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LECTURE 14

Ideal Flow

L. Handia



 An ideal fluid may be defined as a fluid in which there is no friction; it is inviscid (its 

viscosity is zero).

 In this chapter we discuss various mathematical methods for describing the flow of 

imaginary ideal (frictionless) fluids. This subject is often referred to as hydrodynamics. It is 

a vast subject, so that the presentation here provides only an introduction, but it does give a 

good idea of the possibilities of a rigorous mathematical approach to flow problems.

 Even though such an approach does not consider all the real properties of fluids, the results 

often closely approximate the behavior of real fluids. This is because there are numerous

situations in which friction plays only a minor role. 

 For example, for fluids of low viscosity the viscosity affects only a thin region at the fluid 

boundaries. Turbulence and separation of the boundary layer occur far more readily with 

decelerating flows, and that accelerating flows generally have thin boundary layers. For such 

flows, mathematical analysis of ideal fluids yields results, often elegant, that can and do 

provide many useful and important insights into real fluid behavior.

 To concentrate on fundamentals, after the next section we shall limit our discussions to 

incompressible fluids and to two-dimensional, steady flow fields. It is rather interesting how 

the same methods can be applied to the flow of a real fluid through porous media such as an 

earth dam and underground aquifers. However, this will not be covered in this course but in 

Hydrology (CEE 4311) and Hydraulic Structures (CEE 5311) for CEE students.

Introduction
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DIFFERENTIAL EQUATION OF CONTINUITY
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DIFFERENTIAL EQUATION OF CONTINUITY



DIFFERENTIAL EQUATION OF CONTINUITY

Since it is 2 dimensional  δv



ROTATIONAL AND IRROTATIONAL FLOW

• Irrotational flow may be briefly described as flow in which 

each element of the moving fluid suffers no net rotation 

from one instant to the next, with respect to a given frame 

of reference. 

• Another definition of irrotational flow: it is that type of 

flow in which the fluid particles when flowing along the 

streamlines do not rotate about their own axis

• Definition of rotational flow: opposite of above

• The classic example of irrotational motion (although not a 

fluid) is that of the carriages on a Ferris wheel used for 

amusement rides. 





ROTATIONAL AND IRROTATIONAL FLOW

• Each carriage describes a circular path as the wheel 

revolves , but does not rotate with respect to the earth. 

i.e., the carriage is always horizontal (with 

respect to the earth) so that people do not 

fall



• In irrotational flow, however, a fluid element may deform as shown 

in Fig 14.2a, where the axes of the element rotate equally toward or 

away from each other (like in a Ferris wheel). As long as the 

algebraic average rotation is zero, the motion is irrotational.

• In Fig 14.2b is depicted an example of rotational flow. In this case 

there is a net rotation of the fluid element. Actually, the deformation 

of the element in Fig. 14.2b is less than that of Fig. 14.2a.

ROTATIONAL AND IRROTATIONAL FLOW



ROTATIONAL AND IRROTATIONAL FLOW

• Let us now express the condition of irrotationality in 

mathematical terms.

• It will help to restrict the discussion at first to two-

dimensional motion in the x y plane.



ROTATIONAL AND IRROTATIONAL FLOW

• Consider a small fluid element moving as depicted in Fig. 

14.3a.

• During a short time interval Δt, the element moves from 

one position to another and in the process it deforms as 

indicated. 

• Superimposing A' on A, defining an x axis along AB, and 

enlarging the diagram, we get Fig. 14.3b. u and v are 

velocities in x and y axes, respectively
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ROTATIONAL AND IRROTATIONAL FLOW

• The angle Δα between AB and A'B' can be expressed from 

Fig. 14.3b as

• Hence the rate of rotation of the edge of the element that 

was originally aligned with AB is

tan Δα= Δα

when Δα is 

small
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ROTATIONAL AND IRROTATIONAL FLOW

• Likewise

• and the rate of rotation of the edge of the element that was 

originally aligned with AD is

with the negative sign because +u is directed to the right. 

