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SYMBOLS/UNITS

Tensile stresses are considered positive and compressive stresses are negative,

𝑃1 = 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 ൗ𝑁
𝑚2

𝑃2 = 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 ൗ𝑁
𝑚2

 𝜎𝑟 = 𝑅𝑎𝑑𝑖𝑎𝑙 𝑆𝑡𝑟𝑒𝑠𝑠 ൗ𝑁
𝑚2

𝜎𝑡 = 𝑇𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙 𝑆𝑡𝑟𝑒𝑠𝑠 ൗ𝑁
𝑚2

𝜎𝑎 = 𝐴𝑥𝑖𝑎𝑙/𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑆𝑡𝑟𝑒𝑠𝑠 ൗ𝑁
𝑚2

𝐸 = 𝑌𝑜𝑢𝑛𝑔′𝑠𝑀𝑜𝑑𝑢𝑙𝑢𝑠 𝑜𝑓 𝐸𝑙𝑎𝑠𝑡𝑖𝑐𝑖𝑡𝑦 ൗ𝑁
𝑚2

𝜌 = 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 ൗ𝑘𝑔
𝑚3

𝜈 = 𝑃𝑜𝑖𝑠𝑠𝑜𝑖𝑛′𝑠 𝑟𝑎𝑡𝑖𝑜𝑛



𝑟 = 𝑅𝑎𝑑𝑖𝑢𝑠 𝑎𝑡 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 (𝑚)

𝑅1 = 𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 (𝑚)

𝑅2 = 𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟 (𝑚)

𝜀𝑟 = 𝑅𝑎𝑑𝑖𝑎𝑙 𝑆𝑡𝑟𝑎𝑖𝑛

𝜀𝑡 = 𝑇𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙 𝑆𝑡𝑟𝑎𝑖𝑛

𝜀𝑎 = 𝐴𝑥𝑖𝑎𝑙/𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑆𝑡𝑟𝑎𝑖𝑛

𝑤 = 𝑅𝑎𝑑𝑖𝑎𝑙 𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 (𝑚)

SYMBOLS/UNITS



INITIAL ASSUMPTIONS

For an infinitesimal cube acted upon by the stresses shown, ε1, ε2 and ε3 are 

the strains associated with the stresses σ1, σ2 and σ3. 𝜐 = Poisson’s ratio.

The strains are given by the relations:

ε1 = σ1/E – 𝜐σ2/E – 𝜐σ3/E

ε2 = σ2/E – 𝜐σ1/E – 𝜐σ3/E

ε3 = σ3/E – 𝜐σ1/E – 𝜐σ2/E

Figure 3.0 Stresses acting on an infinitesimal cube



THIN DISC
• Consider a “disc” or a “thin ring” subject to internal stresses resulting from the 

internal forces as a result of its rotational speed. 

• Under the action of the internal forces only, the three principal stresses will 

be σr tensile radial stress, σt tensile tangential stress and σa an axial stress 

which is generally also tensile. 

• The stress conditions occur throughout the section and vary primarily relative 

to the radius r.  

• It is assumed that the axial stress σa is constant along the length of the 

section because the disc is thin compared to its diameter.

• The axial stress throughout the section is assumed zero. It is also assumed 

that the internal pressure is 𝑃1 and the external pressure 𝑃2 =  0.



THIN ROTATING DISC OR CYLINDER 

• Consider a thin disc/ring or cylinder rotating at an angular speed 𝜔 rad/s.

• The rotating disc or cylinder is subjected to a radial pressure (centrifugal force p) caused by 

the centrifugal effect on the rotating mass of the disc. 

• Where we have the following:

 𝑝 =  𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 (𝑁/𝑚2)
 𝑟 =  𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑟𝑎𝑑𝑖𝑢𝑠 (𝑚)
 𝜔 =  𝑎𝑛𝑔𝑢𝑙𝑎𝑟 𝑠𝑝𝑒𝑒𝑑 (𝑟𝑎𝑑/𝑠)
 𝐹 = 𝐻𝑜𝑜𝑝 𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑓𝑜𝑟𝑐𝑒 (𝑁), 𝑑𝑢𝑒 𝑡𝑜 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛

Figure 3.1: Section of a thin rotating disc



THIN ROTATING DISC OR CYLINDER 

• We now consider equilibrium of the half ring over unit thickness of the circumference: 

• The centrifugal effect on a unit length of the circumference is: 

• We assume the cylinder wall is so thin such that the centrifugal effect is constant through the 

thickness of the wall. 

• In this case, the hoop tension (𝐹) is transmitted through the entire circumference and is 

resisted by the complete cross-sectional area.

• The hoop stress is given by: 

𝜎𝜃 =
𝐹

𝐴
=

𝑚𝜔2𝑟2

𝐴

2𝐹 = 𝑝 × 𝑑 × 1

2𝐹 = 𝑝 × 2𝑟

𝐹 = 𝑝 𝑟



THIN ROTATING DISC OR CYLINDER 

• The hoop stress (𝜎𝜃) is also known as the tangential or circumferential stress

• Note that A is the cross-sectional area of the ring. 

