MEC 3352 – STRENGTH OF MATERIALS II

SOME WORKED EXAMPLES from Ryder

G M Munakaampe 2017

PRINCIPAL STRESSES AND STRAINS AND THEORIES OF FAILURE

Example 7, P. 49: A piece of material is subjected to three perpendicular tensile stresses and the strains in the three directions are in the ratio 3:4:5. If Poisson's ratio is 0.286, find the ratio of the stresses, and their values if the greatest is 60 MPa. (U. L.)

Let the stresses be σ_1 , σ_2 , and σ_3 , and the corresponding strains 3k, 4k, and 5k.

Then
$$3kE = \sigma_1 - 0.286(\sigma_2 + \sigma_3)$$
 (i)
 $4kE = \sigma_2 - 0.286(\sigma_3 + \sigma_1)$ (ii)
 $5kE = \sigma_3 - 0.286(\sigma_1 + \sigma_2)$ (iii)

Subtract (i) from (iii): $\sigma_3 - \sigma_1 - 0.286(\sigma_1 - \sigma_3) = 2kE$ giving $\sigma_3 - \sigma_1 = 2kE/1.286$ (iv)Writing (iii): $\sigma_3/0.286 - \sigma_1 - \sigma_2 = 5kE/0.286$ (v)and (ii): $\sigma_2 - 0.286\sigma_3 - 0.286\sigma_1 = 4kE$ (vi)

Add (v) and (vi):	$3 \cdot 21\sigma_3 - 1 \cdot 286\sigma_1 = 21 \cdot 5kE$	(vii)
Writing (iv)	$1 \cdot 286\sigma_3 - 1 \cdot 286\sigma_1 = 2kE$	(viii)
Subtract (viii) from (vii): $1.294\sigma_3 = 19.5kE$	
or	$\sigma_3 = 10.14 kE$	
From (iv):	$\sigma_1 = 8.58 kE$	
From (ii):	$\sigma_2 = 9 \cdot 34 kE$	
Ratio of stresses:	$\sigma_1; \sigma_2: \sigma_3 = 0.847: 0.921: 1$	

If the greatest $\sigma_3 = 60 \text{ N/mm}^2$ $\sigma_1 = 50.8 \text{ N/mm}^2$ and $\sigma_2 = 55.3 \text{ N/mm}^2$

Example 9, P. 55: The principal stresses at a point in an elastic material are 60 MPa tensile, 20 MPa tensile and 50 MPa compressive. Calculate the volumetric strain and the resilience. E = 100 GPa; v = 0.35.

$$\sigma_1 = 60, \ \sigma_2 = 20, \ \sigma_3 = -50.$$

Volumetric strain $= (\sigma_1 + \sigma_2 + \sigma_3) \frac{1 - 2\nu}{E}$ (Para. 3.18)
 $= (60 + 20 - 50) \frac{1 - 0.7}{100,000}$
 $= 9 \times 10^{-5}$

Resilience = Strain Energy = U = work done per unit volume.

total work done = $\Sigma_2^1 \sigma \varepsilon$,

$$U = \frac{1}{2}\sigma_1\varepsilon_1 + \frac{1}{2}\sigma_2\varepsilon_2 + \frac{1}{2}\sigma_3\varepsilon_3$$

= $(1/2E)[\sigma_1(\sigma_1 - \nu\sigma_2 - \nu\sigma_3) + \sigma_2(\sigma_2 - \nu\sigma_3 - \nu\sigma_1) + \sigma_3(\sigma_3 - \nu\sigma_1 - \nu\sigma_2)]$ by
Para. 3.14

=
$$(1/2E)[\sigma_1^2 + \sigma_2^2 + \sigma_3^2 - 2\nu(\sigma_1\sigma_2 + \sigma_2\sigma_3 + \sigma_3\sigma_1])$$
 per unit volume.

Resilience =
$$[1/(2 \times 100,000)] [60^2 + 20^2 + (-50)^2 - 2 \times 0.35 (60 \times 20 - 20 \times 50 - 50 \times 60)]$$

= $8460/200,000$
= 0.0423 N mm/mm³

Example 10, P. 60: If the principal stresses at a point in an elastic material are 2f tensile, f tensile and $\frac{1}{2}f$ compressive, calculate the value of f at failure according to the five different theories.

The elastic limit in simple tension is 200 MPa and Poisson's ratio = 0.3.

