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PRINCIPAL PLANES

The principal planes can be described in the following 

manner:

• A plane is said to be a principal plane, when the shear 

stress acting on that plane is zero.

• The converse of the above statement is also true:

• If the shear stress on a given plane is zero, then that 

plane must be a principal plane.

• A point subjected to plane stress has three principal 

stresses: the two in-plane principal stresses σ1 and 

σ2, and a third principal stress σ3, which acts in the 

out-of-plane direction.
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3D PRINCIPAL STRAINS 

From the 2D case, it can be shown that 

the principal strains in 3D σ1, σ2 and σ3 

are:



PRINCIPAL STRESSES DETERMINED FROM PRINCIPAL 
STRAINS

3D Stress System:

We re-writing equations (1), (2) and (3) as follows:

ε σ νσ νσ

ε σ νσ νσ

ε σ νσ νσ

•Subtracting (5) from (4): 

ε ε σ σ ν



PRINCIPAL STRESSES DETERMINED FROM PRINCIPAL 
STRAINS

From (1) and (3), we eliminate σ3:

ε νε σ ν σ ν ν  (8)

Multiplying (7) by ν and subtracting from (8):
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PRINCIPAL STRESSES DETERMINED FROM PRINCIPAL 
STRAINS
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Re-arranging:

Similarly

and



2D STRESS SYSTEM:

 For a 2D system, σ3 = 0, and equations (4), (5) and (6) 
reduce to:

ε σ νσ
ε σ νσ

 

Solving (12) and (13) for σ1 and σ2 gives
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VOLUMETRIC STRAIN 

•  Consider a block with sides x, y and z 
acted upon by principal stresses σ1, σ2 
and σ3.

•  Let corresponding linear strains be ε1, ε2 
and ε3.

σ1

σ3

σ2

x
y

z

• Corresponding resultant dimensions are: 
 ( ε ε ε

ε ε ε

Volumetric strain, is given as: 
 volumeOriginal

volumeinChange
εv =



VOLUMETRIC STRAIN 

•  Expanding and neglecting second order terms – since strains 
are small:

                                                                                                                             

•Expressing the strains in terms of principal stresses (using 
Equations (1), (2) and (3)):
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Examples
                Example 001

An aluminium alloy block is subjected to a uniform pressure of 𝑝 = 35 

MPa as shown in Figure Q1. Taking E = 73 GPa; 𝜈 = 0.33, determine 

the

i) change in lengths of sides AB, BC, and BD.           [6 marks]

ii) change in volume of the block.            [2 marks]

Figure Q1: Block under hydrostatic pressure 



Example 001
Change in length of sides AB, BC, and BD

Normal stresses: 

The normal stresses (principal stresses) are equal:

Normal strains: 

We have 𝜀𝑥 for a hydrostatic stress state 

expressed as:

We get the same expression for 𝜀𝑦 and 𝜀𝑧 



Example 001
For a pressure p = 35 MPa, the strains in the 

aluminium alloy block are:

Deformations:



Example 001

Change in Volume of the Block 

Volumetric Strain:

Initial volume of the block: 

Note that volume of the block has decreased under hydrostatic pressure.

∆𝑉 =  𝜀𝑣. 𝑉



Examples                 Example 002

A 75 mm marble cube shown in Figure Q2 has the measured 

compressive strains of 𝜀𝑥 = −650 x 10−6 and 𝜀𝑦 = 𝜀𝑧  = −370 x 10−6.  

Taking E = 55 GPa; 𝜈 = 0.22, determine the following:

i) normal stresses σx, σy, and σz acting on the x, y, and z faces of 

the cube.                                [9 marks]

ii) maximum shear stress in the material.            [3 marks]

Figure Q2: Marble cube



Examples 002
Normal Stresses



Examples 002

Normal Stresses

Maximum shear stress 

• There are no shear stresses acting on the x, y, or z faces of the marble 

cube 
• Consequently, σx, σy, and σz must be principal stresses:



STRAIN ENERGY

• The three (3) principal stresses (𝜎1, 𝜎2 , 𝜎3) applied on 

the principal planes result in (3) three principal strains 

(𝜀1, 𝜀2 , 𝜀3).

• Work is done on the material during the deformation 

process as the stresses are gradually applied.

• During the deformation process the material’s energy 

levels changes. 

• The change is due to the energy absorbed by the 

material during the loading process. 

• This change in the material’s internal energy level leads 

us to the concept of strain energy.



STRAIN ENERGY

• We define strain energy as the energy absorbed by 

the material during the loading process. 

• This strain energy is also defined as the work done 

by the load; provided no energy is added to or 

subtracted from the material in the form of heat. 

