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Boundary layer: Laminar flow

In the entry region of length L' the flow is unestablished; that is, the
velocity profile is changing. In this region the flow can be visualized as
consisting of a central core in which there are no frictional effects and an
outer, annular zone extending from the core to the pipe wall. This outer zone
increases in thickness as it moves along the wall, and is known as the
boundary layer. Viscosity in the boundary layer acts to transmit the effect of
boundary shear inwardly into the flow. At section AB the boundary layer has
grown until it occupies the entire section of the pipe. At this point, for
laminar flow, the velocity profile is a perfect parabola. Beyond section AB,
the velocity profile does not change, and the flow is known as established

flow.

Fully developed
Rounded entrance 4 parabolic profile

from tank

Boundary layer

LI
< Unestablished flow

Established
flow

Figure 8.4 SED
Véglocity profiles and development of the boundary layer along a pipe in

laminar flow.



Boundary layer: Turbulent flow

If the Reynolds number is above the critical value (Sec. 8.2), so that the
developed flow is turbulent, the initial condition is much like that in Fig. 8.4.
But as the laminar boundary layer increases in thickness, a point is soon
reached where a transition occurs and the boundary layer becomes turbulent.
This turbulent boundary layer generally increases in thickness much more
rapidly, and soon the two layers from opposite sides meet at the pipe axis,
and there is then fully developed turbulent flow.

The viscous sublayer is a layer el
where shear is predominantly due to
viscosity alone. It is extremely thin,
usually only a few hundredths of a
mm, but its effect is great because of 25
the very steep velocity gradient Figure 8.7
Development of boundary layer in a pipe where fully developed

Within it and because = ﬂ du/dy in flow is turbulent (scales much distorted).
that region

,Q— x(‘



Laminar and turbulent flow

 |f the head loss in a given length of
uniform pipe i1s measured at different
velocities, it will be found that, as
long as the velocity is low enough to
secure laminar flow, the head loss,
due to friction, will be directly
proportional to the velocity, as
shown in the Fig.

« But with increasing velocity, at some
point B, where visual observation of

dye injected in a transparent tube e “ o s ——
would show that the flow changes for [l T
from laminar to turbulent, there will ’ :

be an abrupt increase in the rate at Log-log plot for flow in a uniform pipe

(n = 2.00, rough-wall pipe; n = 1.75,

which the head loss varies. smooth-wall pipe).



Laminar and turbulent flow

If these two variables are plotted on log-log paper, it will be found
that, after a certain transition region (BCA) has been passed, lines
will be obtained with slopes ranging from about 1.75 to 2.00.

It is thus seen that for laminar flow the
drop in energy due to friction varies as
V, while for turbulent flow the friction
varies as \/", where n ranges from

about 1.75 to 2. The lower value of
1.75 for turbulent flow is found for

pipes with very smooth walls; as the

;%q_+

wall roughness increases, the value of ~ —, RTs
] . . amlnar ransmo Turbulent
N Imncreases up to Its maximum value \ese | | |
of 2.
F)Olnt B |S known as the hlgher C”t'CaI %og l(‘))g(){))lol tml Ho\\”m a uniform pipe
J == rough-wall pipe; n = 1.75,

point, and A as the lower critical point.  smooth-wall pipe)



Laminar and turbulent flow

« However, velocity is not the only factor that determines
whether the flow is laminar or turbulent. The criterion is
Reynolds number, which has been discussed in previous
lectures.

 For a circular pipe the significant linear dimension L IS
usually taken as the diameter D, and thus

_pvL pvD VD
H H v

Re




Laminar and turbulent flow
Critical Reynolds Number

» The upper critical Reynolds number, corresponding to point B of
Figure is really indeterminate and depends upon the care taken to
prevent any initial disturbance from affecting the flow. Its value is
normally about 4000 but laminar flow in circular pipes has been
maintained up to values of Re as high as 50,000. However, in such
cases this type of flow is inherently unstable, the least dlsturbance
will transform 1t instantly into turbulent flow. ShiaaNR

« On the other hand, it is practically impossible for B
turbulent flow 1n a straight pipe to persist at
values of Re much below 2000, because any
turbulence that is set will be damped out by
viscous friction.

* However, for normal cases of flow 1n straight
pipes of uniform diameter and usual roughness,
the critical value may be taken as Re_;, = 2000. ™ 2 oy 258

smooth-wall pipe).




Classification between laminar and turbulent fow is defined by
the Reynold number.

