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Brainstorming

1. What is a disk?

2. What is a cylinder?

3. What is the difference between the two?

4. Can a disc be considered a cylinder or a cylinder considered 

a disc?



Rotating Discs 

and Cylinders

Flywheel

Brake Disc

Concrete Truck Mixer



ROTATING DISCS AND CYLINDERS

Introduction

These notes relate to the stresses and strains existing in rotating discs 

(like flywheels) and thick walled cylinders. 

The primary assumption is that the cylinders are not subject to 

internal or external pressure. 



Symbols/Units

Tensile stresses are considered positive and compressive stresses are negative.

• 𝑝1 = Internal pressure (MPa, N/m2)

• 𝑝2 = External pressure (MPa, N/m2)

• 𝜎𝑟 = Radial stress (MPa, N/m2)

• 𝜎𝑡 = Tangential (Hoop) stress (MPa, N/m2)

• 𝜎𝑎 = Axial/longitudinal stress (MPa, N/m2)

• 𝐸 = Young’s modulus (MPa, N/m2)

• 𝜌 = Density (kg/m3)



• 𝜈 = Poisson’s ratio

• 𝑟 = Radius at point of analysis (m, mm)

• 𝑅1 = Internal radius (m, mm)

• 𝑅2 = External radius (m, mm)

• 𝜀𝑟 = Radial strain

• 𝜀𝑡 = Tangential (Hoop) strain

• 𝜀𝑎 = Axial/longitudinal strain

• 𝑢 = Radial deflection (m, mm)



Initial Assumptions

For an infinitesimal cube acted upon by the stresses 𝜎1, 𝜎2 and 𝜎3, 
then 𝜀1, 𝜀2 and 𝜀3 are the strains associated with the stresses.

𝜈 and 𝐸 are the Poisson’s ratio and Young’s modulus, respectively.

These strains are given by the relations:

𝜀1 = 𝜎1/𝐸– 𝜈𝜎2/𝐸– 𝜈𝜎3/𝐸
𝜀2 = 𝜎2/𝐸– 𝜈𝜎1/𝐸– 𝜈𝜎3/𝐸
𝜀3 = 𝜎3/𝐸– 𝜈𝜎1/𝐸– 𝜈𝜎2/𝐸



a) Thick Disc Basics

• Consider a “disc”/“thin ring” subject to internal stresses 

resulting from the internal forces as a result of its rotational 

velocity, 𝜔. 

• Under the action of the internal forces only, the three principal 

stresses will be the tensile radial stress 𝝈𝒓, the tensile 

tangential stress 𝝈𝒕 and an axial stress 𝝈𝒂 which is generally 

also tensile. 



• The stress conditions occur throughout the section and vary 

primarily relative to the radius 𝑟.  

• It is assumed that the axial stress 𝜎𝑎 is constant along the 

length of the section and because the disc is thin compared to 

its diameter, the axial stress throughout the section is assumed 

zero. 

• It is also assumed that there is no internal or external pressure. 

So, 𝑃1 = 𝑃2 = 0.



Consider a microscopically small element of the cylinder at radius 

𝑟 and 𝛿𝑟 thick, rotating at an angular velocity of 𝜔, under stresses 

𝜎𝑡, 𝜎𝑟 and 𝜎𝑎. 

Let 𝑢 be the 

radial 

displacement 

at radius 𝑟.  



At the outer radius of the small sectional area (𝑟 + 𝛿𝑟), the radius 
will increase by (𝑢 + 𝛿𝑢). The resulting radial strain as 𝛿𝑟 → 0 is

The circumferential (Hoop) strain due to the internal pressure is: 

𝜀𝑡 =
𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒
=
2𝜋 𝑟 + 𝑢 − 2𝜋𝑟

2𝜋𝑟
=
𝑢

𝑟

𝜀𝑟 =
𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 𝛿𝑟

𝛿𝑟
=
𝑢 + 𝛿𝑢 − 𝑢

𝛿𝑟
=
𝛿𝑢

𝛿𝑟



Derived Equations:

Strictly, the following equations apply:

𝐸𝜀𝑎 = 𝜎𝑎 – 𝜈𝜎𝑡 – 𝜈𝜎𝑟 (1)

𝐸𝜀𝑡 = 𝐸
𝑢

𝑟
= 𝜎𝑡 – 𝜈𝜎𝑎 – 𝜈𝜎𝑟 (2)

𝐸𝜀𝑟 = 𝐸
𝑑𝑢

𝑑𝑟
= 𝜎𝑟 – 𝜈𝜎𝑡 – 𝜈𝜎𝑎 (3)

Basis of equations:

We can say:

