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PREFACE TO THE FIFTH EDITION

 
I am pleased to present the Fifth Edition of this book. The warm reception, which the 

previous editions and reprints of this book have enjoyed all over India and abroad has been 
a matter of satisfaction to me.

Besides revising the whole book two new chapters numbered 17 in “Fluid Mechanics” 
(Part – I) and 8 in “Hydraulic Machines” (Part – II), the title of both being “Universities’ 
Questions (Latest) with Solutions”, have been added separately to update the book 
comprehensively.

I’m thankful to the Management Team and the Editorial Department of S. Chand & 
Company Ltd. for all help and support in the publication of this book.

Any suggestions for the improvement of this book will be thankfully acknowledged 
and incorporated in the next edition.

Er. R.K. Rajput
 (Author) 

Disclaimer : While the author of this book has made every effort to avoid any mistake or omission and has used his skill, expertise 
and knowledge to the best of his capacity to provide accurate and updated information. The author and S. Chand do not give 
any representation or warranty with respect to the accuracy or completeness of the contents of this publication and are selling 
this publication on the condition and understanding that they shall not be made liable in any manner whatsoever. S.Chand and 
the author expressly disclaim all and any liability/responsibility to any person, whether a purchaser or reader of this publication 
or not, in respect of anything and everything forming part of the contents of this publication. S. Chand shall not be responsible 
for any errors, omissions or damages arising out of the use of the information contained in this publication.
Further, the appearance of the personal name, location, place and incidence, if any; in the illustrations used herein is purely 
coincidental and work of imagination. Thus the same should in no manner be termed as defamatory to any individual.



PREFACE TO THE FIRST EDITION

The main object of writing this book on the subject of Fluid Mechanics and Hydraulic 
Machines is to present to the student community, a book which should contain compre-
hensive treatment of the subject matter in simple, lucid and direct language and envelope 
a large number of solved problems properly graded, including typical examples, from 
examination point of view.

The book comprises 22 chapters and is divided into two parts: Part I deals with ‘Fluid 
Mechanics’ while Part II deals with ‘Hydraulic Machines’ (Fluid Power Engineering). All 
chapters of the book are saturated with much needed text supported by simple and self-
explanatory figures and large number of Worked Examples including Typical Examples (for 
competitive examinations). At the end of each chapter Highlights, Objective Type Questions, 
Theoretical Questions and Unsolved Examples have been added to make the book a compre-
hensive and a complete unit in all respects.

The book will prove to be a boon to the students preparing for engineering under-
graduate, AMIE Section B (India) and competitive examinations.

The author’s thanks are due to his wife Ramesh Rajput for extending all cooperation 
during preparation of the manuscript.

In the end the author wishes to express his gratitude to Shri Ravindra Kumar Gupta, 
Director, S. Chand & Company Ltd., New Delhi, for taking a lot of pains in bringing out 
the book, with extremely good presentation, in a short span of time.

Although every care has been taken to make the book free of errors both in the text as 
well as  solved examples, yet the author shall feel obliged if errors present are brought to 
his notice. Constructive criticism of the book will be warmly received.

 Er. R.K. Rajput
(Author)

  



NOMENCLATURE
a Acceleration
A Area
As Area of suction pipe, surge tank
Ad Area of delivery pipe
B Width of wheel (turbine)
b Width, bed width of rectangular or trapezoidal channel
cp Specific heat at constant pressure
CP Centipoise
Cv Specific heat at constant volume
C Chezy’s discharge coefficient
C Celerity of a pressure wave
Cc Coefficient of contraction
Cd Discharge coefficient of weirs, orifice plates
CD Drag coefficient
CD Local drag coefficient
Cv Coefficient of velocity
d Diameter of orifice plate, pipe, particle
D Diameter of pipe, wheel
dd Diameter of delivery pipe
ds Diameter of suction pipe
e Linear strain
E Young’s modulus of elasticity of material
f Darcy Weisbach friction coefficient, frequency
F Force
FB Force exerted by boundary on the fluid
FD Drag force on the body
FL Lift force
Fr Froude number
g Gravitational acceleration
h Piezometric head, specific enthalpy
hd Delivery head
hf Frictional loss of head
hs Suction head
Hg Gross head
H Total energy head, net head
had Acceleration head for delivery pipe
has Acceleration head for suction pipe
I Moment of inertia (of area), moment of inertia (of mass)
ld Length of delivery pipe
ls Length of suction pipe
ld´ Length of delivery pipe between cylinder to air vessel 
ls´ Length of suction pipe between cylinder and air vessel



k Roughness height
K Conveyance
K Head loss coefficient, bulk modulus of elasticity, blade friction coefficient
Kt Vane thickness factor
Ku Speed ratio
Kf Flow ratio
m Mass
M Momentum, Mach number
n ratio B/D
N Manning’s roughness coefficient, revolutions per minute
Ns Specific speed
p, ps Pressure, stagnation pressure
P Power, shaft power (turbine), Poise, force
q Discharge per unit width, discharge per jet
Q Discharge, heat
r Distance from the centre
R Radius of pipe, hydraulic radius, radius of pipe bend
Ro Universal gas constant
Re Reynolds number
S Specific gravity, bed slope of channel
t Thickness, time
T Absolute temperature in Kelvins
T Torque, water surface width
u Instantaneous velocity at a point in X-direction
uf Shear friction velocity
U Free stream velocity
Vd Velocity of flow in delivery pipe
V Velocity of flow in the cylinder
Vs Velocity of flow in suction pipe
v Instantaneous velocity at a point in Y-direction
v Specific volume
vc Critical velocity
Va Velocity of approach
v Time averaged velocity at a point in Y-direction
Vr Relative velocity
Vf Velocity of flow (in turbines and pumps)
Vw  Velocity of swirl (in turbines and pumps)
V Volume
w Weight density, Instantaneous velocity at a point in Z-direction
W Weight of fluid, workdone
x Distance in X-direction
y Distance in Y-direction, depth of flow
yc Critical depth
x– Depth of centroid of area below water surface
Z Number of buckets/vanes
z elevation



Greek Notations

α Energy correction factor, Mach angle, angle
β Momentum correction factor, angle
γ Ratio of specific heats
δ Boundary layer thickness
δ´ Laminar sub-layer thickness
δ  Displacement thickness of boundary layer
*∆s Change in entropy
η Efficiency, dimensionless distance (y/δ)
θ Angle, momentum thickness of boundary layer
µ Coefficient of dynamic viscosity
ν Kinematic viscosity
ρ Mass density of fluid
σ Coefficient of surface tension, cavitation number (Thoma number)
τ Shear stress
τ0 Bottom shear stress
φ Angle, velocity potential
ψ Stream function
ω Angular velocity
Γ Circulation
Ω Vorticity

Subscript 0 refer to any quantity at reference section

Subscripts 1, 2 refer to any quantity at section 1 or 2

Subscripts x, y, z refer to any quantity in x, y, z direction

Subscripts m, p refer to any quantity in model and prototype

Subscript r refer to the ratio of any quantity in model to that in prototype.
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PART – I

FLUID MECHANICS



1.1.   INTRODUCTION 

Hydraulics: 
 Hydraulics (this word has been derived from a 
Greek work ‘Hudour’ which means water) may be 
defined as follows :
 “It is that branch of Engineering-science, which 
deals with water (at rest or in motion).”

 or
 “It is that branch of Engineering-science which 

is based  on experimental observation of water flow.”

Fluid Mechanics: 
 Fluid mechanics may be defined as that branch of 
Engineering-science which deals with the behaviour of 
fluid under the conditions of rest and motion.
 The fluid mechanics may be divided into three 
parts: Statics, kinematics and dynamics.

1

 Statics. The study of incompressible fluids under static conditions is called hydrostatics and 
that dealing with the compressible static gases is termed as aerostatics.
 Kinematics. It deals with the velocities, accelerations and the patterns of flow only. Forces or 
energy causing velocity and acceleration are not dealt under this heading.
 Dynamics. It deals with the relations between velocities, accelerations of fluid with the forces 
or energy causing them.

Properties of Fluids–General Aspects: 
 The matter can be classified on the basis of the spacing between the molecules of the matter as 
follows:
 1. Solid state, and
 2. Fluid state,
 (i) Liquid state, and (ii) Gaseous state.

Chapter

PROPERTIES OF FLUIDS

1

 1.1. Introduction  
 1.2. Fluid 
 1.3. Liquids and their properties
 1.4. Density-mass density-weight 
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 In solids, the molecules are very closely spaced whereas in liquids the spacing between the 
different molecules is relatively large and in gases the spacing between the molecules is still large. It 
means that inter-molecular cohesive forces are large in solids, smaller in liquids and extremely small 
in gases, and on account of this fact, solids possess compact and rigid form, liquid molecules can 
move freely within the liquid mass and the molecules of gases have greater freedom of movement 
so that the gases fill the container completely in which they are placed.
 A solid can resist tensile, compressive and shear stresses upto a certain limit whereas a fluid has 
no tensile strength or very little of it and it can resist the compressive forces only when it is kept in a 
container. When a fluid is subjected to a shearing force it deforms continuously as long as the force 
is applied. The amount of shear stress in a fluid depends on the magnitude of the rate of deformation 
of the fluid element.
 Liquids and gases exhibit different characteristics. The liquids under ordinary conditions are 
quite difficult to compress (and therefore they may for most purposes be regarded as incompressible) 
whereas gases can be compressed much readily under the action of external pressure (and when the 
external pressure is removed the gases tend to expand indefinitely).

1.2.   FLUID  

 A fluid may be defined as follows:
 “A fluid is a substance which is capable of flowing.”

or
 “A fluid is a substance which deforms continuously when subjected to external shearing 
force.”
 A fluid has the following characteristics:
 1. It has no definite shape of its own, but conforms to the shape of the containing vessel.
 2. Even a small amount of shear force exerted on a liquid/fluid will cause it to undergo a de-
formation which continues as long as the force continues to be applied.

A fluid may be classified as follows:
A. (i) Liquid,  (ii) Gas,  (iii) Vapour.
B. (i) Ideal fluids  (ii) Real fluids.

Liquid 
  A liquid is a fluid which possesses a definite volume (which varies only slightly with tem-
perature and pressure).
  Liquids have bulk elastic modulus when under compression and will store up energy in the 
same manner as a solid. As the contraction of volume of a liquid under compression is extremely 
small, it is usually ignored and the liquid is assumed to be incompressible. A liquid will withstand 
a slight amount of tension due to molecular attraction between the particles which will cause an 
apparent shear resistance, between two adjacent layers. This phenomenon is known as viscosity.
  All known liquids vaporise at narrow pressures above zero, depending on the temperature.
 Gas. It possesses no definite volume and is compressible.
 Vapour. It is a gas whose temperature and pressure are such that it is very near the liquid state 
(e.g., steam).
	 Ideal	fluids. An ideal fluid is one which has no viscosity and surface tension and is incompressible. 
In true sense no such fluid exists in nature. However fluids which have low viscosities such as water 
and air can be treated as ideal fluids under certain conditions. The assumption of ideal fluids helps 
in simplifying the mathematical analysis.
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	 Real	fluids.  A real practical fluid is one which has viscosity, surface tension and compressibility 
in addition to the density. The real fluids are actually available in nature.
 Continuum. A continuous and homogeneous medium is called continuum. From the continuum 
view point, the overall properties and behaviour of fluids can be studied without regard for its 
atomic and molecular structure.

1.3.   LIQUIDS AND THEIR PROPERTIES  

	    Liquid can be easily distinguished from a solid or a gas.

    Solid has a definite shape.

  A liquid takes the shape of vessel into which it is poured. 

  A gas completely fills the vessel which contains it.
 The properties of water are of much importance because the subject of hydraulics is mainly 
concerned with it. Some important properties of water which will be considered are:
 (i) Density, (ii) Specific gravity, (iii) Viscosity, 
 (iv) Vapour pressure, (v) Cohesion, (vi) Adhesion,
 (vii) Surface tension, (viii) Capillarity, and (ix) Compressibility.

1.4.   DENSITY  

1.4.1 Mass Density
 The density (also known as mass density or specific mass) of a liquid may be defined as the 

mass per unit volume m
V
 
 
 

at a standard temperature and pressure. It is usually denoted by ρ (rho). 

Its units are  kg/m3, i.e.,   m
V

ρ =  ...(1.1)

1.4.2 Weight Density
 The weight density (also known as specific weight) is defined as the weight per unit volume at 
the standard temperature and pressure. It is usually denoted by w.
  w = 	g ...(1.2)
 For the purposes of all calculations, relating to Hydraulics and hydraulic machines, the specific 
weight of water is taken as follows:
 In S.I. Units: w = 9.81 kN/m3 (or 9.81× 10–6 N/mm3)
 In M.K.S. Units: w = 1000 kgf /m

3

1.4.3 Specific volume
 It is defined as volume per unit mass of fluid. It is denoted by v.

 Mathematically, v = 1V
m
=
ρ

 ...(1.3)

1.5.   SPECIFIC GRAVITY  

 Specific gravity is the ratio of the specific weight of the liquid to the specific weight of a standard 
fluid. It is dimensionless and has no units. It is represented by S.
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 For liquids, the standard fluid is pure water at 4°C.

	 ∴ Specific gravity = Specific weight of liquid
Specific weight of pure water

liquid

water

w
w

=

 Example 1.1.  Calculate the specific weight, specific mass, specific volume and specific gravity 
of a liquid having a volume of 6 m3 and weight of 44 kN.

 Solution:  Volume of the liquid = 6 m3

  Weight of the liquid  = 44 kN
 Specific	weight,	w :

   w = Weight of liquid 44
Volumeof liquid 6

=  = 7.333 kN/m3 (Ans.)

  Specific	mass	or	mass	density,	ρ	:

  ρ = 7.333 1000
9.81

w
g

×=  = 747.5	kg/m3 (Ans.)

  Specific volume, v = 1 1
747.5

=
ρ

 = 0.00134 m3/kg (Ans.)

 Specific	gravity,	S :

  S = 7.333
9.81

liquid

water

w
w

=  =  0.747 (Ans.)

1.6.   VISCOSITY 

  Viscosity may be defined as the property of a fluid which determines its resistance to shearing 
stresses. It is a measure of the internal fluid friction which causes resistance to flow. It is primarily 
due to cohesion and molecular momentum exchange between fluid layers, and as flow occurs, these 
effects appear as shearing stresses between the moving layers of fluid.
 An ideal fluid has no viscosity. There is no fluid which can be classified as a perfectly ideal fluid. 
However, the fluids with very little viscosity are 
sometimes considered as ideal fluids.
 Viscosity of fluids is due to cohesion and 
interaction between particles.
 Refer to Fig 1.1. When two layers of fluid, 
at a distance ‘dy’ apart, move one over the other 
at different velocities, say u and u + du, the 
viscosity together with relative velocity causes a 
shear stress acting between the fluid layers. The 
top layer causes a shear stress on the adjacent 
lower layer while the lower layer causes a shear 
stress on the adjacent top layer. This shear stress 
is proportional to the rate of change of velocity 
with respect to y. It is denoted by τ (called Tau).

 Mathematically τ ∝ du
dy

 or τ = µ. du
dy

 ...(1.4)

u

u + du

du

dy

Upper layer

Lower layer

Solid boundary
y

u

Fig. 1.1 Velocity variation near a solid boundary.
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 where, µ = Constant of proportionality and is known as co-efficient of dynamic viscosity or only 
viscosity.

 du
dy

 = Rate of shear stress or rate of shear deformation or velocity gradient.

 From Fig. 1.1, we have µ = 
du
dy

τ
 
  

 ...(1.5)

 Thus viscosity may also be defined as the shear stress required to produce unit rate of shear 
strain.
 Units of Viscosity:
 In S.I. Units: N.s/m2

 In M.K.S. Units:  kgf.sec/m2

2

2
force × timeforce/lengthforce/area

1 1 (length)(length/time) ×
length length

 
µ = = = 

 
 



The unit of viscosity in C.G.S. is also called poise = 2
dyne sec

cm
− . One poise = 1

10
N.s/m2

 Note.    The viscosity of water at 20°C is 1
100

 poise or one centipoise.

Kinematic Viscosity :
Kinematic viscosity is defined as the ratio between the dynamic viscosity and density of fluid. 

It is denoted by ν (called nu).

  Mathematically,   v = Viscosity
Density

µ=
ρ

 ...(1.6)

Units of kinematic viscosity:
In SI units: m2/s
In M.K.S. units: m2/sec.
In C.G.S. units the kinematic viscosity is also known as stoke ( = cm2/sec.)
One stoke = 10–4 m2/s

 Note:  Centistoke means 1
100

 stoke.

1.6.1. Newton’s Law of Viscosity
 This law states that the shear stress (τ) on a fluid element layer is directly proportional to the 
rate of shear strain. The constant of proportionality is called the co-efficient of viscosity.

 Mathematically, τ = du
dy

µ α ...(1.7)

 The fluids which follow this law are known as Newtonian fluids.

1.6.2. Types of Fluids
 The fluids may be of the following types:
 Refer to Fig.1.2.
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 1.	 Newtonian	 fluids. These 
fluids follow Newton’s viscosity 
equation (i.e. eqn. 1.7). For such 
fluids µ	  does not change with rate 
of deformation.
 Examples. Water, kerosene, air 
etc.
	 2.	 Non-Newtonian	 fluids.	
Fluids which do not follow the 
linear relationship between shear 
stress and rate of deformation (given 
by eqn. 1.7) are termed as Non-
Newtonian fluids. Such fluids are 
relatively uncommon.
 Examples. Solutions or 
suspensions (slurries), mud flows, 
polymer solutions, blood etc. 
These fluids are generally complex 
mixtures and are studied under 
rheology, a science of deformation 
and flow.
 3. Plastic fluids. In the case of 
a plastic substance which is non-Newtonian fluid an initial yield stress is to be exceeded to cause a 
continuous deformation. These substances are represented by straight line intersecting the vertical 
axis at the “yield stress” (Refer to Fig. 1.2).
 An ideal plastic (or Binigham plastic) has a definite yield stress and a constant linear relation 
between shear stress and the rate of angular deformation. Examples: Sewage sludge, drilling muds 
etc. 
 A thyxotropic substance, which is non-Newtonian fluid, has a non-linear relationship between 
the shear stress and the rate of angular deformation, beyond an initial yield stress. The printer’s ink 
is an example of thyxotropic substance.
 4. Ideal fluid. An ideal fluid is one which is incompressible and has zero viscosity (or in 
other words shear stress is always zero regardless of the motion of the fluid). Thus an ideal fluid is 
represented by the horizontal axis (τ = 0).

A true elastic solid may be represented by the vertical axis of the diagram.
Summary of relations between shear stress (τ) and rate of angular deformation for various types 

of fluids:

 (i) Ideal fluids: τ = 0,    (ii) Newtonian fluids: . ,du
dy

τ = µ

 (iii) Ideal plastics: τ = const. . du
dy

+ µ , (iv) Thyxotropic fluids: . .
nduconst

dy
 τ = + µ  
 

, and

 (v) Non-Newtonian fluids: 
ndu

dy
 τ =  
 

.

 In case of non-Newtonian fluids, if n is less than unity then are called pseudo-plastics  
(e.g., paper pulp, rubber suspension paints) while fluids in which n is greater than unity are known 
as dilatents. (e.g., Butter, printing ink).

Velocity gradient ,

Dilatent fluid

Newtonian fluid

Non-N
ewtonian flu

id

Ideal fluid ( = 0)�

Real plastic

Y
ie

ld
st

re
ss

S
h
ea

r
st

re
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�

2

Ideal plastic

Elastic solid

Thyxotropic substance

du
dy

s
–1

Fig. 1.2. Variation of shear stess with velocity gradient.
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 Ostwald-de-Waele	Equation.	It is an empirical solution to express steaty-state shear stress as 
a function of velocity gradient, and is given as

  τ	yx = 
1ndu du

dy dy

−

α

 If n = 1, this reduces to Newton’s law of viscosity, with α	=	µ
 Example 1.2.  (a) What are the characteristics of an ideal fluid ?
 (b) The general relation between shear stress and velocity gradient of a fluid can be written as

  τ	 = 
nduA B

dy
  + 
 

 where A, B and n are constants that depend upon the type of fluid and conditions imposed on 
the flow. Comment on the value of these constants so that the fluid may behave as:
 (i) an ideal fluid,
 (ii) a Newtonian fluid and
 (iii) A non-Newtonian fluid.
 (c) Indicate whether the fluid with the following characteristics is a Newtonian or 
  non-Newtonian.
 (i) τ = Ay + B and u = C1 + C2y + C3y

2

 (ii) τ = Ayn( n – 1) and u = Cyn

 Solution. (a) An ideal fluid has the following characteristics:
  No viscosity  (i.e., µ = 0)
  No surface tension.
   Incompressible (i.e., ρ	=	constant)
 An ideal fluid can slip near a solid boundary and cannot sustain any shear force however small 
it may be.

 (b)  τ	 = 
nduA B

dy
  + 
 

 (i) An ideal fluid:
  Since an ideal fluid has zero viscosity (i.e., shear stress is always zero regardless of the 
motion of the fluid), therefore.
  A = B = 0
 (ii) A Newtonian fluid:
  Since a Newtonian fluid follows Newton’s law of viscosity;

  τ	 = 
du
dy

µ α, therefore:

  n = 1 and B = 0
  The constant A takes the value of dynamic viscosity µ for the fluid.
 Air, water, kerosene etc. behave as Newtonian fluids under normal working conditions.
 (iii) A non-Newtonian fluid: 
 Depending on the value of power index n, the non-Newtonian fluids are classified as:

  If n > 1 and B = 0 ... Dilatant fluids.
 Examples: Sugar solution, aqueous suspension and printing ink.

  If n < 1 and B = 0 .. Pseudo plastic fluids.
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 Examples :  Blood, milk, liquid cement and clay. 

  If n = 1 and B = τ0 .... Bingham	fluid	or	ideal	plastic.
 An ideal plastic fluid has a definite yield stress and a constant-linear relation between shear 
stress developed and rate of deformation:

 i.e. τ	 = 0
du
dy

τ + µ

 Examples: Sewage sludge, water suspension of clay and flyash, etc.
 (c) (i) τ = Ay + B and u = C1 + C2 y + C3 y

2

 Now, du
dy

 = d
dy

 (C1 + C2y + C3y2) = C2 +2C3y

 For Newtonian fluid,  τ	 = du
dy

µ α

 ∴ τ	 = µ(C2 + 2C3y) = 2µC3y + µC2
 which can be rewritten as
  τ = Ay + B  where A = 2µC3 and B = µC2
 Since this has the same form as the given shear stress, therefore the fluid characteristics 
correspond to that of an ideal fluid.
 (ii) τ = Ayn(n – 1) and u = Cyn

 Now, du
dy

 = d
dy

 (Cyn) = Cn(y)n – 1

 For a Newtonian fluid τ	 = 1( )ndu Cn y
dy

−µ = µ

 This expression does not conform to the value of shear stress and as such the fluid is non-
Newtonian in character.

1.6.3. Effect of Temperature on Viscosity
 Viscosity is effected by temperature. The viscosity of liquids decreases but that of gases 
increases with increase in temperature. This is due to the reason that in liquids the shear stress 
is due to the inter-molecular cohesion which decreases with increase of temperature. In gases the 
inter-molecular cohesion is negligible and the shear stress is due to exchange of momentum of 
the molecules, normal to the direction of motion. The molecular activity increases with rise in 
temperature and so does the viscosity of gas.
 For liquids: µT = Aeb/T ...(1.8)

 For gases: µT = 
1/2

1 /
bT

a T+
 ...(1.9)

 where, µT = Dynamic viscosity at absolute temperature T,
   A, b = Constants (for a given liquid), and
  a, b = Constants (for a given gas).

1.6.4. Effect of Pressure on Viscosity
 The viscosity under ordinary conditions is not appreciably affected by the changes in pressure. 
However, the viscosity of some oils has been found to increase with increase in pressure.
 Example 1.3.  A plate 0.05 mm distant from a fixed plate moves at 1.2 m/s  and requires a force 
of 2.2 N/m2 to maintain this speed. Find the viscosity of the fluid between the plates.
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Solution: Velocity of the moving plate,   u = 1.2 m/s
 Distance between the plates,  dy = 0.05 mm = 0.05 × 10–3 m
 Force on the moving plate,  F = 2.2 N/m2

 Viscosity	of	the	fluid,	µ:

We know, . du
dy

τ = µ

 where τ = shear stress or force per 
   unit area = 2.2 N/m2, 
  du = change of velocity
  = u – 0 = 1.2 m/s and 
  dy = change of distance
  = 0.05 × 10–3m.

	 ∴	 2.2 = –3
1.2

0.05 10
µ ×

×

 or, µ = 
–3

–5 22.2 0.05 10 9.16 10 N.s/m
1.2

× × = ×  2
1 N.s1 poise =

10 m
 
  


 = 9.16 × 10–4 poise (Ans.)
 Example 1.4.  A plate having an area of 0.6 m2 is sliding down the inclined plane at 30° to the 
horizontal with a velocity of  0.36 m/s. There is a cushion of fluid 1.8 mm thick between the plane 
and the plate. Find the viscosity of the fluid if the weight of the plate is 280 N.
 Solution: Area of plate,   A  = 0.6 m2

  Weight of plate,  W  = 280 N
  Velocity of plate,  u  = 0.36 m/s
  Thickness of film,  t  = dy = 1.8 mm = 1.8 × 10–3 m
	 Viscosity	of	the	fluid,	µ:
 Component of W along the plate  = W sin θ = 280 sin 30° = 140 N 

�

�

�������

W sin � W�������

u = 0.36 m/s

Plate

dy = 1.8 mm

Fig. 1.4

	 ∴  Shear force on the bottom surface of the plate, F = 140 N and shear stress, 

      τ	 = 140
0.6

F
A
= = 233.33N/m2 

 We know,  τ	 = . du
dy

µ

 Where, du = change of velocity = u – 0 = 0.36 m/s

Moving plate

Fixed plate

dy = 0.05 mm

u = 1.2 m/s

Fig. 1.3
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  dy = t = 1.8 × 10–3 m

	 ∴ 233.33 = –3
0.36

1.8 10
µ ×

×

 or, µ = 
–3

2233.33 1.8 10 1.166 N.s/m
0.36
× × = = 11.66 poise (Ans.)

 Example 1.5.  The space between two square flat parallel plates is filled with oil. Each side of 
the plate is 720 mm. The thickness of the oil film is 15 mm. The upper plate, which moves at 3 m/s 
requires a force of 120 N to maintain the speed. Determine:
 (i) The dynamic viscosity of the oil;
 (ii) The kinematic viscosity of oil if the specific gravity of oil is 0.95.
 Solution.  Each side of a square plate = 720 mm = 0.72 m
  The thickness of the oil, dy =  15 mm = 0.015 m
  Velocity of the upper plate = 3 m/s 
 ∴ Change of velocity between plates, du   = 3 – 0 = 3 m/s
  Force required on upper plate, F = 120 N

 ∴   Shear stress, τ = 2force 120 231.5N/m
area 0.72 0.72

= =
×

 (i)	 Dynamic	viscosity,	µ:	
   We know that,
  τ	 = . du

dy
µ

   231.5  = 3.
0.015

µ

	 ∴	 µ	 =	 231.5 0.015
3
×  = 1.16 N.s/m2 (Ans.)

 (ii) Kinematic viscosity, v:
   Weight density of oil, w = 0.95 × 9.81 kN/m2 = 9.32 kN/m2 = or 9320 N/m3

   Mass density of oil, ρ = 9320 950
9.81

w
g
= =

  Using the relation: ν = 21.16 0.00122 m /s
950

µ
= =

ρ

  Hence ν = 0.00122 m2/s ( Ans.)
 Example 1.6.  The velocity distribution for flow over a plate is gives by u = 2y – y2  where u is 
the velocity in m/s at a distance y metres above the plate. Determine the velocity gradient and shear 
stress at the boundary and 1.5 m from it.

Take dynamic viscosity of fluid as 0.9 N.s/m2.

Soluton.  u = 2y – y2 ...(given)   				∴  2 – 2du y
dy

=

 (i) Velocity	gradient,	du
dy :

  At the boundary :  At y = 0, –1

0
.

y

du
dy =

  = 
 

(s Ans2 )

  At 0.15 m from the boundary:

   At y = 0.15 m, 
0.15

2 2 0.15 11.7 s
y

du
dy

−

=

  = − × = 
 

(Ans.)
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 (ii) Shear	stress,	τ:
   (τ	)y = 0 = 

0
.

y

du
dy =

 µ  
 

 = 0.9 × 2 = 1.8 N/m2 (Ans.)

  and, (τ	)y = 0.15 = 
0.15y

du
dy =

 µ  
 

 = 0.9 × 1.7 = 1.53 N/m2 (Ans.)

  [Where µ = 0.9 N.s/m2 ... (given)]
 Example 1.7. A lubricating oil of viscosity µ	undergoes steady shear between a fixed lower 
plate and an upper plate moving at speed V. The clearance between the plates is t. Show that a linear 
velocity profile results if the fluid does not slip at either plate.
 Solution. For the given geometry 
and motion, the shear stress τ is constant 
throughout. From Newton’s law of 
viscosity, we have 

 constantdu
dy

τ= =
µ

 or u = ly + m
 The constantS l and m are evaluated 
from the no slip conditions at the upper 
and lower plates.
 At y = 0, µ = 0 			∴ m = 0
 At   y = t, u = V

 ∴  V = lt + 0 or Vl
t

=

 ∴ The velocity profile between plates is then given by:

          Vyu
t

=  and  is linear  as  indicated in Fig 1.5 (Ans.)

 Example 1.8. The velocity distribution of flow over a plate is parabolic with vertex 30 cm from 
the plate, where the velocity is 180 cm/s. If the viscosity of the fluid is 0.9 N.s/m2  find the velocity 
gradients and shear stresses at distances of 0, 15 cm and 30 cm from the plate.
 Solution. Distance of the vertex from the 
plate = 30 cm.
 Velocity at vertex,  u = 180 cm/s
 Viscosity of the fluid = 0.9 N.s/m2

 The equation of velocity profile, which is 
parabolic, is given by
   u = ly2 + my  + n                       ...(1)
 where l, m and n are constants. The 
values of these constants are found from the 
following boundary conditions:
 (i) At  y = 0, u = 0,
 (ii) At y = 30 cm, 
       u = 180 cm/s and

Moving plate
u V=

u u Y= ( )

u = 0

Fixed plate

Y

t

Fig. 1.5

Vertex

Velocity distribution
(Parabolic)

Plate

u = 180 cm/s

u

Y

3
0

cm

Fig. 1.6
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 (iii)  At y = 30 cm,            0du
dy

= .