• The rate of rotation of the element about the z axis is now 

defined to be ωz, the average of ωα and ωβ; thus 



ROTATIONAL AND IRROTATIONAL FLOW

• But the criterion we originally stipulated for irrotational

flow was that the rate of rotation be zero. Therefore we 

have
irrotational flow

in xy plane

• In three-dimensional flow there are corresponding 

expressions for the components of angular-deformation 

rates about the x and y axes. Finally, for the general case, 

irrotational flow is defined to be that for which

• In Slide 22, we shall see that the primary significance of 

irrotational flow is that it is defined by a velocity potential.



ROTATIONAL AND IRROTATIONAL FLOW

for irrotational flow



THE STREAM FUNCTION
The stream function ψ (psi), based on the continuity principle, is a 

mathematical expression that describes a flow field. In Fig. 14.6 are 

shown two adjacent streamlines of a two-dimensional flow field. Let ψ 

(x, y) represent the streamline nearest the origin. Then ψ + dψ is 

representative of the second streamline. Since there is no flow across a 

streamline, we can let ψ be indicative of the flow carried through the 

area from the origin O to the first streamline. And thus dψ represents 

the flow carried between the two streamlines of Fig. 14.6. From 

continuity, referring to the triangular fluid element of Fig. 14.6, we see 

that for an incompressible fluid 14.14

The total derivative dψ may also

be expressed as

14.15

-ve because flow in opposite 

direction to y-axis



THE STREAM FUNCTION
• Comparing these last two equations, we note that

14.16

• Thus, if ψ can be expressed as a function of x and y, we can find 

the velocity components (u and v) at any point of a two-

dimensional flow field by application of Eqs. (14.16). 

• Conversely, if u and v are expressed as functions of x and y, we 

can find ψ by integrating Eq. (14.14). 

• However, it should be noted that since the derivation of ψ is based 

on the principle of continuity, it is necessary that continuity be 

satisfied for the stream function to exist. 

• Also, since vorticity (the circulation per unit of enclosed

area) was not considered in the derivation of ψ, the flow need not 

be irrotational for the stream function to exist.
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THE STREAM FUNCTION
• The equation of continuity ( )

may be expressed in terms of ψ by substituting the expressions for 

u and v from Eqs. (14.16); doing so, we get   

which shows that, if                 , the derivatives taken in either 

order give the same result and that a flow described by a stream 

function automatically satisfies the continuity equation (since

is satisfied)



BASIC FLOW FIELDS
In this section we shall discuss one of the basic flow fields that is 

commonly encountered. Though these flow fields imply an ideal 

fluid, they closely depict the flow of a real fluid outside the zone of 

viscous influence provided there is no separation of the flow from 

the boundaries (see Sec. 4.10). The simplest of all flows is that in 

which the streamlines are straight, parallel, and evenly spaced as 

indicated in Fig. 14.7. In this case v = 0 and u = constant. Thus, 

from Eq. (14.14),                , and hence              , where U is the 

velocity of flow. If the distance between streamlines is a, the 

values of ψ for the streamlines are as indicated in Fig. 14.7.

v

u

e.g., 

ψ=Uy=3Ua 

when y=3a



Let us define the potential

14.20

Mathematically, this is termed an “exact” differential, and therefore the 

function ϕ (x,y) exists, if

14.21

14.21 will be proved in 14.25

But the total derivative is defined to be

14.22

By comparing (14.20) with (14.22) we see that in Cartesian coordinates

14.23

The use of a minus sign in Eq. (14.20) led to the minus signs in the expressions (14.23), 

which indicate that the velocity potential decreases in the direction of flow, i.e., flow 

moves from areas of high potential (head) to low potential (head). E.g., the Zambezi 

River flows from Kaleni Hills (potential or z = 1,460m amsl) to the Indian Ocean (z = 

0). Some authors prefer the opposite, and so change these signs e.g. Darcy’s formula 

for flow through porous media (such as groundwater & earth dams)

VELOCITY POTENTIAL

dx

dh
KKv  



Example of groundwater flow directions

VELOCITY POTENTIAL



VELOCITY POTENTIAL
For two-dimensional flow, ϕ with conditions (14.23) is termed the

velocity potential function. In polar coordinates, the corresponding 

expressions are

Differentiating Eqs. (14.23), we get

14.25

Since the right-hand sides of these two last quantities are equal, this 

satisfies the requirement (14.21), which, from equation of vorticity

, proves that ξ = 0. Thus it follows that if a flow is irrotational

(ξ = 0) then a velocity potential exists, and vice versa. Because of the 

existence of a velocity potential, such flow is often referred to as 

potential flow. 
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VELOCITY POTENTIAL
The rotation of fluid particles requires the application of torque (

defined as a measure of how much a force acting on an object causes 

that object to rotate), which in turn depends on shearing forces. Such 

forces are possible only in a viscous fluid. In inviscid (or ideal) fluids 

there can be no shears and hence no torques.

