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Solid Circular Shafts
Introduction

Torsion is the twisting of a 

structural member, when it is 

loaded by a couple T that 

produce rotation about its 

longitudinal axis.

Fig.7.1 (a) and (b): Torsion in a circular shaft 

All cross sections of the shaft 

are subjected to the same 

internal torque T; therefore, the 

shaft is said to be in pure 

torsion.



Solid Circular Shafts

Fig.7.1 (c): Circular shaft subjected to pure torsion  

Introduction



Solid Circular Shafts
Introduction

Fig.7.1 (d): Circular shaft subjected to pure torsion  

When a torque is applied to a shaft having a circular cross 

section (axisymmetric shaft) the shear strains vary linearly from 

zero at its center to a maximum at its outer surface.



Solid Circular Shafts
Introduction
Due to the uniformity of the shear strain at all points on the same 

radius, the cross sections do not deform, but rather remain plane 

after the shaft has twisted.

A bar or shaft of circular cross section twisted by a couple T, 

assume the left-hand end is fixed and the right-hand end will 

rotate a small angle ∅, called angle of twist.

Under twisting deformation, it is assumed that:

1. Plane sections remain plane

2. Radii remain straight and the cross sections remain 

plane and circular

3. if ∅ is small, neither the length L nor the r radius will 

change



Solid Circular Shafts: 
• A plane section before twisting remains plane after twisting. 

In other words, circular cross sections do not warp as they 

twist.

• Cross sections rotate about, and remain perpendicular to, 

the longitudinal axis of the shaft. (see figure 7.1 (b).

• Each cross section remains undistorted as it rotates relative 

to neighboring cross sections. In other words, the cross 

section remains circular and there is no strain in the plane of 

the cross section. 

• Radial lines remain straight and radial as the cross section 

rotates.

• The distances between cross sections remain constant 

during the twisting deformation. In other words, no axial 

strain occurs in a round shaft as it twists.



Solid Non-circular Shafts

• Shafts that have a non-circular cross section, 

however, are not axisymmetric, and so their cross 

sections will bulge or warp when the shaft is twisted. 

• Evidence of this can be seen from the way grid lines 

deform on a shaft having a square cross section when 

the shaft is twisted, Fig. 7.2.

• As a consequence of this deformation, the torsional 

analysis of noncircular shafts becomes considerably 

more complicated. 



Fig. 7.2: Torsion in non-circular members

Solid Non-circular Shafts



Fig. 7.2 (b): Comparison of Torsion in circular and non-circular shafts

Solid Non-circular Shafts



• Using a mathematical analysis based on the theory of 

elasticity, it is difficult to determine the shear-stress 

distribution within a shaft of square cross section.

• Examples of how this shear stress varies along two radial 

lines of the shaft are shown in Figure 7.3 (a). 

• Because these shear-stress distributions vary in a complex 

manner, the shear strains they create will warp the cross 

section as shown in Figure 7.3 (b).

•  In particular notice that the corner points of the shaft must 

be subjected to zero shear stress and therefore zero shear 

strain. 

Solid Non-circular Shafts



Fig. 7.3.1: Stress distribution in  a square shaft

Solid Non-circular Shafts



• The reason for this can be shown 

by considering an element of material 

located at one of these points, Figure 

7.3 (c). 

• One would expect the top face of 

this element to be subjected to a 

shear stress in order to aid in 

resisting the applied torque T. 

• This, however, cannot occur since 

the complementary shear stresses 

𝝉 and 𝝉′ , acting on the outer 

surface of the shaft, must be zero.
Fig. 7.3.1 (c): Stress 

distribution in  a square shaft

Solid Noncircular Shafts



Solid Noncircular Shafts

Figure 7.3.2 (a) Torsion of a bar of rectangular cross section and (b) shear stress distribution for a bar 

of rectangular cross section acted upon by torsional moment T



Solid Noncircular Shafts

• We now consider the basic relations between applied torsional 

moment T and three key items of interest for a variety of 

noncircular cross sections.

1) The location and value of the maximum shear stress 𝜏𝑚𝑎𝑥 

in the cross section

2) The torsional rigidity GJ

3) The angle of twist ∅ of a prismatic bar of length L

4) Constant G is the shearing modulus of elasticity of the 

material, and variable J is the torsion constant for the cross 

section. 

• Note that only for a circular cross section the torsion constant J 

become the polar moment of inertia Ip.