 Substituting boundary conditions (i) in eqn. (1), we get
  0 = 0 + 0 + n ∴ n = 0
 Substituting boundary conditions (ii) in eqn. (1), we get
  180 = l × (30)2 + m × 30     or     180 = 900 l + 30 m ...(2)
 Substituting boundary conditions (iii) in eqn. (1), we get

  du
dy

 = 2ly + m ∴	 0 = 2l × 30 + m    or    0 = 60l + m ...(3)

 Solving eqns. (2) and (3), we have l = – 0.2 and m = 12.
 Substituting the values of l, m  and n in eqn. (1), we get u = – 0.2 y2 + 12y
 Velocity	gradients,	du

dy
 :

  du
dy

 = – 0.2 × 2y + 12 = – 0.4y + 12

 At y = 0,
0y

du
dy =

 
 
 

 = 12/s (Ans.) 

 At y = 15 cm, 
15y

du
dy =

 
 
 

 = –0.4 × 15 + 12 = 6/s (Ans.)

 At y = 30 cm, 
30y

du
dy =

 
 
 

= –0.4 × 30 + 12 = 0 (Ans.)

 Shear	stresses,	τ:

 We know,  τ	 = du
dy

µ

 At  y = 0, (τ	)y = 0 =
0

.
y

du
dy =

 µ  
 

 = 0.9 × 12 = 10.8 N/m2 (Ans.)

 At  y = 15, (τ)y = 15
 = 

15
.

y

du
dy =

 µ  
 

 = 0.9 × 6 = 5.4 N/m2 (Ans.)

 At y = 30, (τ)y = 30
 = 

30
.

y

du
dy =

 µ  
 

 = 0.9 × 0 = 0 (Ans.)

 Example 1.9. A fluid has an absolute viscosity of 0.048 Pa-s and a specific gravity of 0.913. 
For flow of such a fluid over a solid flat surface, the velocity at a point 75 mm away from the surface 
is 1.125 m/s. Calculate the shear stresses at the solid boundary and also at points 25 mm, 50 mm 
and 75 mm away from the surface in normal direction, if the velocity distribution across the surface 
is (i) linear, (ii) parabolic with vertex at the point 75 mm away from the surface.

  (UPTU)
 Solution. (i) Linear velocity distribution:

 If velocity distribution is linear, du
dy

is same at every point within the boundary layer and is 

equal to 1.125
0.075

du
dy

=  per s.
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Shear stress for all the locations,

	 	 τ = µ 1.1250.048
0.075

du
dy

= ×  = 0.72 N/m  (Ans.)

 (ii) Parabolic velocity distribution:
   For parabolic velocity distribution, let the velocity profile be u = ly2 + my + n  
   where the constants, l, m, and n are found from the boundary conditions.
  At y = 0,  u = 0, giving n = 0
  At y = 0.075 m, u = 1.125 m/s, giving
   1.125 = (0.075)2l + 0.075 m    ...(i)
  or 1.125 = 5.625 × 10–3 l + 0.075 m

  At y = 0.075 m, 0 2 mdu ly
dy

= = +

  or 0 = 2l × 0.075 + m   or  m  = – 0.15 l ...(ii)
   Substituting (ii) in (i), we get
   1.125 = 5.625 × 10–3l – 0.075 × 0.15 l
    = l (5.625 × 10–3 – 0.075 × 0.15) = – 0.005625 l

 	 ∴	 l =	 1.125– – 200
0.005625

=

  and from (ii), we have  m = 30.

  Hence the velocity distribution becomes  u = – 200y2 + 30y, and 30 – 400du y
dy

=

  Hence the shear stresses at the required locations, y, are determined in the table below:

  y (m) 0 0.025 0.05 0.075

(persecond)du
dy

30 20 10 0

Shere stress = du
dy

µ N/m2 1.44 0.96 0.48 0

         (Ans.)
 Example 1.10. A 400 mm diameter shaft is rotating at 200 r.p.m. in a bearing of length 120 mm. 
If the thickness of oil film is 1.5 mm and the dynamic viscosity of the oil is 0.7 N.s/m2, determine:
 (i) Torque required to overcome friction in bearing;
 (ii) Power utilised in overcoming viscous resistance.
 Assume a linear velocity profile.
 Solution. Diameter of the shaft, d = 400 mm = 0.4 m
  Speed of the shaft,  N  = 200 r.p.m.
  Thickness of the oil film,  t  = 1.5 mm = 1.5 × 10–3 m
  Length of the bearing,   l  = 120 mm = 0.12 m
  Viscosity,  µ	 = 0.7 N.s/m2

 Tangential velocity of the shaft,  u = 0.4 200 4.19 m/s
60 60
dN π × ×π = =
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 (i)	 Torque	required	to	overcome	friction,	T :

  We know, τ = . du
dy

µ

  where du = change of velocity = u – 0 = 4.19 m/s

120 mm
Oil filmBearing

Shaft

1.5 mm

4
0
0

m
m

Fig. 1.7

   dy = t = 1.5 × 10–3 m

	 	 ∴  τ = –3
4.190.7

1.5 10
×

×

    = 1955.3 N/m2.
 	 ∴      Shear force,  F = shear stress × area
    = τ	⋅	π dl 
    = 1955.3 × π × 0.4 × 0.12 
    = 294.85 N

  Hence,  viscous torque =  F × d/2 = 294.85 × 0.4
2

    = 58.97 Nm (Ans.)
 (ii) Power	utilised,	P:

   P = T × 2
60

Nπ  watts, where T is in Nm

	 	  P = 58.97 × 2 200 1235W
60

π × =  or 1.235	kW (Ans.)

 Example 1.11. A 150 mm diameter shaft rotates at 1500 r.p.m. in a 200 mm long journal 
bearing with 150.5 mm internal diameter. The uniform annular space between the shaft and the 
bearing is filled with oil of dynamic viscosity 0.8 poise. Calculate the power dissipated as heat.

(Anna University)
 Solution. Given: dshaft = 150 mm; dbearing = 150.5 mm; l = 200 mm = 0.2 m
 N = 1500 r.p.m.; µ = 0.8 poise = 0.8 × 0.1 = 0.08 Ns/m2

 Power	dissipated	as	heat:

  Radial thickness of the oil, dy = (150.5 – 150) / 2 m = 0.00025 m
1000

  Tangential velocity of the shaft, u = 
60
dNπ  = 

–3(150 10 ) 1500 11.78 m/s
60

π × × × =
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	 ∴  Change of velocity, du = u – 0 = 11.78 m/s
 Tangential	stress	in	the	oil	layer,

  τ = . du
dy

µ

 ∴ τ = 211.780.08 3769.6 N/m
0.00025

× =

  Power dissipated as heat  = shear force × tangential velocity of this shaft
   = [ τ × (π dl)] × u
   =  769.6 × π × (150 × 10–3) × 0.2 × 11.78 
   = 4185 W or 4.185	kW	(Ans.)
 Example 1.12. A vertical cylinder of diameter 180 mm rotates concentrically inside another 
cylinder of diameter 181.2 mm. Both the cylinders are 300 mm high. The space between the cylinders 
is filled with a liquid whose viscosity is unknown. Determine the viscosity of the fluid if a torque of 
20 Nm is required to rotate the inner cylinder at 120 r.p.m.
 Solution. Given: Diameter of inner cylinder, d = 180 mm = 0.18 m
  Diameter of outer cylinder, D = 181.2 mm = 0.1812 m
  Length of each cylinder, l = 300 mm = 0.3 m
  Speed of the inner cylinder, N = 120 r.p.m.
  Torque, T = 20 Nm.

3
0
0

m
m

180 mm dia.

Liquid

0.6 mm

Outer cylinder

Inner rotating
cylinder

181.2 mm dia.

Fig. 1.8

 Viscosity	of	the	liquid,	µ:
 Tangential velocity of the inner cylinder

  u = 0.18 120 1.13 m/s
60 60
dN π × ×π = =

 Surface area of the inner cylinder,
  A = πdl = π × 0.18 × 0.3
   = 0.1696 m2

 Using the relation:

  τ = . du
dy

µ
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 where, du = u – 0 = 1.13 – 0
   = 1.13 m/s 

 and dy = 0.1812 – 0.180
2

 = 0.0006 m

  τ = 1.13
0.0006

µ ×  = 1883.33µ

 ∴  Shear force, F = τ × A = 1883.33 µ × 0.1696 N

 ∴  Torque, T = F ×
2
dF ×

   = 1883.33 µ × 0.1696 × 0.18
2

  or 20 = 1883.33 µ × 0.1696 × 0.09

 or µ = 220 0.696 Ns/m
1883.33 0.1696 0.09

=
× ×

 i.e., µ = 6.96 poise (Ans.)

 Example 1.13.  A circular disc of diameter D is slowly rotated in a liquid of large viscosity (µ) 
at a small distance (h) from a fixed surface. Derive an expression of torque (T) necessary to maintain 
an angular velocity (ω).    (M.U.)

 Solution. The arrangement is shown in Fig. 1.9. 

�

dr

D

Stationary surface

h

r

Fig. 1.9

 Consider an elementary ring of disc at radius r and having a width dr. Linear velocity at this 
radius is ωr.

  Shear stress, τ = du
dy

µ

  Torque = shear stress × area × r
   = τ × 2πr dr × r

   = du
dy

µ  × 2πr2 × dr

 Assuming the gap h to be small so that the velocity distribution may be assumed linear.

  du
dy

 = r
h
ω
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 ∴ Torque on the element

  dT = 2 322r r dr r dr
h h

πµωωµ × π × = ×

 ∴  Total  torque, T = 
/2 3

0

2 r dr
h

π πµω ×∫

 or T = ( )
/2 44

0

2 2 1.
4 4 2

D
r D

h h
 πµω πµω=  

 or T = 
4

32
D
h

πµω , which is the required expression. (Ans.)

 Example 1.14.  A 120 mm disc rotates on a table separated by an oil film of  1.8 mm thickness. 
Find the viscosity of oil if the torque required to rotate the disc at 60 r.p.m is 3.6 × 10–4 Nm.
 Assume the velocity gradient in the oil film to be linear.
 Solution. Given:  Diameter of the disc, D = 120 mm = 0.12 m 
  Thickness of oil film, t = 1.8 mm = 1.8 × 10–3 m
  Torque, T = 3.6 × 10–4 Nm
  Speed of the disc, N = 60 r.p.m.

 ∴  Angular speed of the disc, ω = 2 60 2
60 60

N π ×2π = = π rad/s

	 Viscosity,	µ:
 We know that when the velocity gradient is linear,

                      du
dy

 = u
t

120 mm

Table

1.8 mm

N = 60 r.p.m.

Disc

R

Oil film

( )t = dy

Fig. 1.10

 Shearing stress, τ = .u
t

µ .

  Shearing force  = Shearing stress × Area

   = . .2u r dr
t

µ π  (considering an element at radius r and thickness dr)

   = 
22 .. .2 r drr r dr

t t
πµωωµ π =  (where u = ωr, ω	being the angular velocity)
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 ∴  Viscous torque = Shearing force × r

   = 
2 32 . 2 ..r dr r drr

t t
πµω πµω=

 ∴	 Total viscous torque,

  T = 
3 4

3

0 0

2 2
2

R R
r dr Rr dr

t t t
πµω πµω πµω= =∫ ∫

   i.e.,                                       
4

2
RT

t
πµω=

 Substituting the values, we get:

  3.6 × 10–4 = 
4

–3
2 (0.12 / 2)

2 1.8 10
π × µ× π ×

× ×

 or µ = 
–4 –3

4
3.6 10 2 1.8 10

2 (0.06)
× × × ×
π × π×

= 0.00506 N.s/m2 = 0.0506 poise.

 Hence, µ = 0.0506 poise (Ans.)
 Example 1.15.  A solid cone of maximum radius R and vertex angle 2θ is to rotate at angular 
velocity ω. An oil of viscosity µ and thickness t fills the gap between the cone and the housing. 
Derive an expression for the torque required and the rate of heat dissipation in the bearing.
 Solution. Given: Maximum radius of the cone  = R

 Vertex angle = 2θ
 Viscosity the oil = µ
 Thickness of oil = t
Refer Fig. to 1.11.

 Consider an elementary area dA at radius r of the cone.   

      dA = 2πr ds × 
sin
dr
θ

R
Solid cone

t

2�

( )a

�

Oil �

r ds

( )b

ds =

dr

dr

sin�

Fig. 1.11

  Shear stress τ	 = du u
dy t

µ = µ

     Shear force = shear stress × area of the element

   = ( )2
sin

u drr
t

µ π ×
θ

 Viscous torque on the element, dT = ( )2
sin

u drr r
t

µ π × ×
θ
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 Since the cone rotates with angular velocity ω rad/sec., the tangential velocity, u = ωr

 or, dT = ( ) 322
sin sin

r drr r r dr
t t

πµωωµ π × × =
θ θ

 ∴  Total torque, T = 3

0

2
sin

R
r dr

t
πµω

θ ∫
 i.e., T = 

42
sin 4 sin

R
t
πµω × =

θ
4

2
πµω

θ
R

t
 (Ans.)

 Power utilised in overcoming the resistance (or rate of heat dissipation in the bearing),

  P = Tω = 
 
 
 

2
4

2 sin
πµω

θ
R

t
 (Ans.)

 Example 1.16. Two large fixed parallel planes are 12 mm apart. The space between the surfaces 
is filled with oil of viscosity 0.972 N.s/m2. A flat thin plate 0.25 m2

 area moves through the oil at a 
velocity of 0.3 m/s. Calculate the drag force:
 (i) When the plate is equidistant from both the planes, and
 (ii) When the thin plate is at a distance of 4 mm from one of the plane surfaces.
 Solution. Given: Distance between the fixed parallel planes = 12 mm = 0.012 m
  Area of thin plate, A = 0.25 m2

  Velocity of plate, u  = 0.3 m/s
  Viscosity of oil  = 0.972 N.s/m2

 Drag	force,	F:
 (i) When the plate is equidistant from both the planes:
  Let, F1 = Shear force on the upper side of the 

thin plate,
   F2 = Shear force on the lower side of the 

thin plate, 
   F = Total force required to drag the plate 

( = F1 + F2).
  The shear τ1, on the upper side of the thin plate is given by:

   t1 = 
1

. du
dy

 µ  
 

  where, du = 0.3 m/s (relative velocity between upper fixed plane and the plate), and dy = 
6 mm = 0.006 m (distance between the upper fixed plane and the plate)
  (Thickness of the plate neglected).

	 	 ∴	 τ1 = 20.30.972 48.6 N/m
0.006

× =

 	 ∴   Shear force, F1 = τ1
. A = 48.6 × 0.25 = 12.15 N

   Similarly shear stress (τ2) on the lower side of the thin plate is given by

   τ2 = 2

2

0.3. 0.972 48.6 N/m
0.06

duu
dy

  = × = 
 

  and F2 = τ2 . A = 48.6 × 0.25 = 12.15 N
	 	 ∴ F = F1 + F2 = 12.15 + 12.15 = 24.30 N (Ans.)
   (ii) When the thin plate is at a distance of 40 mm from one of the plane surfaces: Refer to Fig. 1.13.

Fixed parallel plane

6 mmPlate
0.3 m/s

F

6 mm

1
2

m
m

Fig. 1.12
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  The shear force on the upper side of the thin 
plate,

   F1 = 1
1

. . duA A
dy

 τ = µ × 
 

    = 0.30.972 0.25 9.11N
0.008

× × =

           The shear force on the lower side of the thin plate,

   F2 = 2
2

. duA A
dy

 τ × = µ × 
 

    = ( )0.30.972 0.25 18.22 N
0.004

× × =

	 	 ∴ Total force F = F1 + F2 = 9.11 + 18.22 = 27.33 N (Ans.)

Example 1.17.  In the Fig. 1.14 is shown a central plate of area 6 m2 being pulled with a force 
of 160 N. If the dynamic viscosities of the two oils are in the ratio of 1:3 and the viscosity of top oil 
is 0.12 N.s/m2  determine the velocity at which the central plate will move.

Solution: Area of the plate, A = 6 m2

   Force applied to the plate, F = 160 N
    Viscosity of top oil, µ = 0.12 N.s/m2

Velocity	of	the	plate,	u:
 Let F1 = Shear force in the 

upper side of thin 
(assumed) plate,

        F2 = Shear force on the 
lower side of the thin 
plate, and 

  F = Total force required to drag the plate
    (= F1 + F2)
 Then, F = F1 + F2 =  τ1 × A + τ2 × A

 = 
1 2

3u duA A
y dy
∂   µ × + µ ×   ∂   

( where τ1 and τ2 are the shear stresses on the two sides of the plate)

 160 = 0.12 × –3 –36 3 0.12 6
6 10 6 10

u u× + × × ×
× ×

or 160 = 120u + 360u = 480u   or   160
480

u =  = 0.333 m/s (Ans.)

 Example 1.18.  A metal plate 1.25 m × 1.25 m × 6 mm  thick and weighing 90 N is placed 
midway   in the 24 mm gap between the two vertical plane surfaces as shown in the Fig. 1.15. The 
gap is filled with an oil of specific gravity 0.85 and dynamic viscosity 3.0 N.s/m2. Determine the 
force required to lift the plate with a constant velocity of 0.15 m/s.

 Solution. Given:  Dimensions of the plate = 1.25 m × 1.25 m × 6 mm
	 ∴  Area of the plate, A = 1.25 × 1.25 = 1.5625 m2

8 mm

0.3 m/s
F

4 mm

1
2

m
m

Fig. 1.13

160 N

1
2

m
m

3�

�����������s/m
�

Plate

6 mm

6 mm

Fig. 1.14
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 Thickness of the plate = 6 mm

 ∴            t1 = t2 = 24 – 6 9 mm
2

=

 (Since the plate is situated midway in the gap)
  Specific gravity of oil = 0.85
  Dynamic viscosity of oil = 3 N.s/m2

  Velocity of the plate = 0.15 m/s
  Weight of the plate = 90 N
 Force required to lift the plate:
 Drag force (or viscous resistance) against the motion of 
the plate,
  F = τ1 . A + τ2 . A
(where τ1 and τ2  are the shear stresses on two sides of the 
plate)

  = 
1 2

. du duA A
dy dy

   µ × + µ ×   
   

  = 
1 2

. .u uA A
t t

µ × + µ ×

  = 
1 2

1 1.Au
t t

 µ + 
 

 or F = 3 × 1.5625 × 0.15 –3 –3
1 1

9 10 9 10
 + × × 

 = 3 × 1.5625 × 0.15 × –3
2 156.25 N

9 10
=

×

 Upward thrust or buoyant force on the plate = specific weight × volume of oil displaced 
  = 0.85 × 9810 × ( 1.25 × 1.25 × 0.006 ) = 78.17 N
 Effective weight of the plate = 90 – 78.17 = 11.83 N
 ∴ Total force required to lift the plate at velocity of 0.15 m/s = F + effective weight of the plate
  = 156.25 + 11.83 = 168.08 N (Ans.)

Example 1.19.  A square metal plate 1.8 m side and 1.8 mm thick weighing 60 N is to be lifted 
through a vertical gap of 30 mm of infinite extent. The oil in the gap has a specific gravity of 0.95 
and viscosity of 3 N.s/m2. If the metal plate is to be lifted at a constant speed of 0.12 m/s, find the 
force and power required.

Solution.   Area of metal plate, A = 1.8 × 1.8 = 3.24 m2

  Thickness of the oil film, t = dy = 30 – 1.8 0.0141
2 1000

=
×

            Speed of the metal plate, u = 0.12 m/s.
 Change of speed,
  du = 0.12 – 0 = 0.12 m/s

6 mm

Oil

t2t1

Vertical
Plane

P
la

te

24 mm

Fig. 1.15
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 Viscosity, µ = 3 N.s/m2

 We know, shear stress,

  τ = . du
dy

µ

 ∴ τ = 20.123 25.53 N/m
0.0141

× =

 Force	required,	F:
  F = W + 2 (τ . A)

 [ where W = weight of the plate 

   = 60 N (given)]

   = 60 + 2 × 25.53 × 3.24 = 225.4 N

 Hence F = 225.4 N (Ans.)

 Power	required,	P:
  P = F × u = 225.4 × 0.12 = 27.05 W
 Hence P = 27.05 (Ans.)

 Example 1.20.  A thin plate of very large area is placed in a gap of height h with oils of 
viscosities µ′ and µ′′ on the two sides of the plate. The plate is pulled at a constant velocity V. 
Calculate the position of plate so that :
    (i) The shear force on the two sides of the plate is equal
 (ii) The force required to drag the plate is minimum.
 Assume viscous flow and neglect all end effects.

 Solution. Given : Height of the gap = h
  Viscosities of oils = u′ and u′′
  Velocity of the plate = V
 Position	of	the	plate,	y:

y

h
Thin plate

V

��

���

Fig. 1.17

 Let y = The distance of the thin plate from one of the surfaces of the gap. 
 Force on the upper side of the plate,

  Fupper = 
( – )

du V A
dy h y

′µ = µ ×

 Force on the lower side of the plate, lower
VF A
y

′′= µ ×

 (i) Since the forces on the two sides of the plate are equal (given) we have, 
  i.e., Fupper = Flower

� = 3N.s/m
2

30 mm

1.8 mm

W = 60 N

Oil

F

Metal plate

� �

Fig. 1.16
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	 	 ∴ 
( – )

V A
h y

′µ ×  = V A
y

′′µ ×

  or, 
–h y
′µ  = 

y
′′µ  or µ′y = µ′′  h – µ′′ y

 	 ∴ y = h′′µ
′ ′′µ + µ

 (Ans.)

 (ii) Total drag force = sum of the forces on the upper and lower surfaces of the plate.
  i.e., F = Fupper + Flower

  or, F = 
–
V VA A

h y y
′ ′′µ × × + µ ×

   For the drag force to be minimum 0dF
dy

=

   i.e., 0
–

d V VA A
dy h y y

 ′ ′′µ × × + µ × =  

   or,  2 2–
( – )

VA VA
h y y
′ ′′µ µ  = 0

 or, 
′µ
′′µ

 = 
2 2 2 2

2 2 2
( – ) 2 21 –h y h y hy h h

yy y y
+ −= = +

	 ∴	 	 =	
2

2
h
y

	– 2 1h
y

′µ + + ′′µ 

 or, h
y

 = 2 4 – 4(1 – / ) 1 ( / )
2

′ ′′± µ µ ′ ′′= ± µ µ

  Since, h
y

 cannot be less than unity, therefore

    h
y

 = 1 /′ ′′+ µ µ  or y =  
′ ′′1 + /

h
µ µ

 (Ans.)

1.7.  THERMODYNAMIC PROPERTIES  

 The thermodynamic properties need to be considered when a fluid is influenced by change of 
temperature. The following equation, known as the characteristic equation of a state of a perfect 
gas,  is used for this purpose.
  pV = mRT ...(1.10)
 where, p = Absolute pressure, m = Mass of gas,
  V = Volume of m kg of gas, R = Characteristic gas constant, and
  T = Absolute temperature.
 The characteristic equation in  another form, can be derived by using kilogram-mole as a unit. 
The kilogram-mole is defined as a quantity of a gas equivalent to M kg of the gas, where M is the 
molecular weight of the gas (i.e., since the molecular weight of oxygen is 32, then 1 kg mole of 
oxygen is equivalent to 32 kg of oxygen).
 As per definition of the kilogram-mole, for m kg of a gas, we have:
  m = nM ...(1.11)
 where, n = No. of moles.
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 Note.   Since the standard of mass is the kg, kilogram-mole will be written simply as mole.

 Substituting for m from eqn. 1.11 in Eqn. 1.10 gives:

  pV = nMRT    or    MR = pV
nT

 According to Avogadro’s hypothesis the volume of 1 mole of any gas is the same as the volume 

of 1 mole of any other gas, when the gases are at same temperature and pressure. Therefore, V
n

 is 

the same for all gases at the same value of p and T. That is the quantity pV
nT

 is a constant for all 

gases. This constant is called ‘universal gas constant’, and is given the symbol, R0,

 i.e., MR = 0
pVR
nT

=    or     pV = nR0T ...(1.12)

 Since, MR = R0, then 0RR
M

=  ...(1.13)

 It has been found experimentally that the volume of 1 mole of any perfect gas at 1 bar and 0°C 
is approximately 22.71 m3. Therefore from eqn. 1.12,

  R0 = 
51 10 22.71 8314.3 Nm/mole K

1 273.15
pV
nT

× ×= =
×

 Using eqn. 1.13, the gas constant for any gas can be found when the molecular weight is known.
 Example.  For oxygen which has a molecular weight of 32, the gas constant

  R = 0 8314 259.8 Nm/kg K.
32

R
M

= =

 If  the value of R is known, the specific weight of any gas can be computed at any temperature. 
 The density can be changed by changing temperature or pressure.
 (i)  When the change in the state of the fluid system is affected at constant pressure  the process 
is known as isobaric or constant pressure process.

   Here V
T

= constant; (Charle’s law) or v
T

= constant or v 1
T T
=
ρ

= constant ...(1.14)

 (ii) When the change in the state of the fluid system is affected at constant temperature the 
process is known as isothermal process.

  Here pvγ = constant; (Boyle’s Law) or v pp =
ρ

 = constant                              ...(1.15)

 (iii) When no heat is transferred  to or from the fluid during the change in the state of fluid 
system, the process is called adiabatic process.

  Here,  pvγ	=	constant or v pp γ
γ=

ρ
= constant                                                      ...(1.16)

  where   γ = ,p

v

c
c

  cp = Specific heat of gas at constant pressure, and
  cv = Specific heat of gas at constant volume.
	 	 γ depends upon the molecular structure of the gas.

 Note.     For details regarding compression and expansion of gases please refer to chapter on “Compressible flow.”
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 Example 1.21.  The pressure and temperature of carbon-dioxide in a vessel are 600 kN/m2 abs. 
and 30°C respectively. Find its mass density, specific weight and specific volume.

 Solution. Given: Pressure of CO2 = 600 kN/m2 abs.
 Temperature of CO2 = 30 + 273 = 303 K
 Molecular weight of CO2 = 12 + 2 × 16 = 44
 Universal gas constant, R0 = 8314.3 Nm/mole K

∴ Characteristic  gas constant, 0 8314.3 189 Nm/kg K
44

RR
M

= = =

               (i)	Mass	density,	ρ:

           We know,  pV  = mRT   ∴ pm
V RT

=

                     or, ρ = 
3600 10

189 313
p

RT
×=
×

= 10.14 kg/m3

                       i.e.,		 ρ = 10.14	kg/m3 (Ans.)
              (ii)  Specific	weight,	w:
     w = ρg = 10.14 × 9.81 = 99.47 N/m3 (Ans.)
            (iii)  Specific	volume	v:

     v = 1 1
10.14

=
ρ

 = 0.0986 m3/kg (Ans.)

1.8.   SURFACE TENSION AND CAPILLARITY  

1.8.1. Surface Tension
 Cohesion. Cohesion means intermolecular attraction between molecules of the same liquid. It 
enables a liquid to resist small amount of tensile stresses. Cohesion is a tendency of the liquid to 
remain as one assemblage of particles. “Surface tension” is due to cohesion between particles at the 
free surface.
 Adhesion. Adhesion means attraction between the molecules of a liquid and the molecules of a 
solid boundary surface in contact with the liquid. This property enables a liquid to stick to  another 
body.
 Capillary action is due to both cohesion and adhesion.
 Surface tension is caused by the force of cohesion at the free surface. A liquid molecule 
in the interior of the liquid mass is 
surrounded by other molecules all 
around and is in equilibrium. At the 
free surface of the liquid, there are no 
liquid molecules above the surface 
to balance the force of the molecules 
below it. Consequently, as shown in 
Fig. 1.18, there is a net inward force 
on the molecule. The force is normal to 
the liquid surface. At the free surface a 
thin layer of molecules is formed. This 
is because of this film that a thin small 
needle can float on the free surface (the 
layer acts as a membrane).
 Some important examples of phenomenon of surface tension  are as follows:

Free surface
Molecule

Liquid

Fig. 1.18
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 (i) Rain drops (A falling rain drop becomes spherical due to cohesion and surface tension).
 (ii) Rise of sap in a tree.
 (iii) Bird can drink water from ponds.
 (iv) Capillary rise and capillary siphoning.
 (v) Collection of dust particles on water surface.
 (vi) Break up of liquid jets.
 Dimensional formula for surface tension:
 The dimensional formula for surface tension is given by:

 E
L

 
  

 or 2
M
T

 
  

  It is usually expressed in N/m. The value of surface tension depends upon the following factors:
 (i) Nature of the liquid,
 (ii) Nature of the surrounding matter (e.g., solid, liquid or gas), and
 (iii) Kinetic energy (and hence the temperature of the liquid molecules).
 Note.  As compared to pressure and gravitational forces surface tension forces are generally negligible but 

become quite significant when there is a free surface and the boundary conditions are small as in the 
case of small scale models of hydraulic engineering structures.

 Surface tension of water and mercury when in contact with air:
 Water-air ... 0.073 N/m at 20°C; Water-air ... 0.058 N/m at 100°C;
 Mercury-air ... 0.1 N/m length.

1.8.1.1. Pressure Inside a Water Droplet, Soap Bubble and a Liquid Jet

Case I.	Water	droplet:
 Let, p = Pressure inside the droplet above outside pressure (i.e., ∆p = p – 0 = p above 

atmospheric pressure)
  d = Diameter of the droplet and
	 	 σ = Surface tension of the liquid. 