• And since we are considering a unit length, the ratio Τ(𝑚 𝐴) is the mass of the material per 

unit volume which is the density. Thus,

𝜎𝜃 = 𝜌𝜔2𝑟2                                   3.1

• Consider the element of a disc (of unit thickness) shown in figure 3.2: 

Figure 3.2: Element of a rotating disc 

• The three principal stresses are: 

• The axial (longitudinal stresses is normal to the plan 



ROTATING DISC  

Figure 3.2: Element of a rotating disc 

• At a radius  r, and assuming unit thickness, the 

volume of the element is given by: 

𝛿𝑣 = 𝑟𝛿𝜃. 𝛿𝑟. 1 = 𝑟𝛿𝜃𝛿𝑟

• The mass of the element is given by:

𝛿𝑚 = 𝜌𝛿𝑣 = 𝜌𝑟𝛿𝜃𝛿𝑟

• The centrifugal force acting on the element 

is given by: 

𝐹 = 𝑚𝜔2𝑟

𝐹 = 𝜌𝑟𝛿𝜃𝛿𝑟. 𝜔2𝑟 = 𝜌𝜔2𝑟2𝛿𝜃𝛿𝑟

• Considering radial equilibrium of the element, we have forces acting on an element of unit 

thickness shown in figure 3.3: 



Figure 3.3: Element of a rotating disc 

• For equilibrium of the element radially (resolve forces in radial 

direction

ROTATING DISC  

• For a small value of 𝛿𝜃, 𝑠𝑖𝑛
𝛿𝜃

2
≈

𝛿𝜃

2
  radians

𝟐𝝈𝑯𝜹𝒓
𝜹𝜽

𝟐
+ 𝝈𝒓𝒓𝜹𝜽 − 𝝈𝒓 + 𝜹𝝈𝒓 𝒓 + 𝜹𝒓 𝜹𝜽 = 𝝆𝒓𝟐𝝎𝟐𝜹𝜽𝜹𝒓

𝝈𝑯𝜹𝒓 + 𝝈𝒓𝒓 − 𝝈𝒓 + 𝜹𝝈𝒓 𝒓 + 𝜹𝒓 = 𝝆𝒓𝟐𝝎𝟐𝜹𝒓

𝝈𝑯𝜹𝒓 + 𝝈𝒓𝒓 − 𝝈𝒓 𝒓 + 𝜹𝝈𝒓𝒓 + 𝝈𝒓𝜹𝒓 + 𝜹𝝈𝒓𝜹𝒓 = 𝝆𝒓𝟐𝝎𝟐𝜹𝒓

𝝈𝑯𝜹𝒓 + 𝝈𝒓𝒓 − 𝝈𝒓 𝒓 − 𝜹𝝈𝒓𝒓 − 𝝈𝒓𝜹𝒓 − 𝜹𝝈𝒓𝜹𝒓 = 𝝆𝒓𝟐𝝎𝟐𝜹𝒓



Figure 3.3: Element of a rotating disc 

• The lim
𝜹𝒓→0

𝛿𝜎𝑟

𝛿𝑟
=

𝑑𝜎𝑟

𝑑𝑟
, as 𝜹𝝈𝒓 → 0. Thus, the radial 

equilibrium equation reduces to:

𝝈𝑯𝜹𝒓 − 𝜹𝝈𝒓𝒓 − 𝝈𝒓𝜹𝒓 − 𝜹𝝈𝒓𝜹𝒓 = 𝝆𝒓𝟐𝝎𝟐𝜹𝒓

𝝈𝑯 − 𝒓
𝜹𝝈𝒓

𝜹𝒓
 − 𝝈𝒓 − 𝜹𝝈𝒓 = 𝝆𝒓𝟐𝝎𝟐

𝝈𝑯 − 𝝈𝒓 − 𝒓
𝒅𝝈𝒓

𝒅𝒓
= 𝝆𝒓𝟐𝝎𝟐                             3.2

• If there is a radial movement or “shift” of the element by 

an amount s as the disc rotates, the radial strain is given 

by:

𝜺𝒓 =
𝒅𝒔

𝒅𝒓
=

𝟏

𝑬
𝝈𝒓 − 𝝂𝝈𝑯                                  3.3

ROTATING DISC  



• The circumferential strain is given by:

ROTATING DISC  
𝒔

𝒓
=

𝟏

𝑬
𝝈𝑯 − 𝝂𝝈𝒓

𝒔 =
𝟏

𝑬
𝝈𝑯 − 𝝂𝝈𝒓 𝒓

• Differentiating:

• Equating eqns. (3.3) and (3.4) and simplifying,

• From eqn. (3.2)