VL
Re = —
1%

where V 1s velocity, L characteristics length and v 1s the
kinematic viscosity.

The Reynolds number is one of the most important parameters
in hydro-mechanics.

Very small Reynolds numbers characterise by definition flows
in which the viscous forces dominate and the mertial reactions
are neglgible.

Very high Reynolds numbers characterise flows in which
finally the viscous forces become negligibly small in
comparison to the inertial reactions, as for mstance in fully
turbulent pipe or channel flows.



If the Reynolds number 1s relatively small, the flow 1s laminar; 1f it 1s
large the flow 1s turbulent.

This 1s more precisely stated by defining a critical Reynolds number,
Re_,;, so that the flow 1s laminar if Re <Re.

For example, n a flow inside a rough-walled pipe it 1s found that
Re ., = 2000.This 1s the minimum critical Reynolds number and 1s
used in most engineering applications.



Laminar and turbulent flow

i = = S m?/s) in a refinery
ProsLEM 8.1 An oil (s = 0.85, » = 1.8x107" m _

fslgn\:ll:‘ﬁhrgggh a 10-cm-diameter pipe at 0.50 L/s. Is the flow laminar or
turbulent?
Solution

Q  0.0005 m®/s

V=== ;
A (0.1 m)*/4

_ DV _ 010m(0.0637 m/s)
v 1.8 x10 > m?/s

= (0.0637 m/s

R

Since R < R_;, = 2000, the flow is laminar. ANS



Hydraulic radius

For conduits having noncircular cross sections, some value
other than the diameter must be used for the linear dimension
In the Reynolds number. Such a characteristic is the hydraulic

radius, defined as
RI -

1

where A is the cross-sectional
area of the flowing fluid, and P
IS the wetted perimeter, that
portion of the perimeter of the
Ccross section where there is
contact between fluid and
solid boundary.

A

wetted perimeter = w w e = «

cross-sectional area

hydraulic radius = -
wetted perimeter

28
hydraulic radius = T =187




Laminar flow (Hagen-Poiseuille’s formula)

Consider steady flow in a conduit of uniform cross section A, not
necessarily circular. The pressures at sections 1 and 2 are P, and
P,, respectively. The distance between them is As. For
equilibrium in steady flow, the summation of forces acting on
any fluid element must be equal to zero (i.e., £F = ma = 0). Thus
In the direction of flow

PAA—(P +C(;—PA3)AA—W Sin@ —727arAs =0
S

Fig. 11.1 Variation of shear stress in a pipe. ki



Laminar flow (Hagen-Poiseuille’s formula)

PAA—(P + (:l—PAsjAA—W SN @ —72arAs =0
S

: d i
Where W = pgAAAs and sin® = —= . Therefore equation 11.1
reduces to

dP dz
— EASAA — pg AAAs— — t21trAs =0

ds

Fig. 11.1 Variation of shear stress in a pipe.



Laminar flow (Hagen-Poiseuille’s formula)

Divide by AA As —z—PAsAA—pgASAA%—TZM’AS=O
S S

ASAA

ds ds AA
T2
7z-r2 :——S(P+ng)
2 d
—=——|(P+ 0z
T OIS( 092)
ri d
=—| ——I(\P+ pgz
3wl e
r/ dP* Fig. . ariati : ,
T=—|——
2 ds)

where P* =P + pgz = piezometric pressure



Laminar flow (Hagen-Poiseuille’s formula)

Since the gradient itself, dP”/ds, is negative (piezometric pressure
decreases in the direction of flow) and constant across the section for
uniform flow, it follows that - dP*/ds will be positive and constant
across the pipe. At the wall of the pipe, r = R, the shear stress is

[—<>]T—)/

T =2(-) 11.4

dp
____As) AR
2 ds




Laminar flow (Hagen-Poiseuille’s formula)
Thus, dividing 11.3 by 11,4 gives r[ dp*]
B T I

T=—
\i 2\ ds r
LD —=— T =—1,
R( dP 7, R R
To= | —
2 ds

Consequently t varies linearly with r from a value of zero at the
centerline of the pipe to a maximum at the wall. This distribution of
stress Is represented graphically in Fig 11.2

‘1 r R
&_ : L 3 : : . g i
'

Note:'in the'defivation o6f11:5 no'restrictions'concerning laminar or
turbulent flow have been made. Therefore, the law of linear distribution
of shear stress over a circular section, represented by 11,5, holds for
both flow conditions




