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PRINCIPAL PLANES

The principal planes can be described in the following
manner:

® Aplane is said to be a principal plane, when the shear
stress acting on that plane is zero.

® The converse of the above statement is also true:

® If the shear stress on a given plane is zero, then that
plane must be a principal plane.

® A point subjected to plane stress has three principal
stresses: the two in-plane principal stresses g, and
0,, and a third principal stress o5, which acts in the
out-of-plane direction.



3D PRINCIPAL STRAINS

From the 2D case, it can be shown that
the principal strains in 3D o,, 0, and o,
are:

€ =0/E-VOE-V0 [E
€,=0,/E-VO /E-VO IE

€,=0,/E-VO |E-VO,/E




PRINCIPAL STRESSES DETERMINED FROM PRINCIPAL
STRAINS

3D Stress System:
We re-writing equations (1), (2) and (3) as follows:

Ee =0, -V0,-V0, (4)
Ee,=0,-V0,- V0, (5)
Ee,=0,-V0O, - V0, (6)

« Subtracting (5) from (4):
E(e, -€)=(0,-0,)1+V) (7)



PRINCIPAL STRESSES DETERMINED FROM PRINCIPAL
STRAINS

From (1) and (3), we eliminate o:
E(e, +VE)=0,(1-V})-0,(1+V)V (8)
Multiplying (7) by v and subtracting from (8):
E[(1- V)E, + V(E, + E,)]
=0 (1-V°)-0,(1+V)V-(0,-0,)(1+V)V

=0, (1-V-2V?)
=0,(1+V)(1-2V)



PRINCIPAL STRESSES DETERMINED FROM PRINCIPAL
STRAINS

Re-arranging:
_ E[@-0v)e +o(ey +&5)]

T 1n)a-2v) )
Similarly
o E[1-0v)e, +v(e5+&)]
2 = (10)

(1+0v)(1—2v)
and
o E[1-0v)e; +o(g +¢,)]
: (1+0)(1— 20)

(11)



2D STRESS SYSTEM:

For a 2D system, g, = 0, and equations (4), (5) and (6)
reduce to:

EE =0,-V0O, (12)
EE =0,-V0, (13)

Solving (12) and (13) for g, and o, gives

E(s, +0¢
o, = ( 1 a 2) (14)
and (1-07)
-, = E(e, +vg)

(1_02) (15)



VOLUMETRIC STRAIN

« Consider a block with sides x, y and z 172
acted upon by principal stresses o,, o, |
and o, X z
* Let corresponding linear strains be €,, €, y o1
and &;. /
O3

 Corresponding resultant dimensions are:
(x + £x),(y+&y)and (z+ &2
or x(1+&),y(1+&)and z(1 + £,)

Volumetric strain, is given as: . Change in volume
Original volume

\Y




VOLUMETRIC STRAIN

- X(+&).y(A+ey).z2(1+e3) —Xyz
! XYz

&

=(1+&).1+e,).1+e)-1

 Expanding and neglecting second order terms — since strains
are small:

« Expressing the strains in terms of principal stresses (using
Equations (1), (2) and (3)):

Volumetricstrain, ¢, = (0, + 0, +£3)(1_ 2v) (17)




Examples
Example 001

An aluminium alloy block is subjected to a uniform pressure of p = 35
MPa as shown in Figure Q1. Taking E = 73 GPa; v = 0.33, determine
the

) change in lengths of sides AB, BC, and BD. [6 marks]
i) change in volume of the block. [2 marks]
pl : o D‘
A =

B 200 mm

:/\/160 mm\,/ =

al ?

Figure Q1: Block under hydrostatic pressure



Example 001 H

Change in length of sides AB, BC, and BD \

Normal stresses: g C T

The normal stresses (principal stresses) are equal: - A g
Oy =0y, =0; =—p=—-35MPa A/\T;;yw

Normal strains:
We have ¢, for a hydrostatic stress state
expressed as:

e, =—=lo, —vio, +0.)]

