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Introduction

= |n Lecture 1 1t has been stated that for a
continuum or continuous medium 3

conservation laws are valid:
» Conservation of mass
» Conservation of energy
» Conservation of momentum




System and control volume

In employing the basic laws, two modes of
application may be adopted

1. System approach
2. Control volume approach



System approach

» Definition 1: A fluid system refers to a specific mass of fluid
within the boundaries defined by a closed surface.

» Definition 2: A system is defined as a collection of matter of
fixed identity (always the same atoms or fluid particles),
which may move, flow and interact with its surroundings.

» The shape of the system, and so the boundaries, may change
with time, as when liquid flows through a constriction or
when gas i1s compressed; as a fluid moves and deforms so the
system containing it moves and deforms.

» The size and shape of a system

IS entirely optional. EXL >(/XL
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Control volume approach

» Definition 1: A control volume refers to a fixed region in space,

which does not move or change shape.

» Definition 2: A control volume is a volume in space (a geometric
entity, independent of mass) through which fluid may flow

» It is usually chosen as a region that fluid flows into and out of.

» |Its closed boundaries are called the control surface. Again, the
size and shape of a control volume is entirely optional, although
the boundaries are often chosen to coincide with some solid or

other natural flow boundaries.
» Actually, the control surface may %XL
be in motion through space relative o
to an absolute frame of reference; I

this is acceptable provided the motion
Is limited to constant-velocity translation.
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Another way of defining system
and control volume

As is discussed in Chapter 1, a fluid is a type of matter that is relatively free to move and
interact with its surroundings. As with any matter, a fluid’s behavior is governed by fundamental
physical laws which are approximated by an appropriate set of equations. The application of laws
such as the conservation of mass, Newton’s laws of motion, and the laws of thermodynamics form
the foundation of fluid mechanics analyses. There are various ways that these governing laws can
be applied to a fluid, including the system approach and the control volume approach. By definition,
a system is a collection of matter of fixed identity (always the same atoms or fluid particles), which
may move, flow, and interact with its surroundings. A centrol volume, on the other hand, is a
volume in space (a geometric entity, independent of mass) through which fluid may flow.



Example: fire extinguisher

Physically these represent the time rate of change of mass within
the system and the time rate of change of mass within the control
volume, respectively. We choose our system to be the fluid within
the tank at the time the valve was opened (# = 0) and the control
volume to be the tank itself as shown in Fig. E4.7b. A short time
after the valve 1s opened, part of the system has moved outside of
the control volume as is shown in Fig. E4.7¢. The control volume
remains fixed. The limits of integration are fixed for the control
volume; they are a function of time for the system.
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Other Examples
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We have selected a control volume that The control volume to be used extends from section 1 to section 2

-surrounds the bend as shown in Figp



Introduction to the Derivation of the control volume equation

» We shall now derive a general relationship
between a system and a control volume that
provides an important basis for the equations of
continuity, energy, and momentum for moving
fluids.

» This relationship is derived from what Is
commonly referred to as the control volume
approach, more formally known as the Reynolds
transport theorem.

» Addressing the motion of fluid as it moves through
a given region, the control volume approach is
also called the Eulerian approach, in contrast to
the Lagrangian approach; control volume does not move



Derivation of the control volume equation

» Extensive properties (N) are mass M,
momentum M V, and energy E.

* Intensive properties (n) are extensive
properties per unit mass.

* Thus
(A Mass/unit mass unity]
dMomentum/unit mass V]
Energy/unit mass e]



Derivation of the control volume equation

« The relationship between intensive and extensive properties is
denoted by

N=fndm=jnpdv

where dm = differential mass
dV = differential volume
« The integral Is over the volume occupied by the system at a
given instant.
« The cv equation is derived by considering the rate of change of
an extensive property of the system of fluid that is flowing
through the cv.



Derivation of the control volume equation

 Let N represent the total amount of some
fluid property, such as mass, energy, or
momentum, contained within specified
boundaries at a specified time.

» The specified boundaries will be either
those of a system, indicated by a subscript
SYS, or those of a control volume, indicated
by a subscript CV.



Derivation of the control volume equation

 Consider the general flow situation In Fig. below.

« At time t, the boundaries of the system and the
control volume were chosen to coincide, SO (Ngys);
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Derivation of the control volume equation

At instant At later, the system has moved a little
through the control volume and possibly slightly
changed its shape; a small amount of new fluid

AVhas entered the control volume, and another
small amount of

system fluid  SRESSEL EREESERS
AVGH has left the ™m0l

control volume, v T //j
where V [

represents BN AT, i o S

volume.



Derivation of the control volume equation

* These small volumes carry small amounts of
property N with them, so that AV} enters and
AVEH leaves the control volume.

Control surface of control Dashed line and shading reprasent
volume, fixed in space. = boundary and volume of moving
(This is also the boundary of | fluid system 8t time (1 + A1)

ihe Nuld system at time 1)

] e —

Figure 4.7
Fluid system, control volume, and differences



Derivation of the control volume equation

 In Fig 8.1 the velocity vectors and area vectors are
also indicated.

