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LECTURE 17

Flow in Pipes
(Internal Flows)

Series, parallel, branching and hardy cross

L. Handia



▪ For convenience, let us consider three pipes connected to three reservoirs as in Fig. 

8.27 and connected together or branching at the common junction point J. 

▪ Actually, any of the pipes may be considered to be connected to some other 

destination than a reservoir by simply replacing the reservoir with a piezometer

tube in which the water level is the same as the reservoir surface. 

▪ We shall suppose that all the pipes are sufficiently long (large head loss in the 

pipes) that minor losses and velocity heads may be neglected.

Branching Pipes



▪ We name the pipes and flows and corresponding friction losses as 

shown in the diagram. 

▪ The continuity and energy equations require that the flow entering 

the junction (J) equal the flow leaving it and that the pressure head 

at J (which may be represented schematically by the open 

piezometer tube shown, with water at elevation P) be common to all 

pipes.

Branching Pipes



▪ There being no pumps, the elevation of P must lie between the surfaces of 

reservoirs A and C. 

▪ If P is level with the surface of reservoir B then h2 and Q2 are both zero. If 

P is above the surface of reservoir B then water must flow into B and Q1 = 

Q2+ Q3. 

▪ If P is below the surface of reservoir B then the flow must be out of B and 

Q1 + Q2 = Q3. 

▪ So for the situation shown in Fig. 8.27 we have the following governing 

conditions:

1. Q1 = Q2 + Q3

2. Elevation of P is common to all.

Branching Pipes

Since hL is zero, there is no flow

▪ The diagram suggests several 

different problems or cases, 

three of which will be 

discussed below using 

different methods of solution.



Rigorous Solutions

▪ When we know the pipe wall material, we can estimate its e value (from 

Tables) and we know that the friction factor f varies with the e/D of the 

pipe and the Reynolds number of the flow. 

▪ Because we are not considering minor losses, we can use the equations 

in the previous lecture 16.

▪ In particular, using only a basic scientific calculator, we can solve 

pipelines for hL (Type 1 problems), for V or Q (Type 2 problems) and 

more rarely, we can solve for D (Type 3 problems) using a number of 

equations (see Lecture 16). 

▪ These equations are preferred because they avoid trial and error, which 

can become quite confusing when combined with other trial-and-error 

techniques needed to solve for branching flow. 

▪ These, and the variety of approaches used to “manually” solve the 

different types of problems that can occur, are illustrated in the 

following cases.



Rigorous Solutions
Case 1. Given all pipe data (lengths, diameters, and materials for e values), the surface 

elevations of two reservoirs, and the flow to or from one of these two, find the surface 

elevation of the third reservoir.

▪ This problem can be solved directly. Suppose that Q1 and the elevations of A and B are 

given.

▪ Then the head loss hL may be determined directly (Type 1), using the moody diagram or Eq. 

(8.41) to find the proper value of f. 

▪ Knowing hL fixes P, so h3 is now easily obtained. Knowing h2 enables the flow in pipe 2 to 

be determined directly using the Type 2 equation (8.42). 

▪ Condition 1 (continuity at junction J) then determines Q3, which in turn enables h3 to be 

found directly (Type 1), in the same manner as for line 1. 

▪ Finally, P and h3 define the required surface elevation of C.



Rigorous Solutions
Case 2. Given all pipe data, the surface elevations of two reservoirs, 

and the flow to or from the third, find the surface elevation of the third 

reservoir.  

▪Let us suppose that Q3 and the surface elevations of A and C are given. 

▪Then we know hl + h3 = ∆h13, say. 

▪Various solution approaches may be used; we shall discuss a more 

convenient one. 

▪In this, we assume the elevation of P, which yields values for h1 and 

h3, and so Q1 and Q3 via Eq. (8.42). 

▪If these do not satisfy the discharge relation at J (∑Q=0)then P must be 

adjusted until they do. 



Rigorous Solutions
▪To help us converge on the correct elevation of P, we can plot the 

results of each assumption on a graph like Fig. 8.28. 

▪For ∑Q at J, inflows to J are taken as positive and outflows as 

negative. 

▪Two or three  points, with one fairly close to the vertical axis, 

determine a curve that intersects that axis at the equilibrium level of P, 

where ∑ Q = 0, as required. 

▪Last, h2 can be determined from Q2 and Eqs. (8.41) and (8.10), and the 

required surface elevation of B found.



Rigorous Solutions
Case 3. Given all pipe lengths and diameters and the elevations of all three reservoirs, 

find the flow in each pipe. 