Steady laminar flow In circular pipes

From Newton’s law of viscosity T = ui—\;. Substituting this into 11.3

: N
gives T_%( o J
dv r dpP* >
gy =3(-%) 1L
Noting that & Ty C:TZ (since velocity decreases in the direction of r Fig

11.3), 11.6 becomes

Ccll_\lf= _Z_ru( ds)ll7

Separating variables and assuming a Newtonian fluid (pu =
constant), then integrating across the section

dV:—1 _dp rdr:>de:—1 _dp _[rdrrdr
21\ ds 2\ ds

2 *
V:_r_t_ddi]“: 11.8
27 AN '




Steady laminar flow In circular pipes

*

2
v =—r—(—diJ+C 11.8

Boundary condition: atr = R — V = 0 (no slip)

0 — R? [/ dP* +C=~C—R2 dP*
 4p ds  4p ds

Putting this in 11.8 becomes
2 2 *
v=27T (—dp) 11.9
4u ds
11.9 indicates that the velocity distribution for laminar flow in a pipe is
parabolic across the section with the maximum velocity at the centre of
the pipe Fig 11.3

Fig. 11.3 Shear stress and velocity distribution for laminar flow
in a Die



Steady laminar flow In circular pipes

Of far more interest than the velocity at a particular point is the total
discharge through it. The discharge dQ through the annular space
between radiirand r + dr is “dr

dQ = VdA y = B (—ﬁ) 11.9
1Q = vamrar = T (O 5 2 (@ (R?r — r¥)d
Q = v2nrdr = " IS mirdr = 2\ ds r—r2)dr

The discharge through the entire cross section is therefore
m (dP*\ (R m (dP* Rz R*
= — R%r — r3)dr = — R? — — —
< 2u(ds>f0( r=ridr 2u<ds>( 2 4)

4 *
Thus Q = — “f; (ddl: ) 11.11 Hagen-Poiseuille Formula

For a length L of the pipe over which the piezometric pressure drops
from P, to P,, the equation may be written as 1

9 =~
Q= _gﬂ (P; — P;) or more suitable /

1TD4 ADlm‘
n fn* n*\ 44 4“ IIIIAAI‘A n :‘ *IAA AI:AIMA* ‘‘‘‘‘‘




Laminar flow (Hagen-Poiseuille’s formula)

Hagen, a
German engineer, experimented with water flowing through small brass
tubes, and published his results in 1839. Poiseuille, a French scientist,
experimented with water flowing through capillary tubes in order to deter-
mine the laws of flow of blood through the veins of the body, and published
his studies in 1840.

Gotthilf Heinrich Ludwig Hagen Jean Leona,rd Marie Poiseuille Born 22 Aol 1797
Paris
Died 26 December 1869 (aged 72)
Paris

Nationality French

Alma mater Ecole Polytechnique

Known for  Poiseuille’s law
Scientific career

Fields physicist and physiclogist

Born 3 March 1797
Konigsberg, East Prussia

Died 3 February 1884 (aged 86)
Berlin




Laminar flow (Hagen-Poiseuille’s formula)

In non ideal fluid dynamics, the Hagen—Poiseuille equation, also
known as the Hagen—Poiseuille law, Poiseuille law or Poiseuille
equation, is a physical law that gives the pressure drop In

an incompressible and Newtonian fluid in laminar flow flowing
through a long cylindrical pipe of constant cross section. It can be
successfully applied to air flow in lung alveoli, or the flow through
a drinking straw or through a hypodermic needle. It was
experimentally derived independently by Jean Léonard Marie
Poiseuille in 1838 and Gotthilf Heinrich Ludwig Hagen, and
published by Poiseuille in 1840-41 and 1846. The theoretical
justification of the Poiseuille law was given by George Stokes in

1845.



Steady laminar flow In circular pipes

Eqg. 11.12 is strictly applicable only to the laminar flow of constant
density fluids and laminar flow which is "fully developed"”. From the
entrance of the pipe the fluid has to traverse a certain distance before the
parabolic velocity distribution is established.

The formula of Eq.11.12 is applied for many types Iscometer, a
device for determining the viscosity of a fluid. | g i
= B —
Rearranging the Hagen-Poiseuille law as / T =
o ﬂ.(Pl* B Pz* )D4 "‘i‘h"”‘,‘ St UneszablISh\e d ﬂo-wl . boundary layer ;nunzo:v pipe in
H= 1280L LR e

shows that for a laminar flow in a circular tube, the viscosity can easily
be determined after the difference of piezometric pressure between the
ends of a capillary tube has been measured by a manometer. When the
fluid is a liquid, the volume flow rate Q may be determined simply by
collecting and measuring the quantity passing through the tube in a
certain time.