 Area vectors are always pointing in outward
direction perpendicular to that area

system boundary at time t + At
system boundary at time t

Fig 8.1 notation for derivation of cv equation



Derivation of the control volume equation

The rate of change with respect to time of an arbitrary
extensive property N of the system will be given by

dNgys — llm NSYSt+At_NSYSt — llm (N2+N3)t+At_(N1+N2)t
dt At—0 At
Rearranging terms yields

N At—N . N —N
2,t+At 2,t _I_ llm 3,t+At 1,t
dt At—0 At At—0 At

system boundary at time t + At
system boundary at time t



Derivation of the control volume equatlon :
dN . N N N N T
SYS — llm 2,t+AtT N2t + 11 3t+AtT V1t

dt At—0 At At—0 At N
dNsgys .
” is the rate of change of the total amount of any extensive

property N within the moving system.

Ny t+at—Not .
2P 2L is the rate of change of the same property, but

lim
At—0
contained within the fixed control volume.

N3 trat—Nqt .

Al%m0 is the net rate of outflow of N passing through the

control surface.

So Equation states that the difference between the rate of change
of N within the system and that within the control volume is equal

to the nek\rate of outflow frw

dNgys I Not+at = Nop lim N3 t+at — Nyt

dt  At>0 At At>0  olliternative derivation




Derivation of the control volume equation

dNgys

— lim Nz t+at—N2t + lim N3t+at—N1t
dt At—0 At At—0 At
+ At
. N t4at—Nop
Al%mo o represents the rate of change of the property
_)

N In region 2, but as At — 0, region 2 approaches that of the
cv i.e., negligible movement or change from original cv as
At - 0.

In other words, this term is the rate of change with respect to
time of the extensive property N of the fluid inside the cv at
time t.

Therefore

lim Ny t4at — Not _ dN¢, _ d j qv
At—0 At dt dt cv NP

N=fndm=]npdv



Derivation of the control volume equation

N3 t4+at—Nq

lim < can be analysed in the following manner

At—0
N3¢ = amount of property N that has passed out of the

CV In time At
N, =amount of property N that has passed into the cv in
time At

) N —N
Thus lim —S&tat Lt
At—0

cv at time t.
This term can be written in a more compact way.

IS the net rate of outflow of N from the

system boundary at time t + At
system boundary at time t



Derivation of the control volume equation

« Consider a steady flow velocity field and a portion of a cs.

* InFig (a) dAis the interface of fluid that is just touching the
cs at time t.

n Fig (b) the interface has moved v.dt along a direction

tangent to the streamline at thatpoint:

dAcosO

)
\ N\

A 5
o

dA

(a) (b)
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Fig. Flow across the cs a) at time t, b) at time t + dt



Derivation of the control volume equation

* \olume of the stream tube dV =IA

+ dV = (v-dt)dAcosd = (v dA) dt

0 Is the angle the velocity vector makes with a unit vector
normal to the area

’I//-f-"
dA

Boundary of control
volume

<|

. VdA is called the vector dot product of the velocity vector ¥
and area vector dA.
 dV is the volume that has crossed dA of the cs in time dt.



Derivation of the control volume equation
dV = (v - dt)dAcos® = (v dA) dt

dV_

= = (VdA)
d
Puttlng thM
d
il:_fnp V—fcs =/ 1 p (V dA)= net rate of

flow of an extensive property N out of the control volume

through the control surface, which is precisely equal to
. N ~N

lim 3,t+At N1t

At—0 At




Derivation of the control volume equation

dNgys _
dt

Combining the equations of cv and cs gives (into

. N —N . N3tsat—=N
At—0 At At—0 At

Wsys _ dj dV+f v dA
Tt dt Cvnp Csnp(v )

This is the control volume equation

Note: dV for control volume & dA for control surface



Alternative derivation of dNsvs _ . Natrac=Nae . Naerar—Nag

dt At—0 At At—0 At

Let X represent the total amount of some fluid property, such as mass,
energy, or momentum, contained within specified boundaries at a specified
time. The specified boundaries will be either those of a system, indicated by a
subscript §, or those of a control volume, indicated by a subscript CV.
Consider the general flow situation of Fig. 4.7. At time 1, the boundaries of
the system and the control volume were chosen to coincide, so (Xy), =
(Xey). At instant A7 later, the system has moved & little through the control
volume and possibly slightly changed its shape; a small amount of new fluid
AV 7y has entered the control volume, and another small amount of system
fluid A¥ 7 has left the control volume, where ¥ represents volume. These

Control surface of cantrol Dashed line and shading reprasant
volume, fixed in space. boundary and volume of moving
(This is also the boundary of fluid systom at time (1 + ).

Figure 4.7
Fluid system, control volume, and differences



Alternative derivation of ~ dNsvs _ ;) Naesae=Nae (o Naerar—Nay
dt At—0 At At—0 At

small volumes carry small amounts of property X with them, so that 4X7,
enters and AX7Y leaves the control volume, Comparing X in the various
volumes, we see that LN TR

(Xs)ea = (Xev)sa+ AXS — AXYy
Subtracting the equation for ¢ from that for r + 4r, we obtain

(Xehes = (X5) = (Xew)oa = (Xey ) +AXT — AX?y Since X, = Xcy;
or NgX, = AXE T AN - AXR, (4.8)

and dividing by Ar and letting A7 — 0, we get

These equations will be used in subsequent studies of continuity, energy, and
momentum. The left-hand side of Eq. (4.9) is the rate of change of the total
amount of any extensive property X within the moving system. The next
term, dXcy/dt, is the rate of change of the same property, but contained
within the fixed control volume, The last two terms are the net rate of outflow
of X passing through the control surface. So Eq. (4.9) states that the difference
between the rate of change of X within the system and that within the control
volume is equal to the net rate of outflow from the control yolume.




