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SYMBOLS/UNITS
Tensile stresses are considered positive and compressive stresses are negative,

P, = Internal Pressure (N /mz)
P, = Internal Pressure (N /mz)

o, = Tangential Stress (N /mz)
o, = Axial/longitudinal Stress (N/ )

E = Young'sModulus of Elasticity (N/ ) ~p - = 1
= d
p = Density ( g/mg) = . I~ |

v = Poissoin’s ration $,



SYMBOLS/UNITS

r = Radius at point of analysis (m)
R, = Internal radius of the cylinder (m)

R, = External radius of the cylinder (m)

& = Radial Strain

& = Tangential Strain

e, = Axial/longitudinal Strain

w = Radial deflection (m) = ——=—
<P P o] T
-— — d
— — O/ . — ¢+ l




INITIAL ASSUMPTIONS

For an infinitesimal cube acted upon by the stresses shown, €4, €, and ¢, are
the strains associated with the stresses 0,, 0, and a;. v = Poisson’s ratio.

0.1
The strains are given by the relations:
¢, =0,/E-v0,/E-v0,E
£, = 0,/E—-v0,/E—-v0,/E
£, = 04/E —v0,/E -v0o,/E
e 8]
- 3

Figure 3.0 Stresses acting on an infinitesimal cube



THIN DISC

Consider a “disc” or a “thin ring” subject to internal stresses resulting from the
internal forces as a result of its rotational speed.

Under the action of the internal forces only, the three principal stresses will
be o, tensile radial stress, o, tensile tangential stress and o, an axial stress
which is generally also tensile.

The stress conditions occur throughout the section and vary primarily relative
to the radius r.

It is assumed that the axial stress o, is constant along the length of the
section because the disc is thin compared to its diameter.

The axial stress throughout the section is assumed zero. It is also assumed
that the internal pressure is P, and the external pressure P, = 0.



THIN ROTATING DISC OR CYLINDER
 Consider a thin disc/ring or cylinder rotating at an angular speed w rad/s.

 The rotating disc or cylinder is subjected to a radial pressure (centrifugal force p) caused by
the centrifugal effect on the rotating mass of the disc.

Figure 3.1: Section of a thin rotating disc
 Where we have the following:

p = internal pressure (N/m?)

internal radius (m)

angular speed (rad/s)

= Hoop tension force (N), due to rotation

r
W
F



THIN ROTATING DISC OR CYLINDER
 We now consider equilibrium of the half ring over unit thickness of the circumference:

2F =p Xxd X1
2F =p X 2r
F=pr

F =pr = (mw?r)r = mw?r?

* The centrifugal effect on a unit length of the circumference is: P = maw*r

« We assume the cylinder wall is so thin such that the centrifugal effect is constant through the
thickness of the wall.

* In this case, the hoop tension (F) is transmitted through the entire circumference and is
resisted by the complete cross-sectional area.

 The hoop stress is given by: F mw?r2

=477 4




THIN ROTATING DISC OR CYLINDER

 The hoop stress (gp) is also known as the tangential or circumferential stress
* Note that A is the cross-sectional area of the ring.

* And since we are considering a unit length, the ratio (m/A) is the mass of the material per
unit volume which is the density. Thus,

Oy = pwr? 3.1
 Consider the element of a disc (of unit thickness) shown in figure 3.2:

 The three principal stresses are:

o, + 8o,

o, = radial stress

.’ og = Hoop stress (tangential, circumferential)

= Longitudinal (axial stress)

* The axial (longitudinal stresses is normal to the plan
Figure 3.2: Element of a rotating disc



ROTATING DISC

o + &0y « Ataradius r, and assuming unit thickness, the
volume of the element is given by:

ov =100.0r.1 =ro606or
‘  The mass of the element s given by:

o om = pdév = prdbor
 The centrifugal force acting on the element
Figure 3.2: Element of a rotating disc IS given by:

F = mw*r
F = pré08r. w*r = pw?r?606r

* Considering radial equilibrium of the element, we have forces acting on an element of unit
thickness shown in figure 3.3:



ROTATING DISC - | | |
* For equilibrium of the element radially (resolve forces in radial

direction
(0,+ 8o)(r+ 3138

56
201481 sin — + 0,780 — (0y + 80, )(r + )80 = ort w80 8r

60

. 56
e For asmall value of 68, sin (7)

~ radians

Q

c x0rx!

