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Flow in Pipes

(Internal Flows)
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Boundary layer: Laminar flow



Boundary layer: Turbulent flow

The viscous sublayer is a layer 

where shear is predominantly due to 

viscosity alone. It is extremely thin, 

usually only a few hundredths of a 

mm, but its effect is great because of 

the very steep velocity gradient 

within it and because τ = μ du/dy in 

that region



• If the head loss in a given length of 

uniform pipe is measured at different 

velocities, it will be found that, as 

long as the velocity is low enough to 

secure laminar flow, the head loss, 

due to friction, will be directly 

proportional to the velocity, as 

shown in the Fig. 

• But with increasing velocity, at some 

point B, where visual observation of 

dye injected in a transparent tube 

would show that the flow changes 

from laminar to turbulent, there will 

be an abrupt increase in the rate at 

which the head loss varies. 

Laminar and turbulent flow



Laminar and turbulent flow

• It is thus seen that for laminar flow the 

drop in energy due to friction varies as 

V, while for turbulent flow the friction 

varies as Vn, where n ranges from 

about 1.75 to 2. The lower value of 

1.75 for turbulent flow is found for 

pipes with very smooth walls; as the 

wall roughness increases, the value of 

n increases up to its maximum value 

of 2.

• Point B is known as the higher critical 

point, and A as the lower critical point.

• If these two variables are plotted on log-log paper, it will be found 

that, after a certain transition region (BCA) has been passed, lines 

will be obtained with slopes ranging from about 1.75 to 2.00. 



• However, velocity is not the only factor that determines 

whether the flow is laminar or turbulent. The criterion is 

Reynolds number, which has been discussed in previous 

lectures. 

• For a circular pipe the significant linear dimension L is 

usually taken as the diameter D, and thus

Laminar and turbulent flow
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Critical Reynolds Number

• The upper critical Reynolds number, corresponding to point B of 

Figure is really indeterminate and depends upon the care taken to 

prevent any initial disturbance from affecting the flow. Its value is 

normally about 4000 but laminar flow in circular pipes has been 

maintained up to values of Re as high as 50,000. However, in such 

cases this type of flow is inherently unstable, the least disturbance 

will transform it instantly into turbulent flow. 

Laminar and turbulent flow

• On the other hand, it is practically impossible for 

turbulent flow in a straight pipe to persist at 

values of Re much below 2000, because any 

turbulence that is set will be damped out by 

viscous friction. 

• However, for normal cases of flow in straight 

pipes of uniform diameter and usual roughness, 

the critical value may be taken as Recrit = 2000.







Laminar and turbulent flow



Hydraulic radius
For conduits having noncircular cross sections, some value 

other than the diameter must be used for the linear dimension 

in the Reynolds number. Such a characteristic is the hydraulic 

radius, defined as

where A is the cross-sectional 

area of the flowing fluid, and P 

is the wetted perimeter, that 

portion of the perimeter of the 

cross section where there is 

contact between fluid and 

solid boundary. 



Laminar flow (Hagen-Poiseuille’s formula)

Consider steady flow in a conduit of uniform cross section A, not 

necessarily circular. The pressures at sections 1 and 2 are P1 and 

P2, respectively. The distance between them is Δs. For 

equilibrium in steady flow, the summation of forces acting on 

any fluid element must be equal to zero (i.e., ΣF = ma = 0). Thus 

in the direction of flow
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Where                               and                    . Therefore equation 11.1 

reduces to

Laminar flow (Hagen-Poiseuille’s formula)

W = ρg ∆A ∆s sinθ =
dz

ds

−
dP

ds
∆s∆A − ρg ∆A ∆s

dz

ds
− τ2πr∆s = 0
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Divide by ΔA Δs

where  P* = P + ρgz = piezometric pressure

Laminar flow (Hagen-Poiseuille’s formula)
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Laminar flow (Hagen-Poiseuille’s formula)
Since the gradient itself, dP*/ds, is negative (piezometric pressure 

decreases in the direction of flow) and constant across the section for 

uniform flow, it follows that - dP*/ds will be positive and constant 

across the pipe. At the wall of the pipe, r = R, the shear stress is

τ =
r

2
−

d

ds
P + ρgz =

r

2
−

dP∗

ds
11.3

τ0 =
R

2
−

dP∗

ds
11.4



Laminar flow (Hagen-Poiseuille’s formula)
Thus, dividing 11.3 by 11,4 gives

τ=
r

2
−
dP∗

ds

τ0=
R

2
−
dP∗

ds

𝜏

𝜏0
=

𝑟

𝑅0
𝜏 =

𝑟

𝑅0
𝜏0 11.5

Consequently τ varies linearly with r from a value of zero at the 

centerline of the pipe to a maximum at the wall. This distribution of 

stress is represented graphically in Fig 11.2

Note: in the derivation of 11.5 no restrictions concerning laminar or 

turbulent flow have been made. Therefore, the law of linear distribution 

of shear stress over a circular section, represented by 11,5, holds for 

both flow conditions
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Steady laminar flow in circular pipes

