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(c) Circular Cross-Section

Fig. 6

• Following the method already established in 

the “Trapezium” Cross-Section,

𝑒 = 𝑅𝑚 −
𝐴


𝑑𝐴

𝑅𝑚 + 𝑧

from (7) under 

trapezoidal section.

where from Fig. 6,

න
𝑑𝐴

𝑅𝑚 + 𝑧
= 2න

−𝑟

𝑟 𝑟2 − 𝑧2

𝑅𝑚 + 𝑧
𝑑𝑧



𝒆 = 𝑹𝒎 −
𝒓𝟐

𝟐 𝑹𝒎 − 𝑹𝒎
𝟐 − 𝒓𝟐

= 𝑅𝑚 −
𝑟2

2
∙
𝑅𝑚 + 𝑅𝑚

2 − 𝑟2

𝑅𝑚
2 − 𝑅𝑚

2 − 𝑟2
=
1

2
𝑅𝑚 − 𝑅𝑚

2 − 𝑟2

=
1

2
𝑅𝑚 − 𝑅𝑚 +

1

2
𝑅𝑚

𝑟2

𝑅𝑚
2 +

1

8
𝑅𝑚

𝑟4

𝑅𝑚
4 +⋯

න
𝑑𝐴

𝑅𝑚 + 𝑧
= 2𝜋 𝑅𝑚 − 𝑅𝑚

2 − 𝑟2 from calculus methods

Hence:

(1)



𝒆 =
𝟏

𝟒
𝑹𝒎

𝒓𝟐

𝑹𝒎
𝟐

𝟏 +
𝟏

𝟒

𝒓𝟐

𝑹𝒎
𝟐

+
𝟏

𝟖

𝒓𝟒

𝑹𝒎
𝟒

+⋯

and

𝝈 =
𝑴𝒚

𝑨𝒆 𝑹𝟎 + 𝒚
as before.

(2)

(3)



3. Deflection of Curved Bars (Direct Method)

• Consider Fig. 7.

• If a length 𝛿𝑠 of an initially curved 

bean is acted upon by a bending 

moment 𝑀, it follows from Equation 

(3) in Section 1 that:

𝑀𝛿𝑠

𝐸𝐼
= 𝛿𝑠

1

𝑅
−

1

𝑅0

Fig. 7.



• But 
𝛿𝑠

𝑅
−

𝛿𝑠

𝑅0
is the change of angle, 𝛿𝜙, subtended by s at the centre of 

curvature, and consequently is the angle through which the tangent at one 

end of the element rotates relative to the tangent at the other end, i.e.

𝜹𝝓 =
𝑴𝜹𝒔

𝑬𝑰
(1)

• Fig 7 shows a loaded bar 𝐴𝐵 which is fixed 

in direction at 𝐴, and it is required to find 

the deflection at the other end 𝐵.

Fig. 7.



• Due to the action of 𝑀 on 𝛿𝑠 at 𝐶 only, the 

length 𝐶𝐵 is rotated through an angle

Fig. 7.

𝛿𝜙 =
𝑀𝛿𝑠

𝐸𝐼

• 𝐵 moves to 𝐵′, where 𝐵𝐵′ = 𝐶𝐵 ∙ 𝛿𝜙.