00
20461 (7) + 0,180 — (0, + 60,)(r + 67r)80 = priw?6046r

oydr + o,r — (0, + 60,)(r + 8r) = priw?ér

oydér + o,r — (0,7 + 80,1 + 6,61 + 80,87) = priw?dr

Figure 3.3: Element of a rotating disc
oydr + o,r —o,r — 60,1 — 0,61 — 60,61 = priw?ér



ROTATING DISC

(o,¢+80)(r+31)38

Figure 3.3: Element of a rotating disc

oydr — 60,1 — 0,8r — 80,01 = pr*w?dr

oo
oy —T (6—;) — 0, — 60, = pr*w?

: Soy\ _ doy :
The lim, (5) =2 as 65, — 0. Thus, the radial

equilibrium equation reduces to:

Oy
dr
If there is a radial movement or “shift” of the element by

an amount s as the disc rotates, the radial strain is given
by:

oy — 0, —T—— = préw? 3.2

__ds

1
ST_E:E(O-r_VO-H) 3.3



ROTATING DISC

 The circumferential strain is given by:

« Differentiating:

ds

s 1 ( )
. — E Oy VO,
1
S=7 (oy —vo, )T
1 dO'H dar

dr

Er

ds

=;=E(0r—VGH)

« Equating eqgns. (3.3) and (3.4) and simplifying,

« Fromeqn. (3.2)

(

(oy

do,
" dr

|

doy do,
O'r)(1+V)+TW—Vdr 0
- 2
OH dr
+ 1+v)+ don _ 4o
priw? v tr—o--v_o—=

3.4

3.3

3.5

3.2



ROTATING DISC

da_l_ (1+v) + doy dar_o
dr pr v rdr vdr

Re-arranging and Simplifying, g
dr

Integrating, . priw?
Oy 0O, = —
2

Where 2A is just some convenient constant of integration.

— (oy+o,) = —prw’*(1+v)

(1+v)+24

Subtracting eqgn. (3.2) from the above eqn.

oy — O, Cilar = préw? 3.2
20, + 1" = ”r (3 +v)+ 24
do,

 But ZO'r + TW - E [(rzar)].;



ROTATING DISC

do d 1
ZO'r + Td—rr T E [(1"20'7«)].;
d(ra,) pr? w?
=71|— 2A
T r 5 3+v)+
. i rtw? 2Ar?
Integrating r2g. = P (3 +v) + _B
8 2
 Again, - B is just another convenient constant of integration,
2, 2
prew
o, :A—ﬁ—(3+v) 3
* From equation 3.5
(oy —vo,)(1+v) +r@—vdar =0
1 ’ dr dr
 We can get the following equation:
r*w?

B p
oy =A+——(1+3v)

8

3.6

3.5

3.7



SOLID DISC
For a solid disc the stress at the centre is obtained when r= 0.

« With r equal to zero equations 3.6 and 3.7 will yield infinite stresses whatever the speed of
rotation unless B is also zero, i.e. B=0

 Thus, B/r? =0 gives the only finite solution.

* At the outside radius R, the radial stress must be zero since there are no external forces to
provide the necessary balance of equilibrium if o,. were not zero.

 Therefore, from eqn. (3.6),

priw?

B
Fr=A———(3 3.6
12 3+v) 8

préw?

8

0=4-0-C3+v)

priw?

