MEC 3352 – STRENGTH OF MATERIALS II

Principal Strains in Three Dimensions

PRINCIPAL STRAINS IN THREE DIMENSIONS

(1)

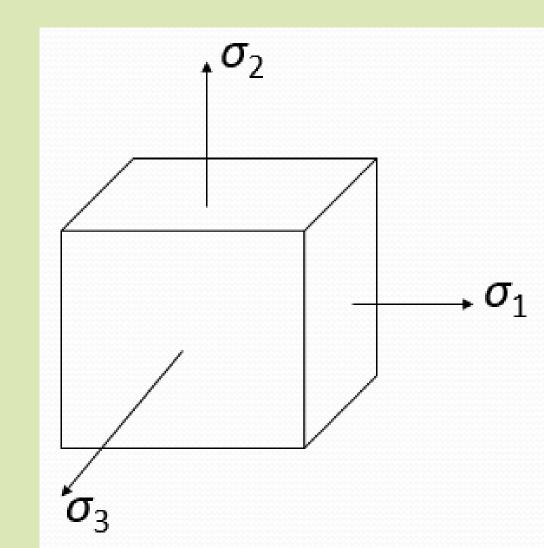
(2)

(3)

From the 2D case, it can be shown that the principal strains in the directions σ_1 , σ_2 and σ_3 are:

•
$$\varepsilon_1 = \sigma_1 / E - v \sigma_2 / E - v \sigma_3 / E$$

- $\varepsilon_2 = \sigma_2 / E v \sigma_3 / E v \sigma_1 / E$
- $\varepsilon_3 = \sigma_3 / E v \sigma_1 / E v \sigma_2 / E$



Principal Stresses Determined from Principal Strains

(a) 3D stress system. Re-writing Eqs. (1), (2) and (3):

•
$$E\varepsilon_1 = \sigma_1 - v\sigma_2 - v\sigma_3$$

•
$$E\varepsilon_2 = \sigma_2 - v\sigma_3 - v\sigma_1$$

•
$$E\varepsilon_3 = \sigma_3 - v\sigma_1 - v\sigma_2$$

•
$$E(\varepsilon_1 - \varepsilon_2) = (\sigma_1 - \sigma_2)(1 + v)$$

(4)

(5)

(6)

From (1) and (3), eliminating σ_3 :

$$E(\varepsilon_1 + v\varepsilon_3) = \sigma_1(1 - v^2) - \sigma_2(1 + v)v$$

(8)

Multiplying (7) by *v* and subtracting from (8):

$$E[(1-v)\varepsilon_1 + v(\varepsilon_2 + \varepsilon_3)] = \sigma_1(1-v^2) - \sigma_2(1+v)v - (\sigma_1 - \sigma_2)(1+v)v$$
$$= \sigma_1(1-v-2v^2)$$
$$= \sigma_1(1+v)(1-2v)$$

Rearranging:

$$\sigma_1 = \frac{E[(1-\nu)\varepsilon_1 + \nu(\varepsilon_2 + \varepsilon_3)]}{(1+\nu)(1-2\nu)}$$

Similarly

$$\sigma_2 = \frac{E[(1-\nu)\varepsilon_2 + \nu(\varepsilon_3 + \varepsilon_1)]}{(1+\nu)(1-2\nu)}$$

(9)

and

$$\sigma_3 = \frac{E[(1-\nu)\varepsilon_3 + \nu(\varepsilon_1 + \varepsilon_2)}{(1+\nu)(1-2\nu)}$$

(11)

(b) 2D stress system.