Steady laminar flow In circular pipes

el
From 11.11 the mean velocity v may be calculated

Q ‘n_w(ddp*) / R? (dP*
\_]=Xz 8K S ﬂRZ:_S_u(ds) 11.13

From 11.9 v ="-"(-4) it can be seen that the maximum velocity Vi,

occurs In the centre of the pipe, where r = 0. Thus
dP* R?
Vmax = g5 70 11.14
Hence, from 11.13 and 11.14 it may be concluded that v =v__ /2

For a length L of the pipe, it follows from 11.13 that

2 d
v=—— (P —P;) o Py =Py + 257 11.15

8uL
In terms of“heaw + md dividing by pg

Pry g o =B2 4, 43V P2y, the 1116

g Pg pgR*  pg
SulLv . . . .
Where h; = p;RZ = head loss due to frictional resistance of the pipe.

Equation 11.16 is the same as the energy equation except there are no velocity, turbine and pump heads



EXAMPLE 7.1

A small-diameter horizontal tube is connected to a supply reservoir as shown in Fig. E7.1. If
6600 mm? is captured at the outlet in 10 s, calculate the viscosity of the water.

*This equation will be shown to be valid for both laminar and turbulent flows.

(5]

E

Water
H=2m

10 mm dia.

=\ — Datum

1.2m

=4 =

Figure E7.1



Water
H=2m

! 10 mm dia.

‘%\\ — Datum

L 1.2m

Figure E7.1

Solution: The tube is very small, so we expect viscous effects to limit the velocity to a
value. Using Bernoulli’s equation from the surface to the entrance to the tube, and ne
ing the velocity head, we have, letting 0 be a point on the surface,

negligible

0
2

% +H= /é‘/\ s

) 4 e

where we have used gage pressure with P, = 0.This becomes, assuming V?/2g = (),

p=vyH
= 9800 X 2 = 19 600 Pa




The average velocity is found to be

-9
A

6600 x 10°°/10
e o00RA 0.840 m/s

|4

V22g = 0.036 m compared with ply = 2 m),so the assumption of

This is quite small ( Using Eq. 7.3.14
e. Using Eq. 7.5.14, we

gible velocity head is valid. Our pressure calculation is acceptabl

. . F
find the viscosity to be rom Eq. (11.11) the mean velocity V may be calculated
2 SrEs@Il e TR D et B
®= Lo Ap A St dg L/ TR e %.%% (11.13)
8V L * *
= ”(Pl P,

2
_ 00005 16300y = 6.06 X 107* N - s/m’

8 X 0.84

We should check the Reynolds number to determine if our assumption of a laminar
was acceptable. It is







Turbulent flow (Darcy-Weisbach formula)

Velocity profile in turbulent flow

In Fig. 8.10 may be seen profiles for both a smooth and a rough pipe.
Comparing the turbulent-flow velocity profiles with the laminar-flow
velocity profile (Fig. 8.10) shows the turbulent-flow profiles to be much
flatter near the central portion of the pipe and steeper near the wall.

It is also noticeable that the turbulent profile for the smooth pipe is flatter
near the central section (i.e., blunter) than for the rough pipe.

In contrast, the velocity profile in laminar flow Is independent of pipe
roughness. R

Figure 8.10
Velocity profiles for equal flow rates. The turbulent
profiles are plotted from Eq. (8.33).



Turbulent flow (Darcy-Weisbach formula)

In the previous lecture 15, the shear force on a flat plate, friction drag,

was expressed as 5
Vv

Ff — Cfp? BL

Fg v§

The shear stress on a flat plate is then T =73 =% P75

For pipe flow it is customary to express t, in a similar manner;
however, we use the mean velocity as the reference velocity, and the
coefficient of proportionality is given as f/4 instead of C.. Here f is
called the resistance coefficient, or more usual, the friction factor of
the pipe.



