Fluid Mechanics CEE 3311

LECTURE 12

Conservation of momentum

L. Handia

mv is an extensive property of the system. Then the corresponding intensive property is given by v.

In applying the control volume equation $\frac{dN_{sys}}{dt} = \frac{d}{dt} \int_{cv} \eta \rho \, dV + \int_{cs} \eta \rho \, (\vec{v} \, d\vec{A}) \qquad 13.1$

$$\frac{d(\text{momentum})}{dt} = \frac{d}{dt} \int_{cv} v \rho \, dV + \int_{cs} v \rho \, (\vec{v} \, d\vec{A})_{13.2}$$

According to Newton's second law of motion, the summation of all external forces on the system is equal to the rate of change of momentum of that system $\sum F = \frac{d(mv)}{dt} \int_{dt} \frac{d(mv)}{dt} \int_{dt} \frac{d(mv)}{dt} \int_{dt} \frac{d(mv)}{dt} = \frac{d}{dt} \int_{cv} v \rho \, dV + \int_{cs} v \rho \, (\vec{v} \, d\vec{A})$ 13.3

where ΣF represents all forces acting on the control volume. The forces include the *surface forces* F_s resulting from the surroundings acting on the control surface and *body forces* F_b that result from gravity and magnetic fields.

Fig 13.1 Surface forces on a nozzle control volume

$$\sum F_{s} + \sum F_{b} = \frac{d}{dt} \int_{cv} v \rho \, dV + \int_{cs} v \rho \, (\vec{v} \, d\vec{A})$$
^{13.4}

This is the basic form of the momentum equation

Application

The momentum equation is often used to determine the forces induced by the flow e.g., the equation allows us to calculate the *force on the support* of the elbow in a pipeline or the *force on a submerged body* in a free-surface flow.

The vector relation may be applied for any component e.g., the x direction

Fig 13.2 Control volume with *non-uniform* inflow and outflow normal to control surface

 $\sum F_{s} + \sum F_{b} = \frac{d}{dt} \int_{CV} v \rho \, dV + \int_{CV} v \rho \, (\vec{v} \, d\vec{A}) \, \frac{13.4}{13.4}$

For $(\vec{v} d\vec{A})$ refer to Lecture 7 slides (21) to 23)

 $dV = (v \cdot dt) dA \cos\theta = (\vec{v} d\vec{A}) dt$ dV is the volume that has crossed dA of the cs in time dt. i.e., $v_1 dA_1 \& v_2 dA_2$

 $\sum F_{x} = \frac{d}{dt} \int_{CV} \rho v_{x} \, dV + \int \rho_{1} v_{1x} v_{1} \, (-dA_{1}) + \int \rho_{2} v_{2x} v_{2} \, dA_{2}$

$$\sum F_{x} = \frac{d}{dt} \int_{cv} \rho v_{x} \, dV + \int \rho_{1} v_{1x} v_{1} \, (-dA_{1}) + \int \rho_{2} v_{2x} v_{2} \, dA_{2} \quad 13.5$$

Usually $\int \rho v_{x} v \, dA$ is written as $\beta \rho \overline{v}_{x} \overline{v} A$ where
 $\beta = \frac{1}{A} \int \left(\frac{v}{\overline{v}}\right)^{2} dA = \text{mometum correction factor}$

Hence, the momentum equation in the x, y and z directions can be written as:

$$\sum F_{x} = \frac{d}{dt} \int \rho v_{x} dV - \beta_{1} \rho \overline{v}_{1x} \overline{v}_{1} A_{1} + \beta_{2} \rho \overline{v}_{2x} \overline{v}_{2} A_{2}$$
 13.6a

$$\sum F_{y} = \frac{d}{dt} \int \rho v_{y} \, dV - \beta_{1} \rho \, \overline{v}_{1y} \overline{v}_{1} A_{1} + \beta_{2} \rho \, \overline{v}_{2y} \overline{v}_{2} A_{2}$$
 13.6b

$$\sum F_{z} = \frac{d}{dt} \int \rho v_{z} \, dV - \beta_{1} \rho \, \overline{v}_{1z} \overline{v}_{1} A_{1} + \beta_{2} \rho \, \overline{v}_{2z} \overline{v}_{2} A_{2}$$
 13.6c