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Introduction

An ideal fluid may be defined as a fluid in which there is no friction; it is inviscid (its
viscosity is zero).

In this chapter we discuss various mathematical methods for describing the flow of
Imaginary ideal (frictionless) fluids. This subject is often referred to as hydrodynamics. It is
a vast subject, so that the presentation here provides only an introduction, but it does give a
good idea of the possibilities of a rigorous mathematical approach to flow problems.

Even though such an approach does not consider all the real properties of fluids, the results
often closely approximate the behavior of real fluids. This is because there are numerous
situations in which friction plays only a minor role.

For example, for fluids of low viscosity the viscosity affects only a thin region at the fluid
boundaries. Turbulence and separation of the boundary layer occur far more readily with
decelerating flows, and that accelerating flows generally have thin boundary layers. For such
flows, mathematical analysis of ideal fluids yields results, often elegant, that can and do
provide many useful and important insights into real fluid behavior.

To concentrate on fundamentals, after the next section we shall limit our discussions to
Incompressible fluids and to two-dimensional, steady flow fields. It is rather interesting how
the same methods can be applied to the flow of a real fluid through porous media such as an
earth dam and underground aquifers. However, this will not be covered in this course but in
Hydrology (CEE 4311) and Hydraulic Structures (CEE 5311) for CEE students.



DIFFERENTIAL EQUATION OF CONTINUITY

In Chap. 4 a very practical, but special, form of the equation of continuity was

presented. For some purposes a more general three-dimensional form is
desired. Also, in that chapter the concept of the flow net was explained

largely on an intuitive basis. To reach a more fundamental understanding of
the mechanics of the flow net, it is necessary to consider the differential

equations of continuity and irrotationality (Sec. 14.2) that give rise to the
orthogonal network of streamlines and equipotential lines.

Aside from application to the flow net, the differential form of the
continuity equation has an important advantage over the one-dimensional
form that was derived in Sec. 4.7 in that it is perfectly general for two- or
three-dimensional fluid space and for either steady or unsteady flow. Some of
the equations in this section only will also be applicable to compressible flow.



DIFFERENTIAL EQUATION OF CONTINUITY

Figure 14.1 shows three coordinate axes x, y, z mutually perpendicular
and fixed in space. Let the velocity components in these three directions be u,
v, w, respectively. Consider now a small parallelepiped, having sides Ax, Ay,
Az. In the x direction the rate of mass flow into this box through the left-hand
face is approximately pu Ay Az, this expression becoming exact in the limit as
the box is shrunk to a point. The corresponding rate of mass flow out of the
box through the right-hand face is-{pu + [0(pu)/dx] Ax} Ay Az. Thus the net
rate of mass flow into the box in the‘x direction is —[d(pu)/ox] Ax Ay Az.

m:pv=pAyAz

m_pv A%
t ot

- = PUAYAZ

Z

Figure 14.1 dt



DIFFERENTIAL EQUATION OF CONTINUITY

Similar expressions may be obtained for the y and z directions. The sum of
the rates of mass inflow in the three directions must equal the time rate of
change of the mass in the box, or (dp/dt) Ax Ay Az. Summing up, applying

the limiting process, and dividin sides of the equation by the volume of
the parallelepiped, which is common to all terms, we get am_AeV) _ 2P payaz
ot ot ot
om = AV) = % AXAYAZ = —M AXAYAz —MAXAyAz —MAxAyAz
ot ot ot OX oy o1
Divide by AXAyAz yields
compressible flow: ox ay 0z ot

which is the equation of continuity in its most general\form. This equation as
well as the other equations in this section are, of course, valid regardless of
whether the fluid is a real one or an ideal one. If the flow is steady, p does not
vary with time, but it may vary in space. Since d(pu)/dx = p(du/ox) +
u(ap/ax), it follows that for steady tf\e equation may b '

Steady 2P 3_p + p(au o aw) =0 (14.2)

compressible flow: — dx ox dy 0z

3 —=
dz



DIFFERENTIAL EQUATION OF CONTINUITY

Steady d ap du v aw) B
- Lawap[ T+ = 4
compressible flow: " ax Waz  Pox oy oz 0 (14.2)

In the case of an incompressible fluid (p = the flow is

steady or not, the equation of continuity beco

Steady ou  dv 9 ,
incompressible flow: SRR ’ (14.3)




DIFFERENTIAL EQUATION OF CONTINUITY

SamPLE PrOBLEM 14.1 Assuming p to be constant, do the following flows satisfy
continuity? (@) u = —2y,v = 3x;(b)u = 0,v = 3xy;(c)u = 2x,v = —2y.

