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Some Applications of Thick Cylinders

• Pressure vessels in compressors and other process applications

• Hydraulics

• Pneumatics

• Shock absorbers

• Motor vehicle bottle jacks

• Submarines

• Journal bearings

• Etc.

Generally they can withstand very high internal/external pressures 
though normally used for internal pressure applications.



Consider a thick walled 

cylinder with open ends: 

It has: 

• inner radius, 𝑟𝑖 and 

• outer radius, 𝑟𝑜.

And loaded by: 

• internal pressure, 𝑃𝑖

• external pressure, 𝑃𝑜



Now consider and element at 

radius 𝑟 and defined by an angle 

increment 𝑑𝜃 and a radial 

increment 𝑑𝑟. 

By circular symmetry, 

• stresses σ and σr are functions 

of r only, not of  and

• the shear stress on the element 

must be zero. 



For an element of unit thickness (assuming no body forces), radial 

force equilibrium gives:

Ignoring second order terms:

𝜎𝑟 + 𝑑𝜎𝑟 𝑟 + 𝑑𝑟 𝑑𝜃 = 𝜎𝑟𝑟𝑑𝜃 + 𝜎𝜃𝑑𝜃𝑑𝑟

𝒅𝝈𝒓
𝒅𝒓

+
𝝈𝒓 + 𝝈𝜽

𝒓
= 𝟎

(1)

𝝈𝜽 + 𝝈𝒓 + 𝒓
𝒅𝝈𝒓
𝒅𝒓

= 𝟎

or



The inner radius dilates and 

increases by 𝒖 from the 

unstrained state to the strained.

The outer radius dilates and 

increases by 𝒖 + 𝒅𝒖 from the 

unstrained state to the strained.

The thickness of the element 

changes by 𝒅𝒖 to 𝒅𝒓 + 𝒅𝒖.



By symmetry 

• there is no 𝜽 displacement.

• there is only a radial displacement

• Point a is displaced radially by 𝒖
given by lines 𝒂𝒂′ and 𝒃𝒃′.

• Point 𝑐 is displaced radially by 

(𝒖 + 𝒅𝒖) given by lines 𝒄𝒄′ and 

𝒅𝒅′.

Now consider strains in the element. 



As the original radial length of the element is 𝑑𝑟 (line 𝑎𝑐), the radial 

strain is:

Line 𝑎𝑏 has length 𝑟𝑑𝜃 and line 𝑎′𝑏′has length (𝑟 + 𝑢)𝑑𝜃.  Thus 

the tangential strain is:

𝜀𝑟 =
𝑢 + 𝑑𝑢 − 𝑢

𝑑𝑟
=
𝑑𝑢

𝑑𝑟

𝜀𝜃 =
(𝑟 + 𝑢)𝑑𝜃 − 𝑟𝑑𝜃

𝑟𝑑𝜃
=
𝑢

𝑟



As the ends are open, 𝜎𝑧 = 𝜎3 = 0 and we thus have plane stress 

conditions.

From Hooke’s law we get:

and

Solving for the stresses gives: 

and

𝜀𝑟 =
𝑑𝑢

𝑑𝑟
=
1

𝐸
𝜎𝑟 − 𝜈𝜎𝜃 𝜀𝜃 =

𝑢

𝑟
=
1

𝐸
𝜎𝜃 − 𝜈𝜎𝑟

𝜎𝑟 =
𝐸

1 − 𝜈2
𝑑𝑢

𝑑𝑟
+ 𝜈

𝑢

𝑟
𝜎𝜃 =

𝐸

1 − 𝜈2
𝑢

𝑟
+ 𝜈

𝑑𝑢

𝑑𝑟



Substituting into equation above yields:

Which has the solution : 

𝑑2𝑢

𝑑𝑟2
+
1

𝑟

𝑑𝑢

𝑑𝑟
−

𝑢

𝑟2
= 0

𝑢 = 𝐶1𝑟 +
𝐶2
𝑟



Giving the stresses as:

and

𝝈𝒓 =
𝑬

𝟏 − 𝝂𝟐
𝑪𝟏 𝟏 + 𝝂 − 𝑪𝟐

𝟏 − 𝝂

𝒓𝟐

𝝈𝜽 =
𝑬

𝟏 − 𝝂𝟐
𝑪𝟏 𝟏 + 𝝂 + 𝑪𝟐

𝟏 − 𝝂

𝒓𝟐

(2)

(3)



The boundary conditions are:

𝜎𝑟 𝑟𝑖 = −𝑃𝑖 and 𝜎𝑟 𝑟𝑜 = −𝑃𝑜

and

This yields the integration constants:

𝐶1 =
1 − 𝜈

𝐸

𝑃𝑖𝑟𝑖
2 − 𝑃𝑜𝑟𝑜

2

𝑟𝑜
2 − 𝑟𝑖

2

𝐶2 =
1 − 𝜈

𝐸

𝑟𝑖
2𝑟𝑜

2(𝑃𝑖−𝑃𝑜)

𝑟𝑜
2 − 𝑟𝑖

2



Giving the stresses as functions of the radius:

and

Eqs. (4) & (5) are known as Lamé’s Equations. 