𝒅𝒔

𝒅𝒓
=

𝟏

𝑬
𝝈𝑯 − 𝝂𝝈𝒓 +

𝒓

𝑬

𝒅𝝈𝑯

𝒅𝒓
− 𝝂

𝒅𝝈𝒓

𝒅𝒓
 𝟑. 𝟒

𝝈𝑯 − 𝝈𝒓 𝟏 + 𝝂 + 𝒓
𝒅𝝈𝑯

𝒅𝒓
− 𝝂

𝒅𝝈𝒓

𝒅𝒓
= 𝟎 𝟑. 𝟓

∴  𝒓
𝒅𝝈𝒓

𝒅𝒓
+ 𝝆𝒓𝟐𝝎𝟐 𝟏 + 𝝂 + 𝒓

𝒅𝝈𝑯

𝒅𝒓
− 𝝂

𝒅𝝈𝒓

𝒅𝒓
= 𝟎

𝜺𝒓 =
𝒅𝒔

𝒅𝒓
=

𝟏

𝑬
𝝈𝒓 − 𝝂𝝈𝑯                                             3.3

𝝈𝑯 − 𝝈𝒓 = 𝝆𝒓𝟐𝝎𝟐 + 𝒓
𝒅𝝈𝒓

𝒅𝒓
                             3.2



ROTATING DISC  

𝒅

𝒅𝒓
(𝝈𝑯+𝝈𝒓) = −𝝆𝒓𝝎𝟐 𝟏 + 𝝂  

• Integrating,
𝝈𝑯 + 𝝈𝒓 = −

𝝆𝒓𝟐𝝎𝟐

𝟐
𝟏 + 𝝂 + 𝟐𝑨 

• Where 2A is just some convenient constant of integration.

• Subtracting eqn. (3.2) from the above eqn.

𝝈𝑯 − 𝝈𝒓 − 𝒓
𝒅𝝈𝒓

𝒅𝒓
= 𝝆𝒓𝟐𝝎𝟐                             3.2

𝟐𝝈𝒓 + 𝒓
𝒅𝝈𝒓

𝒅𝒓
= −

𝝆𝒓𝟐𝝎𝟐

𝟐
𝟑 + 𝝂 + 𝟐𝑨     

𝟐𝝈𝒓 + 𝒓
𝒅𝝈𝒓

𝒅𝒓
=

𝒅

𝒅𝒓
𝒓𝟐𝝈𝒓 .

𝟏

𝒓
• But

∴  𝒓
𝒅𝝈𝒓

𝒅𝒓
+ 𝝆𝒓𝟐𝝎𝟐 𝟏 + 𝝂 + 𝒓

𝒅𝝈𝑯

𝒅𝒓
− 𝝂

𝒅𝝈𝒓

𝒅𝒓
= 𝟎

• Re-arranging and Simplifying,



ROTATING DISC  

∴  
𝒅 𝒓𝟐𝝈𝒓

𝒅𝒓
= 𝒓 −

𝝆𝒓𝟐𝝎𝟐

𝟐
𝟑 + 𝝂 + 𝟐𝑨

• Integrating 
𝒓𝟐𝝈𝒓 = −

𝝆𝒓𝟒𝝎𝟐

𝟖
𝟑 + 𝝂 +

𝟐𝑨𝒓𝟐

𝟐
 − 𝑩

• Again, - B is just another convenient constant of integration,

𝝈𝑯 − 𝝂𝝈𝒓 𝟏 + 𝝂 + 𝒓
𝒅𝝈𝑯

𝒅𝒓
− 𝝂

𝒅𝝈𝒓

𝒅𝒓
= 𝟎 𝟑. 𝟓

• From equation 3.5

𝝈𝒓 = 𝑨 −
𝑩

𝒓𝟐
− 𝟑 + 𝝂

𝝆𝒓𝟐𝝎𝟐

𝟖
 𝟑. 𝟔

𝝈𝑯 = 𝑨 +
𝑩

𝒓𝟐
− 𝟏 + 𝟑𝝂

𝝆𝒓𝟐𝝎𝟐

𝟖
 𝟑. 𝟕

• We can get the following equation:

𝟐𝝈𝒓 + 𝒓
𝒅𝝈𝒓

𝒅𝒓
=

𝒅

𝒅𝒓
𝒓𝟐𝝈𝒓 .

𝟏

𝒓



SOLID DISC  
• For a solid disc the stress at the centre is obtained when r = 0. 

• With r equal to zero equations 3.6 and 3.7 will yield infinite stresses whatever the speed of 

rotation unless B is also zero, i.e. B = 0 

• Thus, B/r2 = 0 gives the only finite solution.

• At the outside radius R, the radial stress must be zero since there are no external forces to 

provide the necessary balance of equilibrium if 𝝈𝒓 were not zero.

