MEC 3352 STRENGTH OF MATERIALS II

BEAMS ON ELASTIC FOUNDATIONS

BEAMS ON ELASTIC FOUNDATIONS

- There are many problems in which a beam is supported on a compressible foundation exerting a distributed reaction on the beam.
- Reaction intensity is proportional to the compressibility.
- Sometimes foundations exerts upward forces only therefore if a beam is sufficiently long, it might lose contact with foundation,
- In others, pressures may be exerted either way, i.e. upwards or downwards.
- The support may not be truly continuous (e.g. holding down rails on sleepers in railway lines) but can be replaced by an equivalent support.

Remembering that:

If
$$y = Deflection$$

Then:
$$\frac{dy}{dx} = Slope \ (of \ the \ deflection \ curve)$$

$$EI\frac{d^2y}{dx^2} = M$$
 (Bending moment)

$$EI\frac{d^{3}y}{dx^{3}} = \frac{dM}{dx} = F$$
 (Shear force)

$$EI\frac{d^{4}y}{dx^{4}} = \frac{d^{2}M}{dx^{2}} = \frac{dF}{dx} = -w \text{ (Distributed load)}$$

If y is the upward deflection of the foundation at any point, the rate of upward reaction is -ky, and

$$\frac{EId^4y}{dx^4} = -ky$$

or

$$\frac{d^4y}{dx^4} = -\frac{1}{EI}ky = -\frac{4k}{4EI}y$$

$$\frac{d^4y}{dx^4} = -4\alpha^4 y$$

where:
$$\alpha^4 = \frac{k}{4EI}$$

(1)

(2)

The general solution to Equation (1) can be written as:

$y = A \sin \alpha x \cdot \sinh \alpha x + B \cos \alpha x \cdot \sinh \alpha x$ $+ C \sin \alpha x \cdot \cosh \alpha x + D \cos \alpha x \cdot \cosh \alpha x$

(3)

From this solution, various scenarios and their governing boundary conditions can now be considered.

(a) Long Beam Carrying a Central Load (Fig. 1(a))

Assuming that the foundation can exert upward forces only, let 2*l* be the length of beam in contact with the foundation, and take the origin *O* at the left hand end.

Figure 2

The solution to Equation (1) can be written as:

At
$$x = 0$$
, $y = 0$;

 $0 = A \sin 0 \cdot \sinh 0 + B \cos 0 \cdot \sinh 0$ $+ C \sin 0 \cdot \cosh 0 + D \cos 0 \cdot \cosh 0$

 $0 = A(0) \cdot (0) + B(1) \cdot (0) + C(0) \cdot (1) + D(1) \cdot (1) = D$

Therefore, D = 0;

and
$$M = \frac{EId^2 y}{dx^2} = 0;$$
 Therefore, $A = 0$ (4)
also $F = \frac{EId^3 y}{dx^3} = 0$ (5)

giving

$$EI \cdot 2\alpha^{3}[B(-\cos 0 \cdot \cosh 0 - \sin 0 \cdot \sinh 0) + C(-\sin 0 \cdot \sinh 0 + \cos 0 \cdot \cosh 0)] = 0$$

$$EI \cdot 2\alpha^{3}[B(-1 \cdot 1 - 0 \cdot 0) + C(-0 \cdot 0 + 1 \cdot 1)] = 0$$

$$-B + C = 0$$

i.e.: $C = B$

The solution to Equation (1) is now reduced to:

 $y = B(\cos \alpha x \cdot \sinh \alpha x + \sin \alpha x \cdot \cosh \alpha x)$

At
$$x = l$$
, $\frac{dy}{dx} = 0$

Therefore:

 $B\alpha\cos\alpha l\cdot\cosh\alpha l=0$

(6)

The least solution of this is $\alpha l = \pi/2$ which determines the length in contact with the ground.

The value of the constant B is obtained from the condition that the shear force at the centre is W/2, since by symmetry it must be numerically the same on either side of the load and it must change by an amount W on passing through the load. Hence:

$$\frac{W}{2} = EI \frac{d^3 y}{dx^3} = -EI \cdot 4\alpha^3 B \sin \alpha l \cdot \sinh \alpha l$$
$$B = -\frac{W\alpha}{2k} \sinh \frac{\pi}{2}$$

The maximum deflection and bending moment at the centres, $\alpha x = \pi/2$,

$$\widehat{y} = -\left(rac{Wlpha}{2k} \operatorname{coth} rac{1}{2}\pi
ight)$$

$$\widehat{M} = EI\left(\frac{W\alpha^3}{k}\right) \coth\frac{1}{2}\pi$$

From (2), $k = 4EI\alpha^4$ and substituting for it above:

We have:

$$\widehat{M} = \left(\frac{W}{4\alpha}\right) coth \frac{1}{2}\pi$$

(b) Short Beam Carrying Central Load W (Fig. 1(b))

If $\alpha l < \pi/2$ in case (a), the beam will sink below the unstressed level of the foundation at all points.

Again taking the origin at the left-hand end and the overall length of beam as **2***l*, the following are obtained for the constants of integration of the general solution of the previous paragraph.

