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Simplified forms of the energy equation
Energy equation for steady, one dimensional incompressible flow in a pipe
Consider flow through the pipe system shown below.
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For a steady flow situation in which there is one entrance and one exit across which
uniform profiles can be assumed
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+ gz / + E—) In eq is constant across the cross section because v is

constant (we assume a uniform velocity profile) and the sum of — + gz is constant if the

streamlines at each section are parallel. Therefore, we take the term outside the integral and

separating the velocity term integral
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flow. Where v is the mean or average velocity over a cross
section.
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For most cases of
turbulent flow, a =

1.05. because this is very
close to unity, it is
common practice in
engineering applications
to let a = 1.

dm

2dt




dm V5 dm
+gZ2 +u2 E‘I’OCZ 7E

dQ _ dWs + (pl

dm vZdm (p,
dt dt

+gZ1+ul>_+0C1 2 dt = 0y

P1 dt

dQ dWg P1 1 dm P2 2 dm
— x 2 4 gz, + Uyt
ETI + (01 + 821 +up+y a  \o, gZ; T Uz tX; r

Dividing by <+

1 dQ dWs P1 V% P2 V%
dm(dt dt>+a+gzl+ul+oc1 > E+gzz+u2+o<2 >
dt

The shaft work term is usuaity-the result of a turbine or pump in the flow system. It
IS therefore convenient to represent the shaft-work term as

WS - Wt - Wp Lecture 9 slide-11
where Wt =power delivered by a turbine In the latter case, the fluid system is doing negative
Wp — power Supplied by a pump work on its surrounding.
Substituting eq 10.8 into eq 10.7 and divided by g results in
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 All of the terms of eq11.10 have one dimension:

. energy __ [FORCE][LENGTH] _
unit weight of fluid o [FORCE] o [LENGTH]
de th
Hence —,- may be designated as hy, (pump head) and similarly —£-
dt dt

as h; (turbine head).
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The term { (uy=~uy) — } represents a loss of mechanical .energy

dt
due to viscous stresses, which is usually lumped together in a\single

term called head loss and symbolised by h;. Thus eq 1010 becomes
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This is the steady flow energy equation.
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» The sum of the terms on the left hand side of eq
represents the total energy, stated in energy per
unit weight of flowing liquid, plus the energy
supplied by a pump.

» The sum of the terms on the right hand side
represents the total energy per unit weight at the
downstream section plus the energy given up to a
turbine and energy lost to friction between the

two sections




Water flows from a reservoir through a 0.8-m-diameter pipeline to a turbine-generator unit
and exits to a river that is 30 m below the reservoir surface (Fig. E4.7). If the flow rate 1S
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3 m¥/s and the turbine-generator efficiency is 80%, calculate the power output. Assume the
loss coefficient in the pipeline (including the exit) to be K = 2.



Solution: The control volume to be used extends from section 1 to section 2; we consider
the water surface of the left reservoir to be the entrance and the water surface of the river to
be the exit. Because we assume the water surfaces to be large, the velocities at the surfaces
are negligible. The velocity in the pipe is

= 5.968 m/s

Now, consider the energy equation. We will use gage pressures so that p, = p, = 0; the
datum is placed through the lower section 2 so that z, = 0; the velocities V| and V, are negli-
gibly small; K is assumed to be based on the 0.8-m-diameter pipe velocity. The energy equa-
tion (4.4.24) then becomes
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From this the power output is found, using Eq. 4.4.25, to be

Wi = QvHmy
=3 X 9810 X 264 X 0.8 = 622000 W or 622kW
In this example we have used gage pressure; the potential-energy datum was assumed to be

placed through section 2, V| and V, were assumed to be insignificantly small, and K was
assumed to be based on the 0.8-m-diameter pipe velocity.




Energy equation for non-viscous steady, one
dimensional incompressible flow in a pipe

4 If:
* the losses are negligible
* there is no shaft work
* the flow Is incompressible
- vi P vi P2
The energy equation becomes =g, + ,+z +hy =5 + =+ 2, +he+hy
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The energy equation has been reduced to a form
Identical with the Bernoulli equation. Assumptions
are similar in both equations.



