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(iii) Disc of Uniform Strength

Consider the condition of equal stress at all radii, i.e.:

𝝈𝒕 = 𝝈𝒓 = 𝐂𝐨𝐧𝐬𝐭𝐚𝐧𝐭 = 𝝈

Let 𝑡 be the thickness at a radius 𝑟, 

and 𝑡 + 𝛿𝑡 at a radius 𝑟 + 𝛿𝑟

The mass of the element will be:

And the centrifugal force =𝜌𝑟2𝜔2𝑡𝛿𝜃𝛿𝑟

𝑚 = 𝜌𝑟𝛿𝜃𝛿𝑟 ∙ 𝑡



2𝜎𝛿𝑟 ∙ 𝑡 ∙ sin
𝛿𝜃

2
+ 𝜎𝛿𝜃 ∙ 𝑡 = 𝜎 𝑟 + 𝛿𝑟 𝛿𝜃 𝑡 + 𝛿𝑡 + 𝜌𝑟2𝜔2𝛿𝜃 ∙ 𝜎𝑟 ∙ 𝑡

Hence the equilibrium equation is:

In the limit:

𝜎𝑡 ∙ 𝑑𝑟 = 𝜎𝑟 ∙ 𝑑𝑡 + 𝜎𝑡 ∙ 𝑑𝑟 + 𝜌𝑟2𝜔2𝑡 ∙ 𝑑𝑟

Or:
𝑑𝑡

𝑑𝑟
= −

𝜌𝑟𝜔2𝑡

𝜎

𝒅𝒕

𝒕
= −

𝝆𝒓𝝎𝟐

𝝈
𝒅𝒓

Re-arranging:



Integrating:

ln 𝑡 = −
𝜌𝑟2𝜔2𝑡

2𝜎
+ 𝐶 or 𝑡 = 𝑒−

𝜌𝑟2𝜔2+𝐶
2𝜎 = 𝑒𝐶 ∙ 𝑒−

𝜌𝑟2𝜔2

2𝜎

At 𝑟 = 0, 

𝑡 = 𝐴𝑒−
𝜌𝑟2𝜔2

2𝜎 = 𝐴𝑒0

Therefore in general: 

𝒕 = 𝒕𝟎𝒆
−
𝝆𝒓𝟐𝝎𝟐

𝟐𝝈

𝐴(𝑟=0) = 𝑡(𝑟=0) = 𝑡0i.e.

𝑡 = 𝐴𝑒−
𝜌𝑟2𝜔2

2𝜎



Example 2, P. 291: A turbine rotor disc is 0.6 m diameter at the

blade ring, and is keyed to a 50 mm diameter shaft. If the minimum

thickness is 9.5 mm what should be the thickness at the shaft for a

uniform stress of 200 MPa at 10,000 rpm? Density = 7,700 kg/m3.



𝑡 = 𝐴𝑒−𝜌𝑟
2𝜔2/2𝜎

At r = 0.3 m

𝑡 = 0.0095 = 𝐴𝑒−𝜌(0.3)
2𝜔2/2𝜎 = 𝐴𝑒−𝜌(0.09)𝜔

2/2𝜎

In general for a uniform strength rotating disc;

= 𝐴𝑒−7700 0.3 2×1047.2/ 2×200×106

= 𝐴𝑒−1.89

0.0095 = 0.1496𝐴

𝑨 = 𝟎. 𝟎𝟔𝟑𝟓𝟐

𝐴 = 0.0095/0.1496



At r = 0.025 m

= 0.06352𝑒−0.0132
𝑡0.025 = 𝐴𝑒−7700 0.025 2×1047.22/ 2×200×106

= 0.06352 × 0.9869

= 0.06269 m = 62.69 mm

𝒕𝟎.𝟎𝟐𝟓 = 𝟔𝟑 mm

i.e. 𝒕𝟎.𝟎𝟐𝟓 = 𝒕at shaft = 𝟔𝟑mm

++++++++++++++++++++++++++++++++++++++

𝑡𝑅2 = 𝐴𝑒−7700 𝑅2
2×1047.22/ 2×200×106



b) Cylinders 

The primary difference between a long rotating cylinder and a thin one is 

that its axial stress 𝜎𝑎 is not equal to zero. The assumption in this case is 

that the longitudinal strain 𝜀𝑎 is constant, i.e. cross sections remain plain.