Turbulent flow (Darcy-Weisbach formula)

Thus we have ooV _f Vv
0o =L P 5 4,0 5 125
In section on Laminar Flow it was found that the shear stress at the
wall of the pipe
. _R{_d”” 11.4
° 21 ds
Equating 12.5 and 11.4 )
f v R _dP
ds f v? RdP”

f VP _R(_dP") 473 2 v __
4'02 2 ds Jo,0 Jo,0 4 29 2 pgds
—dP*_fv22ds_fEﬁ_f§ﬁ
9 429 R 2R 2¢ D 2g
_ 2 s, * * 2
Ao Y g B LY
pY -h D 29 °= P9 A9 D 29



Turbulent flow (Darcy-Weisbach formula)

* *

PR gLV h oY
Yo, s IEo 0 D 2g D 2¢g

L : :
h —h,=h _fBV_g 12.6  Darcy Weisbach Equation

where h, = head loss created by viscous effects and is equal to the
change of piezometric head.

Although the Darcy Weisbach Equation is for turbulent flow, it can
still be used for laminar flow. For laminar flow, where h¢="t2:
(EQ.11.16), it can easily be shown that

f = 64/Re 12.7

Hence, if Re Is less than 2,000 (laminar flow), one may use Eq. 12.6
with the value of f as given by Eqg. 12.7



Turbulent flow (Darcy-Weisbach formula)

Henry Darcy

Julius Lugwig Weisbach

Born
Died

Nationality
Alma mater

Known for
Awards

Fields

Henry Darcy
10 June 1803
Dijon

3 January 1858 (aged 54)
Paris

French

Ecole Polytechnique
Ecole des Ponts et Chaussées

Darcy's law

Légion d'honneurt"!
Scientific career

Hydraulics



Turbulent flow (Darcy-Weisbach formula)

As a member of the Corps, Darcy built an impressive pressurized water distribution system in Dijon following the failure of attempts
to supply adequate fresh water by drilling wells. The system carried water from Rosoir 12.7 kilometres (7.9 mi) away through a
covered (watercourse) to reservoirs near the city, which then fed into a network of 28,000 meters of pressurized pipes
delivering water to much of the city. The system was fully closed and driven by gravity, and thus required no pumps with just sand
acting as a filter. He was also involved in many other public works in and around Dijon, as well as in the politics of the Dijon city
government.

During this period he modified the for calculating head loss due to friction, which after further modification by
would become the well-known still in use today.
In 1848 he became Chief Engineer for the of which Dijon is the capital. Soon thereafter he left Dijon due to political

pressure, but was promoted to Chief Director for Water and Pavements and took up office in Paris. While in that position, he was able
to focus more on his hydraulics research, especially on flow and friction losses in pipes. During this period he improved the design of
the Pitot tube, into essentially the form used today.

He resigned his post in 1855 due to poor health, but was permitted to continue his research in Dijon. In 1855 and 1856 he conducted

column experiments that established what has become known as ; initially developed to describe flow through sands, it has
since been generalized to a variety of situations and is in widespread use today. The of :
the is named in his honour.

Darcy died of pneumonia while on a trip to Paris in 1858, and is buried in Cimetiere de Dijon (formerly known as Péjoces) in Dijon.

Julius Ludwig Weisbach (born 10 August 1806 in (now Municipality), , died 24 February
1871, ) was a German mathematician and engineer.

Weisbach studied at the Bergakademie in from 1822 - 1826. After that, he studied with in and
with in :

In 1831 he returned to where he worked as mathematics teacher at the local Gymnasium. In 1833 he became teacher for

Mathematics and the Theory of Mountain Machines at the Freiberg Bergakademie. In 1836 he was promoted to Professor for applied
mathematics, mechanics, theory of mountain machines and so-called Markscheidekunst.

Weisbach wrote an influential book for mechanical engineering students, called Lehrbuch der Ingenieur- und Maschinenmechanik,
which has been expanded and reprinted on numerous occasions between 1845 and 1863.

He also refined the Darcy equation into the still widely used

In 1868 he was elected a foreign member of the
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Chart (and equations) for friction factor

The friction factor f depends on the various quantities that affect the
flow, written as
f=f(p, 1 V,D,e) (7.6.24)
where the average wall roughness height e accounts for the influence
of the wall roughness elements. A dimensional analysis, not covered
In this course, provides us with

f = f(@,ij

u D

where e/D is the relative roughness and the first term is Reynolds

number.

Experimental data that relate the friction factor to the Reynolds
number have been obtained for fully developed pipe flow over a wide
range of wall roughnesses. The results of these data are presented in
Fig. 7.13, which is commonly referred to as the Moody diagram.
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Figure 7.13 Moody diagram. (From L. F. Moody, Trans ASME, Vol. 66, 1944.)
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There are several features of the Moody diagram that should be noted.

