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Solid Circular Shafts

Introduction

Torsion is the twisting of a

structural member, when it is

loaded by couples that produce

rotation about its longitudinal

axis.

Fig.7.1 (a) and (b): Torsion in a circular shaft 

All cross sections of the shaft

are subjected to the same

internal torque T; therefore, the

shaft is said to be in pure

torsion.



Solid Circular Shafts
Introduction

Fig.7.1 (c): Circular shaft subjected to pure torsion  

When a torque is applied to a shaft having a circular cross

section (axisymmetric shaft) the shear strains vary linearly from

zero at its center to a maximum at its outer surface.



Solid Circular Shafts
Introduction
Due to the uniformity of the shear strain at all points on the same

radius, the cross sections do not deform, but rather remain plane

after the shaft has twisted.

A bar or shaft of circular cross section twisted by a couple T,

assume the left-hand end is fixed and the right-hand end will

rotate a small angle ∅, called angle of twist.

Under twisting deformation, it is assumed that:

1. Plane sections remain plane

2. Radii remain straight and the cross sections remain

plane and circular

3. if ∅ is small, neither the length L nor the r radius will

change



Solid Circular Shafts: 
• A plane section before twisting remains plane after twisting.

In other words, circular cross sections do not warp as they

twist.

• Cross sections rotate about, and remain perpendicular to,

the longitudinal axis of the shaft. (see figure 7.1 (b).

• Each cross section remains undistorted as it rotates relative

to neighboring cross sections. In other words, the cross

section remains circular and there is no strain in the plane of

the cross section.

• Radial lines remain straight and radial as the cross section

rotates.

• The distances between cross sections remain constant

during the twisting deformation. In other words, no axial

strain occurs in a round shaft as it twists.



Solid Non-circular Shafts

• Shafts that have a non-circular cross section,

however, are not axisymmetric, and so their cross

sections will bulge or warp when the shaft is twisted.

• Evidence of this can be seen from the way grid lines

deform on a shaft having a square cross section when

the shaft is twisted, Fig. 7.2.

• As a consequence of this deformation, the torsional

analysis of noncircular shafts becomes considerably

more complicated.



Fig. 7.2: Torsion in non-circular members

Solid Non-circular Shafts



Fig. 7.2 (b): Comparison of Torsion in circular and non-circular shafts

Solid Non-circular Shafts



• Using a mathematical analysis based on the theory of

elasticity, it is possible to determine the shear-stress

distribution within a shaft of square cross section.

• Examples of how this shear stress varies along two radial

lines of the shaft are shown in Figure 7.3 (a).

• Because these shear-stress distributions vary in a complex

manner, the shear strains they create will warp the cross

section as shown in Figure 7.3 (b).

• In particular notice that the corner points of the shaft must

be subjected to zero shear stress and therefore zero shear

strain.

Solid Non-circular Shafts



Fig. 7.3: Stress distribution in a square shaft

Solid Non-circular Shafts



• The reason for this can be shown

by considering an element of material

located at one of these points, Figure

7.3 (c).

• One would expect the top face of

this element to be subjected to a

shear stress in order to aid in

resisting the applied torque T.

• This, however, cannot occur since

the complementary shear stresses

𝝉 and 𝝉′ , acting on the outer

surface of the shaft, must be zero.
Fig. 7.3 (c): Stress distribution 

in a square shaft

Solid Noncircular Shafts



• The results of the analysis for

square cross sections, along with

other results from the theory of

elasticity, for shafts having

triangular and elliptical cross

sections, are reported in Table 1.1.

• In all cases the maximum shear

stress occurs at a point on the edge

of the cross section that is closest to

the center axis of the shaft. In Table

1.1 these points are indicated as

“dots” on the cross sections.

Table 7.1 : Stress in non-

circular members
Solid Non-circular Shafts



• Also given in Table 1.1 are formulas for the angle of

twist of each shaft.

• Comparing these results to a shaft having an

arbitrary cross section, it can also be shown that a

shaft having a circular cross section is most efficient,

since it is subjected to both a smaller maximum

shear stress and a smaller angle of twist than a

corresponding shaft having a non-circular cross

section and subjected to the same torque T.

Solid Noncircular Shafts



SAINT VENANT’S THEORY

Fig. 7.4:Torsional shear stresses in a rectangular bar.

