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Open channels

»An open channel is one in which the stream is not completely
enclosed by solid boundaries and therefore has a free surface

subjected only to atmospheric pressure.

Water surface

N

Open channel flow with
a free surface exposed
to atmospheric pressure

Zambezi River at Kazungula



Open channels

» The flow in such a channel is caused not by some external head, but
rather only by the gravity (W Sin@) component along the slope of the
channel. Thus open-channel flow is often referred to as gravity flow
or free-surface flow.

» For convenience in dealing with large channel systems, they are
often divided into reaches. A reach is a continuous stretch of a
waterway, often chosen to have reasonably uniform properties like
cross section, slope, and discharge.




Reynolds number in open channels

Open-channel flow is usually fully rough; that is, it occurs at high
Reynolds numbers. For open channels, the Reynolds number is
defined by Re = R, V/v, where R;, is the hydraulic radius. Since R,
= D/4, the critical value of Reynolds number at which the change
over occurs from laminar flow to turbulent flow in open channels is
500, whereas In pressure conduits the critical value is 2,000.
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Uniform flow

»Uniform flow means that the water cross section and depth remain
constant over a certain reach of the channel as well as over time. This
requires that the drop.in potential energy due to the fall in elevation
along the channel be exactly that consumed by the energy dissipation
through boundary friction and turbulence.

» The depth in uniform flow is commonly referred to as the normal flow,

Yo
»Uniform flow is an equilibrivsn condition (see Slide 7) that flow tends
to if the channel is sufficiently long with constant slope, cross section,

and roughness.

Figure 10.1

Steadv low down a chute or enillwav



Uniform flow

\74Nonuniform-:

Figure 10.1
Steady flow down a chute or spillway.

TABLE 10.1 Combinations of One-Dimensional Free-Surface Flows

Type of flow Average velocity Depth
Steady, uniform V = const. y = const.
Steady, nonuniform V= V(x) y = y(x)
Unsteady, uniform V= V(t) y = yl(t)

Unsteady, nonuniform V= Vix t) y = ylx, t)




Uniform flow

Definitions
S, Is the slope of the channel bed

Slope S,, Is the slope of the water surface
Slope Sis the slope of the energy line
Y ,Is upstream water depth

Y, is downstream water depth
0 1s the angle the channel bed makes with the horizontal

L is distance along the channel bed between sections 1 and 2
V12
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Figure 10.2
Open channel flow—definition
_ 2 sketch (L = distance along the
Horizontal datum ' channel bed between sections 1 and

< Ax > 2).




Uniform flow

In uniform flow (Fig. 10.3) the cross section through which flow
occurs is constant along the channel, and so also is the velocity.
Thus, y; =V, and v; = v, and the channel bed, water surface, and

energy line are parallel to one another. Also, S, = Sy = -Az/ AX =tan
0, while S = h /L = sin 8, where 0 is the angle t ed makes

with the horizontal.

Ax h, is head loss

Horizontal \

Figure 10.3
Uniform flow in open channel.



Consider the short reach of length L along the channel between stations 1 and 2 in
uniform flow with water cross section of area A (Fig. 10.3). As the flow is neither
accelerating nor decelerating, we may consider the body of water contained in the
reach in static equilibrium.

Summing forces along the channel, the hydrostatic-pressure forces F, and F, balance
each other, since there is no change in the depth y between the stations. The only
force in the direction of motion is the gravity component, and this must be resisted
by the average boundary shear stress 1,, acting over the area PL, where P is the
wetted perimeter of the section. Thus Wsin 0+F, —F, -7,A=0

yALsin 8 =7,PL
But sin 6 = h; /L = S. Solving for 1, \yé have
(10.4:

T, = 7/§Sin 0 =1R S

- Ax — =T

Horizontal

Figure 10.3
Uniform flow in open channel.



where R;, Is the hydraulic radius and for most slopes (with 6<5.7°) S,
may be taken as equal to S. Substituting the value of 7, from Eq. (8.8)

and replacing S with S, g From previous lide 2
T Ff VO

fp_ RiSo To=—g =k

This may be solved for v in terms of either the friction coefficient C;
or the conventional friction factor f [Eq. (8.11)] to give

