~ 

'1A 

(rfmm1) 

150 

7'5 
I 

O~~2~O~~A~O~~'~-~80--~\oo~~--~--~1 
-. IOU \20 1<10 I~o 

L/k 

Mild steel srfuh witn piooe.d ends. 

Fig. 14.9 
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The following values are given for mild steel: ac =290 N/mm2 

b = 0·00003 for pinned ends and 0·00002 for fixed ends. 
A graphical comparison of the Euler, Rankine, and Johnson formulae 

is given in Fig. 14.9. 

14.I:Z. Perry-Robertson Formula. It was shown in Para. 14.8 that 
initial curvature of the strut and eccentricity of the load can be com­
bined to give an equivalent initial curvature of amplitude c, and the 
maximum compressive stress due to bending and direct load is then 

cPPe r P 
a c = Pe-p'l+jj 

where r is the maximum distance from the neutral axis 

'TJ(PIA)a. P = +-
ae-PIA A 

where TJ = crjk2 and is taken as 0·003 Ijk in B.S. Code of Practice 113. 
Rearranging as a quadratic in PIA 

(P/A)2 - [ac +(TJ + l)ae](P/A) + acae=O 
and solving, 

PIA =![ac +(TJ + l)ae] -1--v' {[ac +(l} + l)aeF -4aPe} 

14.13. Straight-line Formulae. 

P=GcA[1 -n(l/k)] 

Formulae of this type are commonly used in America, and can be 
made sufficiently accurate over a given range. Typical values are ac = 

110 N/mm2, n= 1/200 for pinned ends and 1/250 for fixed ends, for 
mild-steel struts. A similar form is suggested for structural steel in 
B.S. 153, with ac = 140 NJmm2, n = 0·0054 for pinned ends and 
0·0038 for riveted ends. 

14.14. Strut with Lateral Loading. If the lateral load is uniformly 
distributed, of intensity w, then 

EI.d2yjdx2=M=P( -y)+(wl/2)x-wx2j2 (Fig. 14.10) (1) 

Differentiating twice 
d2Mldx2= -P.d2yldx2-w 

.. -P.MIEI -w from (1) 
Rearranging 

(2) 
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which is a differential equation in M with a simpler particular integral 
than (1). and is frequently more 

usoful bo","", it 1,,& di=dy ~ ~z 
to the value of the maximum 0 -y X w 
bending moment. p~ . p 

Solving wZ wZ 

M=A sinp+B cosp-w/a.2 2" T 
Wh 0 M 0 Fig. 14.10 

en ~=. = 

B=w/a.2 

When ~=1/2. dM/dx=O (zero shear) 

Hence 

At ~=1/2 

:. A =B tan a.1/2=(w/a.2) tan a.1/2 
M = (w/a.2) [(tan a.l/2) sin P + cos P -1] 

if = Wl!!(Sin2 a.1/2 + cos «1/2 _ 1») 
P cos «1/2 

- (wEI/P)(sec a.l/2 -1) 

The corresponding maximum deflection may be obtained from (1). 
i.e. 

y - - (wEI/P2)(aec «1/2 -1) +w12/8P 

The maximum strees is then obtained in the usual way 
a=P/A + ICt/Z 

EXAMPLE 8. A horizontal strut 3 m long, having pin joints at its ends. is of 
rectangular cross-section 40 mm wide by 100 mm deep, and carriel an axial 
thrust of 90 kN together with a vertical load of 9 kN uniformly distributed. 
Estimate the maximum stresll' induced and find the percentage error if the 
additional bending moment caused by the eccentricity of the thrust were 
neglected. E =202,000 N/mm2• (U.L.) 

exl 3000) 90,000 x 12 
2" =-2- 202,000 x 40 x 1003 

=0·547 radians. 

JCf = (wEI/P)(sec al/2 -1) 
9000 x 202,000 x 40 x 1003(1.17 -1) 

3000 x 90,000 x 12 
=3·8 x 106 Nmm 

a=P/A +IfI/z 
=90,000/(40 x 100) +(3'8 x 106 x 6)/(40 x 1002) 

=22·5 +57 
=79·5 N/mm2 compression. 
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If the eccentricity of the thrust (i.e. central deflection) is neglected 
Jff =w12/8 

=(9000 x 30002)/(3000 x 8) 
=3·375 X 106 Nmm 

giving ~=22·5 +50·7 
=73·2N/mm2 

Percentage error =[(79·5 -73·2)/79·5] x 100 

=8% 

ExAMPLE 9. A horizontal bar of uniform section and length L is simpl) 
supported at its ends. In addition to the uniform load w per unit length due te 
its own weight, the bar is subjected to longitudinal thrusts F acting at pointJ 
on the vertical centre-lines of the end sections at a distance e below the centres 
Show that the resultant maximum bending moment in the beam will have it 
least possible value if 

w(sec mL/2 -1) 2 F 
e- Fm2(sec mL/2+ 1)' where m -EI 

If the bar is of steel, 2·5 m long, of rectangular cross-section 80 mm wide anc 
25 mm deep and weighs 150 N/m, and if the end thrust is 13·3 kN, find th 
eccentricity e as already defined and also the corresponding maximum de 
flection. E=200,OOO N/mm2• (U.L.) 

Equation (1) becomes 

EI.d2y/dx2 =M = -F(y +e) +wLx/2 -wx2/2 (i) 

Differentiating twice 

d2M/dx2_ -F.d2y/dxL w 

Rearranging 

Solving 

When 

When 

Hence (ii) becomes 

= -F.M/EI -w from (i) above 

M =A sin mx +B cos mx -w/m2 

x=O, M- -Fe 
:. B=w/m2 -Fe 

x=L/2, dM/dx=O 
A =B tan mL/2 = (w/m2 -Fe) tan mL/2 

M=(w/m2 -Fe)(tan mL/2.sin mx + cos mx) -w/m2 

At x=L/2. 
M = (w/m2 -Fe) sec mL/2 -w/m2 

(ii) 

(iii) 

(iv) 
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and this will be a local maximum value. When it is equal and opposite 
to the bending moment at the ends, the condition stated will be satisfied. 
From (iii) and (iv), 

Fe==(w/m2 -Fe) sec mL/2 -w/m2 

w(sec mL/2 -1) 
giving e -=-~---=:::---:-=-....:." 

Fm2(sec mL/2 + 1) 

m2 =F/E! =13,300/(200,000 x If x 80 x 253) =0·64 x 10-6 mm-2 

mL/2 =0·8 x 10-3 x 2500/2 =1 radian 

e 150(1,85 -1) = 5.27 mm 
103 x 13,300 x 0·64 x 10-6(1'85 + 1) 

Maximum deflection will be at the centre, where 

M =Fe = 13,300 x 5·27 Nmm 

giving 

= -13,300(y + 5'27) + (150/103)25002/8 from (i) 

y= -2x5'27+8'8 
= -1'74mm 

The deflected shape will be as shown in Fig. 14.11. 

~ F F 

Fig.14.11 

:14.:15 • . Tie with Lateral Loading. Although this is not a strut, the 
end load being tensile, a very similar differential equation is obtained. 

EI.d2yjtbe2=M= -P( -y)+(wl/2~-w##2j2 (1) 

Differentiating twice YI 
d2M/tbe2 =P.d2yjtbe2-w F---Z ~w 

=(PjEI)M-w from (1) ;j)~145c P 
or d2Mjtbe2_«2M= -w (2) wZ wl. 

T T The solution is 

M=A sinh u+B coshu+wj«2 Fig. 14.12 

When ##",0, M=O 
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When :e-112, dMltk-O 
:. A - -B tanh all2 

- (wl«2) tanh all2 

giving M = (wl«2)[(tanh «112) sinh a.:e - cosh a.:e + 1] 

When :e=112 

" (Sinh 2aJ12 ) M = (wl«2) cosh alIi - cosh «112 + 1 

-(wE1IP)(1-sech mIll) 

EXAMPLE 10. A steel tie bar, 38 mm diameter and 5 m long, is supported 
horizontally through pin joints at the ends, and sustains an axial pull of 
18 kN. Find the greatest tensile stress in the bar, indicating how any formula 
used may be deduced. E =203,000 N/mm2• Density of steel = 7800 kglm3• 

w 

al = 5000) 18,000 x 64 
2 2 203,000 x 17 x 384 

=2·33 radians 

7800 x 9·81 x 17 x 382 

109 x4 

=0·087 N/mm 

.l\l = (wEI/P)(l - sech al/2) 

= 0·087 x 203,000 X17 x 384(1 -0.1775) 
18,000 x64 

=82,700 Nmm 

{j=PIA+M!Z 

= 18,000 + 82,700 x 32 
(17/4) x 382 17 x 383 

=15·9 +15·4 

=31·3 N/mm2 tension. 

14.16. Struts of Varying Cross-sectioD-Energy Method. If a 
is the crippling load of a strut, it can be considered to remain constant 
for any small axial movements Il. of the ends, and the work done by 
the load during this movement will be PIl.. Since the strut remains 
stable for values of the load less than the critical, Pil. will represent 
approximately the total strain energy of the strut. In the deflected form 
this strain energy will be mainly due to the bending moment. 

IT I is the distance measured along the axis of the deflected strut, and 
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~ the distance measured along its undeflected line, the approach of the 
ends is 

~= f:(ds-tb) 

-L'v[1 +(dy/dx)2]dx-L'tb 
=1 f:Cdy/tb)2tb approx. (1) 

Then, equating energy, 

(2) 

giving 
f(M2/EI)tb 

P-l~ from (1) and (2) 
(dy/tb)2tb 

o 

(3) 

This expression can be evaluated if the form of the deflected strut is 
known or assumed, and for a pin-ended strut of length l,y =A sin '1T~/1 
will usually be found satisfactory. For a strut fixed at one end the sug­
gested form is y = A (1 - cos '1T~/2l). M can then be expressed in terms 
of P and y and the integration performed taking into account variations 
in 1. 

EXAMPLE 11. A steel strut 20 em long is made up of two lengths of 10 em, 
one at 5 mm diameter and the other at 7·5 mm diameter. It is built-in at the 
larger end and carries an axial load at the smaller end. Estimate the magnitude 
of the crippling load. E =206,000 N/mm2• 

Take the X axis through the built-in end, and assume the deflected 
form under the action of the crippling load is 

y -= A(l - COS'1Txj4O) em 

dy/dx -=A('IT/4O) sin 'IT~/4O 

f' (~) 2 = A2w2 f20 1 - C08 'IT~/20 
Jo dx dx 402 Jo 2 .dx 

-(A2n 2/1600)(20/2) -O'0617A2 cm (i) 

M-P(A -y) since A is the deflection at the free end 

=PA cos 'IT~/4O 

fl ~dx -= P2A2{ flO 1 +C08 'lTx/20 f201 + cos 'lTxf20 } 
Jo EI E Jo 211 .dx + Jl0 2Iz .dx 
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where 
and 

then 

But 

giving 
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11 =(11/64)0'754 =0·0155 em4 

12 =(11/64)0'54 =0'00307 em4 

fWdX = P2A2(10 +20/11 10 -20/11) 
EI 2E 0·0155 + 0·00307 

= 1120p2A2/E 

J(W/El)dx 
P-J(dy/dx)2dx from (3) 

from (i) and (ii) 
206,000 x 102 x 0'0617A2 

P=206,000 x 102 x 0·0617/1120 
=1130 N 

SUMMARY 

Euler Crippling Load P,=k.112EI/12. 

14.16. 

(ii) 

~ 
Fixed Fixed one end, Fixed one end, 

free other pinned other 

Ie 4-

Eccentric Load: 10' = Pe . sec aJ/2. 
Initial Curvature: 10' = c . P P,/( P, - Pl. 

Rankine Formula: P= 1 +~k)2 

! 

Johnson's Parabolic Formula: P=aeA[l-b(l/k)2]. 
Straight-line Formula: P=aeA[l -n(l/k)] 
Strut with Lateral Loading: 10' = ('WEI/ P)( sec «1/2 - 1) 
Tie with Lateral Loading: .l0' = ('WElfP)(l - sech «1/2). 

Energy Method: P=J(M2/EI)dx/J(dy/dx)2dx 
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PROBLEMS 
1. A strut of length I has its ends built into a material which exerts a con­

straining couple equal to k times the angular rotation in radians. Show that the 
buckling load P is given by the equation tan alf2 = - Pfak, a2 =PfEI. 

In the case of a strut 3·05 m long for which the buckling load for freely hinged 
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ends is 10 kN, show that the buckling load will be approximately doubled if the 
ends are under a constraint of 180 Nm per degree of rotation. 

2. A vertical strut, initially straight, is subject to a thrust P acting with 
eccentricity ~. If buckling at the centre is prevented by a horizontal force F, 

2Pe(1 - sec al12) 
show that F == 1/2 _ (l/a) tan al/2 (U .L.) 

3. A long strut of constant section is initially straight. A thrust is applied eccen­
trically at both ends and on the same side of the centre-line, with the eccentricity 
at one end twice that at the other. If the length is L and the thrust P, show that 
the maximum bending moment occurs at a distance X from the end with the 
smaller eccentricity, where tan mX=(2 -cos mL)/sin mL and m=v'(PIEI). 

If in the above problem L =0·76 m and the strut is 25 mm diameter, calculate 
the value of the eccentricities which will produce a maximum stress of 310 NI 
mm2 with P=35 kN. E=200,OOO N/mm2• (U.L.) (Note the equal and 
opposite lateral forces at the ends for equilibrium. Answer, 3 mm, 6 mm.) 

4. A long strut, originally straight, securely fixed at one end and free at the 
other, is loaded at the free end with an eccentric load whose line of action is 
parallel to the original axis. Deduce an expression for the deviation of the free 
end from its original position. 

Determine the deviation and the greatest compressive stress for a steel strut 
under these conditions. Length 3 m, circular cross-section 50 mm external 
diameter, 25 mm internal diameter. Load 3500 N and eccentricity 75 mm. 
E=206,000 N/mm2• (U.L.) (e (sec ai-I); 25 mm, 31 N/mm2.) 

5. A hollow circular steel strut, with its ends position fixed, has a length of 
2·44 m, external diameter 101 mm, and internal diameter 89 mm. Before loading, 
the strut is bent with a maximum deviation of 4· 5 mm. Assuming the centre line 
is sinusoidal, determine the maximum stress due to a central compressive end 
load of 10 kN. E=205,000 N/mm2• (U.L.) (6'3 N/mm2.) 

6. Show that, if a strut has an initial curvature in the form of a parabolic 
arc and is hinged at both ends (i.e. position fixed only), the maximum compres­
sive stress produced by a load P is 

~ [1 +~. 8P. (sec ~JP -1)] 
A k2 '1r2P 2 p. 

where A is the cross-sectional area, e the initial central deflection, p. the 
Eulerian crippling load, k the least radius of gyration and $ the distance of the 
extreme fibres from the neutral axis. (U.L.) (Para. 14.8. Yo =4ex(1 -x)/12) 

7. Compare the crippling loads given by Euler's and Rankine's formulae for 
a tubular steel strut 2'3 m long having outer and inner diameters of 38 mm and 
33 mm, loaded through pin joints at both ends. Take the yield stress as 320 N/ 
mm2 and the Rankine constant as 1/7500. E=200,000 N/mm2• 

For what length of strut does the Euler formula cease to apply? (U.L.) 
(17 kN, 17-1 kN; 1 m.) 

8. Working from first principles, derive a formula for the Euler collapsing 
load for a strut having its bottom end fixed and the loaded top end free to move 
laterally. Sketch a curve showing how the collapsing load per unit area of cross­
section varies with L/k, the slenderness ratio. Assuming the yield stress for steel 
is 320 N/mm2 show that the Euler formula cannot be applied to a strut of 
circular cross-section of diameter d if L<10d. (I.Mech.E.) 



258 STRENGTH OF MATBRIALS 

9. A steel pipe 38 mm inside diameter, 6'3 mm thick, and 1·22 m long, has its 
ends rigidly attached to flanges which are themselves so fixed as to prevent any 
expansion in the length of the pipe. The pipe is fixed in position under normal 
temperature conditions, and is then unstressed, but may be subjected to a tem­
perature rise of 50° C. Calculate the temperature stress in the pipe and the 
factor of safety against failure as a strut. Vse the Rankine formula, Uc =320 N/ 
mm2, a =1/7500 for a strut with hinged ends. a =11·1 x 1061" C.; E=206,000 N/ 
mm2. (115 N/mm2; 2'4.) 

10. A 2200 kN load is to be carried by a column 3 m long built up by a 20 cm 
by 15 cm I-beam with flange plates 30 cm wide. Find the thickness of the flange 
plates if the allowable concentric load per unit area is p = 103 - 0'00172(I/k)2 
N/mm2. For the beam, A =65 cm2, Ix =4500 cm4, I, =750 cm4• (V.L.) 

(25 mm.) 
11. A rod of rectangular section 76 mm deep and 38 mm wide, is supported 

horizontally through pin joints at its ends, and carries a vertical load of 350 kg/m 
length and an axial thrust of 80 kN. If its length is 2·75 m estimate the maximum 
stress induced. E=206,000 N/mm2. (V.L.) (145 N/mm2.) 

12. A straight strut of length L and of uniform section is hinged at both ends 
and is loaded along its axis with a thrust P. It also carries a transverse distributed 
load which varies uniformly in intensity from w per unit length at one end A 
to zero at the other end B. 

Show that the distance x from the end B to the section at which the maximum 
bending moment occurs is given by cos mx = (sin mL)/mL, where m2 =P/EI. 

If the thrust P is 81 % of the Eulerian crippling load, find the position and 
value of the maximum bending moment. (V.L.) (0·52L,0·338wLl.) 

13. Obtain expressions for the bending moments at the ends and centre of a 
uniform strut, built in at both ends, and subjected to a uniform lateral load of 
intensity w. The strut length is L, the end thrust P, and the elastic properties 
EI. Take 1-'2 =P/EI. Show without elaborate analysis, from the expressions 
derived, that for practical struts the end moments are greater numerically than 
the central moment and of opposite sign. (V.L.) 

14. An initially straight slender strut of uniform section and length I has 
hinged ends through which it is loaded by an axial force P. In addition, one 
half of the strut from the middle to one end carries a uniform transverse load w 
per unit length. If PI2/EI =1'2/4, find an expression for the central deflection. 

If I =1 m and w =1750 N/m, find the bending moment at the centre. (V.L.) 
(Apply Macaulay's method, Para. 9.4. 0·043 w 14/EI. 300 Nm.) 

15. A steel tie rod, oflength 3 m and diameter 25 mm, carries a tensile load of 
4500 N. Due to wind pressure and dead weight a transverse load of 88 N/m 
occurs. Calculate the maximum bending moment. E=206,000 N/mm2. 

(47 Nm.) 
16. A horizontal pin-ended strut 4·5 m long is formed from a standard T-sec­

tion 15 cm by 10 cm by 1·25 cm at 24 kg/m. The axial compressive load is 
180 kN. Find the maximum stress if the XX axis is horizontal and the table of 
the tee forms the compression face. The centroid is 2·4 cm below the top. 
Ix =250 cm4 ; A =31 cm2; E=206,000 N/mm2• (V.L.) (81 N/mm2.) 

17. A 25 mm-diameter steel rod 0·75 m long has a 12·5 mm-diameter hole 
bored centrally from each end for a distance of 0·25 m, leaving the central 
0'25 m solid. Estimate the buckling load if used as a strut with pinned ends. 
E=206,000 N/mm2. (67'5 kN.) 



CHAPTER XV 

Cylinders and Spheres 

IS.I. Thin Cylinder under Internal Pressure. By symmetry the 
three principal stresses in the shell will be the circumferential or hoop 
stress, the longitudinal stress, and the radial stress. 

If the ratio of thickness to internal diameter is less than about 1/20 
(see Para. 15.9), it may be assumed with reasonable accuracy that the 
hoop and longitudinal stresses are constant over the thickness, and that 
the radial stress is small and can be neglected (in fact it must have a value 
equal to the internal pressure at the inside surface, and zero at the 
outside surface). 

(a.) (b) 

Fig. IS.1 

Let the internal diameter be d, and the thickness t; p is the applied 
internal pressure, at the hoop stress, and a2 the longitudinal stress 
(Fig. 15.1). 

Consider the equilibrium of a half cylinder of length I, sectioned 
through a diametral plane (Fig. 15.1(a». at acts on an area 2tl, and the 
resultant vertical pressure force is found from the projected horizontal 
area dl. 

Equating forces 

i.e. 
al·2tl=pdl 

0'1 =pd/2t (1) 
Consider the equilibrium of a section cut by a transverse plane 

(Fig. 15.1(b». a2 acts on an area approximately =7Tdt (this should be the 
mean diameter), and p acts on a projected area of 7Td2/4 whatever the 
actual shape of the end. 

259 
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Equating forces 

i.e. 
a2 .TTdt =p.TTd2f4 

a~=pdj4t (2) 

In the case of long cylinders, or tubes which are braced by stays or 

Fig. 15.2 

carried on brackets, the longitudinal stress may 
be much less than that given by (2), and is 
sometimes neglected. 

15.2. Thin Spherical Shell under Internal 
Pressure. Again the radial stress will be neg­
lected and the circumferential or hoop stress 
will be assumed constant. 

By symmetry the two principal stresses are 
equal, in fact the stress in any tangential direc­
tion is equal to a. 

From Fig. 15.2 it is seen that 
a .7Tdt = p. TTd2j4 

(where d is the internal diameter) 
i.e. a = pdj4t 

15.3. Cylindrical Shell with Hemispherical Ends. Let tl be the 
thickness of the cylinder and t2 the thickness of the hemisphere, the in­
ternal diameter being assumed tpe same for both (Fig. 15.3). 