(4)

(5)

𝝈𝒓 =
𝑷𝒊𝒓𝒊

𝟐 − 𝑷𝒐𝒓𝒐
𝟐

(𝒓𝒐
𝟐 − 𝒓𝒊

𝟐)
−

𝑷𝒊 −𝑷𝒐 𝒓𝒊
𝟐𝒓𝒐

𝟐

(𝒓𝒐
𝟐 − 𝒓𝒊

𝟐)𝒓𝟐

𝝈𝜽 =
𝑷𝒊𝒓𝒊

𝟐 − 𝑷𝒐𝒓𝒐
𝟐

(𝒓𝒐
𝟐 − 𝒓𝒊

𝟐)
+

𝑷𝒊 −𝑷𝒐 𝒓𝒊
𝟐𝒓𝒐

𝟐

(𝒓𝒐
𝟐 − 𝒓𝒊

𝟐)𝒓𝟐



Lamé’s equations may also be written in terms of the diameters 𝑑𝑖
and 𝑑𝑜 as:

and

(4a)

(5a)

𝝈𝒓 =
𝑷𝒊𝒅𝒊

𝟐 − 𝑷𝒐𝒅𝒐
𝟐

(𝒅𝒐
𝟐 − 𝒅𝒊

𝟐)
−

𝑷𝒊 −𝑷𝒐 𝒅𝒊
𝟐𝒅𝒐

𝟐

(𝒅𝒐
𝟐 − 𝒅𝒊

𝟐)𝒅𝟐

𝝈𝜽 =
𝑷𝒊𝒅𝒊

𝟐 − 𝑷𝒐𝒅𝒐
𝟐

(𝒅𝒐
𝟐 − 𝒅𝒊

𝟐)
+

𝑷𝒊 −𝑷𝒐 𝒅𝒊
𝟐𝒅𝒐

𝟐

(𝒅𝒐
𝟐 − 𝒅𝒊

𝟐)𝒅𝟐



From Eqs. 2 & 3 we see that the sum of radial and tangential stresses 

is constant, regardless of radius:

Hence the longitudinal strain is also constant since:

𝝈𝒓 + 𝝈𝜽 =
𝟐𝑬𝑪𝟏
𝟏 − 𝝂

= 𝑪 = Constant

𝜺𝒛 = −
𝝂

𝑬
𝝈𝒓 + 𝝈𝜽 = 𝑪 = Constant

Hence we get 

𝝈𝒛 = 𝑬𝜺𝒛 = Constant = 𝑪

(5)

(6)

(7)



If the ends of the cylinder are open and free we have 𝐹𝑧 = 0, hence:

or

 
𝒓𝒊

𝒓𝒐

𝝈𝒛 ∙ 𝟐𝝅𝒓𝒅𝒓 = 𝝈𝒛𝝅 𝒓𝒐
𝟐 − 𝒓𝒊

𝟐 = 𝟎

𝝈𝒛 = 𝑪 = 𝟎 as we assumed since 

𝜋 𝑟𝑜
2 − 𝑟𝑖

2 ≠ 0.

If the cylinder has closed ends, the axial stress can be found 

separately using only force equilibrium considerations as was done 

for the thin walled cylinder. 

The result is then simply superimposed on the above equations.

(8)



The pressure 𝑃𝑖 acts on area given by 𝜋𝑟𝑖
2

The pressure 𝑃𝑜 acts on area given by 𝜋𝑟𝑜
2

The axial stress 𝜎𝑧 acts on an area given by 𝜋(𝑟𝑜
2 – 𝑟𝑖

2)

Force equilibrium then gives:  

𝜎𝑧 =
𝑃𝑖𝑟𝑖

2 − 𝑃𝑜𝑟𝑜
2

𝑟𝑜
2 − 𝑟𝑖

2



Summary of equations to determine the stresses for thick walled 

cylindrical pressure vessels. 

• Generally, vessels are subjected to both internal and external 

pressures. 

• Most vessels also have closed ends – this results in an axial stress 

component.