Basis of equations … Refer to introductory notes at the top:

𝜎𝑡 is equivalent to 𝜎1

𝜎𝑟 is equivalent to 𝜎2

𝜎𝑎 is equivalent to 𝜎3



Derived equations:

𝑬𝜺𝒂 = 𝝈𝒂 − 𝝂𝝈𝒕 − 𝝂𝝈𝒓

𝑬𝜺𝒕 = 𝑬
𝒖

𝒓
= 𝝈𝒕 − 𝝂𝝈𝒂 − 𝝂𝝈𝒓

𝑬𝜺𝒓 = 𝑬
𝒅𝒖

𝒅𝒓
= 𝝈𝒓 − 𝝂𝝈𝒕 − 𝝂𝝈𝒂

Multiplying by (2) 𝑟: 𝐸𝑢 = 𝑟 𝜎𝑡 − 𝜈𝜎𝑎 − 𝜈𝜎𝑟

Differentiating:

𝐸
𝑑𝑢

𝑑𝑟
= 𝜎𝑡 − 𝜈𝜎𝑎 − 𝜈𝜎𝑟 + 𝑟

𝑑𝜎𝑡
𝑑𝑟

− 𝜈
𝑑𝜎𝑎
𝑑𝑟

− 𝜈
𝑑𝜎𝑟
𝑑𝑟

= 𝜎𝑟 − 𝜈𝜎𝑡 − 𝜈𝜎𝑎 from (3) above.

(1)

(2)

(3)



Simplifying by collecting terms:

𝝈𝒕 − 𝝈𝒓 𝟏 + 𝝂 + 𝒓
𝒅𝝈𝒕
𝒅𝒓

− 𝝂𝒓
𝒅𝝈𝒂
𝒅𝒓

− 𝝂𝒓
𝒅𝝈𝒓
𝒅𝒓

= 𝟎 (4)

Now from (1) above, since 𝜀𝑎 is constant, then

Substituting for 
𝑑𝜎𝑎

𝑑𝑟
in Eq. (4):

𝜎𝑡 − 𝜎𝑟 1 + 𝜈 + 𝑟
𝑑𝜎𝑡
𝑑𝑟

− 𝜈𝑟
𝑑𝜎𝑎
𝑑𝑟

−
𝑑𝜎𝑟
𝑑𝑟

− 𝜈𝑟
𝑑𝜎𝑟
𝑑𝑟

= 0

𝑑𝜎𝑎
𝑑𝑟

= 𝜈
𝑑𝜎𝑡
𝑑𝑟

+ 𝜈
𝑑𝜎𝑟
𝑑𝑟



𝜎𝑡 − 𝜎𝑟 1 + 𝜈 + 𝑟 1 − 𝜈2
𝑑𝜎𝑡
𝑑𝑟

− 𝜈𝑟 1 + 𝜈
𝑑𝜎𝑟
𝑑𝑟

= 0

𝜎𝑡 − 𝜎𝑟 + 𝑟 1 − 𝜈
𝑑𝜎𝑡
𝑑𝑟

− 𝜈𝑟
𝑑𝜎𝑟
𝑑𝑟

= 0

Now considering the radial equilibrium of the element of the section as shown 

in the notes above Eq. (5) under rotating disks results

𝝈𝒕 − 𝝈𝒓 − 𝒓
𝒅𝝈𝒓
𝒅𝒓

= 𝝆𝒓𝟐𝝎𝟐 (5)