-t tJ 
2 ,'-----f-----------------, 
,If:... ? ~(J'\ If' 

:\ 0% OZ (J ~~I 
\. ~ a,/ 

.... , ..... ----- --- -- - --------'" 

Fig. 15.3 

If the shell is subjected to an internal pressure p, the stresses in the 
cylinder will be: 

and 
Then 

Hoop stress al = pdj2tt 
Longitudinal stress a2 = pdj4tl (Para. 15.1) 

Hoop strain EI = (ljE)( al - v(2) (Para. 3.13) 
= (pdj4tlE)(2 - v) 

For the hemispherical ends: 
Hoop stress a=pdj4t2 (Para. 15.2) 

Hoop strain E=(l/E)(a-va) 
=(pdj4t2E)(I-v) 
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For no distortion of the junction under pressure, 
E"1 = E" 

i.e. 
2-v I-v 

or ~=I-v 
tl 2-v 

=7/17 
taking a value of 0·3 for Poisson's ratio. 

Note that the maximum stress will then occur in the ends, i.e. 

u = pd/4t2 = (17/7)(pd/4t1) 
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which is greater than the hoop stress Ul in the cylinder. For equal 
maximum stress tlitl should equal 0·5. 

15+ Volumetric Strain on Capacity. The capacity of a cylinder 
=71'd21/4, and if the dimensions are increased by 8d and 81, the 
Volumetric strain 

= [(d +8d)2(1 +81) - d2l]/d2l 
-= [d21 +d2 .81 +28d.dl +28d.d.81 + (8d)21 + (8d)281- d2lJ/d2l 
=(d2 .81+28d.dl)/d2l neglecting products of small quantities 
=2.8d/d+81/1 
= 2 x diametral strain + longitudinal strain 
=- 2 x hoop strain + longitudinal strain 

(since circumference = constant x diameter) 

Notice that this is the sum of the linear strains in the three principal 
directions (compare Para. 3.18). 

By a similar argument, for a spherical shell it can be shown that the 

Volumetric strain = 3 x hoop strain 

To find the increase in capacity it is only necessary to multiply the 
volumetric strain by the original volume. 

EXAMPLE 1. A boiler drum consists of a cylindrical portion 2 m long, 1 m 
diameter, and 25 mm thick, closed by hemispherical ends. In a hydraulic test 
to 10 N/mm2 how much additional water will be pumped in, after initial filling 
at atmospheric pressure? Assume the circumferential strain at the junction of 
cylinder and hemisphere is the same for both. For the drum material, E = 
207,000 N/mm2; v =0·3. For water K =2100 N/mm2• 

For the cylinder: 
Hoop stress Ul =pd/2t =(10 x 1000)/(2 x 25) 

=200 N/mm2 
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Longitudinal stress 0'2 =pd/4t 
=100N/mm2 

Hoop strain €1 = (1/E)(a1 -va2) 
=100 x 1·7/E 

Longitudinal strain €2 = (1/E)(a2 -val) 
=100 xO'4/E 

Increase in capacity = (2€1 + €2) x volume 

= 100 d·8 'IT x 10002 2000 
207000 X 4 X , 

=2·9 X 106 mm3 

For the two hemispherical ends: 
Hoop strain € =101 (same as cylinder) 

Increase in capacity = 3€ x volume 
100 x 5·1 'IT x 10003 

207,000 X 6 

=1'3 X 106 mm3 

Decrease in volume of water originally in 
=(p/K) x volume (Para. 4.2) 

=~ ['IT x 10002 2000 'IT x 10003] 
2100 4 X + 6 

=10 x106 mm3 

Additional volume of water required 
= (i) + (ii) + (iii) 
=14·2 x 106 mm3 at 10N/mm2 

or =14,25 x 106 mm3 at atmospheric pressure 

15 ..... 

(i) 

(ii) 

(iii) 

EXAMPLE 2. A cylindrical tank is 2 m diameter, 2·5 m long, and 12 mm 
thick. Its ends are fiat and are joined by nine tie bars, each 38 mm diameter, 
equally spaced. If the tie bars are initially stressed to 50 N/mm2 and the tank 
filled with water, find the increase in capacity when the pressure is raised to 
1·2 N/mm2, and the final stress in the tie bars. E =207,000 N/mm2; v =0·28. 

0; 

-->0. 

OJ 
(a.) 

Fig. 15.4 

t:= 
~1-ZN/mm~ 

~ 

(b) 

OJ' 
d 

.... 

Initially: Let 0'1 be the compressive longitudinal stress in the cylinder 
walls (Fig. 15.4(a)). 
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Equilibrium equation 
0'1.7T x 2000 x 12 =50 x 97T x 382/4 

giving 0'1 =6·77 N/mm2 
There is no hoop stress initially. 
Finally: Let 0' be the final tensile stress in the tie bars and 0'/ the final 

tensile longitudinal stress in the cylinder (Fig. Is.4(b». 

Equilibrium equation 
0" 1.7T x 2000 x 12 +0'(97T x 382/4) = 1·2(7T x 20002/4 - 97T x 382/4) 

or 0'1' + 0·1350' =49·8 (i) 

Hoop stress in cylinder =pd/2t (not affected by tie bars) 
=(1·2 x 2000)/(2 x 12) 
=100 N/mm2 

Compatibility equation. The increase in longitudinal strain must be the 
same for both tie bars and cylinder, i.e. 

or 

(0' - sO)/E =Final- Initial longitudinal strain in cylinder 
=(1/E)(0'{ - 0·28 x 100) - (I/E)( - 6·77) 

0'=0'1' +28·8 

Substituting for O'{ from (i) in (ii) 
0'=49·8 -0·1350'+28·8 

(ii) 

giving 0'=78·6/1-135 
=69·3 N/mm2 

From (i), (7J'=40·5 N/mm2. 

Increase in capacity 
= (2 x increase of hoop strain + increase of longitudinal strain) x volume 

1 
=-- [2(100-0·28 x40·5 -0·28 x6.77) x 20002 x 2500 

207,000 +69.3 _ SO] _7T_--::--_-
4 

EXAMPLE 3. A thin cylinder ISO mm internal diameter, 2·S mm thick, has 
its ends closed by rigid plates and is then filled with water. When an external 
axial pull of 37 kN is applied to the ends the water pressure is observed to fall 
by 0·1 N/mm 2• Determine the value of Poisson's ratio. E=140,000 N/mm2; 

K =2200 N/mm. 2 (U.L.) 
Assuming the cylinder remains full of water, then 

Increase in volume of water = Increase in capacity of cylinder. 

Since the volumetric strain is determined by change of stresses, only 
stresses due to the drop in pressure need be considered. 

Reduction in hoop stress O'J =pd/2t 
=(0·1 x 150)/(2 x 2·5) 
=3 N/mm2 ("compressive") 
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Increase in longitudinal stress is given by 

0'2 x 7T x 150 x 2·5 +0·1 x (7T/4) x 1502 = 37,000 (Fig. 15.5) 
i.e. 0'2 =30N/mm2 

z.·Smm 
~2~~_==========~~ 

+-

:= 0·1 N/mm" 37kN :' ---~~c===========~ 
Fig. 15.5 

Equating volumetric strains 
p/K=(1/E) [2( -0'1 -va2) +(0'2 + val)] 

or 0·1/2200 =(24 - 57v)/140,000 
From which v=17·64/57 

=0·31 

15.5. Tube under Combined Loading. 

EXAMPLE 4. A thin cylindrical tube 75 mm internal diameter, 5 mm thick, 
is closed at the ends and subjected to an internal pressure of 5·5 N/mm2• A 
torque of SOO7T Nm is also applied to the tube. Determine the maximum and 
minimum principal stresses and the maximum shearing stress. (U.L.) 

Hoop stress =(5·5 x 75)/(2 x 5) 
=41·2 N/mm2 

Longitudinal stress = (5·5 x 75)/(4 x 5) 

=20·6 N/mm2 

Torque 
Shear stress on transverse planes = (M d.) 

ean ra lUS x Area 
5007T x 103 

40(7T x 80 x 5) 
assuming stress is uniform 

=35·7 N/mm2 

Maximum and minimum principal stresses 

=t(O'x +ay) ±h/[(ax - ay)2 +4T2] (Chapter III) 
=t x 61·8 ±h/(20·62 +4 x 35.72) 

=30·9 ±37·1 
=68 and -6·2 N/mm2 

Maximum shear stress =tv'[(O'x - ay)2 + 4T2] 
=37·1 N/mm2 
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15.6 Wire Winding of Thin Cylinders. In order to strengthen the 
tube against the application of internal pressure it may first be wound 
with wire under tension, thus putting the wall in compression. When the 
pressure is applied the final hoop stress produced is much less than it 
would be without the wire reinforcement. The maximum stress will 
probably be that in the wire, which 
must be made of a high-tensile 
material. 

D 

The method of analysis can be 
broken down into a number of 
stages set out below. It is assumed 
that one layer of wire of diameter 
tl is closely wound on the tube with 
an initial tension T (Fig. 15.6). 

__________________ l_ 
(1) Replace the wire by an equi. 

valent cylindrical shell, of thickness 
Fig. 15.6 

I"" with the same cross-section in a longitudinal plane, i.e. 

I", x tl =1Td2/4 
t", =1Td/4 

(2) Initial tensile stress in wire 
a",=4T/1Td2 

(3) Let al be the initial compressive hoop stress in the cylinder. 
Then for equilibrium (Fig. 15.7) 

al· t =a",.t", 
(4) When an internal pressure p is applied, let the stresses be a,,' 

tensile in the wire, and aI' tensile hoop stress in the cylinder. 
For equilibrium (Fig. 15.8) 

aI' .2t + a,/ .2t", =pD 

Fig. 15.7 Fig. 15.8 

(5) Final longitudinal stress in the cylinder is 
a2=pD/4t 

or a smaller value for long tubes externally supported (aee also Para. 
15.1). 
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(6) Since the wire and cylinder remain in contact, the change of 
hoop strain due to the application of internal pressure must be the 
same for both, i.e. 

(l/E)[(al' - va2) +atJ = (l/Ew)(aw' - aw) 
Note that al is compressive, and that the wire is under stress in one 

direction only. 

EXAMPLE S. A copper tube 38 mm external diameter, 35·5 mm internal 
diameter, is closely wound with steel wire 0·75 mm diameter. Stating clearly 
the assumptions made, estimate the tension at which the wire must have been 
wound if an internal pressure of 2N/mm2 produces a tensile circumferential 
stress of 6·5 N/mm2 in the tube. Es = 1·6 x Ec. (U.L.) 

The references refer to the stages of analysis given above. 
(1) Equivalent wire thickness 

tw =7rd/4 
=0·S9mm 

(3) If aU! is the winding stress in wire, the initial hoop stress in the tube 
al = (tw/t). a .. 

=0-472a .. compression. 
(4) If the final stresses are aw' and at', the equilibrium equation gives 

at' x 2·5 + a .. ' x 1·18 =2 x 35·5 
but at' =6·5 N/mm2 

aw'=(71-16·2)/1·18 
=46·5 N/mm2 

(6) Equating change of hoop strain for wire and tube, and neglecting 
longitudinal stress in tube, 

(46·5 - aw)/Es =(6·5 +al)/Ec 
Substituting for al from (3), and noting Es/Ec = 1·6, 

46·5 ~ aw = 10·4 + 1·6 x 0-472aw 

or aw=36·1/1·7SS 

(2) 

=20·5 N/mm2 

Winding tension =20·5 x 7rd2/4 
=9N 

IS.7. Rotational Stresses in Thin Cylinders. Consider a cylinder 
of mean radius r and thickness t, rotating at an angular velocity w about 
its axis. 

The centrifugal force on the walls will produce a hoop stress a which 
may be assumed constant. 

If p is the density, the centrifugal force on an element (Fig. 15.9) of 
unit length axially 

= (prS8 . t)rw2 
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and resolving radially 
2ut . sin 188 = przwz • toO 

or u = pr2w 2 since sin !OO~88 
Consistent units are: 

u NJm2 w radn.Jsec. 
p kgJm3 

rm 
The above analysis can also be applied· qt 

approximately to rim-type flywheels. 

EXAMPLE 6. A flywheel is required zvith a 
moment of inertia of 250 kg m2• It is to run at 
250 r.p.m. and the maximum stress is not to 
exceed 4N/mm2• Neglecting the inertia of the 
spokes, and assuming a width of 125 mm, find 
the thickness of the rim. Density 7200 kg/m3• 

The maximum radius is determined by the 
stress, i.e. 

giving 
or 

4 X 106 = pr2w 2 

=7200 xr2C5~oX7Tr 
r2 =0·813 
r=0'9m 
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Fig. 15.9 

For a first approximation assume a mean radius (and radius of gyration) 
of 0·85 m and let t m be the thickness. 

Then M.1. =250 =(0,125 x 27T x 0·85t x 7200) x (0'85)2 

giving t =0·072 m 

Corrected values: mean radius 0·864 m 
k 2 =(0'92 +0'8282)/2 

=0·75 m 2 

Then 250 = (0'125 x 27T x 0'864t x 7200) x 0·75 

or t =0·068 m =68 mm 

which approximately satisfies the assumption of 0·864 m mean radius 
and 0·9 m outside radius. 

15.8. Thick Cylinders. Under the action of radial pressures at the 
surfaces, the three principal stresses will be p (compressive) radially, Ut 

(normally tensile) circumferentially, and Uz (normally tensile) longi­
tudinally. These stresses may be expected to vary over any cross-section, 
and equations will be found to give their variation with radius ,. 

It may be assumed that the longitudinal strain E is constant, which 
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implies that cross-sections remain plane after straining, and this will be 
true for sections remote from any end fixing. 

Let u be the ,adial shIft at a radius,; i.e. , becomes r + u after strain-
" ing, where u is small compared 

Strained.? with, (Fig. 15.10). The circum-
, .. .I fJc~\)J \ ferential, or hoop, strain 

'\..~ \ .f ..... c5~ Increase of circumference 
\ r."" Original circumference 

\61" +'r; = [27T(,+u)-27Tr]/21TT \ r ' ,~ =u/, 
Unstrained The radial shift at an un-

Fig. 15.10 strained radius , +8, will be 
u + 8u, and the radial strain 

-= (Increase in 8,)/8, = du/d, in the limit. 

Stress-Strain equations (see Para. 3.14): 
Ee=u2-vul +vp 

E,U/'=UI -VU2 +vp 
E.du/d,= -P-VUI-vu2 

(1) 
(2) 
(3) 

First eliminate u from equations (2) and (3) by multiplying (2) by , 
giving 

Eu=r(UI- vU2+VP) 
and differentiating 

Edu/dr =Ul -VU2 +vp +r[ duddr -V(du2/dr) + v(dp/dr)] 
= - p -vUI -vu2 from (3) 

Collecting terms 
(p +uI)(1 +v) +r .duI/dr -vr(du2/dr) +vr(dpfdr) =0 (4) 

From (1), since e is constant 

dU2/dr =V(duI/dr - dp/dr) 
and substituting this in (4) 

(p +uI)(l +v) +r(I-v2)(dUI/dr) +vr(1 +v)(dp/dr) =0 

Reducing to 
P +uI +r(l-v)(dul/dr) +vr(dp/dr) =0 

Equilibrium equation (radially) (Fig. 15.11): 
2u18r .sin t88 + (p +8p)(r +8r)88 - pr88 =0 

(5) 

In the limit sin t08408, and neglecting products of small quantities, 
this equation reduces to 

Ul +p+r.dp/dr=O, (6) 
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Subtracting (6) from (5) 
r(1 - II)(dul/dr) +vr(dp/dr) -r . (dp/dr) =0 

which gives dUl/dr - dp/dr = 0 

or 

Integrating 
Ul - P = constant 

... 2a, say (7) 

Subtracting (7) from (6) 

2fHr.dp/dr= -2a 

! d(pr2) ... _ 2a 
r' dr 

i.e. ~(pr2) = _ 2ar 
dT 

Integrating 

where d = 2r and b = 4B. 
From (7) 

pr2= -ar2+B 
p= -a+B/r2 

... -IHb/d2 

(P+Op)(T't:OT' )68 

Fig. 15.11 

(8) 

(9) 

where a and b are constants depending on the dimensions and the 
loading conditions. 

It follows from equations (1) and (7), since e is constant, that 0'2 is 
constant (i.e. independent of r). The analysis can be considerably 
shortened by making this assumption initially, when equation (1) 
reduces to 

0'1 - P = constant 
and the results are obtained by application of this and the equilibrium 
equation (6). 

The majority of numerical problems are best solved directly from 
equations (8) and (9), but it may be of interest to put on record the 
general formulae for 0'1 and p in terms of the dimensions and the 
external pressures. 

If the pressures are PI internally (diameter dl ), and P2 externally 
(diameter d2), then the radial stresses at these surfaces must be equal to 
the applied pressures, i.e. 

Pl = -a+b/dI 2 

and P2= -a+b/d22 from (8) 

Subtracting 
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By substitution 
a = (P1d12 - P2d22)/(d22 - d12) 

giving 0'1-=[Ptd12_P2d22+(Pt-P2)(d12d22/d2)]/(d2Ld12) 
and P = [P2d22 - P1d12 + (PI - P2)(d12di/d2)] /(d2L d12) 

from (9) 
from (8) 

The muimum shear stress (half the stress difference, Para. 3.10) 
-=!<O'l +p) 
""(PI -P2)d12d22J(d2Ld12)d2. 

It will be found that the maximum principal stress and 
maximum shear stress occur at the inside surface. 

:15.9. Internal Pressure Only. This is the most commonly occur­
ring case, and will be examined in detail. 

If PI is the internal pressure at a diameter dj , the external pressure 
being zero (atmospheric) at diameter d2, then 

PI'" - a +b/d12 
and 0 ... -a+b/d22 (Eq. (8), Para. 15.8) 

Subtracting 
b ... [d12d22/{d22 - d12)]Pl 

and a ... b/d22 = [d12/(d2Ld12)]Pl 

The stresses at any diameter dare 
Radial P= -a+b/d2 

and 

- [d12/(d22 - dJ2)]( -1 + di/d2)pJ 
f(d22 - d2)d12 
..--- ,PI (1) 

(d2LdI2)d2 

(2) 

The stress variation with dia­
meter is shown in Fig. 15.12, the 
two curves being "parallel," 
since 
0'1 - P = 2a (Eq. (7), Para. 15.8) 

The maximum hoop stress is at 
d=dl 

al = [(di + dt 2)/(d2L d12)]Pt (3) 

~d 

Fig. 15.12 

dZ Maximum shear stress 

T=!( al +Pt) 
= [d22/(d22 - dI 2)]Pl (4) 

The longitudinal stress 0'2 has been shown to be constant (Para. 15.8), 
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and for a cylinder with closed ends is obtained from the equilibrium 
equation for any transverse section 

a2. (1T/4)(di - d12) = Pl. (1T/4)dI2 

or a2 = [dI2/(d22 - dI2)]P1 (5) 

Error in "thin cylinder" formula (Para. 15.1) 
If the thickness is t, then write d2 = dl + 2t in (3) above. i.e. 

(dt +2t)2+dI 2 
al = (dt + 2t)2 _ dl 2 ·PI 

2(dt/t)2 +4(dl /t) +4 
= 4(d1/t) +4 ·PI 

If dt/t= 10 al'"'(244/44)Pl 
-5·55Pl 

which is 11% higher than the mean value given by P1dt /2t 

If d1/t ... 20 
at -(884/84)Pl 

-lO·SPI 
or 5% higher than ptdt/2t 

It should be noted that if the mean diameter is used in the thin 
cylinder formula the error is practically eliminated. 

EXAMPLE 7. The cylinder of a hydraulic ram is 6 cm internal diameter. 
Find the thickness required to withstand an internal pressure of 40 N/mm2, if 
the maximum tensile stress is limited to 60 N/mm2 and the maximum shear 
stress to 50 N/mm2• 

If D em is the external diameter. then the maximum tensile stress is 
the hoop stress at the inside, i.e. 

60 = [(D2 + 36)/(D2 - 36)]40 from (3) 
or 3D2-108=2D2+72 

D='\I'180 
=13·43 em 

The maximum shear stress is half the "stress difference" at the inside, 
i.e. 

so = [D2/(D2 - 36)]40 from (4) 
or SD2 -180 =4D2 

D='\I'180 
=13·43 em as before 
Thickness=!(13·43 -6) 

=3·72 em 

ExAMPLB 8. Find 1M ,atio of lhic1m4ss to inmnal diturutn for a tube 



272 STRENGTH OF MATERIALS 15.9. 

subjected to internal pressure when the ratio of pressure to maximum circum­
ferential stress is 0·5. 

Find the alteration of thickness of metal in such a tube 8 cm. internal 
diameter when the pressure is 50 N/mm2• E=200,000 N/mm2; v=0·304. 
(U.L.) 

or 
giving 

At inside 

&1 = [(d22 +dI 2)/(d22 -dI 2)]Pl from (3) 
(d22 -dI2) =0·5(d22 +dI2) 

dz/d1 = y'3 

R . Thickness d2 - d1 y'3-1 
atlO Internal diameter =--u;- =--2-

=0·366 
d1 =80 mm d2 =80y'3 =138·6 mm 

p =50 N/mm2, 0"1 =100 N/mm2 

0"2=pdI 2/(d22 -dI 2) =25 N/mm2 

At outside 

Hoop strain =(100 +0·304 x 50 - 0·304 x 25)/E 
= 112·6/E 

Increase in internal diameter = (112·6/E)80 mm 

p =0, 0"1 =50 N/mm2 (since 0"1 -p = constant =50) 
0"2 =25 N/mm2 as before. 

