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LECTURE 18

Flow in Open Channels

L. Handia



Open channels

An open channel is one in which the stream is not completely  

enclosed by solid boundaries and therefore has a free surface 

subjected only to atmospheric pressure. 

Zambezi River at Kazungula



Open channels

The flow in such a channel is caused not by some external head, but 

rather only by the gravity (W Sinθ) component along the slope of the 

channel. Thus open-channel flow is often referred to as gravity flow 

or free-surface flow. 

For convenience in dealing with large channel systems, they are 

often divided into reaches. A reach is a continuous stretch of a 

waterway, often chosen to have reasonably uniform properties like 

cross section, slope, and discharge.



Reynolds number in open channels

Open-channel flow is usually fully rough; that is, it occurs at high

Reynolds numbers. For open channels, the Reynolds number is 

defined by Re = RhV/ν, where Rh is the hydraulic radius. Since Rh

= D/4, the critical value of Reynolds number at which the change 

over occurs from laminar flow to turbulent flow in open channels is 

500, whereas in pressure conduits the critical value is 2,000.



Uniform flow

Uniform flow means that the water cross section and depth remain 

constant over a certain reach of the channel as well as over time. This 

requires that the drop in  potential energy due to the fall in elevation 

along the channel be exactly that consumed by the energy dissipation 

through boundary friction and turbulence.

The depth in uniform flow is commonly referred to as the normal flow, 

yo

Uniform flow is an equilibrium condition (see Slide 7) that flow tends 

to if the channel is sufficiently long with constant slope, cross section, 

and roughness. 



Uniform flow



Uniform flow

Definitions

S0  is the slope of the channel bed

Slope Sw is the slope of the water surface

Slope S is the slope of the energy line

Y1is upstream water depth

Y2 is downstream water depth

θ is the angle the channel bed makes with the horizontal

L is distance along the channel bed between sections 1 and 2



Uniform flow

In uniform flow (Fig. 10.3) the cross section through which flow 

occurs is constant along the channel, and so also is the velocity. 

Thus, y1 = y2 and v1 = v2 and the channel bed, water surface, and 

energy line are parallel to one another. Also, SW = S0 = -Δz/ Δ x = tan 

θ, while S = hL/L = sin θ, where θ is the angle the channel bed makes 

with the horizontal. 
hL is head loss



Consider the short reach of length L along the channel between stations 1 and 2 in 

uniform flow with water cross section of area A (Fig. 10.3). As the flow is neither 

accelerating nor decelerating, we may consider the body of water contained in the 

reach in static equilibrium.

Summing forces along the channel, the hydrostatic-pressure forces F1 and F2 balance 

each other, since there is no change in the depth y between the stations. The only 

force in the direction of motion is the gravity component, and this must be resisted 

by the average boundary shear stress ഥτ0, acting over the area PL, where P is the 

wetted perimeter of the section. Thus

But sin θ = hL/L = S. Solving for ഥτ0, we have
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where Rh is the hydraulic radius and for most slopes (with θ<5.7°) S0

may be taken as equal to S. Substituting the value of ഥτ0 from Eq. (8.8) 

and replacing S with S0,

This may be solved for v in terms of either the friction coefficient Cf

or the conventional friction factor f [Eq. (8.11)] to give

0

0

0
0

2

8
v

4

2
v

2
v

2

v

SR
f

g

ρ
f

SρgR

ρC

SγR
SγRρC

h

h

f

h
hf







Cf = f / 4 
(Lecture 16, Slide 29)

10.5

0

2

0
2

SR
v

C hf  

From previous slide



Chezy equation
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Antoine de Chézy (1 September 1718, in Châlons-en-Champagne – 5 

October 1798, Paris) was a French hydraulics engineer. He is known for 

the Chézy formula, which concerned the velocity of pipe flow,[1] and in 

modified form he used it for open channel flow as well.[2] He died in 1798 

after being director of the École nationale des ponts et chaussées for less 

than a year.[3] His son was the orientalist Antoine-Léonard de Chézy.