If $\sigma_3 = 0$, (4), (5) and (6) reduce to:

$$E\varepsilon_1 = \sigma_1 - v\sigma_2 \tag{12}$$

$$E\varepsilon_2 = \boldsymbol{\sigma_2} - \boldsymbol{v}\boldsymbol{\sigma}_1 \tag{13}$$

Solving (12) and (13) for σ_1 and σ_2 gives

$$\sigma_1 = \frac{E(\varepsilon_1 + \nu \varepsilon_2)}{(1 - \nu^2)}$$
 and

$$\sigma_2 = \frac{E(\varepsilon_2 + \nu \varepsilon_1)}{(1 - \nu^2)}$$

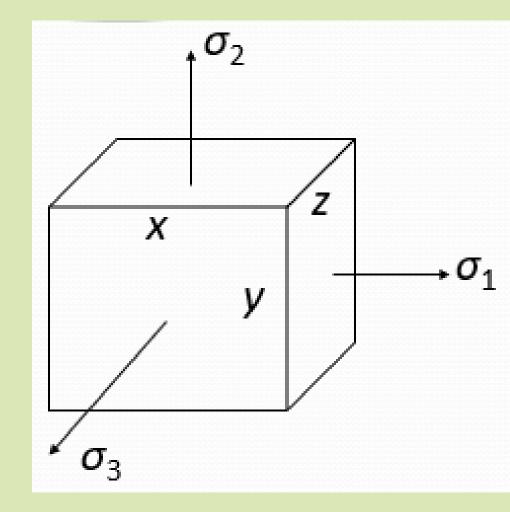
(14)

(15)

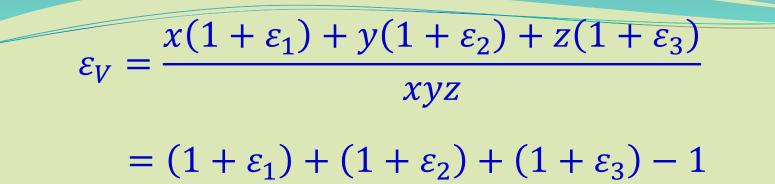
Volumetric Strain

Consider a block with sides *x*, *y* and *z* acted upon by principal stresses σ_1 , σ_2 and σ_3 . Let corresponding linear strains be ε_1 , ε_2 and ε_3 .

Corresponding resultant dimensions are: $x + \varepsilon_1 x$, $y + \varepsilon_2 y$ and $z + \varepsilon_3 z$ or $x(1 + \varepsilon_1)$, $y(1 + \varepsilon_2)$ and $z(1 + \varepsilon_3)$



Let *volumetric strain*, be $\varepsilon_v = \frac{\text{Change in volume}}{\text{Original volume}}$



Expanding and neglecting second order terms – since strains are small:

$$\varepsilon_V = \varepsilon_1 + \varepsilon_2 + \varepsilon_3 \tag{16}$$

Expressing the strains in terms of principal stresses (using Eqs. (1), (2) and (3)):

Volumetric Strain,
$$\varepsilon_V = \frac{(\sigma_1 + \sigma_2 + \sigma_3)(1 - 2\nu)}{E}$$
 (17)

Strain Energy

Strain energy, U = work done by a system of stresses in straining a material. Consider a cube acted upon by a system of principal stresses σ_1 , σ_2 and σ_3 . For the corresponding strains of ε_1 , ε_2 and ε_3 ,

The work done $U = \sum_{n=1}^{\infty} \frac{1}{2} \sigma \varepsilon$ (if the stresses are gradually applied).

$$U = \frac{1}{2}\sigma_{1}\varepsilon_{1} + \frac{1}{2}\sigma_{2}\varepsilon_{2} + \frac{1}{2}\sigma_{3}\varepsilon_{3}$$
$$= [\sigma_{1}(\sigma_{1} - v\sigma_{2} - v\sigma_{3}) + \sigma_{2}(\sigma_{2} - v\sigma_{3} - v\sigma_{1}) + \sigma_{3}(\sigma_{3} - v\sigma_{1} - v\sigma_{2})]$$

from (1), (2) and (3).

$$U = \left(\frac{1}{2E}\right) \left[\sigma_1^2 + \sigma_2^2 + \sigma_3^2 - 2\nu(\sigma_1\sigma_2 + \sigma_2\sigma_3 + \sigma_3\sigma_1)\right] \quad \text{per unit volume.}$$
(18)

(19)

For a 2D stress system, $\sigma_3 = 0$

$$\boldsymbol{U} = \left(\frac{1}{2E}\right) \left[\boldsymbol{\sigma}_1^2 + \boldsymbol{\sigma}_2^2 - 2\boldsymbol{\nu}(\boldsymbol{\sigma}_1 \boldsymbol{\sigma}_2)\right] \quad \text{per unit volume.}$$