• Therefore, from eqn. (3.6),

𝝈𝒓 = 𝑨 −
𝑩

𝒓𝟐
− 𝟑 + 𝝂

𝝆𝒓𝟐𝝎𝟐

𝟖
 𝟑. 𝟔

𝟎 = 𝑨 − 𝟎 − 𝟑 + 𝝂
𝝆𝒓𝟐𝝎𝟐

𝟖
 

𝑨 = 𝟑 + 𝝂
𝝆𝒓𝟐𝝎𝟐

𝟖
 

• Substituting 𝑨 into eqns. (3.6) and (3.7) the hoop and radial stresses at any radius r in a solid 

disc are given by:



SOLID DISC  
• Substituting in eqns. (3.6) and (3.7) the hoop and radial stresses at any radius r in a solid disc 

are given by:

𝝈𝒓 = 𝟑 + 𝝂
𝝆𝑹𝟐𝝎𝟐

𝟖
− 𝟑 + 𝝂

𝝆𝒓𝟐𝝎𝟐

𝟖
 

𝝈𝑯 = 𝟑 + 𝝂
𝝆𝝎𝟐𝑹𝟐

𝟖
− 𝟏 + 𝟑𝝂

𝝆𝝎𝟐𝒓𝟐

𝟖
 

𝝈𝑯 =
𝝆𝝎𝟐

𝟖
𝟑 + 𝝂 𝑹𝟐 − 𝟏 + 𝟑𝝂 𝒓𝟐  𝟑. 𝟗

𝝈𝒓 = 𝟑 + 𝝂
𝝆𝝎𝟐

𝟖
𝑹𝟐 − 𝒓𝟐  𝟑. 𝟖



SOLID DISC  

MAXIMUM STRESSES

• At the centre of the disc, where r = 0, equations 

3.8 and 3.9 yield equal values of hoop and 

radial stress. 

• The maximum hoop and radial stresses are  at 

the centre of the disc (see figure 3.4)

• The maximum stress is given by:

𝝈𝒎𝒂𝒙 = 𝟑 + 𝝂
𝝆𝝎𝟐𝑹𝟐

𝟖
 𝟑. 𝟏𝟎

• At the outside of the disc, at r = R, the equations give:

𝝈𝒓 = 𝟎

𝝈𝑯 = 𝟏 − 𝝂
𝝆𝝎𝟐𝑹𝟐

𝟒

Figure 3.4: Variation of  radial and tangential 

(hoop) stress in a solid disc



ROTATING DISC WITH A CENTRAL HOLE

• The general equations for the stresses in a rotating hollow disc can be obtained in the same 

way as those for the solid disc.

𝝈𝒓 = 𝑨 −
𝑩

𝒓𝟐
− 𝟑 + 𝝂

𝝆𝒓𝟐𝝎𝟐

𝟖
 𝟑. 𝟔

𝝈𝑯 = 𝑨 +
𝑩

𝒓𝟐
− 𝟏 + 𝟑𝝂

𝝆𝒓𝟐𝝎𝟐

𝟖
 𝟑. 𝟕

Figure 3.5: Rotating disc with central hole

• In the case of a disc with a hole at the centre, we use 

different boundary conditions to evaluate the 

constants A and B since, in this case, B is not zero.

• For the case of rotation only, the required boundary 

conditions are zero radial stress at both the inside 

and outside radius.



ROTATING DISC WITH A CENTRAL HOLE

𝟎 = 𝑨 −
𝑩

𝑹𝟏
𝟐 − 𝟑 + 𝝂

𝝆𝝎𝟐𝑹𝟏
𝟐

𝟖

Figure 3.5: Rotating disc with central hole

• At r = R1 ,

• At r = R2 ,

𝜎𝑟 = 0

𝜎𝑟 = 0

𝟎 = 𝑨 −
𝑩

𝑹𝟐
𝟐 − 𝟑 + 𝝂

𝝆𝝎𝟐𝑹𝟐
𝟐

𝟖

• Subtracting and simplifying, appropriately, 

we get: 

𝑩 = 𝟑 + 𝝂
𝝆𝝎𝟐𝑹𝟏

𝟐𝑹𝟐
𝟐

𝟖

𝑨 = 𝟑 + 𝝂
𝝆𝝎𝟐 𝑹𝟏

𝟐 + 𝑹𝟐
𝟐

𝟖



ROTATING DISC WITH A CENTRAL HOLE

• Substituting  A and B  into eqns. (3.6) and (3.7):

𝝈𝒓 = 𝑨 −
𝑩

𝒓𝟐
− 𝟑 + 𝝂

𝝆𝒓𝟐𝝎𝟐

𝟖
 𝟑. 𝟔

𝝈𝑯 = 𝑨 +
𝑩

𝒓𝟐
− 𝟏 + 𝟑𝝂

𝝆𝒓𝟐𝝎𝟐

𝟖
 𝟑. 𝟕

𝑩 = 𝟑 + 𝝂
𝝆𝝎𝟐𝑹𝟏

𝟐𝑹𝟐
𝟐

𝟖

𝑨 = 𝟑 + 𝝂
𝝆𝝎𝟐 𝑹𝟏

𝟐 + 𝑹𝟐
𝟐

𝟖

𝝈𝒓 = 𝟑 + 𝝂
𝝆𝝎𝟐

𝟖
𝑹𝟏

𝟐 + 𝑹𝟐
𝟐 −

𝑹𝟏
𝟐𝑹𝟐

𝟐

𝒓𝟐  − 𝒓𝟐  𝟑. 𝟏𝟏    

𝝈𝑯 =
𝝆𝝎𝟐

𝟖
𝟑 + 𝝂 𝑹𝟏

𝟐 + 𝑹𝟐
𝟐 +

𝑹𝟏
𝟐𝑹𝟐

𝟐

𝒓𝟐
 − 𝟏 + 𝟑𝝂 𝒓𝟐  𝟑. 𝟏𝟐

• The  final equations for the stresses, after relevant manipulations are



ROTATING DISC WITH A CENTRAL HOLE

MAXIMUM HOOP STRESS

• The maximum hoop stress occurs at the inside radius 

where r = R1. (See figure 3.6)

Figure 3.6: Variation of stresses in a  disc with 

a central hole

3.13

3.14

• The minimum  hoop stress is at the outside surface 

of the disc when r = R2.