From Newton’s law of viscosity τ = μ
dV

dy
. Substituting this into 11.3 

gives

μ
dV

dy
=

r

2
−

dP∗

ds
11.6

Noting that 
dV

dy
= −

dV

dr
(since velocity decreases in the direction of r Fig 

11.3), 11.6 becomes
dV

dr
= −

r

2μ
−

dP∗

ds
11.7

Separating variables and assuming a Newtonian fluid (μ =
constant), then integrating across the section

නdV = −
1

2μ
−
dP∗

ds
න r dr

V = −
R2

4μ
−

dP∗

ds
+ C 11.8
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Steady laminar flow in circular pipes
V = −

R2

4μ
−

dP∗

ds
+ C 11.8

Boundary condition: at 𝑟 = 𝑅 ⟶ 𝑉 = 0 (no slip)

0 = −
R2

4μ
−
dP∗

ds
+ C ⟹ C =

R2

4μ
−
dP∗

ds
+ C

V =
R2−𝑟2

4μ
−

dP∗

ds
11.9

11.9 indicates that the velocity distribution for laminar flow in a pipe is 

parabolic across the section with the maximum velocity at the centre of 

the pipe Fig 11.3
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Putting this in 11.8 becomes



Steady laminar flow in circular pipes
Of far more interest than the velocity at a particular point is the total 

discharge through it. The discharge dQ through the annular space 

between radii r and r + dr is

dQ = v2πrdr =
R2 − r2

4μ
−
dP∗

ds
2πrdr = −

π

2μ

dP∗

ds
R2r − r3 dr

The discharge through the entire cross section is therefore

Q = −
π

2μ

dP∗

ds
න
0

R

R2r − r3 dr = −
π

2μ

dP∗

ds
R2

R2

2
−
R4

4

Thus Q = −
πR4

8μ

dP∗

ds
11.11 Hagen-Poiseuille Formula

For a length L of the pipe over which the piezometric pressure drops 

from P1 to P2, the equation may be written as

Q = −
πR4

8μ𝐿
𝑃1
∗ − 𝑃2

∗ or more suitable

Q =
πD4

𝑃∗ 𝑃∗ 11.12 where D is the diameter

dr
vdAdQ =



Laminar flow (Hagen-Poiseuille’s formula)



Laminar flow (Hagen-Poiseuille’s formula)

In non ideal fluid dynamics, the Hagen–Poiseuille equation, also 

known as the Hagen–Poiseuille law, Poiseuille law or Poiseuille

equation, is a physical law that gives the pressure drop in 

an incompressible and Newtonian fluid in laminar flow flowing 

through a long cylindrical pipe of constant cross section. It can be 

successfully applied to air flow in lung alveoli, or the flow through 

a drinking straw or through a hypodermic needle. It was 

experimentally derived independently by Jean Léonard Marie 

Poiseuille in 1838 and Gotthilf Heinrich Ludwig Hagen, and 

published by Poiseuille in 1840–41 and 1846. The theoretical 

justification of the Poiseuille law was given by George Stokes in 

1845.



Steady laminar flow in circular pipes
Eq. 11.12 is strictly applicable only to the laminar flow of constant 

density fluids and laminar flow which is "fully developed". From the 

entrance of the pipe the fluid has to traverse a certain distance before the 

parabolic velocity distribution is established.

The formula of Eq.11.12 is applied for many types of viscometer, a 

device for determining the viscosity of a fluid.

Rearranging the Hagen-Poiseuille law as

shows that for a laminar flow in a circular tube, the viscosity can easily 

be determined after the difference of piezometric pressure between the 

ends of a capillary tube has been measured by a manometer. When the 

fluid is a liquid, the volume flow rate Q may be determined simply by 

collecting and measuring the quantity passing through the tube in a 

certain time.
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Steady laminar flow in circular pipes

From 11.11 the mean velocity തv may be calculated

തv =
Q

A
= ൘−

πR4

8μ

dP∗

ds

πR2 = −
R2

8μ

dP∗

ds
11.13

From 11.9  V = R2−𝑟2

4μ
−

dP∗

ds
it can be seen that the maximum velocity vmax

occurs in the centre of the pipe, where r = 0. Thus

vmax = −
dP∗

ds

R2

4μ
11.14

Hence, from 11.13 and 11.14 it may be concluded that v = vmax / 2. 