• Strain energy is also known as internal work to 

distinguish it from external work. 

• We now consider a simple bar subjected to a tensile 

force 𝐹.

• We then consider  a small element on the bar of 

dimensions 𝑑𝑥, 𝑑𝑦 and 𝑑𝑧. 



STRAIN ENERGY
• By definition, strain energy (𝑈), is the work done by a system of  stresses in 

straining a material. 
• Consider a cube (or element) under a system of principal stresses σ1, σ2 

and σ3. 
• For the corresponding strains of ε1, ε2 and ε3, the work done is:

• The work done  (if the stresses are gradually applied).

 

•     Using Equations (1), (2) and (3):

•      We therefore, get the following expression for the work done:
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STRAIN ENERGY

          

          per unit volume

For a 2D stress system, σ3 = 0

 

                              

            per unit volume.
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We can express the principal stresses as follows: 
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SHEAR STRAIN ENERGY
• Remember that shear stresses on principal planes are ZERO.

• Thus, under the action of the mean ( ത𝜎) stress, there WILL BE volumetric 

strain but with NO distortion of shape (i.e. no shear stress anywhere).

• The strain energy under this mean stress acting in each direction can 
be obtained from the general formula, Equation (18):

𝑈 =
1

2𝐸
𝜎1

2 + 𝜎2
2 + 𝜎3

2 − 2𝜐 𝜎1𝜎2 + 𝜎2𝜎3 + 𝜎3𝜎1

• Using the mean stress, equation (18) and equations (20) to (22) we 
express the volumetric strain energy as follows:

𝑈 =
3

2𝐸

𝜎1 + 𝜎2 + 𝜎3

3

2

⋅ 1 − 2𝜐

• The other terms in the re-arrangement of σ1, σ2 and σ3 are proportional 

to the maximum shear stress values in the three planes, and will 
cause a distortion of the shape.

ത𝜎 =
𝜎1 + 𝜎2 + 𝜎3

3



SHEAR STRAIN ENERGY

𝑈 =
1

6𝐸
𝜎1 + 𝜎2 + 𝜎3

2 ⋅ 1 − 2𝜐

• Let Us = Shear strain energy 

 Us  = [Total strain energy] – [Volumetric strain energy]

𝑈𝑠 =
1

2𝐸
𝜎1

2 + 𝜎2
2 + 𝜎3

2 − 2𝜐 𝜎1𝜎2 + 𝜎2𝜎3 + 𝜎3𝜎1

   −
1

6𝐸
𝜎1 + 𝜎2 + 𝜎3

2 ⋅ 1 − 2𝜐

=
1

6𝐸

𝜎1
2 + 𝜎2

2 + 𝜎3
2 3 − 1 + 2𝜐  

− 𝜎1𝜎2 + 𝜎2𝜎3 + 𝜎3𝜎1 6𝜐 + 2 − 4𝜐

=
1 + 𝜐

6𝐸
2 𝜎1

2 + 𝜎2
2 + 𝜎3
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SHEAR STRAIN ENERGY

• Remember that:

𝑈𝑠 =
1 + 𝜐

12𝐺
𝜎1 − 𝜎2

2 + 𝜎2 − 𝜎3
2 + 𝜎3 − 𝜎1

2

E =  2G(1 +  𝜈).
• Thus:



SHEAR STRAIN ENERGY

The quantities in brackets are each twice the maximum shear 
stress in their respective planes .

In pure shear system (stress ), the principal stresses are , 0 
(review maximum shear stresses).

 

(Since σ1 = ,  σ2 = –  when σ3 = 0)

 

        

(Compare with strain energy in direct shear stress)
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Examples

Example 003

A rectangular block measuring 

240 mm x 80mm x 60mm is 

loaded as shown in the diagram, 

and 𝐹𝑥 = 80kN, 𝐹𝑦= 100kN, 𝐹𝑧 = 

40kN. Compute the change in 

volume, the bulk modulus and 

modulus of rigidity. Take E = 

200kN/mm2 and ν = 0.3



Examples

Example 004

A block of steel measuring 240 mm x 16 mm x 25 

mm, is subjected to a tensile force of 40kN in the 

direction of its length. Given that the modulus of 

elasticity (E) and the Poisson’s ratio (ν ) are 

200kN/mm2 and 0.33 respectively. Compute the 

change in the volume of the block.



Examples

Example 005

a) Derive an expression for strain energy induced in 

a material per unit volume, under gradual tensile 

loading.

b) Calculate the strain energy stored in a bar 3 m 

long and 40mm in diameter when subjected to a 

tensile load of 80kN. Take E = 210kN/mm2.



Grazie
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