• The vertical deflection of 𝐵 = 𝐵𝐵′ ∙ cos 𝜃

= 𝐶𝐵 ∙ cos 𝜃 ∙ 𝛿𝜙

𝐕𝐞𝐫𝐭𝐢𝐜𝐚𝐥 𝐃𝐞𝐟𝐥𝐞𝐜𝐭𝐢𝐨𝐧 𝐨𝐟 𝑩 = 𝒙∙ 𝜹𝝓

• The horizontal deflection of 𝐵 = 𝐵𝐵′ ∙ sin 𝜃

𝐇𝐨𝐫𝐢𝐳𝐨𝐧𝐭𝐚𝐥 𝐃𝐞𝐟𝐥𝐞𝐜𝐭𝐢𝐨𝐧 𝐨𝐟 𝑩 = 𝒚∙ 𝜹𝝓



• Due to the bending of all the elements along 𝐴𝐵, 

𝐕𝐞𝐫𝐭𝐢𝐜𝐚𝐥 𝐃𝐞𝐟𝐥𝐞𝐜𝐭𝐢𝐨𝐧 𝐨𝐟 𝑩 = 𝒙∙ 𝜹𝝓 = න
𝑴𝒙𝒅𝒔

𝑬𝑰

𝐇𝐨𝐫𝐢𝐳𝐨𝐧𝐭𝐚𝐥 𝐃𝐞𝐟𝐥𝐞𝐜𝐭𝐢𝐨𝐧 𝐨𝐟 𝑩 = 𝒚∙ 𝜹𝝓 = න
𝑴𝒚𝒅𝒔

𝑬𝑰

from (1)

(3)

and

• You can compare this with the moment-area method for deflection of initially 

straight beams. [Moment-area Method, see Ryder, §9.5, pp. 163-168.] 

• The advantage of this method, compared to the next method, is that the 

deflection can readily be found at any point in any direction, even when there 

is no load at that point.

(2)



Example 3. (Ryder, p. 202).

A steel tube, Fig. 8, having outside diameter 5 cm, 

bore 3 cm, is bent into a quadrant of 2 m radius. 

One end is rigidly attached to a horizontal base 

plate to which a tangent to that end is perpendicular, 

and the free end supports a load of 100 kg. 

Determine the vertical and horizontal deflections of 

the free end under this load. E = 208 GPa.

Solution

Fig. 8𝐼 = 𝜋/64 504 − 304 = 267,000 mm4

𝑥 = 2000 sin 𝜃 mm     from Fig. 8

𝑦 = 2000 1 − cos 𝜃 mm



𝑀 = 100 × 9.81 ∙ 𝑥 Nmm

𝛿𝑠 = 2000 ∙ 𝛿𝜃 mm

𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝐷𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 = න
𝑀𝑥𝑑𝑠

𝐸𝐼
= න

0

𝜋/2 100 × 9.81 × 20003 sin2 𝜃 𝑑𝜃

208,000 × 267,000

= 141.31න
0

𝜋/2 1 − cos 2𝜃

2
∙ 𝑑𝜃

= 141.31 ×
𝜋

4

𝐕𝐞𝐫𝐭𝐢𝐜𝐚𝐥 𝐃𝐞𝐟𝐥𝐞𝐜𝐭𝐢𝐨𝐧 = 𝟏𝟏𝟏𝐦𝐦



𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝐷𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 = න
𝑀𝑦𝑑𝑠

𝐸𝐼

= 141.31 ×
1

2

𝐇𝐨𝐫𝐢𝐳𝐨𝐧𝐭𝐚𝐥 𝐃𝐞𝐟𝐥𝐞𝐜𝐭𝐢𝐨𝐧 = 𝟕𝟎. 𝟔𝟔 𝐦𝐦

=
100 × 9.81 × 20003

208,000 × 267,000
න
0

𝜋/2

sin 𝜃 1 − cos 𝜃 𝑑𝜃

= 141.31 − cos 𝜃 +
1

4
cos 2𝜃

0

𝜋/2



4. Deflection from Strain Energy (Castigliano’s Theorem)

• Developed by Italian mathematician and physicist, 

Carlo Alberto Castigliano (1847 - 1884) 

C. A. Castigliano

(1847 - 1884)

• Theorem: If U is the total strain energy of any 

structure due to the application of external loads 

𝑾𝟏, 𝑾𝟐, ⋯, at 𝑶𝟏, 𝑶𝟐, ⋯ in the directions 𝑶𝟏𝑿𝟏,
𝑶𝟐𝑿𝟐 , ⋯, and to couples M1, M2, ⋯, then the 

deflections at 𝑶𝟏, 𝑶𝟐, ⋯ in the directions 𝑶𝟏𝑿𝟏,

𝑶𝟐𝑿𝟐, ⋯ are 
𝝏𝑼

𝝏𝑾𝟏
,
𝝏𝑼

𝝏𝑾𝟐
, ⋯, and the angular 

rotations of the couples are 
𝝏𝑼

𝝏𝑴𝟏
,
𝝏𝑼

𝝏𝑴𝟐
, ⋯ at their 

applied points.



Proof for Concentrated Loads.

