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• Satisfactory when the ratio of the shell thickness to shell radius is less than 1/30.

• Assumes that the circumferential (hoop stress) and longitudinal stress are

constant over the thickness; radial stress is negligible.

• When the thickness: radius ratio is greater than this 1/30, errors start to occur

and thick shell theory should be used.

• When the thickness to shell radius is greater than 1/30, we have a thick cylinder

• The hoop stress in thick cylinders vary over the thickness

• Thick shells appear in the form of gun barrels, nuclear reactor pressure vessels,

and deep diving submersibles

Thin shell theory

Thick shell theory

Stress and Strain in Thick Circular Cylinders

We assume all the stresses and strains are tensile and positive. At any radius, r :

𝜎𝜃 = ℎ𝑜𝑜𝑝 𝑠𝑡𝑟𝑒𝑠𝑠

𝜎𝑟 = 𝑟𝑎𝑑𝑖𝑎𝑙 𝑠𝑡𝑟𝑒𝑠𝑠

𝜎𝑧 = 𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑠𝑡𝑟𝑒𝑠𝑠

𝜀𝜃 = ℎ𝑜𝑜𝑝 𝑠𝑡𝑟𝑎𝑖𝑛

𝜀𝑟 = 𝑟𝑎𝑑𝑖𝑎𝑙 𝑠𝑡𝑟𝑎𝑖𝑛 Fig.3.0: Thick Cylinder

𝜀𝑧 = 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 𝑆𝑡𝑟𝑎𝑖𝑛 𝑎𝑠𝑠𝑢𝑚𝑒𝑑 𝑡𝑜 𝑏𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑤 = 𝑟𝑎𝑑𝑖𝑎𝑙 𝑑𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛
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Stress and Strain in Thick Circular Cylinders

Consider a cross-section of a thick cylinder with closed ends subjected to an internal pressure P1

and an external pressure P2.

Longitudinal Stress 𝜎𝑧

Fig. 3.1:  Cylinder longitudinal section

For horizontal equilibrium:

𝑃1 ∗ 𝜋𝑅1
2 − 𝑃2 ∗ 𝜋𝑅2

2 = 𝜎𝑧 ∗ 𝜋(𝑅2
2 − 𝑅1

2)

𝜎𝑧 =
𝑃1𝑅1

2 − 𝑃2𝑅2
2

𝑅2
2 − 𝑅1

2

We see that the longitudinal stress set up in the

cylinder walls is constant for the given internal and

external pressures

3.0

Derivation of the hoop and radial stress equations

Fig.3.2: Thick Cylinder Deformation at any radius r

From Figure 3.2, it can be seen that at any radius r,

𝜀𝜃 =
2𝜋 𝑟 + 𝑤 − 2𝜋𝑟

2𝜋𝑟

𝜀𝜃 =
𝑤

𝑟
Similarly,

𝜀𝑟 =
𝛿𝑤

𝛿𝑟
=
𝑑𝑤

𝑑𝑟

3.1

3.2

From the standard stress-strain relationships

𝐸𝜀𝜃 = 𝐸
𝑤

𝑟
= 𝜎𝜃 − 𝜈(𝜎𝑧 + 𝜎𝑟)

𝐸𝜀𝑧 = 𝜎𝑧 − 𝜈(𝜎𝜃 + 𝜎𝑟) = a constant

𝐸𝜀𝑟 = 𝐸
𝑑𝑤

𝑑𝑟
= 𝜎𝑟 − 𝜈(𝜎𝜃 + 𝜎𝑧)

3.3

3.4

Derivation of the hoop and radial stress equations
Multiplying equation (3.3) by r,

𝐸𝑤 = 𝜎𝜃 ∗ 𝑟 − 𝜈𝜎𝑧 ∗ 𝑟 − 𝜎𝑟 ∗ 𝑟 3.5

Differentiating equation (3.5) with respect to r, we get

𝐸
𝑑𝑤

𝑑𝑟
= 𝜎𝜃 −𝜈𝜎𝑧− 𝜈𝜎𝑟 + 𝑟

𝑑𝜎𝜃
𝑑𝑟

− 𝜈
𝑑𝜎𝑧
𝑑𝑟

− 𝜈
𝑑𝜎𝑟
𝑑𝑟

3.6

Subtracting equation (3.4) from equation (3.6),

𝜎𝜃 − 𝜎𝑟 1 + 𝜈 + 𝑟
𝑑𝜎𝜃
𝑑𝑟

− 𝜈𝑟
𝑑𝜎𝑧
𝑑𝑟

− 𝜈𝑟
𝑑𝜎𝑟
𝑑𝑟

= 0 3.7

As 𝜀𝑧, is constant

𝜎𝑧 −𝜈𝜎𝜃− 𝜈𝜎𝑟 = constant 3.8
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Derivation of the hoop and radial stress equations
Differentiating equation (3.8)with respect to r,

