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Branching Pipes

= For convenience, let us consider three pipes connected to three reservoirs as in Fig.
8.27 and connected together or branching at the common junction point J.

= Actually, any of the pipes may be considered to be connected to some other
destination than a reservoir by simply replacing the reservoir with a piezometer
tube in which the water level is the same as the reservoir surface.

= \We shall suppose that all the pipes are sufficiently long (large head loss in the
pipes) that minor losses and velocity heads may be neglected.

Figure 8.27
Branching pipes.



Branching Pipes

» We name the pipes and flows and corresponding friction losses as
shown in the diagram.

* The continuity and energy equations require that the flow entering
the junction (J) equal the flow leaving it and that the pressure head
at J (which may be represented schematically by the open
piezometer tube shown, with water at elevation P) be common to all

pipes.

EL or HGL

Figure 8.27
Branching pipes.



Branching Pipes

= There being no pumps, the elevation of P must lie between the surfaces of
reservoirs A and C. Since h, is zero, there is no flow ‘

= [f Pis level with the surface of reservoir B then h, and Qmoth zero. If
P is above the surface of reservoir B then water must flow into B and Q, =
Q.+ Qs
= |If Pis below the surface of reservoir B then the flow must be out of B and
Q+Q,=Qs
= So for the situation shown in Fig. 8.27 we have the following governing
conditions: f EL or HGL
1.Q;=Q,+ Q4 -~ _; |
2. Elevation of Piscommontoall. =
* The diagram suggests several
different problems or cases,
three of which will be
discussed below using

. - Figure 8.27
different methods of solution. St




Rigorous Solutions

When we know the pipe wall material, we can estimate its e value (from
Tables) and we know that the friction factor f varies with the e/D of the
pipe and the Reynolds number of the flow.

Because we are not considering minor losses, we can use the equations
In the previous lecture 16.

In particular, using only a basic scientific calculator, we can solve
pipelines for h; (Type 1 problems), for V or Q (Type 2 problems) and
more rarely, we can solve for D (Type 3 problems) using a number of
equations (see Lecture 16).

These equations are preferred because they avoid trial and error, which
can become quite confusing when combined with other trial-and-error
techniques needed to solve for branching flow.

These, and the variety of approaches used to “manually” solve the
different types of problems that can occur, are illustrated in the
followina cases.



Rigorous Solutions

Case 1. Given all pipe data (lengths, diameters, and materials for e values), the surface

elevations of two reservoirs, and the flow to or from one of these two, find the surface
elevation of the third reservoir.




Rigorous Solutions

Case 2. Given all pipe data, the surface elevations of two reservoirs,
and the flow to or from the third, find the surface elevation of the third
reservoir.

=| et us suppose that Q, and the surface elevations of A and C are given.
*Then we know h,+ h; = Ah,,, say.

=\arious solution approaches may be used; we shall discuss a more
convenient one.

*|n this, we assume the elevation of P, which yields values for h, and

h,, and s0 Q, and Q, via Eq. (8.42). ™™™ v - =P (25505 ) e
=|f these do not satisfy the discharge relation at J (>:Q=0)then P must be
adjusted until they do.

EL or HGL




Rigorous Solutions

=To help us converge on the correct elevation of P, we can plot the
results of each assumption on a graph like Fig. 8.28.

*For > Q at J, inflows to J are taken as positive and outflows as
negative.

*Two or three points, with one fairly close to the vertical axis,
determine a curve that intersects that axis at the equilibrium level of P,
where Y. Q = 0, as required.

=|_ast, h, can be determined from Q, and Egs. (8.41) and (8.10), and the
required surface elevation of B found.

Trial2 60|
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Elevation of P S
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2QatJ Figure 8.28




Rigorous Solutions

Case 3. Given all pipe lengths and diameters and the elevations of all three reservoirs,

find the flow in each pipe.




Case 2

SAMPLE ProBLEM 8.12 Given that, in Fig. 8.27, pipe 1 is 6000 ft of 15 in
diameter, pipe 2 is 1500 ft of 10 in diameter, and pipe 3 is 4500 ft of 8 in
diameter, all asphalt-dipped cast iron. The elevations of the water surfaces in
reservoirs A and C are 250 ft and 160 ft respectively, and the discharge Q, of 60°F
water into reservoir B is 3.3 cfs. Find the surface elevation of reservoir B: (a)
using only a basic scientific calculator; (b) using Mathcad.