If the displacements (in the direction of the loads) produced by gradually 

applied loads 𝑊1, 𝑊2, 𝑊3, ⋯ are 𝑥1, 𝑥2, 𝑥3, ⋯, then

𝑼 =
𝟏

𝟐
𝑾𝟏𝒙𝟏 +

𝟏

𝟐
𝑾𝟐𝒙𝟐 +

𝟏

𝟐
𝑾𝟑𝒙𝟑 +⋯

Let 𝑊1 alone be increased by 𝛿𝑊1, then  

𝛿𝑈 = increase in external work done

= 𝑊1 +
𝛿𝑊1

2
𝛿𝑥1 +𝑊2𝛿𝑥2 +𝑊3𝛿𝑥3 +⋯

where 𝛿𝑥1, 𝛿𝑥2, 𝛿𝑥3, ⋯ are the increases in 𝑥1, 𝑥2, 𝑥3, ⋯

(1)



(2)

neglecting the product 
𝛿𝑊1

2
𝛿𝑥1 .

But if the loads 𝑊1 + 𝛿𝑊1, 𝑊2, 𝑊3, ⋯ were applied gradually from zero, 

the total strain energy is

𝑈 + 𝛿𝑈 =
1

2
𝑊1 + 𝛿𝑊1 𝑥1 + 𝛿𝑥1 +

1

2
𝑊2 𝑥2 + 𝛿𝑥2 +

1

2
𝑊3 𝑥3 + 𝛿𝑥3 +⋯

Subtracting (1), and neglecting products of small quantities:

𝜹𝑼 =
𝟏

𝟐
𝑾𝟏𝜹𝒙𝟏 +

𝟏

𝟐
𝜹𝑾𝟏𝒙𝟏 +

𝟏

𝟐
𝑾𝟐𝜹𝒙𝟐 +

𝟏

𝟐
𝑾𝟑𝜹𝒙𝟑 +⋯ (3a)

𝟐𝜹𝑼 = 𝑾𝟏𝜹𝒙𝟏 + 𝜹𝑾𝟏𝒙𝟏 +𝑾𝟐𝜹𝒙𝟐 +𝑾𝟑𝜹𝒙𝟑 +⋯

or

(3b)

𝜹𝑼 = 𝑾𝟏𝜹𝒙𝟏 +𝑾𝟐𝜹𝒙𝟐 +𝑾𝟑𝜹𝒙𝟑 +⋯



Subtract (2), then 𝛿𝑈 = 𝛿𝑊1𝑥1

and in the limit:
𝝏𝑼

𝝏𝑾𝟏
= 𝒙𝟏

Similarly for 𝑥2 and 𝑥3, and so on, and the proof can be extended to 

incorporate couples.

Important:

• 𝑼 is the total strain energy, expressed in terms of loads and not `including 

statically determinate reactions, and 

• the partial derivatives with respect to each load in turn (treating the others 

as constant) gives the deflection at the load point in the direction of the 

load.

(4)



Principles to be observed in applying this theorem:

න
𝑴𝟐

𝟐𝑬𝑰
𝜹𝒔 from (4) in Section 1.

1. In finding the deflection of curved beams and similar problems, only strain 

energy due to bending need normally be taken into account, i.e.:

2. Treat all the loads as “variables” initially, carry out the partial 

differentiation and integration, putting in numerical values at the final 

stage.

3. If the deflection is to be found at a point where, or in a direction in which, 

there is no load, a load may be put in where required and given a value 

zero in the final reckoning (𝑥 = 𝜕𝑈/𝜕𝑊1 𝑊1=0).

(5)



Generally, this method:

➢ Requires less thought in application than the direct method.

➢ It is only necessary to obtain an expression for the bending moment.

➢ Strain  energy is bound to be positive, and deflection is positive in the 

direction of the load, so no problem with signs.

Disadvantage of this method:

➢ The only disadvantage occurs when a case such as principle (3) above has 

to be dealt with, when the direct method of Section 3 will probably be 

shorter.



Example 4. (Ryder, p. 204).

Solution:

Obtain an expression for the vertical 

displacement at 𝐴 of the beam shown in Fig. 9.

Fig. 9.