Substituting for 𝜎𝑡 − 𝜎𝑟

𝑟 1 − 𝜈
𝑑𝜎𝑡
𝑑𝑟

+ 𝑟 1 − 𝜈
𝑑𝜎𝑟
𝑑𝑟

= −𝜌𝑟2𝜔2



Integrating:

𝑑𝜎𝑡
𝑑𝑟

+
𝑑𝜎𝑟
𝑑𝑟

= −
𝜌𝑟2𝜔2

1 − 𝜈

Therefore:

𝝈𝒕 + 𝝈𝒓 = −
𝝆𝒓𝟐𝝎𝟐

𝟐 𝟏 − 𝝂
+ 𝟐𝑨 (6)

This is similar to Eq. (6) for Rotating Disk analysis completed above. In fact 

the rotating disks equation can apply for the long cylinder if 1 + 𝜈 in the 

disk equations are replaced by 
1

1−𝜈
. Or if 𝜈 is replaced by 

𝜈

1−𝜈
.

2𝜎𝑟 + 𝑟
𝑑𝜎𝑟
𝑑𝑟

= 2𝐴 − 𝜌𝑟2𝜔2 −
𝜌𝑟2𝜔2

2 1 − 𝜈



Therefore:

1

𝑟
∙
𝑑 𝜎𝑟𝑟

2

𝑑𝑟
= 2𝐴 −

𝜌𝑟2𝜔2 3 − 2𝜈

2 1 − 𝜈

Therefore:

𝑑 𝜎𝑟𝑟
2

𝑑𝑟
= 2𝐴𝑟 −

𝜌𝑟3𝜔2 3 − 2𝜈

2 1 − 𝜈



Integrating:

𝝈𝒓 = −
𝝆𝒓𝟐𝝎𝟐 𝟑 − 𝟐𝝂

𝟖 𝟏 − 𝝂
+ 𝑨 −

𝑩

𝒓𝟐

Now substituting for 𝜎𝑟 in Eq. (7) to obtain: 𝜎𝑡

𝝈𝒕 = −
𝝆𝒓𝟐𝝎𝟐 𝟏 + 𝟐𝝂

𝟖 𝟏 − 𝝂
+ 𝑨 +

𝑩

𝒓𝟐

(7)

(8)



The equations, (7) and (8), are the general equations for a 

rotating cylinder. What remains now is to apply these 

equations to specific situations of the disc and apply the 

relevant boundary conditions to reduce the equations to the 

specific situation under consideration.



a) Solid Cylinder

Solving for 𝐴 and 𝐵:

At the centre of the cylinder where 𝑅1 = 0, the stresses cannot be infinite; 

so, 𝐵 is clearly equal to 0.  

𝐵 = 0

At the outside diameter of the cylinder, 𝑟 = 𝑅2.

𝜎𝑟 = 0 = −
𝜌𝑟2𝜔2 3 − 2𝜈

8 1 − 𝜈
+ 𝐴 − 0

Therefore:

𝐴 =
𝜌𝑟2𝜔2 3 − 2𝜈

8 1 − 𝜈



𝝈𝒓 =
𝝆𝝎𝟐 𝟑 − 𝟐𝝂

𝟖 𝟏 − 𝝂
𝑹𝟐
𝟐 − 𝒓𝟐

𝝈𝒕 =
𝝆𝝎𝟐

𝟖 𝟏 − 𝝂
𝟑 − 𝟐𝝂 𝑹𝟐

𝟐 − 𝟏 − 𝟐𝝂 𝒓𝟐

𝝈𝒓max = 𝝈𝒕max =
𝝆𝝎𝟐 𝟑 − 𝟐𝝂

𝟖 𝟏 − 𝝂
𝑹𝟐
𝟐

Therefore the maximum radial and tangential stresses are equal at 𝑟 = 0

(9)

(10)

(11)





b) Hollow Cylinder

Therefore:

Solving for 𝐴 and 𝐵:

At 𝑟 = 𝑅1 and at 𝑟 = 𝑅2, the radial stress 𝜎𝑟 = 0:

Therefore:

0 = 𝜎𝑟 = −𝜌𝑅1
2𝜔2

3 − 2𝜐

8 1 − 𝜐
+ 𝐴 −

𝐵

𝑅1
2

𝜌 𝑅1
2 − 𝑅2

2 𝜔2
(3 − 2𝜐)

8(1 − 𝜐)
= 𝜌

𝐵

𝑅2
2 −

𝐵

𝑅1
2

𝜌𝑅1
2𝜔2

(3 − 2𝜐)

8(1 − 𝜐)
+
𝐵

𝑅1
2 = 𝜌𝑅2

2𝜔2
(3 − 2𝜐)

8(1 − 𝜐)
+
𝐵

𝑅2
2

𝑅1 and at 𝑅2 are the inner and outer radii. 



Therefore:

𝐵 =
𝜌𝜔2 3 − 2𝜈

8 1 − 𝜈
𝑅1
2𝑅2

2

Solving for 𝐴:

0 = 𝜎𝑟 = −𝜌𝑅1
2𝜔2

3 − 2𝜈

8 1 − 𝜈
+ 𝐴 − 𝜌𝑅2

2𝜔2
3 − 2𝜐

8 1 − 𝜐

Therefore:

𝐴 =
𝜌𝜔2 3 − 2𝜈

8 1 − 𝜈
−𝑟2 + 𝑅2

2 + 𝑅1
2 −

𝑅1
2 ∙ 𝑅2

2

𝑟2



Resulting in:

𝝈𝒓 =
𝝆𝝎𝟐 𝟑 − 𝟐𝝂

𝟖 𝟏 − 𝝂
−𝒓𝟐 + 𝑹𝟐

𝟐 + 𝑹𝟏
𝟐 −

𝑹𝟏
𝟐 ∙ 𝑹𝟐

𝟐

𝒓𝟐

𝝈𝒓max =
𝝆𝝎𝟐 𝟑 − 𝟐𝝂

𝟖 𝟏 − 𝝂
𝑹𝟐
𝟐 − 𝑹𝟏

𝟐

and it is located at 𝑟 = 𝑅1 ∙ 𝑅2

And

(12)

(13)



𝝈𝒕 =
𝝆𝝎𝟐

𝟖 𝟏 − 𝝂
−𝒓𝟐 𝟏 + 𝟐𝝂 + 𝟑 − 𝟐𝝂 𝑹𝟐

𝟐 + 𝑹𝟏
𝟐 +

𝑹𝟏
𝟐 ∙ 𝑹𝟐

𝟐

𝒓𝟐

and it is located at 𝑟 = 𝑅1

𝝈𝒕max =
𝝆𝝎𝟐

𝟒 𝟏 − 𝝂
𝟏 − 𝟐𝝂 𝑹𝟏

𝟐 + 𝟑 − 𝟐𝝂 𝑹𝟐
𝟐

Similarly:

And

(14)

(15)





c) Temperature Stresses in Uniform Disc

Let 𝑇 be the temperature rise above that of the unstressed state in a disc. 

Then, following the earlier procedures, the stress-strain equations are:

𝑬
𝒖

𝒓
= 𝝈𝒕 − 𝝂𝝈𝒓 + 𝑬𝜶𝑻

𝑬
𝒅𝒖

𝒅𝒓
= 𝝈𝒓 − 𝝂𝝈𝒕 + 𝑬𝜶𝑻 (1)

(2)

where 𝛼 is the coefficient of linear expansion.