Solution

This is a Case 2 problem.
Table A.1 for water at 60°F: v = 1.217x107° ft*/sec.

Figure 8.27
Branching pipes.

Line; 1 2 3

L, ft 6000 1500 4500
D, ft 1.25 10/12 8/12
e, ft (Table 8.1) 0.0004 0.0004 0.0004

(a) Find the elevation of P by trial and error.

L/D 4800 1800 6750
A, it* 1.227 0.545 0.349
e/D 0.000 32 0.000 48 0.0006




Elevation of P lies between 160 and 250 ft. Calculate V from Eq. (8.42). Trials:

B ik e U DS
BEAR o, ekl v, 0, Qg 30 < iibve P

200 50 40 6.444 4.481 7.907 1.564 +3.04
230 20, .18 4.013 5.984 4.925 2.088 —0.463 Down

\ b |

When > Q is +ve, there is more flow into junction, producing/ higher

7.907-3.3-1.564

h, , therefore reduce Q,, which reduces V, since A; is constant
(Q=AV). Reduced V, results in reduced h;, .Hence P has to move up
so that h, = h; is reduced as El. A is fixed

\ T

h, reduces from 50 to 20, V to 4.013, Q to 4.925 while the/opposite
happens to pipe 3

SampLE ProgLEm 8.12 Given that/ in Fig. 827, pipe 1 is 6000 ft of 15in
diameter, pipe 2 is 1500 ft of 10 in diameter, and pipe 3 is 4500 ft of 8 in
diameter, all asphalt-dipped cast/iron. The elevations of the water surfaces in
reservoirs A and C are 250 ft and/160 ft respectively, and the discharge Q, of 60°F
water into freservoir B is 3.3 cfs. Find the surface elevation of reservoir B: (a)

Turbulent flow, /2gDh,‘ e/D 2.51 u\/ L 3
= — 42
Type 2: Bt S ( 37 D 2gDh1,) (&)

Figure 8.27
Branching pipes.



Elevation of P lies between 160 and 250 ft. Calculate V from Eq. (8.42). Trials:

4 =S 1y Q2=3.3
ELP h, h, v, 74 0, 0. S0 Move P?
200 .50 40" > 6444 < 4481 7907 . 1564 + +3.04 Up

230 20, .18 4.013 5.984 4.925 2.088 —0.463 Down

Interpolation (Fig. 8.28): (230—El. P)/(230—200) = 0.463/(0.463 + 3.04);

EL P = 226,03, A
26 24 66 4NE 5805 Sal 2

Slope between Trial 2
and El P is the same
as between Trial 2
and Trial 1 i.e,

Slope 1 = slope 2

Trial 1 _ _
\ 230—-El.P _ 230-200
0.463-0 0.463+3.04

| | | | | | | |
-8 6 4 -2 0 2 4 6 8 Figure 827
SQatJ Figure 8.28 Branching pipes.



Close enough! Note: these adjustments are very suitable for making on a
spreadsheet.

i i D,V,
gD egtee B o
Ao D543 By ™2 5

Eq. (8.41): £, = 0.01761;  Eq. (8.10):—h, = 18.05 ft

V, = 416,500

88 ipce 71;=-1sxog[(-§-7-) " +-i-] (8.41)

SampLE ProBLEM 8.12 Given that, in Fig. 8.27, pipe 1 is 6000 ft of 15 in
diameter, pipe 2 is 1500 ft of 10 in diameter, and pipe 3 is 4500 ft of 8 in
diameter, all asphalt-dipped cast iron. The elevations of the water surfaces in
reservoirs A and C are 250 ft and 160 ft respectively, and the discharge Q, of 60°F
water into reservoir B is 3.3 cfs. Find the surface elevation of reservoir B: (a)

Figure 8.27
Branching pipes.



Pipes in series

If the pipe is made up of sections of different diameters, as shown in Fig. 8.29, the
continuity and energy equations establish the following two simple relations that must
be satisfied:

Q. — _Ql == Qz = Q3 A (868)
e R R (8.69)

Figure 8.29
Pipes in series.