From free body diagram (Fig. 1.19 d), we have: 

( ) Water dropleta ( ) Pressure forcesb

p

( ) Surface tensionc

�

( ) Free body diagramd

�

Atmospheric
pressure

pd

�

�

Fig. 1.19. Pressure inside a water droplet.
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 (i) Pressure force = 2
4

p dπ× , and

 (ii) Surface tension force acting around the circumference = σ	×	π	d.
  Under equilibrium conditions these two forces will be equal and opposite, 

  i.e., 2
4

p d
←
π×  = d

→
σ × π

	 ∴  p = 
2

4

4

d
dd

σ × π σ=π     ...(1.17)

 Eqn. 1.17 shows that with an increase in size of the droplet the pressure intensity decreases.
 Case II.	Soap	(or	hollow)	bubble:
 Soap bubbles have two surfaces on which 
surface tension σ acts.
 From the free body diagram (Fig. 1.20), we 
have

 2 2 ( )
4

p d d
←

→π× = × σ × π  

∴	 											
2

2 8

4

dp
dd

σ × π σ= =π  ...(1.18)

 Since the soap solution has a high value of surface tension σ, even with small pressure of 
blowing a soap bubble will tend to grow larger in diameter (hence formation of large soap bubbles).
 Case III. A Liquid jet:
 Let us consider a cylindrical liquid jet of diameter d and length l. Fig. 1.21 shows a semi-jet.
  Pressure force = p × l × d
  Surface tension force = σ × 2l
 Equating the two forces, we have:
  p × l × d = σ × 2l

 ∴ p = 2 2l
l d d
σ × σ=
×

 ...(1.19)

 Example 1.22. If the surface tension at air-water interface 
is 0.069 N/m, what is the pressure difference between inside and 
outside of an air bubble of diameter 0.009 mm?
 Solution. Given: σ = 0.069 N/m; d = 0.009 mm
 An air bubble has only one surface. Hence,

  p = 4
d
σ

   = –3
4 0.069

0.009 10
×

×
 = 30667 N/m2

   = 30.667 kN/m2 or kPa (Ans.)
 Example 1.23.  If the surface tension at the soap-air interface is 0.09 N/m, calculate the internal 
pressure in a soap bubble of 28 mm diameter.
 Solution. Given: σ = 0.09 N/m; d = 28 mm.

Free body diagram

�

d

�

�
�

Fig. 1.20. Pressure inside a soap bubble.

l

Semi-jet

�

d

Fig. 1.21. Forces on liquid jet.
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 In a soap bubble there are two interfaces. Hence,

  p = –3
8 0.098
28 10d
×σ =
×

   = 25.71 N/m2  (above atmospheric pressure) (Ans.)
 Example 1.24.  In order to form a stream of bubbles, air is introduced through a nozzle into a 
tank of water at 20°C. If the process requires 3.0 mm diameter bubbles to be formed, by how much 
the air pressure at the nozzle must exceed that of the surrounding water?
 What would be the absolute pressure inside the bubble if the surrounding water is at 
100.3 kN/m2?
  Take surface tension of water at 20°C = 0.0735 N/m.
 Solution.  Diameter of a bubble, d = 3.0 mm = 3 × 10–3 m
  Surface tension of water at 20°C, σ	= 0.0735 N/m
 The excess pressure intensity of air over that of surrounding water, ∆p = p.

 We know, p = –3
4 0.07354

3 10d
×σ =
×

= 98 N/m2 (Ans.)

 Absolute	pressure	inside	the	bubble,	pabs:
  pabs = p + patm 
   = 98 × 10–3 + 100.3
   = 0.098 + 100.3 = 100.398 kN/m2 (Ans.)
 Example 1.25.  A soap bubble 62.5 mm diameter has an internal pressure in excess of the 
outside pressure of 20 N/m2. What is tension in the soap film?
 Solution. Given: Diameter of the bubble, d = 62.5 mm = 62.5 × 10–3 m; 
 Internal pressure in excess of the outside pressure, p = 20 N/m2.
 Surface	tension,	σ:
 Using the relation,    p  = 8

d
σ   

   i.e.,                                       –3
820

62.5 10
σ=
×

 ∴  
–362.5 1020

8
×σ = × = 0.156 N/m (Ans.)

Example 1.26. What do you mean by surface tension? If the pressure difference between the 
inside and outside of the air bubble of diameter 0.01 mm is 29.2 kPa, what will be the surface tension 
at air-water interface?  (N.U.)

Solution. Surface tension is defined as the tensile force acting on the surface of a liquid in contact 
with a gas or on the surface between two immiscible liquids such that the contact surface behaves like 
a membrane under tension. The magnitude of this force per unit length of the free surface will have the 
same value as the surface energy per unit area. It is denoted by the letter σ and is expressed as N/m.
  2

4
p dπ×  = σ	(πd)

 or σ = 
4
dp ×

 Substituting the values;  d  = 0.01 × 10–3 m; p = 29.2 × 103 Pa ( or N/m2), we get

  σ = 29.2 × 103 ×
–30.01 10

4
× = 0.073 N/m (Ans.)

1.8.2. Capillarity
 Capillarity is a phenomenon by which a liquid (depending upon its specific gravity) rises into a 
thin glass tube above or below its general level. This phenomenon is due to the combined effect of 
cohesion and adhesion of liquid particles.
 Fig. 1.22 shows the phenomenon of rising water in the tube of smaller diameters.
 Let, d = Diameter of the capillary tube,
	 	 θ = Angle of contact of the water surface,
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	 	 σ = Surface tension force for unit length, and
  w = Weight density (ρg).
 Now, upward surface tension force (lifting 
force) = weight of the water column in the tube 
(gravity force)

 	 πd.σ cos θ = 2
4

d h wπ × ×

 ∴ h = 4 cos
wd

σ θ   ...(1.20)

 For water and glass: θ  0.
 Hence the capillary rise of water in the glass 
tube,
  h = 4

wd
σ  ...(1.21)

In case of mercury there is a capillary depression 
as shown in Fig. 1.23, and the angle of depression is 
θ  140°. (It may be noted that here cos θ = cos 140° 
= cos  (180 – 40°) = – cos 40°, therefore, h is negative 
indicating capillary depression).

Following points are worth noting:
 (i) Smaller the diameter of the capillary tube, 
greater is the capillary rise or depression.
 (ii) The measurement of liquid level in labora-
tory capillary (glass) tubes should not be smaller than 
8 mm.
 (iii) Capillary effects are negligible for tubes 
longer than 12 mm.
 (iv) For wetting liquid (water): θ	<	π/2. For water: 
θ = 0 when pure water is in contact with clean glass. 
But θ becomes as high as 25° when water is slightly 
contaminated.
  For non-wetting liquid (mercury): θ	>	π/2.
  (For mercury: θ varies between 130° to 150°)
  Refer Fig. 1.24 which illustrates the liquid gas 
interface with a solid surface.
 (v) The effects of surface tension are negligible 
in many flow problems except those involving.
  — capillary rise;
  — formation of drops and bubbles;
  —  the break up of liquid jets, and 
  — hydraulic model studies where the model 

or flow depth is small.
 Capillary inversion. Due to surface tension 
the liquid passing out of an elliptical orifice tends 
to assume a circular or minimum perimeter cross-
section. Here transformation of surface energy into 

��
�

�Gas

Liquid

Solid

( )a Wetting liquid (water).

�� ���Gas

Liquid

Solid

( )b Non-wetting liquid (mercury).

�

�

Fig. 1.24
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� �
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Adhesion > Cohesion
(Miniscus concave)

Capillary tube

h = Capillary rise

Fig. 1.22. Effect of capillarity.

d

Glass tube

Mercury
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h = Capillary
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Fig. 1.23
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kinetic energy takes place; the flow pattern 
varies as the Weber number changes and the 
motion continues giving rise to a series of 
standing waves. This phenomenon is known as 
capillary inversion of jet for orifices of non-
circular cross-section. As shown in the Fig. 1.25 
the jet issuing from a small elliptical orifice can 
be observed to undergo two inversion cycles in 
a given length.
 The phenomenon of capillary inversion of 
jets is significant for industries involving the 
production and size control of liquid droplets 
like:
 –– paint,
 — molten shot, and
 — agricultural insecticides, etc.
 Example 1.27.  A clean tube of diameter 
2.5 mm is immersed in a liquid with a 
coefficient of surface tension = 0.4 N/m. The 
angle of contact of the liquid with the glass can be assumed to be 135°. The density of the liquid =  
13600 kg/m3.
 What would be the level of the liquid in the tube relative to the free surface of the liquid inside 
the tube.
 Solution. Given: d = 2.5 mm ; σ = 4 N/m, θ = 135°; ρ = 13600 kg/m3

 Level	of	the	liquid	in	the	tube,	h:
 The liquid in the tube rises (or falls) due to capillarity. The capillary rise (or fall),

  h = 4 cos
wd
σ θ       ...[Eqn. (1.20)]

   = –3
4 0.4 cos 135

(9.81 13600) 2.5 10
× × °
× × ×

         ( w = ρg)

 = – 3.39 × 10–3m or – 3.39 mm
 Negative sign indicates that there is a capillary depression (fall) of 3.39 mm. (Ans.)
 Example 1.28.  Assuming that the interstices in a clay are of size equal to one tenth the mean 
diameter of the grain, estimate the height to which water will rise in a clay soil of average grain 
diameter of 0.048 mm. Assume surface tension at air-water interface as 0.074 N/m.

 Solution. Given: Diameter of the pores, 1 0.048 0.0048 mm;
10

d = × = σ = 0.074 N/m

 Assuming θ = 0°

  h = –3
4 0.0744

(9.81 1000) 0.0048 10wd
×σ =

× × ×
 =  6.286 m (Ans.)

 Example 1.29. Calculate the work done in blowing a soap bubble of diameter 100 mm. Assume 
the surface tension of soap solution = 0.038 N/m.
 Solution. Given:   d  = 100 mm or 0.1 m; σ = 0.038 N/m.
 The soap bubble has two interfaces.
 ∴  Work done  = Surface tension × total surface area

Plan of the orifice

Liquid surface

Liquid

Elliptical
orifice

Fig. 1.25. Capillary inversion of a liquid jet.
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   = 0.038 × 4π × ( )20.1 2
2

×

   = 0.002388 Nm (Ans.)
 Example 1.30.  Determine the minimum size of glass tubing that can be used to measure water 
level, if the capillary rise in the tube is not to exceed 0.3 mm. Take surface tension of water in contact 
with air as 0.0735 N/m.
 Solution. Given :Capillary rise, h = 0.3 mm = 0.3 × 10–3 m
  Surface tension, σ	 = 0.0735 N/m
  Specific weight of water, w  = 9810 N/m3.
 Size	of	glass	tubing,	d:

  Capillary rise, h = 4 cos 4
wd wd
σ θ σ=

 (Assuming θ = 0 for water)

  0.3 × 10–3 = 4 0.0735
9810 d
×

×

 ∴	 d = –3
4 0.0735 0.1 m

0.3 10 9810
× =

× ×
 = 100 mm (Ans.)

 Example 1.31. A U-tube is made up of two capillaries of bores 1.2 m and 2.4 mm respectively. 
The tube is held vertical and partially filled with liquid of surface tension 0.06 N/m and zero contact 
angle. If the estimated difference in the level of two menisci is 15 mm, determine the mass density of 
the liquid.
 Solution. Given: Bores of the capillaries:
  d1 = 1.2 mm = 0.0012 m
  d2 = 2.4 mm = 0.0024 m
  Difference of level, h1 – h2  = 15 mm = 0.015 m; Angle of contact, θ = 0
 Mass	density	of	the	liquid,	ρ:

  h1 = 
1

4 cos
wd
σ θ , and h2 = 

2

4 cos
wd
σ θ  

  [where w (= ρg) = weight density of the liquid)]

 ∴ h1 – h2 = 
1 2

4 1 1–
w d d
σ  
  

 ( θ = 0)

  0.015 = 4 0.06 1 1 0.02446– 416.67
9.81 0.0012 0.0024

×   = × ρ × ρ 

 ∴ ρ = 0.02446 416.67
0.015

× =	679.45	kg/m3 (Ans.)

 Example 1.32. Derive an expression for the capillary rise at a liquid having surface tension σ	
and contact angle θ between two vertical parallel plates at a distance W apart. If the plates are of 
glass, what will be the capillary rise of water having σ = 0.073 N/m, θ = 0°?. Take W = 1 mm.

(Anna University)

 Solution. Refer to Fig. 1.26. Consider two vertical parallel plates immersed in a liquid whose 
weight density is w.
 Given : σ = Surface tension;
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	 	 θ = Contact angle.
 Let, h = Height of liquid between plates above general 

liquid surface.
 Under a state of equilibrium, the weight of liquid of height h is 
balanced by the force at the surface of liquid between the plates.
 Then weight of liquid of height h is balanced by the force 
between the plates
                = volume of liquid of height h between the plates × w 

               = W × L × h × w ...(1)
where,  L = length of plate, and w = weight density of the liquid.

 Vertical component of surface tensile force 
                  = (σ × circumference) × cos θ
   = σ × 2L × cos θ	 	 	  ...(2)
 For equilibrium, eqns. (1) and (2) must balance.
 ∴ W × L × h × w = σ × 2L × cos θ ...(3)

 or, h = 2 cos
W w
σ θ
×

 Eqn. (3) is the expression for capillary rise. (Ans.)
 When plates are of glass,
  θ = 0°, σ = 0.073 N/m
  W = 1 mm = 0.001 m, w = 9810 N/m3

  Capillary rise of water, h = 2 cos
W w
σ θ
×

   = 2 0.073 cos0
0.001 9810
× × °

×
 = 0.0149 m or 14.9 mm

 Hence,  capillary rise = 14.9 mm (Ans.)

 Example 1.33.  A single column U-tube manometer, made of glass tubing having a nominal 
inside diameter of 2.4 mm, has been used to measure pressure in a pipe or vessel containing air. 
If the limb opened to atmosphere is 10 percent oversize, find the error in mm of mercury in the 
measurement of air pressure due to surface tension effects. It is stated that mercury is the manometric 
fluid for which surface tension σ = 0.52 N/m and angle of contact α = 140°
 Solution. Given: d1 = 2.4 mm; d2 = 2.4 × 1.1 = 2.64 mm; σ = 0.52 N/m; α = 140°. 
 Error in measurement due to surface tension effects:
 The surface tension manifests the phenomenon of capillary action due to which rise or depression 
of manometric liquid in a tube is given by

  h = 
1

4 cos
wd
σ θ

 Now, h1 = –3
4 0.52 cos140

(13.6 9810) (2.4 10 )
× × °
× × ×

 = 4.97 × 10–3 m

  (Negative sign indicates capillary depression)

  h2 = –3
4 0.52 cos140

(13.6 9810) (2.64 10 )
× × °
× × ×

 = – 4.52 × 10–3 m

 Hence, error in measurement due to surface tension effects
   = (4.97 – 4.52) × 10–3 = 0.45 × 10–3 m = 0.45 mm (Ans.)

W

h

Liquid
�

�

Fig. 1.26



Chapter 1 : Properties of Fluids         33

 Example 1.34. Calculate the capillary effect in millimetres in a glass tube of 4 mm diameter, 
when immersed in (i) water and (ii) mercury. The temperature of the liquid is 20°C and the values 
of surface tension of water and mercury at 20°C in contact with air are 0.0735 N/m and 0.51 N/m 
respectively. The contact angle for water θ = 0° and for mercury θ = 130°. Take specific weight of 
water at 20°C as equal to 9790 N/m3.                                                                       [Engg.	Services]
 Solution. Given: Diameter of glass tube, d = 4 mm = 0.004 m
 Surface tension at 20°C, σ:
 	 σwater = 0.0735 N/m,  σmercury = 0.051 N/m
 Specific weight of water at 20°C = 9790 N/m3

 The rise or depression h of a liquid in a capillary tube is given by

  h = 4 cos
wd
σ θ

 where,  σ = surface tension, θ = angle of contact, and w = specific weight.
 (i) Capillary	effect	for	water:

   h = 4 0.0735 cos 0
9790 0.004
× × °

×
        ( θwater = 0° ...given)

     = 7.51 × 10–3 m = 7.51 mm (rise) (Ans.)
 (ii) Capillary effect for mercury

   h = 4 0.051 cos130
(13.6 9790) 0.004

× × °
× ×

         ( θmercury = 130°    ... given)

  or,  = – 2.46 × 10–3 m = – 2.46 mm
  i.e., h = 2.46 mm (depression ) (Ans.)
  Example 1.35.  In measuring the unit energy of a mineral oil (specific gravity = 0.85) by the 
bubble method, a tube having an internal diameter of 1.5 mm is immersed to depth of 12.5 mm in oil. 
Air is forced through the tube forming a bubble at the lower end. What magnitude of the unit surface 
energy will be indicated by a maximum bubble pressure intensity of 150 N/m2. [Engg.	Services]
 Solution. Sp. gravity of oil = 0.85

Internal diameter of the tube,
 d = 1.5 mm  = 0.0015 m
Depth, h = 12.5 mm = 0.0125 m
Gauge pressure inside the bubble
 pi = 150 N/m2

Unit	surface	energy,	σ:
Gauge pressure outside the bubble, 
   p0 = wh = (0.85 × 9810) × 0.0125 = 104.23 N/m2

∴  Net pressure attributable to surface tension
 p = pi – p0 = 150 – 104.23 = 45.77 N/m2

Also, 0
4–ip p
d
σ=

 Assuming diameter of bubble equal to that of the tube,

  45.77 = 4
0.0015

σ

 ∴ σ = 45.77 0.0015
4
× = 0.0172 N/m (Ans.)

Tube

Air

Oil surface

Oil

1.5 mm dia.

1
2
.5

m
m

Bubble

Fig. 1.27



34         Fluid Mechanics

 Example 1.36.  Two coaxial glass tubes forming an annulus with small gap are immersed in 
water in a trough. The inner and outer radii of the annulus are ri and r0 respectively. What is the 
capillary rise if σ is the surface tension of water in contact with air?            (PTU)
 Solution. Refer to Fig. 1.28. If the angle of contact between the liquid and the curved tube 
surface is θ, the water in the annulus will continue to rise until the vertical component of the surface 
tension force which acts over the wetted length (outer curve of the inner tube and inner curve of the 
outer tube) equals the height of the water column, or

T cos θ	=	π (r0
2 – ri

2) hρg, where T = σ	π (r0  + ri); substituting for T, we get

	 σπ	(r0 + ri) cos θ	=	π	(r0
2 – ri

2) hρg

or, h =  capillary rise = 
0

cos
( – )ir r g
σ θ

ρ

For pure water and clean glass θ  0 and 
0( – )i

h
r r g

σ=
ρ

Under actual conditions, neither water is pure, nor glass is clean.
Gibson has obtained the value of θ as 25° 32′.

Thus, 
0 0

cos25 32 0.902
( – ) ( – )i i

h
r r g r r g

′σ ° σ= =
ρ ρ

 (Ans.)

1.9.   COMPRESSIBILITY AND BULK  MODULUS  

 The property by virtue of which fluids undergo a change in volume under the action of external 
pressure  is known as compressibility. It decreases with the increases in pressure of fluid as the 
volume modulus increases with the increase of pressure.
 The variation in volume of water, with variation of pressure, is so small that for all practical 
purposes it is neglected. Thus, the water is considered to be an incompressible liquid. However in 
case of water flowing through pipes when sudden or large changes in pressure (e.g.  water hammer) 
take place, the compressibility cannot be neglected. The compressibility  in Fluid Mechanics is 
considered mainly when the velocity of flow is high enough reaching 20 percent of speed of sound in 
the medium.
 Elasticity of fluids is measured in terms of bulk modulus of elasticity (K) which is defined 
as the ratio of compressive stress to volumetric strain. Compressibility is the reciprocal of bulk 
modulus of elasticity.
 Consider a cylinder fitted with a piston as shown in Fig. 1.29.

dV/V

Volumetric strain

S
tr

es
s

(
)

p
=

P
/A dp

P

Piston

Cylinder

V

dV

Fig. 1.29
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h

ri r0

� �

T TT

Fig. 1.28
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 Let, V = Volume of gas enclosed in the cylinder, and
  p = Pressure of gas when volume is V

   = P
A

, where A is the area of cross-section of the cylinder.

Let the pressure is increased to p + dp, the volume of gas decreases from V to V – dV.
Then increase in pressure = dp; Decrease in volume = dV

 ∴  Volumetric strain = – dV
V

 (Negative sign indicates decrease in volume with increase of pressure)

 ∴  Bulk modulus, K = (increaseof pressure)
– / ( volumetricstrain )

dp
dV V

 i.e., K = 
– /

dp
dV V

   ( )1Compressibility =
K

 ...(1.22)

 Steepening of the curve (Fig. 1.29) with increasing pressure shows that as fluids are compressed 
it becomes increasingly difficult to compress them further. In other words, the value of K increases 
with increase of pressure.
 The following points are worth noting:
 1. The bulk modulus of elasticity (K) of a fluid is not constant, but it increases with increase 
in pressure. This is so because when a fluid mass is compressed its molecules become close together 
and its resistance to further compression increases i.e., K  increases. (e.g. the value of K roughly 
doubles as the pressure is raised from 1 atmosphere to 3500 atmosphere).
 2. The bulk modulus of elasticity (K) of the fluid is affected by the temperature of the fluid. In 
the case of liquids there is a decrease  of K with increase of temperature. However, for gases since 
pressure and temperature are inter-related and as temperature increases, pressure also increases, an 
increase in temperature results in an increase in the value of K.
 3. At NTP (normal temperature and pressure):
 Kwater = 2.07 × 106 kN/m2, Kair = 101.3 kN/m2

 Example 1.37. When the pressure of liquid is increased from 3.5 MN/m2 to MN/m2 its volume 
is found to decrease by 0.08 percent. What is the bulk modulus of elasticity of the liquid?

 Solution.   Initial pressure = 3.5 MN/m2

  Final pressure = 6.5 MN/m2

 ∴  Increase in pressure, dp = 6.5 – 3.5 = 3.0 MN/m2

  Decrease in volume = 0.08 percent  ∴ 0.08
100

dV
V

− =

 Bulk modulus (K) is given by:

  K = 
63 10

0.08–
100

dp
dV
V

×=  = 3.75 × 109 N/m2 or 3.75 GN/m2

 Hence, K = 3.75 GN/m2 (Ans.)
 Example 1.38. When a pressure of 20.7 MN/m2 is applied to 100 litres of a liquid its volume 
decreases by 1 litre. Find the bulk modulus of the liquid and identify this liquid.

 Solution. Net pressure applied, dp = 20.7 MN/m2
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  Decrease in volume, dV = 1 litre

  Initial volume, V = 100 litres ∴	 1–
100

dV
V

=

 Bulk modulus K:

  K = 
620.7 10–

– / 1/100
dp

dV V
×= = 20.7 × 108 N/m2 = 2.07 GN/m2

 i.e., K = 2.07 GN/m2 (Ans.)
 Evidently the liquid is water (Ans.).
 Example 1.39. Define compressibility of a fluid. Gas A at 125 kPa (abs.) is compressed 
isothermally and gas B at 100 kPa (abs.) is compressed isentropically (γ = 1.4). Which gas is more 
compressible?       (N.U.)
 Solution. Compressibility is the measure of relative change of volume (For density) when the 
fluid is subjected to a pressure change. It is the reciprocal  of the bulks modulus of elasticity (K).
 It is expressed mathetically as:

  Z = – ( / )1 dV V
K dp

=

 For an ideal gas, if the compression is isothermal, Z = 1
p

, and if the compression  is isentropic, 

Z = 1 .
pγ

 For the given gas	A, ZA = 1 1
125p

=  = 0.008 m2/kN

 For the gas	B, ZB = 1 1
1.4 100p

=
γ ×

 = 0.007143 m2/kN

 Hence gas	A more compressible. (Ans.).

 Example 1.40. Find an expression for isothermal bulk modulus of  elasticity for a gas which 
obeys Van der Waals’ law of state according to the equation:

  p = 1 –
1 –

apRT
b RT

ρ 
 ρ 

 where a, b are constants and p, ρ, R and T have their usual meanings.
     (P.E.C.)
 Solution.  Bulk modulus of elasticity,

  K = 
( )

– –dp dpVdV dV
V

= , 

 where, V is volume = – v ,v
v

dp
d

 is specific volume.

 Since, v = 1
ρ

 or ρv = 1, v –
v

dd ρ=
ρ

 ∴ K = dp
d

ρ
ρ

;  p = 1 –
1 –

aRT
b RT

ρ ρ  ρ 
 ...(Given)

 ∴	 2
1 – –

1 – (1 – )
dp a b aRT RT
d b RT RTb

ρ   = + ρ   ρ ρ ρ   
 2– –

1 – (1 – )
b RTRT a a

b b
ρ= ρ + ρ

ρ ρ
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   = 21 – 2 – 2
1 – 1 – (1 – )

bRT RTa a
b b b

ρ + ρ = ρ ρ ρ ρ 

 and, K = 2
2 – 2

(1 – )
dp RT a
d b

ρρ = ρ
ρ ρ

    ... Required expression (Ans.).

1.10.  VAPOUR PRESSURE 

 All liquids have a tendency to evaporate or vaporize (i.e., to change from the liquid to the 
gaseous state). Molecules are continuously projected from the free surface to the atmosphere. These 
ejected molecules are in a gaseous state and exert their own partial vapour pressure on the liquid 
surface. This pressure is known as the vapour pressure of the liquid (pv). If the surface above the 
liquid is confined, the partial vapour pressure exerted by the molecules increases till the rate at 
which the molecules re-enter the liquid is equal to the rate at which they leave the surface. When the 
equilibrium condition is reached, the vapour pressure is called saturation vapour pressure (pvs).
 The following points are worth noting:
 1. If the pressure on the liquid surface is lower than or equal to the saturation vapour pressure, 
boiling takes place.
 2. Vapour pressure increases with the rise in temperature.
 3. Mercury has a very low vapour pressure and hence, it is an excellent fluid to be used in a 
barometer.

Table 1.1. Summary of Fluid Characteristics

Sr. No. Characteristics Symbol Definition Dimensions Units

1. Mass density ρ Mass per unit volume, m
V

ML–3 kg/m3

2. Weight density  
(or specific weight) w Weight per unit volume, w

V
FL–3 N/m3

3. Specific volume ν Volume per unit mass  1V
m
=
ρ

L3M–1 m3/kg

4.  Specific gravity S

Specific weight of liquid
Specific weight of pure water  

       = liquid

water

w
w

5. Dynamic viscosity µ Newton’s law: . du
dy

τ = µ FTL–2
N.s/m2  
poise,

centipoise

6. Kinematic viscosity ν µν =
ρ

L2T–1 m2/s stoke,  
centistoke

7. Bulk modulus K     –
/
pK

dV V
∆= FL–2 N/m2

8. Surface tension σ Force per unit length FL–1 N/m

9. Vapour pressure p   v
Fp
A

= FL–2 N/m2
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HIGHLIGHTS

 1. Hydraulics is that branch of Engineering science, which deals with water at rest or in  
motion.

 2. Fluid mechanics may be defined as that branch of Engineering science which deals with 
the behaviour of fluid under the conditions of rest and motion.

 3. A  fluid is substance which is capable of flowing.
 4. Mass density is the mass per unit volume whereas weight density (or specific weight) is the 

weight per unit volume at the standard temperature and pressure.
 5. Specific gravity  is the ratio of the specific weight of the liquid to the specific weight of a 

standard fluid. It is dimensionless and has no units.
 6. Viscosity is the property of a fluid which determines its resistance to shearing stresses.
  Newton’s law of viscosity states that the shear stress (τ) on a fluid element layer is directly 

proportional to the rate of shear strain. The constant of proportionality is called the co-
efficient of viscosity.

  Mathematically,  τ = . du
dy

µ ,

  where µ = co-efficient of dynamic viscosity, and du
dy

 = rate of shear deformation or veloc-
ity gradient. 

  Kinematic viscosity is the ratio between the dynamic viscosity and density of fluid. It is 
denoted by ν (nu).

  i.e., v = µ
ρ

 7. Cohesion and adhesion:
  Cohesion means intermolecular attraction between molecules of the same liquid.
  Adhesion means attraction between molecules of a liquid and the molecules of a solid 

boundary surface in contact with the liquid.
 8. Surface tension (ρ) is caused by the force of cohesion at the free surface. It is usually 

expressed in N/m.
  Pressure inside:

 (a) Water droplet: p = 4
d
σ , (b) Soap bubble  : p = 8

d
σ , and

 (c) Liquid jet: p = 2σ
d

 (where d stands for diameter).

 9. Capillarity  is a phenomenon by which a liquid (depending upon its specific gravity) rises 
into a thin glass tube or below its general level.

   h = 4 cos
wd
σ θ

  where, h = Height of capillary rise,
   d = Diameter of the capillary tube,
	 	 	 θ = Angle of contact of the water surface,
	 	 	 σ = Surface tension per unit length, and
   w = Weight density (ρg).
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 10. Compressibility is the property by virtue of which fluid undergoes a change in volume under 
the action of external pressure. It is the reciprocal of bulk modulus of elasticity (K).

  K = dp (increase of pressure)/ – dV
V

(volumetric strain)

  ( )1compressibility
K

=

OBJECTIVE TYPE QUESTIONS

Choose	the	Correct	Answer:
 1. The branch of Engineering-science, which deals 

with water at rest or in motion is called 
  (a) hydraulics (b) fluid mechanic s
  (c) applied mechanics (d) kinematics.
 2. A solid can resist which of the following stresses?
  (a) Tensile (b) Compressive
  (c) Shear (d) All of the above.
 3.  .......... possesses no definite volume and is com-

pressible.
  (a) Solid (b) Liquid 
  (c) Gas (d) Vapour.
 4. A real practical fluid possesses which of the fol-

lowing?
  (a) Viscosity (b) Surface tension
  (c) Compressibility (d) density.
 5. The ratio of the specific weight of the liquid to 

the specific weight of a standard fluid is known 
as

  (a) specific volume (b) weight density
  (c) specific gravity (d) viscosity.
 6. The property of a fluid which determines its 

resistance to shearing stress is called
  (a) viscosity (b) surface tension
  (c) compressibility (d) none of the above.
 7. Newton’s law of viscosity is given by the rela-

tion:

  (a) 2 du
dy

τ = µ   (b) du
dy

τ = µ

  (c) . du
dy

τ = µ  (d) 3/2( ) du
dy

τ = µ

 8. Fluids which do not follow the linear relationship 
between shear stress and rate of deformation are 
termed as .... fluids.