Results from Saint-Venant’s analysis of torsion of a prismatic

bars of non-circular cross section indicate that, in general, every

section will warp (i.e., not remain plane) when twisted, except for

members with circular cross sections.



SAINT VENANT’S THEORY

• Distortion of the small squares is greatest at the midpoint of a

side of the cross section and disappears at the corners (see

Table 1.1).

• Since this distortion is a measure of shear strain, Hooke’s law

requires that the shear stress be largest at the midpoint of a

side of the cross section and zero at the corners.

• Equations for the maximum shear stress and the angle of

twist for a rectangular section obtained from Saint-Venant’s

theory are:

𝜏𝑚𝑎𝑥 =
𝑇

𝛼𝑎2𝑏
7.1

∅ =
𝑇𝐿

𝛽𝑎3𝑏𝐺
7.2



SAINT VENANT’S THEORY
• Where a and b are the lengths of the short and long sides of

the rectangle, respectively.

• The numerical constants α and β can be obtained from Table

7.2
Table 7.2:  Constants for Torsion of a Rectangular Bar



SAINT VENANT’S THEORY

• For aspect ratios b/a ≥ 5, the coefficients α and β that

respectively appear in Equations (7.1) and (7.2) can be

calculated from the following equation:

𝛼 = 𝛽 =
1

3
1 − 0.630

𝑎

𝑏

• As a practical matter, an aspect ratio b/a ≥ 21 is sufficiently

large that values of α = β = 0.333 can be used to calculate

maximum shear stresses and deformations in narrow

rectangular bars within an accuracy of 3 %.

• Accordingly, equations for the maximum shear stress and

angle of twist in narrow rectangular bars can be expressed

as:



SAINT VENANT’S THEORY

𝜏𝑚𝑎𝑥 =
3𝑇

𝑎2𝑏

∅ =
3𝑇𝐿

𝑎3𝑏𝐺

7.3

7.4

Fig 7.5: Equivalent narrow rectangular sections with shear stress distribution.



Example 7.1

The two rectangular solid polymer bars whose

cross-sections measures (25 x 64 mm) and (48 x

32 mm) respectively are each subjected to a

torque T = 25Nm. For each bar, determine

(a) the maximum shear stress.

(b) the rotation angle at the free end if the bar

has a length of 305 mm. Assume that G =

350MPa for the polymer material.



Thin-Walled Tubes with Closed Cross Sections

• We now look at the effects of applying a torque to a

thin-walled tube having a closed cross section, i.e, a

tube that does not have any breaks or slits along its

length.

• Since the walls are thin, we will obtain the average

shear stress by assuming that this stress is

uniformly distributed across the thickness of the

tube at any given point.

• We also discuss shear stress distribution over the

cross section.



• A useful concept associated with the analysis of

thin-walled sections is the shear flow q,

• The shear flow is defined as the internal shearing

force per unit of length of the thin section.

• The SI unit for shear flow is the newton per meter.

• In terms of stress, q equals 𝜏 × 𝑡, where 𝜏 is the

average shear stress across the thickness t.

• We can demonstrate that the shear flow on a cross

section is constant even though the wall thickness

of the section may vary.

Thin-Walled Tubes with Closed Cross Sections

Shear Flow



Thin-Walled Tubes with Closed Cross Sections

Shear Flow

Figure 7.6 b shows a block cut from the member of Figure 7.6 a

between A and B.

Fig. 7.6: Shear flow in thin-walled tubes.



Thin-Walled Tubes with Closed Cross Sections

Shear Flow

Since the member is subjected to pure torsion, the shear forces

V1, V2, V3, and V4 alone are necessary and sufficient for

equilibrium (i.e., no normal forces are involved).

Summing forces in the 𝑥 direction gives

𝑉1 = 𝑉3

𝑞𝐴𝑑𝑥 = 𝑞𝐵𝑑𝑥

𝑞𝐴 = 𝑞𝐵
and, since 𝑞 = 𝜏 × 𝑡,

𝜏𝐴𝑡𝐴 = 𝜏𝐵𝑡𝐵
Note that the shear flow and the shear stress always act tangent

to the wall of the tube.

7.5



SHEAR STRESS OVER THE CROSS SECTION

Shown in Figures 7.7 a and 7.7 b is a

small element of the tube having a finite

length s and differential width dx. At one

end the element has a thickness 𝒕𝑨 and at

the other end the thickness is 𝒕𝑩.