Eliminating u between (1) and (2) gives:

𝜎𝑡 − 𝜎𝑟 1 + 𝜈 + 𝑟
𝑑𝜎𝑡
𝑑𝑟

− 𝜈𝑟
𝑑𝜎𝑟
𝑑𝑟

+ 𝐸𝛼𝑟
𝑑𝑇

𝑑𝑟
= 0 (3)



The equilibrium equation is unchanged:

𝜎𝑡 − 𝜎𝑟 + 𝑟
𝑑𝜎𝑟
𝑑𝑟

= 𝜌𝑟2𝜔2 (4)

Substituting for 𝜎𝑡 − 𝜎𝑟 from (4) into (3) and re-arranging:

𝑑𝜎𝑡
𝑑𝑟

+
𝑑𝜎𝑟
𝑑𝑟

= − 1 + 𝜈 𝜌𝑟𝜔2 − 𝐸𝛼
𝑑𝑇

𝑑𝑟

Integrating yields:

𝜎𝑡 + 𝜎𝑟 = −
1 + 𝜈 𝜌𝑟2𝜔2

2
− 𝐸𝛼𝑇 + 2𝐴 (5)



Subtracting (4) from (5), re-grouping and integrating as before, yields:

𝝈𝒓 = 𝑨 −
𝑩

𝒓𝟐
−
𝝆𝒓𝟐𝝎𝟐 𝟑 + 𝝂

𝟖
−
𝑬𝜶

𝒓𝟐
න𝑻𝒓𝒅𝒓

Then from (5) to obtain: 𝜎𝑡

𝝈𝒕 = 𝑨 +
𝑩

𝒓𝟐
−
𝝆𝒓𝟐𝝎𝟐 𝟏 + 𝝂

𝟖
− 𝑬𝜶𝑻 +

𝑬𝜶

𝒓𝟐
න𝑻𝒓𝒅𝒓

(6)

(7)



Example 3, p.292: Suppose a disc in Example 1 has a linear 

variation of temperature of 45 oC between the inner and outer 

(hotter edges). Calculate the new value of the maximum stress. 

𝐸 = 205,000 MPa, 𝛼 = 11 × 10−6 per oC.

(Example 1, P. 289: A thin uniform steel disc of 25 cm

diameter, with a central hole of 5 cm diameter, runs at 10,000

rpm. Calculate the maximum principal stress and the

maximum shearing stress in the disc if ν = 0.3 and density =

7.7 Mg/m3.)



Solution:

The variation of temperature with radius may be written as:

𝑇 = 450 𝑟 − 0.025

Assuming no external radial pressure, the radial stress may be equated to zero 

at 𝑟 = 0.025 and 𝑟 = 0.125, i.e. from (6)

𝐴 −
𝐵

0.0252
− 7700

3 + 0.3 × 0.0252

8

10,000 × 2𝜋

60

2

= 0

𝑨 − 𝟏𝟔𝟎𝟎𝑩 = 𝟐. 𝟏𝟖 × 𝟏𝟎𝟔 (i)



𝐴 −
𝐵

0.1252
− 7700

0.1252 3 + 0.3

8

10,000 × 2𝜋

60

2
and

− 205 × 109 ×
11 × 10−6

0.1252
450𝑟3

3
− 450

0.025𝑟2

2
0.025

0.125

= 0

𝑨 − 𝟔𝟒𝑩 = 𝟖𝟑. 𝟒 × 𝟏𝟎𝟔 (ii)

From (i) and (ii)

𝑨 = 𝟖𝟔. 𝟖 × 𝟏𝟎𝟔

𝑩 = 𝟓𝟑. 𝟎 × 𝟏𝟎𝟔



The maximum stress again occurs at 𝑟 = 0.025 m

𝜎1 = 86.8 × 106 + 84.8 × 106 − 0.086 × 106 N/m2

𝝈𝟏 = 𝟏𝟕𝟏 N/mm2

+++++++++++++++++++++++++++++++++++++++++++



d) Plastic Collapse of Rotating Discs

• It has been seen that the centrifugal forces in a rotating disc set up a 

two-dimensional tensile stress system, and in all the cases 

considered, the hoop stress is greater than or equal to the radial 

stress at a given radius. 

