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Introduction

 In Lecture 1 it has been stated that for a 

continuum or continuous medium 3 

conservation laws are valid:
Conservation of mass

Conservation  of energy

Conservation of momentum



System and control volume

In employing the basic laws, two modes of 

application may be adopted

1. System approach

2. Control volume approach 



System approach
 Definition 1: A fluid system refers to a specific mass of fluid 

within the boundaries defined by a closed surface.

 Definition 2: A system is defined as a collection of matter of 

fixed identity (always the same atoms or fluid particles), 

which may move, flow and interact with its surroundings.

 The shape of the system, and so the boundaries, may change 

with time, as when liquid flows through a constriction or 

when gas is compressed; as a fluid moves and deforms so the 

system containing it moves and deforms. 

 The size and shape of a system

is entirely optional.



Control volume approach
 Definition 1: A control volume refers to a fixed region in space, 

which does not move or change shape. 

 Definition 2: A control volume is a volume in space (a geometric 

entity, independent of mass) through which fluid may flow

 It is usually chosen as a region that fluid flows into and out of. 

 Its closed boundaries are called the control surface. Again, the 

size and shape of a control volume is entirely optional, although 

the boundaries are often chosen to coincide with some solid or 

other natural flow boundaries. 

 Actually, the control surface may 

be in motion through space relative

to an absolute frame of reference; 

this is acceptable provided the motion

is limited to constant-velocity translation.



Another way of defining system 

and control volume



Example: fire extinguisher



Other Examples



We shall now derive a general relationship

between a system and a control volume that 

provides an important basis for the equations of 

continuity, energy, and momentum for moving 

fluids. 

This relationship is derived from what is 

commonly referred to as the control volume 

approach, more formally known as the Reynolds 

transport theorem. 

Addressing the motion of fluid as it moves through 

a given region, the control volume approach is 

also called the Eulerian approach, in contrast to 

the Lagrangian approach; control volume does not move

Introduction to the Derivation of the control volume equation



• Extensive properties (N) are mass M, 

momentum M V, and energy E.

• Intensive properties (η) are extensive 

properties per unit mass. η is eta.

• Thus

Mass/unit mass 𝑢𝑛𝑖𝑡𝑦

Momentum/unit mass 𝑉

Energy/unit mass 𝑒

Derivation of the control volume equation



• The relationship between intensive and extensive properties is 

denoted by

N = නη dm = නη ρ dV

where dm = differential mass

dV = differential volume

• The integral is over the volume occupied by the system at a 

given instant.

• The cv equation is derived by considering the rate of change of 

an extensive property of the system of fluid that is flowing 

through the cv.

Derivation of the control volume equation



Derivation of the control volume equation

• Let N represent the total amount of some 

fluid property, such as mass, energy, or 

momentum, contained within specified 

boundaries at a specified time. 

• The specified boundaries will be either 

those of a system, indicated by a subscript 

SYS, or those of a control volume, indicated 

by a subscript CV.



Derivation of the control volume equation

• Consider the general flow situation in Fig. below.

• At time t, the boundaries of the system and the 

control volume were chosen to coincide, so (NSYS)t

= (NCV)t.



Derivation of the control volume equation

• At instant ∆t later, the system has moved a little 

through the control volume and possibly slightly 

changed its shape; a small amount of new fluid 

∆𝑉𝐶𝑉
𝑖𝑛has entered the control volume, and another

small amount of 

system fluid 

∆𝑉𝐶𝑉
𝑜𝑢𝑡 has left the 

control volume, 

where V 

represents 

volume. 



Derivation of the control volume equation

• These small volumes carry small amounts of 

property N with them, so that ∆𝑉𝐶𝑉
𝑖𝑛enters and 

∆𝑉𝐶𝑉
𝑜𝑢𝑡 leaves the control volume. 



Derivation of the control volume equation

• In Fig 8.1 the velocity vectors and area vectors are 

also indicated.