= For a given wall roughness, measured by the relative roughness
e/D, there Is a sufficiently large value of Re above which the
friction factor is constant, thereby defining the completely
turbulent regime. The average roughness element size e Is

IS produced primarily by the-drag of the roughness elements that
protrude into the flow.
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= For the smaller relative roughness e/D values it is observed that,
as Re decreases, the friction factor increases in the transition
zone and eventually becomes the same as that of a smooth pipe.

The roughness elements become submerged in the viscous wall

Reynolds number R = DV/w (D fi, V fps, » ft’/sec; or D m, V m/s, ¥ m?/s)
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* For Reynolds numbers less than 2000, the friction factor of
laminar flow is shown. The critical zone couples the turbulent
flow to the laminar flow and may represent an oscillating flow
that alternately exists between turbulent and laminar flow.
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= The e values in this diagram are for new pipes. With age a pipe
will corrode and become fouled, changing both the roughness

and the pipe diameter, with awmn
factor. Such factors should be included in design

considerations; they will not be reviewed in this course.
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Figure 7.13 Moody diagram. (From L. F. Moody. Trans. ASME Vol 66, 1944.)
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Lewis Ferry Moody

Born

Died

Nationality
Occupation
Employer
Known for
Awards

2 January 1880
Philadelphia, Pennsylvania

February 21, 1953 (aged 73)
Princeton, New Jersey

United States

Mechanical engineer
Princeton University

Moody chart

Elliott Cresson Medal (1945)

In 1944, plotted
the

against Re for various
values of relative e/ D. This chart
became commonly known as the Moody
Chart or Moody Diagram. It adapts the work
of but uses the more practical
choice of coordinates employed by

, whose work was based upon an
analysis of some 10,000 experiments from
various sources.  Measurements of fluid flow
in artificially roughened pipes by

were at the time too recent to

include in Pigott's chart.
The chart's purpose was to provide a graphical
representation of the function of C. F,
Colebrook in collaboration with C. M.
White,  which provided a practical form of
transition curve to bridge the transition zone
between smooth and rough pipes, the region of
incomplete turbulence
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Empirical equations for the moody diagram

The following empirical equations represent the Moody diagram for
Re > 4000:

Smooth pipe flow 086 In Re Vf ~ 08
\f

Compietely turbulent zone (086 In ‘
\/ 4

3.7D

I ransition zone 086 In

Good approximations can be made for the head loss in conduits with
noncircular cross sections by using the hydraulic radius R.

The transition zone equation (7.6.28) that couples the smooth pipe
equation to the completely turbulent regime equation is known as the
Colebrook equation. Note that Eq.7.6.26 is the Colebrook equation
with e = 0 (since it is smooth), and Eq. 7.6.27 is the Colebrook
equation with Re = oo,



Solution of pipe flow problems by trials

Three categories of problems can be identified for developed
turbulent flow in a pipe length L:

(.'!I‘},’l)"' A-’"_'L'l“ k'/",:‘,‘“.‘l'v\

M
N 5(_) f‘ ’
e rh {)

3 (;) ¢ ] [ ) ")

A category 1 problem is straightforward and requires no iteration
procedure when using the Moody diagram. hh—h =t V2

2 — 'L T 55
Category 2 and 3 problems are more like problems encountered in
engineering design situations and require an iterative trial-and-error

process when using the Moody diagram.




Solution of pipe flow problems using
empirical equations

»An alternative to using the Moody diagram that — ———— —— ——
avoids any trial-and-error process is made possible™
by empirically derived formulas. 3
»Perhaps the best of such formulas were

presented by Swamee and Jain (1976) for pipe

flow; an explicit expression that provides an
approximate value for the unknown in each

category above is as follows:

3[‘ 6 ’ [ pD\UY -2 B < 2
hy, - 1079 {ln[ : +4.62(‘ ) “ Sielaleiso (7.6.31

QOD.e: h,
D, e, ) h‘ O
Qewvh D

IS(E G aely 3.7D e, 3000 < Re <3 X 10¥
(DR )\ [ e . [(3.17v2L\0S
0 = _u.%_w( 1 ’) ln) >0 + ( Dh ) J Re > 2000 (7.6.32
[/ J ot \ 2 ="y
N 2\ 4,75 \ 5.2 10.04 > - -
D = 0.66 [(,l..'-. (LQ ) + pO% ( L ) l(:) ®<elD <10 | (7.6.33
gh, gh, | 5000 < Re < 3 X 108 o



Solution of pipe flow problems using
empirical equations

»Equation 7.6.32 Is as accurate as the Moody diagram, and Egs.
7.6.31 and 7.6.33 are accurate to within approximately 2% of the
Moody diagram. These tolerances are acceptable for engineering
calculations. It is Iimportant to realise that the Moody diagram is based
on experimental data that likely is accurate to within no more than
5%.