  (a) Newtonian (b) Non-Newtonian
  (c) dilatent (d) ideal
 9. The printer’s ink is an example of
  (a) Newtonian fluid 
  (b) Non-Newtonian

  (c) Thyxotropic substance
  (d) Elastic solid.
 10. The viscosity of liquids ..... with increase in 

temperature.
  (a) decreases 
  (b) increases
  (c) first decreases and then increases
  (d) first increases and then decreases.
 11. Surface tension is caused by the force of ..... at 

the free surface.
  (a) cohesion (b) adhesion
  (c) both (a) and (b) (d) none of the above.
 12. Which of the following is an example of phe-

nomenon of surface tension?
  (a) Rain drops 
  (b) Rise of sap in a tree
  (c) Break up of liquid jets
  (d) All of the above.
 13. Surface tension is expressed in
  (a) N/m (b) N/m2 
  (c) N2/m (d) N/m3.
 14. Pressure inside a water droplet is given by the 

relation

  (a) p = 4
d
σ  (b) p = 3

d
σ

  (c) p = 8
d
σ  (d) p = 16

d
σ

 15.  ...... is a phenomenon by which a liquid rises 
into a thin glass tube above or below its general 
level.

  (a) Surface tension (b) Capillarity
  (c) Cohesion (d) Adhesion.
 16. The capillary rise of water in the glass tube is 

given by

  (a) h = 2
wd
σ  (b) h = 3

wd
σ

  (c) h = 4
wd
σ  (d) h = 6

wd
σ
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 17. Elasticity of fluids is measured in terms of 
  (a) Young’s modulus of elasticity
  (b) shear modulus of elasticity
  (c) bulk modulus of elasticity
  (d) none of the above.
 18. Compressibility is the reciprocal of
  (a) bulk modulus of elasticity
  (b) shear modulus of elasticity
  (c) Young’s modulus of elasticity
  (d) any of the above.

 19. Bulk modulus of elasticity is the ratio of 
  (a) tensile stress to tensile strain
  (b) compressive stress to compressive strain
  (c) compressive stress to volumetric strain
  (d) none of the above.
 20. The value of bulk modulus of elasticity .......... 

with increase of pressure.
  (a) increases (b) decreases
  (c) either of the above
  (d) none of the above. 

ANSWERS

 1. (a) 2. (d) 3. (c) 4. (e) 5. (c) 6. (a)
  7. (c)    8. (b) 9. (c) 10. (a) 11. (a) 12. (d) 
 13. (a)   14. (a)   15. (b) 16. (c)   17. (c)    18. (a)    
      19. (c) 20. (a)

THEORETICAL QUESTIONS

 1. Define the following:
  (i) Hydraulics (ii) Fluid mechanics
  (iii) Fluid (iv) Aerostatics.
 2. What is a fluid? How are fluids classified?
 3. What is the difference between an ideal and a 

real fluid?
 4. Name some important properties of liquids.
 5. Explain briefly the following terms:
  (i) Mass density (ii) Weight density
  (iii) Specific volume (iv) Specific gravity.
 6. What do you mean by the term ‘Viscosity’?
 7.  State and explain the Newton’s law of viscosity.

 8.  What is dynamic viscosity? What are its units?
 9. What is kinematic viscosity? What are its units?
 10. What is a Newtonian fluid?
 11. Define the term vapour pressure. How does it 

vary with temperature?
 12. What is the difference between cohesion and 

adhesion?
 13. Explain briefly the following:
  (i) Surface tension, and 
  (ii)  Compressibility.
 14. What is capillarity? Derive expression for height 

of capillary rise.

UNSOLVED EXAMPLES

 1. Determine the mass density, specific volume and 
specific weight of a liquid whose specific gravity 
is 0.85. 

   [Ans. 850 kg/m3, 0.00118 m3/kg, 8350 N/m3]
 2. A liquid has a specific gravity of 1.9 and kine-

matic viscosity of 6 stokes. What is its dynamic 
viscosity?          [Ans. 11.38 poise]

 3. The space between two parallel plates 5 mm apart 
is filled with crude oil. A force of 2 N is required 
to drag the upper plate at a constant velocity of 
0.8 m/s. The lower plate is stationary. The area 
of the upper plate is 0.09 m2. Determine: (i) The 
dynamic viscosity, and (ii) the kinematic viscos-
ity of the oil in stokes if the specific gravity of oil 
is 0.9.          [Ans. (i) 1.39 poise, (ii) 1.52 stokes]

 4. A plate has an area of 1 m2. It slides down an 
inclined plane, having angle of  inclination 45° 
to the horizontal, with a velocity of 0.5 m/s. The 
thickness of oil film between the plane and the 
plate is 1 mm. Find the viscosity of the fluid if 
the weight of the plate is 70.72 N.                      
      [Ans. 1 poise]

 5. The velocity distribution over a plate is given by

  23 1
2 2

u y y= −

  where, u = velocity, m/s, and
  y = distance from the plate boundary, m.
  If the viscosity of the fluid is 8 poise find the 
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shear stress at the plate boundary and at y = 0.15 
m from the plate.    [Ans. 1.20 N/m2, 1.08 N/m2]

 6. A flat  plate weighing 0.45 kN has a surface area 
of 0.1 m2. It slides down an inclined plane at 30° 
to the horizontal, at a constant speed of 3 m/s. 
If the inclined plane is lubricated with an oil of 
viscosity 0.1 N.s/m2, find the thickness of the oil 
film. [Ans. 0.133 mm]

 7. A flat thin plate is dragged at a constant velocity 
of 4 m/s on the top of a 5 mm deep liquid layer 
of viscosity 20 centipoise. If the area of the plate 
is 1 m2 find the drag force.

  Assume variation of velocity in the liquid to be 
linear. [Ans. 16 N]

 8. A square metal plate 1.5 m side and 1.5 mm thick 
weighing 50 N is to be lifted through a vertical 
gap of 25 mm of infinite extent.  The oil in the air 
gap has a specific gravity of 0.95 and viscosity 
of 2.5 N.s/m2. If the metal plate is to be lifted 
at a constant speed of 0.1 m/s find the force and 
power required. [Ans. 145.7 N, 14.57 W]

 9. Inside a 60 mm diameter cylinder a piston of 
59 mm diameter rotates concentrically. Both 
the cylinder and piston are 80 mm long. If the 
space between the cylinder and piston is filled 
with oil of viscosity of 0.3 N.s/m2 and a torque 
of 1.5 Nm is applied, find:

  (i) The r.p.m. of the piston, and
  (ii) The power required.
   [Ans. (i) 1850 r.p.m.   (ii) 290.5 W]
 10. Two large fixed parallel planes are 240 mm apart. 

The space between the surfaces is filled with oil 
of  viscosity 0.81 N.s/m2. A flat thin plate 0.5 m2 
area moves through the oil at a velocity of 0.6 
m/s. Calculate the drag force (i) when the plate 
is equidistant from both the planes, and (ii) when 
the thin plate is at a distance of 80 mm from one 
of the plane surfaces. 

[Ans.  (i) 40.5 N (ii) 45.54 N]
 11. A cylinder of 100 mm diameter and 300 mm 

length rotates about a vertical axis inside a 
fixed cylindrical tube of 105 mm diameter and 
300 mm length. If the space between the tube 

and the cylinder is filled with liquid of dynamic 
viscosity of 0.125 N.s/m2, determine the speed 
of rotation of the cylinder which will be obtained 
if an external torque of 1 Nm is applied to it. 

[Ans. 81.03 r.p.m.]
 12. Determine the mass  density, specific weight, and 

specific volume of CO2 contained in a vessel at 
a pressure of 800 kN/m2 and temperature 25°C.

  [Ans. 14.2 kg/m3, 139.4 N/m3, 0.0703 m3/kg]
 13. A soap bubble 50 mm diameter has an internal 

pressure in excess of the outside pressure of 25 
N/m2. Calculate tension in the soap film.  
                                          [Ans.  0.156 N/m]

 14. Air is introduced through a nozzle into a tank of 
water (at 20°C) to form a stream of bubbles. If 
the process requires 2.5 mm diameter bubbles to 
be formed, by how much the air pressure at the 
nozzle must exceed that of surrounding water.

  Take surface tension of water at 20°C = 0.0735 
N/m. [Ans. 117.4 N/m2]

 15. Determine the minimum size of glass tubing 
that can be used to measure water level, if the 
capillary rise in the tube is not to exceed 0.25 
mm. Take surface tension of water in contact 
with air as 0.0735 N/m.       [Ans. 120 mm]

 16. A U-tube is made up of two capillaries of bore 
1 mm and 2 mm respectively. The tube is held 
vertically and is partially filled with liquid of 
surface tension 0.05 N/m and zero contact angle. 
Calculate the mass density of the liquid if the 
estimated difference in the level of two menisci 
is 12.5 mm. [Ans.  816 kg/m3]

 17. Determine the bulk modulus of elasticity of a 
liquid, if the pressure of the liquid is increased 
from 7 MN/m2 to 13 MN/m2. The volume of 
liquid decreases by 0.15%. [Ans.  4 GN/m2]

 18. A 20 mm wide gap between two vertical plane 
surfaces is filled with an oil of specific gravity 
0.85 and dynamic viscosity 2.5 N.s/m2. A metal 
plate 1.25 m × 1.25 m × 2 mm thick and weigh-
ing 30 N is placed midway in the gap. Determine 
the force required to lift the plate with a constant 
velocity of 0.18 m/s. [Ans. 160.2 N]



2.1.   PRESSURE OF A LIQUID  

 When a fluid is contained in a vessel, it exerts force 
at all points on the sides and bottom and top of the 
container. The force per unit area is called pressure.
 If,    P = The force, and
  A = Area on which the force acts; then 

intensity of pressure, p = 
P
A  ...(2.1)

 The pressure of a fluid on a surface will always act 
normal to the surface.
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Vessel Liquid

h

wh

Cylinder

Fig. 2.1. Pressure head.

2.2.   PRESSURE HEAD OF A LIQUID  

 A liquid is subjected to pressure due to 
its own weight, this pressure increases as 
the depth of the liquid increases.
 Consider a vessel containing liquid, 
as shown in Fig. 2.1. The liquid will exert 
pressure on all sides and bottom of the 
vessel. Now, let cylinder be made to stand 
in the liquid, as shown in the figure.
 Let, h = Height of liquid in the cylinder,
  A = Area of the cylinder base,
  w = Specific weight of the liquid,
 and,  p  =  Intensity of pressure.
 Now,  Total pressure on the base of the cylinder = Weight of liquid in the cylinder
 i.e., p. A. = wAh

  p = wAh
A

 = wh  i.e.,  p = wh                  ...(2.2)

 As p = wh, the intensity of pressure in a liquid due to its depth will vary directly with depth.
 As the pressure at any point in a liquid depends on height of the free surface above that point, it 
is sometimes convenient to express a liquid pressure by the height of the free surface which would 
cause the pressure, i.e.,
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  h = p
w

 [from eqn. (2.2)]

 The height of the free surface above any point is known as the static head at that point. In this 
case, static head is h.
Hence, the intensity of pressure of a liquid may be expressed in the following two ways:
 1. As a force per unit area (i.e., N/mm2, N/m2), and
 2. As an equivalent static head (i.e., metres, mm or cm of liquid).
 Alternatively:
 Pressure variation in fluid at rest: 
 In order to determine the pressure at any point in a fluid at rest “hydrostatic law” is used; the 
law states as follows:
 “The rate of increase of pressure in a 
vertically downward direction must be equal to 
the specific weight of the fluid at that point.”
 The proof of the law is as follows.
 Refer to Fig. 2.2
 Let, p = Intensity of pressure on face LM,
	 				∆	A = Cross-sectional area of the element,
       Z = Distance of the fluid element from 

free surface, and
	 					∆Z = Height of the fluid element.
 The forces acting on the element are:
 (i) Pressure force on the face
             LM = p ×	∆A ...(acting downward)

 (ii) Pressure force on the face ST ( )∂= + × ∆ × ∆
∂

pp Z A
Z

     ... (acting upward)

 (iii) Weight of the fluid element   = Weight density × volume
     =  w × (∆A × ∆Z)
 (iv) Pressure forces on surfaces MT and LS ..... are equal and opposite. 
  For equilibrium of the fluid element, we have: 

           p × ∆A – pp Z
Z
∂ + × ∆ ∂ 

 ×  ∆A + w × (∆A × ∆Z) = 0

 or,     p × ∆A – p × ∆A – p
Z
∂
∂

× ∆Z × ∆A + w × ∆A × ∆Z = 0

 or, ∂
∂

p
Z

 ∆Z × ∆A + w × ∆A × ∆Z = 0

 or, p
Z
∂
∂

 = w (cancelling ∆Z × ∆A from both the sides)

 or, 	 p
Z
∂
∂

	=	 ρ	× g  ( Q w = ρ × g)	 ...(2.3)

 Eqn. (2.3.) states that rate of increase of pressure in a vertical direction is equal to weight 
density of the fluid at that point. This is “hydrostatic law”. 
 On integrating the eqn. (2.3), we get:

Fluid element

�p

Z�
p + �Z �A

Free surface

Z

��

S T

L M

p. A�

Fluid

Fig. 2.2. Forces acting on a fluid element.
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  dp∫  = .g dZρ∫
 or, p = ρ g.   Z (= wZ) ...(2.4)
 where, p is the pressure above atmospheric pressure.
 From eqn. (2.4), we have:

  Z = 
.
p p
g w
 = ρ  

 ... (2.5)

 Here Z is known as pressure head.
 Example 2.1.  Find the pressure at a depth of 15 m below the free surface of water in a reservoir.
 Solution.     Depth of water,  h = 15 m
     Specific weight of water,  w = 9.81 kN/m3

 Pressure p:
 We know that, p = wh = 9.81 × 15 = 147.15 kN/m2

 i.e., p = 147.15 kN/m2     = 147.15 kPa (Ans.)
 Example 2.2. Find the height of water column corresponding to a pressure of 54 kN/m2.
 Solution.  Intensity of pressure,  p = 54 kN/m2

  Specific weight of water, w = 9.81 kN/m3

 Height of water column, h:

 Using the relation:  p = wh;  h = p
w

= 54
9.81

= 5.5 m (Ans.)

2.3.   PASCAL’S LAW  

 The Pascal’s law states as follows :
 “The intensity of pressure at any point in a liquid 
at rest, is the same in all directions”.
 Proof. Let us consider a very small wedge shaped 
element LMN of a liquid, as shown in Fig. 2.3.
 Let,  px = Intensity of horizontal pressure on 

the element of liquid,
  py = Intensity of vertical pressure on the 

element of liquid,
  pz = Intensity of pressure on the diagonal 

of the right angled triangular element,
	 	 α = Angle of the element of the liquid,
  Px = Total pressure on the vertical side LN of the liquid,
  Py = Total pressure on the horizontal side MN of the liquid, and
  Pz = Total pressure on the diagonal LM of the liquid.
 Now, Px = px × LN ...(i)
 and, Py = py × MN ...(ii)
 and, Pz = pz × LM ...(iii)
  As the element of the liquid is at rest, therefore the sum of horizontal and vertical components 
of the liquid pressures must be equal to zero.
 Resolving the forces horizontally: 
  Pz sin α = Px

�
M

L

N

�

pz

py

px

Fig. 2.3. Pressure on a fluid element at rest.
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  pz . LM. sin α =  px . LN     ( Q Pz = pz. LM)
 But, LM . sin α = LN                      ... From Fig 2.3
	 ∴ pz = px            ...(iv)
 Resolving the forces vertically: 
  Pz .cos α = Py – W
 (where,  W = weight of the liquid element)
 Since the element is very small, neglecting its weight, we have:
  Pz cos α = Py or pz . LM cos α = py .MN
 But,        LM cos α = MN ...From Fig 2.3
	 ∴ pz = py ...(v)
 From (iv) and (v), we get: px = py = pz,
 which is independent of α.
 Hence, at any point in a fluid at rest the intensity of pressure is exerted equally in all directions, 
which is called Pascal’s law.
 Example 2.3. The diameters of ram and plunger of an hydraulic press are 200 mm and 30 mm 
respectively. Find the weight lifted by the hydraulic press when the force applied at the plunger is 
400 N.
 Solution.  Diameter of the ram, D = 200 mm = 0.2 m
  Diameter of the plunger, d = 30 mm = 0.03 m
  Force on the plunger, F = 400 N 

F = 400 N

Plunger

W
Ram

p

Hydraulic press

p

Fig. 2.4

 Load lifted, W:

  Area of ram, A = 2
4

Dπ = π
4

 × 0.22 = 0.0314 m2

  Area of plunger,  a = 2
4 4

dπ π=  × 0.032 = 7.068 × 10–4 m2
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 Intensity of pressure due to plunger,

  p = – 4
400

7.068 10
F
a
=

×
 = 5.66 × 105 N/m2

 Since the intensity of pressure will be equally transmitted (due to Pascal’s law), therefore the 
intensity of pressure at the ram is also
   = p = 5.66 × 105 N/m2

  But intensity of pressure at the ram = Weight
Area of ram

 2= N/m
0.0314

W W
A
=

	 ∴   
0.0314

W  = 5.66 × 105 or W = 0.0314 × 5.66 × 105 N = 17.77 × 103 N or 17.77 kN (Ans.)

 Example 2.4. For the hydraulic jack shown in Fig. 2.5 find the load lifted by the large piston 
when a force of 400 N is applied on the small piston. Assume the specific weight of the liquid in the 
jack is 9810 N/m3.
 Solution. Diameter of small piston, d = 30 mm = 0.03 m

W

100 mm
dia.

Large piston

Liquid

300 mm

LL

= 400 NF

30 mm
dia.

Small piston

Fig. 2.5

  Area of small piston, a = 2
4

dπ π=
4

× 0.032 = 7.068 × 10–4 m2

  Diameter of the large piston, D = 100 mm = 0.1 m

  Area of large piston, A = π
4

 D2 = π
4

 × 0.12 = 7.854 × 10–3 m2

  Force on small piston, F = 400 N
 Load lifted, W:

  Pressure intensity on small piston,  p  = – 4
400

7.068 10
F
a
=

×
 = 5.66 × 105 N/m2

 Pressure intensity at section LL,

  pLL = F
a

 +  Pressure intensity due to height of 300 mm of liquid

   = F
a

 + wh = 5.66 × 105 + 9810 × 300
1000

   = 5.66 × 105 + 2943 = 5.689 × 105 N/m2
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 Pressure intensity transmitted to the large piston = 5.689 × 105 N/m2

  Force on the large piston = Pressure intensity × area of large piston
                 = 5.689 × 105 × 7. 854 × 10–3 = 4468 N
 Hence, load lifted by the large piston = 4468 N (Ans.)

2.4.   ABSOLUTE AND GAUGE PRESSURES  

 Atmospheric pressure:
 The atmospheric air exerts a normal pressure upon all surfaces with which it is in contact, 
and it is known as atmospheric pressure. The atmospheric pressure is also known as ‘Barometric 
pressure’.
 The atmospheric pressure at sea level (above absolute zero) is called ‘Standard atmospheric 
pressure’.
 Note.  The local atmospheric pressure may be a little lower than these values if the place under question is 

higher than sea level, and higher values if the place is lower than sea level, due to the corresponding 
decrease or increase of the column of air standing, respectively.

 Gauge pressure:
 It is the pressure, measured with the help of pressure measuring instrument, in which the 
atmospheric pressure is taken as datum. The atmospheric pressure on the scale is marked as zero.
 Gauges record pressure above or below the local atmospheric pressure, since they measure 
the difference in pressure of the liquid to which they are connected and that of surrounding air. If 
the pressure of the liquid is below the local atmospheric pressure, then the gauge is designated as 
‘vacuum gauge’ and the recorded value indicates the amount by which the pressure of the liquid is 
below local atmospheric pressure, i.e. negative pressure.
 (Vacuum pressure is defined as the pressure below the atmospheric pressure).
 Absolute pressure:
 It is necessary to establish an absolute pressure scale which is independent of the changes in 
atmospheric pressure. A pressure of absolute zero can exist only in complete vacuum.
 Any pressure measured above the absolute zero of pressure is termed as an ‘absolute pressure’.
 A schematic diagram showing the gauge pressure, vacuum pressure and the absolute pressure 
is given in Fig. 2.6.

Positive gauge
pressure

Atmospheric
pressure

Negative gauge
pressure or vacuum

Absolute
pressure

P
re

ss
u
re

Zero absolute pressure

Fig. 2.6. Relationship between pressures.
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 Mathematically:
 1. Absolute pressure = Atmospheric pressure + gauge pressure
  i.e.,  pabs = patm + pgauge
 2. Vacuum pressure  = Atmospheric pressure – absolute pressure
 Units for pressure:
 The fundamental S.I. unit of pressure is newton per square metre (N/m2). This is also known as 
Pascal.
 Low pressures are often expressed in terms of mm of water or mm of mercury. This is an 
abbreviated way of saying that the pressure is such that will support a liquid column of stated height.
 Note.  When the local atmospheric pressure is not given in a problem, it is taken as 100 kN/m2 or 10 m of    

water for simplicity of calculations.
 Standard atmospheric pressure has the following equivalent values:
 101.3 kN/m2 or 101.3 kPa; 10.3 m of water; 760 mm of mercury; 1013 mb (millibar) ; 1 bar  
;100 kPa = 105 N/m2.
 Example 2.5.  Given that:
 Barometer reading = 740 mm of mercury;
 Specific gravity of mercury = 13.6; Intensity of pressure = 40 kPa.
 Express the intensity of pressure in S.I. units, both gauge and absolute.
 Solution. Intensity of pressure,  p = 40 kPa
 Gauge pressure:
 (i) p = 40 kPa = 40 kN/m2 = 0.4 × 105 N/m2 = 0.4 bar (Ans.)
   (1 bar = 105 N/m2)

 (ii) h = 
5

3
0.4 10
9.81 10

p
w

×=
×

 = 4.077 m of water (Ans.) 

 (iii) h =
5

3
0.4 10

9.81 10 13.6
p
w

×=
× ×

 = 0.299 m of mercury (Ans.)

 3

3

Where, specific weight;

For water : = 9.81 kN/m

For mercury : 9.81 13.6kN/m

w

w

w

= 
 
 
 = × 

 Absolute pressure:
 Barometer reading (atmospheric pressure)
   = 740 mm of mercury = 740 × 13.6 mm of water

   = 740 13.6
1000
×  = 10.6 m of water

  Absolute pressure (pabs.) = Atmospheric pressure (patm.) + gauge pressure (pgauge).
	 ∴ pabs  = 10.06 + 4.077 = 14.137 m of water (Ans.)
    = 14.137 × ( 9.81 × 103 ) = 1.38 × 105 N/m2 (Ans.)   (p = wh)
    = 1.38 bar (Ans.)                               (1 bar = 105 N/m2)

     = 14.137
13.6

 = 1.039 m of mercury. (Ans.)

 Example 2.6. Calculate the pressure at a point 5 m below the free water surface in a liquid that 
has a variable density given by relation: 
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	 	 ρ = (350 + Ay) kg/m3

 where, A = 8 kg/m4 and y is the distance in metres measured from the free surface.
 Solution. As per hydrostatic equation
  dp = ρ.g.dy= g (350 + Ay)dy
 Integrating both sides, we get:

  dp∫  = 
5

0

(350 )g Ay dy+∫  
5

0

(350 8 )g y dy= +∫

  p = 
52

0
350 8

2
yg y + ×

   = 9.81 (350 × 5 + 8 × 
25

2
) = 18148 N/m2 ; 18.15 kN/m2

 (Ans.)
 Example 2.7. On the suction side of a pump a gauge shows a negative pressure of 0.35 bar. 
Express this pressure in terms of:
 (i) Intensity of pressure, kPa,
 (ii) N/m2 absolute,
 (iii) Metres of water gauge,
 (iv) Metres of oil (specific gravity  0.82) absolute, and
 (v) Centimetres of mercury gauge, 
 Take atmospheric pressure as 76 cm of Hg and relative density of mercury as 13.6.
 Solution. Given: Reading of the vacuum  gauge = 0.35 bar
 (i) Intensity of pressure, kPa:
   Gauge reading = 0.35 bar = 0.35 × 105 N/m2

    = 0.35 × 105 Pa = 35 kPa (Ans.) 
 (ii) N/m2 absolute:
   Atmospheric pressure, patm. = 76 cm of Hg

     = (13.6 × 9810) × 276 101396 N/m
100

=

    Absolute pressure = Atmospheric pressure – Vacuum pressure
    pabs. = patm – pvac.

     = 101396 – 35000 = 66396 N/m2 absolute (Ans.)
 (iii) Metres of water gauge:
   p = ρgh = wh

	 	 ∴	 hwater (gauge) = 
50.35 10 .

9810
p
w

×= = 3 567m (gauge) (Ans.)

 (iv) Metres of oil (sp. gr. = 0.82) absolute:

   hoil (absolute) = 66396
0.82 9810×

 = 8.254 m of water (absolute) (Ans.)

 (v) Centimetres of mercury gauge:

   hmercury(gauge) = 
50.35 10

13.6 9810
×
×

 = 0.2623 m of mercury

    = 26.236 cm of mercury (Ans.)
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 Example 2.8. The inlet to pump is 10.5 m above the bottom of sump from which it draws water 
through a suction pipe. If the pressure at the pump inlet is not to fall below 28 kN/m2 absolute, work 
out the minimum depth of water in the tank.
 Assume atmospheric pressure as 100 kPa.
 Solution. Given: patm. = 100 kPa = 100 kN/m2; pabs.= 28 kN/m2.
 Minimum depth of water in the tank:
 Let, pvac. = The vacuum (suction) pressure at the pump inlet.
 Then, pvac. = patm. – pabs.
   = (100 – 28) = 72 kN/m2   or  72000 N/m2

 Further, let h be the distance between the pump inlet and free water surface in the sump. 
 Invoking hydrostatic equation, we have:
   p = wh
  72000 = 9810 × h

 or,  h = 72000
9810

 = 7.339 m

	 ∴  Minimum depth of water in the tank
   = 10.5 – 7.339 = 3.161 m (Ans.)

 Example 2.9.  A cylindrical tank of cross-sectional area 600 mm2 and 2.6 m height is filled with 
water upto a height of 1.5 m and remaining with oil of specific gravity 0.78. The vessel is open  to 
atmospheric pressure. Calculate:

 (i) Intensity of pressure at the interface.
 (ii) Absolute and gauge pressures on the base of the tank in terms of water head, oil head and  

N/m2.
 (iii) The net force experienced by the base of the tank.
  Assume atmospheric pressure as 1.0132 bar.

 Solution.  Given: Area of cross-section of the tank, A = 600 
mm2 = 600 × 10-6; Sp.gr. of oil = 0.78; patm.= 1.0132 bar.
 (i) Intensity of pressure at the interface:
   The pressure intensity at the interface between the oil 
and water is due to 1.1 m of oil and is given by: 
   pinterface = wh
    = (0.78 × 9810) × 1.1
    = 8417 N/m2 (Ans.)
 (ii) Absolute and gauge pressures on the base of the tank:
  Pressure at the base of the tank
  = Pressure at the interface (due to 1.1 m of oil) + pressure 
due to 1.5 m of water,
 i.e., pbase (gauge)  = 8417 + (9810 × 1.5)
   = 23132 N/m2 (gauge) (Ans.)

   = 23132
9810

 = 2.358 m of water (gauge) (Ans.)

   = 23132
0.78 9810×

 = 3.023 m of oil (gauge) (Ans.) 

1.1 m

1.5 m

Cylindrical
tank

Interface
between the oil

and water

patm.

Oil
(Sp. gr. = 0.78)

Water

patm.

Fig. 2.7
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   Atmospheric pressure, patm. = 1.0132 bar
    = 1.0132 × 105 N/m2

    = 
51.0132 10

9810
×  = 10.328 m of water

    = 
51.0132 10

0.78 9810
×

×
 = 13.241 m of oil

   Absolute pressure = Atmospheric pressure  +  gauge pressure
   pbase (absolute) = 10.328 + 2.358 = 12.686 m of water (Ans.)
    = 13.241 + 3.023 = 16.264 m of oil (Ans.)
     = 101320 + 23132 =  124452 N/m2 (Ans.)
 (iii) The net force experienced by the base of the tank:
    F (= P) = pbase(gauge) × cross-sectional area
     = 23132 × 600 × 10–6 = 13.879 N (Ans.)
 Example 2.10. (a) What is hydrostatic paradox? 
 (b) A cylinder of  0.25 m diameter and 1.2 m height is fixed centrally on the top of a large 

cylinder of 0.9 m diameter and 0.8 m height. Both the cylinders are filled with water. Cal-
culate:

 (i) Total pressure at the bottom of the bigger cylinder, and 
 (ii) Weight of total volume of water.
  What is hydrostatic paradox between the two results and how this difference can be 

reconciled?
  Solution. (a) Hydrostatic paradox:
 Fig. 2.8 shows three vessels 1, 2 and 3 having the same area A at the bottom and each filled with 
a liquid upto the same height h.

h h h 3

A

Liquid

Free surface

A (area) A = Area of the
bottom

21

Fig. 2.8. Hydrostatic paradox.

 According to the hydrostatic equation, p = wh; the intensity of pressure (p) depends only on the 
height of the column and not at all upon the size of the column. Thus, in all these vessels of different 
shapes and sizes, the same intensity of pressure would be exerted on the bottom of each of these 
vessels. Since each of the vessels has the same area A at the bottom, the pressure force P = p × A on 
the base of each vessel would be same. This is independent of the fact that the weight of liquid in 
each vessel is different. This situation is referred to as hydrostatic paradox.
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 (b) Area at the bottom: 

   A = 
4
π  × (0.9)2 = 0.6362 m2

   Intensity of pressure at the bottom
   p = wh = 9810 × (1.2 + 0.8)
    = 19620 N/m2

  Total pressure force at the bottom 
	 	 	 P = p × A = 19620 × 0.6362 = 12482 N

 Weight of total volume of water contained in the 
cylinders,

   W = w × volume of water

           =  9810 2 20.9 0.8 0.25 1.2
4 4
π π × × + × ×  

 

          = 5571 N
 From the above calculations it may be observed that the 
total pressure force at the bottom of the cylinder is greater 
than the weight of total volume of water (W) contained in the 
cylinders. This is hydrostatic paradox.
 The following is the explanation of the hydrostatic paradox: Refer to Fig. 2.9.
 Total pressure force on the bottom of bigger tank = 12482 N (downward). A reaction at the roof 
of the lower tank is caused by the upward force which equals,

  wAh = 9810 × 
4
π  (0.92 – 0.252) × 1.2 = 6911 N (upward)

 The distance h corresponding to depth of water in the cylinder fixed centrally on the top of 
larger cylinder.
 Net downward force exerted by water = 12482 – 6911 = 5571 N and it equals the weight of 
water in the two cylinder.