For a length L of the pipe, it follows from 11.13 that

തv =
R2

8μL
P1
∗ − P2

∗ → P1
∗ = P2

∗ +
8μLഥv

R2
11.15

In terms of “heads”  (with P∗ = P + ρgz)
p1

ρg
+ z1 =

p2

ρg
+ z2 +

8μLഥv

ρgR2
=

p2

ρg
+ z2 + hf 11.16

Where hf =
8μLഥv

ρgR2
= head loss due to frictional resistance of the pipe.

2maxvv =

and dividing by ρg

Equation 11.16 is the same as the energy equation except there are no velocity, turbine and pump heads
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Turbulent flow (Darcy-Weisbach formula)
Velocity profile in turbulent flow

In Fig. 8.10 may be seen profiles for both a smooth and a rough pipe. 

Comparing the turbulent-flow velocity profiles with the laminar-flow

velocity profile (Fig. 8.10) shows the turbulent-flow profiles to be much 

flatter near the central portion of the pipe and steeper near the wall. 

It is also noticeable that the turbulent profile for the smooth pipe is flatter

near the central section (i.e., blunter) than for the rough pipe. 

In contrast, the velocity profile in laminar flow is independent of pipe 

roughness.



Turbulent flow (Darcy-Weisbach formula)

In the previous lecture 15, the shear force on a flat plate, friction drag, 

was expressed as

The shear stress on a flat plate is then                   .

For pipe flow it is customary to express τ0 in a similar manner; 

however, we use the mean velocity as the reference velocity, and the 

coefficient of proportionality is given as f/4 instead of Cf. Here f is 

called the resistance coefficient, or more usual, the friction factor of 

the pipe.



Turbulent flow (Darcy-Weisbach formula)
Thus we have 

12.5

In section on Laminar Flow it was found that the shear stress at the 

wall of the pipe

11.4

Equating 12.5 and 11.4
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Turbulent flow (Darcy-Weisbach formula)

12.6 Darcy Weisbach Equation

where hL = head loss created by viscous effects and is equal to the 

change of piezometric head.

Although the Darcy Weisbach Equation is for turbulent flow, it can 

still be used for laminar flow. For laminar flow, where                   

(Eq.11.16), it can easily be shown that

f = 64/Re 12.7

Hence, if Re is less than 2,000 (laminar flow), one may use Eq. 12.6 

with the value of f as given by Eq. 12.7
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Turbulent flow (Darcy-Weisbach formula)



Turbulent flow (Darcy-Weisbach formula)
As a member of the Corps, Darcy built an impressive pressurized water distribution system in Dijon following the failure of attempts 

to supply adequate fresh water by drilling wells. The system carried water from Rosoir Spring 12.7 kilometres (7.9 mi) away through a 

covered aqueduct (watercourse) to reservoirs near the city, which then fed into a network of 28,000 meters of pressurized pipes 

delivering water to much of the city. The system was fully closed and driven by gravity, and thus required no pumps with just sand 

acting as a filter. He was also involved in many other public works in and around Dijon, as well as in the politics of the Dijon city 

government.

During this period he modified the Prony equation for calculating head loss due to friction, which after further modification by Julius 

Weisbach would become the well-known Darcy–Weisbach equation still in use today.

In 1848 he became Chief Engineer for the département of which Dijon is the capital. Soon thereafter he left Dijon due to political 

pressure, but was promoted to Chief Director for Water and Pavements and took up office in Paris. While in that position, he was able 

to focus more on his hydraulics research, especially on flow and friction losses in pipes. During this period he improved the design of 

the Pitot tube, into essentially the form used today.

He resigned his post in 1855 due to poor health, but was permitted to continue his research in Dijon. In 1855 and 1856 he conducted 

column experiments that established what has become known as Darcy's law; initially developed to describe flow through sands, it has 

since been generalized to a variety of situations and is in widespread use today. The unit of measure of material permeability, 

the darcy is named in his honour.

Darcy died of pneumonia while on a trip to Paris in 1858, and is buried in Cimetière de Dijon (formerly known as Péjoces) in Dijon.

Julius Ludwig Weisbach (born 10 August 1806 in Mittelschmiedeberg (now Mildenau Municipality), Erzgebirge, died 24 February 

1871, Freiberg) was a German mathematician and engineer.

Weisbach studied at the Bergakademie in Freiberg from 1822 - 1826. After that, he studied with Carl Friedrich Gauss in Göttingen and 

with Friedrich Mohs in Vienna.[1]

In 1831 he returned to Freiberg where he worked as mathematics teacher at the local Gymnasium. In 1833 he became teacher for 

Mathematics and the Theory of Mountain Machines at the Freiberg Bergakademie. In 1836 he was promoted to Professor for applied 

mathematics, mechanics, theory of mountain machines and so-called Markscheidekunst.[2]

Weisbach wrote an influential book for mechanical engineering students, called Lehrbuch der Ingenieur- und Maschinenmechanik, 

which has been expanded and reprinted on numerous occasions between 1845 and 1863.[3]

He also refined the Darcy equation into the still widely used Darcy–Weisbach equation.