Hoop strain =(50 - 0·304 x 25)/E 
= 47-4/E 

Increase in external diameter = (47·4/E)138·6 mm 
Decrease in thickness =(112·6 x 80 -47·4 x 138·6)/(2 x 200,000) 

=0·006mm 

EXAMPLE 9. The maximum stress permitted in a thick cylinder, radii 8 em 
and 12 cm, is 20 N/mm2• The external pressure is 6 N/mm2; what internal 
pressure can be applied? 

Plot curves showing the variation of hoop and radial stresses through the 
material. 

I.e. 

External pressure 600 = -a +b/576 N/cm2 

Maximum stress = hoop stress at inside 
2000 =a +b/256 

Adding and solving 

and 
b = (2600 x 256 x 576)/832 
a =2000 -b/256 =200 

Internal pressure = - a + b /256 
= - 200 + (2600 x 576)/832 
=1600 N/cm2 

The constant difference between the hoop and radial stresses = 400 
N/cm2• 
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At 10 cm radius 
Ul =a +b/400 

=200 + (2600 x 256 x 576)/(832 x 400) 
=1350 N/cm2 

and P =Ul - 400 =950 N/cm2 
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See Fig. 15.13 for a graphical representation of the stress variation. 

20 
16 

8 10 
Radills(cm) 

Fig. 15.13 

12 

Ex.\MPLB 10. Two thick steel cylinders A and B, closed a. Ike ends, have 
Ike same dimensions, the outside dillmeter being 1·6 times the inside. A is sub­
jected to internal p,essure only and B to external p,essu,e only. Find tlu 
,atio of these p,essures (1) when the greatest ci,cumferentilll st,ess has the 
same numerical value, and (2) when the greatest ci,cumferentilll st,ain has 
.he same numerical value. Poisson's ,atio =0·304. (UL.) 

Cylinder A 
Internal pressure Pl' 
Greatest circumferential stress 

~t = [(d22 + d l 2)/(d22 - dt 2)]pt from (3) 
=(3 '56/1'56)PI tensile. 

Longitudinal stress 
U2 =Pldt2/(d22 -d12) from (5) 

=pt/1·56 tensile. 

Greatest circumferential strain 

Cylinder B 

= (l/E)(~l +vJ>1 -vu:z) 
=(Pl/E)(3'56/1'56 +0·304 - 0·304/1'56) from above 
=2·394pl/E 

External pressure P2 = -a +b/d22 

Internal pressure 0 = -a +b/dI 2 

:. b = - [dI2d22/(d2 -dl 2)]P2 
and a = - [d22/(d22 - dl 2))P, 

Ul =a+b/d2 
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and reaches its maximum numerical value at d =dlo i.e. 
8-1 = - [dZ2/(dzZ -d12)]PZ - [dZ2/(d22 - dI 2)]PZ 

= - (2 X 2·56/1·56)pz 
Longitudinal stress 0'2 is given by the equilibrium equation 

0'2('IT/4)(d22 - d12) =P2('IT/4)dz2 

i.e. O'z =(2'56/1'56)P2 compressive 
Greatest (numerical) circumferential strain 

Case (1) 

i.e. 
Case (2) 

i.e. 

= (P2/E)( - 5·12/1'56 +0·304 x 2'56/1·56), at the inside 
= - (2'782/E)P2 

(3·56/1·56)Pl =(2 x 2'56/1'56)pz 
Pl/PZ =5'12/3'56 =1'# 

2'394pl/E =2'782pz/E 
Pl/Pz=1-16 

15.9. 

15.10. Plastic Yielding of Thick Tubes. If the internal pressure is 
sufficiently increased, yielding will occur first at the internal surface, 
and will spread outwards until the whole cross-section becomes plastic. 
Strains will not generally be excessive until this final state is reached, 
since in the intermediate state there will be an outer ring of elastic 
material. If the pressure for complete plasticity can be estimated and 
used as the "collapse" pressure, the design pressure can be derived 
from it by dividing by a suitable " load factor", as in the plastic theory 
of bending (Chap. XII). 

Another application is the cc autofrettage" of gun tubes and pressure 
vessels, in which the tube is deliberately overstrained by internal pres­
sure before being put into service, with the intention of producing 
residual compressive stresses in the inner layers (this has the same 
effect as shrinking one tube over another, Para. 15.11 below, the 
maximum hoop stress under the working pressure being thereby 
reduced). 

Assumptions in theory of plastic yielding 
(1) Yield takes place when the maximum stress difference (or shear 

stress) reaches the value corresponding to yield in simple tension 
(Tresca's criterion, Para. 3.21(2». This is in good agreement with 
experiment for ductile materials. 

(2) The material exhibits a constant yield stress Uy in tension, with 
no strain hardening (ideal elastic-plastic material, Fig. 12.1). 

(3) The longitudinal stress in the tube is either zero, or lies alge­
braically between the hoop and radial stresses. From this it follows that 
the maximum stress difference is determined by the hoop and radial 
stresses only. 
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Hoop and Radial Stresses in 1M Plastic Zrme 
The equilibrium equation (6) of Para. 15.8 must apply, 

al +P +rdp/dr=O (1) 

and the yield criterion, by the assumptions stated above, is 

~+P=~ ~ 

(provided al and P are stresses of opposite type). Subtracting these 
equations and integrating, 

P = - ay loge 7 + constant 

If the radial stress is P2 at the outer radius 72 of the plastic zone, then 
the constant = P2 + a y loge 72, and hence the radial stress 

P = ay loge (72/7) + P2 
From (2), the hoop stress 

(3) 

al =ay[l- loge (72/7)] -P2 (4) 

Partially Plastic Wall 
Consider a thick tube of internal radius 71 and external radius 73, to 

which an internal pressure only, of magnitude Ph is applied of such 
intensity that the material at a radius below 72 is in the plastic state 
(i.e. 72 is the radius at the boundary between the inner plastic region 
and the outer elastic region). 

If P2 is the radial stress at 7Z, it is given by elastic theory for internal 
pressure only (Para. 15.9, eqn. (4», such that the maximum stress 
difference is ay (i.e. Just reaching the yield condition at 72)' 

ay=al +P at 72 

= 2[732/(732 - 722)]P2 
or P2 = [(732 - 7i)/2r32]ay (5) 

Substituting this value in (3) and (4) gives the variation of stresses in 
the plastic zone, i.e. 

P = ay[log (7z17) + (732 - 722)/2r32] (6) 

and al = ay[(732 + 722)/2732 -log (7z17)] (7) 

The relation between internal pressure PI and radius of yield 72 is 
given from (6) when 7 = 710 i.e. 

PI =ay [log (72/71) +(732-722)/2732] (8) 

The pressure at initial yielding is found by putting 72 =710 i.e. 

Pt - [(7aZ - 712)/Z,a2]ay (9) 
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and the pressure required for complete yielding through the wall is 
given by r2 =r3, i.e. 

(10) 

Since aI + P = ay in the plastic zone, the hoop stress at the inside in the 
fully plastic state is 

(11) 

If the longitudinal stress is zero, equations (10) and (11) can only 
apply for r3/rl<2'718, since at this value PI =ay and al =0, and the 
maximum stress difference becomes Pl' If the tube is thicker than this, 
and the internal pressure is raised to the value ay, there will be an inner 
zone in which the radial stress is constant and equal to ay and the hoop 
stress is -ay (to satisfy the equilibrium equation (1», an intermediate 
zone in which equations (10) and (11) apply, and an outer elastic zone. 
This argument can be modified to take account of any uniform longi­
tudinal stress. 

EXAMPLE 11. A gun barrel of 100 mm bore and 75 mm thickness is subjected 
to an internal pressure sufficient to cause yielding in two-thirds of the metal. 
Calculate this pressure and show the variation of stresses across the wall. 

What are the pressures required for initial yield and complete yield? Assume 
that yield occurs due to maximum shear stress, and neglect strain hardening. 
In simple tension ay =400 N/mm2• 

Equation (8) gives the pressure required to cause a given depth of 
yielding, where rl =50 mm, and r3 =125 mm. Then 

From (5) 

PI =400(log. 2 +9/50) 
=350N/mm2 

P2 =(9/50)400 
=72 N/mm2 

P3=0 

At rl> hoop stress is given by (7) 
al =400(41/50 -log. 2) 

=50·5 N/mm2 

At r2, from the plastic relation al +P =ay, 
al =ay -P2 

=328 N/mm2 

In the elastic zone, using the conditions P2=72 and P3=0 for a tube 
of inner and outer radii 100 mm and 125 mm, it follows from Para. 15.9 
that hoop stress 
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At r=100mm 
0"1 =(41/9)72 =328 N/mm2 

Atr=125 mm 
0"1 =(32/9)72 =256 N/mm2 

The variation of these stresses in the two zones is shown in Fig. 15.14. 

P/Q,sfic Zone 
350 

E/a5ti~ 
Zone 

50 75 100 
Radius mm 

Fig. 15.14 

The pressure for initial yield is given by (9) 

PI =(21/50)400 =168 N/mm2 

and the pressure for complete yield by (10) 

PI =400 log. 2·5 =367 N/mm2 

Is.n. Compound Tubes. It can be seen from Fig. 15.12 that the 
hoop stress falls off appreciably as the radius increases, and that the 
material near the outside of $e tube is not being stressed to its limit. 

In order to even out the stresses the tube may be made in two parts, 
one part being shrunk on to the other (after heating). By this means the 
inner tube is put into compression and the outer tube is in tension. 
When an internal pressure is then applied it causes a tensile hoop stress 
to be superimposed on the "shrinkage" stresses, and the resultant stress 
is the algebraic sum of the two sets. 

In general the procedure is first to calculate the stresses due to 
shrinkage in each component, from a knowledge of the radial pressure 
at the common surface. The stresses due to application of internal 
pressure are calculated in the normal way, and the ttoo tubes may be 
treated as one (provided they are of the same material). 

The radial pressure at the common surface due to shrinkage is related 
to the diametral "interference" before the tubes are fitted together. If 
0"1 is the compressive hoop streas at the outaide of the inner tube and 0"/ 
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the tensile hoop stress at the inside of the outer tube, then due to 
shrinkage: inner tube diameter is decreased by 

(l/E)( C11 - vp) x d 
and the outer tube diameter is increased by 

(1/E)(C11' +vp) xd 
where d is the common diameter. 

The difference of diameters before shrinking 
c: sum of these two changes 
-=(1/E)(U1 +C11') xd 

EXAMPLE 12. A tube 4 cm inside by 6 cm outside diameter is to be reinforced 
by shrinking on a second tube of 8 cm outside diameter. The compound tube is 
to withstand an internal pressure of 50 N/mm2 and the shrinkage allowance is 
to be such that the final maximum stress in each tube is to be the same. Cal­
culate this stress and show on a diagram the variation of hoop stress in the two 
tubes. What is the initial difference of diameters before shrinking on? 
E=207,OOO N/mm2• 

Let Po be the common radial pressure due to shrinkage. 

For the inner tube: 
At the outside Po = - a + b/36 
At the inside 0= -a+b/16 

from the general equations (8), Para. 15.8. 
Subtract and solve 

b = - [(36 x 16)/(36 -16)]po = - (144/S)p. 
and a=b/16= -(9/S)po 

Maximum hoop stress =a +b/16 = - (18/S)po (i) 
Hoop stress at 6 em diameter =a +b/36 = - (13/5)po (ii) 

For the outer lube: 
At the inside 
At the outside 

Subtract and solve 

Po = -a' +b'/36 
o = - a' + 6'/64 

b' = [(64 x 36)/(64 - 36)]po = (S76f7)po 
and a' =b'/64 = (9/7)p. 

Maximum hoop stress =a' +b'/36 
= (25f7)po (iii) 

Hoop stress at 8 em diameter=a' +b'/64 
= (18/7)po (iv) 

The lines marked "shrinkage stresses" on Fig. 15.15 are sketched from 
results (i) to (iv), the numerical value of Po being obtained later. 

Stresses due '0 internal pressare I 
At the inside SO = - a" + 6"/16 
At the outside 0 = - a" + 6"/64 
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Subtract and solve 
b" = [(64 x 16)/(64 -16)] x 50 =(64/3) x 50 

and a" =50/3 
Hoop stresses: 

4 cm diameter at =50/3 +(64 x 50)/(3 x 16) 
=83·3 N/mm2 

6 cm diameter at = 50/3 + (64 x 50)/(3 x 36) 
=46·4N/mm2 

8 cm diameter at = 50/3 + (64 x 50)/(3 x 64) 
=33·3 N/mm2 
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(v) 

(vi) 

(vii) 

From results (v), (vi), and (vii) the line of "pressure" stresses is drawn 
on Fig. 15.15. The final resultant hoop stress in each tube is obtained by 
taking the algebraic sum of shrinkage and pressure stresses. It was pointed 
out in Para. 15.8 that the maximum stress occurs at the inside surface. 
Equating these values for the two tubes gives 

(i) + (v) = (iii) + (vi) 
i.e. -(18/5)po +83·3 = (25/7)po +46·4 
or Po =36·9 x 35/251 

8303 

64·7 

Pressure 
stpesses 

J 

=5·15 N/mm2 

em 
_lJiametep 

Fig. 15.15 

Numerical value of maximum hoop stress 
= (iii) + (vi) =64·7 N/mm2 

the other values being shown in Fig. 15.15. 

Initial difference of diameters at the common surface 
= difference of hoop strains x diameter 
=(I/E)(difference of hoop shrinkage stresses) x diameter 
= [(13·4 + 18'3)/(207,000)] x 60 
=O'0092mm 

15.12. Hub Shrunk on Solid Shaft. The shaft will be subjected to 
an external pressure Ph and if Ul and P are the hoop and radial stresses 
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at a radius r, the equilibrium equation (6) of Para. 15.8 will be obtained 
as for a "thick cylinder," i.e. 

0'1 +p+r.dp/dr=O 
The longitudinal stress is zero, and assuming the longitudinal strain 

to be constant, it follows from equation (1) of Para. 15.8 that 

O't - P = constant 

These two equations are solved as before, giving 

O't -a+b/d2 

and p- -1l+b/d2 

But since the stresses cannot be infinite at the centre of the shaft (i.e. 
d - 0), then b must be zero, i.e. 

O'l-a- -p 
which means that the hoop stress is compressive and equal to 
the radial stress (and consequently the external pressure), both 
stresses being constant throughout. 

The hub or sleeve is subjected to an internal pressure PI and is 
treated as a thick tube under internal pressure (Para. 15.9). 

EXAMPLE 13. A steel shaft 50 mm diameter is to be pressed into a cast-iron 
hub 150 mm external diameter and 100 mm long, so that no relative slip occurs 
under a torque of 5 kNm. Find the necessary force fit allowance and the maxi­
mum circumferential stress in the hub. E. =2 x Eel' Poisson's ratio =0·25 for 
both, and coefficient of friction between surfaces = 0·3. 

If, after assembly, the shaft is subjected to an axial compressive stress of 
80 N/mm2, what is the resulting increase in the maximum circumferential hub 
stress? E. =207,000 N/mm2• 

Let PI be the radial pressure at the common surface. Then 
Torque = (P.PI x surface area) x radius 

i.e. 5 x 106 =0'3PI X7T x 50 x 100 x 25 Nmm 
or PI =42·5 N/mm2 

For the shaft: 

and 
Hoop stress =PI =42·5 N/mm2 compressive, 

Decrease of outside diameter = Hoop strain x diameter 
(42.5 -0·25 x42·5) x 50 

= 207,000 
=O'0077mm 

For the hub: 
Hoop stress at inside (maximum) = [(1502 + 502)/(1502 - 502)] x 42·5 

(Eq. (3), Para. 15.9) 
=53·2 Njmm2 
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'" (53·2 +0·25 x 42·5) x 50 
Increase of Inside diameter = 103 500 , 

=0'030Smm 
Force fit allowance =0·0077 +0'030S 

=0'03S5 mm 
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Let al be the increase in maximum hoop stress in the hub when an axial 
stress of SO N/mm2 is applied to shaft. Then the corresponding increase 
in radial pressure at the inside surface is determined by the dimensions of 
the hub, and 

al = [(1 502 + 502)/(1 502 - 502)] x increase in pressure 
giving an increase in pressure =o·s al' 

The radial and hoop stresses in the shaft must also increase by O'Sal 
numerically, since they are both equal and compressive. 

Increase in hoop strain at the outside of the shaft 
= (1/Es)( -O'Sal +0·25 xO'Sal +0·25 x SO) 
=increase in hoop strain at inside of hub 

giving 
from which 

= (1/Ect)(a1 + 0·25 x O'Sal) 
-0'6al +20=2'4a1 (Es= 2Ect) 

al =6·67 N/mm2 

15.13. Thick Spherical Shells. At any radius r let the circumferential 
or hoop stress be a tensile, and the radial stress be p compressive. 

If u is the radial shift then it was shown in Para. 15.8 that the hoop 
strain is given by u/r, and the radial strain by du/dr. The stress-strain 
equations are 

E.u/r=a-va+vp (1) 
E.du/dr= -p-2va (2) 

Multiplying (1) by r and differentiating 

E.du/dr=a -va +vp +r[da/dr -v(da/dr) +v(dp/dr)] 
= - p - 2va from (2) 

or (1 +v)(a+p) +r(I-v)(da/dr) +vr(dp/dr) =0 (3) 
Considering the equilibrium of a 

hemisphere (Fig. 15.16) 

a. 27fr . Sr = pm2 - (p + Sp )7f(r + Sr)2 

or u+p= -(r/2)(dp/dr) in the limit (4) 

Substituting for a+p from (4) in (3) 

- (r/2)(dp/dr)(1 +v) +r(1 -v)(da/dr) 
+vr(dp/dr) =0 

which reduces to 

du/dr -!.dp/dr=O 

(J 

Fig. 15.16 
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or 

Integrating 
a - p/2 = constant 

=A, say 

Substitute for a from (5) in (4) 

Rearranging 

Integrating 

3p/2 + A = - (r/2)(dp/dr) 

.!. . d(pr3) = _ 2A 
rZ dr 

d(pr3) = _ 2Arz 
dr 

pr3 ~ - 2Ar3/3 +B 
p= -2A/3 +B/r3 

_ -a+b/d3 

where a = 2A/3 and b = SB. 
From (5) (J = a + b/2d3 

15.13. 

(5) 

(6) 

(7) 

If the inside and outside diameters are dl and dz, and the pressures 
on these surfaces are PI and pz respectively 

h= -a+bjd13 
and pz = - a +b/dz3 

Subtracting and solving 
b = [dI3dz3/(dzL d13)](PI - Pz) 

and a=bjdlLPI 
= (PId13 - P2dZ3)/(d23 - d13) 

From (6) and (7) 

P = [P2d23 - PIdI3 + (PI - P2)dI3d23/d3]/(d23 -dI 3) 

and a= [Pjdl L P2d13 + (PI - Pz)dI3d23/2d3]/(d2L d13) 

For internal pressure only (Pz = 0) 

P = PIdI3(dz3/d3 -1)/(d23 - d13) 

and a=PIdI3(d23/2d3+1)/(di-dI3) 

The maximum stress is the value of a at the inside: i.e. 

(J = PI(d23 + 2d13)/2(d23 - d13) 

and the maximum shear stress 

-l{(J+Pt) 
= PI.3d23/4(d23 - dt l ) 
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SUMMARY 
Thin Cylinders: 

Hoop stress al c: pdj2t. 
Longitudinal stress a2 =pdj4t. 
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Increase in capacity.,. (2 x hoop strain + longitudinal strain) x 
volume. 

Rotational stress.,. pr2w2• 

Thin Sphere: 
Hoop stress a = pd/4t. 
Increase in capacity = (3 x hoop strain) x volume. 

Thick Cylinders: 
Hoop stress al = a + bjd2• 

Radial stressp=- -a+bjd2• 
Internal pressure only: <1 = [(d22 + dl 2)f(d22 - dl2)]Pl' 
Longitudinal stress a2 = [dJ2j(d22 - dl 2)JPl (closed ends). 
Plastic yielding under constant stress difference. 

Compound Tubes: 
Resultant stress = algebraic sum of "shrinkage" + "pressure" 

stresses. 
Shrinkage allowance=(ljE)(numerical sum of hoop stresses) x 

common diameter. 

Hub on Shaft: 
In shaft, hoop stress = radial stress = external pressure. 

Thick Spheres: 
Hoop stress a=a+bj2d3• 

Radial stressp=- -a+bjd3• 

PROBLEMS 

1. A thin cylindrical shell, 1·5 m internal diameter, 2·4 m long, internal volume 
4·23 m3, plates 25 mm thick, is under internal pressure of 1 N/mm2. Assuming 
the end plates are rigid, find the changes in length, diameter, and volume. 
E=206,000 N/mm2; v =0·267. (0·081 mm; 0·19 mm; 0·00124 m3.) 

2. A thin spherical copper shell of diameter 0·3 m and thickness 1·6 mm is 
just full of water at atmospheric pressure. Find how much the internal pressure 
will be increased by pumping in 25,000 mm3 of water. E = 1 00,000 N /mm2 : v = 

0·286; K=2200 N/mm2. (1·22 Nlmm2.) 
3. A copper tube 25 mm bore and 2·5 mm thick is plugged at its ends and just 

filled with water at atmospheric pressure. If an axial compressiv<! load of 5 kN is 
applied to the plugs, find by how much the water pressure will rise. Assume the 
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plugs are rigid and fixed to the tube, and neglect end effects. E = 103,000 N /mm2 ; 

v =0'35; K =2200 N/mm2• (131 kN/m2.) 