Principal stresses at radius 𝑟:

𝜎1 = 𝜎𝑟 = −K − 𝐶/𝑟2 and 𝜎2 = 𝜎𝜃 = −K + 𝐶/𝑟2



And, if the ends are closed, 

Where: 

and𝑪 = 𝑷𝒐 − 𝑷𝒊

𝒓𝒊
𝟐𝒓𝒐

𝟐

𝒓𝒐
𝟐 − 𝒓𝒊

𝟐
𝑲 =

𝑷𝒐𝒓𝒐
𝟐 − 𝑷𝒊𝒓𝒊

𝟐

𝒓𝒐
𝟐 − 𝒓𝒊

𝟐

𝜎3 = 𝜎𝑎𝑥𝑖𝑎𝑙 = −𝐾



(a) Internal Pressure only (Po = 0):

Consider Particular Scenarios:

Lamé’s equations become:

And axial stress: 𝝈𝒛 =
−𝑷𝒊𝒓𝒊

𝟐

𝒓𝒐
𝟐 − 𝒓𝒊

𝟐

𝝈𝜽 =
𝑷𝒊𝒓𝒊

𝟐

𝒓𝒐
𝟐 − 𝒓𝒊

𝟐
𝟏 +

𝒓𝒐
𝟐

𝒓𝟐
𝝈𝒓 =

𝑷𝒊𝒓𝒊
𝟐

𝒓𝒐
𝟐 − 𝒓𝒊

𝟐
𝟏 −

𝒓𝒐
𝟐

𝒓𝟐
and



At inside surface, 𝑟 = 𝑟𝑖:

𝝈𝜽 = 𝑷𝒊

𝒓𝒐
𝟐 + 𝒓𝒊

𝟐

𝒓𝒐
𝟐 − 𝒓𝒊

𝟐

𝝈𝒛 =
𝑷𝒊𝒓𝒊

𝟐

𝒓𝒐
𝟐 − 𝒓𝒊

𝟐

𝝈𝒓 = −𝑷𝒊

At outside surface, 𝑟 = 𝑟𝑜:

𝝈𝜽 =
𝟐𝑷𝒊𝒓𝒊

𝟐

𝒓𝒐
𝟐 − 𝒓𝒊

𝟐

𝝈𝒓 = 𝟎

𝝈𝒛 =
𝑷𝒊𝒓𝒊

𝟐

𝒓𝒐
𝟐 − 𝒓𝒊

𝟐



(b) External Pressure only (Pi = 0):

Lamé’s equations become:

𝝈𝜽 =
−𝑷𝒐𝒓𝒐

𝟐

𝒓𝒐
𝟐 − 𝒓𝒊

𝟐
𝟏 +

𝒓𝒊
𝟐

𝒓𝟐

𝝈𝒛 =
−𝑷𝒐𝒓𝒐

𝟐

𝒓𝒐
𝟐 − 𝒓𝒊

𝟐

𝝈𝒓 =
−𝑷𝒐𝒓𝒐

𝟐

𝒓𝒐
𝟐 − 𝒓𝒊

𝟐
𝟏 −

𝒓𝒊
𝟐

𝒓𝟐



At inside surface, 𝑟 = 𝑟𝑖:

𝝈𝜽 =
−𝟐𝑷𝒐𝒓𝒐

𝟐

𝒓𝒐
𝟐 − 𝒓𝒊

𝟐

𝝈𝒓 = 𝟎

𝝈𝒛 =
−𝑷𝒐𝒓𝒐

𝟐

𝒓𝒐
𝟐 − 𝒓𝒊

𝟐

At outside surface, 𝑟 = 𝑟𝑜:

𝝈𝜽 = −𝑷𝒐

𝒓𝒐
𝟐 + 𝒓𝒊

𝟐

𝒓𝒐
𝟐 − 𝒓𝒊

𝟐

𝝈𝒓 = −𝑷𝒐

𝝈𝒛 =
−𝑷𝒐𝒓𝒐

𝟐

𝒓𝒐
𝟐 − 𝒓𝒊

𝟐



The stress variation with diameter is as shown in the figure, the two 

curves being “parallel” since (from (5):

𝜎𝜃 + 𝜎𝑟 = 2𝑎

where:

𝜎𝑟𝑖 = −𝑃𝑖

𝜎𝑟𝑜 = −𝑃𝑜

𝐶1 =
1 − 𝜈

𝐸

𝑃𝑖𝑟𝑖
2 − 𝑃𝑜𝑟𝑜

2

𝑟𝑜
2 − 𝑟𝑖

2

𝑎 =
𝐸𝐶1
1 − 𝜈



The maximum hoop stress is at 𝑟 = 𝑟𝑖

 𝝈𝜽 = 𝑷𝒊
𝒓𝒐𝟐 + 𝒓𝒊

𝟐

𝒓𝒐
𝟐 − 𝒓𝒊

𝟐

The maximum shear stress is:

 𝝉𝐌𝐚𝐱 =
𝟏

𝟐
𝝈𝜽 + 𝝈𝒓𝒊 = 𝑷𝒊

𝒓𝒐
𝟐

𝒓𝒐
𝟐 − 𝒓𝒊

𝟐

The longitudinal stress 𝜎𝑧 has already been shown to be constant.



