MEC 3352
STRENGTH OF MATERIALS 11

Rotating Discs and
Cylinders — Part 2
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(111) Disc of Uniform Strength

Consider the condition of equal stress at all radii, 1.e.:

o; = o, = Constant = o

et ¢ be the thickness at a radius r,
and t + ot at a radius r + or

The mass of the element will be:
m = prd0or -t

And the centrifugal force =pr?w?t505r
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Hence the equilibrium equation Is:
00
20871 - t - sin (7> + 060 -t =a(r + 61r)50(t + 6t) + priw?66 - or - t

In the limit:
ot -dr = or -dt + ot - dr + préw?t - dr

Or:
dt  prw’t

ar~ o

Re-arranging:
2

dt rw
— = P dr
t o



Integrating:

przwzt _ priw?+C - _ priw?
Int = 5 FC Or t=ce 200 =¢eb.e 20
O
_priw?
t =Ae 20
Atr =0,
_priw?

t =Ae” 20 = Ae° l.e. A(r:o) = Lir=0) = Lo

Therefore In general:

_przw2
t =tye 20




Example 2, P. 291: A turbine rotor disc i1s 0.6 m diameter at the
blade ring, and iIs keyed to a 50 mm diameter shaft. If the minimum
thickness Is 9.5 mm what should be the thickness at the shaft for a
uniform stress of 200 MPa at 10,000 rpm? Density = 7,700 kg/m3.



In general for a uniform strength rotating disc;
o Ae—przwz/ZG

Atr=0.3m
t = 0.0095 = Ae—p(o.3)2w2/20 _ Ae—p(0.09)a)2/20

— Ae—7700(0.3)*x1047.2/(2x200%x10°)

— Ae—189
0.0095 = 0.14964

A = 0.0095/0.1496
A=0.06352



Atr=0.025m

_ 2 2 6
tr, = Ae 7700(R,)?%x1047.22/(2%200%10°)

to.02s = Ae
— 0.06352¢ 00132

= 0.06352 X 0.9869
= 0.06269 M = 62.69 mm
t0.025 = 63 mMm

—7700(0.025)?x1047.22 /(2x200x10°)

i.e. t0_025 — tat shaft = 63 mm

+++++++++++



b) Cylinders

"he primary difference between a long rotating cylinder and a thin one Is
that its axial stress o, IS not equal to zero. The assumption in this case Is

that the longitudinal strain ¢, Is constant, I.e. cross sections remain plain.

Basis of equations ... Refer to introductory notes at the top:

g, IS equivalent to o,
g, IS equivalent to o,

g, IS equivalent to o,



Derived equations:

Ee, =0, —vo, — vo, (1)
u

Eet:E;=at—vaa—var (2)
du

EsrzEazar—vat—vaa (3)

Multiplying by (2) r:  Eu = r(o; — vo, — vo,)

Differentiating:

du do; do, do,
EE=at—vaa—var+r W—v 77 —V 77

= 0, — V0; — V0, from (3) above.



Simplifying by collecting terms:
( Y1+ v) + do; do, do,\ ; A
o; — O, V)+r T —Vr T vr el (4)
Now from (1) above, since ¢, IS constant, then
dog,\  (doy N do,
dr | Y dr Y dr
Substituting for ( ) In Eq. (4):

do; do, do, doy\
(o, Ur)(l-l_v)+r(dr)_w[(?)_(dr>]_W(dr>_O




(o, —0,)(1+v)+71r(1—v?) (%) —vr(1 +v) (dar) =0

dr
do; do,
(o; ar)+r(1—v)(dr)—vr(dr>=0

Now considering the radial equilibrium of the element of the section as shown
In the notes above Eg. (5) under rotating disks results

do
G, — G, —T (d_rr) = pr?w* (5)

Substituting for (o; — o)

r(1—v) (di ) +7r(1 —v) (Ci; ) = —préw?



Therefore:
do, N do,\  priw?
dr dr | (1 -v)

Integrating:

préw?
O't+0'r=—2(1_v)+2/1 (6)

"his 1s similar to Eqg. (6) for Rotating Disk analysis completed above. In fact
the rotating disks equation can apply for the long cylinder if (1 + v) in the

disk equations are replaced by (1:/). Or if v Is replaced by (11_’1/).

do, pTriw?
2 = 24 — préw? —
ar+r<dr> prew 2(1 =)




Therefore:

1 d(o,r?) y prw?(3 — 2v)

r dr 2(1 —v)
Therefore:

d(o, %) pr3w?(3 — 2v)

dr 24 2(1 —v)




Integrating:

priw?*(3 — 2v) B
TTsa-v 4T )

0, =

Now substituting for o, In Eq. (7) to obtain: o;

2, 2
prew“(1 + 2v) B

_ A+ — 8

3(1 =) A+ (8)

O-t=



The equations, (7) and (8), are the general equations for a
rotating cylinder. What remains now Is to apply these
equations to specific situations of the disc and apply the
relevant boundary conditions to reduce the equations to the

specific situation under consideration.



a) Solid Cylinder
Solving for 4 and B:

At the centre of the cylinder where R, = 0, the stresses cannot be infinite;
so, B Is clearly equal to 0.

B=0

At the outside diameter of the cylinder, r = R,.