4. A long straight tube, 144 mm bore and 3 mm wall thickness, is made of 
steel which yields at 325 N /mm2 in tension. If the ends of the tube are plugged 
and it is subjected to an internal fluid pressure find what pressure is required if 
yielding is assumed to take place according to the following theories of elastic 
failure, (1) maximum principal stress, (2) maximum principal strain, (3) maxi­
mum shear stress, (4) maximum strain energy, (5) maximum shear strain energy. 
v =0'3. (I.Mech.E.) 

(13-5, 16'2, 27, 13·9, 15·6 N/mm2.) 

5. A cylindrical compressed-air drum is 1·9 m diameter with plates 12·7 mm 
thick. The efficiencies of longitudinal and circumferential joints are respectively 
85% and 45%. If the tensile stress in the plating is limited to 100 N/mm2 find 
the maximum safe air pressure. (U.L.) (1·14 N/mm2.) 

6. A thin cylinder made of light alloy 200 mm internal diameter, 5 mm thick, 
is wound with a single layer of steel tape, 1·25 mm, under a stress of 85 N/mm2. 
If the hoop stress in the cylinder is not to exceed 42·5 N/mm2, find the maxi­
mum internal pressure and the stress in the tape. Poisson's ratio =0·25; ratio of 
elastic moduli 2·5. (U.L.) (4·8 N/mm2 ; 215 N/mm2.) 

7. A copper tube 47·5 mm inside diameter, 50 mm outside diameter, is closely 
wound with steel wire 0·7 mm diameter. Find the winding tension on the tube 
if an internal pressure of 1·42 N /mm2 is required before the copper is subjected 
to tension, the tube being free to expand or contract axially. Es =210,000 N/ 
mm2; Ec = 126,000 N/mm2. (U.L.) (13·7 N.) 

8. A brass cylinder 100 mm outside diameter and 87·5 mm bore has a single 
layer of steel wire 1·2 mm diameter wound on it under a constant tension of 
35 N/mm2• If the cylinder is then subjected to an internal pressure of 14 N/mm2 

and to a rise in temperature of 168° C, determine the final magnitude of (a) the 
tensile stress in the wire, (b) the radial pressure between the wire and cylinder, 
and (c) the hoop stress in the cylinder wall. Assume the cylinder to be a thin 
shell with closed ends. For steel, E=210,000 N/mm2, a=11·8 x 10-6 per °C. 
For brass, E =87,500 N/mm2, a =18·6 x 106 per °C, v =0·3. (U.L.) 

(Add temperature strains to corresponding sides of (6), Para. 15.6. (a) 365 N/ 
mm2, (b) 6·9 N/mm2, (c) 47 N/mm2.) 

9. A bronze sleeve of 200 mm internal diameter and 6·4 mm thick is pressed 
over a steel liner 200 mm external diameter and 16 mm thick, with a force-fit 
allowance of 0·07 mm on diameter. Treating both as thin cylinders find (1) the 
radial pressure at the common surface, (2) the hoop stresses, (3) the percentages 
of the fit allowance met by the sleeve and liner. Eb = 117,000 N/mm2, Vb =0·33; 
Es =207,000 N/mm2, Vs =0·304. (U.L.) 

(2·17 N/mm2 ; 34'7,13'9 N/mm2 ; 82'5, 17·5%.) 

10. A thick cylinder 200 mm internal diameter is subjected to an internal 
pressure of 3·55 N/mm2. If the allowable stress is 24 N/mm2, find the thickness 
required. To strengthen the cylinder it is wire wound, and an internal pressure 
of 6·4 N /mm2 can now be applied. What is the radial pressure caused by the 
wire? (16·2 mm; 2·5 N/mm2.) 
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11. A pressure vessel 0·3 m internal, 0·4 m external, diameter and 0·9 m long, 

with closed ends, is to be subjected to a hydraulic test of 15 N/mm2. Calculate 
the change of internal and external diameters. E=210,000 N/mm2j v=0·3. 

(0'074, 0·064 mm.) 

12. A thick-walled steel cylinder having an inside diameter of 150 mm is to be 
subjected to an internal pressure of 40 N/mm2• Find to the nearest mm the out­
side diameter required if the hoop tension in the cylinder wall is not to exceed 
125 N/mm2. 

Calculate the actual hoop stresses at the inner and outer surfaces of the cylinder 
and plot a graph of the variation of hoop tension across the cylinder wall. 

(210 mmj 124 N/mm2j S3·5 N/mm2.) 

13. A thick cylinder of uniform material is unstressed when at a uniform 
temperature. It is heated so that there is a temperature variation along any 
radius, the temperature being t at a radius T. If, due to heating, the radius T in­
creases by a small increment u, show that 

~ [!. d(TU)] =(1 +v)a!!! 
dT T dT dT 

where a is the coefficient of linear expansion. (U.L.) 
(Assume a2 =0 and add term Eat to right-hand side of equations (2) and (3) 

of Para. 15.S. Eliminate al and p between equations (2), (3) and (6). See also 
Para. 16.6.) 

14. A steel cylinder 20 em external diameter and 15 em internal diameter has 
another cylinder, 25 cm external diameter, shrunk on to it. If the maximum 
tensile stress in the outer cylinder is SO N Imm2, find the radial compressive stress 
between the cylinders. 

Determine the circumferential stresses at the inner and outer diameters of 
both cylinders, and calculate the shrinkage allowance at the common surface. 
E =208,000 N/mm2 j v =0,304. 

(17·5 N/mm2j -SO, -62,5 N/mm2 j SOj 62 N/mm2j 0·14 mm.) 

15. A compound cylinder is made by shrinking an outer tube, of 12 em ex­
ternal diameter, on to an inner tube, of 6 cm internal diameter. Find the com­
mon diameter at the junction if the greatest circumferential stress in the inner 
tube is numerically t of that in the outer. (9·74 cm.) 

16. A compound tube 10 cm internal diameter and 20 cm external diameter is 
made by shrinking one tube on to another. Mter cooling a radial stress of 
20 N/mm2 is produced at the common surface, which is 15 cm diameter. If the 
tube is now subjected to an internal pressure of 60 N/mm2, find the maximum 
hoop stress. (127 N/mm2.) 

17. A compound cylinder is to be made by shrinking one tube on to another so 
that the radial compressive stress at the junction is 28·5 N/mm2. If the outside 
diameter is 26·5 cm, and the bore 12·5 cm, calculate the allowance for shrinkage 
at the common diameter, which is 20 cm. E=210,000 N/mm2. (0·16 mm.) 

18. A steel sleeve is pressed on to a solid steel shaft of SO mm. diameter. The 
radial pressure between the shaft and sleeve is 17·5 N/mm2 and the hoop stress 
at the inner surface of the sleeve is 42 N/mm2. If an axial compressive load of 
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54 kN is now applied to the shaft, determine the change in radial pressure. 
v =0,304. (2'4 N/mm2.) 

19. A steel cylinder 20 cm external dia. and 12·5 cm internal dia. is fitted with 
a bronze liner which has an internal diameter of 10 cm. Assume that there is no 
stress in the compound cylinder due to fitting; regard the liner as a thin cylinder 
and ignore longitudinal stress and strain. 

Find the maximum direct stress and the maximum shear stress in each 
material due to an internal pressure of 72 N/mm2• 

For steel, E =207,000 N/mm2, v =0·28. For bronze, E =112,000 N/mm2 

v =0·30 (V.L.) 
(Steel, 107, 77 N/mm2; Bronze, 52, 62 N/mm2 ; Common Pressure =47 N/ 

mm2.) 

20. A steel shaft 38 mm diameter is to be encased in a bronze sleeve, 57 mm 
outside diameter, which is to be forced into position and, before forcing on, the 
inside diameter of the sleeve is 0·05 mm smaller than the diameter of the shaft. 
Find (a) the radial pressure between the shaft and sleeve, (b) the maximum hoop 
stress in the sleeve, (c) the change in outside diameter of the sleeve. Es = 

205,000 N/mm2, Vs =0·29; Eb =123,000 N/mm2, Vb =0,34. (V.L.) 
(48 N/mm2; 125 N/mm2; 0·035 mm.) 

21. A bronze sleeve having an outside diameter 76 mm is forced onto a steel 
rod 57 mm diameter, the initial inside diameter of the sleeve being 0·064 mm 
smaller than the rod diameter. When in service the compound rod is subjected 
to an external pressure of 19·5 N/mm2 and at the same time to a rise in tempera­
ture of 1000 C. Determine (a) the radial pressure between sleeve and rod, (b) the 
greatest circumferential stress in the sleeve. For steel, E =205,000 N/mm2, 
,,=0,3, a =11 x 10-6 per °C. For bronze, E=104,000 N/mm2, 1'=0·33, a =19 x 
10-6 per °C. (V.L.) 

(Apply compatibility equation to common diameter. (a) 28·5 N/mm2, 
(b) 12·5 N/mm2.) 

22. Find the thickness of a spherical shell of 75 mm internal diameter, to 
withstand an internal pressure of 28 N/mm2, if the permissible tensile stress is 
63 N/mm2 and shear stress 47 N/mm2. 

What is the change of thickness under pressure of such a shell. E =210,000 N / 
mm2; v =0,3. (8'8 mm; 0·0025 mm.) 



CHAPTER XVI 

Rotating Discs and Cylinders 
16.1. Disc of Uniform Thickness. It may be assumed, for a "thin" 

disc, that the stress in the axial direction is zero. 
At a radius r from the axis of rotation, let the stresses be circum­

ferentially al (hoop stress), and radially az, both tensile. Then if u is the 
radial shift, the stress-strain equations are: 

E.du/dr=az -val (1) 
E.u/r=al -vaz (compare Para. 15.8) (2) 

Obtaining E.du/dr from (2) and equating to (1) gives 
(al -az)(1 +v) +r .dal/dr -vr(daz/dr) =0 (3) 

If the angular velocity of rotation is 
w, and the density of the material is 
p, then for the element shown in 
Fig. 16.1, the centrifugal force 

= (prSO. 8r )rwZ 

= pr2w z8r . 80 for unit thickness 
The equilibrium equation in the 

radial direction is 

2a1 • dr . sin tSO + azrSO -
(az + Saz)(r + Sr)SO =pr2w2Sr. SO 

In the limit this reduces to 
al-aZ -r.daz/dr=pr2wZ (4) 

Substitute for al -az from (4) in (3) 

Fig. 16.1 

(r .daz/dr +prZwZ)(1 +v) +r .dal/dr -vr(da2/dr) =0 
Rearranging 

Integrating 

Subtract (4) 

or 

2a2 + r. daz/dr = - (pr2wZ/2)(3 +v) + 2A 

!. d(azr2) = _prZw2(3 +v) +2A 
r dr 2 

287 

(5) 



288 

Integrating 

or 

From (5) 

STRENGTH OF MATERIALS 

a2r2 = - (pr4w2/8)(3 +v) +Ar2 - B 
G2 =A - B/r2 - (3 +v)(pr2w 2/8) 

16.1. 

(6) 

(7) 

16.2. Solid Disc. Since the stresses are not infinite at the centre, 
B=O, from (6) and (7) of Para. 16.1. 

If R is the outside radius, then 
a2 = 0 = A - (3 + v)(PR2w2/8) from (6) 

From which a2 = (PW2j8)(3 +v)(RL r2) 
and al = (pw2j8)[(3 +v)R2 - (I + 3v)r2] 

At the centre, r = 0, and a2 =al = (3 +v)(PW2R2j8) 
and this is the maximum stress. 

At the outside 
al =(I-v)(PW2R2j4) 

For a value ofv=0·3 

Axis of 
rotation 

<11 = (3·3/8)(pw2R2) 
=0·4Ipw2R2 (at the 

centre) 

Fig. 16.2 

and at the outside 
al = (0·7/4)(pw2R2) 

=0.425<11 

The variations of the hoop and 
radial stresses with radius are shown 
in Fig. 16.2. 

16.3. Disc with Central Hole. If the inside and outside radii are 
Rl and R2 respectively, then the radial stress is zero at each of these 
values. From (6) of Para. 16.1 

o =A - BjR12 - (3 +V)(pRI2w2j8) 
and O=A -BjRi -(3 +v)(PRiw2j8) 

Solving 
B=(3 +v)(PW2j8)(RI2R22) 

and A=(3 +v)(PW2j8)(RI2+R2) 
Then a2 = (3 +v)(pw2j8)(RI2 + R22 - R12R22jr2 -r2) 
and 

al = (pw2j8)[(3 +v)(RI2 +R22 +RI2Rijr2) - (I + 3v)r2] 
a2 is a maximum when r=yRIR2' and 

<12 =(3 +v)(PW2j8)(R2 - RIF 

from (7) 
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Ut is a maximum at the inside, and 
O't =(pw2j4)[(1-v)Rt2 +(3 +v)Ri] 

Note that if R t is very small, O't-7-(3 +v)(PW2R22j4), which is twice 
the value for a solid disc (Para. 16.2). 

At the outside 

Ut = (pw2j4) [(3 +V)R12+(1-v)R22] 

Rz 
If R t-7-R2 =R, then 

O't-7-pw2R2 
as in the case of a thin rotating 7' t 
cylinder (Para. 15.7). Rl L--~~ 

The variation of stresses is b 
shown in Fig. 16.3. 

EXAMPLE 1. A thin uniform steel 
disc of 25 em diameter, with a central 
hole of 5 cm diameter, runs at 
10,000 r.p.m. Calculate the maxi­
mum principal stress and the maxi­
mum shearing stress in the disc. v = 

-=-Str 
Fig. 16.3 

0·3; Density = 7700 kg/m3• 
The maximum principal stress is 

at = (pw2/4) [(1 -v)Rt 2 +(3 +V)R2Z] from above 

= 7700 (10,000 x 21T)Z (0.7 X 0.0252 + 3.3 x 0·125Z) N/m2 
4 60 

=110N/mm2 

The maximum shearing stress at any radius 
=!(O"t - 0"2) 

= (pwZ/8) [(3 +v)Rt2R2z/r2 +(1 -v)r2] 

It is clear from Fig. 16.3 that the greatest stress difference occurs at 
r=Rt · 

Then maximum shearing stress 

= 7700 (10,000 x 21T)2(3.3 0·025 x 0.125 2 0.7 x 0.0252) N/ 2 
8 60 X 0.0252 + m 

=55 N/mm2 

16+ Long Cylinder. Let the longitudinal stress be a" and assume 
that the longitudinal strain e is constant (i.e. cross-sections remain 
plane, which must be true away from the ends). Proceeding as m 
Para. 16.1, the strain equations are: 

Ee=al-v(al +(2) (1) 
E.du/dr=a2 -v(al +a,) (2) 

E. u/r =al-v{a2 +a,) (3) 
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Eliminating duldr between equations (2) and (3) 
E.duldr =a1 -v(a2 +a/) +r[da1Idr -V(da2Idr) -v(daddr)] 

from (3) 
=a2 -v(a1 +a/) from (2) 

giving (a1 -a2)(1 +v) +r .da1/dr -vr(da2Idr) -vr(daddr) =0 

Substituting daddr =V(da1Idr + da2ldr) from (1) gives 
(a1 -a2)(1 +v) +r(I-v2)(da1/dr) -vr(1 +V)(da2Idr) =0 

or a1 -a2 +r(1 -V)(da1Idr) -vr(da2/dr) =0 (4) 

or 

The equilibrium equation is as before (Para. 16.1) 
a1 -a2 -r.da2/dr=pr2w2 

Subtracting (4) 

Integrating 

-r(l-v)(da1/dr) -r(l-v)(da2/dr) =pr2w2 

da1 da2 prw2 
-+-=---
dr dr (1 -v) 

pr2w 2 
a1 +a2= - --+2A 

2(1 -v) 

(5) 

Comparing this with equation (5) of Para. 16.1 it can be seen that the 
results for a long cylinder can be obtained from those for a thin disc by 

.. 1. I fl . b" v r wntmg -- m pace 0 +v, 1.e. su stltutmg -- lor v. 
I-v I-v 

Solid cylinder (obtained from Para. 16.2) 
The maximum stress occurs at the centre, where a2 and a1 are equal, 

and 
A 3 -2v pw2R2 
a1=~'--

I-v 8 
If v=0·3 

<11 = (2·4/S·6)(pw2R2) 
=0·43pw2R2 

(compare 0·41 pw2R2 for a solid disc). 

Hollow cylinder (from Para. 16.3) 

and 

<12= (3 -2v)pw2(R2_R1)2 
I-v 8 

<11= pw2 [(1-2v)R12+(3-2v)R22] 
4(1 -v) 

which values again do not differ greatly from those for a thin disc. 
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16.5. Disc of uniform Strength. Consider the condition of equal 
stress at all radii, i.e. 0'2 =0'1 = constant =0', say. 

Let t be the thickness at a radius 
r, and t+St at a radius r+Sr. pr26)zoB.oT".t 

The mass of the element (Fig. 
16.4) 

= prM • Sr . t approx. 
and the centrifugal force (font 

= pr2w2M·Sr·t 
Hence the equilibrium equation 

is 
20'Sr. t. sin !M + urSlJ • t = 

u(r + Sr)SlJ(t + St) + pr2w2SlJ. Sr.t 
In the limit 

O't . dr = ur • dt + O't. dr + pr2w2t . dr 
or dtJdr = - prw2tJO' 

Fig.16.4 

Integrating 

log t = - pr2w2JZu + constant 

or t = Ae-,,20J2/2D 
=toe-pr'ItII2/2a 

where to is the thickness at r = O. 

(for.t 

EXAMPLE 2. A turbine rotor disc is 0·6 m diameter at the blade ring, and is 
keyed to a SO mm diameter shoft. If the minimum thickness is 9'S mm what 
should be the thickness at the shaft for a uniform stress of 200 N/mm2 at 
10,000 r.p.m.? Density 7700 kg/m3• 

Atr=0·3 m 
t =9·5 =Ar,...zxO·09/2a 

Atr=0'025 m 
t = Ae-,...z x 0'OO06/2a; 

= 9'5e,...zx 0'0894/2a from above, 

where pw2 x 0·0894/20' = 7700(1 0,00Orr/30)2 x 0'0894/2 x 200 x 106 

=1·89 
then t=9·5e1·89 

=63mm 
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16.6. Temperature Stresses in Uniform Disc. Let T be the 
temperature rise above that of the unstressed state. Then, following the 
procedure of Para. 16.1, the stress-strain equations are 

Edu/dr=a2 -val +EaT (1) 
and Eu/r = al - va2 + EaT (2) 
where a is the coefficient of linear expansion. 

Eliminating u between (1) and (Z) gives 
(al -a2)(1 +v) +r(dal/dr) -vr(da2/dr) + Ear(dT/dr) =0 (3) 

The equilibrium equation is unchanged, 
0'1 - 0'2 - r(dO'z/dr) = - prZ(J)2 (4) 

Substituting for al -a2 from (4) in (3) and re-arranging 

dal/dr +da2/dr = - (1 +v)prw2 - EadT/dr 
Integrating, 

al+a2=-(I+v)pr2w2/Z-EaT+ZA (5) 
Subtracting (4), regrouping and integrating as in Para. 16.1. 

a2 =A - B/r2 - (3 +v)pr2w2/8 - (Ea/r2)fTr .dr (6) 
Then, from (5) 

al =A + B/rL (1 + 3v)pr2w2/8 - EaT+(Ea/r2)fTr .dr (7) 
EXAMPLE 3. Suppose the disc of Ex. 1 has a linear variation of temperature 

of 45° C between the inner and outer (hotter) edges. Calculate the new value 
of maximum stress. E =205,000 N/mm2 , a = 11 x 10-6 per °C. 

The variation of temperature with radius may be written 
T=450(r -0·025) 

Assuming no external radial pressure, the radial stress may be equated 
to zero at r = 0·025 and r =0·125, i.e. from (6) 

or 
and 

or 

A _ B/0'0252-7700 3'3 x 0.0252 (10,000 x 27T) 2 =0 
8 60 

A -1600B =2·18 x 106 

A - B/0·0156 - 25 x 2·18 x 10L (205,000 x 11/0·0156}. 
[450r3/3 -450 x 0'025r2/2]g:A2~=0 

A -64B=83·4x106 

From (i) and (ii) 
A =86·8 X 106 

B =53x 103 

The maximum stress again occurs at r =0·025 m 
al =86'8 x 106+85 x 10L 1·26 x 106 N/m2• 

=170 N/mm2• 

(i) 

(ii) 

16.,. Plastic Collapse of Rotating Discs. It has been seen that the 
centrifugal forces in a rotating disc set up a two-dimensional tensile 
stress system, and in all the cases considered the hoop stress is greater 
than or equal to the radial stress at a given radius, maximum values 
occurring at minimum radius. It follows that, as the speed is increased, 
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yield will first occur in the circumferential direction when Ul =ulI 

(the yield stress is tension). A state of collapse will be reached when this 
stress condition extends to the outer surface of the disc (assuming an 
ideal elastic-plastic material, as Fig. 12.1). 

Equilibrium equation (as 16.1 (4), withul =ulI) 

ulI -u2 - r. dU2/dr = pr2w2 
Integrating, 

U2r=uyr-pr3w2/3 +A 
Solid disc. Since the stresses are not infinite at r = 0, then A = O. 

