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Solid Noncircular Shafts

INTRODUCTION

It has been demonstrated that when a torque is applied to a shaft having a

circular cross section—that is, one that is axisymmetric—the shear strains

vary linearly from zero at its center to a maximum at its outer surface.

Furthermore, due to the uniformity of the shear strain at all points on the

same radius, the cross sections do not deform, but rather remain plane after

the shaft has twisted.



Fig. 1-1.

As a consequence of

this deformation, the

torsional analysis of

noncircular shafts

becomes considerably

more complicated.

Shafts that have a noncircular cross section, however, are not

axisymmetric, and so their cross sections will bulge or warp when the

shaft is twisted. Evidence of this can be seen from the way grid lines

deform on a shaft having a square cross section when the shaft is

twisted, Fig. 1–1.



Using a mathematical

analysis based on the theory

of elasticity, however, it is

possible to determine the

shear-stress distribution

within a shaft of square

cross section.

Examples of how this shear

stress varies along two radial

lines of the shaft are shown

in Fig. 1–2a.
Fig. 1–2



Because these shear-stress

distributions vary in a

complex manner, the shear

strains they create will

warp the cross section as

shown in Fig. 1–2b.

In particular notice that the

corner points of the shaft

must be subjected to zero

shear stress and therefore

zero shear strain.

Fig. 1–2



The reason for this can be shown by

considering an element of material

located at one of these points, Fig.1 –2c.

One would expect the top face of this

element to be subjected to a shear stress

in order to aid in resisting the applied

torque T.

This, however, cannot occur since the

complementary shear stresses 𝝉 and

𝝉′, acting on the outer surface of the

shaft, must be zero. Fig. 1–2c. 



The results of the analysis for

square cross sections, along with

other results from the theory of

elasticity, for shafts having

triangular and elliptical cross

sections, are reported in Table 1–1.

In all cases the maximum shear

stress occurs at a point on the edge

of the cross section that is closest to

the centre axis of the shaft. In Table

1–1 these points are indicated as

“dots” on the cross sections.

Table 1–1



Also given are formulae for the angle of twist of each shaft.

Extending these results to a shaft having an arbitrary cross section, it

can also be shown that:

A shaft having a circular cross section is most efficient, since it is

subjected to both a smaller maximum shear stress and a smaller

angle of twist than a corresponding shaft having a noncircular cross

section and subjected to the same torque.



BREDT-BATHO EQUATIONS

Two very important equations in the treatment of shafts undergoing 

twisting load or torque are the Bredt-Batho equations for the 

average torque and angle of twist of the shaft.

𝝉 =
𝑻

𝟐𝑨𝒕

This relation is known as Bredt’s first formula   (Rudolf Bredt, 1842–

1900) or as torsion formula for thin-walled tubes.

𝜽 =
𝑻𝑳

𝟒𝑨𝟐𝑮

𝒅𝒔

𝒕
OR 𝝓 =

𝑻𝑳

𝟒𝑨𝒎
𝟐 𝑮
ׯ
𝒅𝒔

𝒕
is Bredt’s second formula.



Thin-Walled Tubes with Closed Cross Sections

We will analyse the effects of applying a

torque to a thin-walled tube having a

closed cross section, that is, a tube that does

not have any breaks or slits along its length.

Such a tube, having a constant yet

arbitrary cross-sectional shape, and

variable thickness t, is shown in Fig. 1–3a.

Fig. 1–3a.

Fig. 1–3b.



Since the walls are thin, we will obtain the

average shear stress by assuming that this

stress is uniformly distributed across the

thickness of the tube at any given point.

Discussion of shear stress over the cross

section is important to understanding

concept.

Thin-Walled Tubes with Closed Cross Sections

Fig. 1–3a.

Fig. 1–3b.



Concepts of shear stress over the cross 

section.

Shear Flow.

Shown in Figs. 1–3a and1–3b is a small

element of the tube having a finite length s

and differential width dx. At one end the

element has a thickness 𝒕𝑨 and at the other

end the thickness is 𝒕𝑩.

Due to the internal torque T, shear stress is

developed on the front face of the element.

Specifically, at end A the shear stress is 𝝉𝑨
and at end B it is 𝝉𝑩.

Fig. 1–3a.

Fig. 1–3b.