Type 1: h,

If the rate of discharge Q is given, the problem is straightforward. The head
loss may be found directly by adding the contributions from the various
sections, as in Eq. (8.69). If empirical coefficients or constant f values are
given, we can do this using Eq. (8.66) and the appropriate values of K and n.
If, however, the pipe material or e\is given, this is preferred, because the
Darcy-Weisbach approach is more accurate. Then we use Eq. (8.10) to find
finding e/D, V, R, and\&for each

I
-
olr
N | <

(@]

h,=h,+h,+h h, = KQ" h,



Type 2: Q
If the total head loss A, is given and the flow is required, the problem is a

little more involved. Using the empirical equations, we again substitute Eq.
(8.66) into Eq. &8'6?)’ to get

h =h
hLzKQ" L L1 L2

But since all the Qs are equal from Eq. (8.68), this becomes
Q= ==L

hy = (K1 + K+ K3 +...)0" = (3 K)Q” (8.70)

So, knowing the pipe information and the empirical equation to be used, we
can solve for Q.



If we wish to use the more accurate Darcy—Weisbach approach to find Q,
we must note that in Eq. (8.70) each K has now become a function of a
different f. The preferred manua hod of solution is similar to the above,
and is known as the equivalent-velocity- method. Substituting from Eq.
(8.10)_into Eq. (8.69) and including minor Tosses if needed (usually if
L/Dm);\ htthﬁ\hLzhu+hL2+hL3 h?:K;/—g hL:(K1+K2+K3+...)Q":(ZK)Q”

D 2g
ot 7 “ L V,?
= (fl 31+E k; 5;+(f2D_2+2 kz)i'*-.../

Using the equation of continuity, we know DV, = D,*V, = D%V, etc.,
from which all the velocities may be expressed in terms of one chosen
velocity. So, by assuming reasonable values for each f (e.g., from Eq. (8.39) or

Fig. 8.11), f ipeline, h lex, the total h b
ig ), for any pipeline, however complex, the o7a Wav e

3 1 3. ¢
Wl’ltten as Vz F =72 |Og(e/—D] or Y 0.86 In e

Q1:Q2:Q3

where V' is the chosen velocity. This equation may be solved for the chosen V,
and so the V and R and f values obtained for each pipe. For better accuracy,

the assumed values of f should be\teplaced by the values just obtaine;d, and an
improved solution obtained. When the f values have converged V' 1s correct,

and Q may be calculated. i.e., either V,, V, or V,



SampLE ProBLEM 8.15 Suppose in Fig. 8.29 the pipes 1, 2, and 3 are 300 m of 30
cm diameter, 150 m of 20 cm diameter, and 250 m of 25 cm diameter,
respectively, of new cast iron and are conveying 15°C water. If 2 = 10 m, find
thic tate offlow ffont'd to B 1\ VT iR Tl S e e

Solution
Table 8.1 for cast iron pipe: e = 0.25 mm = 0.000 25 m

Pipe: 1 2 3

L, m 300 150 250

D, m 0.3 0.2 0.25
e/D 0.000 833 0.001 25 0.001 00
fin \(Fig. 8.11) 0.019 0.021 0.020

Using e/D and at Re = 108 the max Re value in M i i is i ini .
e 2 i ales g, oody diagram, meaning this is the_ minimum f value for a given e/D. As R:e decreases into transition

. . . L VI 2
Assuming these friction factor values, b= (A2+3 ki)—'+ (fz LS kI)V_z s
and neglecting minor losses 3 28 D; 28

300\ V32 150\ V,? 250\ V5°
h =10 = 0.019(—)—+0.021(—>—+0.020(——)——
0.3/ 2g 0.2/ 2g 0.25/ 2g
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0.009
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Values of (D" V) for water at 60°F (diameter in inches x velocity in fps)
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Values of (DV ) for water at 15°C (diameter in mm x velocity in m/s)
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L % l =TT = 0.008
-  — —= 0.006
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2 11 : e ARR= L ... 0.001
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Hydraulical = VO Y ! X
| " } T ‘fk 1 0.0004
R ‘jw- ~ LLEHT IS J i .. by
(8.20) | ; < - —T~—r1 0.0001
| ! ’ | *‘- H \\
HiiiEs T =1 e/D = 0. ‘ rT
1l TEIME: = L 11T 1 e ——— - ||
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Reynolds number R = DV/v (D fi, V fps, » ft’/sec; or D m, V m/s, ¥ m%/s)