ROTATING DISC WITH A CENTRAL HOLE

Figure 3.6: Variation of stresses in a  disc with 

a central hole

𝝈𝑯𝒎𝒂𝒙
=

𝝆𝝎𝟐

𝟒
𝟑 + 𝝂 𝑹𝟐

𝟐 − 𝟏 − 𝝂 𝑹𝟏
𝟐  𝟑. 𝟏𝟑

• As the value of the inside radius approaches zero the 

maximum hoop stress value approaches

𝝈𝑯𝒎𝒂𝒙
=

𝝆𝝎𝟐

𝟒
𝟑 + 𝝂 𝑹𝟐

𝟐

• Note that this is twice the value obtained at the 

centre of a solid disc rotating at the same speed.

• We see that drilling of even a very small hole at the 

centre of a solid disc will double the maximum hoop 

stress set up due to rotation.

• At the outside of the disc when r = R2.

𝝈𝑯𝒎𝒊𝒏
=

𝝆𝝎𝟐

𝟒
𝟑 + 𝝂 𝑹𝟏

𝟐 + 𝟏 − 𝝂 𝑹𝟐
𝟐  𝟑. 𝟏𝟒



ROTATING DISC WITH A CENTRAL HOLE

Figure 3.6: Variation of stresses in a  disc with 

a central hole – Typical example

MAXIMUM RADIAL STRESS

• The maximum radial stress is found by consideration of 

the equation

𝟑. 𝟏𝟏 

• This will be a maximum when



ROTATING DISC WITH A CENTRAL HOLE

Figure 3.7: Distribution of  radial and hoop 

stresses in a  hollow disc

MAXIMUM RADIAL STRESS

𝟑. 𝟏𝟓 

• Substituting for r into eqn. (3.11).
𝝈𝑯

𝝈𝒓

• We see from the stress distribution in figure 3.7 

that  radial stress is zero at inside and outside 

surfaces. 

• We also see that tangential (hoop stress is 

maximum at the inside surface and minimum at 
the outside surface.



ROTATING DISC WITH A CENTRAL HOLE

Example 3.1

A steel ring of outer diameter 300 mm and internal diameter 200 mm is shrunk onto a solid 

steel shaft. The interference is arranged such that the radial pressure between the mating 

surfaces will not fall below 30 MN/m2 whilst the assembly rotates in service. If the maximum 

circumferential stress on the inside surface of the ring is limited to 240 MN/m2, determine the 

maximum speed at which the assembly can be rotated. It may be assumed that no relative slip 

occurs between the shaft and the ring. For steel, 𝝆 = 7470 kg/m3, 𝝂 = 0.3, E = 208 GN/m2.

Solution 3.1



ROTATING DISC WITH A CENTRAL HOLE

Solution 3.1



ROTATING DISC WITH A CENTRAL HOLE

Solution 3.1

The maximum hoop stress at the inside radius is limited to 240 MN/m2



ROTATING DISC WITH A CENTRAL HOLE

Example 3.2

A steel rotor disc which is part of a turbine assembly has a uniform thickness of 40 mm. 

The disc has an outer diameter of 600 mm and a central hole of 100 mm diameter. If there

are 200 blades each of mass 0.153 kg pitched evenly around the periphery of the disc at 

an effective radius of 320 mm, determine the rotational speed at which yielding of the disc 

first occurs according to the maximum shear stress criterion of elastic failure.

For steel, E = 200 GN/m2, 𝝂 = 0.3, 𝝆 = 7470 kg/m3 and the yield stress 𝝈𝒚 in simple 

tension = 500 MN/m2.

Solution 3.2



ROTATING DISC WITH A CENTRAL HOLE

Solution 3.2

• The centrifugal force acting on the area (𝜋𝑑𝑡 = 0.024𝜋 𝑚2) produces an effective radial 

stress acting on the outside surface of the disc 

• We assume the blades produce a uniform loading around the periphery of the disc.

• Thus, the radial stress on the outside surface is:



ROTATING DISC WITH A CENTRAL HOLE

Solution 3.2

• Substituting B in equation (3),



ROTATING DISC WITH A CENTRAL HOLE

Solution 3.2

• Substituting in A and B into equations (2) and (1), the stress conditions at the inside 

surface are

• and at the outside surface

• The most severe stress conditions occur at the inside radius where the maximum shear 

stress is greatest:



ROTATING DISC WITH A CENTRAL HOLE

Solution 3.2

• The maximum shear stress theory of elastic failure states that failure is assumed to occur 

when this stress equals the value of shear stress at the yield point in simple tension,

• Thus, for failure to occur  according to this theory,



ROTATING  CYLINDERS (SOLID SHAFTS) – THICK DISC

• In the case of rotating thick cylinders the longitudinal stress 𝝈𝑳 must be taken into account

• The longitudinal strain (𝜀𝐿) is assumed to be constant. 