8

 Substituting A into egns. (3.6) and (3.7) the hoop and radial stresses at any radius r in a solid
disc are given by:

A= 3 +v)



SOLID DISC

 Substituting in egns. (3.6) and (3.7) the hoop and radial stresses at any radius rin a solid disc
are given by:

szz 2,.2

p prew
o.=(3+v) 3 — (3 +v) 3
pw’
ar=(3+v)T[R — 12| 3.8
ZRZ erZ
aH=(3+v)p8 —(1+3v)"’8

2
W
Oy = pT [(3 + V)R — (1 + 3v)r2] 3.9



SOLID DISC

MAXIMUM STRESSES

At the centre of the disc, where r = 0, equations
3.8 and 3.9 yield equal values of hoop and
radial stress.

* The maximum hoop and radial stresses are at
the centre of the disc (see figure 3.4)

« The maximum stress is given by:

70.00

60.00

50.00

40,00

30.00 \ S—
\ \ — Ot

20.00

Stress(N/mm ?)

2 p2
w*R 10.00
Cmax = (3 +1) 2 3.10 . LY
8 0.00 50.00 100.00 150.00
« At the outside of the disc, at r = R, the equations give: Radius (mm)
o,=0 , - . .
wZR2 Figure 3.4: Variation of radial and tangential
_ _ P (hoop) stress in a solid disc
oy =(1-v)

4:



ROTATING DISC WITH A CENTRAL HOLE

» The general equations for the stresses in a rotating hollow disc can be obtained in the same
way as those for the solid disc.
2,2

B prew
ar=A—r—2—(3+v) 3 3.6
B priw?
=A+—=—-(1+3 3.7
OH +1"2 ( V) g

 |n the case of a disc with a hole at the centre, we use
different boundary conditions to evaluate the
constants A and B since, in this case, B is not zero.

 For the case of rotation only, the required boundary
conditions are zero radial stress at both the inside
and outside radius. Figure 3.5: Rotating disc with central hole




ROTATING DISC WITH A CENTRAL HOLE
- Atr=R,, 0, =

B pw?R}
0=A-——— 3+

2BtV g
¢ Atl’=R2, O-T':O

B pw?*R5
OZA—F—(B‘FV) 3

2
 Subtracting and simplifying, appropriately,
we get:
pw?RiR3
8
pw*(RT + R3)
8

B=(3+v)

Figure 3.5: Rotating disc with central hole

A= 3 +v)



ROTATING DISC WITH A CENTRAL HOLE
 Substituting A and B into eqgns. (3.6) and (3.7):

préw?

B
UrZA—r—z—(3+V) 3 3.6 B=3+v)
B r’w?
aH=A+ﬁ—(1+3v)p8 3.7 A=3+v)

The final equations for the stresses, after relevant manipulations are

2 RZRZ
ar=(3+v)%[R%+R%— e —rzl

r2

2 2p2
w RIR
0H=—p8 [(3+v)(R§+R%+ i22> —(1+3v)r2]

pw?’R5R5
3
pw*(R1 + R3)

8

3.11

3.12



ROTATING DISC WITH A CENTRAL HOLE
MAXIMUM HOOP STRESS

e The maximum hoop stress occurs at the inside radius

where r = R,. (See figure 3.6)

UH max

The minimum hoop stress is at the outside surface

2
pw
= [(3 4+ v)(R} + R; + R3) — (1 +3v)R}]

pw

2

4

(3 + v)R? + (1 — w)R])

of the disc when r=R,,

O.H nmn

pw’

————

4

(3 + V)RS + (1 — v)R3]

3.13

3.14

120,00

100.00 \

£0.00

60.00

40.00

ress (M/mm 2)

il
|

20,00

0.00

0.000 50.000 100.000 150.000
-20.00

Radius (mm)

Figure 3.6: Variation of stresses in a disc with
a central hole



ROTATING DISC WITH A CENTRAL HOLE

pw’
Hmax =4 |B+v)R5 - (1—-v)R:| 3.13
 As the value of the inside radius approaches zero the o000 —\
maximum hoop stress value approaches 000 \
pwz 2 E 60.00 \
Hppgx = T (3 + V)RZ % 000 \ -
* Note that this is twice the value obtained at the " /_\ |
centre of a solid disc rotating at the same speed. 000 / L L
 We see that drilling of even a very small hole at the po—— "
centre of a solid disc will double the maximum hoop Radius mm)

stress set up due to rotation.
» At the outside of the disc when r = R,

pw’