Due to the internal torque T, shear stress

is developed on the front face of the

element. Specifically, at end A the shear

stress is 𝝉𝑨 and at end B it is 𝝉𝑩.

Fig. 7.7 a.

Fig. 7.7 b.



It follows that “the product of the
average shear stress and the
thickness of the tube is the same at
each point on the tube’s cross-
sectional area”.

This product is called shear flow,* q,
and in general terms we can express it
as

𝒒 = 𝝉𝒂𝒗𝒈𝒕

Since q is constant over the cross
section, the largest average shear
stress must occur where the tube’s
thickness is the smallest.

Fig. 7.7 a.

Fig. 7.7 b.

Shear Flow

7.6



RELATIONSHIP BETWEEN INTERNAL TORQUE (T)

AND SHEAR STRESS (𝝉)

Fig. 7.8 : Deriving a relationship between internal torque and shear stress in a thin-

walled section.

• Consider the force 𝑑𝐹 acting through the center of a

differential length of perimeter 𝑑𝑠, as shown in Figure 7.8.

• The differential moment produced by 𝑑𝐹 about the origin 𝑂 is

𝑠𝑖𝑚𝑝𝑙𝑦 𝜌 × 𝑑𝐹, where 𝜌 is the mean radial distance from

the perimeter element to the origin.



RELATIONSHIP BETWEEN INTERNAL TORQUE (T)

AND SHEAR STRESS (𝝉)

• The internal torque equals the resultant of all of the differential

moments; that is,

• This integral may be difficult to integrate by formal calculus;

however, the quantity 𝜌. 𝑑𝑠 is twice the area of the triangle

shown shaded in Figure 7.8, which makes the integral equal to

twice the area Am enclosed by the median line.

• Am is the mean area enclosed within the boundary of the tube

wall centerline.

• The resulting expression relates the torque T and shear flow q

as follows:



RELATIONSHIP BETWEEN INTERNAL TORQUE (T)

AND SHEAR STRESS (𝝉)

𝑇 = 𝑞 2.𝐴𝑚
and, since 𝑞 = 𝜏 × 𝑡,

𝑇 = 𝜏 ∗ 𝑡 2. 𝐴𝑚

𝜏 =
𝑇

2. 𝐴𝑚 . 𝑡

This relation (equation 7.8) is known as the Bredt’s first formula

(Rudolf Bredt, 1842– 1900) or as torsion formula for thin-walled

tubes. Also known as the 1st BREDT-BATHO formula

7.7

7.8

BREDT-BATHO EQUATIONS



BREDT-BATHO EQUATIONS

• The variable t represents the thin-walled component's wall

thickness.

• The enclosed area Am lies within the centre line of the tube

and is also called the hollow area.

• The shear stress 𝝉 resulting from the Torsion (T), i.e

internal torque, is constant over the entire wall thickness t,

• And which means that the shear flow q also remains

constant in the circumferential.

1st BREDT-BATHO formula



BREDT-BATHO EQUATIONS

• Equation 7.9 is Bredt’s second formula.

• The 2nd Bredt-Batho formula indicates the component's

twisting 𝜃, which depends on the material's shear modulus

G.

• The Bredt-Batho formulae apply only to torsion acting on

closed hollow tubes with an axis of Rotation that lies on the

shear centre.

2nd Bredt-Batho formula

𝜽 =
𝑻𝑳

𝟒𝑨𝒎
𝟐𝑮
 
𝒅𝒔

𝒕
or ∅ =

𝑻𝑳

𝟒𝑨𝒎
𝟐 𝑮

 
𝒅𝒔

𝒕
7.9

Note that Equation (7.8 and 7.9) applies only to “closed”

sections - that is, sections with a continuous periphery.



A rectangular box section of aluminum alloy has outside

dimensions of 100 mm by 50 mm. The plate thickness is 2 mm

for the 50 mm sides and 3 mm for the 100 mm sides. If the

maximum shear stress must be limited to 95 MPa, determine the

maximum torque T that can be applied to the section.

