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Rotating Discs and
Cylinders — Part 1
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Brainstorming

1. What i1s a disk?
2. What is a cylinder?
3. What Is the difference between the two?

4. Can a disc be considered a cylinder or a cylinder considered

a disc?
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ROTATING DISCS AND CYLINDERS

Introduction

These notes relate to the stresses and strains existing in rotating discs
(like flywheels) and thick walled cylinders.

The primary assumption Is that the cylinders are not subject to
Internal or external pressure.



Symbols/Units

Tensile stresses are considered positive and compressive stresses are negative.

* p, = Internal pressure (MPa, N/m?)

* p, = External pressure (MPa, N/m?)

* o, =Radial stress (MPa, N/m?)

« o, = Tangential (Hoop) stress (MPa, N/m?)

e o0, =Axial/longitudinal stress (MPa, N/m?)

 E =Young’s modulus (MPa, N/m?)
« p = Density (kg/m?3)



v = Poisson’s ratio

r = Radius at point of analysis (m, mm)
R, = Internal radius (m, mm)

R, = External radius (m, mm)

. = Radial strain

g, = Tangential (Hoop) strain

g, = Axial/longitudinal strain

u = Radial deflection (m, mm)



Initial Assumptions

For an infinitesimal cube acted upon by the stresses g, g, and o,
then ¢, &, and &, are the strains associated with the stresses.
v and E are the Poisson’s ratio and Young’s modulus, respectively.

A 0-2

These strains are given by the relations:

&, =0,/E-vo,/E-vo,/E

&, =0,/E-vo,/E-vo,/E
&, =0o03/E-vo,/E-vo,/E




a) Thick Disc Basics

* Consider a “disc”/*thin ring” subject to internal stresses
resulting from the internal forces as a result of its rotational

velocity, w.

* Under the action of the internal forces only, the three principal
stresses will be the tensile radial stress a,., the tensile
tangential stress a, and an axial stress o, which Is generally

also tensile.



* The stress conditions occur throughout the section and vary
primarily relative to the radius .

 [tis assumed that the axial stress o, Is constant along the
length of the section and because the disc Is thin compared to
Its diameter, the axial stress throughout the section Is assumed

ZEIO.

* |tis also assumed that there is no internal or external pressure.
S0, P, =P, =0.



Consider a microscopically small element of the cylinder at radius
r and dr thick, rotating at an angular velocity of w, under stresses
g,, 0,and a,,.

et u be the P2=0
radial
displacement
at radius r.

Unstrained

Strained




The circumferential (Hoop) strain due to the internal pressure is:

Increase in circumference 2n(r +u) —2nr u
gt — — = —
r

Original circumference 21T

At the outer radius of the small sectional area (r + ér), the radius
will increase by (v + éu). The resulting radial strain as 6r — 0 IS

Increaseindr u+doéu—u ou
gr p— p— —

or or ~or




Referring to the stress/strain relationships as stated above. The
following equations are derived:

Basis of equations:

We can say:

g, IS equivalent to o,

g, IS equivalent to o,

g, IS equivalent to o,

Derived Equations:

Strictly, the following equations apply:

Ee,=0,-vo,-vo, (1)
Eet=E%=0t—vaa—var (2)
Eer=E@=ar—vat—vaa (3)

dr



However, because of the assumption that g, = 0 the three equations
reduce to:

Ee,=0-vo,-vo, =-vo,-Vo0, (1)
u

E£t=E;=at—var (2)
du

Ee, = E— = 0,-v0, (3)

Multiplying (2) by r

Eu =r(o — vo,)

Differentiating:

. du N doy do, ]
ar ot VorTl dr Y dr

= g, —vo; from (3)




Simplifying by collecting terms:

(6, —0,)(1+v)+7r (Ci;f) vr (ddir) =0 (4)

Now considering the radial equilibrium of the element of the
section. Forces based on unit length of cylinder:



Given a small element of unit width,
length = r66 and thickness = dr;

Centrifugal force = mw*r = pré06rw?r

= préw?6roh

And this can be equated to radial forces, I.e.:

60
2 - 04 OT - Sin (7) + 0,-600

—(0, + 80,)(r + 61)60 = préw?6r6l

A-p.;r-w?‘z pr2-w?8r-80

2 \
O-t- \\ “\‘\, Gr s - dO’r

rdo

O

(r+ 06r)é06

688

dr




i A p ro’= priw’érso

o, + do,

In the limit, this reduces to '\\ v+ 5r)56

dr

do,
G, — 0, — r( dr) = pr?w? (5) R

rdo

Sunstitute for o; — o,- Into EQ. (4) results In
do; do,

=0

P2 or2w? ) (1 4 ) +
dr pr v rdr vrdr

Therefore, multiplying out and collecting terms yields:

do; do, 5
- + o= —prw (1+v)




Integrating:

2, .2
r“w-“(1+v

Subtract Eq. (5):

do réw?4(3 +v
20 A O r__~f ( )+

2A
dr 2

This Is the same as:

(1) d(o,7r%) - pr?w?(3 +v) .