Otmin = 4 [B+Vv)R5+(1—-V)R;] 3.14

Figure 3.6: Variation of stresses in a disc with
a central hole



ROTATING DISC WITH A CENTRAL HOLE

MAXIMUM RADIAL STRESS
» The maximum radial stress is found by consideration of

| 100 O,
the equation J omax
2 2 p2
0,,:(3+v)£—— R} +R; - 122—?’2 3.11 g %
3 r = 50 |-
L . d X
e This will be a maximum when Ir _ 0, = T 40
dr % ) |ﬂ-f]'nax
. 4] \\\ Eﬁmm
d RZR2 - -
0=E;|:R%+R§“ ;22_!‘2] 2 l/ O
L2 0 50 100 150 200 mm
0=RIR3S —2r —
r

Figure 3.6: Variation of stresses in a disc with
a central hole — Typical example
r =/ (RiR2) yp p



ROTATING DISC WITH A CENTRAL HOLE
MAXIMUM RADIAL STRESS
* Substituting for rinto eqgn. (3.11).

pw’
Orme = (34 V)= [R? + R; — RiR2 — RyR;)]

2
3+ v)‘”—g’-— [R; — R;1? 3.15

» We see from the stress distribution in figure 3.7
that radial stress is zero at inside and outside
surfaces.

« We also see that tangential (hoop stress is
maximum at the inside surface and minimum at Figure 3.7: Distribution of radial and hoop
the outside surface. stresses in a hollow disc




ROTATING DISC WITH A CENTRAL HOLE

Example 3.1

A steel ring of outer diameter 300 mm and internal diameter 200 mm is shrunk onto a solid
steel shaft. The interference is arranged such that the radial pressure between the mating
surfaces will not fall below 30 MN/m? whilst the assembly rotates in service. If the maximum
circumferential stress on the inside surface of the ring is limited to 240 MN/m?, determine the
maximum speed at which the assembly can be rotated. It may be assumed that no relative slip
occurs between the shaft and the ring. For steel, p = 7470 kg/m3, v = 0.3, E = 208 GN/m?.

Solution 3.1
B 3B+v) ,,

J’:A"}E_ g pwr (H
when r = 0.15, =0

B 3.3
0=A — — =7 pw*(0.15)? (2)

0.157 8



ROTATING DISC WITH A CENTRAL HOLE

Solution 3.1
when r = 0.1, o, = —30 MN/m*
B 3.3
~30x 10° =4 — — 2(0.1)*
X oTE T R 0.1) (3)
B 3.3
0=A — — 27 0w*(0.15)?
0152 2 pw(0.15) (2)
3.
(2)—(3), 30 x 10° = B(100 — 44.4) — ?3,0&)2 (0.0225 — 0.01)
30 x 106 0.0125 x 7470
B= 5 T3 3xs56 ¢

B = 0.54 x 10°% 4 0.693¢?

3.3 x 7470 x 0.01w?
8
= 54 x 10° 4+ 69.3w? + 30.8w? — 30 x 10°

and from (3),

A = 100(0.54 x 10° + 0.693w?) + —~ 30 x 10°




ROTATING DISC WITH A CENTRAL HOLE

Solution 3.1 ] , , ¢
= 34 x 10° 4 69.3w" 4 30.8w” — 30 x 10

= 24 x 10° + 100.10°
The maximum hoop stress at the inside radius is limited to 240 MN/m?

B 143
O'H=A—|—;-———( Z v)pw2r2

240 x 10° = (24 x 10° + 100.10%) +

(0.54 x 105 4+0.6930%) 1.9

0.12
240 x 10® = 78 x 10° + 169.3w? — 17.7?

151.70? = 162 x 10°

, 162> 10°
1517
w = 1033 rad/s = 9860 rev/min

— 1.067 x 10°

o X 7470 x 0.01w?



