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THICK CYLINDERS
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Some Applications of Thick Cylinders

* Pressure vessels In compressors and other process applications
* Hydraulics

* Pneumatics

* Shock absorbers

* Motor vehicle bottle jacks

* Submarines

« Journal bearings

* Eftc.

Generally they can withstand very high internal/external pressures
though normally used for internal pressure applications.



Consider a thick walled
cylinder with open ends:

It has:
* Inner radius, r; and
* outer radius, 7.

And loaded by:
 Internal pressure, P,
« external pressure, P,




Now consider and element at
radius r and defined by an angle
Increment d@ and a radial
Increment dr-.

By circular symmetry,

* stresses o,and g, are functions
of r only, not of #and r

» the shear stress on the element
must be zero.




For an element of unit thickness (assuming no body forces), radial

force equilibrium gives:

(0, +do,)(r + dr)dO = o,rd0 + g,dOBdr

Ignoring second order terms:

do, o0,+ 0y
| =0
dr r

or

09+ar+r—r=0

(1)



The Inner radius dilates and
Increases by u from the

unstrained state to the strained.

The outer radius dilates and
Increases by u + du from the

unstrained state to the strained.

The thickness of the element
changes by du to dr + du.




Now consider strains in the element.
By symmetry

* there Is no @ displacement.

* there is only a radial displacement

* Point ais displaced radially by u
given by lines aa’ and bb'.

* Point c Is displaced radially by
(u + du) given by lines cc’ and
dd’.




As the original radial length of the element is dr (line ac), the radial
strain IS:

u du—u_du
dr Cdr

Ey =

Line ab has length rd@ and line a’b’has length ( + u)d6. Thus
the tangential strain is:

- (r+wdb—rdd u
0= rd6 o




As the ends are open, o, = g; = 0 and we thus have plane stress
conditions.

From Hooke’s law we get:

du 1 u
- :—(O'T—VO'Q) and Ep =;=

T a5

Solving for the stresses gives:

-~ E duI u ~E u- du
1= \ar " Uy and %0 =1 2 \r " Var




Substituting Into equation above yields:

d4u ldu u
dr2

_ — 0
rdr 712

Which has the solution :

¥
u=~Ccr+—
r



Glving the stresses as:

and

-Cl(l + V) — Cz (

-Cl(l + V) + Cz (

1—v

1—v)\]
12

72

)

(2)

(3)



The boundary conditions are:
or(r;) = —P; and or(1,) = —F,

This yields the integration constants:

1—v [Pr# — P12
(1 = E 2 _ 2

TO—Tl
and
- 11— (rrf(Pi—P,)
2 E T2 — 17



Giving the stresses as functions of the radius:

Oy

. Piri2 - POT(Z, (Pi _Po)rizrg

2 2
(T% —T; ) (1‘0

and

Og —

— 2

_ Piri —P,ri (P —P,)rir}

2 2 ' 2
(ro — T ) (1‘0

Eqgs. (4) & (5) are known as Lamé’s Equations.

—

(4)

(9)



Lamé’s equations may also be written in terms of the diameters d;
and d, as:

_ _Pidi —P,d; (P —P,)did;
L (dg—d))  (dg—dp)d?

(42)

and

_ _Pidi —P,d;  (Pi—P,)did;
0 — |
(ds—di) — (dg—dp)d?

(52)



From Egs. 2 & 3 we see that the sum of radial and tangential stresses
IS constant, regardless of radius:

2EC4
0, + 0y = 1—v) = C = Constant (5)

Hence the longitudinal strain Is also constant since:

1%
€= —% (o, + g¢) = C = Constant (6)

Hence we get

o, = Ec, = Constant = C (7)



If the ends of the cylinder are open and free we have F, = 0, hence:

To
j 0, 2nrdr = o,m(r:—7r;) =0
rj

or

o,=C =0 asweassumed since
n(rZ —17) # 0.

—_

= (8)

—

If the cylinder has closed ends, the axial stress can be found
separately using only force equilibrium considerations as was done

for the thin walled cylinder.

The result Is then simply superimposed on the above equations.



he pressure P; acts on area given by nr,?
The pressure P_ acts on area given by nr 2

The axial stress o, acts on an area given by (r,“ - r;%)

Force equilibrium then gives:

z 2 2




Summary of equations to determine the stresses for thick walled
cylindrical pressure vessels.

* Generally, vessels are subjected to both internal and external
pressures.

e Most vessels also have closed ends — this results In an axial stress
component.