Solution
From Eq. (14.3): Continuity for incompressible fluids is satisfied if 3—:+g—; =0
u, o du_ v 9w _ o Since itis 2 dimensional X+ _ g
ax dy ox dy o0z ax dy
(=2 a(3
(a) (axy ) 4 (ayx) = 040 = 0  Continuity is satisfied ~ ANS
a(0) a3
(b) ;x) + ( ;y ) =0+3x #0 Continuity is not satisfied ANS
d(2x) a(—2
(c) (ax)+ (ayy) =2-2=0 Continuity is satisfied @ ANS

Note: If (b) did indeed describe a flow field, the fluid must be compressible.



ROTATIONAL AND IRROTATIONAL FLOW

« Irrotational flow may be briefly described as flow in which
each element of the moving fluid suffers no net rotation
from one instant to the next, with respect to a given frame
of reference.

 Another definition of irrotational flow: it is that type of
flow in which the fluid particles when flowing along the
streamlines do not rotate about their own axis

 Definition of rotational flow: opposite of above

» The classic example of irrotational motion (although not a
fluid) is that of the carriages on a Ferris wheel used for
amusement rides.






ROTATIONAL AND IRROTATIONAL FLOW

» Each carriage describes a circular path as the wheel

revolves , but does not rotate with respect to the earth.
ilbtll

, I.e., the carriage is always horizontal (with
—% ] '\
respect to the earth) so that people do not
_ fall




ROTATIONAL AND IRROTATIONAL FLOW

 In irrotational flow, however, a fluid element may deform as shown
In Fig 14.2a, where the axes of the element rotate equally toward or
away from each other (like in a Ferris wheet). As long as the
algebraic average rotation is zero, the motion is irrotational.

(a) (b)

Figure 14.2
Two-dimensional flow along a curved path.
— (a) Irrotational flow. (b) Rotational flow.

* In Fig 14.2b is depicted an example of rotational flow. In this case
there Is a net rotation of the fluid element. Actually, the deformation
of the element in Fig. 14.2b is less than that of Fig. 14.2a.



ROTATIONAL AND IRROTATIONAL FLOW

 Let us now express the condition of irrotationality in
mathematical terms.

|t will help to restrict the discussion at first to two-
dimensional motion in the x y plane.



ROTATIONAL AND IRROTATIONAL FLOW

» Consider a small fluid element moving as depicted In Fig.
14.3a. -+ At
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Figure 14.3

 During a short time interval At, the element moves from
one position to another and in the process it deforms as

Indicated.

« Superimposing A' on A, defining an x axis along AB, and
enlarging the diagram, we get Fig. 14.3b. u and v are
velocities in x and y axes, respectively



Fig. 14.3b as

ROTATIONAL AND IRROTATIONAL FLOW
« The angle Ao between AB and A'B' can be expressed from

BI
Aa=B

= Jwier) Ax] & _ v . when A &
Ax Ax 0x small
« Hence the rate of rotation of the edge of the element that
was originally aligned with AB is
W = o _ v
“ At ox
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ROTATIONAL AND IRROTATIONAL FLOW

e Likewise AR = DD’ _ [—(du/ay) Ay] At _du

Ay Ay = Ty

 and the rate of rotation of the edge of the element that was

originally aligned with AD is B

wB=_—

At dy
with the negative sign because +u Is directed to the right.

The rate of rotation of the element about the z axis IS now
defined to be ,, the average of o, and wg; thus

1 (av au)
W, = — -
: 2 \dax oy
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oS ov
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ROTATIONAL AND IRROTATIONAL FLOW

 But the criterion we originally stipulated for irrotational
flow was that the rate of rotation be zero. Therefore we
have

irrotational flow Jv ou

in Xy plane ox dy =

 In three-dimensional flow there are corresponding
expressions for the components of angular-deformation
rates about the x and y axes. Finally, for the general case,
irrotational flow Is defined to be that for which

0, = 0, = o =0

 In Slide 22, we shall see that the primary significance of
irrotational flow is that it is defined by a velocity potential.