ROTATING DISC WITH A CENTRAL HOLE

Example 3.2
A steel rotor disc which is part of a turbine assembly has a uniform thickness of 40 mm.

The disc has an outer diameter of 600 mm and a central hole of 100 mm diameter. If there
are 200 blades each of mass 0.153 kg pitched evenly around the periphery of the disc at
an effective radius of 320 mm, determine the rotational speed at which yielding of the disc
first occurs according to the maximum shear stress criterion of elastic failure.

For steel, E = 200 GN/m?, v = 0.3, p = 7470 kg/m* and the yield stress o, in simple

tension = 500 MN/m?2.
Solution 3.2

Total mass of blades = 200 x 0.153 = 30.6 kg

Effective radius = 320 mm
centrifugal force on the blades = mw?r = 30.6 x w? x 0.32
the area of the disc rim = ndt = 7 x 0.6 x 0.004 = 0.0247m?



ROTATING DISC WITH A CENTRAL HOLE

Solution 3.2

« The centrifugal force acting on the area (mdt = 0.024m m?) produces an effective radial
stress acting on the outside surface of the disc

* \We assume the blades produce a uniform loading around the periphery of the disc.

 Thus, the radial stress on the outside surface is:

30. 2 % 0.32
_ 306 x @ X — 130w? N/m? (tensile)

0.024rx
B 3 ,
0,=A——2—( +v)pa)2r’3 (1)
r 3
oy =At oUW L @)
r 8
When r = 0.05, o, =10

3.3
0=4A— 4008 — - 0w*(0.05)? (3)



ROTATING DISC WITH A CENTRAL HOLE

Solution 3.2 ‘s
0=A— 4008 — ? pw?(0.05)°

When r = 0.3, o. = +130w®
130w? = A — 11.1B — =P (0.3)

3.3
(4)-(3), 1300w? = 388.9B — = pw? (9 — 0.25)1072

130w® = 388.98B — 270w?

(130 4 270)

2 — 1' 2
3gg9 @ = 10

* Substituting B in equation (3),

3.3
A =4120% + = 7470(0.05)% e’

(3)

(4)



ROTATING DISC WITH A CENTRAL HOLE

Solution 3.2 33
A = 4120° + = X 7470(0.05)%w?

— 419.70° = 4200w°

« Substituting in A and B into equations (2) and (1), the stress conditions at the inside

surface are ) ) ) )
oy = 4200w° + 412w — 4.430w" = 827w

g =10

* and at the outside surface ) X )
oy = 420w* + 11.420w% — 1590 = 272

o, = 130w”
* The most severe stress conditions occur at the inside radius where the maximum shear
stress Is greatest: oi — 0y 827w —0

Tmax — 9 )



ROTATING DISC WITH A CENTRAL HOLE

Solution 3.2

« The maximum shear stress theory of elastic failure states that failure is assumed to occur
when this stress equals the value of shear stress at the yield point in simple tension,

fmax =TT T T, T
 Thus, for failure to occur according to this theory,
Oy _ 827 w?
2 2
827w’ = o, = 500 x 10°
w? = gg-g- x 10° = 0.604 x 10°

@ = 780 rad/s = 7450 rev/min



ROTATING CYLINDERS (SOLID SHAFTS) - THICK DISC

 In the case of rotating thick cylinders the longitudinal stress o, must be taken into account
 The longitudinal strain (&; ) is assumed to be constant.
« Thus, writing the equations for the strain in three mutually perpendicular directions, we

have the following:
1

&L = E(UL — YOy — VO;) 3.16
1
£, = —(0p —voy —voL) = iii 3.7
dr
1 S
ey = —(oy — vo, — Vo) = - 3.18
E r

 Fromeqn. (3.18
. 5.19) Es = rlog — v(o, + or)]



ROTATING THICK CYLINDERS (SOLID SHAFTS)

» From eqn. (3.18) Es = rloy — v(o, + 01)]