2
CfPV_:VRhSo — V= QLR
2 Cip
v [22855 C,=f/4
i ,0 (Lecture 16, Slide 29)
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Chezy equation

Antoine de Chézy (1718-1798), a French bridge engineer and hydraulics
expert, proposed in 1775 that the velocity in an open channel varied as
R,S,. This led to the formula

V = CVR],SO (106)

which is known by his name. It has been widely used both for open channels
and for pipes under pressure. Comparing Egs. (10.6) and (10.5). it is se

Antoine de Chézy (1 September 1718, in -5
October 1798, Paris) was a French hydraulics engineer. He is known for V = 8_9 R S
the , which concerned the velocity of pipe flow,  and in h=0
modified form he used it for open channel flow as well.  He died in 1798

after being director of the for less

than a year.  His son was the orientalist


https://en.wikipedia.org/wiki/Ch%C3%A2lons-en-Champagne
https://en.wikipedia.org/wiki/Ch%C3%A9zy_formula
https://en.wikipedia.org/wiki/Antoine_de_Ch%C3%A9zy
https://en.wikipedia.org/wiki/Antoine_de_Ch%C3%A9zy
https://en.wikipedia.org/wiki/%C3%89cole_nationale_des_ponts_et_chauss%C3%A9es
https://en.wikipedia.org/wiki/Antoine_de_Ch%C3%A9zy
https://en.wikipedia.org/wiki/Antoine-L%C3%A9onard_de_Ch%C3%A9zy

Antoine de Chezy <

French engineer

Antoine de Chézy was a French hydraulics engineer. He is known
for the Chézy formula, which concemed the velocity of pipe flow,
and in modified form he used it for open channel flow as well. He
died in 1798 after being director of the Ecole nationale des ponts et
chaussées for less than a year. Wikipedia

Born: September 1, 1718, Chalons-en-Champagne, France

Died: October 5, 1798, Paris, France

Nationality: French

Education: Ecole des ponts ParisTech

Children: Antoine-Léonard de Chezy

Grandchildren: Wilhelm von Chézy, Max Chézy



Mannings formula

One of the best as well as one of the most widely used formulas for
uniform flow In open channels is that published by the Irish engineer
Robert Manning (1816-1897). Manning had found from many tests

that the value of C in the Chézyformula varied approximately as R,/ °
and others observed that the proportionality factor was very close to
the reciprocal of n, the coefficient of roughness in the previously
used, but complicated and inaccurate, Kutter formula. This led to the
formula that has since spread to all parts of the world. The Manning
formula is

VT ’
Vim/s) = — RS,"* (10.7a)
n
1 1 2 1
STQZRhGE V= 8TthSo :Rh6lm:£Rh3802
n n n



Manning was born in , France, the
son of a soldier who had fought the previous
year at the . In 1826 he
moved to and in time
worked as an accountant.

Manning did not receive any education or
formal training in fluid mechanics or
engineering. His accounting background and
pragmatism influenced his work and drove
him to reduce problems to their simplest
form. He compared and evaluated seven best
known formulae of the time for the flow of
water in a channel: Du Buat (1786),
Eyelwein (1814), Weisbach (1845), St.
Venant (1851), Neville (1860), Darcy and
Bazin (1865), and Ganguillet and Kutter
(1869). He calculated the velocity obtained
from each formula for a given slope and for
hydraulic radii varying from 0.25 m to 30 m.
Then, for each condition, he found the mean
value of the seven velocities and developed a
formula that best fitted the data.

Robert Manning <

insh engineer

Robert Manning was an Irish hydraulic engineer best known for
creation of the Manning formula. Manning was born in Normandy
France, the son of a soldier who had fought the previous year at the
Battle of Waterioo. In 1826 he moved to Waterford, Ireland and in
time worked as an accountant. Wikipedia

Born: October 22, 1816, Normandy, France
Died: December 9, 1897, Dublin, Ireland

Children: Mary Manning


https://en.wikipedia.org/wiki/Normandy
https://en.wikipedia.org/wiki/Battle_of_Waterloo
https://en.wikipedia.org/wiki/Waterford,_Ireland

