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Al: Force exerted on pressure conduits

» The momentum equation can be used to compute the force
exerted on pressure conduits such as reducers and bends

> (Fgp)xand (Fgg), are the components of the force which the
bend exerts on the fluid.

» The usuai convention iIs to consider the direction in which
the flow Is occurring as the positive direction.

» The force of the fiuid on the bend is, of course, equal and
opposite to that of the hend con the tluid.




Al: Force exerted on pressure conduits

Momentum equation can be simplified considerably if a device has

entrances and exits across which the flow may be assumed to be

uniform and if the flow is .
— o \o W o L_

Assuming the flow in the Y N =

horizontal plane so that the %

weight can be neglected,

applying the momentum equation

by summing up forces acting on e 4

the ﬂUld in the X direCtiOn, and Forces on the fluid in a reducing bend.

equating them to the change in fluid momentum in the x direction

d(mvy)

giveS i.e., Z FX — dt = pQ(AV) ZF,(:%I pVy AV — By p V1,71 A1 + By p T2y VoA,

&/ /
F, = —(Fgp)g + Pl,% — P,A,cosH

d(mvy)
dt

S
b
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-
)
(Fgr)

— pQ(AV) =P Vl(_Alvl) + p V2COSB(A2V2)



Al: Force exerted on pressure conduits e

—(Fgp)x + PLA; — P,A,c0s0 = pvy(—A;vy) + pVvycos0(A,v,)

PiA; — PyAzc0s0 — (Fpp)x = p vi(—A1vy1) + p v,c0s0(Azvy) = pQ(v,c0s0 — vy)

Which, when rewritten for the force we ) Vv pa
. . 2 A ”
wish to find, becomes ' ’/

’

0
~
’

(Fep)x = P1A; — PAyc0s8 — pQ(v,cos6 — vy)

piAL_ ¢
ﬁ. N

Similarly , in'y direction
Figure 6.4
Forces on the fluid in a reducing bend.

2 Fy, =0 —P,A;sin0 + (Fgp)y = 0 + p v,sinB(A,v,) = pQ(v,sind — 0) ‘ﬁ
Which, when rewritten becomes

(Fgp)y = P2A;sin® + pQ v,sin®



A2: Force exerted on reducer

» Analysis iIs similar to that of a bend




A: Force exerted on a bend

Example

Watcr flows through a horizontal pipc bend and exits into the atmosphere (Fig. E1.11a). The
flow rate is 0.01 m¥/s. Calculate the force in each of the rods holding the pipe bend in posi-
tion. Neglect body forces and viscous effects.

m

e 4cm .di-a.

Flexible 77
section

Figure E4.11




A: Force exerted on a bend

Example

- Solution: 'We have sclected a control volume that surrounds the bend as shown in Fig
~E4.11b. Since the rods have been cut, the forces that the rods exert on the control volume
~are included. The pressure forces at the entrance and exit of the control volume are also

- shown. The flexible section is capable of resisting the interior pressure but it transmits no

axial force or moment. The body force (weight of the control volume) does not act in the x-
~or y-direction but normal to it. Therefore, no other forces are shown. The average velocitics
are found to be e

R Pz 04 Vs

Flexible 77
section

(@) o (b)



Forces on a bend

Water flows through a horizontal pipe bend and exits into the atmosphere (Fig. E4.11a). The
flow rate is 0.01 m¥s. Calculate the force in each of the rods holding the pipe bend in posi-
Q 0 01 tion. Neglect body forces and viscous effects.
V,=—= : = 1.99 m/s
1 .
A, w(0.08)%/4
0 0.01
v, = = 7.96 m/s

" A, w(0.04)/4

Before we can calculate the forces R_and R, we need to find the pressures p, and p,. The
pressure p, is zero because the flow exits into the atmosphere. The pressure at section 1 can
be determined using the energy equation or the Bernoulli equation. Neglecting losses

between sections 1 and 2, the energy equation gives
2 2

0 P1 Vi P2 5
2 2 bz 0y b h,=-=47,16C — +th +h
Y__1.+R_1.=Y..z.+% gt g e 28
2 v 22 1y
9810

! Lo Yo gy AL g o
. By 2g(V2 Vi) 2 % 9.81 (7.96° — 1.99%) = 29 700 Pa

]

4 cm dia,

Flexible 727
section
(a) . (b)



A: Force exerted on a bend

Now we can apply the mom gntum eqlljlatlon g 3.6) i m the x-direction_to find R r%cA in the y-
2 2V2

Ayc0s0 = pvi(—Aqv +pV2cd‘s

_ 6t (FBF)X =P Ay

/;7 direction: Py~ R = m}
\

directlon to ﬁnd R Fpr)x +

Better to use this o 5
equation or 14,16 than | 29700 X = X (0.08)" — R, = 1000 x 0.01 X (-1.99)

1448 ;R =160N

0 0
y-direction: Ry _%2 = m (Vs — 1/})‘

R, = 1000 X 0.01 X 7.96 = 79.6 N

Note that we have assumed uniform profiles and steady flow and used m = pQ. These are
the usual assumptions if information is not given otherwise.