Shear Stress Distribution and Angle of Twist



Solid Noncircular Shafts

Figure 7.3.3 : Solid elliptical, triangular, and  rectangular cross-sectional shapes

Some common and basic shapes 



Solid Noncircular Shafts

• The shear stress distribution for a bar with an elliptical cross 

section (2a along major axis, 2b along minor axis, area 𝐴 =
𝜋𝑎𝑏) is shown in Figure 7.3.4.

Elliptical Cross Sections

Figure 7.3.4: Shear Stress distribution in an elliptical bar



Solid Noncircular Shafts

• The maximum shear stress in an elliptical shaft is at the ends of 

the minor axis and may be computed using

• The angle of twist ∅ of a prismatic shaft of length L with an 

elliptical cross section is expressed as

• The torsion constant is given by

Elliptical Cross Sections

7.10

7.11

7.12



Solid Noncircular Shafts

• The maximum shear stress in an equilateral triangular shaft is at 

the mid point of each side, and may be computed using

• The angle of twist ∅ of a prismatic shaft of length L with an 

equilateral triangular cross section is expressed as

• The torsion constant is given by

Triangular Cross Sections

7.13

7.15

7.14



Solid Noncircular Shafts

• The maximum shear stress in a rectangular shaft with an aspect 

ratio (b/t) is at the mid point of side A (Figure 7.33), and may be 

computed using

• The angle of twist ∅ of a prismatic shaft of length L with a 

rectangular cross section is expressed as

• The torsion constant is given by

Rectangular Cross Sections

• The dimensionless coefficients k1 and k2 are listed in Table 7.1.

7.16

7.18

7.17



Solid Noncircular Shafts
Rectangular Cross Sections

Table 7.1: Dimensionless coefficients rectangular  members 



Example 7.1

The two rectangular solid polymer bars whose 

cross-sections measures (25 x 64 mm) and (48  x 

32 mm) respectively are each subjected to a 

torque T = 25Nm. For each bar, determine

(a) the maximum shear stress.

(b) the rotation angle at the free end if the bar 

has a length of 305 mm. Assume that G = 

350MPa  for the polymer material.



Example 7.1

Solution 7.1



• The results of the analysis for 

square cross sections, along with 

other results from the theory of 

elasticity, for shafts having square, 

triangular and elliptical cross 

sections, are reported in Table 7.2.

•  In all cases the maximum shear 

stress occurs at a point on the edge 

of the cross section that is closest to 

the center axis of the shaft. In Table 

7.2 these points are indicated as 

“dots” on the cross sections. 

Table 7.2: Shear Stress in 

non-circular members 
Solid Non-circular Shafts



• Also given in Table 7.2 are formulas for the angle of twist 

of each shaft. 

• Comparing these results to a shaft having an arbitrary 

cross section, it can be shown that a shaft having a 

circular cross section is most efficient.

• Note that the circular cross section is subjected to both a 

smaller maximum shear stress and a smaller angle of 

twist than a corresponding shaft having a non-circular 

cross section and subjected to the same torque T.

Solid Noncircular Shafts



SAINT VENANT’S THEORY

Fig. 7.4:Torsional shear stresses in a rectangular bar.

• Results from Saint-Venant’s analysis of torsion of prismatic 

bars of non-circular cross section generally indicate that, 

when twisted: 

1) every section will warp 

2) every section will not remain plane  



SAINT VENANT’S THEORY

• For a square shafts, distortion of the small squares :

1) is greatest at the midpoint of a side of the cross section 

2) disappears at the corners of the cross section

• Since this distortion is a measure of shear strain, Hooke’s law 

requires that the shear stress: 

1) be largest at the midpoint of a side of the cross section

2) be zero at the corners of the cross section

• Equations for the maximum shear stress and the angle of 

twist for a rectangular section obtained from Saint-Venant’s 

theory are:

𝜏𝑚𝑎𝑥 =
𝑇

𝛼𝑎2𝑏
    7.19

∅ =
𝑇𝐿

𝛽𝑎3𝑏𝐺
                                                 7.20



• The maximum shear stress 

occurs at a point on the 

edge of the cross section 

• Point with maximum shear 

stress is closest to the 

centre of the axis of the 

shaft. 

• In Table 7.2 these points are 

indicated as “dots” on the 

cross sections. 

Table 7.2: Shear Stress in 

non-circular members 
Solid Non-circular Shafts



SAINT VENANT’S THEORY

• Where a and b are the 

lengths of the short 

and long sides of the 

rectangle, respectively.