• Area vectors are always pointing in outward 

direction perpendicular to that area

Fig 8.1 notation for derivation of cv equation



• The rate of change with respect to time of an arbitrary 

extensive property N of the system will be given by

•
dNSYS

dt
= lim

∆t→0

NSYSt+∆t−NSYSt

∆t
= lim

∆t→0

N2+N3 t+∆t− N1+N2 t

∆t

• Rearranging terms yields

•
dNSYS

dt
= lim

∆t→0

N2,t+∆t−N2,t

∆t
+ lim

∆t→0

N3,t+∆t−N1,t

∆t

Derivation of the control volume equation



•
dNSYS

dt
= lim

∆t→0

N2,t+∆t−N2,t

∆t
+ lim

∆t→0

N3,t+∆t−N1,t

∆t

Derivation of the control volume equation

•
dNSYS

dt
is the rate of change of the total amount of any extensive 

property N within the moving system. 

• lim
∆t→0

N2,t+∆t−N2,t

∆t
is the rate of change of the same property, but 

contained within the fixed control volume. 

• lim
∆t→0

N3,t+∆t−N1,t

∆t
is the net rate of outflow of N passing through the 

control surface. 

• So Equation states that the difference between the rate of change 

of N within the system and that within the control volume is equal 

to the net rate of outflow from the control volume.  

dNSYS

dt
− lim

∆t→0

N2,t+∆t − N2,t

∆t
= lim

∆t→0

N3,t+∆t −N1,t

∆tSee alternative derivation



•
dNSYS

dt
= lim

∆t→0

N2,t+∆t−N2,t

∆t
+ lim

∆t→0

N3,t+∆t−N1,t

∆t

• lim
∆t→0

N2,t+∆t−N2,t

∆t
represents the rate of change of the property 

N in region 2, but as ∆t → 0, region 2 approaches that of the 

cv i.e., negligible movement or change from original cv as 

∆t → 0. 

• In other words, this term is the rate of change with respect to 

time of the extensive property N of the fluid inside the cv at 

time t.   

• Therefore 

lim
∆t→0

N2,t+∆t − N2,t

∆t
=
dNcv

dt
=

d

dt
න
cv

η ρ dV

Derivation of the control volume equation



• lim
∆t→0

N3,t+∆t−N1,t

∆t
can be analysed in the following manner

 N3,t+∆t = amount of property N that has passed out of the 

cv in time ∆t
 N1,t = amount of property N that has passed into the cv in 

time ∆t

• Thus  lim
∆t→0

N3,t+∆t−N1,t

∆t
is the net rate of outflow of N from the 

cv at time t.

• This term can be written in a more compact way. 

Derivation of the control volume equation



• Consider a steady flow velocity field and a portion of a cs. 

• In Fig (a)  dA is the interface of fluid that is just touching the 

cs at time t. 

• In Fig (b) the interface has moved v.dt along a direction 

tangent to the streamline at that point.

Derivation of the control volume equation

Fig. Flow across the cs a) at time t, b) at time t + dt

cosV


dAcosϴ



• Volume of the stream tube

• dV = v ∙ dt dAcosθ = (v dA) dt
•  is the angle the velocity vector makes with a unit vector 

normal to the area 

• v dA is called the vector dot product of the velocity vector v

and area vector dA. 

• dV is the volume that has crossed dA of the cs in time dt.

Derivation of the control volume equation

lAdV 



• dV = v ∙ dt dAcosθ = (v dA) dt

•
dV

dt
= (v dA)

• Putting this into 
dN

dt
=

׬ η ρ dV

dt

•
dN

dt
=

׬ η ρ dV

dt
= ׬

cs
η ρ (

dV

dt
) = ׬

cs
η ρ (v dA)= net rate of 

flow of an extensive property N out of the control volume 

through the control surface, which is precisely equal to 

lim
∆t→0

N3,t+∆t−N1,t

∆t

Derivation of the control volume equation



Derivation of the control volume equation

Combining the equations of cv and cs gives (into 
dNSYS

dt
=

lim
∆t→0

N2,t+∆t−N2,t

∆t
+ lim

∆t→0

N3,t+∆t−N1,t

∆t
)

dNsys

dt
=

d

dt
න
cv

η ρ dV + න
cs

η ρ (v dA)

This is the control volume equation

Note: dV for control volume & dA for control surface



Alternative derivation of



Alternative derivation of

Since Xs,t= XCV,t