The bending moments in the various sections 

can be written as follows:

𝐴𝐵: 𝑀 = 𝑊𝑥 (at 𝑥 from 𝐴 going left)

𝐷𝐸: 𝑀 = 𝑊𝑥′′ (at x′′ from 𝐷)

𝐶𝐷: 𝑀 = 𝑊𝑥′ (at x′ from 𝐷)

𝐵𝐶: 𝑀 = 𝑊𝑎 (constant)



𝑈 = න𝑀2 ∙ 𝑑𝑠/2𝐸𝐼

= න
0

𝑎 𝑊2𝑥2 ∙ 𝑑𝑥

2𝐸 × 𝑡3/12
+ න

0

2𝑎 𝑊2𝑎2 ∙ 𝑑𝑠

2𝐸 × 𝑡3/12
+න

0

𝑎𝑊2𝑥′2 ∙ 𝑑𝑥′

2𝐸 × 𝑡3/12
+න

0

1.5𝑎𝑊2𝑥′′2 ∙ 𝑑𝑥′′

2𝐸 × 𝑡3/12

=
6𝑊2

𝐸𝑡3
𝑎3

3
+ 2

𝑎3

8
+
𝑎3

3
+ 1.53

𝑎3

3

𝑼 =
𝟐𝟒. 𝟓𝑾𝟐𝒂𝟑

𝟐𝑬𝒕𝟑
=
𝟏𝟐. 𝟐𝟓𝑾𝟐𝒂𝟑

𝑬𝒕𝟑

An allowance could be made for the linear extension of the portion 𝐵𝐶

𝛿𝐵𝐶 = 𝑊 ∙ 2𝑎 / 2𝑡 ∙ 𝐸

which is clearly negligible compared with the deflection due to bending. 



Example 5. (Ryder, p. 204-205).

Solution:

Fig. 10 shows a steel rod of 12 mm diameter with one end 

fixed into a horizontal table. The remainder of the rod is bent 

into the form of three-quarters of a circle and the free end is 

constrained to move vertically. Determine the vertical 

deflection for a load of 10 kg. E = 208 GPa.

Let the vertical load be W, and the normal reaction due to 

the constraint be R. Then:

Fig. 10.𝑀 = 𝑅 × 150 1 − cos 𝜃 −𝑊 × 150 sin 𝜃

𝛿𝑠 = න150𝛿𝜃 𝑈 = න𝑀2 ∙ 𝛿𝑠/2𝐸𝐼



𝑈 =
1503

2𝐸𝐼
න
0

3𝜋/2

𝑅 1 − cos 𝜃 −𝑊 sin 𝜃 2 ∙ 𝑑𝜃

Since there is no horizontal displacement, 𝜕𝑈/𝜕𝑅 = 0, i.e.

𝜕𝑈

𝜕𝑅
= න

0

3𝜋
2
2 𝑅 1 − cos 𝜃 −𝑊 sin 𝜃 1 − cos 𝜃 𝑑𝜃 =0

= න
0

3𝜋
2
2𝑅 − 4𝑅 cos 𝜃 + 𝑅 1 − cos 2𝜃 − 2𝑊 sin 𝜃 +𝑊 sin 2𝜃 𝑑𝜃 =0

3𝑅
3𝜋

2
− 4R −1 +

𝑅

2
0 + 2𝑊 0 − 1 −

𝑊

2
−1 − 1 = 0i.e.



𝑹 =
𝑊

9𝜋
2
+ 4

= 𝟎. 𝟓𝟓 kg = 𝟓. 𝟒 N

giving

= 𝟎. 𝟓𝟓 kg

𝑹 = 𝟓. 𝟒 N



Vertical Displacement = 𝜕𝑈/𝜕𝑊

= 1503/2𝐸𝐼 න
0

3𝜋
2
2 𝑅 1 − cos 𝜃 −𝑊 sin 𝜃 1 − cos 𝜃 𝑑𝜃

= 1503/2𝐸𝐼 න
0

3𝜋
2
−2𝑅 sin 𝜃 + 𝑅 sin 2𝜃 +𝑊 1 − cos 2𝜃 𝑑𝜃

= 1503/2𝐸𝐼 2𝑅 −1 −
𝑅

2
−1 − 1 +𝑊

3𝜋

2
−
𝑊

2
0

=
3.375 × 106 × 64

2 × 208,000 × 𝜋 × 124
−5.4 +

98.1 × 3𝜋

2

Vertical Displacement = 𝟑. 𝟔𝟓𝐦𝐦



Example 6. (Ryder, p. 205-206).