This is the classic three-reservoir problem, and it differs from the foregoing cases in 

that it is not immediately evident whether the flow is into or out of reservoir B. This 

direction is readily determined by first assuming no flow in pipe 2; that is, the 

piezometer level P is assumed at the elevation of the surface of B. The head losses h1

and h3 then  determine the flows Q1 and Q3 via Eq. (8.42). If Q1 >Q3 then P must be 

raised to satisfy continuity at J, causing water to flow into reservoir B, and we shall 

have Q1 = Q2+Q3; if Q1<Q3 then P must be lowered to satisfy continuity at J, causing 

water to flow out of reservoir B, and we shall have Q1 + Q2 = Q3. From here on the 

solution proceeds by adjusting P as for Case 2 above.



Case 2



Q2=3.3

7.907-3.3-1.564
When ∑Q is +ve, there is more flow into junction, producing higher  

hL , therefore reduce Q1, which reduces V1 since A1 is constant 

(Q=AV). Reduced V1 results in reduced hL, .Hence P has to move up 

so that hL = h1  is reduced as El. A is fixed

h1 reduces from 50 to 20, V to 4.013, Q to 4.925 while the opposite 

happens to pipe 3
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Pipes in series
If the pipe is made up of sections of different diameters, as shown in Fig. 8.29, the 

continuity and energy equations establish the following two simple relations that must 

be satisfied:
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Using e/D and at Re = 108 the max Re value in Moody diagram, meaning this is the minimum  f value for a given e/D. As Re decreases into transition 

zone, the f values go up

and neglecting minor losses





if V1 is chosen



Pipes in parallel



Solutions

1. If the head loss is given, the problem is straight forward. The head loss may be 

found directly by adding the contributions from the various pipes, as in Eq. 8.72.

2. If empirical coefficients or constant f values are given, we can do this using Eq. 

8.67 and the appropriate values of K and n. 

3. If, however, the pipe material or e is given, this is preferred because the Darcy-

Weisbach approach is more accurate. Then we have an independent Type 2 

problem for each pipe, see Lecture 16, which can be solved directly by Eq. 8.42, 

for example.

4.

Pipes in parallel
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Solutions

Pipes in parallel



Since h
L

is the same for all pipes
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Solutions

5. If we wish to use the more accurate Darcy-Weisbach approach to find hL
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Pipe networks: Hardy Cross method



(As it is the same as considering that there is no flow from the start point, therefore no head loss) 

1. The flow into any junction must equal the flow out of it

2. The flow in each pipe must satisfy the pipe-friction laws for flow in a single pipe

3. The algebraic sum of the head losses around any closed loop must be zero



2. The flow in each pipe must satisfy the 

pipe-friction laws for flow in a single pipe
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we may solve this equation for ΔQ by making ΔQ the subject of the formula 

in the above equation
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The Hardy Cross method is an iterative method for determining the flow in pipe 

network systems where the inputs and outputs are known, but the flow inside the 

network is unknown.[1] The method was first published in November 1936 by its 

namesake, Hardy Cross, a structural engineering professor at the University of 

Illinois at Urbana–Champaign.[2] The Hardy Cross method is an adaptation of 

the Moment distribution method, which was also developed by Hardy Cross as a 

way to determine the forces in statically indeterminate structures.

The introduction of the Hardy Cross method for analyzing pipe flow networks 

revolutionized municipal water supply design. Before the method was introduced, 

solving complex pipe systems for distribution was extremely difficult due to the 

nonlinear relationship between head loss and flow. The method was later made 

obsolete by computer solving algorithms employing the Newton-Raphson

method or other numerical methods that eliminate the need to solve nonlinear 

systems of equations by hand.

In 1930, Hardy Cross published a paper called "Analysis of Continuous 

Frames by Distributing Fixed-End Moments" in which he described 

the moment distribution method, which would change the way engineers in the 

field performed structural analysis.[3] The moment distribution method was 

used to determine the forces in statically indeterminate structures and allowed 

for engineers to safely design structures from the 1930s through the 1960s, till 

the computer oriented methods.[3] In November 1936, Cross applied the same 

geometric method to solving pipe network flow distribution problems, and 

published a paper called "Analysis of flow in networks of conduits or 

conductors."[1]

https://en.wikipedia.org/wiki/Iterative_method
https://en.wikipedia.org/wiki/Hardy_Cross_method
https://en.wikipedia.org/wiki/Hardy_Cross
https://en.wikipedia.org/wiki/University_of_Illinois_at_Urbana%E2%80%93Champaign
https://en.wikipedia.org/wiki/Hardy_Cross_method
https://en.wikipedia.org/wiki/Moment_distribution_method
https://en.wikipedia.org/wiki/Municipal_water_supply
https://en.wikipedia.org/wiki/Newton-Raphson_method
https://en.wikipedia.org/wiki/Hardy_Cross
https://en.wikipedia.org/wiki/Moment_distribution_method
https://en.wikipedia.org/wiki/Hardy_Cross_method
https://en.wikipedia.org/wiki/Hardy_Cross_method
https://en.wikipedia.org/wiki/Hardy_Cross_method
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