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LECTURE 13

Conservation of momentum

Applications of the momentum equation
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A1: Force exerted on pressure conduits

 The momentum equation can be used to compute the force 

exerted on pressure conduits such as reducers and bends

 (FBF)x and (FBF)y are the components of the force which the 

bend exerts on the fluid.

 The usual convention is to consider the direction in which 

the flow is occurring as the positive direction. 

 The force of the fluid on the bend is, of course, equal and 

opposite to that of the bend on the fluid.



A1: Force exerted on pressure conduits
Momentum equation can be simplified considerably if a device has 

entrances and exits across which the flow may be assumed to be 

uniform and if the flow is steady. 

Assuming the flow in the

horizontal plane so that the 

weight can be neglected, 

applying the momentum equation

by summing up forces acting on 

the fluid in the x direction, and 

equating them to the change in fluid momentum in the x direction 

gives i.e., σFx =
d(mvx)

dt
= ρQ ∆v

෍Fx = − FBF x +P1A1 − P2A2cosθ

d(mvx)

dt
= ρQ ∆v = ρ v1 −A1v1 + ρ v2cosθ A2v2



A1: Force exerted on pressure conduits

− FBF x + P1A1 − P2A2cosθ = ρ v1 −A1v1 + ρ v2cosθ A2v2

P1A1 − P2A2cosθ − FBF x = ρ v1 −A1v1 + ρ v2cosθ A2v2 = ρ𝑄( v2cosθ − v1)

Which, when rewritten for the force we

wish to find, becomes

FBF x = P1A1 − P2A2cosθ − ρ𝑄( v2cosθ − v1)

Similarly , in y direction

σFy =0 − P2A2sinθ + FBF y = 0 + ρ v2sinθ A2v2 = ρ𝑄( v2sinθ − 0)

Which, when rewritten becomes

FBF y = P2A2sinθ + ρ𝑄 v2sinθ
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A2: Force exerted on reducer

Analysis is similar to that of a bend



A: Force exerted on a bend
Example



A: Force exerted on a bend
Example



Forces on a bend

Example
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A: Force exerted on a bend
Example

FBF x = P1A1 − P2A2cosθ − ρ𝑄( v2cosθ − v1) 14.18
෍Fx =

d(mvx)

dt
= ρQ ∆v

x

Better to use this 

equation or 14.16 than 

14.18

− FBF x + P1A1 − P2A2cosθ = ρ v1 −A1v1 + ρ v2cosθ A2v2 14.16

Ry − P2A2

0



B: Forces on gates
An example of free surface flow in a rectangular channel is shown 

below. 

If we want to determine the force of the gate on the flow, the 

following expression can be derived from the momentum equation

෍Fx =F1 − F2 − Fgate = ρ v1 −A1v1 + ρ v2 A2v2

= ρ𝑄( v2 − v1) 14.20



B: Forces on gates

෍Fx =F1 − F2 − Fgate = ρ v1 −A1v1 + ρ v2 A2v2

= ρ𝑄( v2 − v1)

F1 − F2 − Fgate = ρ𝑄( v2 − v1)

Fgate = F1 − F2 − ρ𝑄( v2 − v1) 14.21



B: Forces on gates
Example



B: Forces on gates

Solution

p1
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Free surface at 1 and 2 means atmospheric pressure i.e., zero gauge pressure. No pump, turbine and 

negligible head loss
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B: Forces on gates
Solution

14.21
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C: Jet deflected by a stationary vane or blade (deflector)

• The application of the momentum equation to deflectors forms an 

integral part of the analysis of many turbo machines such as 

turbines, pumps and compressors.

• We begin by considering a stationary vane or blade under this part 

C.



C: Jet deflected by a stationary vane or blade (deflector)

• The main difference with preceeding sections is that with the vane 

or blade, the fluid is in contact with the atmosphere; hence the gage 

pressures in the jet are zero and the PA forces disappear!!!! (see Slide 2)

• Another difference is that in many types of fluid machinery where 

vanes or blades are used, the velocities are often so high that the 

neglect of friction may introduce a sizeable error. In such cases, for 

accurate results, friction should be considered.

• This is usually handled by prescribing a reduction in the velocity of 

the flow between its arrival and departure points on the blade



C: Jet deflected by a stationary vane or blade (deflector)
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Hence (FBW)X assumed direction is correct since terms in brackets is 

negative.

If we assume that v1=v2 (there is a reduction in the velocity of the flow 

between its arrival and departure points on the blade, see previous 

slide).
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C: Jet deflected by a stationary vane or blade (deflector)
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Applying Eq. 13.6b along the y-axis



D: Jet deflected by a moving vane or blade
• For a moving vane, e.g., a turbine runner or wind vane, the 

same type of analysis as in the previous section can be 

carried out, except that it would be convenient to let the cv 

move with the vane. For that case the flow is steady.

jet

vane

pump impellers



D: Jet deflected by a moving vane or blade

• In Fig 14.2a the absolute velocities, i.e. velocities 

with respect to the earth, are drawn, while Fig 

14.2b the relative velocity of the jet, i.e. the 

velocity of the jet with respect to the moving vane, 

is represented.

Fig 14.2 Jet deflected by a moving vane



The force applied to the jet by the vane in the x direction is 

then (σFs +σFb =
d

dt
cv׬ v ρ dV + cs׬ v ρ (v dA) )

Fvj x = 0 + න
cs

ρ vx(v dA) = ρ (vj−vv)1𝑥 −A )(vj−vv)1 + ρ (vj−vv)2𝑥 −A )(vj−vv)2

= −ρ A(vj−vv)
2 − ρ A(vj−vv)

2 cos θ

13.4

The terms between brackets are always positive
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E: Jet striking an inclined stationary flat plate



Assuming friction is negligible, v1 = v2 = v3
since A1 = A2 +A3

Applying the continuity equation

A1v1 = A2v2 + A3v3

Hence, combining 14.6 & 14.7 gives

A1v1 = A2v2 + A3v3 → A1v = A2v + A3v →
A1 = A2 + A3

14.7
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Applying the momentum equation in x-direction

Friction is assumed negligible and therefore there is no friction 

force. The only force in the figure is Fpj which has no component in 

the x-direction. Therefore, ∑Fx=0. 

Eq. 14.9 becomes

Since v1=v2=v3=v, divide above Eq by ρv2
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Adding 14.10 and 14.8 yields

−A1cosθ + A2 − A3 = 0
−A1 + A2 + A3 = 0
−A1(1 + cosθ) + 2A2 = 0

Hence A2 =
1

2
A1(1 + cosθ)

A3 =
1

2
A1(1 − cosθ)

Eqns 14.11 & 14.12 can also be written in terns of discharges

Q2 =
1

2
Q1(1 + cosθ)

Q3 =
1

2
Q1(1 − cosθ)

14.11
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From Eq 14.8



The momentum eqn in the y-direction 
(σFs +σFb =

d

dt
cv׬ v ρ dV + cs׬ v ρ v dA )

(Fsj)𝑦 = 0 + ρ(−v1sinθ) −A1v1 = ρA1v1
2sinθ 14.15
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Summary

෍F = ሶm ∆v = ρQ ∆v