If a ring of mean radius 𝑅 is acted upon by equal and opposite pulls 𝑃 along a 

diameter, find the expressions for the maximum bending moment and deflection 

along the line of 𝑃. 

Fig. 11.

Solution

❖ The bending moment cannot immediately be 

obtained in terms of 𝑃 and 𝑅. 

❖ But, making use of the symmetry, let 𝑀0 be the 

bending moment on cross-sections 

perpendicular to 𝑃 (Fig. 11).

❖ There will also be a normal pull of 𝑃/2 on 

these cross-sections.



Fig. 11.

At an angle 

𝑀 = 𝑃𝑅/2 1 − cos 𝜃 −𝑀0

and

𝑈 = 4න
0

𝜋/2 𝑃𝑅 1 − cos 𝜃 − 2𝑀0
2

4 × 2𝐸𝐼
𝑅𝑑𝜃

𝜕𝑈

𝜕𝑀0
=

𝑅

2𝐸𝐼
න
0

𝜋/2

2 𝑃𝑅 1 − cos 𝜃 − 2𝑀0 (−2)𝑑𝜃

= rotation of 𝑀0

= 0 by symmetry

 න
0

𝜋/2

𝑃𝑅 − 𝑃𝑅 cos 𝜃 − 2𝑀0 𝑑𝜃 = 0



𝑃𝑅 ∙
𝜋

2
− PR − 2𝑀0 ∙

𝜋

2
= 0i.e.

𝑴𝟎 = 𝑷𝑹
𝟏

𝟐
−
𝟏

𝝅
giving

The maximum bending moment occurs when 𝜃 = 𝜋/2, and

𝑴 =
𝟏

𝟐
𝑷𝑹 −𝑴𝟎 =

𝑷𝑹

𝝅

The deflection of P = 𝜕𝑈/𝜕𝑃

= 𝑅/2𝐸𝐼 න
0

𝜋/2

2 𝑃𝑅 1 − cos 𝜃 − 2𝑀0 1 − cos 𝜃 𝑅𝑑𝜃



= 𝑅2/2𝐸𝐼 න
0

𝜋/2

2𝑃𝑅 − 4𝑃𝑅cos 𝜃 + 𝑃𝑅 1 + cos 𝜃 − 4𝑀0 + 4𝑀0cos 𝜃 𝑑𝜃

= 𝑅2/2𝐸𝐼 𝑃𝑅𝜋 − 4𝑃𝑅 + 𝑃𝑅
𝜋

2
+
𝑃𝑅

2
0 − 2𝑀0 + 4𝑀0

= 𝑃𝑅3/2𝐸𝐼 𝜋 − 4 +
𝜋

2
− 𝜋 + 2 + 2 −

4

𝜋

𝐃𝐞𝐟𝐥𝐞𝐜𝐭𝐢𝐨𝐧 𝐨𝐟 𝑷 =
𝑷𝑹𝟑

𝟒𝑬𝑰
∙
𝝅𝟐 − 𝟖

𝝅



5. Portal Frame by Strain Energy

• A frame with stiff joints could be 

analysed by a “direct” method 

based on the moment-area 

equations.

• It is frequently simpler to make use 

of Castigliano’s theorem to solve 

this type of problem, as the 

following example will illustrate. 
Fig. 12



Fig. 12

Example 7. (Ryder, pp. 206-207) 

The framework shown in Fig. 12 is pin-jointed 

to the ground at 𝐴 and 𝐷 and is loaded along 

𝐴𝐵 with a distributed load 𝑤. If the flexural 

rigidity 𝐸𝐼 is constant throughout, obtain 

expressions for the reactions at 𝐴 and 𝐷.    