Specific energy and alternate depths

For any cross-section shape, the specific energy E at a particular section 1is
defined as the energy head referred to the channel bed as datum. Thus

E =y o= (10.16)

where « is the kinetic energy correction factor (Sec. 5.1), which accounts for
velocity variations across the section. Friction at the channel walls reduces
velocities near the wetted perimeter, as indicated in Fig. 10.7 for which
a = 1.105. As noted in Sec. 10.4, the value of « is usually assumed to be
unity; for typical velocities this results in only a small error in E.

f— 3461t

Isovels

Figure 10.7

Velocity distribution in a trapezoidal canal. V' = 3.32fps, A = 230.5 ft°,
S = 0000057, a = 1.105, B = 1.048



Specific energy and alternate depths

For rectangular channels, provided they are not unusually narrow so that
a is large, a representative average value of the flow g per unit width can be
expressed as g = Q/b. The average velocity V = Q/A = gb/by = q/y
and so Eq. (11916) with @ = 1 can be expressed as
V2 1 g°
E=y+a— E=y+—+ (10.17)
2 Y
3 2g y°



Let us consider how E will vary with y if g (=0Q/b) remains constant.

] (]2 (2/

22 2 (E-y)y* = == constant (10.19)

E=y+ >
28

—

A plot of E vs. y Is hyperbola-like with asymptotes (E -y) =0 (that is, E
=y) and y = 0. Such a curve, shown in Fig. 10.12, is known as the
specific energy diagram. Actually each different value of g will give a
different curve, as shown in Fig. 10.12. For a particular g, we see there
are two possible values of y for a given value of E. These are known as
alternate depths. Equation (10.19) is a cubic equation with three roots,
the third root being negative has no physical meaning (i.e., negative
depth is impaossible). o
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Figure 10.12
Specific-energy diagram for three constant rates of discharge in a rectangular
channel. (Bed slopes are greatly exaggerated.)



The two alternate depths represent two

totally different flow regimes—slow and deep on the upper limb of the curve
and fast and shallow on the lower limb of the curve. Point C represents the
dividing point between the two regimes of flow. At C, for a given g, the value
of E is a minimum and the flow at this point is referred to as critical flow
The depth of flow at that point is the critical depth y. and the velocity is the
critical velocity V.. A relation for critical depth in a wide rectangular channe

can be found by differentiating E of Eq. (10.17) with respect to y to find the

value of y for which E is a minimum. Thus ok 1 ¢

E=y+——q—-

28 ¥
(10.20

S()(sc

Figure 10.12

Specific-energy diagram for three constant rates of discharge in a rectangular
channel. (Bed slopes are greatly exaggerated.)



dE q°

=

dy gy’
and when E is a minimum, y = y.and dE/dy = 0, so that
2
0=1 —q—3 L OF
8Yec
Substituting q= % = A\% = by\% =Vy =V._y_gives
g 2
Vy, =q=V, =+t =vi=t =2 gy
CyC q :> C yC :> C yc2 yg gy
V2 V, =gy, =—
C :gyc' and c gyc_y
C
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where the subscript ¢ indicates critical flow conditions (minimum specific
energy for a given q).

Equatio‘n/ (10.22) may also be expressed as

V‘. = ng( =§

Vo' =0y,
v’
\ y, = o
Y
From Eq. 10.21 ( ¢ 7 &)

2 \Y3
(e

Therefore g = :(Q_ZJ% 10.23
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From Eq. 10.22 (|

V, =0y =V, =0y,

V=0 Ve _ 9
29 29 297"

290 2
V.’ 1° 3
Hence Ec: min :yc+2—:yc+_yc:_yc 1025
g 2 2
2 2
And yc =§Ec =§Em'n 1026

V. = gyc=i
y

7] c
When flow occurs at critical depth, both Eqg. 10.22 and 10.26 are
satisfied and the velocity head is one half the depth (illustrate)



Subcritical and supercritical flows

In Sec. 10.9 we referred to the upper and lower portions of the specific-energy
diagram (Fig. 10.12) and the discharge curve (Fig. 10.13). The upper limb of
those curves, where velocities are less than critical, represent subcritical (also
known as tranquil or upper-stage) flow, while the lower limb of the curves
where velocities are greater than critical represent supercritical (also known
as rapid or lower-stage) flow. We discussed how to identify the critical point
separating these two portions in Sec. 10.9.