𝑑𝜎𝑧
𝑑𝑟

− 𝜈
𝑑𝜎𝜃
𝑑𝑟

− 𝜈
𝑑𝜎𝑟
𝑑𝑟

= 0

𝑑𝜎𝑧
𝑑𝑟

= 𝜈
𝑑𝜎𝜃
𝑑𝑟

+
𝑑𝜎𝑟
𝑑𝑟

3.9

Substituting equation (3.9) into equation (3.7),

𝜎𝜃 − 𝜎𝑟 1 + 𝜈 + 𝑟 1 − 𝜈2
𝑑𝜎𝜃
𝑑𝑟

− 𝜈𝑟 1 + 𝜈
𝑑𝜎𝑟
𝑑𝑟

= 0 3.10

Dividing equation (3.10) by (1 + 𝑣), we get

𝜎𝜃 − 𝜎𝑟 + 𝑟 1 + 𝜈
𝑑𝜎𝜃
𝑑𝑟

− 𝜈𝑟
𝑑𝜎𝑟
𝑑𝑟

= 0 3.11

Consider the radial equilibrium of the shell element, shown in Figure 3.3,

Derivation of the hoop and radial stress equations

Fig. 3.3 : Shell element

𝜎𝑟 + 𝑑𝜎𝑟 𝑟 + 𝑑𝑟 ∗ 1 − 𝜎𝑟 ∗ 𝑟𝑑𝜃 ∗ 1 = 2𝜎𝜃 ∗ 𝑑𝑟 ∗ 1 ∗ sin
𝑑𝜃

2
3.12

Neglecting higher order terms in the above, we get

𝜎𝜃 − 𝜎𝑟 − 𝑟
𝑑𝜎𝑟
𝑑𝑟

= 0 3.13

Subtracting equation (3.1 1) from equation (3.12)

3.14
𝑑𝜎𝜃
𝑑𝑟

+
𝑑𝜎𝑟
𝑑𝑟

= 0

For small angles 𝑠𝑖𝑛
𝑑𝜃

2
≅

𝜃

2
𝑟𝑎𝑑

𝑑

𝑑𝑟
(𝜎𝜃 + 𝜎𝑟) = 0

From equation (3.14), we get

Derivation of the hoop and radial stress equations

𝜎𝜃 + 𝜎𝑟 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 2𝐴 ⇒ 𝜎𝜃 = 2𝐴 − 𝜎𝑟 3.15

Substituting (3.15) into equation (3.13),

Note that we let the constant of integration  be 2A  (say)

Multiplying through by r and rearranging,

2𝐴 − 𝜎𝑟 − 𝜎𝑟 − 𝑟
𝑑𝜎𝑟
𝑑𝑟

= 0

2𝑟𝜎𝑟 + 𝑟2
𝑑𝜎𝑟
𝑑𝑟

− 2𝐴𝑟 = 0

𝑑

𝑑𝑟
𝜎𝑟𝑟

2 − 𝐴𝑟2 = 0

𝜎𝑟𝑟
2 − 𝐴𝑟2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = −𝐵 (𝑠𝑎𝑦)
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Derivation of the hoop and radial stress equations
Integrating and simplifying, we get

𝜎𝑟 = 𝐴 −
𝐵

𝑟2

Substituting equation (3.16) into (3.15) and simplifying, we get

𝜎𝜃 = 𝐴 +
𝐵

𝑟2

3.16

3.17

Equations (3.16) and (3.17) are called Lamé’s Equations

The Lame equations when plotted on stress and  1 𝑟2 axes produce straight lines, as shown in

Figure 3.4 a

The two lines may be modified to a single a straight line, where (𝜎𝑟), lies to the left and (𝜎𝜃), to the

right, as shown by Figure 3.4 b.