2.5.   MEASUREMENT OF PRESSURE  

 The pressure of a fluid may be measured by the following devices:
 1. Manometers:
 Manometers are defined as the devices used for measuring the pressure at a point in a fluid 
by balancing the column of fluid by the same or another column of liquid. These are classified as 
follows:
 (a) Simple manometers:
 (i) Piezometer, (ii) U-tube manometer, and (iii) Single column manometer.
 (b) Differential manometers.
 2. Mechanical gauges:
 These are the devices in which the pressure is measured by balancing the fluid column by spring 
( elastic element) or dead weight. Generally these gauges are used for measuring high pressure  and 
where high precision is not required. Some commonly used mechanical gauges are:
 (i) Bourdon tube pressure gauge, (ii) Diaphragm pressure gauge, 
 (iii) Bellow pressure gauge, and (iv) Dead-weight pressure gauge.

1.2 m

Cyli dersn

0.8 m

0.9 m dia.

0.25 m
dia.

Water

Fig. 2.9
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2.5.1 Manometers 

2.5.1.1. Simple manometers
 A “sim ple manometer” is one which consists of a glass tube whose one end is connected to a 
point where pressure is to be measured and the other end remains open to atmosphere. 
Common types of simple manometers are discussed below:
 1. Piezometer:
 A piezometer is the simplest form of manometer which can be used for measuring moderate 
pressures of liquids. It consists of a glass tube (Fig 2.10) inserted in the wall of a vessel or of a pipe, 
containing liquid whose pressure is to be measured. The tube extends vertically upward to such a 
height that liquid can freely rise in it without overflowing. The pressure at any point in the liquid 
is indicated by the height of the liquid in the tube above that point, which can be read on the scale 
attached to it. Thus if w is the specific weight of the liquid, then the pressure at point A(p) is given 
by:
  p = wh

Open
vessel

h

Piezometer
tube

 Fig. 2.10. (a) Piezometer tube fitted to open vessel.

  Piezometers measure gauge pressure only (at the 
surface of the liquid), since the surface of the liquid in the 
tube is subjected to atmospheric pressure. A piezometer 
tube is not suitable for measuring negative pressure; as in 
such a case the air will enter in pipe through the tube.
 2. U-tube manometer:
 Piezometers cannot be employed when large pressures 
in the lighter liquids are to be measured, since this 
would require very long tubes, which cannot be handled 
conveniently. Furthermore gas pressures cannot be 
measured by the piezometers because a gas forms no free 
atmospheric surface. These limitations can be overcome by 
the use of U-tube manometers.
 A U-tube manometer consists of a glass tube bent in 
U-shape, one end of which is connected to a point at which 
pressure is to be measured and other end remains open to 
the atmosphere as shown in Fig. 2.11.

Pipe

Piezometer
tube

h

A

Fig. 2.10. (b) Piezometer tube 
fitted to a closed pipe.
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 (i) For positive pressure: 
 Refer to Fig. 2.11 (a).

A

X X

h1

h2

( )a

A

X X

h2

h1

( )b

Fig. 2.11. U-tube manometer.

 Let,  A be the point at which pressure is to be measured. X–X is the datum line as shown in  
Fig. 2.11 (a). 
 Let, h1 = Height of the light liquid in the left limb above the datum line,
  h2 = Height of the heavy liquid in the right limb above the datum line,
  h = Pressure in pipe, expressed in terms of head,
  S1 = Specific gravity of the light liquid, and
  S2 = Specific gravity of the heavy liquid.
 The pressures in the left limb and right limb above the datum line X–X are equal (as the pressures 
at two points at the same level in a continuous homogeneous liquid are equal).
 Pressure head above X–X in the left limb = h + h1 S1
 Pressure head above X–X in the right limb = h2 S2
 Equating these two pressures, we get:
   h + h1 S1 = h2 S2 or h = h2 S2 – h1S1      ...(2.6)
 (ii) For negative pressure:
  Refer to Fig. 2.11 (b).
  Pressure head above X–X in the left limb = h + h1 S1 + h2S2
  Pressure head above X–X in the right limb = 0.
  Equating these two pressures, we get:
   h + h1S1 + h2 S2 = 0         or h = – (h1 S1 + h2S2) ...(2.7)

 Example 2.11. In a pipeline water is flowing. A manometer is used to measure the pressure 
drop for flow through the pipe. The difference in level was found to be 20 cm. If the manometric fluid 
is CCl4, find the pressure drop in S.I units (density of CCl4 = 1.596 g/cm3). If the manometric fluid 
is changed to mercury (ρ	= 13.6gm/cm3) what will be the difference in level?  

(UPTU)

 Solution. Given: hCCl4
 = 20 cm = 0.2 m; ρCCl4

 = 1.596 g/cm3 
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   = 1.596 × 103 kg/m3

  ρHg = 13.6 × 103 kg/m3

  Pressure drop, ∆p = ρCCl4
 ghCCl4

   = 1.596 × 103 × 9.81× 0.2 N/m2

   = 3131.3 N/m2 or Pa = 3.131 kPa (Ans.)
 The difference in level with mercury,

  hHg = hCCl4
 × 4

3

3
1.596 100.20
13.6 10

CCl

Hg

ρ ×= ×
ρ ×

   = 0.02347 m or 2.347 cm (Ans.)

 Example 2.12. A U-tube manometer is used to measure the pressure of oil of specific gravity  
0.85 flowing in a pipe line. Its left end is connected to the pipe and the right-limb is open to the 
atmosphere. The centre of the pipe is 100 mm below the level of mercury (specific gravity = 13.6) in 
the right limb. If the difference of mercury level in the two limbs is 160 mm, determine the absolute 
pressure of the oil in the pipe.
 Solution. Specific gravity of oil, S1 = 0.85
 Specific gravity of mercury, S2 = 13.6
 Height of the oil in the left limb, 
  h1 = 160 – 100 = 60 mm = 0.06 m
 Difference of mercury level, 
  h2 = 160 mm = 0.16 m.
 Absolute pressure of oil:
 Let, h1 = Gauge pressure in the pipe in 

terms of head of water, and
   p = Gauge pressure in terms of  

kN/m2.
 Equating the pressure heads above the 
datum line X–X, we get:
    h + h1 S1  = h2S2

 or,  h + 0.06 × 0.85  = 0.16 × 13.6 = 2.125 m
 The pressure p is given by:
  p = wh
   = 9.81 × 2.125 kN/m2

   = 20.84 kPa     (Qw = 9.81 kN/m3 in S.I. units)
 Absolute pressure of oil in the tube,
  pabs. = patm. + pgauge

   = 100 + 20.84 = 120.84 kPa (Ans.)
 Example 2.13. U-tube manometer containing mercury was used to find the negative pressure 
in the pipe, containing water. The right limb was open to the atmosphere. Find the vacuum pressure 
in the pipe, if the difference of mercury level in the two limbs was 100 mm and height of water in the 
left limb from the centre of the pipe was found to be 40 mm below.

 Solution. Specific gravity of water, S1 = 1

h

Fig. 2.12

A

X X

h1

h2

1
0
0

m
m

1
6
0

m
m

Pipe

Liquid ( = 0.85)S1

Mercury ( = 13.6)S2

Fig. 2.13
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 Specific gravity of mercury, S2 = 13.6
 Height of water in the left limb,
  h1 = 40 mm = 0.04 m
 Height of mercury in the left limb, 
  h2 = 100 mm = 0.1 m
 Let, h = Pressure in the pipe in terms of head of 

water (below the atmosphere).
 Equating the pressure heads above the datum line 
X–X, we get:
             h + h1S1 + h2S2 = 0
 or, h = – (h1S1 + h2S2)
   = – (0.04 × 1 + 0.1 × 13.6) 
   = –1.4 m of water
 Pressure p is given by:
  p = wh
   = 9.81 × (– 1.4) kN/m2

   = – 13.73 kPa
   = 13.73 kPa (vacuum) (Ans.)
 Example 2.14. A simple U-tube manometer is installed across an orificemeter. The manometer 
is filled with mercury (sp. gravity = 13.6) and the liquid above the mercury is carbon tetrachloride  
(sp. gravity = 1.6). The manometer reads 200 mm. What is the pressure difference over the manometer 
in newtons per square metre. 
 Solution.  Specific gravity of heavier liquid, Shl = 13.6
  Specific gravity of lighter liquid, Sll =  1.6
  Reading of the manometer, y  =  200 mm
 Pressure difference over the manometer : p
 Differential head, 

  h = y – 1hl

ll

S
S

 
  

  13.6200 – 1
1.6

 
  

 = 1500 mm of carbon tetrachloride

 Pressure difference over manometer,

  p = wh = (1.6 × 9810) × 
1500
1000
 
 
 

 or  p = 23544 N/m2  (Ans.)
 Example 2.15. In Fig. 2.15 is shown a conical vessel having its outlet at L to which U-tube 
manometer is connected. The reading of the manometer given in figure shows when the vessel is 
empty. Find the reading of the manometer when the vessel is completely filled with water.

 Solution. When vessel is empty: (Refer to Fig. 2.15)
 Let,    h1 = Height of water above X–X
  Specific gravity of water, S1 = 1.0
 Specific gravity of mercury, S2 = 13.6
 Equating the pressure heads about the datum line X–X, we get:

A

X X

Mercury ( = 13.6)S2

Water (S = 1.0)1

h
1

=
4
0

m
m

h
2

=
1
0
0

m
m

Pipe

Fig. 2.14
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  h1S1 = h2S2  or  h1 × 1.0 = 150 × 13.6   or   h1 = 2040 mm
 When vessel is full of water:

h1

h
=

1
5
0

m
m

2

X X

L

Vessel
2 m

1.5 m

h1

Z Z

Water
( = 1.0)S1 2 m

1.5 m

X
y

150 mm
X

(150 +
2 mm)y

y

Mercury
( = 13.6)S2  

 Fig. 2.15. Vessel is empty. Fig. 2.16. Vessel is full of water.

 Refer to Fig. 2.16. Consider the vessel to be completely filled with water. As a result of this 
let the mercury level go down by y mm in the right limb, and the mercury level go up by the same 
amount in the left limb. Now the datum line is Z–Z.
 Equating the pressure heads above the datum line Z–Z, we get:
  (150 + 2y) × 13.6 = (h1 + y + 2000) × 1
 or, 150 × 13.6 + 2y × 13.6 = 2040 + y + 2000 [ Q h1 = 2040 mm, calculated earlier]
 or, 2040 + 27.2y = 4040 + y = 76.3 mm
 Thus the reading of the manometer when the vessel is completely filled with water
   = (150 + 2y) = 150 + 2 × 76.3 = 302.6 mm
 Hence, reading of the manometer 302.6 mm or 0.3026 m  (Ans.)
 Example. 2.16.  Fig. 2.17 shows a pressure gauge with the following particulars:
 Cross-sectional area of each of the bulbs L and M  = 1200 mm2;
 Cross-sectional area of each vertical limb = 30 mm2;
 Specific gravity of the liquid filled in bulb M = 0.9; 
 If the surface of separation is in the limb attached to M find the displacement of surface of 
separation when the pressure on the surface in M is greater than that in L by an amount equal to  
20 mm of head of water.
 Solution. 
  Cross-sectional area of each vertical limb, a = 30 m2

  Specific gravity of water, S1 = 1.0
  Specific gravity of the liquid, S2  = 0.9.
 Let, X–X = Initial level of separation,
  hL  = Height of water above X–X, and
  hM = Height of liquid (S2 = 0.9) above X–X.
  Pressure head above X–X in the left limb = hL
  Pressure head above X–X in the right limb  =  S2 hM = 0.9 hM 



Chapter 2 : Pressure Measurement         59

 Equating the pressure heads above X–X , we get:
  hL = 0.9 hM ...(i)
 When the pressure on the surface in bulb M is increased by 20 mm of water, let the separation 
level fall by an amount equal to y. Then Z–Z is the new separation level.

Water
( = 1.0)S1

L

y/40

hL

X X

Z Z

Final level of
separation

Initial level of
separation

y

M

hM

Limbs

y/40

20 mm of
Water pressure

Liquid
( = 0.9)S2

Fig. 2.17

 Now, A × fall in separation level in bulb M = a × fall in separation level in the limb (y).

  Fall in separation level in bulb M = 30
1200 40

a y y y
A
× ×= =

 Also,  fall in separation level in bulb M = Rise in surface level of 
40
yL =

 Considering pressure heads above Z–Z, we have:

  Pressure head in the left limb = 
40 L
y h y + +  

 

  Pressure head in the right limb = ( )–
40M
yh y+ × 0.9 + 20

 Equating the pressure heads, we get:

  
40 L
y h y + +  

 = –
40M
yh y +  

× 0.9 + 20

 or, 
40
y  + 0.9 hM + y = 0.9 hM + 39

40
y  × 0.9 + 20 (Q hL = 0.9 hM) 

 or, 41
40

y  = 39
40

y  × 0.9 + 20 or 3941 –
40 40

yy  × 0.9 = 20

 or, 1.025y – 0.877y = 20   or   y = 135.1 mm
 Hence, displacement of the surface of separation = 135.1 mm (Ans.)
 3. Single column manometer (micro-manometer):
 The U-tube manometer described above usually requires reading of fluid levels at two or more 
points since a change in pressure causes a rise of liquid in one limb of the manometer and a drop in 
the other. This difficulty is however overcome by using single column manometers. A single column 
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manometer is a modified form of a U-tube manometer in which a shallow reservoir having a large 
cross-sectional area (about 100 times) as compared to the area of the tube is connected to one limb 
of the manometer, as shown in Fig. 2.18. For any variation in pressure, the change in the liquid level 
in the reservoir will be so small that it may be neglected, and the pressure is indicated by the height 
of the liquid in the other limb. As such only one reading in the narrow limb of the manometer need 
be taken for all pressure measurements. The narrow limb may be vertical or inclined. Thus there are 
two types of single column manometer as given below:

X

Z

h2

Heavy liquid

Reservoir
�h

h1

X

Z

Light liquid

�h

Fig. 2.18. Vertical single column manometer.

 (a) Vertical single column manometer, and 
 (b) Inclined single column manometer.
 (a) Vertical single column manometer:
 Refer to Fig. 2.18
 Let X–X be the datum line in the reservoir when the single column manometer is not connected 
to the pipe. Now consider that the manometer is connected to a pipe containing light liquid under 
a very high pressure. The pressure in the pipe will force the light liquid to push the heavy liquid 
in the reservoir downwards. As the area of the reservoir is very large, the fall of the heavy liquid 
level will be very small. This downward movement of the heavy liquid, in the reservoir, will cause 
a considerable rise of the heavy liquid in the right limb.
 Let, h1 = Height of the centre of the pipe above X–X,
  h2 = Rise of heavy liquid (after experiment) in the right limb,
	 	 δh = Fall of heavy liquid level in the reservoir,
  h = Pressure in the pipe, expressed in terms of head of water,
  A = Cross-sectional area of the reservoir, 
  a = Cross-sectional area of the tube (right limb),
  S1 = Specific gravity of light liquid in pipe, and
  S2 = Specific gravity of the heavy liquid.
 We know that fall of heavy liquid in reservoir will cause a rise of heavy liquid level in the right 
limb.
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 Thus, A × δh = a × h2 or δh = 2a h
A
×  ...(i)

 Let us now consider pressure heads above the datum line Z–Z as shown in Fig. 2.18.
  Pressure head in the left limb = h + ( h1 + δh)S1
  Pressure head in the right limb = (h2 + δh)S2
 Equating the pressure heads, we get:  
  h +(h1 + δh)S1 = (h2 + δh)S2   or   h = ( h2 + δh) S2 – (h1 + δh) S1
   = δh (S2 – S1) + h2S2 – h1S1

 But, δh = 2a h
A
×  …[Eqn. (i)]

  h = 2a h
A
×  (S2 – S1) + h2S2 – h1S1 …(2.8)

 When the area A is very large as compared to a, then the ratio a
A

becomes very small, and thus 

is neglected. Then the above equation becomes
  h = h2S2 – h1S1 ...(2.9)
 (b) Inclined single column manometer:
 This type of manometer is useful for the measurement of small pressures and is more sensitive 
than the vertical tube type. Due to inclination the distance moved by the heavy liquid in the right 
limb is more.

�h

h1

X
Z

h l2 = sin �

�

l

h

X

Z

Fig. 2.19. Inclined single column manometer.

 Let,  l = Length of the heavy liquid moved in right limb,
	 	 α = Inclination of right limb horizontal, and
  h2 = Vertical rise of liquid in right limb from X–X = l sin α .
    Putting the value of h2 in eqn. 2.9, we get:
  h = l sin α × S2 – h1 S1  ...(2.10)

 Example. 2.17. Fig. 2.20 shows a single column manometer connected to a pipe containing 
liquid of specific gravity 0.8. The ratio of area of the reservoir to that of the limb is 100. Find the 
pressure in the pipe.
 Take specific gravity of mercury as 13.6.

 Solution.  Specific gravity of liquid in the pipe, S1 = 0.8.
  Specific gravity of mercury, S2 = 13.6

  Area of reservoir
Area of right limb

 = A
a

 = 100
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Liquid
(S = 0.8)1

3
0
0

m
m

5
0
0

m
m

Mercury
(S = 13.6)2

Fig. 2.20

 Height of the liquid in the left limb,
  h1 = 300 mm
 Height of mercury in the right limb,
  h2 = 500 mm
 Let, h = Pressure head in the pipe.
 Using the relation:

  h = a
A

 h2 (S2 – S1) + h2S2 – h1S1

 or, h = 1
100

× 500 (13.6 – 0.8) + 500 × 13.6 – 300 × 0.8 mm of water 

   = 6624 mm of water   or    6.624 m of water
 Pressure, p = wh = 9.81 × 6.624
   = 64.98 kN/m2 or 64.98 kPa
 i.e., p = 64.98 kPa (Ans.) 
 Example 2.18. A manometer consists of an inclined glass tube which communicates with a 
metal cylinder standing upright; liquid fills the apparatus to a fixed zero mark on the tube when both 
the cylinder and the tube are open to atmosphere. The upper end of the cylinder is then connected to 
a gas supply at a pressure p and manometric liquid rises through a distance l in the tube. Establish 
the relation:

  h = Sl ( )2dsin
D

 
α +  

 for the pressure head h of water column in terms of inclination α of the tube, specific gravity S 
of  the liquid, and ratio of diameter d of the tube to the diameter D of the cylinder.

 Also determine the value of ( )D
d

so that the error due to disregarding the change in level in the 

cylinder will not exceed 0.1 percent when α = 25°.
 Solution.  Vertical rise in the tube  =  l sin α

  Fall of liquid level in the cylinder  =  l × ( )2a dl
A D
= ×
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	 ∴	 Net change in level of manometric liquid due to the applied pressure

   = l sin α + l × 
2 2

sind dl
D D

    = α +    
    

 Now the increase in pressure,
 p = Specific weight of manometric liquid × net change in the level of manometric head

   = wm l
2

sin d
D

  α +  
  

 or, in terms of water column,

  p
w

 = 
2

sinmw dl
w D

  × α +  
  

 or, h = 
2

sin dS l
D

  × α +  
  

 ...Proved

 Change in the liquid level when variation of liquid in the cylinder is considered

   = 
2

sin dl
D

  α +  
  

 Change in the liquid level when variation of liquid in the cylinder is disregarded = l sin α

	 ∴ 

2

2

sin – sin

sin

dS l S l
D

dS l
D

  α + α  
  

  α +  
  

 = 0.001 ...(Given)

 or, 2
sin1 –

sin d
D

α

 α +  
 

 =  0.001

 or, 2

sin 251 –
sin 25 d

D

°

 ° +  
 

 =  0.001

 or, 2

0.42261 –
0.4226 d

D
 +  
 

 =  0.001

 or, 2

0.4226

0.4226 d
D

 +  
 

 =  0.999

 or, 
2d

D
 
 
 

 = 0.4226
0.999

 – 0.4226 = 0.000423

 or, d
D

 = 0.02057

 or, D
d

 = 48.61 (Ans.) 

2.5.1.2. Differential Manometers
 A differential manometer is used to measure the difference in pressures between two points 
in a pipe, or in two different pipes. In its simplest form a differential manometer consists of a 



64         Fluid Mechanics

U-tube, containing a heavy liquid, whose two ends are connected to the points, whose difference of 
pressures is required to be found out. Following are the most commonly used types of differential 
manometers:
 1. U-tube differential manometer.
 2. Inverted U-tube differential manometer.
 1. U-tube differential manometer:
 A U-tube differential manometer is shown in Fig. 2.21.
 Case I.  Fig. 2.21 (a) shows a differential manometer whose two ends are connected with two 
different points A and B at the same level and containing same liquid.
 Let, h = Difference of mercury levels (heavy liquid) in the U-tube,
  h1 = Distance of the centre of A from the mercury level in the right limb,
  S1 (= S2 ) = Specific gravity of liquid at the two points A and B
  S = Specific gravity of heavy liquid or mercury in the U-tube,
  hA = Pressure head at A, and
  hB = Pressure head at B.
 We know that the pressures in the left limb and right limb, above the datum line, are equal. 
Pressure head in the left limb
   = hA+ (h1 + h ) S1
 Pressure head in the right limb
   = hB + h1 × S1 + h × S
  hA + (h1 + h)S1 = hB + h1S1 + hS 
 or, hA – hB = h1S1 + hS – (h1 + h) S1
   = h1 S1 + hS – h1S1 + hS1 = h (S – S1)
 i.e., Difference of pressure head,
  hA – hB = h (S – S1) ...(2.11)
 Case II. Fig. 2.21 (b) shows a differential manometer whose two ends are connected to two 
different points A and B at different levels and containing different liquids.

A B

X X

Heavy liquid
or mercury (S)

Liquid A ( )S1
Liquid B ( )S2

h1

h

 Fig. 2.21. (a) Two pipes at same level.
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 Let, h = Difference of mercury levels (heavy liquid) in the U-tube,
  h1 = Distance of the centre of A, from the mercury level in the left limb,
  h2 = Distance of the centre of B, from the mercury level in the right limb,
  S1 = Specific gravity of liquid in pipe A,
  S2 = Specific gravity of liquid in pipe B,
  S = Specific gravity of heavy liquid or mercury, 
  hA = Pressure head at A, and
  hB = Pressure head at B.

A

X X

S1

B

S2

h1

h2

h

S

Fig. 2.21. (b) U-tube differential manometers.

 Considering the pressure heads above the datum line X–X, we get:
  Pressure head in the left limb  = hA + (h1 + h) S1  
  Pressure head in the right limb  = hB + h2 × S2 + h × S
 Equating the above pressure heads, we get:
     hA + (h1 + h) S1 = hB + h2 × S2 + h × S
  (hA – hB ) = h2 × S2 + h × S – ( h1 + h) S1
   = h2 × S2 + h × S – h1S1 – hS1 = h (S – S1) + h2S2 – h1S1

 i.e., Difference of pressure heads at A and B,
  hA – hB = h (S – S1) + h2S2 – h1S1 ...(2.12)

 Example 2.19. A differential manometer connected at the two points A and B in a pipe 
containing an oil of specific gravity of 0.9 shows a difference in mercury levels as 150 mm. Find the 
difference in pressures at the two points.
 Solution.  Specific gravity of oil, S1 = 0.9 
  Specific gravity of mercury, S = 13.6
  Difference of mercury levels, h = 150 mm
 Let, hA – hB = Difference of pressures between A and B, in terms of head of water, and
  pA – pB = Difference of pressures between A and B.
 Using the relation:  hA – hB = h (S – S1) [Eqn. (2.11)]
   = 150 (13.6 – 0.9 ) = 1905 mm = 1.905 m of water (Ans.)
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 Now, using the relation,
  pA – pB = wh,   we have, pA – pB = 9.81 × 1.905 = 18.68 kN/m2 = 18.68 kPa (Ans.)

 Example 2.20.  Fig 2.22 shows a U-tube differential manometer connecting two pressure pipes 
at A and B. The pipe A contains a liquid of specific gravity 1.6 under a pressure of 110 kN/m2. The 
pipe B contains oil of specific gravity 0.8 under a pressure of 200 kN/m2. Find the difference of 
pressure measured by mercury as fluid filling U-tube.
 Solution. Specific gravity of liquid at A, S1 = 1.6
 Specific gravity of liquid at B, S2 = 0.8
 Pressure at A,  pA = 110 kN/m2

 Pressure head at A,

 hA = 110 11.21
9.81

Ap
w

= =  m of water

 Pressure at B,  pB = 200 kN/m2

 Pressure head at B,

       hB = 200 20.38
9.81

Bp
w

= = m of water

 Taking X – X as the datum line:
 Pressure head above X–X in the left limb 
         = hA + (2.6 + 1.0) S1 + h × 13.6 m of water 
 Pressure head above X–X in the right limb  
   = hB + (1.0 + h) × S2 m of water 
 Equating the above pressure heads, we get:
  hA + (2.6 + 1.0) S1 + h × 13.6 = hB + (1.0 + h) S2
  11.21 + 5.76 + 13.6 h = 20.38 + (1.0 + h) × 0.8
 or, 16.97 + 13.6 h = 20.38 + 0.8 + 0.8 h or 12.8h = 4.21
 or, h = 0.329 m or 329 mm (Ans.)

 Example 2.21. Fig. 2.23. shows a differential manometer connected at two points A and B. At 
A air pressure is 100 kN/m2. Find the absolute pressure at B.
 Solution. Pressure of air at A,
  pA = 100 kN/m2

 Pressure head at A,

  hA = 100 10.2m
9.81

=

 Let the pressure at B is pB.

 Then, pressure head at B = Bp
w

 Considering pressure heads above the 
atum line X–X, we have:
 Pressure head in the left limb 

 = 650
1000

+ hA = 0.65 + 10.2 = 10.85 m

 Pressure head in the right limb

 = hB + 250 1500.85 13.6
1000 1000

× + ×

A

h

2
.6

m

1.0 m

p , SA 1

X X

Mercury

B

p , SB 2

Fig. 2.22

X X

B

Oil ( = 0.85)S

150 mm

250 mm

Mercury
( = 13.6)S

Water
A

650 mm

Air

Fig. 2.23
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   = hB + 0.212 + 2.04 = hB + 2.25
 Equating the above pressure heads, we get:
  10.85 = hB + 2.25   or   hB = 8.6 m

 But, hB = BP
w

  pB = whB = 9.81 × 8.6 = 84.36 kN/m2

 or, pB = 84.36 kPa (Ans.) 
 2.   Inverted U-tube differential manometer:
 This type of manometer is used for measuring difference of two pressures where accuracy is the 
major consideration.
 Refer to Fig. 2.24. It consists of an inverted U-tube, containing light liquid, whose two ends are 
connected to the points, (A and B) whose difference of pressures is to be found out. Let the pressure 
at A is more than the pressure at B.

X X

h2

h1

Light liquid(S)

h

A

B

S2

S1

Fig. 2.24. Inverted differential manometer.

 Let, h1 = Height of liquid in the left limb below the datum line X–X,
  h2 = Height of liquid in the right limb below the datum line,
  h = Difference of levels of the light liquid in the right and left limbs (also known as 

manometer reading), 
  S1 = Specific gravity of the liquid in the left limb,
  S2 = Specific gravity of the liquid in the right limb,
  S = Specific gravity of the light liquid,
  hA = Pressure head at A, and
  hB = Pressure head at B.
 We know that pressure heads in the left limb and the right limb below the datum line X–X are 
equal.
 Pressure head in the left limb  below X–X = hA – h1 × S1
 Pressure head in the right limb below X–X  = hB – h2 × S2 – h × S
 Equating the above heads, we get:
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  hA – h1 × S1 = hB – h2 × S2 – h × S
  hA – hB = h1 × S1 – h2 × S2 – h × S
 i.e., hA – hB = h1S1 – h2S2 – hS ...(2.13)
 Example 2.22. Fig. 2.25 shows an inverted differential manometer having an oil of specific 
gravity 0.8  connected to two different pipes carrying water under pressure. Determine the pressure 
in the pipe B. The pressure in pipe A is 2.0 metres of water.
 Solution. Height of water in the left limb,
  h1 = 300 mm 
 Height of water in the right limb, 
  h2 = 100 mm
 Height of light liquid in right limb,
   h = 150 mm
  Pressure in pipe A, hA = 2.0 m of water

A

B

X

Water ( = 1)S2

Water ( = 1)S1

hA = 2.0 m of water

3
0
0

m
m

1
0
0

m
m

1
5
0

m
m

Light liquid
( = 0.8)S

X

Fig. 2.25

 Let, S1, S2 = 1 (sp. gr. of water)
 We know that pressure heads in the left and right limbs below the datum line X–X are equal.
Pressure head in the left limb below X–X
   = hA – h1S1

   = 3002.0 –
1000

 × 1 = 1.7 m

 Pressure head in the right limb below X–X
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   = hB – h2S2 – hS

   = 100 150– 1 – 0.8
1000 1000Bh × ×

   = hB – 0.1 – 0.12 = hB – 0.22
 Equating the two pressure heads, we get:      1.7 = hB – 0.22
 or, hB = 1.92 m (Ans.)
 Also, pB = whB = 9.81 × 1.92 = 18.8 kN/m2

   = 18.8 kPa (Ans.)
 Example 2.23.  An inverted differential manometer is connected to two pipes A and B carrying 
water under pressure as shown in Fig. 2.26. The fluid in the manometer is oil of specific gravity 
0.75. Determine the pressure difference between A and B.
 Solution.  Specific gravity of oil, S = 0.75
  Specific gravity of water, S1, S2 = 1
  Difference of oil in the two limbs = (450 + 200) – 450 = 200 mm
 We know that pressure heads on the left and right limbs below the datum line X–X are  equal. 
Pressure head in the left limb below X–X

   = 450–
1000Ah  × 1 = hA – 0.45

 Pressure head in the right limb below X–X

   = 450 200– 1 – 0.75
1000 1000Bh × ×

   = hB – 0.45 – 0.15 = hB – 0.6

 Equating the two pressure heads, we get:

  hA – 0.45 = hB – 0.6

  hB – hA = 0.15 m (Ans.)

 or, – 0.15B Ap p
w w =   or  pB – pA  

                               = w × 0.15 = 9.81 × 0.15 = 1.47 kN/m2 = 1.47 kPa (Ans.)
 Example 2.24. Describe, giving a sketch, a micromanometer. Explain how it could be used for 
measuring small pressure difference.  (N.U.)