• Thus, writing the equations for the strain in three mutually perpendicular directions, we 

have the following:

3.18

3.16

3.17

• From eqn. (3.18)



ROTATING THICK  CYLINDERS (SOLID SHAFTS) 

• From eqn. (3.18)

• Differentiating this equation, we get

• Substituting for 𝑬(𝒅𝒔/𝒅𝒓) into eqn. (3.17),

3.17



ROTATING THICK  CYLINDERS (SOLID SHAFTS) 

• Recall that 𝜺𝑳 is constant, differentiating eqn. (3.16), 

3.16

0 =
1

𝐸

𝑑𝜎𝐿

𝑑𝑟
− 𝜈

𝑑𝜎𝐻

𝑑𝑟
− 𝜈

𝑑𝜎𝑟

𝑑𝑟

𝑑𝜎𝐿

𝑑𝑟
= 𝜈

𝑑𝜎𝐻

𝑑𝑟
+

𝑑𝜎𝑟

𝑑𝑟

• Thus the equation:

• Becomes:

• We get



ROTATING THICK  CYLINDERS (SOLID SHAFTS) 

• Dividing through by 1 + 𝜈  we get

• Remember the general equilibrium equation:

𝝈𝑯 − 𝝈𝒓 − 𝒓
𝒅𝝈𝒓

𝒅𝒓
= 𝝆𝝎𝟐𝒓𝟐                             3.2

• Substituting for:



ROTATING THICK  CYLINDERS (SOLID SHAFTS) 

• Integrating

• We get:

• Thus hoop and radial stresses in rotating thick cylinders can be obtained from the 

equations for rotating discs provided that Poisson's ratio 𝝂 is replaced by
𝝂

𝟏−𝝂

• For example, the stress at the centre of a rotating solid shaft will be given by modifying the 

equation (3.10) for a solid disc as follows

𝝈𝒎𝒂𝒙 = 𝟑 + 𝝂
𝝆𝝎𝟐𝑹𝟐

𝟖
 𝟑. 𝟏𝟎 𝝈𝒎𝒂𝒙 = 𝟑 +

𝝂

𝟏 − 𝝂

𝝆𝝎𝟐𝑹𝟐

𝟖
 



ROTATING THICK  CYLINDERS (SOLID SHAFTS) 

Figure 3.9: Variation of hoop and radial stress in a rotating solid  cylinder



ROTATING DISC OF UNIFORM STRENGTH 

• In applications such as turbine blades rotating at high speeds it is often desirable to design for 

constant stress conditions

• We design such rotating parts for uniform stress under the action of the high centrifugal forces 

to which they are subjected.

• The condition of equal stress can only be achieved, as in the case of uniform strength 

cantilevers, by varying the thickness of the disc.

• We now Consider an element of a disc subjected to equal uniform stress.

•  In such a case, the hoop and radial stresses are equal i.e., 𝝈𝑯 = 𝝈𝒓 = 𝝈

Figure 3.8: Variable thickness – Uniform stress rotating Discs 



ROTATING DISC OF UNIFORM STRENGTH 

• Consider an element of a disc subjected to equal hoop and radial stresses: 𝝈𝑯 = 𝝈𝒓 = 𝝈

Figure 3.9 (a): Element of rotating disc of variable thickness



ROTATING DISC OF UNIFORM STRENGTH 

• Consider an element of a disc subjected to equal hoop and radial stresses: 𝝈𝑯 = 𝝈𝒓 = 𝝈

• Let 𝑡 be the thickness at a radius 𝑟,  and (𝑡 + 𝛿𝑡 ) the thickness at a radius (𝑟 + 𝛿𝑟)

• The mass of the element shown in figure 3.9 will be:   𝑚 = 𝜌𝑟𝛿𝜃𝛿𝑟 ∙ 𝑡

• And the centrifugal force acting on the rotating element will be:   𝜌𝑟2𝜔2𝑡𝛿𝜃𝛿𝑟

Figure 3.9 (b): Element of rotating disc of variable thickness
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• The equilibrium equation in vertical direction is then