Example 7.2



Example 7.2

Solution

The maximum shear stress will occur in the thinnest plate;

therefore, the critical shear flow q is

𝑞 = 𝜏 𝑡 = (95 𝑁/𝑚𝑚2)(2 𝑚𝑚) = 190 𝑁/𝑚𝑚

The area enclosed by the median line is

𝐴𝑚 = 100 𝑚𝑚 − 2 𝑚𝑚 50 𝑚𝑚 − 3 𝑚𝑚 = 4,606 𝑚𝑚 2

The torque that can be transmitted by the section is computed

from Equation 7.7 as follows:

𝑇 = 𝑞 2. 𝐴𝑚

= (190 𝑁/𝑚𝑚)(2)(4,606 𝑚𝑚2 )

= 1,750,280 𝑁 𝑚𝑚

= 1,750 𝑁 𝑚



The tube is made of C86100 bronze and has a rectangular
cross section as shown in the figure. If it is subjected to the
two torques, determine the average shear stress in the tube at
points A and B. Also, what is the angle of twist of end C? The
tube is fixed at E.

Example 7.3



Solution
Average Shear Stress. 

• If the tube is sectioned through points A and B, the resulting free-body 

diagram is shown in (b) and (c);

• The  internal torque is 35 N.m.

𝐴𝑚 = 0.035 𝑚 0.057𝑚 = 𝟎. 𝟎𝟎𝟐𝟎𝟎𝒎𝟐



𝐴𝑚 = 0.035 𝑚 0.057𝑚 = 𝟎. 𝟎𝟎𝟐𝟎𝟎𝒎𝟐

Solution

• Applying Equation 7.8.

• 𝜏𝑎𝑣𝑔 =
𝑇

2𝑡𝐴𝑚
for point A, 𝑡𝐴= 5 mm, so that

• 𝝉𝑨 =
𝟑𝟓 𝑵.𝒎

𝟐(𝟎.𝟎𝟎𝟓 𝒎)(𝟎.𝟎𝟎𝟐𝟎𝟎𝒎𝟐)
= 1.75MPa



• And for point B, 𝑡𝐵= 3 mm, 

• 𝝉𝑩 =
𝑻

𝟐𝒕𝑨𝒎
=  

𝟑𝟓 𝑵.𝒎

𝟐(𝟎.𝟎𝟎𝟑 𝒎)(𝟎.𝟎𝟎𝟐𝟎𝟎𝒎𝟐)
= 2.92 MPa        

Solution



Solution

• These results are shown on elements of material located at

points A and B, Figure e below.

• Note carefully how the torque in Figure b creates these

stresses on the back sides of each element.



Solution
• Angle of Twist. From the free-body diagrams in Figures (b)

and (c), the internal torques in regions DE and CD are 35

N.m and 60 N.m respectively.

• By standard convention, these torques are both positive.

• The Eqn. ɸ =
𝑻𝑳

𝟒𝑨𝒎
𝟐 𝑮

 
𝒅𝒔

𝒕
becomes; ɸ =  

𝑻𝑳

𝟒𝑨𝒎
𝟐 𝑮

 
𝒅𝒔

𝒕



Solution

• ɸ =  
𝑻𝑳

𝟒𝑨𝒎
𝟐 𝑮

 
𝒅𝒔

𝒕
= 

60 𝑁.𝑚(0.5𝑚)

4(0.00200𝒎𝟐)² (38 109 𝑵/𝒎𝟐)
2

57𝑚𝑚

5𝑚𝑚
+ 2

35𝑚𝑚

3𝑚𝑚

+   
35 𝑁.𝑚(1.5𝑚)

4(0.00200𝒎𝟐)² (38 109 𝑵/𝒎𝟐)
2

57𝑚𝑚

5𝑚𝑚
+ 2

35𝑚𝑚

3𝑚𝑚

= 6.29(𝟏𝟎−𝟑) rad         



CONCLUSION

• Important Points

• Shear flow q is the product of the tube’s thickness and the

average shear stress.

• This value is the same at all points along the tube’s cross

section, analogous to the continuity equation in fluid

mechanics.

• As a result, the largest average shear stress on the cross

section occurs where the thickness is smallest.

• Both shear flow and the average shear stress act

tangentially to the wall of the tube at all points and in a

direction so as to contribute to the resultant internal torque.



ASSIGNMENT

The bars shown in Figure have equal cross-sectional areas, and

they are each subjected to a torque T = 550 Nm. Using a = 10

mm, determine

(a) the maximum shear stress in each bar.

(b) the rotation angle at the free end if each bar has a length

of 900 mm. Assume that G = 28GPa.
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