But for cylinder with closed ends, 𝜎𝑧 is obtained from the 

equilibrium equation for any transverse section:

𝜎𝑧𝜋 𝑟𝑜
2 − 𝑟𝑖

2 = 𝜋𝑟𝑖
2𝑃𝑖

Therefore:

𝜎𝑧 = 𝑃𝑖
𝑟𝑖
2

𝑟𝑜
2 − 𝑟𝑖

2



Error in “thin cylinder” formula:

In thin cylinder theory, for a cylinder of diameter 𝑑 (radius 𝑟) and 

thickness 𝑡 being acted upon by an internal pressure 𝑃𝑖, the hoop 

stress is given as

𝝈𝜽 =
𝑷𝒊𝒅

𝟐𝒕
=
𝑷𝒊𝒓

𝒕

But for a thick cylinder of thickness 𝑡, we can re-write an earlier 

expression for hoop stress as:

𝝈𝜽 = 𝑷𝒊

𝒅𝒊
𝟐 + 𝟐𝒕

𝟐
+ 𝒅𝒊

𝟐

𝒅𝒊
𝟐 + 𝟐𝒕

𝟐
− 𝒅𝒊

𝟐
=
𝟐

𝒅𝒊
𝒕

𝟐

+ 𝟒
𝒅𝒊
𝒕

+ 𝟒

𝟒
𝒅𝒊
𝒕

+ 𝟒
𝑷𝒊



𝝈𝜽 = 𝟓. 𝟓𝟓𝑷𝒊;

Assuming 
𝑑𝑖

𝑡
= 10 or 𝑟𝑖 = 5𝑡; 

Yielding: 𝜎𝜃 =
2  𝑑𝑖 𝑡 2 + 4  𝑑𝑖 𝑡 + 4

4  𝑑𝑖 𝑡 + 4
𝑃𝑖

which is 11% higher that the mean value 

given by    𝜎𝜃 =  𝑃𝑖𝑑 2𝑡.

𝝈𝜽 = 𝟏𝟎. 𝟓𝑷𝒊;

Assuming 
𝑑𝑖

𝑡
= 20 or 𝑟𝑖 = 10𝑡; 

which is 5% higher than    𝜎𝜃 =  𝑃𝑖𝑑 2𝑡.



1. Clearly as       ⟶∞, the hoop stresses by the two formulae tend to 

be equal. 

2. If the mean diameter is used in the thin cylinder formula, the error 

is practically eliminated! (The student to prove this.)

Note that: 

𝑑𝑖
𝑡



Note that:

• In all cases the greatest 

magnitude of direct stress is 

the tangential (von Mises) 

stress at the in-side surface. 

• The maximum magnitude of 

shear stress also occurs at the 

inside surface because that is 

where the greatest stress 

difference occurs.



(c) Press and Shrink Fits:

When a press or shrink fit is used between 2 cylinders of the 

same material, an interface pressure 𝑝𝑖 is developed at the 

junction of the cylinders. 

If this pressure is calculated, the stresses in the cylinders can 

be found using the above equations. 



The interface pressure is:

where:

𝐸 = Young’s Modulus

𝛿 = radial interference between the two cylinders

𝑎 = inner radius of the inner cylinder

𝑏 = outer radius of inner cylinder and inner radius of outer 

cylinder

𝑐 = outer radius of outer cylinder

𝒑𝒊 =
𝑬𝜹

𝒃

𝒄𝟐 − 𝒃𝟐 𝒃𝟐 − 𝒂𝟐

𝟐𝒃𝟐 𝒄𝟐 − 𝒂𝟐



It is assumed that 𝛿 is very small compared to the radius 𝑏 and that 

there are no axial stresses. 

Thus we have 

Note that this small difference in the radii is ignored in the values of 

𝑏 in the above equation for 𝑃𝑖.

𝜹 = 𝒃𝐢𝐧𝐧𝐞𝐫 –𝒃𝐨𝐮𝐭𝐞𝐫





But wait, wait, wait!!!!



Prove that if the mean diameter is used in the thin cylinder 

formula, the error between the thick cylinder and thin 

cylinder formulae is practically eliminated.

Do this for  
𝑑𝑖

𝑡
= 30 and  

𝑑𝑖

𝑡
= 40 in the thick cylinder

Problem:



Practice Examples from Ryder:

Solve the following:

(1) Example 7, p. 271

(2) Example 9, pp. 272-3



ME 3352: Strength of Materials II

For it is, this far, the best there can 
be among courses!!!

Enjoy ME 3352. 