ROTATIONAL AND IRROTATIONAL FLOW

SampLE ProsLEM 14.2 Determine whether the following flows are rotational or

irrotational: (a) u =

—2y.
Solution for irrotational flow ~ 9¥_ 9% _
Using Eq. (14.7): ox dy

@ 23 a(-2y)

=3+2#0 Flow is rotational
0x dy
a(3 a(0
(b) F)_a0) = 3y—0+#0 Flow is rotational
0x ay
a(—2 d(2x
(c) %) () =0-0=0 Flow is irrotational

ox ay

-2y, v=3x; b)) u =0, v=3xy, (c) u=2 v=

ANS

ANS

ANS



THE STREAM FUNCTION

The stream function v (psi), based on the continuity principle, is a
mathematical expression that describes a flow field. In Fig. 14.6 are
shown two adjacent streamlines of a two-dimensional flow field. Let v
(X, y) represent the streamline nearest the origin. Then y + dy Is
representative of the second streamline. Since there4s no flowacross a
streamline, we can let y be indicative of the flow carried-through the
area from the origin O to the first streamline<And thus dy represents
the flow carried between the two streamhnes ef Fig. 14.6. From
continuity, referring to the triangularf element of Fig. 14.6, we see
that for an incompre : df = —vdx+rudy 14

-ve because flow in opposite
_:
Figure 14.6

direction to y-axis
R D\ Stream function.
(&)
2

Q)

The total derivative dy may also
be expressed as

Y oY 14.15
Iy = —dx +—
dys o dx oy dy




THE STREAM FUNCTION

Comparing these last two equations, we note that  ,, _ . .. .

u = oy and v = = 14.16 ,/ l

ay ox X :
dy = av dx + oy dy
ax ay

Thus, If y can be expressed as a function of x and y, we can find
the velocity components (u and v) at any point of a two-
dimensional flow field by application of Eqgs. (14.16).

Conversely, if u and v are expressed as functions of x and y, we
can find y by integrating Eq. (14.14). 4y = —u dx + u dy 14.14

However, it should be noted that since the derivation of v is based
on the principle of continuity, it is necessary that continuity be

satisfied for the stream function to exist.

Also, since vorticity §=%—%” (the circulation per unit of enclosed

area) was not considered in the derivation of v, the flow need not
be irrotational for the stream function to exist.



THE STREAM FUNCTION

- The equation of continuity (&5 o)

ou o
u_ o _

dx dy
may be expressed in ternis of w’by substituting the expressions for
u and v from Eqgs. (14.16); doing so, we get_« - " wa v ¥ (14.16)

i(éif __<a_¢)_0, I i

ax \ay/  ay ax dy  dy ox

which shows that, if ¢ = ¢(x, ), the derivatives taken in either
order give the same result and that a flow described by a stream
function automatically satisfies the continuity equation (since

a_ur')v

+Z =0 ]IS SatiSﬁed)

ax dy



BASIC FLOW FIELDS

In this section we shall discuss one of the basic flow fields that is
commonly encountered. Though these flow fields imply an ideal
fluid, they closely depict the flow of a real fluid outside the zone of
viscous influence provided there is no separation of the flow from
the boundaries (see Sec. 4.10). The simplest of all flows is that in
which the streamlines are straight, parallel, and evenly spaced as
Indicated in Fig. 14.7. In this case v = 0 and u = constant. Thus,

ig. 14.7. eg.,
y=Uy=3Ua
when y=3a

Y=2Ua

dyy = —vdx+udy
Y =Ua

Y=0

!

Figure 14.7
Rectilinear flow field.

-0l f- 0> L-Q’
Y

Y

14.14



VELOCITY POTENTIAL

Let us define the potential

—d¢p = udx+vdy 14.20
Mathematically, this 1s termed an “exact” differential, and therefore the
function ¢ (X,y) exists, if D
ox 14.21

14.21 will be proved in 14.25
But the total derivative iIs defined to be
dd = ' dx + 0¢ dy 14.22

0x ay -

By comparing (14.20) with (14.22) we see that in Cartesian coordinates
I dd 14.23

U= —— and v = —
0x ay

The use of a minus sign in Eq. (14.20) led to the minus signs in the expressions (14.23),
which indicate that the velocity potential decreases in the direction of flow, i.e., flow
moves from areas of high potential (head) to low potential (head). E.g., the Zambezi
River flows from Kaleni Hills (potential or z = 1,460m amsl) to the Indian Ocean (z =
0). Some authors prefer the opposite, and so change these signs e.g. Darcy’s formula
—V=Kg= Kd— for flow through porous media (such as groundwater & earth dams)