»Hence the foregoing three formulas of Swamee and Jain, which can
easily be input on a programmable hand-held calculator or computer,

are often used by design engineers.

)3l ( pD\097) -2 P ST 5
h, = 1.07 ¢ : {ln [,( + 4.62 ( ‘{ ) | 10° < e/D <10 (7.6
gD 3.7D a1 3000 < Re < 3 x 108 :
[(8D°h )\ [ e | (31TvPL\0S
Q = —-0.965/>—*=] In 4 : > 9 o
= ( 1 ) 37[) ( _g’l)‘h/ / [{L ,_UU(_) (a‘,h__ 2
.y & [ ):“47" ([ \527004 2 AT .
D = U.('\ﬁ’(’['* il ) + HQW( - ) .I.‘.)h ~e/D <10 (7.63
\ .K_'hj_ / '-g/l," S000 << Re < 3 X 108 s



EXAMPLE 7.10

Water at 20°C is transported for 500 m in a 4-cm-diameter wrought iron horizontal pipe
a flow rate of 0.003 m%s. Calculate the pressure drop over the 500-m length of pipe.

Solution: The average velocity is

The Reynolds number is

W B e e S R B RS S S
239 X 0.04 om N TR Swveiaaua i
2 A 007 f= :4_‘ iy ) RS IS 004
e pr- = 9.6 » ¢ 104 000 ftH\ : I b e : ‘. - 003
10 005 :__“\_L T ; - : #EEEE i 002
Obtaining e from Fig. 7.13, we have, using D = 40 mm, Wiiirea® it NSae Sussin SRl 11141
Ioms S : i == ] = £ 0002
e 0.046 R G = e
— = = (0.00115 L : : —
D 40 8 e nI ed I l” -0:»"“+ 'Jﬂn"" il I ! 3 I, e
I <l Rl BRI, s i oo
ST SO S - UL NI o
Seisrie 3 : 00:; *:j'::'..',';:".'..:?..: 000005 ?ﬁ% i T ;i . E Ht_- oomoams
The friction factor is read from the Moody diagram to be ettt ¢ LT PR et SR T sons
79‘0‘ 2 z-snem‘ 2 :45519‘0’ 2 3458 o Lo 4
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Figure 7.13 Moody diagram. (From L. F. Moody, Trans ASME, Vol. 66, 1944.)
f=0.023



The head loss is calculated as L V2

h-h=h =f——
oLyt D 29
D 2g
500 2.39%
= o xom . D

This answer is given to two significant numbers since the friction factor is known to at most
two significant numbers. The pressure drop is found to be
BB R
Ap = yh, P9 pd g e D2y

since pointsland 2 are at same elevation z, = z,
= 9800 X 84 = 820 OO([}O%a or 820 kPa

Using Eq. 7.6.31 we find

0.003* X 500 0.00115 1076 % 0.04 \°97) 2
h, = 1.0 - it
" o (0-04)5{1[ 3.7 462( 0.003 ) ]}

= 1.07 X 4480 X 0.01731 = 83 m

This value is essentially the same as the value using the Moody diagram.



Minor losses in pipe flow

We now know how to calculate the losses due to a developed flow in a pipe. Pipe systems
do. however, include valves, elbows, enlargements, contractions, inlets, outlets, bends, and
other fittings that cause additional losses, referred to as minor losses. Each of these
devices causes a change in the magnitude and/or the direction of the velocity vectors and
hence results in a loss. In general, if the flow is gradually accelerated by a device, the
losses are very small; relatively large losses are associated with sudden enlargements
because of the separated regions that result (a separated flow occurs when the primary
flow separates from the wall).

A minor loss is expressed in terms of a loss coefficient K, defined by
hy=K— (7.6.34)

Values of K have been determined experimentally for the various fittings and geometry
changes of interest in piping systems. One exception is the sudden expansion from area
A, to area A,, for which the loss can be calculated; this was done in Example 4.14, where
we found that

A\ V?
h, = (1 - A—‘) 5;; (7.6.35)
2



Minor losses In pipe flow

Thus, for the sudden expansion

A 2
K = 1——‘) (72
[

If A, is extremely large (e.g., a pipe exiting into a reservoir), K = 1.0, an obvious =
since the entire kinetic eneregy is lost.