• Numerical constants α 

and β can be obtained 

from Table 7.3

Table 7.3:  Constants for Torsion of a Rectangular Bar

𝜏𝑚𝑎𝑥 =
𝑇

𝛼𝑎2𝑏
              7.19

∅ =
𝑇𝐿

𝛽𝑎3𝑏𝐺
                                                 7.20



SAINT VENANT’S THEORY

• For aspect ratios b/a ≥ 5, the coefficients α and β that 

respectively appear in Equations (7.19) and (7.20) can be 

calculated from the following equation:

𝛼 = 𝛽 =
1

3
1 − 0.630

𝑎

𝑏

• As a practical matter, an aspect ratio b/a ≥ 21 is sufficiently 

large that values of α = β = 0.333 can be used to calculate 

maximum shear stresses and deformations in narrow 

rectangular bars within an accuracy of 3 %.

• Accordingly, equations for the maximum shear stress and 

angle of twist in narrow rectangular bars can be expressed 

as:



SAINT VENANT’S THEORY

𝜏𝑚𝑎𝑥 =
3𝑇

𝑎2𝑏

∅ =
3𝑇𝐿

𝑎3𝑏𝐺

7.21

7.22

Fig 7.5: Equivalent narrow rectangular sections with shear stress distribution.

• For narrow rectangular sections, we have the following:



Example 7.2

The two rectangular solid polymer bars whose 

cross-sections measures (25 x 64 mm) and (48  x 

32 mm) respectively are each subjected to a 

torque T = 25Nm. For each bar, determine

(a) the maximum shear stress.

(b) the rotation angle at the free end if the bar 

has a length of 305 mm. Assume that G = 

350MPa  for the polymer material.

Use St. Venant’s Theory



Example 7.2

Solution 7.2

• The procedure is similar to the one in Solution 7.1

𝜏𝑚𝑎𝑥 =
𝑇

𝛼𝑎2𝑏
 7.19

∅ =
𝑇𝐿

𝛽𝑎3𝑏𝐺
        7.20

• Use equations 7.19 and 7.20

• Table 7.3 will be useful

Table 7.3:  Constants for Torsion of a Rectangular Bar

• Compare result with 

what was obtained in 
Solution 7.1



Thin-Walled Tubes with Closed Cross Sections

• We now look at the effects of applying a torque to a 

thin-walled tube having a closed cross section. 

• Such a tube that does not have any breaks or slits 

along its length. 

• Since the walls are thin, we will obtain the average 

shear stress by assuming that this stress is 

uniformly distributed across the thickness of the 

tube at any given point. 

• We also discuss shear stress distribution over the 

cross section.



• A useful concept associated with the analysis of 

thin-walled sections is the shear flow q,

• The shear flow is defined as the internal shearing 

force per unit of length of the thin section. 

• The SI unit for shear flow is the newton per meter.

•  In terms of stress, q equals 𝜏 ×  𝑡, where 𝜏 is the 

average shear stress across the thickness t.

• We can demonstrate that the shear flow on a cross 

section is constant even though the wall thickness 

of the section may vary.

Thin-Walled Tubes with Closed Cross Sections

Shear Flow



Thin-Walled Tubes with Closed Cross Sections

Shear Flow

Figure 7.6 b shows a block cut from the member of Figure 7.6 a 

between A and B. 

Fig. 7.6: Shear flow in thin-walled tubes.



Thin-Walled Tubes with Closed Cross Sections
Shear Flow

• Since the member is subjected to pure torsion, the shear 

forces V1, V2, V3, and V4 alone are necessary and sufficient 

for equilibrium (i.e., no normal forces are involved). 

• Summing forces in the 𝑥 direction gives

𝑉1 = 𝑉3

𝑞𝐴𝑑𝑥 = 𝑞𝐵𝑑𝑥

𝑞𝐴 = 𝑞𝐵

and, since 𝑞 =  𝜏 ×  𝑡,

𝜏𝐴𝑡𝐴 = 𝜏𝐵𝑡𝐵

• Note that the shear flow and the shear stress always act 

tangent to the wall of the tube.

7.23 Fig. 7.6: Shear flow in thin-walled tubes.



SHEAR STRESS OVER THE CROSS SECTION

• Shown in Figures 7.7 a and 7.7 b is a small 

element of the tube having a finite length s 

and differential width dx.

• At one end the element has a thickness 𝒕𝑨 

and at the other end the thickness is 𝒕𝑩.  