Concepts of shear stress over the cross section.

These stresses can be related by noting that

equivalent shear stresses 𝝉𝑨 and 𝝉𝑩 must also

act on the longitudinal sides of the element.

Since these sides have a constant width dx, the

forces acting on them are 𝒅𝑭𝑨 = 𝝉𝑨(𝒕𝑨𝒅𝒙)

and 𝒅𝑭𝑩 = 𝝉𝑩 𝒕𝑩𝒅𝒙 .

Equilibrium requires these forces to be of equal

magnitude but opposite direction, so that:

𝝉𝑨𝒕𝑨 = 𝝉𝑩𝒕𝑩

Fig. 1–3a.

Fig. 1–3b.



Shear Flow

This important result states that “the product

of the average shear stress times the

thickness of the tube is the same at each

point on the tube’s cross-sectional area”.

This product is called shear flow*, q, and in

general terms we can express it as

𝒒 = 𝝉𝒂𝒗𝒈𝒕

Since q is constant over the cross section, the 

largest average shear stress must occur 

where the tube’s thickness is the smallest.

Fig. 1–3a.

Fig. 1–3b.



This is because the top and bottom

faces of the element are at the inner

and outer walls of the tube, and

these boundaries must be free of

stress.

Instead, as noted above, the applied

torque causes the shear flow and

the average stress to always be

directed tangent to the wall of the

tube, such that it contributes to the

resultant internal torque T. Fig. 1–3d

Fig. 1–3c



Concepts: Average Shear stress. 

The average shear stress can be related to

the torque T by considering the torque

produced by this shear stress about a

selected point O within the tube’s

boundary, Fig. 1–3e.

As shown, the shear stress develops a

force 𝒅𝑭 = 𝝉𝒂𝒗𝒈𝒅𝑨 = 𝝉𝒂𝒗𝒈(𝒕𝒅𝒔) on an

element of the tube. This force acts

tangent to the centerline of the tube’s wall,

and if the moment arm is h, the torque is

𝒅𝑻 = 𝒉 𝒅𝑭 = 𝒉(𝝉𝒂𝒗𝒈𝒕𝒅𝒔)
Fig. 1–3e and Fig. 1–3f



For the entire cross section, we require

𝑻 = ර𝒉𝝉𝒂𝒗𝒈 𝒕𝒅𝒔

Here the “line integral” indicates that

integration must be performed around

the entire boundary of the area.

Since the shear flow 𝒒 = 𝝉𝒂𝒗𝒈𝒕 is

constant, it can be factored out of the

integral, so that

𝑻 = 𝝉𝒂𝒗𝒈𝒕ර𝒉𝒅𝒔 Fig. 1–3e and Fig. 1–3f



A graphical simplification can be made

for evaluating the integral by noting

that the mean area, shown by the blue

colored triangle in Fig. 1–3e, is

𝒅𝑨𝒎 = Τ𝟏 𝟐 𝒉𝒅𝒔. Thus,

𝑻 = 𝟐𝝉𝒂𝒗𝒈𝒕න𝒅𝑨𝒎 = 𝟐𝝉𝒂𝒗𝒈 𝒕𝑨𝒎

Solving for 𝝉𝒂𝒗𝒈 we have

𝝉𝒂𝒗𝒈 =
𝑻

𝟐𝒕𝑨𝒎
(Eqn 1-1)

Fig. 1–3e and Fig. 1–3f



Here

𝝉𝒂𝒗𝒈 = the average shear stress 

acting over a particular thickness 

of the tube the resultant internal 

torque at the cross section

𝑻 = resultant internal torque at the 

Cross section;

𝒕 = the thickness of the tube 

where 𝝉𝒂𝒗𝒈 is to be determined;

Fig. 1–3e and Fig. 1–3f



𝑨𝒎 = the mean area enclosed within the 

boundary of the centerline of the  tube’s 

thickness. 𝑨𝒎 is shown shaded in Fig 1-

3f. 