Relative roughness, ¢/D



2
R (Dl>“ Vi? (30)“ ey V,D? & V,D?
NG e OISRl T \D? =V, D}
From continuity 28 2¢ \D, 2g \20 28
V,D?
v, })21
Similarly, ’
e 0_019(%) ‘_"f+0.021(%-) Vim.ozo(%)v—J o 1 4
: 750 1000 g =l
et g N (0.019 1000 1 0.021 2" 5.06 + 0.020 =207 2
if V, is chosen 2g 1 1
Vi
from which - = 0071 m
28

Hence Vi, = V2(9.81 m/s?)(0.072 m) = 1.18 m/s

i i 10°. and 0.37 x10°; the
The corresponding values of R are 0.31 x 10 ,00.47x : 0°
corresponding friction factors are only slightly different from those originally

assumed, since the flow is at Reynolds numbers very close to those at which the
pipes behave as rough pipes. Hence

Q = AV, = i7(0.30)*1.18 = 0.083 m?/s ANS
Greater accuracy would have been obtained if the friction factors had been

adjusted to match the pipe-friction chart more closely or were calculated by
Eq. (8.41), and if minor losses had been included. In that case Q = 0.081 m?/s.




Pipes In parallel

In the case of flow through two or more parallel pipes, as in Fig. 8.30, the

continuity and energy equations establish the following relations that must be
satisfied:

Q=0+0,+0, (8.72)
' hL =hy = hy, = hys (8.73)

as the pressures at A and B are common to all pipes. Problems may be posed
in various ways.

Figure 8.30
Pipes in parallel.



Pipes In parallel

Solutions
1. If the head loss is given, the problem is straight forward. The head loss may be
found directly by adding the contributions from the various pipes, as in Eq. 8.72.
2. If empirical coefficients or constant f values are given, we can do this using EqQ.
8.67 and the appropriate values of K and n. h O\
h, = KQ" :>Q=(—L)

3. If, however, the pipe material or e is given, this is preferred because the Darcy-
Weisbach approach is more accurate. Then we have an independent Type 2
problem for each pipe, see Lecture 16, which can be solved directly by Eq. 8.42,

for example.
Turbulent flow, 40 5 [2¢Dh, e/D 251v B,
T s + 8.42b
Iype 2: nD? S S log | 37 3 kN ?_gDh,_) ( )
4. If the total flow Q is given and the head loss and individual flows are

required, the problem is a little more involved. Using the empirical equations,
we again substitute Eq. (8.67) into Eq. (8.72), to get

\ Q=Q,+Q,+Q,+

/

h =KQn:>Q:(lj% th 1/n h . 1/n hL‘%‘ 1/n

oot g - (b () ()
1 2 3




Pipes In parallel

Solutions
hLl)l/n (hLZ) 1/n (hL3>1/n
= (=24 =) =) ek
C (K 1 K, K;
But since all the A;s are equal from Eq. (8.73), this becomes

0 = (1) (1) ()] = w3 (3)

So, knowing the pipe information and the empirical equation to be used, we
can solve for A,. We can then find the individual flows using Eq. (8.67).

h;, = KQ"
1/ /
h n
o= (%)




Solutions

5.

If we wish to use the more accurate Darcy-Weisbach approach to find h_

and the individual Qs, we must note that in Eq. (8.74) now each K has
become a function of a different f. The preferred manual method of solution
is similar to the above. Writing Eq. (8.10) for each line, including minor losses
if needed, R [(1)"+(,%2) ) ] sz (R)" e

L= (FE+S k) 2

28

where > k is the sum of the minor-loss coefficients, which may usually be
neglected if the pipe is longer than 1000 diameters. Solving for V and then Q,
the following is obtained for pipe 1:

ily = 2gh, s
O =AY, = ,c11\/ﬁ(Ll/Dl)+Ek1 = C VA, (8.75)

where C,; is constant for the given pipe, except for the change in f with
Reynolds number. The flows in the other pipes may be similarly expressed,

using reasonable values of f from Fig. 8.11 or Eq. (8.39). Finally, Eq. (8.72)
becomes SR

Since h, is the same for all pipes



This enables a first determination of 4, and the distribution of flows and
velocities in the pipes. Improvements in the values of f may be made next, if
indicated, and finally a corrected determination of /#; and the distribution of
flows.

