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Brainstorming

N

What 1s a disk?
What Is a cylinder?
What Is the difference between the two?

Can a disk be considered a cylinder or a cylinder considered
a disc?



ROTATING DISCS AND CYLINDERS

Introduction

These notes relate to the stresses and strains existing in rotating
thick walled cylinders.

They are generally applicable to the design of flywheels. The
primary assumption is that the cylinders are not subject to internal
or external pressure.

A basic review of solid discs, rings and cylinders is carried out.



Symbols/Units

Tenslle stresses are considered positive and compressive
stresses are negative.

* p, = Internal pressure (N/m?)

* p, = External pressure (N/m?)

» ¢, = Radial stress (N/m?)

» o, = Tangential (Hoop) stress (N/m?)
» o, = Axial/longitudinal stress (N/m?)
e E =Young’s modulus (N/m?)

* p = Density (kg/m3)

e v, Vv=Poisson’s ratio



r = Radius at point of analysis (m)
R, = Internal radius (m)

R, = External radius (m)

e, = Radial strain

g, = Tangential (Hoop) strain

e, = Axial/longitudinal strain

u = Radial deflection (m)



Initial Assumptions

For an infinitesimal cube acted upon by the stresses shown,
£,, €, and g, are the strains associated with the stresses ¢,, o, and c..

v = Poisson’s ratio.
8]
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These strains are given by the relations:

&, = 6,/E —vo,/E —vo,/E

&, = 6,/E —vo,/E —vo,/E
€5 = 64/E —vo,/E —vo,/E @
(8]
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1) Thick Disc Basics

Consider a “disc”/*“thin ring” subject to internal stresses
resulting from the internal forces as a result of its rotational

Speed.

Under the action of the internal forces only, the three
principal stresses will be o, tensile radial stress, o, tensile
tangential stress and o, an axial stress which is generally also

tensile.



* The stress conditions occur throughout the section and vary
primarily relative to the radius .

 [tis assumed that the axial stress o, Is constant along the
length of the section and because the disc Is thin compared to
Its diameter, the axial stress throughout the section Is assumed

ZEIO.

 [tis also assumed that the internal pressure P, and the
external pressure P, = 0.



pz =0
Consider agnicrasoopically small area under stresses as shown.
u is thegradial displz}cge @nt at radiuSfisines

L9 Strained
-
\ ) ad

The circumferential (Hoop) strain due to the internal pressure is:



The circumferential (Hoop) strain due to the internal pressure is:

e — Increase in circumference _ 2n(r+u)—-2m _ u
L Original circumference 2T T

At the outer radius of the small sectional area (r + 6r), the radius
will increase by (u + éu). The resulting radial strain as r — 0 Is

e — Increasein 6r _ u+déu—u _ du
r or - or - Sr




Referring to the stress/strain relationship as stated above. The
following equations are derived:

Basis of equations: Derived Equations:

o, IS equivalent to o, Strictly, the following equations apply:
o, IS equivalent to o, Eq. 1) Ee, = 6, —vo, —vo,

o, is equivalent to o, Eq. 2) Eg, = E% = 6,— V0, — V0,

Eq. 3) Ee, = E% = 6, — VG; — VG,



However because of the assumption that 6, = 0 the equations
are modified as follow.

Eq. 1) Ee, = 0—vo,—vo,

u
Eq. 2) Ee, = E- = 0, —vo,
du _
E—Gr—DGt

Eq. 3) Ee, = E

Multiplying 2) x r
Eu =r(c,—vo,)

Differentiating

Edu/dr = 6t - vo: + r.[dod/dr - v.(do/dr)] = 6 - vo:..from 3)



Simplifying by collecting terms:

Eq. 4 (at—ar)(1+v)+r(§;) vr(%) _ 0

Now considering the radial equilibrium of the element of the
section. Forces based on unit length of cylinder:



Given a small element of unit width,

length = 60 and thickness = dr; > Aprw’= pr’e’srsd
Ot \ o, + do,
Centrifugal force = mw?r = pré§08rw*r —(r+ 81)50
= préw?6réo d
2 48
o] O¢

50 r dr
2 - 0 Or - sin (7) + 0,60 rdo
—(o, + 80,)(r + 8r)80 = préw?6rdo r

In the limait this reduces to

Eq5) o:- o - rdoy/dr = prie’



Substitute for 6 - 6r 1nto Equation 4 results 1n

(rdoy/dr + pri®?).(1 + v) + r.(doy/dr)) - v.r.(do/dr) = 0

Therefore

dov/dr + do/dr = -pre-(1 + v)

Integrating

Eq6) o+ o,=-prro’(l +v)/2 +2A

Subtract equation 3...

2.0 + r.doy/dr = -prim*(3 + v)/2 + 2A



This 1s the same as

(1/r).d(or.r?)dr = - prio’(3 +v)/2 + 2A

Integrating

orr’ = - (pr'm*(3 +v)/8 + Ar* + B

EqQ.7 o,=A+>—(3+v)priw?/8  (dividing by r?)

r2

Combining Eq. 7 with Eq. 6 (i.e. substituting o, from Eqg. 7 into Eq.6):

B
1

Eq.8 o,=4 (1 + 3v)préw?/8




1) Solid Disk

At the centre the B/r* term implies
infinite stresses which are clearly not
credible and therefore B must equal 0.

At r=R:on the outside edge of the disk. [ [
The radial stress 1s equal to the surface
stress which 1s equal to 0.

Theretore at R»
0r=0=A-3 +v)pR2"®?/8



Therefore A = (3 + v)pR2"®»?/8

B=0
ﬁt:(
I1‘51‘:(

D®~/8)

D®7/8)

(3 +V)R2" - (1 + 3v)r7]

(3 +V)(R2? -1)]

The maximum stress 1s at the centre

Ot max — Or max — (pm:fg)ﬁ -+ U)RZE
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2) Disk with a hole

At the outside edge r = Ro
and at the hole radius r = R,
the radial surface stress 1s
assumed to be 0

Theretore

or=0=A+B/Rx*- (3 +v)pR2*w"/8
or=0=A+B/Ri* - (3 + v)pRi*®>"/8




Solving

B =-(3 +v)pn?/8.(Ri*.R2%)
A =3 +v)pn’/8.(R*+ Ry?)

or= (3 +v)po?/8)(Ri? + R? - RiZ.R/r? - 1?) and
ot = po-/8)[(3 + v)(Ri* + Ry* + RiZ.Ry%/1%) - (1 + 3v)r?)]

The maximum tangential stress ot 1s at the inside hole surface
and equals

Ot max — Pﬂ]EM)[U - U)le T (3 T U)REE)]



The maximum tangential stress o: 1s at the inside hole surface
and equals

Gt_lllﬂ}i — [—](!)2/4)[(1 - U)le —I_ (3 —I_ U)REE)]

The maximum radial stress c:1s at r = sqrt(R:.R2) and equals.

6 max = (3 + V)(p®?/8)(Rz - Ry)?
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Stress(N/mm 2)

0.?0 50.000 100.000 150.000

Radius (mm)

250mm OD x 50mm ID ring at 10,000 rpm
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