 Solution:  Micromanometer. It is shown in the Fig. 2.27 and is used for measuring small 
pressure differences. It utilizes two manometer liquids which are  immiscible with each other and 
also with the fluid whose pressure difference is to be measured. The heavier liquid fills the lower 
part of the U-tube upto 0-0 and then the lighter liquid is added on both sides filling the tanks C and 
D upto the level X–X. The fluid (liquid or a gas) whose pressure difference is to be measured fills 
the space above X–X. When the pressure pA  is slightly greater than pB, the liquid levels will be as 
shown in the figure. The volume of the liquid displaced in each tank is equal to the volume of liquid 
displaced in the U-tube. If a is the cross-sectional area of the U-tube, and A that of the tank, then

  A ∆Z = 
2
h a  ...(i)

 Let S1 be the specific gravity of heavier manometric liquid, and S2 be that of the lighter 
manometric liquid. An expression relating pA and pB may be obtained by equating pressures along  
L–L in the U-tube. If w is specific weight of water, then:

XX

S1 = 1

200 mm

4
5
0

m
m

A

B

Oil ( =0.75)S

S2 = 1

4
5
0

m
m

Fig. 2.26
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Heavier liquid S1

L

O

h/2

h/2

h

S2

O

L

Z2

Z1

�Z

DC

X X

�Z

Lighter liquid ( )S2

Known fluid of sp. gr. S

pBpA

Fig. 2.27

    ( )2 1 2–
2

Ap hZ Z S Z Z Sw
 + + ∆ + ∆ + 
 

   = ( )2 1 2 1–
2

Bp hZ Z S Z Z S hSw
 + + ∆ + + ∆ + 
 

 or,  = 2 1 2 2 2–
2

Ap hZ S Z S Z S Z S Sw + + ∆ + ∆ +

   = 2 1 2 2 2 1– –
2

Bp hZ S Z S Z S Z S S hSw + ∆ + + ∆ +

∴ Pressure difference, 2 2
2 2 1

– ( – – ) – –
2 2

A Bp p S SZ S S S S h Sw
 = ∆ + +  
 

 Substituting for ∆Z =
2
ha

A
 from (i) and simplifying, we get:

 or, 
–A Bp p
w  = 

2
ha

A
 [(2S2 – 2S)] + h[S1 – S2] 

   = 2 1 2( – ) ( – )ah S S S S hK
A

 + =  
(Ans.)

 The quantity K within the bracket is a constant for a given manometer and given manometric 
liquids of specific gravities S1, S2 and known fluid of specific gravity S.
 Example 2.25. Fig. 2.28. shows a fuel gauge, for a gasoline tank in car, which reads proportional 
to the bottom gauge. The tank is 30 cm deep and accidently contains 1.8 cm of water in addition  
to the gasoline. Determine the height of air remaining at the top when the gauge erroneously reads 
full.
 Take:  wgasoline = 6.65 kN/m3, and 
  wair = 0.0118 kN/m3. (Punjab University)

 Solution. When the tank is full of gasoline,

  pgauge = wh = 6.65 × 30
100

= 1.995 kN/m2
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30 cm

Air

Gasoline

Water

hair cm

(30 – 1.8 – ) cmhair

1.8 cm
pgauge

Gasoline tank

Fig. 2.28

 The gauge would erroneously read 1.995 kN/m2 even when h cm of air remains at the top; 
evidently when water is also accidently present.
	 ∴ Pressure due to h cm height of air + pressure due to [30 – 1.8 – hair] cm
 height of gasoline + pressure due to 1.8 cm of water = 1.995

 or,   
(30 – 1.8 – ) 1.80.0118 6.65 9.81 1.995

100 100 100
air airh h

× + × + × =

 or,  0.0118 h + 187.53 – 6.65 hair + 17.658 = 199.5

 or, hair = 187.53 17.658 – 199.5
6.638

+  = 0.857 cm (Ans.)

 Example 2.26. For the Fig. 2.29 determine the pressure difference between pipes A and B. Take 
Z1 = 0.45 m, Z2 = 0.225 m, Z3 = 0.675 m and Z4 = 0.3 m.

 Neglect pressure due to pressure of air column in the inclined tube.

Water

A

B

Mercury

45º

Z1

Z2

Z3

Z4

Fig. 2.29

 Solution. Starting from point A, the governing manometric equation is:
  pA + wwZ1 – wm ( Z3 + Z4 sin 45°)  =  pB
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	 ∴ Pressure difference,
  pA – pB = – wmZ1 + wm (Z3 + Z4 sin 45°)
   = – 9.81 × 0.45 + 13.6 × 9.81 (0.675 + 0.3 sin45°)
   = – 4.414 + 118.357 = 113.943 kN/m2 (Ans.)
 Example 2.27.  From the Fig. 2.30 determine the absolute pressure in pipe A that contains oil 
of specific gravity = 0.88. Take Z1 = 0.66 m, Z2 = 0.33 m, Z3 = 0.165 m and Z4 = 0.11 m.
 Assume an atmospheric pressure 105 kPa. (Madras University)
 Solution. Starting from F.W.S (free water surface) in tank (at atmospheric pressure), we get 
  patm + wwZ1 – wwZ2 – wmZ3 + w0 ( Z3 + Z4)  =  pA 

 105 + 9.81 × 0.66 – 9.81 × 0.33 – 13.6 × 9.81 × 0.165 + 0.88 × 9.81 × (0.165 + 0.11) = pA

A

Oil
(S = 0.88

Z3

Z4

Mercury
(S = 13.6)

Z2

Z1

F.W.S.

Water
(S = 1.0)

Fig. 2.30

 or, pA = 105 + 6.475 – 3.237 – 22.014 + 2.374
   = 88.6 kN/m2 (absolute) (Ans.)

 Example 2.28.  Find the pressure difference between L and M in Fig. 2.31.
 Solution.  pL – pM :

   Lp
w

 + h × 1.5 – 0.15 × 0.8

                                           (at L)      (at N) (at U  = V )

  + (0.15 + 0.2 – h ) × 1.5  = Mp
w

  Lp
w

 + 1.5 h – 0.12 + 0.525 – 1.5 h  = Mp
w

 

 or, –L Mp p
w

 = – 0.405 m
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Liquid ( = 1.5)S

Oil ( = 0.8)S

V

Liquid ( = 1.5)S U

W

0
.2

m

M

L

h

0
.1

5
m

Fig. 2.31

 Negative sign indicates pM > pL
 i.e., pM – pL = 0.405 × 9.81
   = 3.97 kN/m2 (Ans.)
 Example 2.29. In the Fig. 2.32, if the local atmospheric pressure is 755 mm of mercury  
(sp. gravity = 13.6), calculate:
 (i) Absolute pressure of air in the tank;
 (ii) Pressure gauge reading at L.
 Solution. (i) Absolute pressure of air, (pabs)air:
 Starting from the open end, we have:
 0 – (13.6 × w) × 0.6 = pair (pressure of air)
 i.e.,   pair  = – 13.6 × 9.81 × 0.6 = – 80 kN/m2

          patm. = (atmospheric pressure)

   = 755
1000

 × 13.6 × 9.81 = 100.73 kN/m2

 (pabs.)air = pair + patm. = – 80 + 100.73 = 20.73 kN/m2

 Hence, (pabs.)air= 20.73 kN/m2 (Ans.)
 (ii) Pressure gauge reading at L:
  Pressure at L  = pabs. (air) + wh
   pL = 20.73 + 9.81 × 2 = 40.35 kN/m2 abs.
 Now, 40.35 = pgauge + patm.
  pgauge(L) = 40.35 – patm. = 40.35 – 100.73
   =  – 60.38 kN/m2

 i.e., Vacuum pressure = 60.38 kN/m2

 Hence, pressure gauge reading at L = 60.38 kN/m2 (vacuum) (Ans.)

Fig. 2.32

Open end

Water

L

Air

2
.0

mMercury
( = 13.6)S

0
.6

m
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 Example 2.30. Find the gauge readings at L and M in Fig. 2.33 if the local atmospheric 
pressure is 755 mm of mercury.

 Solution. Assuming the vapour pressure of mercury (Hg) and pressure due to short column of 
air (wair is very low) to be negligible, we have: 

M

0.1 m

B

A

Air

Oil
( = 0.85)S

L

1
.2

m
1
.5

mDE

C

0
.5

m

pv Hg

Hg vapour

Closed

Hg (Mercury)
( = 13.6)S

Fig. 2.33

 (i) (pgauge)L:
  (pv Hg ≈	 0) + 0.5 × 13.6
  (at C)             (at D = E = A) 
   = 6.8 m of water abs.
           (at A)
  pgauge + patm. = pabs.

 But, patm. = 755
1000

 × 13.6 = 10.27 m of water

	 ∴ pgauge + 10.27 = 6.8
 or, pgauge = – 3.47 m of water 
   = – 3.47 × 9.81
   = – 34 kN/m2

 Hence, gauge reading at L = 34 kN/m2 (vacuum) (Ans.)
 (ii) (pgauge)M :
 6.8 + 1.2 × 0.85 + (1.5 – 0.1) = 9.22 m of water abs.
 (at A)  (at B)   (at M)
  pgauge + patm. = pabs.

  pgauge + 10.27 = 9.22



Chapter 2 : Pressure Measurement         75

 or, pgauge = – 1.05 m of water
   = – 1.05 × 9.81 = – 10.3 kN/m2

 Hence, gauge reading at M = 10.3 kN/m2 (vacuum)  (Ans.)
 Example 2.31. For the Fig 2.34 determine specific gravity of gauge liquid B if the gauge 
pressure at A is – 18 kN/m2.
 Solution. Sp. gravity of liquid B:
   Pressure at L = pressure at M
 i.e., – 18 + (1.5 × 9.81× 0.6 ) = pM 
 or, pM = – 9.17 kN/m2

U

Liquid B
(S)

Liquid
(S =1.5)

T N

M

0
.8

m

0
.6

m

L

Air

A

Fig. 2.34

 Between points M and U, since there is an air column which can be neglected, therefore,
  pM = pU (= – 9.17 kN/m2)
 Also,   pressure at N = pressure at T. 
 But point T being at atmospheric pressure,
  pT = 0 = pN
 Thus, pN = pU + S × 9.81 × 0.8 = 0
 or, 0 = – 9.17 + 7.848 S
  S = 1.17 (Ans.) 

 Example 2.32. (Compound manometer). In the Fig. 2.35 is shown a compound manometer. 
Find the gauge pressure at A if the manometric fluid is mercury and the fluid in the pipe and in the 
tubing which connects the two U-tubes is water.
 Solution. Gauge pressure at A, pA:
  Pressure at B = Pressure at C 
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Mercury
( = 13.6)S

D

Water
(S = 1)

E

G
CB

1
.8

m
1
.6

5
m

1
.5

6
m

1
.6

m

F

A

Fig. 2.35

	 ∴ Bp
w

 = (1.8 1.65) CA pp
w w

+ + =

 Further,
 Pressure at D,

  Dp
w

 = Cp
w

 – 1.65 × 13.6

   = Ap
w

 + (1.8 + 1.65) – 1.65 × 13.6

   = Ap
w

 + 3.45 – 22.44

 or, Dp
w

 = Ap
w

 – 18.99 ...(1)

 Also, pD = pE   and   pF = pG

 But, Fp
w

 = Ep
w

 + 1.56

 and, Gp
w

 = 1.6 × 13.6 = 21.76

 i.e., Ep
w

+ 1.56 = 21.76 ( Q pF = pG)



Chapter 2 : Pressure Measurement         77

 or, Ep
w

 = 20.2 or Dp
w

 = 20.2 (Q pD = pE)

 Substituting the value of Dp
w

 in eqn. (1), we get:      20.2 – 18.99Ap
w

=

 or, Ap
w

 = 20.2 + 18.99 = 39.19 m of water.

 i.e., pA = 9.81 × 39.19 = 384.4 kN/m2 (Ans.)
 Example 2.33. (Compound manometer). In the Fig. 2.36 is shown a compound manometer. 
Calculate pressure difference between the points A and B. Take ww= 10 kN/m3 for water, wm = 136 
kN/m3 for mercury and w0 = 8.5 kN/m3 for oil. (Punjab University)

Water

1
.0

8
m

Oil

0
.7

2
m

0
.4

8
m

0
.6

m 0
.9

6
m

Water

Mercury

B
A

Fig. 2.36

 Solution. Given: ww = 10 kN/m3; wm = 136 kN/m3; w0 = 8.5 kN/m3 
    pA – pB:
 Starting from point A, the governing manometric equation is:
  pA + ww × 1.08 – wm × 0.72 + w0 × 0.48 – wm × 0.6 – ww ( 0.96 – 0.6) = pB
 or, pA = 10 × 1.08 – 136 × 0.72 + 8.5 × 0.48 – 136 × 0.6 – 10 (0.96 – 0.6) = pB
 or, pA + 10.8 – 97.92 + 4.08 – 81.6 – 3.6 = pB
 or, pA – pB = 168.24 kN/m2 (Ans.)
 Example 2.34. A cylindrical bucket (empty) 450 mm in diameter and 750 mm long is forced 
with its open end first into water until its lower edge is 6 m below the surface. Determine the force 
required to maintain position, assuming the trapped air remains at constant temperature during the 
whole operation. Atmospheric pressure = 1.01 bar.
 The wall thickness and weight of the bucket may be considered as negligible.

 Solution.  Diameter of the bucket, d = 450 mm = 0.45 m
  Length of the bucket, l  = 750 mm = 0.75 m
  Atmospheric pressure, patm  =  1.01 bar.
 Force required to maintain position, F: Refer to Fig 2.37.
 Let,   pair  =  Absolute pressure of compressed air trapped in the cylindrical bucket, and 
             y  =  Depth of water raised in the bucket.
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 Then, since the temperature of air remains constant, therefore, as per isothermal condition, we 
have:

  2
. 0.45 0.75

4atmp π× × ×  = pair 
20.45 (0.75 – )

4
yπ× × ×

  ( Q p1 V1 = p2 V2 ..... for isothermal process)

y

pair

0.45 m

Water

6 m

(6 – )y

5.25 m

0.75 m

Bucket

Air
(Compressed)

Fig. 2.37

 or, Pair = .
0.75

0.75 – atmp
y

 
 
 

 ...(i)

 Also, pair = patm. + wh = patm. + 9810 × (6 – y) ...(ii)

  (Q w = 9810 N/m3)
 From eqn. (i) and (ii), we have:

  .
0.75

0.75 – atmp
y

 
 
 

 = Patm. + 9810 (6 – y)

 or, 0.75
0.75 – y

 
 
 

 × 1.01 × 105 = 1.01 × 105 + 9810 (6 – y)

 or, 1.01 × 105 0.75 – 1
0.75 – y

 
 
 

 = 9810 (6 – y)

 or, 
51.01 10 0.75 – 0.75

9810 0.75 –
y

y
× + 

 
 

 = 6 – y

 or, 10.29
0.75 –

y
y

 ×  
 

 = 6 – y or 10.29 6
0.75 –

y y
y
+ =

 or, 10.29 y + y (0.75 – y) =   6 (0.75 – y)
 or, 10.29y + 0.75y – y2 =  4.5 – 6y   or   y2 – 17.04y + 4.5 = 0

 or, y = 
217.04 17.04 – 4 4.5 17.04 16.5 0.27 m

2 2
± × ±= =

  (ignoring + ve sign, being not possible)
 Substituting the value of y in (i), we get:
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  pair = 0.75
0.75 – 0.27

 
 
 

 × 1.01 = 1.578 bar

 The force tending to move the bucket in upward direction,

  P1 = 
4airp π

×  × 0.452

   = (1.578 × 105) × 
4
π × 0.452 × 10–3 kN = 25.097 kN

 The force acting on the bucket in the downward direction,

  P2 = (1.01 × 105 + 9810 × 5.25) × 
4
π × 0.452 × 10–3 kN = 24.254 kN

	 ∴ The force required to maintain the bucket in position,
  F = P1 – P2 = 25.097 – 24.254 = 0.843 kN (Ans.)
 Example 2.35.  A glass tube of uniform bore is bent into the form of a square of sides l and 
filled with equal amounts of three invisible liquids of densities ρ1, ρ2 and ρ3. It is known that ρ1< 
ρ2< ρ3. If the tube arrangement is placed in a vertical plane (i.e. two sides vertical) and if one of the 
vertical sides is completely filled with the liquid of density ρ2:

 (i) Show that 3 1 2 3 1
1 1(2 ) ( 2 )
3 3

ρ + ρ > ρ > ρ + ρ

 (ii) If the relative densities of the first and third liquids are 1.0 and 1.22 respectively, find the 
range of the relative densities of the second liquid which makes the above arrangement possible.

 Solution. Refer to Fig 2.38. 

 (i) To prove,  :> > +3 1 2 3 1
1 1(2 ) ( 2 )
3 3

ρ + ρ ρ ρ ρ

 Let E, F and G be the interfaces, and 
  EA = x
 Then, DE = l – x
 Total length of the glass tube = 4l 

 ∴        Length of each liquid = 4
3

l

 For liquid-1:

  EG = 4
3

l

  DG = 4
3

l  – ( l – x ) = 1
3

l x+

 For liquid-3:

  GC = ( )1 2– –
3 3

l l x l x+ =

  FB = ( )2 1– –
3 3

l l x l x+ =

 ( )4 4 2 2FC = – GC = – –
3 3 3 3
l l l x l x = + 

 
Q

 [Check: FB + BA + AE = 1 4( – )
3 3

l x l x l+ + = ]

C

G

F

E

P1

�2

�3

AD

l

Liquid-1

Liquid-2

l x– x

l

Liquid-3
l

B

Fig. 2.38
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 The pressure balance at the interface F is given by:
 Pressure of (column DG + column GC) = pressure of column AB

   ( ) ( )1 3 2
1 2 – g
3 3

g l x g l x lρ + + ρ = ρ

 or,       ( ) ( )1 3 2
1 2 –
3 3

l x l x lρ + + ρ = ρ

  x(ρ1 – ρ3) = 1 2 3
1 ( – 3 – 2 )
3

l ρ + ρ ρ

 or, x = 
1 2 3 3 2 1

1 3 3 1

1 1( – 3 – 2 ) (2 – 3 )
3 3

( – ) ( – )

l lρ + ρ ρ ρ ρ + ρ
=

ρ ρ ρ ρ

 It is known that x > 0 and also x < 
1
3

l

 Hence, 0 < 
3
lx <

	 ∴ 0 < 3 2 1

3 1

(2 – 3 ) 1
( – )
ρ ρ + ρ <

ρ ρ

 Also, since ρ1 < ρ2 < ρ3 the denominator (ρ3 – ρ1) is positive.
 Hence, numerator is:
  0 < (2ρ3 – 3ρ2 + ρ1) < 1
 or, ρ1 + 2ρ3 > 3ρ2

 or, ρ2 <  3 1
1 (2 )
3

ρ + ρ  ...(i)

 Also, since 3 2 1

3 1

2 – 3
–

ρ ρ + ρ
ρ ρ

 < 1

 or, 2ρ3 – 3ρ2 + ρ1 < (ρ3 – ρ1)
 or, 3ρ2 > ρ3 + 2ρ1

 or, ρ2 > 1
3

(ρ3 + 2ρ1) ...(ii)

 Hence, from inequalities (i) and (ii), we have: 

  3 1
1 (2 )
3

ρ + ρ  > ρ2 > 1
3

 (ρ3 + 2ρ1)

 (ii) Range of relative densities of the second liquid:
 Given: ρ1 = 1.0; 		ρ3 = 1.22

 Now, ρ2  > 3 1
1 ( 2 )
3

ρ + ρ

   > 1 (1.22 2 1.0) 1.0733
3

+ × >

 Also, ρ2 > 1
3

 (2ρ3 + ρ1)

   > 1
3

(2 × 1.22 + 1.0) > 1.1467

 Hence, 1.0733 < ρ2 < 1.1467 (Ans.)
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2.5.1.3. Advantages and Limitations of Manometers
 Advantages:
 1. Easy to fabricate and relatively inexpensive.
 2. Good accuracy. 
 3.  High sensitivity.
 4. Require little maintenance.
 5. Not affected by vibration.
 6. Specially suitable for low pressure and low differential pressures.
 7. It is easy to change the sensitivity by affecting a change in the quantity of manometic liquid 
in the manometer.
 Limitations:
 1. Usually bulky and large in size. 
 2. Being fragile, get broken easily.
 3. Readings of the manometers are affected by changes in temperature, altitude and gravity.
 4. A capillary effect is created due to surface tension of manometric fluid.
 5. For better accuracy meniscus has to be measured by accurate means.

2.5.2. Mechanical Gauges
 The manometers (discussed earlier) are suitable for comparatively low pressures. For high 
pressures they become unnecessarily larger even when they are filled with heavy liquids. Therefore, 
for measuring medium and high pressures we make use of elastic pressure gauges. They employ 
different forms of elastic systems such as tubes, diaphragms or bellows etc. to measure the pressure. 
The elastic deformation of these elements is used to show the effect of pressure. Since these 
elements are deformed within the elastic limit only, therefore these gauges are sometimes called 
elastic gauges. Sometimes they are also called secondary instruments, which implies that they must 
be calibrated by comparison with primary instruments such as manometers etc.
Some of the important types of these gauges are enumerated and discussed below:
 1. Bourdon tube pressure gauge,
 2. Diaphragm gauge, and 
 3. Vacuum gauge.
 1. Bourdon tube pressure gauge:
 Bourdon tube pressure gauge is used for measuring high as well as low pressures. A simple 
form of this gauge is shown in Fig. 2.39. In this case, the pressure element consists of a metal tube 
of approximately elliptical cross-section. This tube is bent in the form of a segment of a circle 
and responds to pressure changes. When one end of the tube which is attached to the gauge case, 
is connected to the source of pressure, the internal pressure causes the tube to expand, whereby 
circumferential stress i.e., hoop tension is set up. The free end of the tube moves and is in turn 
connected by suitable levers to a rack, which engages with a small pinion mounted on the same 
spindle as the pointer. Thus the pressure applied to the tube causes the rack and pinion to move. The 
pressure is indicated by the pointer over a dial which can be graduated in a suitable scale.
 The Bourdon tubes are generally made of bronze or nickel steel. The former is generally used 
for low pressures  and the latter for high pressures.
 Depending upon the purpose for which they are required Bourdon tube gauges are made in 
different forms, some of them are:

 (i) Compound Bourdon tube–used for measuring pressures both above and below atmospheric 
pressure.
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Pointer

Pinion

Bourdon tube

Rack

Fig. 2.39. Bourdon tube pressure gauge. 

 (ii) Double Bourdon tube–used where vibrations are encountered.
 2. Diaphragm gauge:
 This type of gauge employs a metallic disc or diaphragm instead of a bent tube. This disc or 
diaphragm is used for actuating  the indicating device.
 Refer to Fig. 2.40. When pressure is applied on  the lower side of the diaphragm it is deflected 
upward. This movement of the diaphragm is transmitted to a rack and pinion. The latter is attached 
to the spindle of needle moving on a graduated dial. The dial can again be graduated in a suitable 
scale.

Corrugated
diaphragm

Pinion

Needle

Rack

Fig. 2.40. Diaphragm gauge.
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 3. Vacuum gauge:
 Bourdon gauges discussed earlier can be used to measure vacuum instead of pressure. Slight 
changes in the design are required in this purpose. Thus, in this case, the tube be bent inward instead 
of outward as in pressure gauges. Vacuum gauges  are graduated in millimetres of mercury below 
atmospheric pressure. In such cases, therefore, absolute pressure in millimetres of mercury is the 
difference between barometer reading and vacuum gauge reading. 
 Vacuum gauges are used to measure the vacuum in the condensers, etc. If there is leakage, the 
vacuum will drop.
 The pressure gauge installation requires the following considerations:
 1. Flexible copper tubing and compression fittings are recommended for most installations.
 2. The installation of a gauge cock and tee in the line close to the gauge is recommended 
because it permits the gauge to be removed for testing or replacement without having to shut down 
the system.
 3. Pulsating pressures in the gauge line are not required.
 4. The gauge and its connecting line is filled with an inert liquid and as such liquid seals are 
provided. Trapped air at any point of gauge lines may cause serious errors in pressure reading.

2.6.   PRESSURE AT A POINT IN COMPRESSIBLE FLUID  

 In case of compressible fluids, the density (ρ) changes with the change of pressure and 
temperature. In the fields of meteorology, oceanography and aeronautics, we come across with 
problems involving atmospheric air where density, pressure and temperature change with the 
elevation. Therefore, for fluids having variable density eqn. (2.4) cannot be intergrated unless 
relation between ρ and p is known.
 The ‘equation of state’ for gases is given as:
  p = ρRT ...(2.13)

 or, ρ = p
RT

 We know that, dp
dZ

 = w = ρ	 × g (Eqn.2.4)

   = p g
RT

×

	 ∴ dp
p

 = g
RT

 × dZ ...(2.14)

 When Z is measured vertically upward, the above equation reduces to:

  dp
p

 = – g
RT

 × dZ ...(2.15)

 Isothermal process:
 In an isothermal process, temperature T remains constant, therefore, integrating eqn. (2.15) we 
get:

  
0

p

p

dp
p∫  = 

0 0

– – –
Z Z

Z Z

g gdZ dZ
RT RT

=∫ ∫ ∫
 or, 

0

pln
p

 
 
 

 = g
RT

(Z – Z0)
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 where, p0 is the pressure, and Z0 is the height.
 If the datum line is taken at Z0, then Z0 becomes zero and p0 becomes the pressure at datum line.

  ln
0

p
p

 
 
 

 = g
RT

− . Z   

 or, 
0

p
p

 = e(– gZ/RT)

 or,  Pressure at a height Z is given by: ...(2.16)
  p = p0e

(– gZ/RT)

 Adiabatic process:
 When the process follows an adiabatic law, the relation between pressure and density is given 
by:

  p
γρ

 = constant = C ...(i)

 where, γ is the ratio of specific heats.

	 ∴ ργ = p
C

 

 or, ρ = ( )1/p
C

γ

 ...(ii)

 Now eqn. (2.4) becomes:

  dp
dZ

 = ( )1/
– – pg

C

γ

ρ = .g .... Z measured vertically up

 or, 

( )1/
dp
p
C

γ  = – g. dZ or C1/γ × 1/ – .
( )

dp g dZ
p γ =

 Integrating the above equation, we get:

  

0

1– 1
1/

1– 1

p

p

pC

 + γ 
γ

 
 
 

+ γ 

 = – g[Z]Z
Z0

 or, 

0

1– 1
1/

1– 1

p

p

C p
 + γγ  

 
 
 

+ γ 

 = – g[Z]Z
Z0

 From eqn. (i), we have, 
1/ 1/

1/ p pC
γ γ

γ
γ

 = =  ρρ 
 (C being constant, can be taken inside)

 Substituting this value of C1/γ in the above equation, we get:

  

0

1– 1
1/

– 1

p

p

p p
 + γγ  

 
 
 γ  ρ γ   

 = – g [Z – Z0]
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 or, 
0

– 1

p

p

pγ  
 γ ρ 

 = – g (Z –  Z0)

                  = 0

0
–

– 1
ppγ  

 γ ρ ρ 
 = – g (Z – Z0)

 If datum line is taken at Z0 (where pressure, temperature and density are p0, T0, ρ0), then  
Z0 = 0.