Shear Strain Energy

Writing

$$\sigma_{1} = \frac{1}{3}(\sigma_{1} + \sigma_{2} + \sigma_{3}) + \frac{1}{3}(\sigma_{1} - \sigma_{2}) + \frac{1}{3}(\sigma_{1} - \sigma_{3})$$
(20)
$$\sigma_{2} = \frac{1}{3}(\sigma_{1} + \sigma_{2} + \sigma_{3}) + \frac{1}{3}(\sigma_{2} - \sigma_{3}) + \frac{1}{3}(\sigma_{2} - \sigma_{1})$$
(21)
$$\sigma_{3} = \frac{1}{3}(\sigma_{1} + \sigma_{2} + \sigma_{3}) + \frac{1}{3}(\sigma_{3} - \sigma_{1}) + \frac{1}{3}(\sigma_{3} - \sigma_{2})$$
(22)

Then under the action of the mean stress there WILL BE volumetric strain with NO distortion of shape (i.e. no shear stress anywhere).

∴ The strain energy under this mean stress acting in each direction is obtained from the general formula, Eq. (18), and may be called *the volumetric strain energy*,

$$U = \left(\frac{3}{2E}\right) \left[\frac{\sigma_1 + \sigma_2 + \sigma_3}{3}\right]^2 \cdot (1 - 2\nu)$$

Giving

$$\boldsymbol{U} = \left(\frac{1}{6E}\right) [\boldsymbol{\sigma}_1 + \boldsymbol{\sigma}_2 + \boldsymbol{\sigma}_3]^2 \cdot (1 - 2\boldsymbol{\nu}) \tag{23}$$

The other terms in the rearrangement of σ_1 , σ_2 and σ_3 are proportional to the maximum shear stress values in the three planes, and will cause a distortion of the shape.

Let U_s = Shear strain energy = Total strain energy – Volumetric strain energy $U_s = \left(\frac{1}{2E}\right) \left[\sigma_1^2 + \sigma_2^2 + \sigma_3^2 - 2\nu(\sigma_1\sigma_2 + \sigma_2\sigma_3 + \sigma_3\sigma_1)\right] - \left(\frac{1}{cT}\right) \left[(\sigma_1^2 + \sigma_2^2 + \sigma_3^2) \cdot (1 - 2\nu)\right]$

$$= \left(\frac{1}{6E}\right) \left[(\sigma_1^2 + \sigma_2^2 + \sigma_3^2)(3 - 1 + 2\nu) - (\sigma_1\sigma_2 + \sigma_2\sigma_3 + \sigma_3\sigma_1)(6\nu + 2 - 4\nu) \right]$$

$$= \left(\frac{1+\nu}{6E}\right) \left[2(\sigma_{1}^{2}+\sigma_{2}^{2}+\sigma_{3}^{2})-2(\sigma_{1}\sigma_{2}+\sigma_{2}\sigma_{3}+\sigma_{3}\sigma_{1})\right]$$
$$U_{s} = \left(\frac{1}{12G}\right) \left[(\sigma_{1}-\sigma_{2})^{2}+(\sigma_{2}-\sigma_{3})^{2}+(\sigma_{3}-\sigma_{1})^{2}\right]$$
(24)

since E = 2G(1 + v).

The quantities in brackets are each twice the maximum shear stress in their respective planes .

In pure shear system (stress τ), the principal stresses are $\pm \tau$, 0 (review maximum shear stresses).

$$\therefore \qquad U_s = \left(\frac{1}{12G}\right) \left[(2\tau)^2 + (-\tau)^2 + (-\tau)^2 \right]$$

(Since
$$\sigma_1 = \tau$$
, $\sigma_2 = -\tau$ when $\sigma_3 = 0$)
 $U_s = \frac{\tau^2}{2G}$

(25)

(Compare with strain energy in direct shear stress)

ME 3352: Strength of Materials II

Enjoy ME 3352.

For it is, this far, the best there

can be among courses!!!