= 24
r

dr 2

(6)



Integrating:

pr*w?(3 + v)

o,.1r% = o + Ar* + B
Dividing by 72
B (3 +v)pr?w*
0, = A— rz T g (7)

Combining Eq. (7) with Eqg. (6) (i.e. substituting o,- from Eq. (7) into Eq. (6):

B (1+ 3v)pr?w?
oo=at B L3P ®
r 8




The equations, (7) and (8), are the general equations for a
rotating disc. What remains now Is to apply these equations
to specific situations of the disc and apply the relevant
boundary conditions to reduce the equations to the specific

situation under consideration.



(i) Solid Disk

From (7), it can be seen that at the centre, where r = R, = 0, the B/r?
term implies infinite stresses which are clearly not credible and,

therefore, B must be 0.

At r = R, on the outside edge of the
disk, the radial stress is equal to the
surface stress which is equal to O.

Therefore, at R,:

(3 + v)pR5 w?
3

O'T:O:




(3 +v)pR%oo2

Therefore A = and with B = 0,

2
O, = (%) |3+ v)R5 — (1 — 3v)r?]

2

g, = <&) |(3 + V)R — 12|

The maximum stress IS at the centre as

2
pw
O'tmax — O'rmax — (T) (3 + V)R%

atT=R1=O

9)

(10)

(11)
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(1) Disk with a Central Hole

At the outside edge, r = R, and at the
hole radius, » = R, the radial stress Is
assumed to be 0.

Therefore, from (7):

B PR: w?
O'TR2=O=A—R—§—(3+V)( 3 )

B pR%w?
O'TR1=O:A—R—%—(3+V)< 3 )



Solving:

2
w
B=—(3+v)%-(Rf-R§

2
w
A:(3+v)%.(Rf+R§)

Therefore:

w? R? - R
ar=(3+v)pT-(R%+R%— 1r2 Z—rz) (12)
and

2 p2

w* R: R
g, = pT [(3 + V) (R% + RZ + 1r2 2) —(1+ 3v)r2] (13)




The maximum tangential stress o; Is at the inside hole surface, where r = R,
and equals:

pw’

Otmax = (T) (1 -v)R + (3 + V)R] atr = R, (14)

The maximum radial stress o,- equals:

pw’

Orar = (3+ V) (T) (R, —R)?*  atr=/RiR, (15)

Eqg. (15) Is obtained by differentiating (12) and equating to O, ‘Zf = 0, to get

a local maximum or a minimum. The second derivative must be negative, I.e.
2

T 0, for a maximum point. Solving yields r = /R, R, in (15).

dr?
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Example 1, P. 289: A thin uniform steel disc of 25 cm
diameter, with a central hole of 5 cm diameter, runs at
10,000 rpm. Calculate the maximum principal stress and
the maximum shearing stress in the disc If v = 0.3 and
density = 7.7 Mg/m?,



The maximum principal stress 18

&1 =(pw? (1 -¥)R? + (3 +v)Ry?]

2
_ 700 (1..“=””“. 21\ (07 x 00252 + 33 x 0-1252) N/m?
4 60
=110 N/mm?
The maximum shearing stress at any radius
=3{oy —a3)
— (pw?/8)(3 + VIR ZR,2/r2 +(1 —vir?]
It is clear from Fig. 16.3 that the greatest stress difference occurs at
¥ =.R1.
Then maximum ﬂhcaring stress
T700 (ID L0 = E‘IT ﬂ ﬂlﬁ # () 125"
= 3-3 =-
! 60 0-0252
=55 N/mm?

+0-7 %0 n:zsz) N /m?



Note that if R, is very small, &;—(3 +v)(pw?R»2/4), which is fwice
the value for a solid disc (Para. 16.2),

At the outside
oy =(pw?[4)[(3 +v)R% +(1 -v)R,7]

If Ri—R,=R, then R;F'D
T e f,

as in the case of a thin rotating Axis

pe——— Si-pess rotation

cylinder (Para. 15.7).
The wvariation of stresses 1s D)/
shown in Fig. 16.3.

Fig. 16.3
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