𝜎𝑡 is equivalent to 𝜎1

𝜎𝑟 is equivalent to 𝜎2

𝜎𝑎 is equivalent to 𝜎3

Referring to the stress/strain relationships as stated above. The 

following equations are derived:



𝑬𝜺𝒂 = 𝟎 –𝝂𝝈𝒕 –𝝂𝝈𝒓 = –𝝂𝝈𝒕 – 𝝂𝝈𝒓 (1)

𝑬𝜺𝒕 = 𝑬
𝒖

𝒓
= 𝝈𝒕– 𝝂𝝈𝒓 (2)

𝑬𝜺𝒓 = 𝑬
𝒅𝒖

𝒅𝒓
= 𝝈𝒓– 𝝂𝝈𝒕 (3) 

However, because of the assumption that 𝜎𝑎 = 0 the three equations 

reduce to: 

Multiplying (2) by 𝑟

𝐸𝑢 = 𝑟 𝜎𝑡 − 𝜈𝜎𝑟

Differentiating:

𝐸
𝑑𝑢

𝑑𝑟
= 𝜎𝑡 − 𝜈𝜎𝑟 + 𝑟

𝑑𝜎𝑡
𝑑𝑟

− 𝜈
𝑑𝜎𝑟
𝑑𝑟

= 𝜎𝑟 − 𝜈𝜎𝑡 from (3)



Simplifying by collecting terms:

𝝈𝒕 − 𝝈𝒓 𝟏 + 𝝂 + 𝒓
𝒅𝝈𝒕

𝒅𝒓
− 𝝂𝒓

𝒅𝝈𝒓

𝒅𝒓
= 𝟎 (4)

Now considering the radial equilibrium of the element of the 

section. Forces based on unit length of cylinder:



Given a small element of unit width, 

length = 𝑟𝛿𝜃 and thickness = 𝛿𝑟;

Centrifugal force = 𝑚𝜔2𝑟 = 𝜌𝑟𝛿𝜃𝛿𝑟𝜔2𝑟

2 ∙ 𝜎𝑡∙ 𝛿𝑟 ∙ sin
𝛿𝜃

2
+ 𝜎𝑟𝛿𝜃

− 𝜎𝑟 + δ𝜎𝑟 𝑟 + 𝛿𝑟 𝛿𝜃 = 𝜌𝑟2𝜔2𝛿𝑟𝛿𝜃

= 𝜌𝑟2𝜔2𝛿𝑟𝛿𝜃

And this can be equated to radial forces, i.e.:



In the limit, this reduces to

𝝈𝒕 − 𝝈𝒓 − 𝒓
𝒅𝝈𝒓
𝒅𝒓

= 𝝆𝒓𝟐𝝎𝟐 (5)

Sunstitute for 𝜎𝑡 − 𝜎𝑟 into Eq. (4) results in

𝑟
𝑑𝜎𝑟
𝑑𝑟

+ 𝜌𝑟2𝜔2 1 + 𝜈 + 𝑟
𝑑𝜎𝑡
𝑑𝑟

− 𝜈𝑟
𝑑𝜎𝑟
𝑑𝑟

= 0

Therefore, multiplying out and collecting terms yields:

𝑑𝜎𝑡
𝑑𝑟

+
𝑑𝜎𝑟
𝑑𝑟

= −𝜌𝑟𝜔2 1 + 𝜈



Integrating:

𝝈𝒕 + 𝝈𝒓 = −
𝝆𝒓𝟐𝝎𝟐 𝟏 + 𝝂

𝟐
+ 𝟐𝑨 (6)

Subtract Eq. (5):

2𝜎𝑟 + 𝑟
𝑑𝜎𝑟
𝑑𝑟

= −
𝜌𝑟2𝜔2 3 + 𝜈

2
+ 2𝐴

This is the same as:

1

𝑟

𝑑 𝜎𝑟𝑟
2

𝑑𝑟
= −

𝜌𝑟2𝜔2 3 + 𝜐

2
+ 2𝐴



Dividing by 𝑟2:

Combining Eq. (7) with Eq. (6) (i.e. substituting 𝜎𝑟 from Eq. (7) into Eq. (6):

𝝈𝒓 = 𝑨 −
𝑩

𝒓𝟐
−

𝟑 + 𝝂 𝝆𝒓𝟐𝝎𝟐

𝟖
(7)

(8)𝝈𝒕 = 𝑨 +
𝑩

𝒓𝟐
−

𝟏 + 𝟑𝝂 𝝆𝒓𝟐𝝎𝟐

𝟖

Integrating:

𝜎𝑟𝑟
2 = −

𝜌𝑟4𝜔2 3 + 𝜈

8
+ 𝐴𝑟2 + 𝐵



The equations, (7) and (8), are the general equations for a 

rotating disc. What remains now is to apply these equations 

to specific situations of the disc and apply the relevant 

boundary conditions to reduce the equations to the specific 

situation under consideration.