Principal stresses at radius r:

o, =0,=—-K—-C/r* and 0, = 0g = —K+ C/r*



And, If the ends are closed,
03 = Ogxial = —K

Where:

rir? _ (Por2 — P;17)

C=(P0—Pl-)<2 2) and K R



Consider Particular Scenarios:

(a) Internal Pressure only (P, = 0):

Lamé’s equations become:

Pr? [ r?]
Og — zl lz 1_|__(2) and
ro—7r;| T_

2
—P;1;

And axial stress: 0; = — 2

1

ro _r'




At Inside surface, r = 1;:

T2+ e
0-9:Pi > >

TFo — 1
o, = —P;

2
5 — Pirl-
VA
rs—rs

At outside surface, r =7,

Zl)irlz
0'9 —

ri—rs
o,=0

Pir?
0, =35 2



(b) External Pressure only (P; = 0):

Lame’s equations become:

—P,r2 [ r¥
Op — > > 1 + >
ro —7; | re
_Porg — rlz-
o, = 1——
r
ro—ri| 1%
2
. —P,T5
0, 2 2



At Inside surface, r = 1;:

2
g —2P,r;
0 —
rs—re
o,=0
2
. —P,1y
0: =2 _ 2

At outside surface, r =7,

i+ 1
Og — _PO 2 2
To — T
o, =—P,
—POT%
o, =
rs—rs



The stress variation with diameter is as shown in the figure, the two
curves being “parallel” since (from (5):

Og + 0, = 2a

where:
. EG
T o 7
O-Tl' — _Pl ﬁ
oy, = —F, “ a
1—v (Pr? — P12 | P
€1 = E 2 2
o — 1 I'.fi — gt




The maximum hoop stress Is at r = r;

r2 4+ r?
r3—r?

6'9=Pi

The maximum shear stress IS:

To

(s —1%).

The longitudinal stress o, has already been shown to be constant.

1
TMax = 2(09 + O-ri) = P;



But for cylinder with closed ends, o, Is obtained from the
equilibrium equation for any transverse section:

o (1 — 1) =P,

Therefore:




Error in “thin cylinder” formula:

In thin cylinder theory, for a cylinder of diameter d (radius r) and
thickness t being acted upon by an internal pressure P;, the hoop
stress IS given as
. Pld _ Pir
% "2t Tt

But for a thick cylinder of thickness t, we can re-write an earlier
expression for hoop stress as:

- : d;\* ., (d;)
@20+t 2(7) +4(F) 4

(d? +2t)" - d? A (Cii) 4 ‘

0'9=Pi




2(d;/t)* +4(d;/t) + 4

Yielding: g, = YR
L

Assuming % = 10 orr; = 5¢;

g9 = 5.55P; Which is 11% higher that the mean value
given by oy = P;d/2t.

Assuming % = 20 orr; = 10¢;

og = 10.5P;; which is 5% higher than oy = P;d/2t.



Note that:

d:
1. Clearly as tl > 00, the hoop stresses by the two formulae tend to

be equal.

2. If the mean diameter is used in the thin cylinder formula, the error
Is practically eliminated! (The student to prove this.)



Thick cylinder stresses

Note that: |
» In all cases the greatest 0 [— G
magnitude of direct stress is o v

: - 1500 1= .
the tangential (von Mises) o \ Yorikses

stress at the in-side surface. o—

‘_---_'_‘_._-_‘_-_‘—h
500 |

Stress — kPa

* The maximum magnitude of
shear stress also occurs at the
Inside surface because that Is oo
where the greatest stress 50 62.5 75 872 100
difference occurs. rediue T mm

-500 -
-1000

Example of cylinder with P, = 1000 kPa, r; = 50 mm and r, = 100 mm.




(c) Press and Shrink Fits:

When a press or shrink fit is used between 2 cylinders of the
same material, an interface pressure p; Is developed at the

junction of the cylinders.

If this pressure Is calculated, the stresses in the cylinders can

be found using the above equations.



The Interface pressure Is:

E§[(c? — b%)(b* — a?)
b | 2b%*(c*—a?)

Pi =

where:

E = Young’s Modulus

6 = radial interference between the two cylinders

a = Inner radius of the inner cylinder

b = outer radius of inner cylinder and inner radius of outer
cylinder

c = outer radius of outer cylinder



It Is assumed that § Is very small compared to the radius b and that
there are no axial stresses.

Thus we have

0 = b,

inner

b

outer

Note that this small difference in the radii is ignored in the values of
b In the above equation for P;.






But wacl, wact, wacitlll!



Problem:

Prove that if the mean diameter is used in the thin cylinder
formula, the error between the thick cylinder and thin
cylinder formulae Is practically eliminated.

Do this for % = 30 and % = 40 In the thick cylinder



Practice Examples from Ryder:

Solve the following:

(1) Example 7, p. 271

(2) Example 9, pp. 272-3
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