2𝜎𝛿𝑟 ∙ 𝑡 ∙ sin
𝛿𝜃

2
+ 𝜎𝛿𝜃 ∙ 𝑡 = 𝜎 𝑟 + 𝛿𝑟 𝛿𝜃 𝑡 + 𝛿𝑡 + 𝜌𝑟2𝜔2𝛿𝜃 ∙ 𝜎𝑟 ∙ 𝑡

• Considering that :

sin
𝛿𝜃

2
≈

𝛿𝜃

2
      ,  since

𝛿𝜃

2
  is small

2𝜎𝛿𝑟 ∙ 𝑡 ∙
𝛿𝜃

2
+ 𝜎𝛿𝜃 ∙ 𝑡 = 𝜎 𝑟 + 𝛿𝑟 𝛿𝜃 𝑡 + 𝛿𝑡 + 𝜌𝑟2𝜔2𝛿𝜃 ∙ 𝜎𝑟 ∙ 𝑡

𝜎𝛿𝑟 ∙ 𝑡 ∙ 𝛿𝜃 + 𝜎𝛿𝜃 ∙ 𝑡 = 𝜎 𝑟 + 𝛿𝑟 𝛿𝜃 𝑡 + 𝛿𝑡 + 𝜌𝑟2𝜔2𝛿𝜃 ∙ 𝜎𝑟 ∙ 𝑡

𝜎𝛿𝑟 ∙ 𝑡 ∙ 𝛿𝜃 + 𝜎𝛿𝜃 ∙ 𝑡 = 𝜎 𝑟𝑡 + 𝑡𝛿𝑟 + 𝑟𝛿𝑡 + 𝛿𝑟𝛿𝑡 𝛿𝜃 + 𝜌𝑟2𝜔2𝛿𝜃 ∙ 𝜎𝑟 ∙ 𝑡

𝜎𝛿𝑟𝑡 + 𝜎𝑡 = 𝜎 𝑟𝑡 + 𝑡𝛿𝑟 + 𝑟𝛿𝑡 + 𝛿𝑟𝛿𝑡 + 𝜌𝑟2𝜔2𝜎𝑟 ∙ 𝑡

𝜎𝛿𝑟𝑡 + 𝜎𝑡 = 𝜎 𝑟𝑡 + 𝑡𝛿𝑟 + 𝑟𝛿𝑡 + 𝜌𝑟2𝜔2𝜎𝑟 ∙ 𝑡

• Neglecting higher order terms:



ROTATING DISC OF UNIFORM STRENGTH 

• Considering the limit , we see that

𝜎𝑡 ∙ 𝑑𝑟 = 𝜎𝑟 ∙ 𝑑𝑡 + 𝜎𝑡 ∙ 𝑑𝑟 + 𝜌𝑟2𝜔2𝑡 ∙ 𝑑𝑟

𝑑𝑡

𝑑𝑟
= −

𝜌𝑟𝜔2𝑡

𝜎

• Simplifying:

• Re-arranging: 𝒅𝒕

𝒕
= −

𝝆𝒓𝝎𝟐

𝝈
𝒅𝒓

• Integrating:

or 𝑡 = 𝑒−
𝜌𝑟𝜔2+𝐶

2𝜎 = 𝑒𝐶 ∙ 𝑒−
𝜌𝑟𝜔2

2𝜎

• At   r = 0, 
𝑡 = 𝐴𝑒−

𝜌𝑟𝜔2

2𝜎 = 𝐴𝑒0

• Therefore in general: 𝒕 = 𝒕𝟎𝒆−
𝝆𝒓𝝎𝟐

𝟐𝝈

𝐴(𝑟=0) = 𝑡(𝑟=0) = 𝑡0

𝑡 = 𝐴𝑒−
𝜌𝑟𝜔2

2𝜎

ln 𝑡 = −
𝜌𝑟𝜔2𝑡

2𝜎
+ 𝐶



ROTATING DISC OF UNIFORM STRENGTH 

Example 3.3

The cross-section of a turbine rotor disc is designed for uniform strength under rotational 

conditions. The disc is keyed to a 60 mm diameter shaft at which point its thickness is a 

maximum. It then tapers to a minimum thickness of 10 mm at the outer radius of 250 mm where 

the blades are attached. If the design stress of the shaft is 250 MN/m2 at the design speed of 

12000 rev/min, compute the required maximum thickness. For steel 𝝆 = 7470 kg/m3.

The thickness of a uniform strength disc is given by

Solutions 3.3



ROTATING DISC OF UNIFORM STRENGTH 

Solutions 3.3

Substituting in equation (1),



Example 3.4 

A turbine rotor is 600 mm in diameter at the blade ring, and is keyed to a 50 mm diameter shaft. 

Given that the minimum disc thickness is 9.5 mm, compute the thickness at the shaft if the disc 

is designed for a uniform stress of 200 MPa when the assembly is rotating at 10,000 rpm. 

Density = 7,700 kg/m3.