• The maximum values occur at the minimum radius. 

• It follows that, as the speed is increased, yield will first occur in the 

circumferential direction when 𝝈𝒕 = 𝝈𝒚 (the yield stress in tension).

• A state of collapse will be reached when this stress condition 

extends to the outer surface of the disc (assuming an ideal elastic-

plastic material).



Equilibrium equation becomes:

𝜎𝑦 − 𝜎𝑟 − 𝑟
𝑑𝜎𝑟
𝑑𝑟

= 𝜌𝑟2𝜔2

Integrating:

𝜎𝑟𝑟 = 𝜎𝑦𝑟 −
𝜌𝑟3𝜔2

3
+ 𝐴



i) Solid Disc

Since the stresses are infinite at 𝑟 = 0, then 𝐴 = 0.

At 𝑟 = 𝑅, 

𝜎2 = 0 = 𝜎𝑦 −
𝜌𝑟3𝜔2

3

Giving a collapse speed of:

𝝎 =
𝟏

𝑹

𝟑𝝈𝒚

𝝆



ii) Disc with Central Hole

Giving a collapse speed of:

𝝎 =
𝟑𝝈𝒚

𝝆
∙
𝑹𝟏 + 𝑹𝟐

𝑹𝟐
𝟑 − 𝑹𝟏

𝟑

At 𝑟 = 𝑅1, 𝜎𝑟 = 0, giving:

𝐴 =
𝜌𝑅1

2𝜔2

3
− 𝜎𝑦 𝑅1

At 𝑟 = 𝑅2, 

𝜎𝑟 = 0 = 𝜎𝑦 −
𝜌𝑅2

2𝜔2

3
+

𝜌𝑅1
2𝜔2

3
− 𝜎𝑦

𝑅1
𝑅2



Substituting the values of Example 1 and assuming a yield stress of 280 

MPa gives a collapse speed of:

𝜔 =
1

𝑅

3𝜎𝑦

𝜌
∙
𝑅2 + 𝑅1

𝑅2
3 − 𝑅1

3

=
1

0.025

3 × 280 × 106

7700
∙

0.125 + 0.025

0.1253 − 0.0253

𝝎 = 𝟐, 𝟗𝟎𝟔 𝐫𝐚𝐝/𝐬 𝐨𝐫 𝟐𝟕, 𝟕𝟓𝟐 𝐫𝐩𝐦

Example:



SUMMARY

Uniform Disc: Solid: 𝝈𝒕max = 𝝈𝒓max =
𝝆𝝎𝟐 𝟑 + 𝝂

𝟖
𝑹𝟐
𝟐

Hollow: 𝝈𝒕max =
𝝆𝝎𝟐

𝟐
𝟏 − 𝝂 𝑹𝟏

𝟐 + 𝟑 + 𝝂 𝑹𝟐
𝟐

Long Cylinder: Solid:

Hollow:

𝝈𝒕max =
𝝆𝝎𝟐 𝟑 − 𝟐𝝂

𝟖 𝟏 − 𝝂
𝑹𝟐

𝝈𝒕max =
𝝆𝝎𝟐

𝟒 𝟏 − 𝝂
𝟏 − 𝟐𝝂 𝑹𝟏

𝟐 + 𝟑 − 𝟐𝝂 𝑹𝟐
𝟐



Disc of Uniform Strength:

Collapse Speed:

𝒕 = 𝒕𝟎𝒆
−
𝝆𝒓𝟐𝝎𝟐

𝟐𝝈

𝝎 =
𝟑𝝈𝒚

𝝆
∙
𝑹𝟏 + 𝑹𝟐

𝑹𝟐
𝟑 − 𝑹𝟏

𝟑

Solid:

Hollow:

𝝎 =
𝟏

𝑹

𝟑𝝈𝒚

𝝆





ME 3352: Strength of Materials II

For it is, this far, the best there can 
be among courses!!!

Enjoy ME 3352. 