https://en.wikipedia.org/wiki/Ch%C3%A2lons-en-Champagne
https://en.wikipedia.org/wiki/Ch%C3%A9zy_formula
https://en.wikipedia.org/wiki/Antoine_de_Ch%C3%A9zy
https://en.wikipedia.org/wiki/Antoine_de_Ch%C3%A9zy
https://en.wikipedia.org/wiki/%C3%89cole_nationale_des_ponts_et_chauss%C3%A9es
https://en.wikipedia.org/wiki/Antoine_de_Ch%C3%A9zy
https://en.wikipedia.org/wiki/Antoine-L%C3%A9onard_de_Ch%C3%A9zy




Mannings formula

One of the best as well as one of the most widely used formulas for 

uniform flow in open channels is that published by the Irish engineer 

Robert Manning (1816-1897). Manning had found from many tests 

that the value of C in the Chézyformula varied approximately as 𝑅ℎ
Τ1 6, 

and others observed that the proportionality factor was very close to 

the reciprocal of n, the coefficient of roughness in the previously 

used, but complicated and inaccurate, Kutter formula. This led to the 

formula that has since spread to all parts of the world. The Manning 

formula is
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Manning was born in Normandy, France, the 

son of a soldier who had fought the previous 

year at the Battle of Waterloo. In 1826 he 

moved to Waterford, Ireland and in time 

worked as an accountant.

Manning did not receive any education or 

formal training in fluid mechanics or 

engineering. His accounting background and 

pragmatism influenced his work and drove 

him to reduce problems to their simplest 

form. He compared and evaluated seven best 

known formulae of the time for the flow of 

water in a channel: Du Buat (1786), 

Eyelwein (1814), Weisbach (1845), St. 

Venant (1851), Neville (1860), Darcy and 

Bazin (1865), and Ganguillet and Kutter

(1869). He calculated the velocity obtained 

from each formula for a given slope and for 

hydraulic radii varying from 0.25 m to 30 m. 

Then, for each condition, he found the mean 

value of the seven velocities and developed a 

formula that best fitted the data.

https://en.wikipedia.org/wiki/Normandy
https://en.wikipedia.org/wiki/Battle_of_Waterloo
https://en.wikipedia.org/wiki/Waterford,_Ireland


Specific energy and alternate depths



Specific energy and alternate depths



Let us consider how E will vary with y if q (=Q/b) remains constant. 

A plot of E vs. y is hyperbola-like with asymptotes (E - y) = 0 (that is, E 

= y) and y = 0. Such a curve, shown in Fig. 10.12, is known as the 

specific energy diagram. Actually each different value of q will give a 

different curve, as shown in Fig. 10.12. For a particular q, we see there 

are two possible values of y for a given value of E. These are known as 

alternate depths. Equation (10.19) is a cubic equation with three roots, 

the third root being negative has no physical meaning (i.e., negative 

depth is impossible). 
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From Eq. 10.21 ( )
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From Eq. 10.22 ( )

10.24

Hence 10.25

And 10.26

When flow occurs at critical depth, both Eq. 10.22 and 10.26 are 

satisfied and the velocity head is one half the depth (illustrate)
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Subcritical and supercritical flows



Rewriting Eq. 10.23

Equating this to Eq. 10.18

Replacing Rh by y since Rh = y

Subcritical and supercritical flows
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Occurrence of critical depth

• Weir

• For thin plate weir Q = Cd b 2 g h 3 / 2



Occurrence of critical depth

• Flumes (venturi, parshall etc)



Occurrence of critical depth

• Flumes



Occurrence of critical depth

• Flumes



Hydraulic jump



Hydraulic jump

Energy can not increase unless from an external source such as a pump







Derivation of formula for conjugate depths-Method A



Derivation of formula for conjugate depths-Method B

Applying the momentum equation in the x- direction
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Derivation of formula for conjugate depths-Method B
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From the continuity equation v2=v1y1/y2. substitute this into 5 and 

simplify
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Derivation of formula for conjugate depths-Method C









Energy loss in a hydraulic jump

Energy after jump

Energy before jump



Applications of hydraulic jump

1. Scour protection



Applications of hydraulic jump



Applications of hydraulic jump

2. Where velocity of fluid has to be reduced



Best wishes for the exam, 

without any turbulence, pressure 

drag but with all the 

buoyancy