« Differentiating this equation, we get

ds do do, do
E;i_r =r[?§_vdr —v—&f] 4+ 1 [oyg — vo, — vor ]
 Substituting for E(ds/dr) into eqn. (3.17),
1 ds
g, = E(cr,. - YOy — VOL) = 7 3.17
[dO'H dO’,— dO’L}
g, — VOyg — VO] = F — V -V - Oy — VO, — VO
' " - dr dr dr " .
d d d
0 = (o — o0, )(1 +v)+r_q£ — Vr or ——vr-—-cili

dr dr dr



ROTATING THICK CYLINDERS (SOLID SHAFTS)

» Recall that g is constant, differentiating egn. (3.16),
1

g = E(O'L — VOF — VO,) 3.16
1(do; doy do,
We get O—E(W‘VW‘UT)

do,  (doy N do,
dr Y dr dr

* Thus the equation:

do do doy
Oz(JH-—cr,.)(l—l-v)%-r—d-;{i-—*vr drr p

 Becomes:

, doy do,
O=(ocyg —o, )1 +v)y4+r(l —v )—dr——vr(1+v)

dr




ROTATING THICK CYLINDERS (SOLID SHAFTS)

* Dividing through by (1 + v) we get

dGH dGr
O=(oy —o,)+r(l — v)—;f—; —vr p
* Remember the general equilibrium equation:
oy — 0, — rddir = pw?*r? 3.2
* Substituting for: (o — 0,),
do, d do,
0= pw*r’+r dc:_ +r(l — v)—-—-—u;jf — vr di
dGH dUr
pwre 4 r( V) [-—-—dr - ]
doy do,  pwr
dr dr (1 —v)



ROTATING THICK CYLINDERS (SOLID SHAFTS)

* |Integrating
doy do, ow*r

T ar (1 —-v)

2.2
_ pwr
* We get: oy + 0, = + 2A
Ht+ 21— v)

« Thus hoop and radial stresses in rotating thick cylinders can be obtained from the
. . . . . ' . . v
equations for rotating discs provided that Poisson's ratio v is replaced by P

* For example, the stress at the centre of a rotating solid shaft will be given by modifying the
equation (3.10) for a solid disc as follows

2 p2
w“R
Omax = (3 -|-V)p 3 3.10 Omax = (3 + 1

v )poqu2

— vV 8



ROTATING THICK CYLINDERS (SOLID SHAFTS)

F70.000

60.000 -

50.000

40.000

30.000

20.000

Stress (N/mm?)

10.000

0.000

-10.000

D0 50.00 100.00 150.00

Radius (mm)

250mm dia solid cylinder at 10000rpm

Figure 3.9: Variation of hoop and radial stress in a rotating solid cylinder



ROTATING DISC OF UNIFORM STRENGTH

In applications such as turbine blades rotating at high speeds it is often desirable to design for

constant stress conditions
We design such rotating parts for uniform stress under the action of the high centrifugal forces

to which they are subjected.
The condition of equal stress can only be achieved, as in the case of uniform strength
cantilevers, by varying the thickness of the disc.

éi’w b @w

a

ho ' hy a_

b

Figure 3.8: Variable thickness — Uniform stress rotating Discs

We now Consider an element of a disc subjected to equal uniform stress.
In such a case, the hoop and radial stresses are equal i.e., oy = 0, = 0



ROTATING DISC OF UNIFORM STRENGTH
 Consider an element of a disc subjected to equal hoop and radial stresses. oy = 6, = o

Figure 3.9 (a): Element of rotating disc of variable thickness



ROTATING DISC OF UNIFORM STRENGTH
 Consider an element of a disc subjected to equal hoop and radial stresses: oy = 0, = 0

(o, +8a.)(r +6,)td,

a,tho,

t is the disc thickness {into
th in this fi
e page in this figure) h,

Figure 3.9 (b): Element of rotating disc of variable thickness
» Lett be the thickness at a radius r, and (t + &t ) the thickness at a radius (r + 6r)
* The mass of the element shown in figure 3.9 willbe: m = pré0ér - t