1
E
= %[—p —Vv(=p — p)l
p
=-L(1-2
E( V)

We get the same expression for €, and ¢,




Example 001 p
For a pressure p = 35 MPa, the strains in the *l/

—
aluminium alloy block are: A -
35 MP: pIL}::} o |
£ =g, =& =— 1 11-20033)] A= 5,
| ) 73,000 MPa ,\/m\’/i —m

= —163.0 X 107 mm/mm

Deformations:
0,5 = (160 mm)(—=163.0 x 107® mm/mm) = —-0.0261 mm

Opc = (120 mm)(-=163.0 X 107° mm/mm) = —0.01956 mm
Opp = (200 mm)(—=163.0 x 107° mm/mm) = —-0.0326 mm



Example 001

Volumetric Strain: \[L o
Ev — Ex + Ey + EZ p. . T 1
— 6 :/l> <@l 120 mm
= 3(-163.0 x 107) Ap.,/\xp\)\
= -489.0x10°° _0mm

Initial volume of the block:

V = (160 mm)(120 mm)(200 mm)
= 3.84 x 10° mm*

Change in Volume of the Block
AV = ¢g,.V
= (—489.0 x 107°)(3.84 x 10° mm?)
= —1,878 mm"*

Note that volume of the block has decreased under hydrostatic pressure.



Examples Example 002

A 75 mm marble cube shown in Figure Q2 has the measured
compressive strains of &, = -650 x 10° and g, = &, =-370 x 10°°.
Taking E = 55 GPa; v = 0.22, determine the following:

) normal stresses g,, 0,, and 0, acting on the x, y, and z faces of

the cube. [9 marks]
i) maximum shear stress in the material. [3 marks]
TR
—y_

/ N

Figure Q2: Marble cube



Examples 002

Normal Stresses
E

O-x = } .
(1 + v)(1 = 2v)

[(1=Vv)e, + V(e + &)

- 55,000 MPa
L2 — 2022
= —53.9 MPa

[(1 — 0.22)(—=650) + (0.22)(=370 — 370)](1075)

E
Oy = = _

(1+ v)(1—=2v)
- 55,000 MPa
1+ 0.22)[1 = 2(0.22)]

[(I-Vv)e, + V(g + &,)]

[(1 - 0.22)(=370) + (0.22)(—=650 — 370)](107°)

= —41.3 MPa



Examples 002

Normal Stresses

. = ct [(1-Vv)e, +Vv(e, +&,)]
o (L+v)(1-2v) S
55,000 MPa
- I — 0.22)(=370) + (0.22)(—650 — 370)](107¢
(1+0.22)“_2(0.22)][( )(=370) + (0.22)( )](107)
= —41.3 MPa

Maximum shear stress

® There are no shear stresses acting on the x, y, or z faces of the marble
cube

* Consequently, o,, 0,, and o, must be principal stresses:
o, =—53.9 MPa
o, = —41.3 MPa
o, = —41.3 MPa



STRAIN ENERGY

® The three (3) principal stresses (04, g, , 03) applied on
the principal planes result in (3) three principal strains
(€1, &2, €3).

® Work is done on the material during the deformation
process as the stresses are gradually applied.

® During the deformation process the material's energy
levels changes.

® The change is due to the energy absorbed by the
material during the loading process.

® This change in the material’s internal energy level leads
us to the concept of strain energy.



STRAIN ENERGY

® We define strain energy as the energy absorbed by
the material during the loading process.

® This strain energy is also defined as the work done
by the load; provided no energy is added to or
subtracted from the material in the form of heat.

® Strain energy is also known as internal work to
distinguish it from external work.

® We now consider a simple bar subjected to a tensile
force F.

® We then consider a small element on the bar of
dimensions dx, dy and dz.



STRAIN ENERGY

By definition, strain energy (U), is the work done by a system of stresses in
straining a material.

C0é13|der a cube (or element) under a system of principal stresses g, 0,
and o

For the corresponding strains of &, €, and &, the work done is:
1
U= ZEO'E
The work done (if the stresses are gradually applied).

U—laa +£08 +108
5 O101 T 5 0282 7, 0383

Using Equations (1), (2) and (3):

€ =0/E-VO,/E-VO. /E (1)
€,=0,/E-VO,/E-VO /E (2)
£,=0,/E-VO /E-VO,/E (3)

We therefore, get the following expression for the work done:
U= i lo.(0,-vo,-v0) +0,(0,-V0,-V0))
+0,(0,-V0,-V0)]



STRAIN ENERGY
U = (%)[0'12 +05 +05 — 21)(0102 + 0,05+ 030, )] (18)

per unit volume
For a 2D stress system, g, =0

1
U = (Ej[alz +05 —20(0y0, )] (19)

per unit volume.