If the turbulent flow equation (8.40) or (8.41) is used to obtain f, it is

important to remember to confirm that the Reynolds number is in the
turbulent range. We can pre-check the likelihood of laminar flow occurring in
any of the pipes by calculating an “average” flow velocity from the total flow
divided by the total area of all the pipes, and using this to obtain an indicator
R for each pipe.



SAmpPLE ProBLEM 8.16 Three pipes A, B, and C are interconnected as shown.
The pipe characteristics are given as follows:

Pipe D (in) L (ft) i
A 6 iar- £ 0I0D 0.020
B 4 1600 0.032

€ 8 4000 0.024

El. 200 ft

—ELS0ft  Figure $8.16

Find the rate at which water will flow in each pipe. Find also the pressure at point
P. All pipe lengths are much greater than 1000 diameters, therefore minor losses
may be neglected.



Pipe D (in) R e

A 6 2000  0.020

B 4 1600 0.032

C 8 4000 0.024
El. 50 ft

L v2 0 o0 o 0 0
D 29 ocyzjgﬂ-l-/s{+z1+/bp/=oc22—zg+};§-zz+/lt/+h,
Solution \ \M/
2000 V2 OV o Ve

Energy Eq.: 200—-0.020 —— —-0.024 —— + ——  Note thathy is the
Betweengpz’ints 1% 2 6/ 12 2g 8/ 12 2g >0 2g ’s\lame ?n pihpe Aznd B

and so only one pipe
is used, in this case
pipe A. If pipe B is
used, then pipe A will
not be used

: V 2 2
i.e., 150 = 80 -2+ 145 e
28 28

Continuity: Q,+Qg =Qc 6%V, + 4*Vy =

e 64VC

2000 V,2 1600 V2
Also, h,  =Hr = 0020 ——-2- = 0,030 —— ~2
g g 6/12 2g 4/12 2g

L.e. 80V,2 = 153.6V5% = Vy = 0.722V,

1.€.




Substituting into the continuity equation,

36V, + 16(0.722V,) = 64V,
47.5V, = 64V., V. = 1.346V,

Substituting into the energy equation,

- - ] 2 2 1% 2
150 = 80 2%+ 145 2 150 = o L330Ve) | s Ve _ jgg9¥c
BRtec 28 2g 28

Ve = 2(32.2)150/289.9 = 33.3
Ve = 5.771ps, Qc = AcVe = (0.349)5.77 = 2.01 cfs
Vi = 1346V = 777 fps Q4 = (0.1963)7.77 = 1.526 cfs
Continuity: 36(7.77) + 16Vy = 64(5.77)
i 279.7+ 16V = 369.4
Ve = 89.7/16 = 5.61 fps
Op = ApVz = (0.0873)5.61 = 0.489 cfs  ANS

As a check, note that O, + O = Q.

ANS
ANS



To find the oressure at P L2

hali==

P1 P2 L
— h = h¢+h D 29
oy + +Zl+ 22g+pg+22+ t+ 1

Zg pg Vi
200 — soﬁ = 120+ pplY

2
prlY = 80—80 {47y

= 5.01 ft

2g

—El. 50 ft

Pipe D (in) L) S U
A 6 2000  0.020
B 4 1600 0.032
c

8 4000 0.024



2

vi Py P2 fLV
2—g+pg+zl+h —0C22g+pg+zz+ht+h] /h BE
|
Check: 1904 ol =144 = 5 £ X
28 2g
S5 11)°
pplY = 145( 2g) —70 = 5.01 ft

So pp/Y = 5.01 ft and pp = (62.4/144)5.01 = 2.17 psi. ANS

In this example it was assumed that the values of f for each pipe were known.
Actually f depends on R [Fig. 8.11 or Eq. (8.41)]. Usually the absolute roughness
e of each pipe is known or assumed, and an accurate solution is achieved through
trial and error until the fs and Rs for each pipe have converged.