2,.2
prew<(3 — 2v)
=0=— A—0
or 8(1—v)

Therefore:
~ priw*(3 —2v)
- 8(1—-v)




~ pw*(3 —2v)

O = =) (R3 — 1?) )
2
o= 3 (‘i“i ) (3 = 2v)R; — (1 — 2v)r?| (10)

Therefore the maximum radial and tangential stresses are equal at r = 0

2
pw-(3—2v) ,
Ormax ~— %tmax — 8(1 — v) R (11)




Stress (N/mm?)
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0.000 Y Y 1
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Radius (mm)

250mm dia solid cylinder at 10000rpm




b) Hollow Cylinder

R, and at R, are the inner and outer radii.
Solving for A and B:

Atr = R, and at r = R,, the radial stress g, = O:

Therefore: (3 — 20) 5
— 44U
O — —_— — RZ 2 A -
O T TPROTg ATy TAT R
Therefore:
(3—2v) B (3—2v) B
PRI g =0y TRE T P g —v) T RZ

(3 — 2v) B B
R2 —R2 2 — ) —_—
,0( 1 2)(‘) 8(1 —U) pR% R%




Therefore:

B = pwgz((13__ VZ)V) RR5
Solving for A:

0= -otter S i 520
Therefore:

A= pw;((f — VZ)V) —r%+ (R + RY) — (R%,JZR%)



Resulting In:

2 _ 2 2
o, = pa;((f_ vz)v) 1% + (R5 + R%) — (R R 2) (12)
And
°3-2
rmax = o (RS — RY) 13)

and it is located at ¥ = \/(R; - R,)



Similarly:

pw’

N 8(1—v)

2 p2
o, —r2(1+ 2v) + (3 — 2v) {(R% +R?) + (erzRZ)}] (14)

And

pw?

Ptmax T 4(1 —v)

|(1 = 2v)RT + (3 — 2V)R]] (15)

and it is located at r = R,
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c) Temperature Stresses in Uniform Disc

Let T be the temperature rise above that of the unstressed state in a disc.
Then, following the earlier procedures, the stress-strain equations are:

du
Ezar—vat+EaT (1)
u

E;zat—vor+EaT (2)

where « Is the coefficient of linear expansion.

Eliminating u between (1) and (2) gives:

doy; do. dT
_ L = 3
(o, —0,)(1+v)+7r v + Ear o 0 (3)



The equilibrium equation Is unchanged:

N do., 5
O — O ryr—— = pr-w
t r d?‘ p

2

Substituting for o; — g, from (4) into (3) and re-arranging:

do; do, 5 dT
W-I_ . ——(1+v)pra) — Fa—

Integrating yields:

1+ v)prtw?
at+0r=—( ;’D — EaT + 2A

(4)

()



Subtracting (4) from (5), re-grouping and integrating as before, yields:

B pr‘w?*(3+v) Ea

O, =A—r—2— 3 2 fTrdr (6)

Then from (5) to obtain: o;

B réw?(1+v Ea
r 8 12




Example 3, p.292: Suppose a disc in Example 1 has a linear
variation of temperature of 45 °C between the inner and outer
(hotter edges). Calculate the new value of the maximum stress.
E = 205,000 MPa, « = 11 x 107° per °C.

(Example 1, P. 289: A thin uniform steel disc of 25 cm
diameter, with a central hole of 5 cm diameter, runs at 10,000
rom. Calculate the maximum principal stress and the
maximum shearing stress in the disc if v = 0.3 and density =
7.7 Mg/m3.)



Solution:

The variation of temperature with radius may be written as:

T = 450(r — 0.025)

Assuming no external radial pressure, the radial stress may be equated to zero
atr = 0.025 and r = 0.125, I.e. from (6)

=0

A

00 (3 +0.3) X 0.0252 /10,000 x 27\°
0.0252 8 60

A—1600B = 2.18 x 10° (i)



and

0.1252(3 + 0.3) (10,000 % 2n>2

A — — 7700
0.1252 60
(205 109 o 11 10—6) [4507"3 i, 0.025r2]°'125 ;
B : B _
0.125 3 2]
A—64B = 83.4 x 10° (i)

From (1) and (i)
A=86.8x10°
B =53.0 x 10°



The maximum stress again occurs at r = 0.025 m
o, = 86.8 X 10° + 84.8 x 10° — 0.086 x 10° N/m?

o4 = 171 N/mm?

+4++++++++++H+



d)

Plastic Collapse of Rotating Discs

It has been seen that the centrifugal forces in a rotating disc set up a
two-dimensional tensile stress system, and in all the cases
considered, the hoop stress Is greater than or equal to the radial
stress at a given radius.

The maximum values occur at the minimum radius.

It follows that, as the speed Is increased, yield will first occur in the
circumferential direction when a; = o, (the yield stress in tension).

A state of collapse will be reached when this stress condition
extends to the outer surface of the disc (assuming an ideal elastic-
plastic material).



Equilibrium equation becomes:

do,
O'y—O'r—TW—pT 0,
Integrating:
13 w?
o7 = 0,17 — + A

3



1) Solid Disc
Since the stresses are infinite at r = 0, then A = 0.
Atr = R,




1) Disc with Central Hole
Atr = R, 0. = 0, giving:

R? w?
A — (,0 jé — O'y) Rl

3 3 R,

pR: w? (pR%wz )Rl
T ~ 9y |5
2

Giving a collapse speed of:

30—)’ R1 +R2
LS T8 &




Example:

Substituting the values of Example 1 and assuming a yield stress of 280
MPa gives a collapse speed of:

1 3O-y.R2+R1
p R3—R}

1 3x280x10° (0.125 + 0.025)
7700 (0.125% — 0.0253)

w=2,906rad/s or 27,752 rpm



SUMMARY

Uniform Disc: Solid:

Hollow:

Long Cylinder:  Solid:

Hollow:




Disc of Uniform Strength:

Collapse Speed:  Solid:

Hollow:
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