S()<.S:r

Figure 10.12

Specific-energy diagram for three constant rates of discharge in a rectangular
channel. (Bed slopes are greatly exaggerated.)



Subcritical and supercritical flows

The slope required to give uniform flow at critical depth (y, = y.) for a
given discharge is known as the critical slope S.. Note that S. varies with
discharge. We obtain an expression for the critical slope of a wide and shallow

rectangular channel (R, = y) when we combine Eq. (10.23) for critical flow
with Eq. (10.18) for uniform flow, eliminating g as follows:
¥ \
1 2 1 2
n yc _
g

Rewriting Eq. 10.23 V. =Jay.

Equating this to Eq. 10.18 Jay. =%Rh250§

2
Sc = F\?h4/3 gy
Replacing R, by y since R, =y
g Y g’
S, =n’g ST 10.30



2
g o’

c

Y If the bed slope S, > S., the slope is known as a steep slope for the given
discharge. Normal depth for uniform flow on such a slope will be less than
critical depth and hence normal flow will be supercritical. In contrast, if
S,<S., the normal depth will be greater than critical and normal flow is
subcritical. Such a slope is referred to as a mild slope. By referring to Eq.
(10.30), we see that the hydraulic steepness of a channel slope is determined
by more than its elevation gradient. A steep slope for a channel with a
smooth lining could be a mild slope for the same flow with a rough lining.
Even for a given channel with a given boundary roughness, the slope may be
mild for a low rate of discharge and steep for a higher one.

[t may be recalled that the Froude number (Sec. 7.4) is defined as
V/\/;gz. If for rectangular channels the depth of flow is used to represent the
significant length parameter in the Froude number (that is, F = V \/g}), we
find by comparing this with Eq. (10.22) that the flow is criticalif ¥ = 1.0, the
flow is subcritical if F < 1.0, and the ﬂgw is supercritcal-if F > 1.0.




Table 10.2

Characteristics of subcritical, critical, and supercritical flow in rectangular channels
%

Characteristic Subcritical Critical Supercritical
qZ 1/3
Depth of flow, y y>y. y =y = (E) y<y.
Velocity of flow, V V<V, V =V. = Vgy V>V
Slope for uniform Mild slope Critical slope Steep slope
flow, §, S <S. S = 8. S8
[Eq. (10.30)
if wide and
shallow]
Froude number,
14 q
F = - = F<I1.0 F =10 F>1.0
Vey Vgy
Disturbance Will propagate Will hold fast, Will form
waves in all not propagate standing wave
(Sec. 10.20) directions upstream with sin B8 = ¢/V
downstream only
Velocity head Yraey
compared with 28 2 ;g\
half-depth ———% ! &
Can be followed by No No Yes e\ i
a hydraulic jump? [T <
(Sec. 10.16) pe
E'vogcvoin‘—. 5>
Figare 10,12
Sfedﬁi-e'n;:y‘;:;:‘n:‘lt;el:}rl;c"mmgr psoi i




Occurrence of critical depth

« Welr
- For thinplate weir  g=c,b 2g h3/2

Figure 10.9 Broad-crested weir.



Occurrence of critical depth

» Flumes (venturi, parshall etc)

Stilling
well Stilling

Water surface
Iwith submergence_

i e

Siopef, ; byl Water surface

1:4
|2 Level floor for free flow~ | L
e N S = - _tA

Elevation Figure 10-13 Parshall measuring flume.



Occurrence of critical depth




Occurrence of critical depth




Hydraulic jump

By far the most important of the local nonuniform-flow phenomena is that
which occurs when supercritical flow has its velocity reduced to subcritical.
We have seen in the surface profiles of Fig. 10.20 that there is no ordinary
means of changing from supercritical to subcritical flow with a smooth
transition, because theory calls for a vertical slope of the water surface. The
result, then, is a marked discontinuity in the surface, characterized by a steep
upward slope of the profile, broken throughout with violent turbulence, and
known universally as the hydraulic jump.