(i) Solid Disk

From (7), it can be seen that at the centre, where 𝑟 = 𝑅1 = 0, the  𝐵/𝑟2

term implies infinite stresses which are clearly not credible and, 

therefore, 𝐵 must be 0.

Therefore, at 𝑅2:

𝜎𝑟 = 0 = 𝐴 −
3 + 𝜈 𝜌𝑅2

2𝜔2

8

At 𝑟 = 𝑅2 on the outside edge of the 

disk, the radial stress is equal to the 

surface stress which is equal to 0.



Therefore 𝐴 =
𝟑+𝝂 𝝆𝑹𝟐

𝟐𝝎𝟐

𝟖
and with B = 0,

𝝈𝒕 =
𝝆𝝎𝟐

𝟖
𝟑 + 𝝂 𝑹𝟐

𝟐 − 𝟏 − 𝟑𝝂 𝒓𝟐

𝝈𝒓 =
𝝆𝝎𝟐

𝟖
𝟑 + 𝝂 𝑹𝟐

𝟐 − 𝒓𝟐

The maximum stress is at the centre as

𝝈𝒕max = 𝝈𝒓max =
𝝆𝝎𝟐

𝟖
𝟑 + 𝝂 𝑹𝟐

𝟐

(9)

(10)

(11)at 𝑟 = 𝑅1 = 0



250mm diameter disc at 10,000 rpm



(ii) Disk with a Central Hole

At the outside edge, 𝑟 = 𝑅2 and at the 

hole radius, 𝑟 = 𝑅1, the radial stress is 

assumed to be 0.

Therefore, from (7):

𝜎𝑟𝑅2 = 0 = 𝐴 −
𝐵

𝑅2
2 − 3 + 𝜈

𝜌𝑅2
2𝜔2

8

𝜎𝑟𝑅1 = 0 = 𝐴 −
𝐵

𝑅1
2 − 3 + 𝜈

𝜌𝑅1
2𝜔2

8



Solving:

𝐵 = − 3 + 𝜈
𝜌𝜔2

8
∙ 𝑅1

2 ∙ 𝑅2
2

𝐴 = 3 + 𝜈
𝜌𝜔2

8
∙ 𝑅1

2 + 𝑅2
2

Therefore:

𝝈𝒓 = 𝟑 + 𝝂
𝝆𝝎𝟐

𝟖
∙ 𝑹𝟏

𝟐 + 𝑹𝟐
𝟐 −

𝑹𝟏
𝟐 ∙ 𝑹𝟐

𝟐

𝒓𝟐
− 𝒓𝟐

and

𝝈𝒕 =
𝝆𝝎𝟐

𝟖
𝟑 + 𝝂 𝑹𝟏

𝟐 + 𝑹𝟐
𝟐 +

𝑹𝟏
𝟐 ∙ 𝑹𝟐

𝟐

𝒓𝟐
− 𝟏 + 𝟑𝝂 𝒓𝟐

(12)

(13)



The maximum tangential stress 𝜎𝑡 is at the inside hole surface, where 𝑟 = 𝑅1
and equals:

𝝈𝒕max =
𝝆𝝎𝟐

𝟐
𝟏 − 𝝂 𝑹𝟏

𝟐 + 𝟑 + 𝝂 𝑹𝟐
𝟐

The maximum radial stress 𝜎𝑟 equals:

𝝈𝒓max = 𝟑 + 𝝂
𝝆𝝎𝟐

𝟖
𝑹𝟐 − 𝑹𝟏

𝟐

(14)

(15)at 𝑟 = 𝑅1𝑅2

at 𝑟 = 𝑅1

Eq. (15) is obtained by differentiating (12) and equating to 0, 
𝒅𝝈𝒓

𝒅𝒓
= 𝟎, to get 

a local maximum or a minimum.  The second derivative must be negative, i.e.
𝒅𝟐𝝈𝒓

𝒅𝒓𝟐
< 𝟎, for a maximum point. Solving yields 𝑟 = 𝑅1𝑅2 in (15).



250mm OD × 50mm ID ring running at 10,000 rpm



Example 1, P. 289: A thin uniform steel disc of 25 cm

diameter, with a central hole of 5 cm diameter, runs at

10,000 rpm. Calculate the maximum principal stress and

the maximum shearing stress in the disc if ν = 0.3 and

density = 7.7 Mg/m3.
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