8 cm dia.

Flexible 77z
section

n;.;. N ...:‘_. \ N '
“M} e S
\

Bend in horizontal plane anchorage



B: Forces on gates

An example of free surface flow in a rectangular channel is shown
below.
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Figure 4.12 Force of the flow on a gate in a free-surface flow.

If we want to determine the force of the gate on the flow, the
following expression can be derived from the momentum equation

ZFx=%J’ pvx AV — By p V1xV1A1 + B2 p VaxV2A;
2 Fy =F; —F; = Fgate = pV1(—Aqvy) +p va(Ayvy)

= pQ( vy — Vvq)



B: Forces on gates
z Fr =Fy — Fy — Foate = pva(—Aqv1) + p va(Agvy)
= pQ(vz —Vvy)
F1 — F2 — Fgate = pQ( vz — )

Fgate =F —F; —pQ(vy —vq)

: .Eﬁf.'.- ------------ .Jk.---“----‘.
W
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Ficure 4.12 Force of the flow on a gate in a free-surface flow.



B: Forces on gates

Example

SampLE ProBLEM 6.1 The water passagc shown in Fig. S6.1 is 10 ft (3 m) wide
normal to the plane of the figure. Determine the horizontal force acting on the

shaded structure. Assume ideal flow.

Figure S6.1



B: Forces on gates

Solution

In free-surface flow such as this where the streamlines are parallel, the water
surface is coincident with the hydraulic grade line. Writing an energy equation
from the upstream section to the down-stream section,
b1 vi P2 V5

+ 1+0C1 + h = + +0C2 -_— + ht + hl SampLe ProsLem 6.1 The water passage shown in Fig. $6.1 is 10 ft (3 m) wide
Pg 28 g

pg 2 :l?:(;::z:il ::) n:r(‘;x r‘:.a:css (\)jnl:?dgg:xg:(;wl')etennine the horizontal force acting on the
Free surface at-l. and 2 means atmospheric pressure i.e., zero gauge pressure. No pump, turbine and
negligible head los

Solution (SI units)

Energy: 2+

+
2(9.81) 2(9.81) (3)
Continuity: AV, =A,V, 23)V; = 13)V, (4)
Substituting Eq. (4) into Eq. (3) yields

Vi = 256m/s, V, = 511m/s
Q = A1V1 = Asz = 15.34m2/8



B: Forces on gates
Solution

Figure S6.1 F=

Applying the impulse-momentum equation (6.7a) to the free-body diagram,

F=y7zA=pc

A\\Fl —BE—(Fsyw): = pOQ(V2— V1)

9.81(1)(2)(3) — 9.81(0.5)(1)(3) — (Fyw), = 1.0(15.34)(5.11 — 2.56)

(Fyw), = +491kN = 4.91 kN
So (FW/S)x = 491 kN— ANS



. Jet deflected by a stationary vane or blade (deflector)

The application of the momentum equation to deflectors forms an
Integral part of the analysis of many turbo machines such as
turbines, pumps and compressors.

We begin by considering a stationary vane or blade under this part
C.

(FB/W )_\.



. Jet deflected by a stationary vane or blade (deflector)

The main difference with preceeding sections is that with the vane
or blade, the fluid is in contact with the atmosphere; hence the gage
pressures in the jet are zero and the PA forces disappear!!!! (see siide 2)

Another difference is that in many types of fluid machinery where
vanes or blades are used, the velocities are often so high that the
neglect of friction may introduce a sizeable error. In such cases, for
accurate results, friction should be considered.

This is usually handled by prescribing a reduction in the velocity of
the flow between its arrival and departure points on the blade




C: Jet deflected by a stationary vane or blade (deflector)

d o o
Z Fyx = d_tj pvyx AV — B1 p V14V A + B2 p Vox VoA,

(FBW)X =— PV VA + oV, VL A, L / _____ /ﬁ;m

continuity v,A =v,A, =Q
_(FBW)X :PQ(sz _le):PQ(Vz COSQ—Vl)

Hence (Fgy)x assumed direction Is correct since terms in brackets is

negative.
If we assume that v,=v, (there is a reduction in the velocity of the flow

between its arrival and departure points on the blade, see previous
slide).