𝒕 = 𝒕𝟎𝒆−𝝆𝒓𝟐𝝎𝟐/𝟐𝝈

At 𝒓 =  𝟎. 𝟑 𝒎 𝒕 = 𝟗. 𝟓 = 𝑨𝒆−𝝆(𝟎.𝟑)𝟐𝝎𝟐/𝟐𝝈 = 𝑨𝒆−𝝆(𝟎.𝟎𝟗)𝝎𝟐/𝟐𝝈

In general for a uniform strength rotating disc;

Solution 3.4

At 𝒓 =  𝟎. 𝟎𝟐𝟓 𝒎 𝒕 = 𝟗. 𝟓 = 𝑨𝒆−𝝆(𝟎.𝟎𝟐𝟓)𝟐𝝎𝟐/𝟐𝝈 = 𝑨𝒆−𝝆(𝟎.𝟎𝟎𝟎𝟔𝟐𝟓) 𝝎𝟐/𝟐𝝈

𝒕 = 𝟗. 𝟓𝒆−𝝆(𝟎.𝟎𝟖𝟗𝟒)𝝎𝟐/𝟐𝝈

𝝆𝝎𝟐 𝟎. 𝟎𝟖𝟗𝟒

𝟐𝝈
= 𝟕𝟕𝟎𝟎

𝟏𝟎, 𝟎𝟎𝟎𝝅

𝟑𝟎

𝟐
𝟎. 𝟎𝟖𝟗𝟒

𝟐 × 𝟐𝟎𝟎 × 𝟏𝟎𝟔
= 𝟏. 𝟖𝟗

where:

then: 𝒕 = 𝟗. 𝟓𝒆𝟏.𝟖𝟗 𝒕at shaft = 𝟔𝟑 mm



MEC 3352 - QUIZ 002

a) A thin uniform disc of inner radius 50 mm and outer diameter 400 

mm is rotating at 6000 rpm about its axis. Giventhe density, 𝜌 =

7800kg/m3, and the Poisson’s ratio, 𝜈 = 0.3. Compute the;

i) maximum hoop stress

ii) minimum circumferential stress

iii) maximum radial stress 

b) Draw the distribution of hoop and radial stresses along the radius 

of the disc. 



Determine from first principles the hoop stress at the inside and outside radius of a thin steel disc 

of 300 mm diameter having a central hole of 100 mm diameter, if the disc is made to rotate at 

5000 rpm. Determine the position and magnitude of the maximum radial stress.

[38.9. 12.3 MN/m2; 87 mm rad; 8.4 MN/m2.]

Questions

Question 3.1

A solid steel disc 300 mm diameter and of small constant thickness has a steel ring of outer 

diameter 450 mm and the same thickness shrunk onto it. If the interference pressure is reduced 

to zero at a rotational speed of 3000 rpm,  calculate:

(a) the radial pressure at the interface when stationary:

(b) the difference in diameters of the mating surfaces of the disc and ring before assembly

Question 3.2

[18.55 MN/m2; 0.045 mm]



Questions

Question 3.3

Question 3.4

The “bursting“ speed of a cast-iron flywheel rim 3m mean diameter, is 850 rpm. Neglecting the 

effects of the spokes and the boss. and assuming that the flywheel rim can be considered as a 

thin rotating hoop, determine the ultimate tensile strength of the cast iron. Cast iron has a density 

of 7.3 Mg/m3.A flywheel rim is to be made of the-same material and is required to rotate at 400 

rpm. Determine the maximum permissible mean diameter using a factor of safety of 8.

A forged steel drum 0.524 m outside diameter and 19 mm wall thickness, has to be mounted in a 

machine and spun about its longitudinal axis. The centrifugal (hoop) stress induced in the 

cylindrical shell is not to exceed 83 MN/m2. Determine the maximum speed (in rpm) at which the 

drum can be rotated. For steel, the density = 7.8 Mg/m3. 

[3630.]



Question 3.4

A steel disc of a turbine is to be designed so that the radial and circumferential 

stresses are to be the same throughout the thickness and radius of disc and is equal 

to 80 MPa, when running at 3500 rpm. If the axial thickness at the centre is 20 mm, 

what is the thickness at the radius of 500 mm? 

A solid long cylinder of diameter 600 mm is rotating at 3000 rpm. Calculate 

(i) maximum and minimum hoop stresses and 

(ii) maximum radial stress. 

Given ρ = 0.07644 N/cm3, g = 9.8 m/s2, 𝜈 = 0.3 

Question 3.5



Question 3.6

Determine the intensities of principal stresses in a flat steel disc of uniform thickness, 

having a diameter of 1m and rotating at 2400 r.p.m. What will be the stress if the disc 

has a central hole of 0.2m diameter? Take Poisson's ratio to be 1/3, and the density 

of this steel as 7850kg/m3.

A disc of uniform thickness has inner and outer radii of 100mm and 400mm 

respectively and is rotating at 2400 r.p.m about its axis. The density of the material is 

7800kg/m3 and the Poisson’s ratio is 0.3. Using a suitable scale and intervals, draw 

on the same set of axes, the graph of stress against radius for both circumferential 

and radial stress.

Question 3.7

Assignment 2 [Questions 3.6 & 3.7] : Due 25th September 2024



Question 3.8

A steel ring of outer diameter 300mm and internal diameter 200mm is shrunk onto a 

solid steel shaft. The interface is such that the radial pressure between the mating 

surfaces remains above 30MN/m2 at all times whilst the assembly rotates in practice. 

The circumferential stress on the inside surface of the ring must not exceed 

240MN/m2. Determine the maximum speed at which the assembly can rotate. Take 

𝜌 =7500kg/m3, 𝜈 =0.3 and 𝐸 = 210GPa.



Grazie Signore
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