At r = R, U2 = 0 = Ull - pR2w2/3 giving the collapse speed 

Disc with central hole. 

w_!J3uy 
-R p 

At r=Rt> U2=0, giving 
A = (PR12w2/3 -uy)Rl 

At r=R2, u2=0=ulI-pRiw2/3+(pR12w2/3-ulI)Rl/R2 giving the 
collapse speed 

)(3uy Rl -R2 ) 
W= p'R23 -Rt 3 

Substituting the values of Ex. 1 and assuming a yield stress of 
280 N/mm2 gives a collapse speed 

= )3 x 280 x 106(0.125 - 0·025) 
7700 (0.125 3 - 0.0253) 

=2910 rad/sec. or 27,700 rev/min 

SUMMARY 

Uniform Disc. Solid: {1l =(3 +v)(PW2R2/8). 
Hollow: {1l = (PW2/4) [(1 -V)R12 + (3 +V)R22]. 

• • A 3 -2v pw2R2 
Long CylInder. SolId: Ul = I-v '-8-' 

2 
Hollow: {1l = 4~v)[(1-2v)Rt2 +(3 -2v)Ri]· 

Disc of Uniform Strength: t = toe-p,lw'l/2a. 

Collapse Speed: w = ) C;y . R~~ =~: 3) 
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PROBLEMS 

1. Detennme 1:he greatest values of radial and hoop stress for a rotating disc 
in which the outer and inner radii are 30 cm and 15 cm. ",-150 rad.fsee.; 
1I-0·304;p-7700 kg/m3• (U.L.) (1·6 Nfmm2 ; 13-6Nfmm2) 

2. If a disc of inside and outside radii Rl and R2 is made up in two parts 
which are shrunk together, the common radius being r, show that the hoop 
stresses at Rl and R2 will be equal at a rotational speed given by 

",2_ 4pr~2~~~~ 
p(1 +1I)(r2 -R12)(R22 -r2)' 

where p is the pressure due to shrinkage at the common surface. 
3. Calculate the maximum stress in a long cylinder 5 em inside diameter and 

25 cm outside diameter rotstina at 3000 rev/min. 11-0·3; p ~7700 kg/m3• 

(10·3 N/mm2) 



CHAPTER XVII 

Circular Plates 

17.1. Circular Plates Symmetrically Loaded 

Consider a diametral section through the plate. 
o is the centre of the plate and OX, OY the principal axes in the 

plane of Fig. 17.1. OZ is the axis perpendicular to the figure. 

Let C be the centre of curvature 
of a section ab at a distance x from 
O. Then if the deflection y is small 

dyJdx=(J (1) 
The radius of curvature in the 

plane XOY is given by 
IJRxy = dZYJdx2 approx. 

-=d(JJdx from (1) (2) 

y 
c 

Note that, on a circle of radius x 
and centre 0, lines such as ab form 
part of a cone with C as apex. Hence 
C is the centre of curvature in the 
plane YOZ, and 

IJRyz =(}Jx approx. (3) 
Fig. 17.1 

If u is the distance of any "fibre" from the neutral surface (assumed 
central), then, proceeding as for "pure bending" (Para. 6.1), in the 
planes XOY and YOZ, the linear strains are 

ex =uJRxy = (lfE)(ax -vaz) (4) 

and Ez=ufRyz=(lfE)(az-vax) (5) 

where ax and az are the stresses in the directions OX and OZ, a" being 
zero. 

Solving equations (4) and (5) for the stresses 

Eu ( 1 v) Eu (d(J v(J) (6) 
aX =I_v2 Rxy+Ryz =1-v2 JX+-; 

and Eu (v 1) Eu (d(J (J) (7) 
a"'-I_v2 RXY + R yZ ~ 1- v2 V dx + X 

from (2) and (3) 
295 
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The bending moment per unit length along OZ, is M xy given by 

J'/2 
Mxy.dz= ux·udz.du 

-1/2 

or MXY = D(dOjdx +vOjx) (8) 

by substitution from (6), where 

D= Et3 

12(1 - v2) 

Similarly, if M yZ is the bending moment about OX per unit length 

J'/2 
Myz.dx= uz·udx.du 

-1/2 

or M yZ = D[v(dOjdx) +Ojx] from (7) (9) 
Note also that 

and 
ux=Mxy·l2ujt3 

uz=Myz·12ujt3 

(10) 
(11) 

Fig. 17.2 shows the forces and moments per unit length acting on 
an element which subtends an angle &p at the centre, F being the 
shearing force per unit length in the direction OZ. 

Fig. 17.2 

Consider the equilibrium of the couples in the central radial plane, i.e. 
(Mxy+SMxy)(x +Sx)&P -MxyxSrfo - 2Myz .Sx.sin!Srfo + Fx&p.Sx =0 

In the limit 
MXY +x .dMXyjdx - M yZ + Fx =0 

Substituting from (8) and (9) gives 
d20jdx2 + (ljx)(dOjdx) -Ojx2 -= - FjD (12) 

which can be written 
(djdx)[(ljx).d(xfJ)jdx] ... - FjD (13) 

If F is known as a function of x this equation can be integrated to 
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determine 8, and hence y. Bending moments and stresses can then be 
easily obtained. Particular cases will now be considered. 

For a plate loaded with a uniformly distributed load w per unit area and 
a concentrated load P at the centre, then 

271'x.F=71'X2.w+P 
or F=wx/2 +P/271'x 
per unit length circumferentially (except at x = 0). 

Substituting in (13) and integrating 
8 .. -wx3/16D-(Px/871'D)(21o~x-l)+Clx/2+C2Ix (14) 

y-J8.dx+C3 from (1) 
- -wx4/MD-(Px2/871'D)(log, x-I) + C1x2/.f. + Cz log r+C3 

(15) 
17.2. Solid Circular Plate. Let R be the radius of the plate, and t 

the thickness. The references are to Para. 17.1. 
(a) Uniformly lotukd, edge freely supported: 
P-O, and since 8 andy cannot be infinite at the centre,Cz = ° from (14) 
Atx""O,y"'O :. C3 =-0 from (15). 
At x=R, Mxy=O, i.e. 

-3wR2/16D+Q/2-vwR2/16D+vC1/2 ... 0 from (8) and (14) 

giving C wR2 3+v 
I"'" 8D '1 +v 

Central deflection = y, at x = R 

From (6) 

and 

From (7) 

wR4 wR4 3 + v 
= --+-.- from (15) 

64D 32D 1 +v 

= WR4 (5 + v) 
64D 1 +v 

= (3wR4/16Et3)(S +v)(l- v) 

Eu (WX2 wR2 ) 
ax = 1- v2 -16D(3 +v) + 16D(3 +v) 

A E. t/2 wR2(3) ° 
uX =I_v2'16D +v, atx= 

3wR2(3 +v) 
8t2 

and hence &%=&:1&' and occurs at the centre. 
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(b) Uniformly loaded, edge clamped: 
P..,O and C2 =0 as in case (a). 
At%=O,y=O :. C3 =0 from (15). 
At %=R, dy/dx=8=O, i.e. 

-wR3/16D+C1R/2=0 from (14) 
giving C1 =wR2/8D 

Central deflection = -wR4/64D+wR4/32D from (15) 
=WR4/64D 
= (3wR4/16Et3)(1 - v2) 

CT =-- --(3+v)+-(I+v) Eu (WX2 wR2 ) 
'" I-v2 16D 16D 

from (6) 

17.2. 

This stress has its greatest numerical value when x = R (at clamped 
edge), i.e. 

and hence 

~",= E.t/2. wR2 x2 
1- v2 16D 

==3wR2/4t2 

Eu (- wx2 WR2) 
CTz=1_v2 16D (3v+l)+16D(I+v) 

A = E. t/2 . wR2(1 + v) at the centre 
U z 1- v2 16D 

.., 3wR2(1 + v) 
8t2 

(c) Central load P, edge/reely supported: 
w=O. 

from (7) 

At x=O, 0=0 :. C2 =0 from (14), also y=O, :. C3 =0 from 
(15). (Note that Lt. (x loge x) =0.) 

At %=R, Mxy=O, i.e. 

- (P/81TD)(2 log R -1) - (PR/81TD)(2/R) + C1 /2-
(vP/81TD)(2Iog R -1) +vC1/2 =0 from (8) 

giving C1=- 2IogR+-P ( I-V) 
4rrD 1 + v 

PR2 PR2 ( I-v) 
Central deflection = - 81TD(log R -1) + 16rrD 2 log R + 1 +v 

PR2 (3 +v) 
.., 16rrD' (1 + v) 

3PR2 
---(3 +v)(I-v) 

4rrEt3 
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From (6) 
Eu P R 

u,.=--. -(1 +v) log-
I-v2 4rrD x 

= (3PJ27Tt2)(1 +v) log (RJx), u=tj2 
and from (7) 

u ...... (3PJ27Tt2)[(1 +v) log (RJx) + I-v] 

These stresses appear to become infinite at the centre, but it must be 
realised that the load cannot be applied at a point, but must extend over 
a finite area. If this area can be estimated then the maximum stresses 
can be calculated. 

(d) Loaded round a circle, edge freely 
supported. Supposing a total load P is 
distributed round a circle of radius r 
(Fig. 17.3). It is necessary to divide the 
plate into two regions, one for x<r, 
and the other for x>r. At x=r, the 
values of (), y, and Mxy must be the 
same in both regions. 

x<r: w-O and P ... O. 
Hence () = G1xj2 + G2jx from (14) 

Fig. 17.3 

and y = G1x2/4 + G2 log x + G3 from (15) 

Since () and yare not infinite at x = 0, G2 = 0, and since y ~ 0 when 
x = 0, G3 = 0, and the above equations reduce to 

6=C1x/2 
and y-Gl x2j4 

x>r: w=O, and 
().,. - (Px/87TD)(210g x-I) + Gl 'xj2 + G2'/x from (14) 

y.,. - (Px2/87TD)( log x-I) + Gl 'x2/4 + G2' log x + G3' from (15) 

Equating the values of (), y, and MXY at x~r gives the following 
equations: 

- (Prj87TD)(2 log r - 1) + q'r/2 + G2' jr = Glrj2 (16) 
- (PrZj8rrD)(log r -1) + Gl 'rZ/4 + Gz' log r + G3'.,. Gl ,Zj4 (17) 

and 
-(pj8rrD)[(1 + v)2log r + 1 -v] + (G1'/2)(1 +v)­

(Gz'/r2)(I-v)=(G1/2)(1 +v) (18) 
Mxy"'O at x-R gives 

- (P/8rrD)[(1 +v)2Iog R + I-v] + (Gl '/2)(1 +v)-
(G2'/R2)(I-v)-O (19) 
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From equations (16) to (19) the constants are found to be: 

C1/-:D [210g R+ R2~tG ::)] 

C2' - -Pr2/8TTD 
and C3' - (Pr2/8TTD)(log r - 1) 

The central deflection is given by the value of y at x = R, and by 
substitution in equation (15), reduces to 

(P/8TTD)[(R2 - r2)(3 +v)/2(1 +v) -r2 log R/r] 
Forx>r 

Mxy=(P/BTT)[(l +v)2 log R/x+(I-v)r2(1/x2-1/R2)] 
which has a maximum value at x-r. 

Hence 
&.-(6/t2)Mxv from (10) 

-(3P/4TTt2)[(1 +v)2Iog R/r+(I-v)(R2-r2)/R2] 
Similarly 

MyZ = (P/BTT){(1 +v)2Iog R/x+(I-v)[(2R2-r2)/RLr2/x2]) 
and &z ... (3P/4TTt2)[(1 +v)2Iog R/r+(I-v)(R2-r2)/R2] 

-&. 

r R 

f--J 
i§ 17.3. Annular Ring, Loaded round 
~4 Inner Edge. The ring ~ loaded with 

, a total load P round the mner edge and 
I freely supported round the outer edge 

Fig. 17.4 (Fig. 17.4), 
Mxv-O at x=R and at x=r, giving 

-(P/BTTD)[(1 +v)2Iog R+l-v] + (C1/2)(1 +v)-
(C2IR2)(I-v)=0 as Eq. (19), Para. 17.2(d) 

and - (P/8TTD)[(l + v)2 log r + 1 - v] + (C1/2)(1 + v) -
(C2Ir2)(I-v)=0 

Subtracting and solving 
C P 1 +v R2r2 I R 
2-4TTD'l-v'R2-r2 og, 

and then C ... ~ [2(R210g R-r2log r) + I-v] 
1 4TTD R2-r2 1 +v 

Then Mxy/D ... - (P/8TTD)[(1 + v)2log x + 1 - v] + 
(C1/2)(1 +v)-(C2Ix2)(1-v) 

and MyzlD- -(P/8TTD)[(1 +v)2Iog x-(I-v)] + 
(C1/2)(1 +v) +(C2Ixl)(I-v) 
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The maximum bending moment is M yZ at x=r, and hence 
CTZ = (6ft2)MyZ 

= 3P[(1 +v)R2 Io ~+ I-v] 
'TTt2 R2-r2 g r 2 

REFERENCE 
TIMOSHBNKO, S., Theory of Plates and Shells. McGraw Hill. 1940. 

PROBLEMS 
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1. Show that for a Bat circular plate of radius R and thickness t, under the 
action of a central load P, the deBection is (3PR2/47TEt3)(1 - v2) when the 
edges are clamped, and that the maximum stress at the edge is 3P/27Tt2• 

2. A circular plate of radius R carries a total load P uniformly distributed over 
a central area of radius r. Show that the maximum stress is 

(3P/21Tt2)[(1 + v) log R/r + 1 - (1 - v)(r2/4R2)] 
3. Show that, for an annular ring of outside and inside radii R and r 

respectively, loaded round the inner edge and clamped at the outer edge, the 
maximum stress is given by (3P/27Tt2) (R2 -r2)/R2, where P is the total load. 

4. A circular disc of uniform thickness t is firmly clamped round its outer 
periphery at a radius of 3 em, and at the centre is firmly held in a spindle of 
radius 1 cm. An axial force P is applied through the spindle to the disc. Show 
that the bending moment per unit length of arc at any radius r cm is given by 

M =(P/7T)(0'2163/r2 - 0·325 log. r +0'1517) 
(The plate may be assumed clamped at its inner edge, and M is measured in a 
radial plane. v=0·3.) (U.L.) 



CHAPTER XVIII 

Vibrations and Critical Speeds 

18.1 Linear Vibrations. Suppose a mass m to be carried on an 
elastic support, such as a spring, which has a stiffness k (force per unit 
extension). Then, if the mass is given a displacement x from its equilib­
rium position, the support will exert a restoring force equal to kx. 

Neglecting the inertia of the support, the equation of motion of m is 

mX= -kx (x=d2x/dt2) 

or x + (k/m)x =0 
This represents simple harmonic motion, and if the zero of time is 

taken whenx=O, the solution is x=A sinY(k/m)t. 
The motion is periodic about the equilibrium position, A being the 

amplitude, or maximum displacement, which is independent of the 
period. 

The periodic time is 
t=27Ty(m/k) 

since sin y(kfm)t "repeats" itself at intervals of 27T. 
Note that the period can be written t=27Ty(S/g), where S is the 

"static" deflection caused by the force of gravity mg. 
or t=27TY(X/X) 

k 

= 27Ty(Displacement/Acceleration) from the equation of 
motion 

Frequency (f) = number of oscillations per unit time 
= l/Period 

or f = 1ft = (1/27T)y(g/5) 

18.2. Torsional Oscillations-Single Inertia. Con­
sider the case of a shaft or wire fixed at one end and 
carrying an inertia I at the other end (Fig. 18.1). 

If now the inertia is given an angular rotation 8 from 
the equilibrium position there will he a torque set up 

'---__ -J I in the wire equal to the k8 (k is stiffness - torque per 
Fig. 18.1 

or 

radian twist), tending to reduce the value of (J. The 
equation of motion of I is 

10= -h8 
jj + (k/1)8 =0 
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This is in simple harmonic motion as in Para. 18.1, and the period 

t = 21Ty({J/lJ) 
= 21Ty(I/k) 

Frequency /=(1/21T)y(k/I) 
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Note: k=GJ/l Nm/rad (Para. 8.1), and I =mK2 kgm2• It will now 
be seen that the units of k/f arc Nm/kgm2 =Ns2/kgms2, i.e. l/s2, since 
IN = 1 kgm/s2• 

EXAMPLE 1. A steel disc 0·3 m diameter, weighing 30 kg, is suspended from 
the end of a wire 2·5 mm diameter, 1·5 m long, which is clamped into a central 
hole in the disc. In torsional vibration the disc makes ten oscillations in 
80 sees. 

Find the modulus of rigidity of the wire, and calculate the amplitude of 
oscillation if the maximum permissible shearing stress in the wire is 140 N/ 
mm2• (U.L.) 

giving 

I =mK2 =30 x 0.3 2/8 =0·3375 kg. m2 

. JO.3375 Penod=8·0=21T -k-

k =0·208 Nm/radn. 

=GJ/l 

from above 

G = O'20R )( 1·5 )( 32 x 1012 

1T x 2.54 

=8·15 x 1010 N/m2 =81,500 N/mm2 

. 30 x 9·81 x4 
Dlrectstressa= 1Tx2.52 =60N/mm2 

If T is the permissible shear stress due to torsion 

giving 
140 =-h/(a2 +4T2) (Chapter III) 

T=137 N/mm2 

Corresponding amplitude (J = (2T/d)(I/G) 
=2·02 radn. 
=115 0 

18.3. Torsional Oscillations-Two Inertias. It may be assumed 
(and can be shown mathematically) that the two inertias will oscillate 
with the same frequency, reaching their extreme positions at the same 
instant. It follows that there will be a node (point of zero oscillation) 
in the shaft at a fixed point between the inertias. 

Treating the node as a fixed end (Para. 18.2), the frequencies of each 
inertia individually are 

(1/21Th/(kdIl) and (1/21T)y(kdI2) 
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where kl and k2 are based on the length of shaft between the node and 
each inertia, i.e. for a uniform shaft 

ki = GJ/ll and k2 = GJ/12 

~ Iz 12 or Equating the frequencies gives ~ 
(see Fig. 18.2). 

: : kl/k2=11/12 (1) 
12//1 =11/12 

the node dividing the length inversely 

~l d as the inertias at the ends. 
az Once the position of the node is I a2 established, the frequency can be 

[1 l2 calculated from either equation 

Fig. 18.2 above. 
The amplitude ratio 

al/a2 -11/12 =12//1 (2) 

Alternatively, if 8 is the angle of twist of the shaft at any instant, 
and T the torque transmitted 

8 ... T/k1 +T/k2 
- T(I/kI + l/k2) 

so that the stiffness for the shaft as a whole 

k- T/8=- klk2_ 
kl +k2 

and since kl/k2 =11/12 from (1) 

it can be shown that 

k1 - 11 +12 • k 
12 

Hence frequency f .. (1/21T)v'(k1/l1) 

_~J(II+1l .k) 
21T l11l 

(3) 

If the shaft is made up of parts of different stiffness per unit length 
(e.g. different diameters), it may be reduced to an equivalent shaft of 
uniform stiffness in the following manner. 

If one part is of length I' and the other of length [", the respective 
polar moments of inertia being J' and J", then since stiffness = GJ/ I oc J/ I, 
the equivalent length of [" reduced to a shaft of moment of inertia J' 
is given by 

J'/l "J"/I" cqaf1'. - , 

or '.,.." -1"(J'/],,) 
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The total length of shaft of uniform stiffness is then 

1=1' +I"(J'/J") 
-=1' +1"(d'/d")4 
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(4) 
(5) 

for solid shafts, where d' and d" are the corresponding diameters. 

EXAMPLE 2. The flywheel of an engine driving a dynamo has a mass of 
180 kg and a radius of gyration of 0·3 m. The shaft at the flywheel end has an 
effective length of 0·25 m and is 
50mm diameter. The armature 
mass is 120 kg and its radius of 180/{g 
gyratian is 0·225 m. The dynamo ~m 
shaft is 43 mm diameter and 0·2 m 
effective length. Calculate the fre-
quency of torsional oscillatians and 
the positian of the node. G = 
83,000 N/mm2• (U.L.) 

It has been shown that for 
unifonn shaft the node is nearer 
to the larger inertia (the fly­
wheel), and it may be judged in 
this problem to lie in the engine 
shaft. Consequently it is advis­
able to reduce the shaft to an 
equivalent length of 50 mm dia-
meter (Fig. 18.3). 

-

120 kg 
0~5m 

SOlMldia. 43mmdia 

Fig. 18.3 

Total equivalent length.=0·25 +0·2(50/43)4 from (5) 
=0·613 m 

The node divides this length in the inverse ratio of the inertias, i.e. 
(120 x 0'2252)/(180 x 0.3 2) =0'376 from (2) 

Distance of node from flywheel =(0·376/1'376) 0·613 =0·168 m 

As this lies in the part of the shaft which is actually 50 mm diameter, no 
adjustment is necessary. Any distances which fell in the region of the 
43 mm diameter shaft would have to be converted by the factor (diameter 
ratio) 4. 

The lower diagram in Fig. 18.3 shows the amplitude ratio al/a2, which 
is 0'376 independent of the stiffness of shaft, and the slope of the dotted 
line indicates the angle of twist per unit length in the actual 43 mm shaft. 

Frequency = (1/21T)v'(kt/II), calculating for a single inertia with a fixed 
end at the node. 

1 )83,000 x 106 x 1T x 0.0504 
= 21T 32 x 0·168 x 180 x Oj2-

= 22·1/sec. 

EXAMPLE 3. In a radial engine the moving parts ha'IJe a total moment of 
inertia of 1 kgm2 and are concentrated in the plane of the single crank pin. 
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The engine is directly connected to an air screw, of moment of inertia 18kgm2, 

by a hollow shaft having outer and inner diameters of 80 mm and 35 mm, and 
an effective length of 0·3 m. The stiffness of the crank throw alone is 2·5 x 
106 NmJradn. 