If we substitute Eqs. (14.23) into the continuity Eq. (14.3), we get

14.26

This is the Laplace equation, named after the French mathematician 

and astronomer, Marquis Pierre Simon de Laplace (1749-1827). It is 

possibly the best known of all partial differential equations, important 

also in solid mechanics and thermodynamics. For fluids, if a function ϕ

satisfies Laplace’s equation, the resulting flow must be irrotational.





ORTHOGONALITY OF STREAMLINES 

AND EQUIPOTENTIAL LINES

From Eqs. (14.14) and (14.20) we have

and

Along a streamline, ψ = constant, so dψ = 0, and from the first 

equation (14.14)  we get dy/dx = v/u. 

Along an equipotential line, ϕ = constant, so dϕ = 0, and from the 

second equation (14.20) we get dy/dx = -u/v. 

Geometrically, this tells us that the streamlines and equipotential

lines are orthogonal, or everywhere perpendicular to each other. As 

a result, the stream function and the velocity potential are known as 

conjugate functions.
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ORTHOGONALITY OF STREAMLINES 

AND EQUIPOTENTIAL LINES

The equipotential lines ϕ = C, and the streamlines ψ = K, where the C and the K 

have equal increments between adjacent lines, form a network of intersecting 

perpendicular lines that is called a flow net (Fig. 14.10). 

The small quadrilaterals must evidently become squares as their size 

approaches zero, if the x and y scales are the same (e.g., length: head (y axis) & 

length (x axis)), since from Eqs. (14.16) and (14.23)  |u| = |δϕ/δx| = | δψ/δy |, or 

for finite increments |Δϕ/Δx| = |Δψ/Δy|. 

The difference in value of the stream function between adjacent streamlines is 

called the strength of the stream tube bounded by two streamlines, and it 

represents the two-dimensional flow through the tube.



ORTHOGONALITY OF STREAMLINES 

AND EQUIPOTENTIAL LINES

• Stream functions can exist in the absence of irrotationality, and 

potential functions are possible even though continuity is not 

satisfied. 

• But, since lines of ϕ and ψ are required to form an orthogonal 

network, a flow net can only exist if irrotationlity (the condition 

for the existence of ϕ) and continuity (the condition for the 

existence of ψ) are satisfied. The Laplace equation was derived 

assuming the existence of velocity potentials and the satisfaction 

of continuity. Thus, if a given flow satisfies the Laplace equation, 

a flow net can be constructed for that flow. 

• Because of irrotationality requirement such potential flows are 

usually those of ideal fluids.



ORTHOGONALITY OF STREAMLINES 

AND EQUIPOTENTIAL LINES

Example of an earth dam

The small quadrilaterals must evidently become squares as their size approaches 

zero, if the x and y scales are the same (e.g., length: head (y axis) & length (x axis)), 

since Eqs. (14.16) and (14.23)  |u| = |δϕ/δx| = | δψ/δy |, or for finite increments 

|Δϕ/Δx| = |Δψ/Δy|. 

The difference in value of the stream function between adjacent streamlines is 

called the strength of the stream tube bounded by two streamlines, and it represents 

the two-dimensional flow through the tube.

irrotationality



ORTHOGONALITY OF STREAMLINES 

AND EQUIPOTENTIAL LINES



ORTHOGONALITY OF STREAMLINES 

AND EQUIPOTENTIAL LINES



ORTHOGONALITY OF STREAMLINES 

AND EQUIPOTENTIAL LINES



USE AND LIMITATIONS OF FLOW NET



EXAMPLES OF FLOWNETS
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EXAMPLES OF FLOWNETS