Since 𝒒 = 𝝉𝒂𝒗𝒈t, then the shear flow 

throughout the cross section becomes 

𝒒 =
𝑻

𝟐𝑨𝒎
(Eqn 1–2)

Fig. 1–3e and Fig. 1–3f



Angle of Twist

The angle of twist of a thin-walled tube of length L can be

determined using energy methods, If the material behaves in a linear

elastic manner and G is the shear modulus, then this angle ɸ given

in radians, can be expressed as

𝝓 =
𝑻𝑳

𝟒𝑨𝒎
𝟐 𝑮

ׯ
𝒅𝒔

𝒕
(Eqn. 1-3)

Here again the integration must be performed around the entire 

boundary of the tube’s cross-sectional area.



EXAMPLES/QUIZ

EXAMPLE 1

Calculate the average shear stress in a thin-walled tube (see figure overleaf)

having a circular cross section of mean radius 𝑟𝑚and thickness t, which is

subjected to a torque T, Fig. 1–4a. Also, what is the relative angle of twist if

the tube has a length L?



QUIZ

Fig. 1–4a



EXAMPLE 2

EXAMPLE 2

The tube, in the figure overleaf, is made of C86100 bronze and has a

rectangular cross section as shown in Fig. 1–5a. If it is subjected to the two

torques, determine the average shear stress in the tube at points A and B. Also,

what is the angle of twist of end C? The tube is fixed at E.



Fig for EXAMPLE 2



SOLUTION 

Average Shear Stress. 

If the tube is sectioned 

through points A and B, 

the resulting free-body 

diagram is shown in 

Fig.Q1b.

The internal torque is 35 

N.m.

As shown in Fig Q1d, the mean area is

𝐴𝑚 = 0.035 𝑚 0.057𝑚 = 𝟎. 𝟎𝟎𝟐𝟎𝟎𝒎𝟐



Applying Eq.

𝜏𝑎𝑣𝑔 =
𝑇

2𝑡𝐴𝑚
for point A,

𝑡𝐴= 5 mm, so that

𝝉𝑨 =
𝟑𝟓 𝑵.𝒎

𝟐(𝟎.𝟎𝟎𝟓 𝒎)(𝟎.𝟎𝟎𝟐𝟎𝟎𝒎𝟐)

= 1.75MPa Ans



And for point B, 𝑡𝐵= 3 mm, and therefore 

𝝉𝑩 =
𝑻

𝟐𝒕𝑨𝒎
=  

𝟑𝟓 𝑵.𝒎

𝟐(𝟎.𝟎𝟎𝟑𝒎)(𝟎.𝟎𝟎𝟐𝟎𝟎𝒎𝟐)
= 2.92 MPa         Ans.



These results are shown 

on elements of material 

located at points A and 

B, Fig. Q1e.

Note carefully how the 

torque in Fig.Q1b 

creates these stresses on 

the back sides of each 

element.



Angle of Twist. From the free-body diagrams in Fig.Q1b and Q1c, the

internal torques in regions DE and CD are 35 N.m and 60 N.m

respectively.

Following the sign convention outlined, these torques are both positive.



Thus, Eqn. ɸ =
𝑻𝑳

𝟒𝑨𝒎
𝟐 𝑮

ׯ
𝒅𝒔

𝒕
becomes:

ɸ =
𝑻𝑳

𝟒𝑨𝒎
𝟐 𝑮

ර
𝒅𝒔

𝒕



ɸ = σ
𝑻𝑳

𝟒𝑨𝒎
𝟐 𝑮

ׯ
𝒅𝒔

𝒕
= 

60 𝑁.𝑚(0.5 𝑚)

4(0.00200𝒎𝟐)² (38 109 𝑵/𝒎𝟐)
2

57𝑚𝑚

5𝑚𝑚
+ 2

35𝑚𝑚

3𝑚𝑚

+   
35 𝑁.𝑚(1.5 𝑚)

4(0.00200𝒎𝟐)² (38 109 𝑵/𝒎𝟐)
2

57𝑚𝑚

5𝑚𝑚
+ 2

35𝑚𝑚

3𝑚𝑚

= 6.29(𝟏𝟎−𝟑) rad         Ans.



CONCLUSION

Important Points

Shear flow q is the product of the tube’s thickness and the average shear

stress.

This value is the same at all points along the tube’s cross section.

As a result, the largest average shear stress on the cross section occurs

where the thickness is smallest.

Both shear flow and the average shear stress act tangentially to the wall

of the tube at all points and in a direction so as to contribute to the

resultant internal torque.