(1) Maximum principal stress theory In the complex system, maximum stress = 2f In simple tension, maximum stress = 200 N/mm² Equating gives f = 100 N/mm²

(2) Maximum shear stress theory Maximum shear stress = Half difference between principal stresses $=\frac{1}{2}[2f - (-\frac{1}{2}f)]$ == 5 f In simple tension, principal stresses are 200, 0, 0, and maximum shear stress $=\frac{1}{2} \times 200$ $=100 \text{ N/mm}^2$ (See also Para. 3.2.) Equating gives $f = 80 \text{ N/mm}^2$

(3) Strain energy theory In the complex system $U = (1/2E)[(2f)^2 + f^2 + (-\frac{1}{2}f)^2 - 2 \times 0.3(2f \cdot f - f \cdot f/2 - f/2.2f)]$ (Para. 3.19) = 4.95 f^2/2E

In simple tension: Equating gives

 $U = 200^2/2E$ $f = 200/\sqrt{4.95}$ = 89.8 N/mm²

(4) Shear strain energy theory In the complex system

$$U = (1/12G)[(2f - f)^{2} + (f + \frac{1}{2}f)^{2} + (-\frac{1}{2}f - 2f)^{2}]$$
(Para 3.20.)
= 9.5f^{2}/12G

In simple tension (principal stress 200, 0, 0)

Equating gives

 $U = 200^2/6G$ $f = 200/\sqrt{4.75}$ $= 91.7 \text{ N/mm}^2$

(5) Maximum strain theory Equating the maximum strain in the complex and simple tension cases (1/E)(2f - 0.3f + 0.3f/2) = 200Eor f = 200/1.85 108 N/mm^2

Example 11, P. 61: The load on a bolt consists of an axial pull of 10 kN together with a transverse shear force of 5 kN. Estimate the diameter of the bolt required according to the:

- 1. Maximum principal stress theory,
- 2. Maximum shear stress theory,
- 3. Strain energy theory and
- 4. Shear strain energy theory.

Elastic limit in tension is 270 MPa, and a factor of safety of 3 is to be applied. Poisson's ratio = 0.3.

The permissible simple tensile stress is $270/(Factor of safety) = 90N/mm^2$.

Let required diameter be $d \mod d$ mm, then the applied stresses are

and
$$\sigma = \frac{10,000}{\pi d^2/4} = \frac{40,000}{\pi d^2} \text{ N/mm}^2$$
$$\tau = \frac{5000}{\pi d^2/4} = \frac{20,000}{\pi d^2} \text{ N/mm}^2 \text{ shear (Fig. 3.34),}$$

assuming uniform distribution over the cross-section.

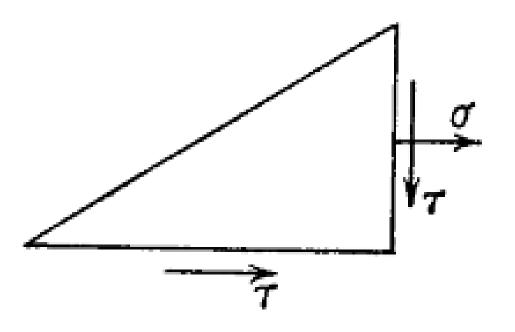
(1) Maximum principal stress in bolt

$$= \frac{1}{2}\sigma + \frac{1}{2}\sqrt{(\sigma^{2} + 4\tau^{2})} \text{ (Para. 3.8: } \sigma_{x} = \sigma_{y} = \sigma_{y} = 0)$$

$$= \frac{1}{2} \cdot 40,000/\pi d^{2} + \frac{1}{2}\sqrt{[(40,000/\pi d^{2})^{2} + 4(20,000/\pi d^{2})^{2}]}$$

$$= (20,000/\pi d^{2})[1 + \sqrt{(1+1)}]$$

$$= 48,290/\pi d^{2}$$



Maximum stress in simple tension = 90 Equating to above gives

$$d = \sqrt{(48,290/90\pi)}$$

= 13.1 mm.

Fig. 3.34

(2) Maximum shear stress $=\frac{1}{2}\sqrt{(\sigma^2+4\tau^2)}$ (Para. 3.10) $=28,290/\pi d^2$ = 45 in simple tension $\therefore d = \sqrt{(28,290/45\pi)}$ = 14.2 mm.(3) Principal stresses are $\frac{1}{2}\sigma \pm \frac{1}{2}\sqrt{(\sigma^2 + 4\tau^2)}$, 0, i.e. $48,290/\pi d^2$, $8290/\pi d^2$, 0 Strain energy = $(1/2E)(48,290^2 + 8290^2 + 2 \times 0.3 \times 48,290 \times 8290)/\pi^2 d^4$ $=26.4 \times 10^{8}/(2E \pi^{2}d^{4})$ $=90^2/2E$ in simple tension $\therefore d = \sqrt[4]{(26 \cdot 4 \times 10^6/81\pi^2)}$ =13.5 mm.

(4) Shear strain energy = $(1/12G)[(48,290 + 8290)^2 + 8290^2 + 48,290^2]/\pi^2 d^4$ = $90^2/6G$ in simple tension $\therefore d = \sqrt[4]{[(56.0 \times 10^6 \times 6)/(81\pi^2 \times 12)]}$ =13.7 mm.

The <u>largest diameter is 14.2 mm</u> given by the <u>Maximum Shear Stress Theory</u>. This diameter value is chosen in the absence of any other factors to consider because it guards against failure by all the other theories.

From the Problems from the Tutorial Assignment Sheet:

1. 3D Stresses and Strains: Problems 1 and 4

2. Theories of Failure: Problems 9 and 11