« And the centrifugal force acting on the rotating element will be: pr?w?t5667r



ROTATING DISC OF UNIFORM STRENGTH
 The equilibrium equation in vertical direction is then

06
20871 - t - sin <7) + 080 -t =0o(r+6r)60(t + 6t) + préw?80 -or - t

 Considering that :

. (86 56 . 56 .
sin (—) ~ — , since — is small
2 2 2

20081 - t - (?) + 080 -t =0o(r+6r)60(t + 6t) + préw?80 -or -t
o8r - t-850 + 3080 -t = o(r + 6r)60(t + 6t) + prew?60 -or - t
o8r-t-60 +060 -t =o(rt + tér + rét + 6ré5t)50 + pr?w?80 - or - t

obrt + ot = o(rt + tér + r&t + 5rét) + prew?or - t
 Neglecting higher order terms:
odrt + ot = o(rt + tér + rét) + préw?or - t



ROTATING DISC OF UNIFORM STRENGTH
 Considering the limit , we see that
ot -dr = or-dt + ot - dr + préw?t - dr

Simplifying: dt prw?t
| dr o
* Re-arranging: dt prw?
— = dr
L o
2
* Integrating: ng= _Pret_ .
20
2 2 _prw
or t = e_PT(é)O_‘FC — eC. 8_072‘(01_) t =Ae 20
® - 2 — —
At r=0, = Ae 70 = Ae" Ar=0) = t(r=0) = to
_proo2

Therefore in general:



ROTATING DISC OF UNIFORM STRENGTH

Example 3.3

The cross-section of a turbine rotor disc is designed for uniform strength under rotational
conditions. The disc is keyed to a 60 mm diameter shaft at which point its thickness is a
maximum. It then tapers to a minimum thickness of 10 mm at the outer radius of 250 mm where
the blades are attached. If the design stress of the shaft is 250 MN/m? at the design speed of
12000 rev/min, compute the required maximum thickness. For steel p = 7470 kg/m?.

Solutions 3.3
The thickness of a uniform strength disc is given by

; — toe(—pwzrz)/(%) (1)

where 1; is the thickness at » = 0.
Now at r = (.25,

22 2
PW*r 7470 ( 27 5
_ 12000 x 22} %0252 = 1.47
20 2 x 250 x 10 60/ ~



ROTATING DISC OF UNIFORM STRENGTH

Solutions 3.3
and at r = 0.03,
2,2 2
pwre 7470 2T 5
20 2 x 250 x 10° (12000 8 60) x 003
9 x 104
= 1.47 X ey = 00212
But at r = (.25, t = 10 mm
Substituting in equation (1), 0.01 = roe™ " = 0.2299 1,
0.01
ty = = 0.0435m = 43.5
0= 0.2299 o

Therefore at r = 0.03 0.0212
t = 0.0435¢ = 0.0435 x 0.98

= 0.0426 m = 42.6 mm



Example 3.4

A turbine rotor is 600 mm in diameter at the blade ring, and is keyed to a 50 mm diameter shaft.
Given that the minimum disc thickness is 9.5 mm, compute the thickness at the shaft if the disc
is designed for a uniform stress of 200 MPa when the assembly is rotating at 10,000 rpm.
Density = 7,700 kg/m?.

Solution 3.4 .
In general for a uniform strength rotating disc; t = tge P w/20

Atr = 0.3m t =9.5= Ae—P(0-3)2w2/20 — Ae—p(0.09)w2/20

Atr = 0.025m f = 9 5 = geP0.025)°w?/20 _ 4,-p(0.000625) w*/20
where: t = 9.5 P(0.089H)w?/20

= 1.89

pw*(0.0894) 700 10,000T\>  0.0894
20 B 30 2 X 200 x 106

then: t =9 5189 tat shaft = 63 mm



MEC 3352 - QUIZ 002

a) A thin uniform disc of inner radius 50 mm and outer diameter 400
mm is rotating at 6000 rpm about its axis. Giventhe density, p =
7800kg/m3, and the Poisson’s ratio, v = 0.3. Compute the;

) maximum hoop stress

i) minimum circumferential stress

lil) maximum radial stress

b) Draw the distribution of hoop and radial stresses along the radius
of the disc.