El. 200 ft
A

El. 120 ft

Pipe D (in) L ey S of
I T - 2000  0.020

I3 El. 50 ft B 4 1600 0.032
c

8 4000 0.024






Pipe networks: Hardy Cross method

An extension of pipes in parallel is a case frequently encountered in
municipal distribution systems, in which the pipes are interconnected so that
the flow to a given outlet may come by several different paths, as shown in
Fig. 8.31. Indeed, it is frequently impossible to tell by inspection which way
the flow travels, as in pipe BE. Nevertheless, the flow in any network,
however complicated, must satisfy the basic relations of continuity and energy
as follows:

Figure 8.31
Pipe network.




Figure 8.31
Pipe network.

1. The flow into any junction must equal the flow out of it
2. The flow in each pipe must satisfy the pipe-friction laws for flow in a single pipe

3. The algebraic sum of the head losses around any closed loop must be zero
(As it is the same as considering that there is no flow from the start point, therefore no head loss)

- v |

Pipe networks are generally too complicated to solve analytically, as was
possible in the simpler cases of parallel pipes (Sec. 8.28). Furthermore, it is
seldom possible to predict the capacity requirements of water distribution

systems with high precision, and flows in them vary considerably throughout
the day, so high accuracy in calculating their flows is not important. As a
result, the use of empirical equations (Sec. 8.15) and constant values of f are
very acceptable for this purpose. A practical grocedure is the method of
successive approximations, introduced by Cross.~ It consists of the following
elements, in order:



1. By careful inspection assume the most reasonable distribution of flows that

satisfies condition 1. 1. The flow into any junction must equal the flow out of it.
2. Write condition 2 for each pipe in the form |2 The flow in each pipe must satisfy the
pipe-friction laws for flow in a single pipe
= KQ" (8.77)

where K and n are constants fgr each pipe as described in Sec. 8.26 under
Approximate Solutions [Eq (8.66), etc.]. If minor losses are important
they may be included as in Eq. (8.75), which yields K = 1/C*andn = 2
for constant £ Minor losses may be in ed within any pipe or loop, but
they are neglected at the junction points.

= 2gh,
0 = AV = An [ B = VR

1
—~2

2
Q:C\/Eth:%:KQ”.-.K ,N=2

3. To investigate condition 3, compute the algebraic sum of the head losses
around each elementary loop, > h, = 2 KQ". Consider losses from
clockwise flows as positive, counterclockwise negative. Only by good luck
will these add to zero on the first trial.

‘ 3. The algebraic sum of the head losses around any closed loop must be zero.



4. Adjust the flow in each loop by a correction AQ to balance the head in
that loop and give > KQ" = 0. The heart of this method lies in the
determination of AQ. For any pipe, we may write

Q0 = Q,+40

where Q is the correct discharge arid Q, is the assumed discharge. Then,
for each pipe,

h, = KQ" = K(Qo+4Q)" = K(Qy" +nQ;'AQ +. . .)

If AQ is small compared with Q,, the terms of the binomial series after the
second one may be neglected. Now, for 4 circuit, with AQ the same for all
pipes,

D h =3 KO" = Y KOs +40 > KnQ§™' = 0

25 H. Cross, Analysis of Flow in Networks of Conduits or Conductors, Univ. Ill. Eng.
Expt. Sta. Bull. 286, 1936.



> h = 3 KO" = > KO +AQ > KnOp* =

As the corrections of head loss in a]l‘pipes must be summed arithmetically,

we may solve this equation f
In the above equation

AQ by making AQ the subject of the formula

> KQ,"+AQD> KnQ,"" =0
AQD KnQ,"" =-> KQ,"

_Z KQo
Z‘KnQO” -




Since hL — KQ” ‘and

h =KQ" = KQ™* = KQ™Q

hL

KO = L
° Q

Therefore AQ = _ZKQO _ Zh 8.78

Z‘KnQO“ nZ‘KQo“ ”Zh—L

0

. It must be emphasized again that
the numerator of Eq. (8.78) is to be summed algebraically, with due
account of sign, while the denominator is summed arithmetically. The
negative sign in Eq. (8.78) indicates that when there is an excess of head
loss around a loop in the clockwise direction, the AQ must be subtracted
from clockwise Q,s and added to counterclockwise ones. The reverse is
true if there i1s a deficiency of head loss around a loop in the clockwise
direction.