• Due to the internal torque T, shear 

stress is developed on the faces of the 

element. 

• Specifically, shear stresses are at A and 

B as 𝝉𝑨  and 𝝉𝑩 respectively.

Fig. 7.7 a.

Fig. 7.7 b.



It follows that “the product of the 
average shear stress and the 
thickness of the tube is the same at 
each point on the tube’s cross-
sectional area”. 

This product is called shear flow,* q, 
and in general terms we can express it 
as

𝒒 =  𝝉𝒂𝒗𝒈𝒕 

Since q is constant over the cross 
section, the largest average shear 
stress must occur where the tube’s 
thickness is the smallest.

Fig. 7.7 a.

Fig. 7.7 b.

Shear Flow 

7.24



RELATIONSHIP BETWEEN INTERNAL TORQUE (T) 

AND SHEAR STRESS (𝝉)

Fig. 7.8 : Relationship between internal torque and shear stress in a thin-walled section.

• Consider the force 𝑑𝐹  acting through the centre of a 

differential length of perimeter 𝑑𝑠, as shown in Figure 7.8.

• The differential moment produced by 𝑑𝐹 about the origin 𝑂 is 

given by:

𝜌 ×  𝑑𝐹 

• Where 𝜌 is the mean radial distance from the perimeter 

element to the origin. 



RELATIONSHIP BETWEEN INTERNAL TORQUE (T) 

AND SHEAR STRESS (𝝉)

• The internal torque equals the resultant of all of the differential 

moments; that is,

• This integral may be difficult to integrate by formal calculus; 

however, the quantity 𝜌. 𝑑𝑠 is twice the area of the triangle 

shown shaded in Figure 7.8, 

• Thus, the integral is equal to twice the area Am enclosed by the 

median line. 

• Am is the mean area enclosed within the boundary of the tube 

wall centreline. 

• The resulting expression relates the torque T and shear flow q 

as follows:



RELATIONSHIP BETWEEN INTERNAL TORQUE (T) 

AND SHEAR STRESS (𝝉)

𝑇 = 𝑞 2. 𝐴𝑚

and, since 𝑞 =  𝜏 ×  𝑡,

𝑇 = 𝜏 ∗ 𝑡 2. 𝐴𝑚

𝜏 =
𝑇

2. 𝐴𝑚 . 𝑡

• This relation (equation 7.26) is known as the  Bredt’s first 

formula  (Rudolf Bredt, 1842– 1900) 

• Also known as torsion formula for thin-walled tubes or simply  

the 1st BREDT-BATHO formula

7.25

7.26

BREDT-BATHO EQUATIONS



BREDT-BATHO EQUATIONS

• The variable t represents the thin-walled 

component's wall thickness.

• The enclosed area Am lies within the centre 

line of the tube and is also called the hollow 

area. 

• The shear stress 𝝉 resulting from the Torsion 

(T), i.e internal torque, is constant over the 

entire wall thickness t,

• And which means that the shear flow q also 

remains constant in the circumferential.

1st BREDT-BATHO formula



BREDT-BATHO EQUATIONS

• Equation 7.27 is Bredt’s second formula.

• The 2nd Bredt-Batho formula indicates the component's 

twisting 𝜃, which depends on the material's shear modulus 

G.  

• The Bredt-Batho formulae apply only to torsion acting on 

closed hollow tubes with an axis of Rotation that lies on the 

shear centre.

2nd  Bredt-Batho formula 

𝜽 =
𝑻𝑳

𝟒𝑨𝒎
𝟐𝑮


𝒅𝒔

𝒕
 or ∅ =

𝑻𝑳

𝟒𝑨𝒎
𝟐 𝑮

ׯ 
𝒅𝒔

𝒕
 7.27

• Note that Equation (7.26 and 7.27) applies only to “closed” 

sections - that is, sections with a continuous periphery , 

with no slits.



A rectangular box section of aluminum alloy has outside 

dimensions of 100 mm by 50 mm. The plate thickness is 2 mm 

for the 50 mm sides and 3 mm for the 100 mm sides. If the 

maximum shear stress must be limited to 95 MPa, determine the 

maximum torque T that can be applied to the section.