In 1868 he was elected a foreign member of the Royal Swedish Academy of Sciences.
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The friction factor f depends on the various quantities that affect the 

flow, written as

f = f (ρ, μ, V, D, e) (7.6.24)

where the average wall roughness height e accounts for the influence 

of the wall roughness elements. A dimensional analysis, not covered 

in this course, provides us with

where e/D is the relative roughness and the first term is Reynolds 

number.

Experimental data that relate the friction factor to the Reynolds 

number have been obtained for fully developed pipe flow over a wide 

range of wall roughnesses. The results of these data are presented in 

Fig. 7.13, which is commonly referred to as the Moody diagram. 
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Chart (and equations) for friction factor







There are several features of the Moody diagram that should be noted.

▪ For a given wall roughness, measured by the relative roughness 

e/D, there is a sufficiently large value of Re above which the 

friction factor is constant, thereby defining the completely 

turbulent regime. The average roughness element size e is 

substantially greater than the viscous wall layer thickness δv, so 

that viscous effects are not significant; the resistance to the flow 

is produced primarily by the drag of the roughness elements that  

protrude into the flow.



▪ For the smaller relative roughness e/D values it is observed that, 

as Re decreases, the friction factor increases in the transition 

zone and eventually becomes the same as that of a smooth pipe. 

The roughness elements become submerged in the viscous wall 

layer so that they produce little effect on the main flow.



▪ For Reynolds numbers less than 2000, the friction factor of 

laminar flow is shown. The critical zone couples the turbulent 

flow to the laminar flow and may represent an oscillating flow 

that alternately exists between turbulent and laminar flow.



▪ The e values in this diagram are for new pipes. With age a pipe 

will corrode and become fouled, changing both the roughness 

and the pipe diameter, with a resulting increase in the friction 

factor. Such factors should be included in design 

considerations; they will not be reviewed in this course.
Similar to 

calcification 

of blood 

arteries in 

human beings



In 1944, Lewis Ferry Moody plotted 

the Darcy–Weisbach friction 

factor against Reynolds number Re for various 

values of relative roughness ε / D.[1] This chart 

became commonly known as the Moody 

Chart or Moody Diagram. It adapts the work 

of Hunter Rouse[2] but uses the more practical 

choice of coordinates employed by R. J. S. 

Pigott,[3] whose work was based upon an 

analysis of some 10,000 experiments from 

various sources.[4] Measurements of fluid flow 

in artificially roughened pipes by J. 

Nikuradse[5] were at the time too recent to 

include in Pigott's chart.

The chart's purpose was to provide a graphical 

representation of the function of C. F. 

Colebrook in collaboration with C. M. 

White,[6] which provided a practical form of 

transition curve to bridge the transition zone 

between smooth and rough pipes, the region of 

incomplete turbulence
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The following empirical equations represent the Moody diagram for 

Re > 4000:

Good approximations can be made for the head loss in conduits with 

noncircular cross sections by using the hydraulic radius R. 

The transition zone equation (7.6.28) that couples the smooth pipe 

equation to the completely turbulent regime equation is known as the 

Colebrook equation. Note that Eq.7.6.26 is the Colebrook equation 

with e = 0 (since it is smooth), and Eq. 7.6.27 is the Colebrook 

equation with Re = ∞.

Empirical equations for the moody diagram



Three categories of problems can be identified for developed 

turbulent flow in a pipe length L:

A category 1 problem is straightforward and requires no iteration 

procedure when using the Moody diagram. 

Category 2 and 3 problems are more like problems encountered in

engineering design situations and require an iterative trial-and-error 

process when using the Moody diagram. 

Solution of pipe flow problems by trials
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➢An alternative to using the Moody diagram that 

avoids any trial-and-error process is made possible 

by empirically derived formulas. 

➢Perhaps the best of such formulas were 

presented by Swamee and Jain (1976) for pipe 

flow; an explicit expression that provides an 

approximate value for the unknown in each 

category above is as follows:

Solution of pipe flow problems using 

empirical equations



➢Equation 7.6.32 is as accurate as the Moody diagram, and Eqs. 

7.6.31 and 7.6.33 are accurate to within approximately 2% of the 

Moody diagram. These tolerances are acceptable for engineering 

calculations. It is important to realise that the Moody diagram is based 

on experimental data that likely is accurate to within no more than 

5%. 

➢Hence the foregoing three formulas of Swamee and Jain, which can 

easily be input on a programmable hand-held calculator or computer, 

are often used by design engineers. 

Solution of pipe flow problems using 

empirical equations
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Minor losses in pipe flow



Minor losses in pipe flow



Minor losses in pipe flow











Difference in elevation 

between the two reservoirs is 

equal to the head loss 

between the two reservoirs