5. After each circuit is given a first correction, the losses will still not balance,
because of the interaction of one circuit upon another (pipes which are
common to two circuits receive two independent corrections, one for each
circuit). The procedure is repeated, arriving at a second correction, and so
on, until the corrections become negligible.

Either form of Eq. (8.78) may be used to find AQ. As values of K appear
in both numerator and denominator of the first form, values proportional to
the actual K may be used to find the distribution. The second form will be
found most convenient for use with pipe-friction diagrams for water pipes.

An attractive feature of the approximation method is that errors in
computation have the same effect as errors in judgment and will eventually be
corrected by the process.
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The Hardy Cross method is an iterative method for determining the flow in pipe
network systems where the inputs and outputs are known, but the flow inside the
network is unknown.!t The method was first published in November 1936 by its
namesake, Hardy Cross, a structural engineering professor at the University of
lllinois at Urbana—Champaign.[?! The Hardy Cross method is an adaptation of
the Moment distribution method, which was also developed by Hardy Cross as a
way to determine the forces in statically indeterminate structures.

The introduction of the Hardy Cross method for analyzing pipe flow networks
revolutionized municipal water supply design. Before the method was introduced,
solving complex pipe systems for distribution was extremely difficult due to the
nonlinear relationship between head loss and flow. The method was later made
obsolete by computer solving algorithms employing the Newton-Raphson
method or other numerical methods that eliminate the need to solve nonlinear
systems of equations by hand.

In 1930, Hardy Cross published a paper called "Analysis of Continuous
Frames by Distributing Fixed-End Moments" in which he described

the moment distribution method, which would change the way engineers in the
field performed structural analysis.2! The moment distribution method was
used to determine the forces in statically indeterminate structures and allowed
for engineers to safely design structures from the 1930s through the 1960s, till
the computer oriented methods.8 In November 1936, Cross applied the same
geometric method to solving pipe network flow distribution problems, and
published a paper called "Analysis of flow in networks of conduits or
conductors."l

Bomn

Died
Mationality
Education

Occupation

Discipline
Institutions

Significant
advance

Awards

Hardy Cross
1885
Mansemond County, Virginia,
United States
1959
United States
Massachusetts Institute of
Technology, Cambridge,
Massachusetts, United States
Morfolk Academy
Harvard University
Enginear
Engineering career
Structural engineer

Institution of Structural Engineers
Brown University

University of lllinois at Urbana-
Champaign

Yale University

mament distribution method for
reinforced concrete

Frank P. Brown Medal (1959)
American Society for Enginaaring
Education Lamme Medal (1944),
ACI (1935) Wason Medal for
Most Meritorious Paper, |StructE
Gald Medal


https://en.wikipedia.org/wiki/Iterative_method
https://en.wikipedia.org/wiki/Hardy_Cross_method
https://en.wikipedia.org/wiki/Hardy_Cross
https://en.wikipedia.org/wiki/University_of_Illinois_at_Urbana%E2%80%93Champaign
https://en.wikipedia.org/wiki/Hardy_Cross_method
https://en.wikipedia.org/wiki/Moment_distribution_method
https://en.wikipedia.org/wiki/Municipal_water_supply
https://en.wikipedia.org/wiki/Newton-Raphson_method
https://en.wikipedia.org/wiki/Hardy_Cross
https://en.wikipedia.org/wiki/Moment_distribution_method
https://en.wikipedia.org/wiki/Hardy_Cross_method
https://en.wikipedia.org/wiki/Hardy_Cross_method
https://en.wikipedia.org/wiki/Hardy_Cross_method

SampLE ProBLEM 8.17 If the flow into and out of a two-loop pipe system are as
shown in Fig. S8.17, determine the flow in each pipe. The K values for each pipe
were calculated from the pipe and minor loss characteristics and from an assumed
value of f.

100 cfs 25 cfs

Figure S8.17



Solution
As a first step, assume flow in each pipe such that continuity is satisfied at all
junctions. Calculate AQ for each loop, make corrections to the assumed Os, and
repeat several times until the AQs are quite small.
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Further corrections can be made if greater accuracy is desired.






e pipe-network problem lends itself well to solution by use of a digital
computer. Programming takes time and care, but once set up, there is great
flexibility and many hours of repetitive labor can be saved. Many software
packages are now available to simulate water distribution networks: see
Appendix B.