Estimate the natural frequency of torsional vibrations of the system. What 
percentage error is involved if the air screw mass is assumed infinite? G = 
83,000 N/mm2• (U.L.) 

The stiffness of the crank throw may be reduced to an equivalent 
length of shaft of the same diameter as the engine shaft, but as the position 
of the node is not required the expression for combined stiffness 
k =klk2/(kl + k2) will be used. 

. _ 83,000XTT 4_ 4 
Stiffness of shaft - 0.3 x 32 x 106(80 35) 

=1·07 x 106 Nm/radn. 

2·5 x 1·07 x 106 
Combined stiffness = 2.5 + 1.07 

=0·75 x 106 Nm/radn. 

Frequency of torsional vibrations 

=~Jk(ll +1z) from (3' 
2TT 1112 

= t..JO.75 x 106(1 +18) 
2TT 1 x 18 

= 142/sec. 
If the airscrew mass is assumed infinite, the frequency can be calculated 

from (1/2TT)v'(k/l1) 

=~JO'75 x 106 

2TT 1 
=138/sec. 

Percentage error =4/142 =2'8%. 

18+ Torsional Oscillations of Spring. If a close-coiled helical 
spring carries an inertia I at its free end, then for an axial rotation 0 from 
the equilibrium position the spring exerts a restoring couple 

E1,jJfl=(Ed4/64Dn)O (see Para. 13.1) 
and the equation of motion for I is 

18 + (Ed4/64Dn)O - 0 

Period -2TTy(OiO) 
-21Ty(64Dn1JEd4) 

EXAMPLB 4. A close-coiled helical spring is fixed at its upper end and a 
circular metal disc is fixed axially to the lower end. The times for vertical and 
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angular oscillations are equal. Show that 

E ( Diameter of disc )2 
G = Mean diameter of coils 
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If the spring is made of wire 3 mm diameter, and has 50 turns of 45 mm 
mean diameter, find the mass of the disc, the time of oscillation being 1 second. 
Neglect the mass of the spring. G =83,000 N/mm2• (U.L.) 

Let m be the mass of the disc, and R its radius. 
For a vertical displacement x the restoring force 

=(Gd4/8D3n)x (Para. 13.1) 
= -miC 

Period = 27TY(m. 8D3n/Gd4) 

For angular oscillations 
Period = 27Ty(64DnI/Ed4), above 

= 27Ty(32DnmR2/Ed4) 

Equating the periods 
8D3n/Gd4 = 32DnR2/ Ed4 

or E/G=(2R/D)2 
Using the expression for vertical oscillations 

Jm x 8x453X 50 
Period =1 =27T 83,000 x34 x 103 

From which m = 4·68 kg. 

18.5. Transverse Vibrations-Single Mass. If a single mass is 
carried on a beam and subjected to lateral vibrations, the case is similar 
to the linear vibrations treated in Para. 18.1, the inertia of tlu beam 
being neglected. Two particular loadings will be considered. 

(1) Mass m at end of cantileoer. For a lateral displacement y, the 
restoring force 

-(3EI/13)y due to the stiffness of the beam (Chapter IX) 
- - my when vibrating. 

Frequency f - (1/21T)v'(y/y) 
-(1/21T)v'(3El/ml3) 
- (1/21T)v'(g/8) 

where 8 is the static deflection at tlu 
load. 

It is clear that this form can always 
be applied to a single load carried on a 
beam, however supported. 

(2) Load on simply supported beam. 

b 

Fig. 18.4 

Consider the case where the load is supported at a point which dividee 
the length I into parta a and b (Fig. 18.4). 
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The deflection at the load 
8-mg a2b2j3EIl (Para. 9.1) 

Hence, in lateral vibration 
Frequency f = (lj27T)y'(gj8) 

- (1/27T)y'(3EIljma2b2) 

When the load is at the centre, this reduces to 
f = (lj27T)y'(48Eljm[3) 

18.5. 

EXAMPLE 5. A small imperfectly balanced machine is mounted on a rigid 
horizontal plate, supported on four vertical legs 28 mm outside diameter, 
25 mm inside diameter, and 0'9 m long, rigidly welded to the plate but having 
their other extremities always position-fixed, but direction-fixed or not at 
will. If the effective mass of the assembly is 45 kg, find the five lowest machine 
speeds which would give resonance corresponding to the five different fixing 
conditions of the legs. E =207,000 N/mm2• (U.L.) 

If k is the composite stiffness of the four legs, then for a lateral dis­
placement x, the equation of motion is 

45x+kx=0 

Machine speed for resonance 
=60fr.p.m. 
= (60/27T) V/(X/x) = (60/27T) y(k/45) 
= (60/27T)y(g/8) 

where I> is the lateral deflection which would be caused by gravitational 
pull on the mass if exerted in the direction of x. 

Let the mass carried by a leg not direction-fixed be mI' Then 

I> =mlgf3/3EI 
or mIg = (3 EI/i3) I> 

Let the mass carried by a leg direction-fixed be 1n2' Then 

I) =1n2gi3/12EI (Ex. 5, Chap. X) 
or m2g=(12EI/l3)1> 

(i) None fixed 
45 =4ml =(12EI/P).I>/g 

I) =(45/12). (P/EI)g 
. 60J12 x 207,000 x7T(284 -254) 

Machme speed = 27T 45 x 0.93 x 64 x 106 

(ii) One leg fixed 
=276 r.p.m. 

45 =3ml +m2 
= (EI/P) (9 + 12)l>jg 

I> = (45/21)(P/EI)g 
Machine speed =276y(21/12) =364 r.p.m. 
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(iii) Two legs fixed 

(iv) Three legs fixed 

(v) All fixed 

45 =2ml +2m2 
= (Elj[3)(6 + 24)13/g 

13 = (45j30)(PjEI)g 

Machine speed =435 r.p.m. 

13 = (45j39)(PjEI) 

Machine speed =496 r.p.m. 

13 = (45j48)(P/EI) 

Machine speed =550 r.p.m. 
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18.6. Transverse Vibrations of Uniform Beam. If m IS the 
mass per unit length, the rate of 

the beam is (m)(o2y(ot2), its + 'M2 
inertia loading at any point along YL- a~ 

direction being opposite to that Jy :::::--...... 
of the acceleration (Fig. 18.5). 0 x X 

Treating the vibration form as F 185 ig. . 
a beam under the action of this 
loading (neglecting gravity effects) 

EI. o4y (ox4 = - m(02y (ot2) (Para. 9.3) 

or o4y (ox4 + (m(EI)(o2y (ot2) = 0 (1) 

Assuming a simple harmonic vibration, let 
y=F(x).sin 21Tft 

where f is the frequency. 

Equation (1) reduces to 
o4F(ox4 - (m(EI)4rr2f2.F(x) =0 

The solution can be written 
F(x)=A sin ax+B cos ax+C sinh ax+D cosh ax 

where a2 =2vlv'(m(EI) 

(2) 

(a) Simply supported or pinned ends. The conditions to be satisfied 
are: 

x=O,y=O, :. B+D=O. 
x=O, o2yjox2=0 (no bending moment), :. -B+D=O. 

:. B=D=O. 
Also at x =1, y =0, :. A sin exl + C sinh ex/=O. 

and x=/, o2yjox2=O, :. -A sin ex/+Csinh ex/=O. 

Adding, C=O since sinh ex/#O 
and hence A sin exl = 0 
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The least solution is 

or 
at =.,,/1 

a2 =27T/y(m/EI) 
"",.,,2/12 

giving J = (7T/212)y(EI/m) 
= (1'57/P)y( EI/m) 

(b) CantikfJer. Taking the origin at the fixed end: 

At x-O,y==O . B+D=O. 
i.e. D= -B 
also 8y/8x=0 • A+C=O. 
L~ C=-A 

At x=l, 82y/8x2 =0 (no bending moment) 
:. -A sin al-B cos al + C sinh al + D cosh al=O 

18.6. 

(3) 

(4) 

or A(sin al +sinh al) = - B( cosh al + cos al) from (3) and (4) (5) 

also 83yj8x3 =0 (no shearing force) 

:. -A cos al +B sin al + C cosh al +D sinh al=O 
or A( cos al + cosh al) = B( sin al - sinh al) (6) 

Eliminating A and B between (5) and (6) 
(sin al + sinh al)( sin al - sinh al) = - (cos al + cosh al)2 
i.e. sin2 al- sinh2 a.l = - cos2 al- cosh2 al- 2 cos al. cosh al 
or cos al. cosh al = - 1 

The least solution is al = 1'875, giving 
f = (1'8752/27T[2)y(EI/m) 

= (0-56Jl1·)Y(EI/m) 

(c) Ends direction-fixed: 

At x=O,y=O .. B+D=O. 
i.e. D=-B (7) 

and 8yj8x-0 A+C=O. 
i.e. C=-A (8) 

At x=l,y=O. 
:. A sin al + B cos al + C sinh al + D cosh al = 0 

or A(sin al- sinh al) = B( cosh al- cos al) from (7) and (8) (9) 

also 8y/8x-O 
A cos al - B sin al + C cosh al + D sinh /Xl = 0 

or A(cou/- cosh al) =B (sin a.l +sinh al) (10) 
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Eliminating A and B between (9) and (10) 
(sin al - sinh al)( sin al + sinh al) = (cosh al - cos al)( cos al - cosh al) 
i.e. sin2 al- sinh2 al = - cosh2 al- cos2 al + 2 cos al. cosh al 
or cos al. cosh al = 1 

The least solution is al = 4'73, giving 
I = (4·73 2/27T[2)V(EI/m) 

= (3·57/12)v(EI/m) 

18.7. Transverse Vibrations-Combined Loading. In Paras. 18.5 
and 18.6 the frequency has been found for a single load treating the 
beam as "light," and for the beam under the action of its own inertia. 
To determine the frequency when a number of loads are carried on a 
"heavy" beam, Dunkerley's empirical formula may be used. This 
states 

11/2 = I/fb2 + I/I? + IIIl + I/fl + ..• 
where f is the frequency under the combined loading,f. the frequency 
due to the beam inertia alone, and f1'/2,!J ... the frequencies for each 
of the loads acting alone (neglecting the inertia of the beam). 

18.8. Energy Method for Frequency. This is an approximate 
method, since it assumes the shape of the vibrating beam to be similar 
to that of the static deflection curve under the loads. However, Lord 
Rayleigh showed that the frequency was almost independent of the 
vibrating form assumed, so that very little error is involved. 

(a) Distributed load m. Assume the vibrating form to be 
y = k Y sin 27Tft 

where Y =F(x) is the static deflection form, and k is a constant. 
In the extreme position (sin 27Tft = 1), the energy is in the form of 

strain energy, and y = k Y. The equivalent static load to deflect the beam 
into this position = kmg, and hence the total strain energy 

= fHkmg)ky.dx 

= (k2j2) J:mgy.dx (1) 

In the mean position all the energy is kinetic, the velocity being 
given by 

8y/8t=kY.27Tf (cos 27Tft= 1) 

Total kinetic energy - E!( m)( k Y. 27Tf)2 . dx 

= (47T2j2k2/2)f: mYZ.dx (2) 
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Equating (1) and (2) gives 
2 ImYdx 

4rr'lf = g. 1m yldx (3) 

EXAMPLE 6. Obtain an expression for the natural frequency of transverse 
vibrations of a simply supported beam of length I carrying a distributed loadw. 
Assume the vibration deflection is of the same form as the static deflection. 

Fig. 18.6 

Hence find the natural frequency 
of a simply supported beam 6 m long 
of moment of inertia 1·5 x 108 mm4, 
carrying a uniformly distributed 
load of 1500 kgjm. E=207,000 Nj 
mm2• (U.L.) 

Energy method. First obtain the 
equation of the static deflection 
curve 

EI.dZyjdx2 = (wlj2)x -wx2j2 (Fig. 18.6) 

Integrating EI.y =wlx3j12 -wx4i24 +Ax +B 
When x =0, y =0, :. B =0. 
When x =1, y =0, :. A = - wf3/24. 

Downward deflection under load = - y 

giving 

=(u.'j24El)(i3x-2Ix3 + x") 

(' (i3x - 2lx3 + x4)dx 
A-2'f2 __ 24Elg. Jo, 
TIT "-';------- from (3), with w = 

w So (llx - 2lx3 + x4)2dx mg 

24EIg l~(t -1 +1) 
w • [' Jo (l6x2 -4l4x4 +2llx5 +4l2x6 -41x7 +x8)dx 

24EIg 1 
=-wI4-' 5(1-1 +i +~ -t +!> 
= (24EIgjw14)(126j31) 

n =(1·574jL2h/(Eljm) 

This compares with a value of (1'57jI2)v(Eljm) obtained by mathe­
matical analysis in Para. 18.6(a). 

f = 1-574) 207,000 x 1·5 x 108 

62 1500 x 106 

=6·29jsec. 

(b) Concentrated loads. If a number of loads M., M 2, M 3 • •• , 

acting tOI'tker, cause static deflections at their points of application of 
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Yh Y2 , Y3 ••• , assume the amplitudes of transverse vibration are 
kYt> kY2, kY3, the equations of motion being kYl sin 271ft, kY2 sin 
271ft, k Y3 sin 271ft .. .. 

By similar arguments to those of case (a), the strain energy in the 
extreme position is !Ek2MgY, and the kinetic energy in the mean 
position is (1/2)Ek2MY2.4rr2f2. 

Equating, gives 

EXAMPLE 7. A beam of length 
10m carries two loads of 2000 kg 
at distances of 3 m from each end, 
together with a central load of 
1000 kg. Calculate the frequency 
of transverse vibrations by (a) the 
energy method, and (b) Dunkerley's 
formula. Neglect the mass of the 

y 
ZOOOkg 

Fig. 18.7 

beam. 1=109 mm4; E=205,000 N/mm2• 

(a) First find the deflection under each load (Fig. 18.7). 
E1.d2y/dx2 =2500x -2000[x -3] kgm for x<5 

Integrating E1.dy/dx =1250x2 -1000[x - 3]2 + A 
and E1.y =(1250/3)x3 - (1000/3)[x - 3]3 +Ax +B 

When x=O, y=O, B=O. 
Whenx=5, dy/dx=O, :. A= -27,250. 
At x=3 

Atx=.6 

= (1250 x 9 - 27,250 x 3) x 9.81 x 109 
y 205,000 x 109 mm 

=3·37 mm downwards 

y 
- 86,820 x 9·81 

205,000 
= 4·15 mm downwards 

4712J2 =g,,£MY/,,£MYZ from (4) 
9·81 x 103(2000 x 3·37 + 1000 x 4·15 + 2000 x 3·37) 

2000 x 3.372 + 1000 x 4.15 2 +2000 x 3.372 

=2770 
:. f = 8·38/sec. 

(4) 

(b) Referring to Para. 18.5, case (2), the frequency for each of the 
2000-kg loads acting alone 

= (1/271) y(3E11/Ma2b2) 

1 J3 x 205,000 x 109 x 10 
=2~2000 X 32;72 x 106 

= 13·3/sec. 
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The frequency for the central load alone 
= (lj27Th/(48EljMP) 

=2..J48 x 205,000 x 109 

27T 1000 x 103 x 106 

=15·8jsec. 

The frequency for the combined loading is given by 
Ijj2=lj13·3 2 +1jI5·82 +1jI3·3 2 (Para. 18.7) 

. 13·1 x 15·8 
from whIch f = v'(2 x 15.82 + 13.12) 

=7·95jsec. 

18.8. 

18.9. Whirling of Shafts. When a shaft running between bearings 
is rotated, it is kept rigid at low speeds by the stiffness of the shaft 
acting as a "beam." As the speed is increased, a stage is reached at 
which, if due to any imperfections the shaft is deflected from the axes 
of rotation, the centrifugal effect is equal to the restoring effect due to 
shaft stiffness. Since both these forces are proportional to the deflection, 
the latter quantity becomes indeterminate at this speed, and the shaft 
is said to "whirl." It is then in an unstable condition, and serious 
stresses and vibrations will be set up if it is allowed to run for long at 
this speed. However, any further increase in speed will restore the 
stability of the shaft, and in practice many shafts are designed to 
operate at speeds above the whirling speed. 

(a) Whirling of uniform shaft. If m is the mass per unit length of 
the shaft, and y the deflection at any point for an angular velocity w, the 
rate of centrifugal loading = - myw2• 

When the shaft is whirling this is just balanced by the stiffness as a 
beam, i.e. (neglecting gravity loading) 

EI.d4yjdx4 =myw2 (Para. 9.3) 
or d4yjdx4 -(mjEI)yw2=O 

This equation will be found to be the same as (2) of Para. 18.6, the 
whirling speed w being equal to 21Tf. In fact any problem of whirling may 
be treated by the same methods as for transverse vibrations, a conclusion 
which could also be deduced from the fact that a point moving with 
simple harmonic motion along a straight line can be represented by a 
point moving round a circle, with uniform velocity, based on the 
straight line as diameter. 

The cases (a) and (c) of Para. 18.6 then correspond to: 
"short" bearings, w=(7T2/l2)v'(Eljm) 

= (9·85jl2)v'(EI/m) 
and "long" bearings, w=(22·4/l2)v'(EI/m) 
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(b) Whirling of singh load carried on a " light" shaft, the method 
of Para. 18.5 may be used giving 

w=y(g/8) 

(c) Dunkerley's formula (Para. 18.7) will give the whirling speed for 
a combination of loads, taking into account the mass of the shaft, 

1/w2 = 1/w,2 + 1/W12 + 1/w22 + ••• 
(d) The energy method of Para. 18.8 may be applied, giving 

w2=gfmYdx//mY2dx for distributed loads 
and w2=gl:MY/l:MY2 for concentrated loads 

EXAMPLE 8. Calculate the lowest whirling speed of a steel shaft 50 mm 
diameter, 3 m long, carrying a wheel of mass 30 kg at 0·6 mfrom one end and 
one of mass 20 kg at 0·9 mfrom the other end. The shaft may be considered 
simply supported in bearings at the ends. Density = 7800 kg/m3; E = 
206,000 N/mm2• (U.L.) 

For the shaft alone 
w.=('lT2/l2)v(EI/m) by (a) 

= 9.85J206,000 x 4 X 'IT X 504 

32 7800 X 'IT x 502 x 64 
=70·3 radn./see. 

For the 30 kg wheel alone 
WI = v'(3EIl/Ma2b2) by (b) 

J 3 x 206,000 X 'IT x 504 x 3 
= 30 xO·62 x 2.42 x64 x 106 

=95·5 radn./see. 
For the 20 kg wheel alone 

J 3 x 206,000 X 'IT x 504 x 3 
W2 = 20 x 0.92 x 2·12 x 64 x 106 

=89·1 radn./see. 
The combined whirling speed is given by Dunkerley's formula (c) 

1/w2 =1/70.3 2 + 1/95.52 + 1/89·12 
or W =100/v'(2·02 +1-10 +1·26) 

=47·8 radn./see. 
=457 r.p.m. 

18.10. Whirling of Eccentrically Mounted Mass. Consider a 
mass M, mounted on a shaft, with its centre of gravity eccentric by an 
amount e from the axis of rotation. When rotating, the centre of gravity, 
the axis of rotation, and the straight line between the bearings must lie 
in the same plane, but the centre of gravity may be "outaide" or 
" inaide" the axis of rotation (Fig. 18.8). 
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If k is the stiffness of the shaft (as a beam), defined as restoring force 
per unit deflection at the load point, then for equilibrium when rotating 
at an angular velocity w 

i.e. 

or 

M(y±e)w2=ky 
w2=(kjM)yj(y±e) 

±w2 

y=kjM -w2 .e 

(1) 

(2) 

Note that y tends to become infinite when w = y(kjM) = y(gj8), 
.J...O which is the whirling speed inde-

eytU ~ pendent of e. 
~~.::::::::....-_....:u.... ___ "":=::::.....)j~ When w<y(kjM), the positive 

sign is to be taken, i.e. the centre of 
Fig. 18.8 . . h'd gravity is now on t e outSl e. 

When w>y(kjM) the negative sign is to be taken for e, showing 
that the centre of gravity is now on the inside. In fact when w becomes 
very large e- - y, the centre of gravity lying on the centre line between 
the bearings. 

EXAMPLE 9. A shaft 12 mm diameter rotates in spherical bearings with a 
span of 0·9 m, and carries a disc of mass 10 kg midway between bearings. 
Neglecting the mass of the shaft, determine its deflection in terms of the speed 
of rotation in radians per second if the mass centre of the disc is 0·25 mm out 
of centre. E=206,000 N/mm2• 

If the stress in the shaft is not to exceed 100 N/mm2 find the range of speed 
within which it is unsafe to run the shaft. (U.L.) 

k = 48EI 48 x 206,000 XTr x 124 
[3 0.93 x 64 x 106 

=13,800 N/m 

±wz 
y = 13,800/10 -wz x 0·25 mm from (2) 

±0·25wz 
1380-wZmm 

A stress of 100 N/mm2 would be caused by a static load of 
100 x (4/900) x Tr x 123J32N, since the maximum bending moment is 
" Wl/4" and the section modulus" Trd3 /32." Dividing by the stiffness, this 
corresponds to a deflection 

100x4xTrx123 

y 900 x 32 x 13,800 m 

=4·9mm 



18.10. VIBRATIONS AND CRITICAL SPIIDS 

The range of speed is given by 
w 2=(k/M)y/(Y ±e) from (1) 

13,800 4·9 
=--w- X 4·9 ±0.25 
=1320 or 1460 

i.e. w between 36·4 radn./sec. and 38·2 radn. sec. 