EL




Hydraulic jump
The specific reason for the occurrence of the hydraulic jump can perhaps
best be explained by reference to the M; curve of Fig. 10.20. Downstream of
the sluice gate the flow decelerates because the slope is not great enough to
maintain supercritical flow. The spegific energy decreases as the depth
increases (proceeding to the left along the lower limb of the specific-energy
diagram, Fig. 10.12). Were th dition to progress until the flow reached

> Cri tream. But this is
a physical impossibili Jré the necessary

energy is lost.
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Figure 10.24
Energy and momentum relations in hydraulic jump.









Derivation of formula for conjugate depths-Method A




Derivation of formula for conjugate depths-Method B

Applying the momentum equation in the x- direction

> F, = pQ(Av)
!
Z FX7P1{°& - PzAz = pgyl Y1 — % Y, per unit width

PQ(AV) :pvl(_ 1)"',0V2(A2V2)
= iy (=YVp) + oV, (Y,V5) per unit width
oY P, -

Y, = pV; (_ylvl) + OV, (Y2V2)




Derivation of formula for conjugate depths-Method B

£y, Y, _% Y, :pvl(—ylvl)+,0V2(y2V2)

2 2
%(3’12 — yzz): p(V22y2 _V12Y1)
%(3@2 - yzz): é(vzzyz _V12Y1)
%(yf —y,’)= é(vzzyz vy, ) 5

From the continuity equation v,=v,y,/y,. substitute this into 5 and
simplify

2
1 11V
E(Y12 - yzz):a([ ;le Y, _Vlzyll

1 1(v,°y.’
E(yl_Y2)(y1+y2):a[ L ) _V12y1)




1 1 2.2
_(yl_yz)(yl"'yz):a[\/l /1 _Vlzyl)

2 Y,

1 2y ]

(Y, = Yo (Yo + Y, )= —y

2( 1 2)( 1 2) \ y2 1

1 v, [y, -,y

S =Y ks +Y2)=—| = 12)

2(1 Y+ Ys) =

1 V12 Y1_Y2j

(Y, = Yo Yy +y,) ="y

2(1 )Y+ Y,) oy,

1 v’y

E(yl—yz)(y1+yz)= g;yl(yl—yz) dividing both sides by (y, - y,)
2

1

E(yl — Y )(yl + yz) V12 Y,

(v, = V,) gy,



1
SU=y atys) 2y

2
(yl - Y2) gy,
1 v,y o .
E(y1 + yz): 0 take 2 to the right side &y, to the left side
2

v,y

Yi¥Y, + y22 =

2v,°
Y22+Y1Y2_ L =0

I PV VL
yz—z Yit. W . 1 Y1




Derivation of formula for conjugate depths-Method C













Energy loss In a hydraulic jump
The head loss A, caused by the jump is the drop in energy from 1 to 2. Or

hi = Ey e ( +V—12)—( +V—22) (10.47)

L 1 2 3% 2g Y2 28 .
On Fig. 10.24 points e and ¢ on the specific energy diagram represent the
conjugate depths, and the horizontal distance between them (= cg = fh) is

the head loss.
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0 1 ol St 1 ] 1 | | T
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2 Energy before jump @ P
E= L S 2g fm = Vg * 7
Energy after jump @ D

Figure 10.24
Energy and momentum relations in hydraulic jump.



Applications of hydraulic jJump

1. Scour protection

—v—\\\
[/\'1 T - ——
|
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{a) Tailwater depth coincident with conjugate depth »,
causing jJump to form at toe of spillway

2 V> M
— £ gl ).é( l-.2
L}
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(b) Tailwater depth less than conjugate depth v,
but greater than critical depth

%\\
. 5
(\@*//_’; :Mz ,

() Tailwater depth greater than conjugate depth v,

Figure 9-31 Effect of tailwater depth on the
character and location of a hydraulic jump.



Applications of hydraulic jJump

'S High flow
ow ftiow ———

Figure 9-33 Typical scour-pro-
d) Auxiliary dam tection works.



Applications of hydraulic jJump

2. Where velocity of fluid has to be reduced



Best wishes for the exam,
without any turbulence, pressure
drag but with all the

buoyancy