	 ∴ 0

0
–

– 1
ppγ  

 γ ρ ρ 
 = – g Z

 or, 0

0
– pp 

 ρ ρ 
 = – 1– gZ γ 

 γ 

 or, p
ρ

 = 0 0 0

0 0 0

– 1 – 1– 1 –p pg Z gZ
p
ργ γ   = ×   ρ γ ρ γ   

 or, 0

0

p
p
ρ×

ρ
 = 0

0

– 11 – gZ
p
ργ × γ 

 ...(iii)

 But from eqn. (i), p
γρ

 = 0

0

p
γρ

 or 0 0p
p

γρ  = ρ 
 or  

1/
0 0p

p

γρ  =  ρ  

 Substituting the value of 0ρ
ρ

in eqn. (iii), we get:

  
1/

0

0

pp
p p

γ
 ×  
 

 = 0

0

– 11 – gZ
p
ργ × γ 

 or, 
–1/

0 0

p p
p p

γ
 ×  
 

 = 0

0

– 11 – gZ
p
ργ × γ 

 or, 
11 –

0

p
p

γ 
 
 

 = 0

0

– 11 – gZ
p
ργ × γ 

 or, 
– 1

0

p
p

γ
γ 

 
 

 = 0

0

– 11 – gZ
p
ργ × γ 

 or, 
0

p
p

 = 
– 10

0

– 11 – gZ
p

γ
γργ × γ 

	 ∴ Pressure (p) at a height Z from the ground level is given by:

  p = 
– 10

0
0

– 11 –p gZ
p

γ
γργ × γ 

 ...(2.17)

 where, p0 = Pressure at ground level (when Z0 = 0), and
	 	 ρ0 = Density of air at ground level.
 Also, equation of state is:

  0

0

p
ρ

 = RT0 or 0

0 0

1
p RT
ρ =
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 Substituting the value of 0

0p
ρ  is eqn. (2.17), we get:

  p = 
– 1

0
0

– 11 – gZp
RT

γ
γγ × γ 

 ...(2.18)

	  Temperature at any point in compressible fluid in an  adiabatic process is calculated as 
follows:

 Equation of state at ground level and at a height Z from the ground level is written as: 

  0

0

p
ρ

 = RT0, and p
ρ

 = RT

 Dividing these equations, we have:

  0

0

p
p
ρ×

ρ
 = 0RT

RT

 or, 
0

T
T

 = 0

0

p
p

ρ×
ρ

 ...(iv)

 But from eqn. (2.18), 
0

p
p

is given by:

  
0

p
p

 = 
– 1

0

– 11 – gZ
RT

γ
γγ × γ 

 Also for adiabatic process 0

0

pp
γ γ=

ρ ρ
   or   0 0p

p

γρ  = ρ 

 or, 0ρ
ρ

 = 
1/ –1/

0

0

p p
p p

γ γ   =      

 or, 0ρ
ρ

 = 
1–

– 1

0

– 11 – gZ
RT

γ   ×   γ γ  γ × γ 

 or, 0ρ
ρ

 = 
1–
– 1

0

– 11 – gZ
RT

γγ × γ 

 Substituting the values of 
0

p
p

and 0ρ
ρ

 in eqn. (iv), we get:

  
0

T
T

 = 
1

– 1 – 1

0 0

– 1 – 11 – 1 –gZ gZ
RT RT

γ
γ γγ γ   × × ×   γ γ   

   = 
–

– 1 – 1

0 0

– 1 – 11 – 1 –gZ gZ
RT RT

γ γ
γ γγ γ   × = ×   γ γ   

	 ∴ T = 0
0

– 11 – gZT
RT

γ × γ 
 ...(2.19)

 Temperature lapse rate (L):
 It is defined as the rate at which the temperature changes with elevation. It can be obtained by 
differentiating the eqn. w.r.t. Z as follows:
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  dT
dZ

 = { }0
0

– 11 – gZd T
dZ RT

 γ × γ 

 where, T0, γ, g and R are constant.

	 ∴ dT
dZ

 = 0
0

– 1 – 1– –g gT
RT R

γ γ   × =   γ γ  

 Hence, temperature lapse–rate, – 1– gdTL
dZ R

γ = =  γ 
 ...(2.20)

 — In this eqn., if γ = 1 the process in an isothermal one which means 0;dT
dZ

=  it indicates that 
temperature does not change with height.
	 — If γ > 1, lapse-rate is negative which means that temperature decreases with increase of 
height.
 Following points are worth noting:
 — The value of γ in atmosphere varies with height.
 — Upto an elevation of 11km, above sea level, the temperature of air decreases at the rate 
of 0.0065° C/m. From 11 km to 32 km, the temperature remains constant but rises above 32 km of 
height.
 Example 2.36. Derive an expression for the pressure ratio in the troposphere if the absolute 
temperature  is assumed to vary according to the law T = T0 – α ( Z – Z0), where, T0 is the absolute  
temperature at sea level and α is the temperature gradient. (Nagpur University)
 Solution. The variation in altitude is given by:
  dp = – ρ gdZ = – wdZ
 where, ρ = Density of air, kg/m3, and
  w = Specific weight, N/m3.

 Since, p
RT

ρ = , substituting in above relation, we get ( )– pdp gdZ
RT

=

 or, dp
p

 = – g dZ
RT

 ...(i)

 Since, T = T0 – α (Z – Z0) ...(Given)
	 ∴ dT = – α dZ
 Substituting for dZ in (i), we have:

  dp
p

 = g dT
R Tα

 Integrating between (p0, p) to (Z0, Z), where suffix 0 denotes sea level conditions, we get: 

  
0

pln
p

 
 
 

 = 0 0

0 0

– ( – )T Z Zg gTln ln
R T R T

α   =   α α   

 or, 
0

p
p

 = 0

0

( – )1 – Z Z
T

α 
  

 .....Required expression (Ans.)

 Example 2.37. The temperature of the earth’s atmosphere drops about 5°C for every 1000 m 
of elevation above the earth’s surface. If the air temperature at the ground level is 15°C and the 
pressure is 760 mm Hg, at what elevation is the pressure 380 mm Hg? Assume that air behaves as 
an ideal gas.    (Roorkee University)
 Solution: Given: T0 = 15 + 273 = 288 K; p0 = 760 mm Hg; p = 380 mm Hg;
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  dT
dZ

 = 5– / m
1000

C°

 Elevation Z:

 Temperature lapse-rate, L = – 1– gdT
dZ R

γ =  γ 

	 ∴ L = 
5 1

1000
g
R
 γ −

− = −  γ 

 or, 5
1000

 = – 19.81
287

γ 
 γ 

	 ∴ – 1γ
γ

 = 0.1463

 Using the relation: p = 
– 1

0
0

– 11 – . gZp
RT

γ
γγ 

 γ 

 or, 380 = 
1

0.14639.81760 1 – 0.1463
287 288

Z× × × 

 or, ( )0.1463380
760

 = 1 – 0.1463 × 9.81
287 288

Z
×

 = 1 – 1.736 × 10–5 Z

 or, 1.736 × 10–5 Z = 1 – ( )0.1463380
760

 = 0.0964

 or, Z = –5
0.0964

1.736 10×
 = 5553 m (Ans)

 Example 2.38. The barometric pressure at sea level is 760 mm of mercury while that on a 
mountain top is 735 mm. If the density of air is assumed constant at 1.2 kg/m3, what is the elevation 
of the mountain top?    (Punjab University)
 Solution. Given: Pressure at sea level, p0 = 760 mm of Hg

   = 760
1000

× (13.6 × 1000) × 9.81 = 101396 N/m2

  Pressure at mountain, p = 735 mm of Hg

   = 735
1000

× (13.6 5 1000) × 9.81 = 98060 N/m2

  Density of air, ρ = 1.2 kg/m3

 Height of the mountain top from sea-level, h:
 It is a known fact that as the elevation above the sea-level increases, the atmospheric pressure 
decreases. As the density is constant (given), hence the pressure at any height ‘h’ above the sea-level 
is given by the equation,

 p = p0 – ρgh or  h = 0 – (101396 – 98060)
1.2 9.81

p p
g

=
ρ ×

 = 283.4 m (Ans.)

 Example 2.39. Determine the pressure at a height of 800 m above sea level if the atmospheric 
pressure is 10.139 × 104 N/m2 and temperature is 15°C at sea level assuming:
 (i) Air is incompressible;
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 (ii) Pressure variation follows isothermal law;
 (iii) Pressure variation follows adiabatic law.
 Take:  Density of air at sea level = 1.285 kg/m3

 Neglect variation  of g with altitude. (PTU)

 Solution. Given:  Height above sea-level, Z = 8000 m
  Pressure at sea-level, p0 = 10.139 × 104 N/m2

  Temperature at sea level, t0 = 15°C    ∴  T0 = 15 + 273 = 288 K
  Density of air, ρ = ρ0 = 1.285 kg/m3.
 Pressure p:
 (i) When air is incompressible:

  We know that, dp
dz

 = – ρ g ;  ∴  
0 0

–
p Z

p Z

dp g dz= ρ∫ ∫
  or, p – p0 = – pg (Z – Z0)
  or, p = p0 – ρgZ (Q Z0 = datum line = 0)
   = 10.139 × 104 – 1.285 × 9.81 × 8000 = 543.2 N/m2 (Ans.)
 (ii) When pressure variation follows isothermal law :

  We know that, p = p0 e
(– gZ/RT)    ...(Eqn. 2.16)

   = p0 e
(– gZρ0/p0) 0 0

0 0

1orp RT
p RT
ρ = = ρ 

Q

   = 10.139 × 104 × e(–9.81 × 8000 × 1.285/101390)

   = 10.139 × 104 × e–0.9946 = 10.139 × 104 × 0.3699
   = 37504 N/m2 or  3.75 N/cm2 (Ans.)
 (iii) When pressure variation follows adiabatic law (γ = 1.4):

   Using the equation: p = 
/ – 1

0
0

0

– 11 –p gZ
p

γ γργ 
 γ 

 ...[Eqn.2.17]

  Substituting the values, we get:

   p = 10.139 × 104 
1.4

1.4 – 1
4

1.4 – 1.0 1.2851 – 9.81 8000
1.4 10.139 10

 
 
  × × × × 

     = 101390 (1 – 0.2842)(1.4/0.4)
 = 101390 × (0.7158)3.5

     = 31460 N/m2
  or 3.146 N/cm2 (Ans)

 Example 40. Determine the pressure and density of air at a height of 4500 m from sea-level 
where pressure and temperature of the air are 101400 N/m2 and 15°C respectively. Density of air at 
sea-level is equal to 1.285 kg/m3 and the temperature lapse-rate is 0.0065°K/m.
 Solution. Given:  Height, Z = 4500 m
  Pressure at sea-level; p0 = 101400 N/m2

  Temperature at sea-level, T0 = t + 273 = 15 + 273 = 288 K

  Temperature lapse–rate, L = dT
dZ

 – 0.0065° C/m

  Density of air at sea level, ρ0 = 1.285 kg/m3 
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 We know that, L = – 1– gdT
dZ R

γ =  γ 
 ...[Eqn. (2.20)]

 where, R = 0

0 0

101400 274
1.285 288

p
T

= =
ρ ×

 Substituting the values in the above equation, we get: 

  – 0.0065 = 
– 19.81–

274
γ 

 γ 

	 ∴	 – 1γ
γ

 = 0.0065 274 0.1815
9.81

× =

	 ∴ γ	(1 – 0.1815) = 1 or 1 1.22
1 – 0.1815

γ = =

 Pressure (p) and density (ρ) of air at a height of 4500 m:

 We know that, p = 
( / –1)

0
0

0

– 11 –p gZ
p

γ γργ 
 γ 

 ...[Eqn. (2.17)]

 Substituting the values, we get:
  p = 

1.22
0.221.22 – 1 1.285101400 1 – 9.81 4500

1.22 101400
 × × ×  

   = 101400 (1– 0.1)5.545 = 56534 N/m2 or 5.6534 N/cm2 (Ans.)

 Also, p
ρ

 = RT

 where,  p, ρ and T are pressure, density and temperature respectively at a height of 4500 m.
 Now the value of T is calculated from temperature lapse-rate as follows :

  t at 4500 m = 0
dTt
dZ

+ × 4500 = 15 – 0.0065 × 4500 = – 14.25º C

	 ∴            T = 273 + (– 14.25) = 258.75 K

	 ∴ Density of air at a height of 4500 m; 56534
274 258.75

p
RT

ρ = = =
×

30.797 kg / m   (Ans.)

 Example 2.41. Calculate the pressure round an aeroplane which is flying at an altitude of  
4200 m. The temperature lapse-rate is 0.0065 K/m. The pressure, temperature and density of air at 
ground level are 101400 N/m2, 15°C and 1.285  kg/m3 respectively.
 Variation of g with altitude may be neglected.

 Solution. Given:  Height, Z = 4200 m; Lapse-rate, dTL
dZ

=  = – 0.0065 K/m;

  p0 = 101400 N/m2; T0 = 15 + 273 = 288 K; ρ0 = 1.285 kg/m3

 Pressure round the aeroplane, p;
 Let us first calculate the value of power index γ as follows:

 We know that, L = – 1– gdT
dZ R

γ =  γ 
 ...[Eqn. (2.20)]

 where, R = 0

0 0

101400 274
1.285 288

p
T

= =
ρ ×

 Substituting the value, we have:

   – 0.0065 = – 19.81–
274

γ 
 γ 
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 or, – 1γ
γ

 = 0.0065 274
9.81

×  = 0.1815 or  γ = 1.22

 Pressure round the aeroplane is given as: p = 
– 10

0
0

– 11 –p gZ
p

γ
γργ 

 γ 
 ...[Eqn. (2.17)]

   = 
1.22
0.221.22 – 1 1.285101400 1 – 9.81 4200

1.22 101400
 × × ×  

   = 101400 [1 – 0.094]5.545 = 58656 N/m2 = 5.8656 N/cm2 (Ans.)

HIGHLIGHTS

 1. The force (P) per unit area (A) is called pressure (p); mathematically, p = P
A

 2. Pressure head of a liquid, h = p
w

 (Q p = wh)

  where, w is the specific weight of the liquid.
 3. Pascal’s law states as follows:
  “The intensity of pressure at any point in a liquid at rest, is the same in all directions”.
 4. The atmospheric pressure at sea level (above absolute zero) is called standard atmospheric 

pressure.
 (i) Absolute pressure = atmospheric pressure + gauge pressure
    pabs. = patm. + pgauge
 (ii) Vacuum pressure = Atmospheric pressure – absolute pressure (Vacuum pressure is 

defined as the pressure below the atmospheric pressure)
 5. Manometers are defined as the devices used for measuring the pressure at a point in fluid 

by balancing the column of fluid by the same or another column of liquid.
 6. Mechanical gauges are the devices in which the pressure is measured by balancing the 

fluid column by spring (elastic element) or dead weight. Some commonly used mechanical 
gauges are:

 (i) Bourdon tube pressure gauge, (ii) Diaphragm pressure gauge,
 (iii) Bellow pressure gauge, and (iv) Dead-weight pressure gauge.
 7. The pressure at a height Z in a static compressible fluid (gas) undergoing isothermal com-

pression const.p = ρ 
,

   p = p0 e
(– gZ/RT)

  where, p0 = Absolute pressure at sea-level or at ground level,
   Z = Height from sea or ground level,
   R = Gas constant, and
   T = Absolute temperature.
 8. The pressure and temperature  at a height Z in a static compressible fluid (gas) undergoing 

adiabatic compression (p/ργ = const.):

   p = 
– 10

0
0

– 11 –p gZ
p

γ
γργ 

 γ 
 

– 1
0

0

– 11 – gZp
RT

γ
γγ =  γ 
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  and, temperature, T = 0
0

– 11 – gZT
RT

γ 
 γ 

  where, p0, T0 are pressure and temperature at sea-level; γ = 1.4 for air.
 9. The rate at which the temperature changes with elevation is known as Temperature Lapse-

Rate. It is given by,

   L = – 1–g
R

γ 
 γ 

  If (i) γ = 1, temperature is zero; (ii) γ > 1, temperature decreases with the increase of height. 

OBJECTIVE TYPE QUESTIONS

Choose the Correct Answer:
 1. The force per unit area is called 
  (a) pressure (b) strain
  (c) surface tension (d) none of the above.
 2. The pressure of a liquid on a surface will always 

act ...... to the surface.
  (a) parallel (b) normal
  (c) 45° (d) 60°.
 3. The pressure ....... as the depth of the liquid 

increases.
  (a) increases 
  (b) decreases
  (c) remain unchanged 
  (d) none of the above.
 4. The intensity of pressure in a liquid due to its 

depth will vary .... with depth.
  (a) directly 
  (b) indirectly
  (c) either of the above 
  (d) none of the above.
 5. The height of the free surface above any point 

is known as
  (a) static head 
  (b) intensity of pressure
  (c) either of the above
  (d) none of the above.
 6. “The intensity of pressure at any point in a liquid 

at rest is the same in all directions.”
  The above statement is known as
  (a) Kirchhoff’s law (b) Pascal’s law
  (c) either of the above (d) none of the above.
 7. Any pressure measured above the absolute zero 

of pressure is termed as
  (a) atmospheric pressure
  (b) gauge pressure
  (c) either of the above 
  (d) none of the above.

 8. The fundamental S.I. unit of pressure is N/m2; 
this is also known as ......

  (a) Pascal (b) Stoke 
  (c) Poise (d) none of the above.
 9. The devices used for measuring the pressure at a 

point in a fluid by balancing the column fluid by 
the same or another column of liquid are known 
as

  (a) mechanical gauges 
  (b) manometers
  (c) either of the above
  (d) none of the above.
 10. The simplest form of manometer which can be 

used for measuring moderate pressures of liquid 
is

  (a) piezometer
  (b) differential manometer
  (c) U-tube manometer  
  (d) none of the above
 11. Piezometers measure ..... pressure only.
  (a) absolute (b) gauge
  (c) atmospheric (d) any of the above.
 12. A piezometer tube is not suitable for measuring 

.... pressure.
  (a) positive (b) negative
  (c) atmospheric (d) none of the above.
 13. Inclined single column manometer is useful for 

the measurement of ..... pressures.
  (a) small (b) medium
  (c) high (d) negative.
 14. Which of the following is used to measure the 

difference in pressures between two points in a 
pipe, or in two different pipes?

  (a) Piezometer
  (b) Single column manometer
  (c) Differential manometer 
  (a) None of the above.
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 15. The manometers are suitable for comparatively 
..... pressures.

  (a) low (b) high
  (c) very high (d) none of the above.
 16. A Bourdon tube pressure gauge is used for mea-

suring ........ pressures.
  (a) low (b) high
  (c) high as well as low (d) none of the above.
 17. The Bourdon tubes are generally made of 
  (a) copper (b) tin
  (c) mild steel
  (a) bronze or nickel steel.
 18. Which of the following is a mechanical gauge?
  (a) Diaphragm gauge

  (b) Dead weight pressure  gauge
  (c) Bourdon tube pressure gauge
  (d) All of the above.
 19. Which of the following is an advantage of ma-

nometers?
  (a) Good accuracy (b) High sensitivity
  (c) Little maintenance (d) All  of the above.
 20. Which of the following is limitation of manom-

eters?
  (a) Fragile
  (b) Bulky and large in size
  (c) Capillary effect is created due to surface  

tension of manometric fluid
  (d) All of the above.

ANSWERS

 1. (a) 2. (b) 3. (a) 4. (a) 5. (a)  6. (b) 
 7. (c) 8. (a) 9. (b) 10. (a) 11. (b) 12. (b) 
 13. (a) 14. (c) 15. (a) 16. (c) 17. (d) 18. (d) 
 19. (d) 20. (d).

THEORETICAL QUESTIONS

 1. Define the term ‘pressure’.
 2. State and prove ‘Pascal’s Law’.
 3. Define the following:
  (i) Atmospheric pressure,
  (ii) Gauge pressure,
  (iii) Vacuum pressure, and
  (iv) Absolute pressure.
 4. How is pressure measured?
 5. What are manometers?
 6. How are manometers classified?
 7. Explain briefly the following:
  (i) Piezometer 
  (ii) U-tube manometer.
 8. What are differential manometers?
 9. What are mechanical gauges? Name three im-

portant mechanical gauges.
 10. Explain briefly the following mechanical gauges:

  (i) Bourdon tube pressure gauge, and
  (ii) Diaphragm gauge.
 11. Derive an expressiton for the pressure at a height 

Z from sea-level for a static air when the com-
pression of the air is assumed isothermal. The 
pressure and temperature at sea-level are p0 and 
T0 respectively.

 12. Prove that the pressure and temperature for an 
adiabatic process at a height Z from sea-level 
for static air are:

  
/ – 1

0
0

– 11 – gZp p
RT

γ γγ =  γ 
, and

   0
0

– 11 – . gZT T
RT

γ =  γ 
where p0 and T0 are the 

pressure and temperature at sea-level.
 13. What do you understand by the term ‘Tempera-

ture lapse-Rate’? Obtain an expression for the 
Temperature Lapse-Rate.

UNSOLVED EXAMPLES

 1. If a mercury barometer reads 700 mm and a 
Bourdon gauge at a point in a flow system reads 
500 kN/m2, what is the absolute pressure at the 
point? [Ans. 595 kN/m2 abs.]

 2. Find the depth of a point below water surface 
in sea where the pressure intensity is 100.55  
kN/m2. Specific gravity of sea water is 1.025. 

[Ans. 10 m]
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Carbon tetrachloride
( = 1.594)S

h

1
.5

m
2
.5

m

Oil
( = 0.8)S

Mercury
( = 13.6)S

X X

A

B

Fig. 2.41

 3. Convert a pressure head of 100 m of water to 
  (i) kerosene of specific gravity 0.81, and 
  (ii) carbon tetrachloride of specific gravity 1.6.
   [Ans.  (i) 123.4 m, (ii) 62.5 m]

[Hint. h1S1 = h2S2 ]
 4. As shown in Fig. 2.41, pipe A contains carbon 

tetrachloride of specific gravity 1.594 under a 
pressure of 103 kN/m2 and pipe B contains oil 
of specific gravity 0.8. If the pressure in the pipe 
B is 171.6 kN/m2 and the manometric fluid is 
mercury, find the difference h between the levels 
of mercury. [Ans. 142 mm]

Mercury

1
0
0

m
m

Water

8
0
0

m
m

Fig. 2.42

 5. The pressure of water in a pipeline was measured 
by means of a simple manometer containing 

mercury. The reading of the manometer is shown 
in Fig. 2.42. Calculate the pressure of the oil, if 
the difference of mercury level be 0.5 m.  

[Ans. 2.0 m; 19.62 kPa]
 6.  A U-tube containing mercury is used to measure 

the pressure of an oil of specific gravity  0.8 as 
shown in Fig. 2.43. Calculate the pressure of the 
oil, if the difference of mercury level be 0.5 m.

[Ans. 14 m]

Mercury
( = 13.6)S

Oil
1
.0

m

0
.5

m

Fig. 2.43

 7. A simple manometer (U-tube) containing mer-
cury is connected to a pipe in which an oil of 
specific gravity 0.8 is flowing. The pressure in 
the pipe is vacuum. The other end of the ma-
nometer is open to atmosphere. Find the vacuum 
pressure in pipe, if the difference of mercury 
level in the two limbs is 200 mm and height of 
oil in the left-limb from the centre of the pipe is 
150 mm below. [Ans. – 278.6 kPa ]

 8. Fig. 2.44 shows a differential manometer con-
nected at two points A and B. If at A air pressure 
is 78.5 kN/m2, find the absolute pressure at B.

[Ans. 69.1 kN/m2]
 9. A single column vertical manometer is connected 

to a pipe containing oil of specific gravity 0.9. 
The area of the reservoir is 80 times the area 
of the manometer tube. The reservoir contains 
mercury of specific gravity 13.6. The level of 
mercury in the reservoir is at a height of 300 
mm below the centre of the pipe and difference 
of mercury levels in the reservoir and right limb 
is 500 mm. Find the pressure in the pipe. 

[Ans. 64.7 kN/m2]
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Mercury
(S = 13.6)

Oil
( = 0.8)S

Water
5
0
0

m
m

100 mm

120 mm

Air

B

A

Fig.  2.44

 10. A micrometer, having a ratio of reservoir to limb 
areas as 40, was used to determine the pressure 
in a pipe containing water. Determine the pres-
sure in the pipe for manometer reading shown in  
Fig. 2.45. [Ans. 688.8 mm]

5
0

m
m

8
0

m
m

Limb

Reservoir

Fig. 2.45

 11. A U-tube mercury differential manometer is used 
to measure the difference of pressure between 
inlet throat of a venturimeter placed with its axis 
horizontal in a pipeline. Calculate the difference 
in pressure between inlet and throat when the 
manometer reading is 250 mm and water flows 
through the pipeline. [Ans.  3.15 m of water]

 12. Calculate the pressure difference between two 
points A and B in Fig. 2.46. 
 [Ans. 13.83 kN/m2]

y

0
.6

m

1
.5

m

Water

Oil
( = 0.85)S

Water

A

B

Fig. 2.46

 13. Find the difference in pressures between points 
A  and B in Fig. 2.47. Neglect weight of air.

   [Ans. pB – pA = 17.66 kN/m2]

XX

Water

Water

0
.8

m
0
.7

m
1

m

Air

B

A

Fig. 2.47

 14. An inverted differential manometer containing 
an oil of sp. gravity 0.9 is connected to find the 
difference of pressures at two points of a pipe 
containing water. If the manometer reading is 
400 mm, find the difference of pressures. 
 [Ans. 40 mm of water]

 15. Fig. 2.48 shows a mercury manometer fitted 
to a venturimeter in which water is flowing. 
Determine the difference of pressures between 
the points A and B. [Ans. – 18.94 kN/m2]
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x

0.25 m

Water

Mercury
( = 13.6)S

A B

Fig. 2.48

 16. Fig. 2.49 shows a glass funnel fitted to a U-type 
manometer. The manometer reading is 0.25 m 
when the funnel is empty. What is the manometer 
reading when the funnel is completely filled with 
water? [Ans. 0.4 m]

0
.2

5
m

Water
( = 1)S

Mercury
( = 13.6)S

1m dia.

Fig. 2.49

 17. Calculate the pressure at point A in Fig. 2.50.  
The slope of the tube is 4 horizontal to 1 vertical. 
The diameters of reservoir and tube are 50 mm 
and 5 mm respectively. The fluid in the pipe is 
air and that in the manometer is kerosene (sp.  
gr. = 0.8). [Ans. – 0.494 kN/m2]

0.25 m
�y

Air

Reservoir
y

Oil
( = 0.8)S

Tube

�

4

1

A

Fig. 2.50

 18. Find the gauge readings at A and B in Fig. 2.51.
   [Ans. 17.39 kN/m2 (vacuum), 12.61 kN/m2]

0
.6

m 1
.5

m Oil
( = 0.8)S

Air

2
m Water

0.2 m

Closed

Mercury
vapour

Mercury
(S = 13.6)

A

B

Fig. 2.51

 19. Find the pressure between L  and M  in  
Fig. 2.52. [Ans. 8.32 kN/m2]

 20.  Calculate the pressure at a height of 8000 m 
above sea-level if the atmospheric pressure is 
101.3 kN/m2 and temperature is 15°C at the 
sea-level assuming (i) air is incompressible,  
(ii) pressure variation follows adiabatic law, and 
(iii) pressure variation follows isothermal law. 
Take the density of air at the sea-level equal to 
1.285 kg/m3. Neglect variation of g with altitude.

  [Ans. (i) 607.5 N/m2, (ii) 31.5 kN/m2  
(iii) 37.45 kN/m2 ]

0
.3

m

h

Oil
( = 0.96)S

Liquid
( = 1.6)S

0
.4

m

Liquid
( = 1.6)S

L

M

Fig. 2.52

 21. The atmospheric pressure at the sea-level is 
101.3 kN/m2 and the temperature is 15°C. 
Calculate the pressure 8000 m above sea-
level, assuming (i) air is in compressible,  
(ii)  isothermal variation of pressure and density, 
and (iii) adiabatic variation of pressure and  
density. Assume density of air at sea-level 
as 1.285 kg/m3. Neglect variation of ‘g’ with 
altitude. [Ans. (i) 501.3 N/m2, (ii) 37.45 kN/m2  
 (iii) 31.5 kN/m2]
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3.1.  INTRODUCTION 
In chapter 2, we have studied that a liquid, at rest, exerts 
some pressure on all sides of the container. The intensity 
of pressure (p) was related to specific weight w of the 
liquid and vertical depth h of the point by eqn. p = wh. 
In this chapter, we shall discuss the total pressure on a 
surface and its position. The term ‘hydrostatics’ means 
the study of pressure, exerted by a liquid at rest. The 
direction of such a pressure is always perpendicular to 
the surface, on which it acts.

3.2.  TOTAL PRESSURE AND CENTRE  
         OF PRESSURE 

 Total pressure. It is defined as the force exerted by 
static fluid on a surface (either plane or curved) when 

x

Fig. 3.1. Horizontally immersed surface.

the fluid comes in contact with the surface. This force is always at right angle ( or normal) to the 
surface.
 Centre of pressure. It is defined as the point of application of the total pressure on the surface.
 Now we shall discuss the total pressure exerted by a liquid on the immersed surface. The 
immersed surfaces may be:
 1. Horizontal plane surface; 2. Vertical plane surface;
 3. Inclined plane surface; 4. Curved surface.