Example 7.2



Example 7.2

Solution

The maximum shear stress will occur in the thinnest plate; 

therefore, the critical shear flow q is

𝑞 = 𝜏 𝑡 = (95 𝑁/𝑚𝑚2)(2 𝑚𝑚) = 190 𝑁/𝑚𝑚

The area enclosed by the median line is

𝐴𝑚 = 100 𝑚𝑚 − 2 𝑚𝑚 50 𝑚𝑚 − 3 𝑚𝑚 = 4,606 𝑚𝑚 2

The torque that can be transmitted by the section is computed 

from Equation 7.26 as follows:

𝑇 = 𝑞 2. 𝐴𝑚

= (190 𝑁/𝑚𝑚)(2)(4,606 𝑚𝑚2 )

= 1,750,280 𝑁 𝑚𝑚

= 1,750 𝑁 𝑚



The tube is made of C86100 bronze and has a rectangular 
cross section as shown in the figure. If it is subjected to the 
two torques, determine the average shear stress in the tube at 
points A and B. Also, what is the angle of twist of end C? The 
tube is fixed at E.

Example 7.3



Solution
Average Shear Stress. 

• If the tube is sectioned through points A and B, the resulting free-body 

diagram is shown in (b) and (c);

• The  internal torque is 35 N.m.

𝐴𝑚 = 0.035 𝑚 0.057𝑚 = 𝟎. 𝟎𝟎𝟐𝟎𝟎𝒎𝟐



𝐴𝑚 = 0.035 𝑚 0.057𝑚 = 𝟎. 𝟎𝟎𝟐𝟎𝟎𝒎𝟐

Solution

• Applying Equation 7.26. 

• 𝜏𝑎𝑣𝑔 =
𝑇

2𝑡𝐴𝑚
 for point A, 𝑡𝐴= 5 mm, so that 

• 𝝉𝑨 =
𝟑𝟓 𝑵.𝒎

𝟐(𝟎.𝟎𝟎𝟓 𝒎)(𝟎.𝟎𝟎𝟐𝟎𝟎𝒎𝟐) 
= 1.75MPa          



• And for point B, 𝑡𝐵= 3 mm, 

• 𝝉𝑩 =
𝑻

𝟐𝒕𝑨𝒎
 =  

𝟑𝟓 𝑵.𝒎

𝟐(𝟎.𝟎𝟎𝟑 𝒎)(𝟎.𝟎𝟎𝟐𝟎𝟎𝒎𝟐) 
= 2.92 MPa         

Solution



Solution

• These results are shown on elements of material located at 

points A and B, Figure e below.

•  Note carefully how the torque in Figure b creates these 

stresses on the back sides of each element.



Solution
• Angle of Twist. From the free-body diagrams in Figures (b) 

and (c), the internal torques in regions DE and CD are 35 

N.m and 60 N.m respectively.

• By standard convention, these torques are both positive. 

• The Eqn. ɸ =
𝑻𝑳

𝟒𝑨𝒎
𝟐 𝑮

ׯ 
𝒅𝒔

𝒕
 becomes; ɸ = σ

𝑻𝑳

𝟒𝑨𝒎
𝟐 𝑮

ׯ 
𝒅𝒔

𝒕



Solution

• ɸ = σ
𝑻𝑳

𝟒𝑨𝒎
𝟐 𝑮

ׯ 
𝒅𝒔

𝒕
 = 

60 𝑁.𝑚(0.5 𝑚)

4(0.00200𝒎𝟐)² (38 109 𝑵/𝒎𝟐)
2

57𝑚𝑚

5𝑚𝑚
+ 2

35𝑚𝑚

3𝑚𝑚

                                      +   
35 𝑁.𝑚(1.5 𝑚)

4(0.00200𝒎𝟐)² (38 109 𝑵/𝒎𝟐)
2

57𝑚𝑚

5𝑚𝑚
+ 2

35𝑚𝑚

3𝑚𝑚

     = 6.29(𝟏𝟎−𝟑) rad         



CONCLUSION

• Important Points

• Shear flow q is the product of the tube’s thickness and the 

average shear stress. 

• This value is the same at all points along the tube’s cross 

section, analogous to the continuity equation in fluid 

mechanics. 

• As a result, the largest average shear stress on the cross 

section occurs where the thickness is smallest.

•  Both shear flow and the average shear stress act 

tangentially to the wall of the tube at all points and in a 

direction so as to contribute to the resultant internal torque.



Question 7.10

The bars shown in Figure have equal cross-sectional areas, and 

they are each subjected to a torque T = 550 Nm. Using a = 10 

mm, determine

(a) the maximum shear stress in each bar.

(b) the rotation angle at the free end if each bar has a length 

of 900 mm. Assume that G = 28GPa.



Grazie Signore
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