VELOCITY POTENTIAL

Example of groundwater flow directions

; SN 3 - B Groundwater contour b4,
s ‘.' i Flow direction . 6
TR T e Groundvater e f
i pinfstone measurement point . ™
B s ey )
== Provincial boundary o L N\
S »

» = w "
L i 1

Figure 8-8: Regional groundwater contour map of the SP and the adjacent north-eastern Lusaka
area with indication of the groundwater flow directions. Water levels are given in . K s L4

m asl. ¢




VELOCITY POTENTIAL

For two-dimensional flow, ¢ with conditions (14.23) is termed the
velocity potential function. In polar coordinates, the corresponding

— = (14.24

u = and USRS 0.4 2
ax ay (”l (’)' d) ("l) (')‘-d)
— — — — - and . = —— e 14.25

ou v (';.\' (')'\' ox ox ox (’)’\'

Since the right-hand-sides of these two last quantities are equal, this

satisfies the requirement (14.21), which, from equation of vorticity
5:%_%‘* , proves that & = 0. Thus it follows that if a flow is irrotational
(¢ = 0) then a velocity potential exists, and vice versa. Because of the
existence of a velocity potential, such flow is often referred to as
potential flow.



VELOCITY POTENTIAL

The rotation of fluid particles requires the application of torque (

defined as a measure of how much a force acting on an object causes
that object to rotate), which in turn depends on shearing forces. Such
forces are possible only in a viscous fluid. In inviscid (or ideal) fluids

there can be no shears and hence no torques. %Jrgh?a‘_: o
If we substitute Eqgs. (14 23) Into the continuity Eq. (14. 3) we gef
u=—L and v=—a_—¢ 2 2
d d
¢, P

This is the Laplace equation, named after the French math2gg. . J&
and astronomer, Marquis Pierre Simon de Laplace (1749-1827). It is
possibly the best known of all partial differential equations, important
also in solid mechanics and thermodynamics. For fluids, if a function ¢
satisfies Laplace’s equation, the resulting flow must be irrotational.



Flerre-simon Laplace

Pierre-Simon Laplace as Chancellor of the
Senate under the First French Empire

Born 23 March 1749
Beaumont-en-Auge, Normandy,
Kingdom of France

Died 5 March 1827 (aged 77)
Paris, Kingdom of France

Nationality French

Alma mater University of Caen

Known for [show]
Scientific career

Fields Astronomer and mathematician

Institutions Ecole Militaire (1769-1776)

Academic Jean d'Alembert
advisors Christophe Gadbled
Pierre Le Canu

Notable Siméon Denis Poisson
students Napoleon Bonaparte




ORTHOGONALITY OF STREAMLINES
AND EQUIPOTENTIAL LINES
From Egs. (14.14) and (14.20) we have
\‘dtp /—v dx + u dy
and dp = —udx —vdy

Along a streamline, v = constant, so dy = 0, and from the first
equation (14.14) we get dy/dx = v/u.

dg//:—vdx+udy:>0=—vdx+udy:>d—yzX
dx u
Along an equipotential line, ¢ = constant, so d¢ = 0, and from the
second equation (14.20) we get dy/dx = -u/v.
dy u
d¢:—udx—vdy:>O:—udx—vdy:>&:—V

Geometrically, this tells us that the streamlines and equipotential
lines are orthogonal, or everywhere perpendicular to each other. As
a result, the stream function and the velocity potential are known as
conjugate functions.



ORTHOGONALITY OF STREAMLINES
AND EQUIPOTENTIAL LINES

The equipotential lines ¢ = C, and the streamlines y = K, where the C and the K
have equal increments between adjacent lines, form a network of intersecting
perpendicular lines that is called a flow net (Fig. 14.10).

The small quadrilaterals must evidently become squares as their size
approaches zero, if the x and y scales are the same (e.g., length: head (y axis) &
length (X axis)), since from Eqgs. (14.16) and (14.23) |u| = |0¢/oX| = | dwldy |, or
for finite increments |Ag/AX| = [AwiAy].
The difference in value of the stream function between adjacent streamlines is
called the strength of the stream tube bounded by two streamlines, and it
represents the two-dimensional flow through t

S 14.16



ORTHOGONALITY OF STREAMLINES
AND EQUIPOTENTIAL LINES

 Stream functions can exist in the absence of irrotationality, and
potential functions are possible even though continuity Is not
satisfied.