Minor losses In pipe flow

It is often the practice to express a loss coefficient as an equivalent length £
pipe. This is done by equating Eq. 7.6.34 to Eq. 7.6.23:

s 2 2
h; = K 2% K V; = f‘,l‘! ‘./
s 2g D 2g

giving the relationship




TABLE 7.2 Nominal Loss Coefficients X (Turbulent Flow)*

Type of fitting Screwed Flanged
Diameter 1in, 2in. 4in, 2in. 4in, 8in.

Globe valve (fully open) 8.2 6.9 5.7 8.5 6.0 58

(half open) 20 17 14 21 16 14

(one-quarter open) 57 48 40 60 42 41
Angle valve (fully open) 4.7 2.0 1.0 2.4 2.0 2.0
Swing check valve {fully open) 29 2.1 20 20 20 20
Gate valve (fully open) 0.24 0.16 o 0.35 0.16 0.07
Return bend 1.5 85 .64 0.35 0.30 0.25
Tee (branch) 1.8 1.4 1.1 0.80 0.64 0.58
Tou (line) 0.9 09 0.9 0.19 0.14 0.10
Standard elbow 15 0.95 0.64 0.39 0.30 0.26
Long sweep albow 0.72 0.4 0.23 0.30 0.19 0.15
45° elbow o 0.32 0.30 0.29
Square-edged entrance ,:% e 0.5
Reentrant entrance h-r— 08

Wall-rounded entrance gf‘Lr-'-‘ 0.03

Pipe exit > 1.0



1.0

0.25
0.4
0.48
Qrifice plate 1.5 0.85
21 34
- - ¢ R
A
=6 21‘(‘(, - 0-6)
_AY
Sudden enlargement® *—0 (1 A,
90° miter bend (without vanes) q 1.1

(with vanes) q 0.2

General contraction (30 included angle) 0.02
(70" included angle) 0.07

“Values far ather geometries can be found in Techmca! Faper 410, The Crane Company, 1957,
*Based on exit velocity V,.
“Besed on entrance velocity V,



EXAMPLE 7.14

If the flow rate through a 10-cm-diameter wrought iron pipe (Fig. E7.14) is 0.04 m¥/s, find
difference in elevation H of the two reservoirs.

Screwed

globe valve

(fully open)
Water
20°C T 2

B >
20m
Standard _~”
elbows T
10-cm-dia.
wrought iron pipe
Figure E7.14

Solution: The energy equation written for a control volume that contains the two reservoir

surfaces (see Eq 4 4.17),where V, =V, = 0and p, = p, = 0,is

2

%, —1+&+z1+h =oc, —= +p2+z2+ht+h,
28 pg 28 P8 0=2z,—2z,+h,



Thus, letting z, — z, = H, we have

& S
(Kentrance + Kvalvc 2 2Kelbow =+ exn) e

H
g D 2g

The average velocity, Reynolds number, and relative roughness are

004
V= % 0.05 = 5.09 m/s
5.09 X 0.1
Re ===~ S0
e 0.046
Do

From the Moody diagram we find that



From the Moody diagram we find that

f= 00173

Using the loss coefficients from Table 7.2 for screwed 4-in. (10 cm = 3.94 in.) elements there

results = LY
H = (Kcntrance + Kvalvc = 2Kelbow i Kc"“) + fD 28
5 09 50 5.09?
= (05 + 5.7 + 2 X 064 + 1.0) o=~ + 0.0173

X 9.8 0.12X98

inal Loss Coefficients X (Turbulent Flow)*

Mof fitting Screwed

Flanged
C)\M 1 2in 4in 2in 4in, 8in
- - - >

Difference in elevation
40 60 42 4
= - 1.0 2.4 20 20
between the two reservoirs Is n u 8 B
Gate valve (fully o on 0.35 0.16 0.07
| to the head | e gilen in i
equa to e Nea 0SS Too (line) 0.9 019 014 8?3
- Standard elbow 0.64 0.39 0.30 0.26
between the two reservoirs S o By W N

Square-adged antrance 0.5

Reentrant entrance J-T= 3z 0.8

Wall-rounded entrance {E—. 0.03

Pipe exit 1.0