—(Fgy )« = 0Q(vcosd—v) = pQv(cosd—-1)




C: Jet deflected by a stationary vane or blade (deflector)
Applying Eq. 13.6b along the y-axis

d — — - —
Z Fy = &J pvy dV — 31 p ViyViA; + B2 p VoyV2A,

+(Faw )y ==V i A + oV, VL, A,
+ (FBW)y — ,OQ(sz _Vly) = PQ(Vz sin 6—0)

(FBW)y = pQV, sin 6

x
(FB/W)_\'



D: Jet deflected by a moving vane or blade

« For a moving vane, e.g., a turbine runner or wind vane, the
same type of analysis as In the previous section can be
carried out, except that it would be convenient to let the cv
move with the vane. For that case/the flow Is steady.

Forebay - 28

~Hydraulic gradg line

l ply
Gross Effective
head (net) head, h e —
jet | pump impellers
vaqe
N\/1208\
it
W |

WTL

Figure 12-1 Definition sketch for
impulse-turbine installation,




D: Jet deflected by a moving vane or blade

 In Fig 14.2a the absolute velocities, i.e. velocities
with respect to the earth, are drawn, while Fig
14.2b the relative velocity of the jet, I.e. the

velocity of the jet with respect to the moving vane,
IS represented.

Fig 14.2 Jet deflected by a moving vane



nozzle

(a) (b)

The force annlied to the iet hv the vane in the x direction is
then Z Fy = '(%f PVy dv — Bl P Vi1xV1A; + BZ P Vax VoA,

FVJ'X =O+p(V- —V ) (_ A)(Vj _VV)1+IO(_(VJ _VV)ZXX+ A)(VJ' _VV)z

_ If we assume that v,=v,
R, =—pAl, —v, f - pAlv, —v, f cos6 = —pAlv, —v, f (1+cos6)
The terms between brackets are always positive

The terms between brackets are always positive, thus (F_ ) is
negative. This means that the force applied to the %eg is
working from right to left. However, the force which the jet
exerts on the vane, (Fjv)x’ is working from left to right.

The power delivered by the vane is equal to the product of the
force on the vane and the speed of the vane. The resulting

power is then (F_ .) V... Obviously, no power results unless the
vane speed 1s q?eatel than zero and less than the velocity of
the approaching jet.

| No face mask k750 ’



E: Jet striking an inclined stationary flat plate




Assuming

friction is negligible, v; = v, = vy

Applying the continuity equation

A1V1 = A2V2 ~+ A3V3

Hence, combining 14.6 & 14.7 gives
A1V1 = A2V2 ~+ A3V3 — A1V = A2V + A3V —
A = A, + Ag




Applying the momentum equation in x-direction

d o o e /
z Fx = af pvx AV — By p V1xV1A1 + B2 p VaxV2A; R o N ///

Z F, =0+ p(v, cosO)(—AV,) + oV, (AV,) + p (_ Vs )( AV;) ! ///¢ \pj

P
Friction is assumed negligible and therefore there is no friction
force. The only force in the figure is F; which has no component in

the x-direction. Therefore, ) F,=0.
Eqg. 14.9 becomes

0=0+ p(V,c0sO)(—AV,) + oV, (AV,) + p(=Vy (AY,)
— p(v; COSO)(AV,) + oV, (AV,) — V5 (Avs) =0

Since vq=V,=V3=V, divide above Eq by pv?

— A cosf+ A —-A =0



Adding 14.10 and 14.8 yields

.‘\; =. AZ ‘;‘ /‘\'3

—A{c0s0+A, —A; =0

—Aq +A,+A3=0 From Eq 14.8
—A1(1+cosB) +2A, =0
Hence A, = %Al(l + cos0)

1
A; = EAl(l — cos0)

Eqns 14.11 & 14.12 can also be written in terns of discharges

1
Q, = EQl(l + cos0)

1
Q3 = EQ1(1 — cosB)




The momentum egn in the y-direction

d oo o
z Fy - af PVy dV — Bl P Vlylel + BZ p VZyVZAZ

(Fsj)y = 0+ p(—v;sin®)(—A1v;) = pA;v;°sin6




Blade cross secton

— Tangentizl

& Axial
”"2: ”'1 = "’1 - U

B FIGURE 12.26 Flow as viewed

by an observer riding on the Pelton wheel—relative
velocities,



Lift-loss
and fountain induced lift

High-temperature
supersonic jet
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CAROTID ARTERY STENOSIS

External carotid

r—""' artery

Internal carotid
artery =

Stenosis

-4
[ T

Common carotid
artery

Atherosclerotic
plaque

Carotid
bifurcation

f

Blood flow




Summary

> F =m(av) = pQv)