* But, since lines of ¢ and y are required to form an orthogonal
network, a flow net can only exist if irrotationlity (the condition
for the existence of ¢) and continuity (the condition for the
existence of ) are satisfied. The Laplace equation was derived
assuming the existence of velocity potentials and the satisfaction
of continuity. Thus, if a given flow satisfies the Laplace equation,
a flow net can be constructed for that flow.

« Because of irrotationality requirement such potential flows are
usually those of ideal fluids.



ORTHOGONALITY OF STREAMLINES
AND EQUIPOTENTIAL LINES

Example of an earth dam

irrotationality

- |
K=048 ft/day \'\\:’|
' A L ]
3 Clay §=25°30"7 f
30 i
° K= S
e o ’ Solid }ock

Figure 8-21 Location of the seepage line and construction of a flow net for an earth dam

The small quadrilaterals must evidently become squares as their size approaches
zero, if the x and y scales are the same (e.g., length: head (y axis) & length (x axis)),
since Eqs. (14.16) and (14.23) |u| = |[0@/oX| = | owloy |, or for finite increments
AplAX| = Ayl Ay.

The difference in value of the stream function between adjacent streamlines is
called the strength of the stream tube bounded by two streamlines, and it represents
the two-dimensional flow through the tube.



ORTHOGONALITY OF STREAMLINES
AND EQUIPOTENTIAL LINES

Samrie Promiem 145 An incompressible flow is defined byu = 2rand v =

EOZz. Fi:d the stream function and potential function for this flow and plot the
ne

Solution
Check continuity:

0 0
Eq. (14.3): §+$’ =2-2=0

Hence continuity is satisfied, and it is possible for a stream function to exist:
Eq. (14.14): dyy = —vdx+udy = 2y dx +2x dy
Integrating: Y = 2xy + C, ANS



ORTHOGONALITY OF STREAMLINES
AND EQUIPOTENTIAL LINES

Check to see if the flow is irrotational: 1

10

0 0 st
Eq. (14.7): b—;’—ﬁ =0-0=0

Hence ¢ = 0, the flow is irrotational, and a potential function exists:
Eq. (14.20): dp = —udx—vdy = —2x dx+2ydy
Integrating: $ = —(x*—y*)+C, ANS

Letting ¢ = 0 and ¢ = 0 pass through the origin, we get C; = C, = 0.

The location of lines of equal iy can be found by substituting values of
into the expression ¢ = 2xy. Thus for ¢ = 60, x = 30/y. This line is
plotted (in the upper right-hand quadrant) on the adjoining figure. In a
similar fashion lines of equal potential can be plotted. For example, for
¢ = —60 we have —(x*—y?*) = —60 and x = +Vy*+60. This line is also
plotted on the figure. The flow net depicts flow in a carner. Mathexatiaally
The nel wi plot symmetrically in all four quadrants.



ORTHOGONALITY OF STREAMLINES
AND EQUIPOTENTIAL LINES

The location of lines of equal ¢ can be found by substituting values of ¢
into the expression ¢ = 2xy. Thus for ¢ = 60, x = 30/y. This line is
plotted (in the upper right-hand quadrant) on the adjoining figure. In a
similar fashion lines of equal potential can be plotted. For example, for
¢ = —60 we have —(x>*—y?) = —60 and x = +Vy?+60. This line is also
plotted on the figure. The flow net depicts flow in a corner. Matheaxatially
| Yne nel wil plot symmetrically in all four quadrants.
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USE AND LIMITATIONS OF FLOW NET
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EXAMPLES OF FLOWNETS

)

m—wm

Coocrete dam with cutoM
wall ar permestie fowundation

Equipotential line
iiiii
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Seepage and Dams

Flow nets for

seepage through
earthen dams

Seepage under
concrete dams

Uses boundary
conditions (L & R)

Requires curvilineai
square grids for
solution

After Philp Bedient
Rice Universily



EXAMPLES OF FLOWNETS
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Figure 3.5~ Percalation under a concrete dam




EXAMPLES OF FLOWNETS
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