SUMMARY 

Linear Vibrations: t=21Tv{Slg). 
/=l/t. 

Torsional Oscillations. 
Single inertia: 21T/ = v{kl I). 
Two inertias: Node position 11112 =12/11 

21T/= V[k{11 +12)11112j. 
Equivalent length of shaft of varying stiffness: I = I' + l" (J'IJ"). 
Spring: t=21Tv{64DnIIEd4). 

Transverse Vibrations. 
Single mass: 21T/=v(gIS). 
Uniform beam: 21T/={1T2fI2)v{Ellm) simple supported. 
Dunkerley's formula: 1//2= l/fb2 + 1/f12 + 1//22 + ... 
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Energy method: 41f2f2=gfmYdxlfmY2dx for distributed load 
=gEMYfEMY2 for concentrated loads. 

Whirling Speeds. Similar to transverse vibrations, with w = 21T/. 

PROBLEMS 

1. A unifonn vertical bar of steel of length I and cross-sectional area A, is 
fixed at the upper end and is extertded a distance x by a load W at the lower end. 
If the rod is subjected to longitudinal vibrations, show that, at any instant when 
the additional extension is x, the change of potential energy measured from the 
rest position of the load is t(AE{l)x2, and, from the energy equation, deduce the 
natural period of vibration. Find the length of bar to give a frequency of 100 vib./ 
sec. when A is 640 mm2; W=225 kg; E=208,OOO N/mm2• (U.L.) (1·5 m.) 

2. A mass of 5 kg is suspended from a spring of stiffness 1 kN/m. If it is set 
in motion with a maximum acceleration of 2·5 m/s2, what are the amplitude 
and period of vibration? (12·5 mm; 0·444 s.) 

3. A spring, fixed at its upper end, carries a mass of 1 kg at its lower end, 
which produces a static deflection of 38 mm. A further mass of 1 kg is suddenly 
applied to the original. Find the maximum elongation of the spring and show 
that the time of vertical oscillations is approximately j sec. (114 mm.) 
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4. A vertical wire 3 mm diameter carries a heavy flywheel, radius of gyration 
168 mm, at its free end. The times of torsional and longitudinal vibrations are 
15 sec. and 0·06 sec. Find the value of Poisson's ratio. (0·25) 

5. The upper end of a vertical steel wire 2 mm diameter and 2 m long is held 
securely. The other end is fixed centrally to a steel cylinder 75 mm diameter and 
of density 7700 kg/m3, arranged with its axis horizontal. Find the length of the 
cylinder to give 0·6 torsional vibrations per second, and calculate the amplitude 
of vibrations when the maximum shear stress is 120 N /mm2 G = 80,000 N /mm2. 
(V.L.) (104 mm 3 radn.) 

6. A close-coiled helical steel spring is suspended vertically from one end. A 
uniform cylindrical bar of circular cross-section is fixed at its centre, with its 
axis horizontal, to the lower end of the spring, which has a mean coil diameter 
of 50 mm. If the longitudinal and angular oscillations have the same frequency, 
find (a) the limiting length of bar of small diameter, and (b) the limiting diameter 
of bar of short length. G =81,000 N/mm2; E =210,000 N/mm 2. (V.L.) 

(99 mm; 114 mm.) 
7. An engine shaft is directly coupled to the shaft of a dynamo. The engine 

shaft has a diameter of 56 mm and an effective length of 300 mm, while the 
dynamo shaft has a diameter of 50 mm and an effective length of 225 mm. The 
flywheel mass is 225 kg and has a radius of gyration of 350 mm, and the armature 
mass is 135 kg and its radius of gyration is 250 mm. Neglecting the inertia of the 
coupling and shafts, determine the position of the node and the frequency of 
torsional oscillations. Both shafts are steel, G =80,000 N/mm2• (V.L.) 

(153 mm from engine; 21·6/sec.) 
8. The flywheel of an engine driving a dynamo has a mass of 136 kg and has a 

radius of gyration of 0·25 m. The armature has a mass of 100 kg and a radius of 
gyration of 0·2 m. The driving shaft has an effective length of 0·45 m and is 
50 mm diameter, and a spring coupling is incorporated at one end, having a 
stiffness of 2·7 x 104 Nm/radn. Calculate the natural frequency of torsional 
vibration of the system. What would be the frequency if the spring coupling 
were omitted? G=82,OOO N/mm2. (V.L.) (14·3/sec.; 32·3/sec.) 

9. The figures show (a) front elevation, and (b) side elevation, of a vibrating 

- ~. 

" 
(a) (b) 

table. Assume the ends of the supporting strips are rigidly fixed in direction and 
estimate the natural frequency of transverse vibration if the effective mass of 
the platform is 27 kg. E=207,OOO N/mm2. (V.L.) (31·4/sec.) 

10. Obtain from first principles an expression for the fundamental natural 
frequency of transverse vibrations of a cantilever of length 1 and mass per unit 
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length m, assuming the vibration curve to be of the same fonn as the static 
deflection curve. 

Hence find the natural frequency of transverse vibration of a steel turbine 
blade of unifonn section 127 mm long, of mass 2 kg per metre length and least 
moment of inertia 2500 mm4. Ignore centrifugal loading. E=208,OOO N/mm2. 
(U.L.) [(0·562/l2)v'(EI/m); 562/sec.] 

11. A small turbine rotor has a shaft of unifonn section, EI = 1·09 x 106 Nm2 

and is freely supported in two bearings at 1 m centres. It carries three equal 
wheels, 350 kg each, at positions 0·25 m, 0·38 m and 0·5 m from one bearing. The 
static deflections at the wheels are 0·127 mm, 0·157 mm, and 0·162 mm respect­
ively. The maximum deflection occurs close to the third wheel, and is 0·165 mm. 
Compare the critical speeds as calculated by (a) Dunkerley method, (b) energy 
method, (c) use of rule. 

Critical rev./minute = 980/v'[maximum static deflection (mm)] (U.L.) 
(2420/min.; 24-30/min.; 2420/min.) 

12. A shaft 12·7 mm diameter rotates in "long" fixed bearings and a disc of 
18 kg is secured to the shaft at the middle of its length. The span between bear­
ings is 0·61 m. The mass centre of the disc is 0·5 mm from the axis of the shaft. 
Neglecting the mass of the shaft, detennine the central deflection in tenns of the 
speed in r.p.m. E =206,000 N/mm2• If the bending stress in the shaft is not to 
exceed 120 N/mm2, find the range of speed over which this stress would be 
exceeded. (U.L.) (910 r.p.m.; 1310 r.p.m.) 



CHAPTER XIX 

Material Testing and 
Experimental Methods 

19.1. Tensile Tests. The behaviour of a ductile material, such as 
mild steel, when subjected to a simple tensile test, was described in 
Para. 1.7. It was shown that, up to a certain value of stress, strain is 
proportional to stress, and if the load is removed within this range there 
will be no permanent strain (i.e. the material is stressed in the "elastic" 
range). If the load is increased the material "yields," undergoing a large 
" plastic" strain at a constant stress value. As the load is further in­
creased appreciable strain (mostly plastic) occurs up to the" ultimate" 
stress value. At this stage the specimen begins to "neck" at some 
position along its length, the load falling off until fracture occurs. Most 
engineering materials show these features to a varying degree, and 
definitions of the principal values will be found in Para. 1.7. It is pro­
posed to discuss some particular aspects of the tensile test and the 
significance of the results obtained. 

(a) The "working" portirm of the specimen is either circular or rec­
tangular in cross-section, and is enlarged at each end for a length suit­
able for the grips. The ends may be screwed into the grips, or they may 
be provided with a shoulder through which the load is transmitted, or 
they may be held between wedge grips with roughened inside faces. The 
latter method is the simplest and cheapest to employ, and is always 
used for flat specimens, but it is limited to the "softer" steels and 
other metals. It is important that the grips should be self-centring 
in order that the load shall be applied axially and evenly over the 
specimen (for a circular cross-section an eccentricity of O'Old in the 
load increases the maximum stress by 8%). 

(b) Testing machines fall generally into two categories, one in which 
the load is applied manually, and the other in which hydraulic pressure 
is utilised, the choice depending largely on the capacity required. In 
either case the applied load is measured by a balance weight through a 
system of levers. The latest types of hydraulically operated testing 
machines are self-indicating, the balancing mechanism being actuated 
by a piston working in a cylinder supplied with the same pressure as 
the main straining unit. 

(c) In the elastic range strain is measured by an "tJetenso1lUter" 
320 
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attached to the gauge length. This is an instrument which can detect 
very small changes in length, and various types in common use will be 
described later (Paras. 19.9 and 19.10). In the plastic region the much 
larger strains involved may be deteeted by means of a pair of dividers 
and scale rule. 

(d) Effect of rate of loading. It has been found that, except for hardened 
steels, the more rapid the test the higher the values of yield stress and 
ultimate stress, and the greater the elongation obtained. 

Initial distance {'rom one end 
Fig. 19.1 

(e) Variation of elongation with gauge length and cross-sectional area. 
If a specimen is marked off at a large number of intervals along its 
length and tested to destruction, the two pieces may be fitted together 
and the distance of each gauge mark from one end can be remeasured. 
Subtracting the initial distances gives total extension reckoned from one 
end, and when plotted against distance from that end will reveal a 
graph such as Fig. 19.1. This consists of two parallel straight lines, the 
sudden increase of extension taking place in the region of the neck at 
fracture. There is said to be a "local" extension at the fracture and a 
" umform" extension along the remainder of the specimen. Let e be the 
extension over a gauge length t, chosen such that the fracture is approxi­
matel y at the centre of the gauge length, then e = a + bl expresses the 
form of the graph. 

The percentage elongation = 100ell = 100all + 100b. 
Unwin found that, for a given material, a was proportional to the 

square root of the original cross-sectional area A, and writing 100a = 
eVA and 100b=B, the law becomes 

e VA 
100-=C-+B 

I I 

The following values are given for the constants B and C for mild 
steel: B = 20, C = 70. In order to eliminate any error in comparison of 
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elongation figures it is recommended in B.S.18 that the gauge length 
should be 4y' A. 

(f) Overstrain-repeated loading. If, in a tensile test on a steel speci­
men, the load is carried beyond the yield point and then gradually 
released. there will of course be considerable permanent set in the 
specimen. On reloading it will be found by careful observation that the 
steel appears to have lost its elasticity, i.e. it no longer obeys Hooke's 
law. In fact the unloading and reloading curves form a "hysteresis" 
loop which represents energy wasted in internal friction (Fig. 19.2). 
The yield point will be considerably raised, almost as high as the stress 
value at the end of the previous test, and the material is said to be work­
hardened, as in cold drawing or rolling processes. 

Repeated loadings will raise the yield point to a value approaching 
the ultimate stress. If continued until fracture, this will exhibit the 
characteristics of a hard steel, with only a small reduction in area and 
a much reduced elongation. 

Strain 
Fig. 19.2 
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Fig. 19.3 

Elasticity can be recovered by a long period of rest or by boiling in 
water for a few minutes. Annealing will return the steel to its original 
condition before overstraining, with the same yield point, etc. 

(g) Proof Stress. Many materials, notably some alloy steels and light 
alloys of aluminium and magnesium, do not possess any definite limit 
of proportionality or yield point in a tensile test, the stress strain 
diagram being curved almost from the origin (Fig. 19.3). 

If a tangent to the curve at the origin is drawn (OT) and a line PQ is 
drawn parallel to OT, cutting the curve at Q, such that OP = 0·1 %, then 
the stress at Q is called the 0·1 % proof stress. It is the stress at which 
the strain has departed by 0·1 % of the gauge length from the line of 
proportionality OT. 
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19.2. Compression Tests. Specimens for compression tests on 
metals are usually circular, and for concrete square, in section. To pre­
vent failure by buckling, the length should be of about the same order 
as the minimum width. 

For a ductile material such as mild steel or copper lateral distortion 
takes place, and, due to the restraining influence of friction at the load 
faces, the cross-section becomes greatest at the centre, the test piece 
taking up a barrel shape. Failure finally occurs by cracks appearing on 
the surface and spreading inwards. 

Brittle materials such as cast iron and cement usually fail by shearing 
along planes inclined at between 50° and 70° to the longitudinal axis. 

19.3. Hardness Tests. Hardness represents the resistance of a 
material to indentation, and involves the measurement of plastic de­
formation caused when a loaded ball or diamond is applied to the sur­
face of the material. Two of the principal commercial methods will be 
described below. 

(a) Brinell Method. In this a hardened steel ball is pressed into the 
surface under a specified load which is held on for a fixed period and 
then released. A permanent impression is left in the surface, and the 
"Brinell Number" is defined as the ratio of the applied load in kilo­
grammes to the spherical area of the impression in square millimetres. 
In practice either the diameter or the depth of the impression is 
measured, and conversion tables used to determine the hardness 
number. 

The application of the Brinell method is limited to materials with 
hardness numbers below SOD, as above this value distortion of the steel 
ball appreciably affects the readings. For thin sheets the results are only 
reliable if the thickness is at least 10 times the depth of the impression 
(B.S.240, Pt. I). 

(b) Vickers Pyramid Diamond Method. The method is basically 
similar to the Brinell, the indenter being a 136° pyramid diamond on a 
square base. Owing to the extreme hardness of the diamond it can be 
used over the whole range of material hardnesses, and there is a linear 
relationship between the depth of impression and the hardness number. 

The calculation of the "Vickers Pyramid Number" (V.P.N.) is again 
based on the ratio of load to impressed area, the latter being obtained 
by measuring the length of a diagonal of the square impression at the 
surface of the material under test. 

The limiting thickness of the test piece is I! times the diagonal of 
the impression (B.S. 427). 

The Firth Hardometer and the Rockwell Hardness Tester are similar 
in operation to the Brinell and Vickers diamond machines, though the 
Rockwell uses the depth of the impression as the criterion of hardness. 
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(c) Shore Scleroscope Method. A small weight, known as the hammer, 
fitted with a diamond tip or a steel bar on its under surface, is dropped 
from a height of 25 cm. onto the surface under test. The height of the 
rebound is used as a measure of the hardness of the surface. 

There is no direct relation between the Shore hardness and the 
Brinell and V.P.N., the ratio between the two varying for different 
materials. However, this method can be used as a standard of compari­
son, and in cases where an indentation is undesirable or the surface is 
inaccessible to the normal hardness testing machines. 

(d) Relation of hardness to tensile strength. It is found that there is 
an approximate linear relation, such that 

Ultimate tensile strength (N/mm2) = k x Hardness number 
For mild steel, k=3·5. 
For alloy steel, k=3·2. 

19+ Impact Tests. Static tests are not satisfactory in determining 
the resistance to shock or impact loads such as automobile parts are 
subjected to, and in the impact test a notched specimen of the material 
is fractured by a single blow from a heavy hammer, the energy required 
being a measure of the resistance to impact. 

hod Impact Machine. This is the most commonly used type, and is 
illustrated diagrammatically in Fig. 19.4. The specimen (dimensions are 

163 

, 

Ie;,. \ 
'I ",CI'I tng/ 

edge 
, /. 

Specimen I Notch ,/'" Ci/ , Anvil 

Fig. 19.4 

laid down in B.S.131) is fixed in the anvil with the notch at the level of 
the top face and on the side of the falling hammer. The hammer is 
released from a fixed position (such that the total potential energy of 
fall is 163 Nm), strikes the specimen, which breaks, and continues for 
some distance on the other side. By means of a pointer which moves 
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freely over a scale the energy absorbed in fracturing the test piece is 
recorded. 

The Charpy impact test is similar in principle to the Izod, but the 
notched specimen is supported at each end as a "beam ", and struck 
by the hammer in the centre. 

The impact test has been found particularly valuable in revealing 
"temper brittleness" in heat-treated nickel-chrome steels (see Para. 
19.6), and also in revealing the resistance to fracture due to stress con­
centrations in a member. The notch sets up conditions of stress con­
centration from which cracks are liable to start, and for brittle materials 
less energy is required to fracture the specimen than for ductile materials. 

19.5. Effect of Carbon Content. The variation of mechanical 
properties in plain carbon steel in the annealed condition is shown in 
Fig. 19.5. 

It will be seen that the ultimate strength and hardness values increase 
together with increased carbon content, the elastic limit (and similarly 
the yield point) increasing at a reduced rate. At the same time there is 
a marked falling off in ductility indicated by the decrease in values for 
elongation and reduction in area, steel containing more than about 
0·6% carbon exhibiting a "brittle" type of fracture. 
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Fig. 19.5 

19.6. Effect of Tempering. Nickel-chrome alloy steels are in wide 
use where a material possessing a high-tensile strength combined with 
a fair measure of ductility is required. A typical heat treatment which 
will bring out the best combination of mechanical properties is a 
hardening from about 8500 C. (either by quenching in oil or cooling in 
air), followed by tempering at about 1800 C. It will be seen from Fig. 19.6 
that tempering reduces very slightly the ultimate strength, while raising 
the yield point from the fully hardened state. At the same time the 
ductility measured by reduction in area is increased, and a peak is 
reached on the curve of impact values. 
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Note the "temper brittleness" indicated by the impact values for 
temperatures between 2000 C. and 4000 C. referred to in Para. 19.4. 
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Fig. 19.6 

19.7. Creep. It has been found that at elevated temperatures a metal 
in tension will continue to elongate under a constant stress which may 
be much less than the ultimate tensile stress. This phenomenon is 
called" creep," and is measured by the rate of strain per hour under a 
certain stress at a given temperature. 

If a "short time" tensile test is carried out on a metal specimen at a 
specific temperature a fairly definite ultimate stress is obtained. The 
material may be made to fail by creep under a lower stress, however, 
provided sufficient time is allowed, the rate of creep depending on the 
stress. At any temperature there is a limiting stress below which creep 
will not take place, i.e. the metal will not fracture if the stress is applied 
for an indefinite period. This limiting creep stress may frequently be 
less than half the ultimate stress obtained in a normal tensile test at 
that temperature. In designing any part which is stressed at high tem­
peratures it is clearly necessary to base the working stress on the limiting 
creep stress. 

Special alloy steels containing small percentages of molybdenum, 
vanadium, cobalt or tungsten, have been developed which are creep­
resisting, for applications such as gas-turbine blades and high-pressure 
steam fittings. 

In practice a very lengthy investigation is involved to determine the 
limiting creep stress, since at stresses near to this value tests must be 
extended over months or even years to determine the strain. It is 
usual, therefore, to circumvent this difficulty by finding the stress at 
which a definite very small rate of creep takes place after a shorter 
period of test. The creep rate is known to diminish with time and a 
typical stress value obtained by a test of this nature is that which will 
cause a creep of 1 millionth per hour after 40 days. Ludwig's law gives 
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the creep rate at a stress (J as Cea, where C and k are constants for a 
given material. 

19.8. Fatigue. Many machine parts are subjected to fluctuating 
stresses, taking place at relatively high frequencies, and under these con­
ditions failure is found to occur at stress values much lower than would 
apply for static loading. The phenomenon is known as "fatigue" failure. 

The range of stress (R) over which fluctuations occur is the algebraic 
difference between the maximum and minimum stresses, treating com­
pression as negative. A mean stress M may be defined such that the 
limiting stresses are M ± Rj2. Particular cases which frequently occur are: 

(1) When the mean stress is zero and the fluctuations are of equal 
tension and compression (known as "reversed stress "). 

(2) When M = Rj2, so that the stress ranges from zero to R (known 
as repeated stress). 

Fluctuating stresses occur in practice under three main types of 
loading: 

(a) direct stresses (tension and compression), 
(b) bending stresses, 
(c) torsional stresses. 
Testing machines have been developed to reproduce each of these 

types, and design stresses should be related to the conditions under 
which the part is to operate. 

Experiments show that, for a given mean stress, there is a limiting 
range of stress below which fracture will not take place for an indefinite 
number of cycles. This range is known as the Endurance or Fatigue 
Limit, and may be quoted as a maximum and minimum stress or as a 
range about a certain mean. The fatigue limit in reversed bending is 
found to be about 25 % higher than in reversed tension and compression, 
probably due to the stress gradient. In reversed torsion the fatigue 
limit for shear stress is about 0·55 times the tensile fatigue limit. 

In order to determine the fatigue limit at a given mean stress, it is 
necessary to carry out a series of tests on specimens subjected to a 
gradually decreasing range of stress. It will then be found that the 
number of cycles of stress required t6 fracture each specimen increases, 
and as the fatigue limit is approached some hundreds of millions of 
reversals may be withstood. From practical considerations it is fre­
quently considered acceptable to use as the limit that stress range which 
will no't cause fracture after 10 million, or in some cases 100 million 
cycles. 

The maximum stress corresponding to the fatigue limit (gi ven by 
M + Rj2) will be least under conditions of reversed stress (i.e. M = 0), 
and will be well within the elastic limit. 

Factors of design which affect the fatigue strength are: 
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(1) Stress concentrations caused by sudden changes in cross-section 
and features such as screw threads and keyways. Fatigue failures are 
found to start from cracks at these points of stress concentration, very 
little redistribution of stress being possible even in ductile materials. 
However, the stress concentration factor under fatigue conditions is 
found to be rather less than under static conditions. 

(2) Surface treatment. Considerable improvement in the fatigue 
strength of manufactured parts can be achieved by surface hardening 
(e.g. carburising) or by work hardening processes. Cold rolling and 
shot peening have been found to give increases of up to ZO% in the 
endurance limit, due to surface hardening and to the residual com­
pressive stresses set up which resist the formation of fatigue cracks. 