Fig. 3.4 (a): Graphical representation of Lame equations - Lame line.

Graphical Representation of Lamé’s Equations
• Both lines have exactly the same

intercept A and the same magnitude of

slope B, the only difference being the

sign of their slopes.

• The two are therefore combined by

plotting hoop stress values to the left of

the 𝜎 axis (again against  1 𝑟2) instead

of to the right to give the single line

shown in Fig. 3.4(b).

• In most questions one value of 𝜎𝑟, and

one value of 𝜎𝜃, or alternatively two

values of 𝜎𝑟, are given. In both cases

the single line can then be drawn.

Graphical Representation of Lamé’s Equations

Fig. 3.4 (b) Lame line solution for cylinder with internal and external pressures



8/29/2018

5

Graphical Representation of Lamé’s Equations

Fig. 3.4 (c) Lame line solution for cylinder subjected to external pressure only

Graphical Representation of Lamé’s Equations

For the case shown in Figure 3.4 (d),

(𝜎𝑟),is compressive and (𝜎𝜃), tensile,

where:

𝜎𝜃1= internal hoop stress, which can be

seen to be the maximum stress

𝜎𝜃2= external hoop stress

P = internal cylinder pressure

Fig. 3.4 (d): Lame line for the case of internal pressure

Note that for all graphs in figures 3.4 (a – d) the value of the longitudinal stress 𝜎𝑧 is given by the

intercept A on the 𝜎 axis.

Maximum Shear Stress in Thick Cylinders

The stresses on an element at any point in the cylinder wall are principal stresses.

Thus, the maximum shear stress at any point will be given by equation 3.18 as follows:

𝜏𝑚𝑎𝑥 =
𝜎𝜃 − 𝜎𝑟

2

𝜏𝑚𝑎𝑥 =
1

2
𝐴 +

𝐵

𝑟2
− 𝐴−

𝐵

𝑟2

𝜏𝑚𝑎𝑥 =
1

2
2 ∗

𝐵

𝑟2

𝜏𝑚𝑎𝑥 =
𝐵

𝑟2

The greatest value of shear stress normally occurs at the inside radius where r = R1.

3.18
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Stresses in Compound Thick Cylinders

• Consider a cylinder shrinked over another cylinder

• The inner cylinder is in initial compression, whereas the outer cylinder is in

initial tension

• When the compound cylinder is subjected to internal fluid pressure both the

inner and outer cylinders will be subjected to hoop tensile stress.

• The net effect of initial stresses due to shrinkage and those due to internal fluid
pressure make the resulting stresses relatively uniform.

• In compound cylinders, a much smaller total fluctuation of hoop stress is

obtained. A similar effect is obtained if a cylinder is wound with wire or steel

tape under tension.

Fig. 3.5: Compound cylinders-combined internal pressure and shrinkage effects

Stresses in Compound Thick Cylinders

Examples

Question 1

A thick-walled circular cylinder of internal diameter 0.2 m is subjected to an internal

pressure of 100 MPa. If the maximum permissible stress in the cylinder is limited to

150 MPa, determine the maximum possible external diameter.

Solution
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Examples

Solution

Question 2

If the cylinder in the previous problem were subjected to an external pressure of 100

MPa and an internal pressure of zero, what would be the maximum magnitude of

stress.

Examples
Question 3

A steel disc of external diameter 0.2 m and internal diameter 0.1 m is shrunk onto a

solid steel shaft of external diameter 0.1 m, where all the dimensions are nominal. If

the interference fit, based on diameters, between the shaft and the disc at the common

surface is 0.2 mm, determine the maximum stress. For steel, E = 2 x 1011N/m2,𝑣 = 0.3

Solution

Questions

Question 1

Determine the maximum and minimum hoop stress across the section of pipe of

400mm internal diameter and 100mm thick, the pipe contains a fluid at a pressure of

8N/mm2. Also sketch the radial pressure distribution and hoop stress distribution
across the section.

Question 2

Find the thickness of metal necessary for a cylindrical shell of internal diameter

160mm to withstand an internal pressure of 8N/mm2. The maximum hoop stress in

the section is not to exceed 35N/mm2.
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Grazie