Questions
Question 3.1

Determine from first principles the hoop stress at the inside and outside radius of a thin steel disc
of 300 mm diameter having a central hole of 100 mm diameter, if the disc is made to rotate at
5000 rpm. Determine the position and magnitude of the maximum radial stress.

o= 7470 kg/m™: v=0.3; E =207 GN/m*  [38.9.12.3 MN/m% 87 mm rad; 8.4 MN/m2.]

Question 3.2

A solid steel disc 300 mm diameter and of small constant thickness has a steel ring of outer
diameter 450 mm and the same thickness shrunk onto it. If the interference pressure is reduced
to zero at a rotational speed of 3000 rpm, calculate:

(a) the radial pressure at the interface when stationary:

(b) the difference in diameters of the mating surfaces of the disc and ring before assembly

0= 7470 kg/m*: v =03, E =207 GN/m? [18.55 MN/m2; 0.045 mm]



Questions

Question 3.3

The “bursting” speed of a cast-iron flywheel rim 3m mean diameter, is 850 rpm. Neglecting the
effects of the spokes and the boss. and assuming that the flywheel rim can be considered as a
thin rotating hoop, determine the ultimate tensile strength of the cast iron. Cast iron has a density
of 7.3 Mg/m3.A flywheel rim is to be made of the-same material and is required to rotate at 400
rom. Determine the maximum permissible mean diameter using a factor of safety of 8.

o= 7470 kg/m*: v=0.3; E = 207 GN/m*

Question 3.4

A forged steel drum 0.524 m outside diameter and 19 mm wall thickness, has to be mounted in a
machine and spun about its longitudinal axis. The centrifugal (hoop) stress induced in the
cylindrical shell is not to exceed 83 MN/m?. Determine the maximum speed (in rpm) at which the
drum can be rotated. For steel, the density = 7.8 Mg/m3.

o= 7470 kg/m*: v=0.3; E =207 GN/m* [3630.]



Question 3.4

A steel disc of a turbine is to be designed so that the radial and circumferential
stresses are to be the same throughout the thickness and radius of disc and is equal
to 80 MPa, when running at 3500 rpm. If the axial thickness at the centre is 20 mm,
what is the thickness at the radius of 500 mm?

Question 3.5

A solid long cylinder of diameter 600 mm is rotating at 3000 rpm. Calculate
() maximum and minimum hoop stresses and

(i) maximum radial stress.
Given p = 0.07644 N/cm?3, g =9.8 m/s?, v =0.3



Question 3.6

Determine the intensities of principal stresses in a flat steel disc of uniform thickness,
having a diameter of 1m and rotating at 2400 r.p.m. What will be the stress if the disc
has a central hole of 0.2m diameter? Take Poisson's ratio to be 1/3, and the density
of this steel as 7850kg/m?.

Question 3.7

A disc of uniform thickness has inner and outer radii of 100mm and 400mm
respectively and is rotating at 2400 r.p.m about its axis. The density of the material is
7800kg/m? and the Poisson’s ratio is 0.3. Using a suitable scale and intervals, draw
on the same set of axes, the graph of stress against radius for both circumferential
and radial stress.

Assignment 2 [Questions 3.6 & 3.7] : Due 25t September 2024



Question 3.8

A steel ring of outer diameter 300mm and internal diameter 200mm is shrunk onto a
solid steel shaft. The interface is such that the radial pressure between the mating
surfaces remains above 30MN/m? at all times whilst the assembly rotates in practice.
The circumferential stress on the inside surface of the ring must not exceed
240MN/m2. Determine the maximum speed at which the assembly can rotate. Take
p =7500kg/m3, v =0.3 and E = 210GPa.



Grazie Signhore
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