(3) Surface finish. The highest fatigue strength is obtained with 
smooth ground surfaces, particularly in the case of high-tensile steels. 

(4) The frequency of stress reversals also influences the fatigue 
limit, which is higher for increased frequency. 
The most satisfactory empirical formula embodying the experi­

mental results for steels is due to Gerber, which may be written: 
a=R/Z +y'(al-nRau) (1) 

where a is the maximum stress during each cycle at the fatigue limit, 
R is the stress range, 
au is the normal ultimate tensile stress, 

and n is a constant for one material. 

For mild steel, n = 1·5, for high-tensile steel, n = Z·O. 
Applied to the particular cases previously mentioned: 

(1) Reversed stresses 
a=R/Z 

and it can easily be shown that 
a = aJZn = au/3 for mild steel 

(Z) Repeated stresses 
a=R 

and solving the equation gives 

a = 0·61 au for mild steel 
Noting that a - R/Z = M, Gerber's formula can be re-arranged to 

give 

(2) 

and Goodman suggested a simpler straight line law relating the stress 
range and the mean stress, i.e. 

R= a"(I_ ~ (3) 
n ~.J 
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Note that in both formulae au/n is the stress range for reversed stress 
conditions (i.e. M =0) and Fig. 19.7 shows the variation of R with M 

R 

Fig. 19.7 

according to Gerber and Goodman. In practice, if the values of au and 
Ro ( = au/n) for a given material are found by experiment, the fatigue 
limits under other conditions can be determined from this diagram. 

EXAMPLE 1. If the ultimate tensile strength of a material is 600 N/mm2 and 
its endurance limit under reversed stress is ±lS0 N/mm2, calculate the 
constant n according to Gerber's law. What is the maximum stress at the 
fatigue limit for repeated stress conditions (i.e. minimum stress zero), accord­
ing to Gerber's law and Goodman's law? 

Under reversed stress M =0, a = 180 N/mm2 and R = 360 N/mm2• By 
Gerber's formula 

n =au/R 

=600/360=5/3 

Under repeated stress R =a and M =ta 

From (2), a=i.600(1 -a2/4 X 6002) 

I.e. a2/4000 + a - 360 = 0 

giving a ~[-1 + v(1 +9/25)]2000 

=335 N/mm2 

From (3), Goodman's law gives 

a =!. 600(1 - a/2 x 600) 

giving a=360 x 10/13 =277 N/mm2 

If a machine part is run for a series of cycles Ill> IIz ••• at different 
stress levels, and the corresponding fatigue life at each level is Nl> 

Nz. .. cycles, Miner suggested that failure could be expected when 
};n/N = 1. Experiments show variations in this factor from 0·6 to 1·5, 
the higher values being obtained for sequences of increasing loads. 
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For fatigue failures under combined bending and torsion, Gough 
showed that the ellipse 

a 2 'T2 
-+-=1 
a02 'T02 

fitted the experimental results, where ao and 'To are the direct and shear 
stress fatigue limits under pure bending and pure torsion respectively, 
and a and 'T are the corresponding endurance limits under combined 
bending and torsion. 

19.9. Extensometers. The strains involved within the elastic range 
of stress in engineering materials do not exceed about 1 part in 1000, 
and instruments used to measure such small linear movements are 
called extensometers or strain gauges. Magnification is usually achieved 
mechanically, as in types (1) and (3) below, or optically, as in (2), or by 
a combination of both. Electrical resistance strain gauges are dealt with 
separately in Para. 19.10. 

The first two described are designed specifically for use with tensile 
test pieces, and work on a fixed gauge length, giving a reading of the 
mean extension along opposite sides. The third type measures surface 
strain and can be fixed to any structure. 

(1) Cambridge Extensometer (Fig. 19.8). This consists of two separate 
pieces clamped by means of conical pointed screws into gauge points 
on the test specimen. 

Vibrating 
tongue 

Micrometer 
head 

Fig. 19.8 

The lower piece carries a vertical pillar, at the top of which is a knife 
edge, and a horizontal arm through which operates a vertical micro­
meter screw fitted with a graduated disc. The upper piece rests on the 
knife edge and carries a horizontal vibrating arm. 
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A reading is taken by setting the vibrating arm in motion and gradu­
ally bringing up the screw point until it just makes contact with the 
tongue on the underside of the arm. The correct setting is indicated by 
the noise and by the damping out of vibrations. 

The relative distances of knife edge and micrometer screw from the 
axis of the specimen produce a magnification of extension of five times, 
and the micrometer head is so divided that each division represents an 
extension of 0·002 mm on the test piece. Smaller intervals may be judged 
by eye. 

(2) Ewing's Extensometer (Fig. 19.9). The upper piece is fitted with an 
adjustable screw on one side, and at an equal distance on the other side 
hangs a small tube. At the lower end of the tube is a glass window on 
which is inscribed a fine horizontal line. This line is viewed by a micro­
scope and focused on a scale in the eyepiece. The microscope is fixed 
to the lower piece of the instrument, the two pieces turning about a 
pivot joint between the ball end of the pillar extension of the lower 
piece and the conical seat in the end of the screw on the upper piece. 

Pivot 

Fig. 19.9 

The movement of the tube is twice the extension of the test piece, 
and the optical magnification is such that an accuracy of 0·0005 mm 
extension can be obtained. A considerable range can be obtained by 
bringing the scale back to zero by means of the adjustable screw, and 
this enables extensions beyond the elastic limit to be measured. 

(3) Huggenberger Extensometer. A magnification of about 1000 times 
is obtained entirely mechanically by a double-lever system. 



332 STRENGTH OF MATERIALS 19.9. 

The pivots A and C (Fig. 19.10) are fixed to the frame, andB and Dare 
movable. The rocker BD serves to transmit motion from the knife-edge 
arm to the pointer arm, and is held in position by a spring attached at 
its other end to AB. The frame is held by a suitable clamp so that the 
knife edges press on to the surface, and the pointer may be set to zero 
by an adjustment not shown. The gauge length may be varied by 

fitting extension pieces, and no 
marked gauge points are necessary. 

Readings are taken directly off the 
J scale, and converted into extension 

A .,I---___ -..-...--l 

Fii'ed 

or compression by dividing by the 
Frame particular magnification factor. The 

smallest measurable movement is 
about 0·0005 ffiffi. 

19.10. Electrical Resistance 

/' 
Movable 

kniFe edge knife edge 

Strain Gauges. It was first dis­
covered by Lord Kelvin in about 
1850 that if metal wires are stretched 
they undergo a change in electrical 
resistance. This property has been 
made use of to develop a gauge for 
measuring the surface strain of 
structures and machine parts. Fig. 19.10 

The most commonly used materials 
are copper-nickel alloys, which have been found to possess a fairly 
high sensitivity to change in resistance, and a low temperature 
coefficient. In order to obtain an appreciable resistance from a short 
length of wire, diameters of about 0·025 mm ar' employed. The wire is 
wound on flat formers, and bonded between layers of resin-impreg­
nated paper to form a flat grid as shown in Fig. 19·11. The total resis­
tance is usually in the region of 100 to 1000 ohms, and gauges vary in 
size from 1 to 25 mm. 

The surface to which the gauge :===lJ~~~~~~~J is to be attached is cleaned and Ii! I 
grease is removed by washing with : ; 
acetone or other chemical. It is - -
then roughened by rubbing with 
fine emery, and the gauge is fixed 

Fig. 19.11 

by a suitable cement. Several days are necessary to ensure complete 
drying, unless moderate heat is used. When thoroughly dry the gauge 
should be given a protective coating against atmospheric humidity, 
which will cause corrosion of the wires. 

Measurement of change in resistance is by means of a Wheatstone 
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Bridge circuit (Fig. 19.12). Note that a "dummy" gauge is used to 
balance the active gauge. The dummy gauge is fixed to a piece of the 
lame material as the active gauge and kept in the same vicinity, so that 
strains (and hence changes of resistance) produced by change in 
temperature will be compensated for. 

With no load on and the contact on the slide wire set at zero the 
dummy and active bridge arms are balanced by adjustment of the 
variable resistance. When the load is applied, stressing the active gauge, 
balance is restored by means of the slide 
wire contact, which can be calibrated to 
read change of resistance directly. 

Change of resistance is converted into 
strain by means of the gauge sensitivity 
factor, which is the ratio between frac­
tional change of resistance and strain. 
This factor is determined by calibration 
of samples from a batch of similar gauges. 
In accurate work a correction must be 
made for the strain in a lateral direction, 
i.e. the width of the gauge. The numerical 
value of the gauge factor is approximately 
2, and depends not only on the actual 
changes of dimensions of the wire, but 
also on a change in specific resistance 
which takes place under stress. Up to a 

Variable 
resistance 

---I~I----
Battel"!J 

Fig. 19.12 

limiting strain value the factor is found to be constant. 

Obvious advantages of the resistance strain gauge are that it can be 
used in places which are inaccessible to normal types of extensometers, 
and that, with the use of a multi-channel bridge, up to 100 gauges can 
be .. read" in a short space of time. Once the gauges are fixed and pro­
tected against the atmosphere, tests can be extended over months or 
years, which may be a useful asset in detecting changes of stress 
distribution. 

If the directions of the principal stresses at the surface are not known, 
atrain .. rosettes," consisting of three gauges fixed at known relative 
angles, are used to determine them. Torsional stresses in shafts are 
measured by two gauges at right angles, placed with their axes at 45° to 
the shaft axis (see Para. 3.4), these gauges occupying the positions 
marked "dummy" and "active"in Fig. 19.12. Oscillatory stresses may 
be investigated by applying the fluctuations of voltage across the gauge 
to a cathode-ray oscillograph or galvanometer recorder. 

The methods of Para. 3.16 can be used to determine the principal 
stresses from the measured strains in three directions at a point. The 
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following results are quoted for reference. For the rectangular rosette 
(gauge directions 0, 45° and 90°), the principal stresses are 

and for the delta rosette (gauge directions 0, 60°, and 120°), the principal 
stresses are 

19.11. Photo-elastic Stress Analysis. This method is based on 
the phenomenon of double refraction exhibited by transparent 
materials when subjected to stress. It was first discovered by Brewster 
in 1816 when experimenting on glass, but it was not developed for about 
a hundred years due to the difficulty of producing models from such a 
brittle material. Coker and Filon were the pioneers of work on problems 
of stress analysis, using celluloid models. Since 1930 many other plastic 
materials with suitable properties have been developed for this work. 

The method consists of observing a loaded model in a beam of 
polarised light, and a simple arrangement is shown in Fig. 19.13. Mono­
chromatic light (either mercury or sodium vapour) is normally used, and 
a parallel beam is obtained by means of a condenser lens. The polariser 
and analyser are either natural crystals or "Polaroid" discs. The 
quarter-wave plates are of mica, their thickness being related to the 
wavelength of the light source. The model is carried in a loading frame 
and placed as shown. Light- and dark-coloured bands are produced on 
the screen, and may be photographed for subsequent analysis. It is not 
proposed to discuss the theory of light waves, but an outline of the 
effects obtained and their interpretation is given below. 

Condenser ~ Wave 
lenf; plate 

Focusing 
lens 
~ 

;r ;If 

Polarizer Anal!Jser 
Loading rrame 
and model 

Fig. 19.13 

Screen 
or 

camera 

If the quarter-wave plates are removed, plane polarised light is pro­
duced, and with the axes of the polariser and analyser at 90° no light is 
transmitted to the screen. When the specimen is loaded, however, some 
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light is passed through, except at points where the direction of one 
principal stress is in the plane of polarisation. The result is a dark band 
across the model indicating the locus of all points at which the principal 
stresses are in the same directions. These bands are called isoclinicl, 
and by rotating the polariser and analyser together a series of isoclinics 
can be obtained for various directions of principal stress. 

The quarter-wave plates, placed with their axes at 45° to those of the 
polariser and analyser, produce circularly polarised light, and serve to 
cut out the isoclinics. It can be shown that, under this arrangement, 
light is extinguished on passing through the model and analyser at 
points where the principal stress difference (or maximum shear stress) 
is proportional to a value depending on the optical properties of the 
material and the thickness of the model. Consequently a series of dark 
bands are produced on the screen (isochromatic fringes), from which 
the values of stress difference can be determined. Calibration of the 
value of stress represented by the fringes is carried out by a simple 
tensile or bending test on a piece of the same material. 

At a free boundary the principal stresses must be parallel and per­
pendicular to the boundary, the latter being of zero value. Consequently 
the edge stresses can normally be determined directly from the fringes, 
and this may be sufficient indication of stress concentrations. If the 
individual principal stresses are required for a more detailed analysis the 
following methods are available: 

(1) Numerical integration along a line, starting from a free 
boundary. 

(2) Numerical determination of values of the principal stress sum 
by relaxation methods, values at the free boundary being known. 

(3) Experimental determination of the principal stress sum by use 
of lateral extenso meter • 

19.12. Brittle Lacquers. These are coatings which can be spread on 
the surface to be tested, and when dry form a layer which will crack when 
the surface strain exceeds a certain value. They are particularly useful 
for indicating the weakest section of a complicated structure under 
load (by watching where the cracks in the lacquer first appear), and 
for finding the directions of the principal stresses at the surface (the 
direction of the cracks being perpendicular to the maximum tensile 
stress). 

Quantitative strain analysis must be carried out under carefully con­
trolled conditions of temperature and humidity, which affect the 
response of the lacquer. The strain is then estimated by the spacing 
density of the cracks as compared with a calibration bar under known 
loading. 
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APPENDIX 

Table of Elastic Constants 

These values are only approximate, and in many cases vary con­
siderably depending on the condition of the material (Le. cast, forged, 
drawn, etc.) and its heat treatment. 

E G Elastic Ultimate Elonga-
Material N/mm2 N/mm2 limit tensile tion 

N/mm2 strength % 
N/mm2 , 

Brass. 102,000 

I 
38,000 - 350 40 

Bronze 116,000 45,000 210 310 20 
Cast iron 96,000 41,000 - 210 8 
Duralumin 72,000 26,000 280 380 18 
Monel metal 180,000 70,000 410 550 20 
Mild steel 202,000 80,000 280 480 25 
Nickel-chrome steel 206,000 82,000 1200 1650 12 
Timber 12,000 1,000 48 70 -
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Index 
Bars, compound, 14 
-, curved, 195 
Beams, bending stress in, 86 
-, built-in, 178 
-, composite, 100 
-, continuous, 185 
-, curved, 195 
-, deflection of, 152,174 
-, on elastic foundations, 189 
-, oscillation of, 307-314 
-, reinforced concrete, 107 
-, shear stress in, 117 
Bending and direct stress, 95, 218 
- and twisting, 139 
- moment, 71 
- -, graphical, 81 
- -, maximum, 83 
-, pure, 86 
- strain energy, 152 
-, unsymmetrical, 111 
Built-in beams, 178 
Bulk modulus, 65 

Castigliano's theorem, 203 
Centre of twist, 126 
Circular plates, 295 
Close-coiled springs, 225 
Collapse load, 214 
Compound bars, 14 
- beams, 100 
- shaft., 137 
- stre.s, 34 
- tubes, 277 
Compression, 1 
- test, 323 
Concrete, reinforced, 107 
Continuous beams, 185 
Contraction, percentage, 5 
Contraflexure, 73 
Cottered joints, 27 
Creep, 326 
Curved bars, stresses in, 195 
- -, deflection of, 201, 203 
Cylinders, rotating, 289 
-, thin, 259 
-, thick, 267 
-, wire-winding of, 265 

Deflection coefficients, 175 
Deflection of beams, 152 
- - -, by cslculus, 154 
- - -, graphicai method, 174 
- - curved beams, 201, 203 
Direct streBll, 2 
DiliCS, rotating, 287 

Ductility, 5 

Eccentric load, column, 95 
- -, strut, 243 
Elastic constants, 65, 337 
- foundations, 189 
-limit, 4 
- packings, 17 
Elongation, percentage, 5, 321 
EullT theory, 238 
Extensometera, 330 

Factor of safety, 6, 7 
Failure, theories of, 56 
Fatigue, 327 
Fixed beams, 178 

GlTblT',law, 329 
Goodman', law, 329 
Guest theory, 57 

Haigh theory, 57 
Hardness teat, 323 
Hooke's law, 3 
Hub on shaft, 279 

Impact, bending, 154 
-, direct, 8 
- test, 324 
Inertia, moment of, 88, 109, t 13 
-, product of, 88, 109 

Johnson's formula, 249 
Joints, cottered, 27 
-, riveted, 29, 122 

Leaf springs, 230 
Limit of proportionality, 4 
Load, 1 
-, concentrated, 74 
-, distributed, 75 
-, factor, 7, 209 
-, impact, 8 
-, proof, 232 
-, suddenly applied, 8 
-, type of, 6 
-, varying distributed, 79 

Macaulay's method, 156 
Middle third rule, 99 
- quarter rule, 100 
Mises-Hmcky theory, 57 
Modulus, bulk, 6S 
- of elasticity, 3 
- of rigidity, 26 
- of section, 88 
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Modulus, Young'" 3 
Moh,.'s strain circle, 53 
Mohr', stress circle, .... 2 
Moment, bending, 71 
- of relistance, 88 
Moment of inertia, 88, 109,113 
- - -, equivalent, 101 
- - -, graphically, 91 
--- polar 89 
- - -: principal, 109 
Moment-area method, 163 

Neutral axis, 86 
- surface, 86 

Open-coiled springs, 228 
Oscillations, linear, 302 
-, toraional, 302 
-, transverse, 304 
Overstrain, 322 

Perry-Robertson formula, 250 
Photo-elasticity, 334 
Plastic bending, 209 
- hinge, 209 
- torsion, 139 
- yielding of tubes, 27 .... 
- - - rotating discs, 293 
Plates, circular, 295 
Poisson's ratio, .... 7 
Portal frame, 192, 206, 220 
Principal axia, 88 
- moments of inertia, 109 
- of superposition, 3 
- planes, 38 
- strain, 49 
- - theory, 57 
- stress, 39 
- - in beams, 121 
- - theory, 56 
Proof load, 232 
- resilience, 7 
- Itrels, 322 

Rankine theory, 57 
Rankin.-Gordon formula, 247 
Reinforced concrete beams, 107 
Resilience, 7 (lie also Strain energy) 
-, proof, 7 
Rigidity, flexural, 152 
-, modulus of, 26 
Riveted joints, 29, 122 
Rotating cylinders, 289 
- disCI, 287 

St. V mant, principle of, 2 
- theory, 57 
Section modulus, 88 
Shafts, circular, 130 
-, compound, 137 
-, olcillation of, 301 
-, rectangular, 142 

Shafts, torsion of, 130 
-, whirling of, 314 
Shear centre, 126 
-, deflection due to, 170 
- strain, 26 
- - theory, 57 
- - energy, 26, 55 
- stress, 2 .... 
- - complementary, 2 .... 
- -, in beams, 117 
- -, maximum, 40 
Shearing force, 71 
- -, maximum, 83 
Spherical shell, thick, 281 
- -, thin, 260 
Spiral springs, 234 
Springs, close-coiled, 225 
-.leaf,230 
-, open-coiled, 228 
-, oscillations of, 302, 306 
-, spiral, 234 
Stiffness of beams, 175, 307 
- of springs, 225 
-, torsional, 131 
Strain, direct, 3 
- gauges, 332 
-, principal, 49 
-, shear, 26 
-, volumetric, 54, 261 
Strain circle, 53 
- energy, 7 
- - in bending, 152,203 
- - in torsion, 132 
- -, shear, 26, 55 
- - theory, 57 
- -, volumetric, 55 
Stres., 2 
-, bending, 86 
- circle, 42 
- concentration., bending, 95 
-, comprellive, 2 
- -. tension, 19 
- -. torsion, 135 
-, direct, 2 
-. principal, 39 
-, proof, 322 
-, shear, 2 .... 
-, temperature, 16, 105, 292 
-, tenaile, 2 
-, worml, 7 
Struts, eccentric loadinl of, 2 .... 3 
-, Eultll' theory, 238 
-, initislly curved, 244-
-, Johnson', formula for, 249 
-, lateral loading of, 250 
-, Perry-Robertson formula for, 250 
-, Rankin.-GOTdon formula for, 2 .... 7 
-, varying crols-Iection, 254 
Superposition. principle of, 3 

Temperature Itrela, 16, 105, 292 



Tenaile teat, 4, 322 
-- stress 2 
- -: ultim~te, 5 
Tenaion,l 
Teating, compression, 323 
-, creep, 326 
-, fatigue, 327 
-, hardness, 323 
-, impact, 324 
-, tensile, 4, 322 
Theories of failure, 56 
Thick cylinders, 267 
- spherical ahells, 281 
Thin cylinders, 259 
- spherical shells, 260 
Tie with lateral load, 253 
Torsion beyond yield, 138 
- of shafts, 130 
- of thin tubular sections, 142 
- - - cellular sections, 14S 

INDBX 

Torsion of thin rectangular members, 
146 

- - - open sections, 147 
Tresca theory, 57 
Tubes-see Cylindera 
-, compound, 277 

Unsymmetrical bending, 111 

Volumetric strain, 54, 261 
- - energy, 55 
Vibrations, linear, 302 
-, torsional, 302 
-, transverse, 307 

Wire-winding, 265 
Whirling of shafts, 314 

Yourlg', modulus, 3 
Yield point, 5 

TO THE READER 

Author and publisher would welcome suggestions towards future 
editions of this text, or the pointing out of any misprint or 
obscurity. Please write to the Technical Editor, The Macmillan 
Press Ltd, Houndmills. Basingstoke. Hampshire RG21 2XS 