Figure 1

At
$$x = 0$$
, $\frac{d^2 y}{dx^2} = 0$.
therefore: $A = 0$
(b) therefore: $A = 0$

and
$$\frac{d^3y}{dx^3} = 0$$

therefore: B = C

and

 $y = B \left(\cos \alpha x \cdot \sinh \alpha x + \sin \alpha x \cdot \cosh \alpha x \right) + D \cos \alpha x \cdot \cosh \alpha x$

At
$$x = l$$
, $\frac{dy}{dx} = 0$,

giving

 $B \cdot 2 \cos \alpha l \cdot \cosh \alpha l + D(-\sin \alpha l \cdot \cosh \alpha l + \cos \alpha l \cdot \sinh \alpha l) = 0$ and $EI \frac{d^3 y}{dx^3} = \frac{W}{2}$ giving

 $-B \cdot 2 \sin \alpha l \cdot \sinh \alpha l - D(\sin \alpha l \cdot \cosh \alpha l + \cos \alpha l \cdot \sinh \alpha l)$

$$=\frac{W}{4EI\alpha^3}=\frac{W\alpha}{k}$$

Solving for *B* and *D* gives:

$$B = -\frac{W\alpha}{k} \cdot \frac{\sin \alpha l \cdot \cosh \alpha l + \cos \alpha l \cdot \sinh \alpha l}{\sin 2\alpha l + \sinh 2\alpha l}$$

$$D = -\frac{2W\alpha}{k} \cdot \frac{\cos \alpha l \cdot \cosh \alpha l}{\sin 2\alpha l + \sinh 2\alpha l}$$

The complete solution for y is now known, the maximum deflection and bending moment being under the load.

(10)

(11)

(c) Infinite Beam Carrying Load W (Fig. 1(c))

- Assuming that the support can exert pressure either upwards or downwards;
- taking the *Y* axis through the load and the *X* axis at the undeformed level;
- a solution of Eq. (1) can be written in the form:

Figure 1

 $y = e^{\alpha x} (A \sin \alpha x + B \cos \alpha x) + e^{-\alpha x} (C \sin \alpha x + D \cos \alpha x)$

For the length to the right of *W*, since as $x \to \infty$, $y \to 0$, then A = B = 0

y –

2k

At
$$x = 0$$
, $\frac{dy}{dx} = 0$,
Therefore $C = D$
and $EI \frac{d^3y}{dx^3} = -\frac{W}{2}$
Giving $C = D = -\frac{W}{8\alpha^3 EI} = -\frac{W\alpha}{2k}$
and $y = -\left(\frac{W\alpha}{2k}\right)e^{-\alpha x}(\sin \alpha x + \cos \alpha x)$
(14)

(14)

The distance from the load at which y = 0 is given by

 $\sin \alpha l + \cos \alpha l = 0$

The least solution being

$$\alpha l = \frac{3\pi}{4}$$

The maximum deflection and bending moment at the centres, x = 0,

$$\widehat{y} = -rac{Wlpha}{2k}$$

(16)

(15)

$$\widehat{M} = EI\frac{W\alpha^3}{k} = \frac{W}{4\alpha}$$

Example:

A steel railway track is supported on timber sleepers which exert an equivalent load of 2 800 N/m length of rail per mm deflection from its unloaded position. For each rail $I = 12 \times 10^6$ mm⁴, section modulus $Z = 16 \times 10^4$ mm³ and E =205 000 MPa. if a point load of 100 kN acts on each rail, find the length of rail over which the sleepers are depressed and the maximum bending stress in the rail.

Solution:

Given:

Equivalent load, k = 2 800 N/m per mm deflection $I = 12 \times 10^{6} \text{ mm}^{4}$ $Z = 16 \times 10^{4} \text{ mm}^{3}$ E = 205 000 N/mm² W = 100 kN

Required:

- Length of rail over which the sleepers are depressed
- Maximum bending stress in the rail

Solving the problem:

$$\alpha^4 = \frac{k}{4EI} = \frac{2\,800}{4 \times 10^3 \times 205\,000 \times 12 \times 10^6}$$

giving

 $\alpha = 0.731 \times 10^{-3}$ /mm.

Each rail can be treated as an infinitely long beam, for which the length over which downward deflection occurs is given by scenario (c).

$$2l = \frac{3\pi}{2\alpha} = \frac{3\pi \times 10^3}{2 \times 0.731}$$

Length 2l = 6440 mm = 6.44 m

and

$$\widehat{M} = \frac{W}{4\alpha} = \frac{100 \times 10^3}{4 \times 0.731} = 34\ 200\ \text{Nm}$$
$$\sigma = \frac{\widehat{M}}{Z} = \frac{34\ 200}{16 \times 10^4 \times 10^{-9}} = 213.75 \times 10^6\ \text{N/m}^2$$

 $\sigma = 214 \text{ N/mm}^2$

Assignment

1. A beam rests on three supports *A*, *B* and *C*. *A* and *C* are rigid, but *B* compresses 0.000 5 mm per kg of load carried. If AB = BC = 4.5 m, what is the deflection at *B* when the beam is loaded with 16 kN/m run? What is the maximum bending moment and where does it occur? E = 204 GPa; I = 9 350 cm⁴.

(Ans.: 4.2 mm; 28.5 kNm, 1.85 m.)

2. A timber beam 15 cm wide and 10 cm deep, rests on compressible ground which exerts an upward pressure of 7 000 N/m² per mm compression. It supports a load of 1 000 kg at its mid-point. Compute the maximum bending stresses when the beam is (a) 1.8 m long, (b) 3 m long. E = 10 GPa. (Ans.: α = 0.0012 mm⁻¹, (a) 12.6 MPa; (b) 9.3 MPa.)