We can express the principal stresses as follows:

1 1 1
0125(01+02+03)+§(01—02)+§(01—03) (20)

1 1 1
0225(01+02+03)+§(02_03)+§(02_01) (21)

1 1 1
03:g(glJFUz+03)+§(03_01)+§(03_02) (22)



SHEAR STRAIN ENERGY

Remember that shear stresses on principal planes are ZERO.
Thus, under the action of the mean (o) stress, there WILL BE volumetric
strain but with NO distortion of shape (i.e. no shear stress anywhere).
01 + 0, + 03
3
The strain energy under this mean stress acting in each direction can
be obtained from the general formula, Equation (18):

g =

1
U= <ﬁ) [0 + 6% + 0% — 2v(0,0, + 0,05 + 0307)] (18)

Using the mean stress, equation (18) and equations (20) to (22) we
express the volumetric strain energy as follows:

2
U:(3>la'1+0'2+0-3] (1—22)) (23)

2F 3

The other terms in the re-arrangement of o,, g, and g, are proportional
to the maximum shear stress values in the three planes, and will
cause a distortion of the shape.



SHEAR STRAIN ENERGY

1
0o (6E) [01 + 07 + 03] - (1 — 2v)

* Let U= Shear strain energy
= [Total strain energy] — [Volumetric strain energy]

1
US = (ZE) [0-1 + 0-2 + 0-3 _ ZU(O-lo-Z + 0203 + 0-30-1)]
~(2) (o1 + 0, + 032 - (1 = 20)]

B i (6f + 05 +05)(3 =1+ 2v)
6E || —(010;, + 0203 + 0301)(6V + 2 — 4v)

1+v 5
=\ =7 [2(0f + 0F + 0§) = 2(010; + 0203 + 0301)] 3y



SHEAR STRAIN ENERGY

* Remember that;
E = 2G(1 + v).
* Thus:

Us = (1 i U) [(01 — 02)* + (05 — 03)° + (03 — 071)°]

12G



SHEAR STRAIN ENERGY

The quantities in brackets are each twice the maximum shear
stress in their respective planes .

In pure shear system (stress 7), the principal stresses are £z, 0
(review maximum shear stresses).

U, =T JleeP + (o (o]

126
(Since g, = 7, 0,=—-7 when g; =0)

2
U, =— (25)
2G

(Compare with strain energy in direct shear stress)



Examples

Example 003

A rectangular block measuring
240 mm x 80mm x 60mm is
loaded as shown in the diagram,
and F, = 80kN, F,= 100kN, F, =
40kN. Compute the change in
volume, the bulk modulus and
modulus of rigidity. Take E =
200kN/mm2 and v =0.3



Examples
Example 004

A block of steel measuring 240 mm x 16 mm x 25
mm, is subjected to a tensile force of 40kN in the
direction of its length. Given that the modulus of
elasticity (E) and the Poisson’s ratio (v) are
200kN/mm? and 0.33 respectively. Compute the
change in the volume of the block.



Examples
Example 005

a) Derive an expression for strain energy induced in
a material per unit volume, under gradual tensile
loading.

b) Calculate the strain energy stored in a bar 3 m
long and 40mm in diameter when subjected to a
tensile load of 80kN. Take E = 210kN/mm?.






	Slide 1
	Slide 2
	Slide 3
	Slide 4: PRINCIPAL STRESSES DETERMINED FROM PRINCIPAL STRAINS
	Slide 5: PRINCIPAL STRESSES DETERMINED FROM PRINCIPAL STRAINS
	Slide 6: PRINCIPAL STRESSES DETERMINED FROM PRINCIPAL STRAINS
	Slide 7
	Slide 8: VOLUMETRIC STRAIN 
	Slide 9: VOLUMETRIC STRAIN 
	Slide 10: Examples
	Slide 11: Example 001
	Slide 12: Example 001
	Slide 13: Example 001
	Slide 14: Examples
	Slide 15: Examples 002
	Slide 16: Examples 002
	Slide 17: STRAIN ENERGY
	Slide 18: STRAIN ENERGY
	Slide 19: STRAIN ENERGY
	Slide 20: STRAIN ENERGY
	Slide 21: SHEAR STRAIN ENERGY
	Slide 22: SHEAR STRAIN ENERGY
	Slide 23: SHEAR STRAIN ENERGY
	Slide 24: SHEAR STRAIN ENERGY
	Slide 25: Examples
	Slide 26: Examples
	Slide 27: Examples
	Slide 28