Fig. 12

Resolving vertically, the vertical components of 

reaction, 𝑉, must be equal and opposite at 𝐴 and 𝐷, 

and by moments about 𝐴:

𝑉 =
𝑤𝑑2

2𝑏

Resolving horizontally:

𝐻1 +𝐻2 = 𝑤𝑑

(i)

(ii)

Bending moment along 𝐴𝐵, at a distance 𝑥 from 𝐴, 

is 
𝑀1 = 𝐻1𝑥 − 𝑤𝑥2/2 from (i)

Solution:



Fig. 12

Bending moment along 𝐵𝐶, at a distance 𝑥′ from 𝐵, is 

𝑀2 = 𝐻1𝑑 − 𝑉𝑥′ −𝑤𝑑2/2

𝑀2 = 𝐻1𝑑 − 𝑤𝑑2𝑥′/2𝑏 − 𝑤𝑑2/2 from (i)

𝑀3 = 𝐻2𝑥′′

𝑀3 = 𝑤𝑑 − 𝐻1 𝑥′′ from (ii)

Total strain energy due to bending

𝑈 = න
0

𝑑𝑀1
2𝑑𝑥

2𝐸𝐼
+න

0

𝑏𝑀2
2𝑑𝑥′

2𝐸𝐼
+න

0

𝑑𝑀3
2𝑑𝑥′′

2𝐸𝐼



But since the supports are fixed in position

𝜕𝑈/𝜕𝐻1 = 0

 න
0

𝑑

𝑀1 𝜕𝑀1/𝜕𝐻1 𝑑𝑥 + න
0

𝑏

𝑀2 𝜕𝑀2/𝜕𝐻1 𝑑𝑥′ + න
0

𝑑

𝑀3 𝜕𝑀3/𝜕𝐻1 𝑑𝑥′′ = 0

i.e.

න
0

𝑑

𝐻1𝑥 −
𝑤𝑥2

2
𝑑𝑥 + න

0

𝑏

𝐻1𝑑 −
𝑤𝑑2

2𝑏
𝑥′ −

𝑤𝑑2

2
𝑑𝑥′

+න
0

𝑑

𝑤𝑑 − 𝐻1 𝑥′′ −𝑥′′ 𝑑𝑥′′ = 0

𝐻1𝑑
3

3
−
𝑤𝑑4

8
+ 𝐻1𝑑

2𝑏 −
𝑤𝑑3𝑏

4
−
𝑤𝑑3𝑏

2
−
𝑤𝑑3

3
+
𝐻1𝑑

3

3
= 0



𝑯𝟏 =
𝒘𝒅

𝟖

𝟏𝟏𝒅 + 𝟏𝟖𝒃

𝟐𝒅 + 𝟑𝒃

𝑯𝟐 =
𝒘𝒅

𝟖

𝟓𝒅 + 𝟔𝒃

𝟐𝒅 + 𝟑𝒃

and from (ii),

giving:

ooooooooooOOOOOoooooooooo



But wait...



For your practice, solve the problems (1 to 7) at the end of 

Chapter 11 in Ryder, pp. 207 & 208. Take note that Problem 

7 is numbered 6 also.

Hand in as your assignment Problems 3 and 6, reproduced 

in the next two slides.



(a) A bar of diameter d is bent as shown. Prove 

that the stiffness s is given by the expression:

𝑠 =
𝑃

𝛿
=

3𝜋𝐸𝑑4

32
4𝑙3 + 6𝜋𝑅𝑙2 + 24𝑅2𝑙 + 3𝜋𝑅3

(b) If s = 165 n/m, d = 6 mm, R = 36 mm, find l. E = 206,00N/mm2.

Assignment Due in One Week

Assignment Q1 (Ryder, Chapter 11, Problem 3, p.208):



(b) If 𝑅 = 24 mm, 𝑑 = 6 mm, and 𝑙 = 42 mm, calculate the ratio of the 

maximum tensile stress at the section where the load is applied to that at a 

section half way along the straight portion.

𝑃𝑅

2

𝑙 + 2𝑅

𝑙 + 𝜋𝑅

(a) A chain link made of circular section has 

the dimensions shown. Prove that if 𝑑, the  

diameter of the section, is assumed small 

compared with 𝑅, then the maximum 

bending moment occurs at the point of 

application of the load and is equal to:

Assignment Q2 (Ryder, Chapter 11, Problem 6, p.208):



Now  for real!!!