3.3.    HORIZONTALLY IMMERSED 
          SURFACE 

 Total Pressure (P):
 Refer to Fig. 3.1. Consider a plane horizontal surface 
immersed in a liquid.
 Let, A = Area of the immersed surface,
  x – = Depth of horizontal surface from the liquid, 

and
  w = Specific weight of the liquid.
 The total pressure on the surface,

Chapter

HYDROSTATIC FORCES 
ON SURFACES

3

  3.1. Introduction
 3.2. Total pressure and centre of 
  pressure
 3.3. Horizontally immersed 
   surface
 3.4. Vertically immersed surface
 3.5. Inclined immersed surface
 3.6. Curved immersed surface
 3.7. Dams.
 3.8. Possibilities of dam failure
  Highlights 
  Objective Type Questions
  Theoretical Questions
  Unsolved Examples
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  P = Weight of the liquid above the immersed surface
   = Specific weight of liquid × volume of liquid 
   = Specific weight of liquid × area of surface × depth of liquid
   = wA x –

3.4.  VERTICALLY IMMERSED SURFACE 

 Consider a plane vertical surface of arbitrary shape 
immersed in a liquid as shown in Fig. 3.2.
 Let, A = Total area of the surface,
  G = Centre of the area of the surface,
  x – = Depth of centre of area,
  OO = Free surface of liquid, and
  h – = Distance of centre of pressure from free 

surface of liquid.
 (a) Total pressure (P):
 Consider a thin horizontal strip of the surface of 
thickness dx and breadth b. Let the depth of the strip be x. 
Let the intensity of pressure on strip be p; this may be taken 
as uniform as the strip is extremely small. Then, 
  p = wx
 where, w = specific weight of the liquid.
      Total pressure on the strip  = p.b.dx. = wx . bdx

 Total pressure on the whole area, . .P wx bdx w bdx x= =∫ ∫
 But, .bdx x∫  = Moment of the surface area about the liquid level = A x –

	 ∴ P = w.A x – ...[ same as in Art. 3.3]
 or, the total pressure on a surface is equal to the area multiplied by the intensity of pressure at 
the centre of area of the figure.
 The eqn., P =  wA x –  holds good for all surfaces whether flat or curved.
 (b) Centre of pressure (h –):
 The intensity of pressure on an immersed surface is not uniform, but increases with depth.  As 
the pressure is greater over the lower portion of the figure, therefore the resultant pressure, on any 
immersed surface will act at some point, below the centre of gravity of the immersed surface and 
towards the lower edge of the figure. The point through which this resultant pressure acts is known 
as ‘centre of pressure’ and is always expressed in terms of depth from the liquid surface.
 Referring to Fig. 3.2, let C be the centre of pressure of the immersed figure. Then the resultant 
pressure P will act through the point.
 Let, h – = Depth of centre of pressure below free liquid surface, and
  I0 = Moment of inertia of the surface about OO.
 Consider the horizontal strip of thickness dx. Total pressure on strip = w.x.b.dx
 Moment of this pressure about free surface OO = (w.x. b.dx) x = w.x2.b.dx

 Total moment of all such pressures for whole area, M = ∫ w.x2.b.dx. = w . .b dx∫ 2x

 But, 0. .b dx I=∫ 2x  = Moment of inertia of the surface about the free surface OO 

(or second moment of area)

b

x

G

C

dx

x
h

O OLiquid surface

Fig. 3.2. Vertically immersed surface.
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  M = wI0 ...(i)
 The sum of the moments of the pressure is also equal to P × h – ...(ii)
 Now equating eqns. (i) and (ii), we get:
  P × h – = wI0.
  wA x – × h – = wI0  ( P = wA  x – )

  h – = 0I
Ax

 ...(iii)

 Also, I = IG + Ah2 (Theorem of parallel axis)
 where, IG = Moment of inertia of the figure about horizontal axis through 

its centre of gravity, and
  h = Distance between the free liquid surface and the centre of 

gravity of the figure (x – in this case) 
 Thus rearranging equation (iii), we have

Table 3.1. The Centre of Gravity (G) and Moment of Inertia (I) of Some Important  
Geometrical Figures:

S.No. Name of figure C.G. from the 
base

Area I about an axis passing 
through C.G. and 

parallel to the base

I about base

1. Triangle
Fig. 3.3 3

hx =
2

bh 3

36
bh 3

12
bh

2. Rectangle
Fig. 3.4 x = 

2
d bd

3

12
bd 3

3
bd

3. Circle
Fig. 3.5 x = 

2
d 2

4
dp 4

64
dp —

4. Trapezium
Fig. 3.6 x = 2

3
a b h

a b
+ 

 +  2
a b h+  

 
2 24
3 ( )

a ab b
b a b

 + +
 

+ 
 × h2 —

x

h

b

G

           

x

d

b

G

Fig. 3.3 Fig. 3.4

    

x

dG

               

h

a

b

x

G

Fig. 3.5 Fig. 3.6
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  h – = 
2

G GI Ax I
x

Ax A x
+

= +

 Hence, centre of pressure,

  h – = GI
x

Ax
+  ...(3.2)

 Example 3.1.  Fig. 3.7 shows a circular plate of diameter 1.2 m placed vertically in water in 
such a way that the centre of the place is 2.5 m below the free surface of water. Determine: (i) Total 
pressure on the plate. (ii) Position of centre of pressure.
 Solution. Diameter of the plate, d = 1.2 m
 Area,

  A = 2
4 4

dp p=  × 1.22 = 1.13 m2

  x – = 2.5 m
 (i) Total pressure, P:
  Using the relation:
  P = wA x – = 9.81 × 1.13 × 2.5
   = 27.7 kN (Ans.)
 (ii) Position of centre of pressure, h –:
  Using the relation:

  h – = GI
x

Ax
+

 where, IG = 4
64 64

dp p=  × 1.24 = 0.1018 m4

  h – = 0.1018
1.13 2.5×

 + 2.5 = 2.536 m

 i.e. h – = 2.536 m (Ans.)
 Example 3.2. A rectangular plate 3 metres long and 1 metre wide is immersed vertically in 
water in such a way that its 3 metres side is parallel to the water surface and is 1 metre below it. 
Find: (i) Total pressure on the plate, and (ii) Position of centre of pressure.
 Solution. Width of the plane surface, b = 3 m
 Depth of the plane surface, d = 1 m
 Area of the plane surface,
  A = b × d = 3 × 1 = 3 m2

  x – = 1+ 1
2

 = 1.5 m

 (i) Total pressure P:
  Using the relation:
  P = wA x – = 9.81 × 3 × 1.5
   = 44.14 kN (Ans.)
 (ii) Centre of pressure, h –:

  Using the relation: h – = GI
x

Ax
+

G
C

h

2
.5

m

1.2 m

Free water surface

Fig. 3.7

Free water surface

1
m

b = 3 m

G
C

1
m

x
h

Fig. 3.8
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 But, IG = 
33 3 1

12 12
bd ×

=  = 0.25m4

 ∴ h – = 0.25
3 1.5×

 + 1.5 = 1.556 m

 i.e. h – = 1.556 m (Ans.)
 Example 3.3. An isosceles triangular plate of base 3 m and altitude 3 m is immersed vertically in 
an oil of specific gravity 0.8. The base of the plate coincides with the free surface of oil. Determine:
 (i) Total pressure on the plate; (ii)  Centre of pressure.
 Solution. Base of the plate, b = 3 m
  Height of the plate, h = 3 m

x

h

Free oil surface3 m

3
m

G
Oil
( = 0.8)S

C

Fig. 3.9

 Area, A = 3 3
2 2

b h× ×
=  = 4.5 m2

 Specific gravity of oil, S = 0.8
 The distance of C.G. from the free surface of oil,

  x – = 1 1
3 3

h =  × 3 = 1 m

 (i) Total pressure on the plate, P:
  We know that, P = wA x –

   = (0.8 × 9.81) × 4.5 × 1
  P = 35.3 kN (Ans.)
 (ii) Centre of pressure, h –:
  Centre of pressure is given by the relation:

  h – = 
3( / 36)GI bhx x

Ax Ax
+ = +

   = 
3(3 3 / 36) 1

4.5 1
×

+
×

  h – = 1.5 m (Ans.)
 Example 3.4. A circular opening, 2.5 m diameter, in a vertical side of tank is closed by a disc 
of 2.5 m diameter which can rotate about a horizontal diameter. Determine:
 (i) The force on the disc;
 (ii) The torque required to maintain the disc in equilibrium in vertical position when the head 

of water above horizontal diameter is 3.5 m.
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 Solution. Diameter of the opening, d =  2.5 m

Free surface

Water

G

C

Tank

X

x = 3.5 m

X

Circular
disc

2.5 m

P

h

Fig. 3.10

	 ∴ Area of the opening,
  A = 2

4 4
dp p=  × 2.52 = 4.91 m2

 Depth of C.G., x – = 3.5 m
 (i) Force on the disc, P:
  Using the relation:
  P = wAx – = 9.81 × 4.91 × 3.5
   = 168.6 kN (Ans.)
 (ii) Torque required, T:
 In order to determine the torque (T) required to maintain the disc in equilibrium, let us first 
calculate the point of application of force acting on the disc, i.e. centre of pressure of the force P. 
The depth of centre of pressure (h –) is given by the relation:

  h – = 
4

2
( / 64 )
( / 4 )

GI dx x
Ax d x

p ×
+ = +

p ×
 4

64GI dp = ×  


   = 
4

2
( / 64 2.5 )

( / 4 2.5 ) 3.5
p ×

p × ×
 + 3.5 = 3.61 m

 i.e., the force P is acting at a distance of 3.61 m from the free surface. Moment of this force 
about horizontal diameter X – X
   = P (h – – x –) = 168.6 (3.61 – 3.5)
   = 18.55 kNm. (anticlockwise)
 Hence a torque (T) of 18.55 kNm must be applied on the disc in the clockwise direction to 
maintain the disc in equilibrium position. (Ans.)
 Example 3.5.  A square aperture in the vertical side of a tank has one diagonal vertical and 
is completely covered by a plane plate hinged along one of the upper sides of the aperture. The 
diagonals of the aperture are 2.4 m long and the tank contains a liquid of specific gravity 1.2. The 
centre of aperture is 1.8 m below the free surface. Calculate:
         (i)    The thrust exerted on the plate by the liquid;
 (ii) The position of its centre of pressure. (Anna University)
 Solution. Refer to Fig. 3.11
  Diagonal of aperture, PR = QS = 2.4 m
  Area of square aperture, A = area of ∆ PQR + area of ∆PSR.
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Tank

h
Liquid

( = 1.2)S

Square
aperture

Q

P R

S

O

C

x = 1.8 m

2.4 m

2.4 m

Fig. 3.11

   = 1
2

 PR × OQ + 1
2

 PR × OS

   = 1
2

 × 2.4 × 2.4
2

 
 
 

 + 1
2

 × 2.4 × 2.4
2

 
 
 

 = 2.88 m2

 Depth of centre of aperture plate from free liquid surface, x – = 1.8m
 (i) Thrust exerted on the plate P:
  Pressure force or thrust on the plate,
  P = wA x – = ( 1.2 × 9.81) × 2.88 × 1.8 = 61. 026 kN (Ans.)
 (ii) The position of its centre of pressure, h –:
  Centre of pressure is given by the relation:

  h – = GI
x

Ax
+

 where, IG = M. O. I  of PQRS about diagonal PR.
   = M.O.I. of ∆ PQR + M.O.I of  PSR ...about PR

   = 
3 32.4 (1.2) 2.4 (1.2)

12 12
× ×

+  = 0.6912 m4 ( OQ = OS)

  [ The M.O.I. of a triangle about its base equals 
3base ( height )

12
× ]

	 ∴ h – = 0.6912
2.88 1.8×

 + 1.8 = 1.933 m (Ans.)

 Example 3.6. A trapezoidal plate of parallel sides l and 2l and height h immersed vertically in 
water with its side of length l horizontal and topmost. The top edge is at a depth h below the water 
surface. Determine: 
 (i) The total force on one side of the plate.
 (ii) The location of the centre of pressure.

 Solution. Refer to Fig. 3.12, the trapezium can be considered to be made of:
   (i)  A rectangle: l (width) × h (height)
  (ii)  A triangle: l (base) × h (height)
 (i) Total force on one side of the plate P:
 Refer to Fig. 3.13.
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 For Rectangular part:
 Pressure force P1 on the rectangular part,

2 l

l

h

l

l l

h
h

+�

Fig. 3.12

  P1 = 23( )
2 2
hw l h h wlh × + = 

 
 Centre of pressure of force P1,

  h –
1 = 

3( /12)
2( )

2

GI l h hx h
Ax hl h h

×  + = + + 
  × × + 

 

   = 3 14
18 2 9
h h h+ =

2 l

l

h

h

Water surface

Fig. 3.13

 For Triangular part:
 Pressure force on the triangular part,

  P2 = ( ) ( )1 2
2 3

w l h h h× × × +

   = 5
6

wlh2

 Centre of pressure of force P2,

  h –
2 = 

( ) ( ) ( )3( / 36) 2
31 2

2 3

GI lhx h h
Ax l h h h

+ = + +
× × +

   = 5 51
30 3 30
h h h+ =

	 ∴  Total force/thrust, P = P1 + P2

   = 2 23 5
2 6

wl h wl h+ = 7
3

wlh2  (Ans.)
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 (ii) The location of the centre of pressure, h –:
  Centre of pressure of total force,

  h – = 1 1 2 2P h P h
P
+

   = 
2 2

2

3 14 5 51
452 8 6 30

7 28
3

wlh h wlh h
h

wl h

× + ×
=

 i.e. h – = 45 h
28

(Ans.)

 Example 3.7. A trapezoidal 2 m wide at the bottom and 1 m deep has side slopes 1: 1. Determine:
   (i)   Total pressure;
  (ii)   Centre of pressure on the vertical gate closing the channel when it is full of water.
 Solution. Refer to Fig. 3.14
 (i) Total Pressure, P :
  For rectangle:
 Area, A1 = 2 × 1 = 2m2

  x – = 1
2

 = 0.5m

  P1 = wA x – = 9.81 × 2 × 0.5 = 9.81 kN
 This acts at a depth h –

1.

 But, h –
1 = 

3(2 1 /12)
2 0.5

GI x
Ax

×+ =
×

 + 0.5 = 0.6 m ... from the top

 For triangles:

 Area, A2 = 2 × 1
2

 × 1 × 1 = 1 m2 (there are two triangles); 1 m
3

x =

  P2 = wA x – = 9.81 × 1 × 1
3

 = 3.27 kN

 This acts at a depth of h –
2.

 But, h –
2 = 

3(2 1 / 36) 1
1 1/ 3 3

GI x
Ax

×+ = +
×

 = 0.5 m ...from the top.

 i.e. h –
2 = 0.5 m

 Total pressure,
  P = P1 + P2 = 9.81 + 3.27 = 13.08 kN (Ans.)
 (ii) Centre of pressure , h –:
  Taking moments about the top, we get: P × h – = P1 × h –

1 + P2 × h –
2

 or, h –
  = 1 1 2 2 9.81 0.66 3.27 0.5

13.08
P h P h

P
+ × + ×=  = 0.62 m (Ans.)

 Example 3.8. An isosceles triangle of base 3 metres and altitude 6 metres is immersed vertically 
in water, with its axis of symmetry horizontal, as shown in Fig. 3.15. If the head of water on it is 9 
metres, determine:
 (i) Total pressure on the plate, and  (ii) The position of the centre of pressure.

2 m

1 m

4 m
M

T

45°45°
L

S

Fig. 3.14
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 Solution. Area of the triangle,

  A = 1
2

 × 3 × 6 = 9m2

 Depth of C.G. of the plate from the water surface,
  x – = 9m
 (i) Total pressure, P:
  We know that, P = wA x – = 9.81 × 9 × 9
   = 794.6 kN (Ans.)
 (ii) Centre of pressure, h –:

 Using the relation: h – = GI x
Ax

+

  But, IG= moment of inertia of ∆ABD about AD + moment 
of inertia of ∆ ACD about AD

   = 
3 36 1.5 6 1.5

12 12
× ×+  

   = 3.375 m4

  h – = 3.375
9 9×

 + 9 = 9.04 m (Ans.)

 Example 3.9.  A circular lamina of radius R is kept immersed in a liquid such that its top most 
point A is on the free surface. Determine the depth and width of the horizontal chord BC so that the 
total thrust due to hydrostatic pressure on the triangle ABC is maximum. (UPTU)
 Solution. Refer to Fig. 3.16.
 The total thrust/pressure on the submerged triangle ABC is,

  F = P = wA x – = w × ( )1 2 1
2 3 3

hb h× × × = wbh2

 But, h = R + 2 2–R b  (O is the centre of the circle)

 ∴ F = 
2

2 21 –
3

wb R R b + 

 For F  to be maximum, 0dF
db

=

 i.e. 2 2 2( – ) 0d b R R b
db

 + = 

 b × 2 ( ) ( )22 2 2 2 –1/2 2 21– ( – ) (–2 ) –
2

R R b R b b R R b+ × + +  = 0

                      
2

2 2
2 2

–2 – 0
–
b R R b

R b
+ + =

 or,  – 2b2 + R 2 2( – )R b + R2 – b2  = 0

 or,  R 2 2( – )R b + R2 – 3b2  = 0

 or,  R 2 2( – )R b  = 3b2 – R2

6 m

3
m

9
m

Free water surface

B

D

C

A

Fig. 3.15

Free surface A

B

b b

h

O
R

C

Fig. 3.16
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 Squaring both sides, we get:
  R2 (R2 – b2) = 9b4 + R4 – 6R2b2

  R4 – R2b2 = 9b4 + R4 – 6R2b2

  9b4 = 5R2b2

 or 9b2 = 5R2

 or b = 
55

9 3
R R=

 and h = R + 2 25 5–
9 3

R R R=

 Hence, for maximum thrust, the depth and width of the chord are:

 Depth, h = 5
3

R, and

 width, 2b = 2 5
3

R         (Ans.)

 Example 3.10. Determine the total force and location of centre of pressure for plate LMSUT 
immersed vertically as shown in Fig. 3.17.

 Solution.  Area LMST, A1 = 2 × 2 = 4m2

  Area TSU, A2 = 1
2

 × 2 × 2 = 2 m2

1

2

L

T
S

U

2 m

2 m

2 m

P1

P2

G1

G2

C1

C2

h1

a1

( )a

( )b

a2

h2

x1

x2

M Water surface

T
S

U

1 m

0.75 m

1.25 m

G2

C2
a2

Fig. 3.17
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 Distance of centroid G1 from water surface, x –
1 = 2

2
 = 1 m

 Distance of centroid G2 from water surface, x –
2 = 2 + 2

3
 = 2.667 m

  Total pressure on area LMST, P1 = wA1 x –
1 = 9.81 × 4 × 1 = 39.24 kN

  Total pressure on area TSU, P2 = wA2 x –
2 = 9.81 × 2 × 2.667 = 52.33 kN

  Total pressure, P = P1 + P2 = 39.24 + 52.33 = 91.57 kN
 Distance of centre of pressure (C1) of area LMST from free water surface,

  h –
1 = 1

3

1
1 1

2 2
12

2 2 1
GI

x
A x

×

+ =
× ×

 + 1 = 1.333 m

 Distance of centre of pressure (C2) of area TSU from the free water surface,

  h –
2 = 2

3

2
2 2

2 2
36

2 2.667
GI

x
A x

×

+ =
×

 + 2.667 = 2.75 m

 The depth (h –) at which the resultant force will act can be determined by taking moments of 
forces P1 and P2 about water surface.
 i.e. P1 × h –

1 + P2 × h –
2 = P × h –

  39.24  × 1.333 + 52.33 × 2.75 = 91.57 × h –

 ∴ h – = 39.24 1.333 52.33 2.75
91.57

× + ×

   = 2.14 m below the water surface (Ans.)
 The horizontal location of centre of pressure can be obtained by taking moments of P1 and 
P2 about LTU. The force P1 acts at 1 m from line LTU. The distance a2 where force P2 acts can be 
obtained as under:

  1
2

 = 2
1.25
a  [from similarity of triangles (Fig. 3.17) (b)]

 or, a2 = 0.625 m
	 ∴ P1 . a1 + P2 . a2 = P.a –

  39.24 × 1 + 52.33 × 0.625 = 91.57 × a –

	 ∴ a – = 39.24 1 52.33 0.625
91.57

× + ×  = 0.786 m

 Hence co-ordinates of centre of pressure are 2.14 m below water surface and 0.786 m from 
LTU. (Ans.)
 Example 3.11. A sliding gate 3 m wide and 1.5 m high lies on a vertical plane and has a co-
efficient of friction of 0.2 between itself and guides. If the gate weighs 30 kN, find the vertical force 
required to raise the gate if its upper edge is at a depth of 9 m from free surface of water.

 Solution. Width of the gate, b = 3 m
 Depth/height of the gate,
  d = 1.5 m
  Area of the gate, A = b × d = 3 × 1.5 = 4.5 m2

  Weight of the gate, W = 30 kN
  Co-efficient of friction, µ = 0.2
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 Vertical force required to raise the gate:
 Depth of c.g. of the gate from water surface,

  x – = 9 + 1.5
2

 = 9.75 m

 Pressure force on the gate,
  P = wA x – = 9.81 × 4.5 × 9.75 = 430.4 kN
 Force required to raise the gate
   = Frictional force + weight of the gate
   = µP + W
   = 0.2 × 430.4 + 30 
   = 116. 08 kN (Ans.)

 Example 3.12. The hydrostatic water 
pressure acts only on one side and to a depth 
of 12 m from the top of a dock gate which is 
reinforced with three horizontal beams.
 (i) Calculate the load taken by each beam.
 (ii) Locate the positions of beams in order 

that each carries an equal load.
 Solution. Refer to Fig. 3.19. Consider an 
elementary strip of thickness dh at a depth h. 
Then for a unit width of the gate, we have:
Pressure/force on the element,
  dP = w × ( dh × 1) × h = wh dh
 Pressure on section 1,

  P1 = 
1 2

1
0 2
h wwh dh h=∫

 Pressure on section 2,

  P2 = ( )2

1

2 2
1 2–

2
h

h

wwh dh h h=∫
 Pressure on section 3,

  P3 = ( )3

2

2 2
3 2–

2
h

h

wwh dh h h=∫
 Total pressure on the gate,

 
3 2

3
0 2
h wwhdh h=∫

 Load carried by each section is same and it equals 1
3

rd of total pressure/force on the gate.

 Thus, 2
12

w h  = 2 2 2 2 2
2 1 3 2 3

1( – ) ( – )
2 2 3 2
w w wh h h h h= = ×

	 ∴ 2
1h  = 2 2 2

2 1 2
144– 144 – 48

3
h h h= = =

 Solving the above equations, we get:
  h1 = 6.93 m; h2 = 9.8 m

9
m

Sliding gate

1.5 m

P
P

W

x
h

�P

Water surface

G

Fig. 3.18

1

2

3

Beams

Beam

dh

h1

h

h2

h3 = 12 m

F.W.S.

Fig. 3.19
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 (i) Load taken by each beam:

    Load taken by each beam = 2 2
1

9810 6.93
2 2
w h = ×  = 235562 (Ans.)

 (ii) Centres of pressure, , ,1 2 3h h h :

  h –
1 = 1

2 2 6.93
3 3

h = ×  = 4.62 m (Ans.)

 In order to obtain the centre of pressure for the section 2, taking moments of relevant forces 
about F.W.S., we get:

  2 2
2 1 2( – )

2
w h h h×  = 2 2

2 2 1 1
2 2–

2 3 2 3
w wh h h h   × ×   

   

 or, h –
2 = 

3 3 3 3
2 1
2 2 2 2
2 1

–2 2 (9.8) – (6.93)
3 3– (9.8) – (6.93)

h h
h h

   
=   

  

   = 2 608.38
3 48.015
 
  

 = 8.45 (Ans.)

 Similarly for the bottom portion, the centre of pressure from the F.W.S.,

  h –
3 = 

3 3 3 3
3 2
2 2 2 2
3 2

–2 2 (12) – (9.8)
3 3– (12) – (9.8)

h h
h h

   
=   

    

   = 2 786.81
3 47.96
 
  

 = 10.94 m (Ans.)

 Example 3.13. Fig. 3.20 shows a tank containing water 
and liquid (sp. gravity = 0.9)  upto height 0.25 m and 0.5 m 
respectively. Calculate:
 (i)  Total pressure on the side of the tank;
 (ii) The position of centre of pressure from one side of the 

tank, which is 1.5 m wide.                            (U.P.S.C.)
 Solution. Depth of water = 0.25 m
  Depth of liquid = 0.5 m
  Sp. gravity of liquid, S = 0.9
  Width of the tank = 1.5 m
 (i) Total pressure on one side of the tank, P:
  Total pressure (P) is calculated by drawing pressure diagram, 

which is shown in Fig. 3.21.
  Intensity of pressure on top, pL = 0
  Intensity of pressure on T (or TS),
  pT = w1h1 = ( 0.9 × 9.81) × 0.5 = 4.41 kN/m2

  Intensity of pressure on the base (or MN),
  pM = w1h1 + w2h2 = 4.41 + 9.81 × 0.25
   = 4.41 + 2.45 = 6.86 kN/m2

Now, force P1 = area of the ∆LTS × width of the tank

   = 1
2

 × LT × TS × 1.5

   = 1
2

 × 0.5 × 4.41 × 1.5 = 1.65 kN

1.5 m

0.5 m

0.25 m

Liquid
( = 0.9)S

Water

Fig. 3.20

L

S

NUM

P3

P1

P2

T

Fig. 3.21. Pressure diagram.
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 Force, P2 = area of rectangle MTSU × width of the tank = MT × TS × 1.5
   = 0.25 × 4.41 × 1.5 = 1.65 kN
  P3 = area of ∆ SUN × width of the tank

   = 1
2

 × SU × UN × 1.5 = 1
2

 = × 0.25 × 2.45 × 1.5 = 0.46 kN

 Total pressure, P = P1 + P2 + P3 = 1.65 + 1.65 + 0.46 = 3.76  kN (Ans.)
 (ii) Centre of pressure, h –:
  Taking moments of all the forces about L, we get:

  P × h –  = P1 × 2
3

 LT + P2 × 3
1 2
2 3

LT TM P LT MT   + + × +      

  3.76 × h – = 1.65 × 2
3

    × 0.5 + 1.65 1 20.5 0.25 0.46 0.5 0.25
2 3

   + × + + ×      

   = 0.55 + 1.03 + 0.306 
  h – = 0.5016 m from the top (Ans.)
 Example 3.14. An opening in a dam 
is covered by the use of a vertical sluice 
gate. The opening is 2 m wide and 1.2 
m high. On the upstream of the gate the 
liquid of specific gravity 1.45 lies upto 
a height of 1.5 m above the top of the 
gate, whereas on the downstream side 
the water is available upto a height 
touching the top of the gate. Find:
 (i) The resultant force acting on the 

gate and position of centre of 
pressure;

 (ii) The force acting horizontally 
at the top of the gate which is 
capable of opening it. 

  Assume that the gate is hinged at 
the bottom.    (Rajasthan University

 Solution. Width of the gate, b = 2 m
  Depth of the gate, d = 1.2 m
  Area, A = b × d = 2 × 1.2 = 2.4 m2

  Specific gravity of liquid = 1.45
 Let, P1 = Force exerted by the liquid of sp. gravity 1.45 on the gate, and
  P2 = Force exerted by water on the gate.
 (i) Resultant force, P:
  Position of centre of pressure of resultant force:
 We know that, P1 = wAx –

1
 where, w = 9.81 × 1.45 = 14.22 kN/m3,
  A = 2 × 1.2 = 2.4 m2

Free water surface

P2

P1

1
.5

m
1
.2

m

Liquid
(S = 1.45)
Upstream

Water
(S = 1)

Downstream

Free liquid surface

F

Hinge

Fig. 3.22



112         Fluid Mechanics

  x –
1 = 1.5 + 1.2

2
 = 2.1 m

  P1 = 14.22 × 2.4 × 2.1 = 71.67 kN.
 Similarly, P2 = wAx –

2
 where, w = 9.81 kN/m3.
  A = 2.4 m2,

  x –
2 = 1.2

2
 = 0.6 m

  P2 =  9.81 × 2.4 × 0.6 = 14.13 kN.
 Resultant force, P = P1 – P2 = 71.67 – 14.13
   = 57.54 kN (Ans.)
  The force P1 acts at a depth of h –

1 from free liquid surface, which is given by:

  h –
1 = 1

1

GI
x

Ax
+

 where, IG = 
3 32 1.2

12 12
bd ×

=  = 0.288 m4

  A = 2.4 m2, x – = 1.5 + 1.2
2

 = 2.1 m

  h –
1 = 0.288

2.4 2.1×
 + 2.1 = 2.157 m

	 	 ∴  Distance of P1 from the hinge  =  ( 1.5 + 1.2 ) – h –
1 = 2.7 – 2.157 = 0.543 m

  Similarly the force P2 acting at a depth of h –
2 from the liquid surface is given by:

  h –
2 = 2

2

GI x
Ax

+

 where, IG = 0.288 m4 (as above); 2
1.2 0.6
2

x = = m; A = 2.4 m2

	 ∴ h –
2 = 0.288

2.4 0.6×
 + 0.6 = 0.8 m

	 ∴  Distance of P2 from the hinge  = 1.2 – 0.8 = 0.4 m
 Now the resultant force will act at a distance given by:

  71.67 0.543 – 14.13 0.4
57.54

× ×  = 0.578 m above the hinge (Ans.)

 (ii) Force required to open the gate, F:
  Taking moments of P1 , P2 and F about the hinge, we get:
  F × 1.2 + P2 × 0.4 = P1 × 0.543
 or, F × 1.2 + 14.13 × 0.4 = 71.67 × 0.543

 or, F = 71.67 0.543 – 14.13 0.4
1.2

× ×  = 27.72 kN (Ans.)

 Example 3.15. For the system shown in Fig. 3.23 calculate the height H of the oil at which the 
rectangular hinged gate will just begin to rotate anticlockwise.
 Solution.
 Refer to Fig. 3.23.
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 Height H of the oil:
	  Force due to oil, P1 = w0 Ax –

   = (0.8 × 9.81) × ( 0.6 × 1.5) × 1.5(H – 1.5)
2

 +  

   = 7.063 ( H – 0.75) = 7.063 H – 5. 297
 Centre of pressure of force P1,

  h –
1 = 

30.6 (1.5) /12
(0.6 1.5) (H – 0.75)

GI x
Ax

×
+ =

× ×
 + (H – 0.75)

Hinge

Oil
(Sp.gr. = 0.8)

Gate

H

1.5 m

Gate: 0.6 wide Gate

P1

( )a ( )b

P2

Air
Pressure

Oil
pressure

Air
30 kPa

Fig. 3.23

     = 0.1875
(H – 0.75)

 + (H – 0.75)

   Force due to air pressure,  P2  =  p.A
     = 30 × ( 0.6 × 1.5 ) = 27kN
 Centre of pressure of this force (below the oil surface), 
    h –

2 = (H – 0.75)
 Taking moment about the hinge, we get:
    P1 × [h –

2 – (H – 1.5)] = P2 × [h –
2 – (H – 1.5)]

    (7.063 H – 5.297) 0.1875 (H – 0.75) – (H – 1.5)
(H – 0.75)

 + 
 

     = 27 × { (H – 0.75) – ( H – 1.5) }

    (7.063 H – 5.297) 0.1875 0.75
(H – 0.75)

 + 
 

 = 27 × 0.75

 On solving by trial and error, we get:
    H = 4.324 m (Ans.)
 Example 3.16.  A tank of 1m length and of cross-section shown in fig. 3.24  contains water. The 
tank is made of 4 mm steel plates.
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 (i) What is the force on the bottom due to water?
 (ii) What are the longitudinal tensile stresses in the side 

walls AB if (a) the tank is suspended from the top and 
(b) it is supported at the bottom?

 Solution.
 Refer to Fig. 3.24
 (i) Force on the bottom:
  Force on the bottom due to water,
  Pbottom = wAx –

   = 9.81 × (0.6 × 1.0) × 0.75
   = 4.414 kN (Ans.)
 (ii) Longitudinal tensile stresses:
  Force on the surface AA,
  PAA = 9.81 × (0.3 × 1.0) × 0.45
   = 1.324 kN
 (a) When suspended from the top the stress on the side walls,

  s = 4.414
4(0.6 0.6 1.0 1.0)

1000
+ + + ×

 = 344.8 kN/m2 (Ans.)

 (b) When supported from bottom the stress on the side walls,

  s = 1.324
4(0.6 0.6 1.0 1.0)

1000
+ + + ×

 = 103.4 kN/m2 (Ans.)

 Example 3.17.  A vertical square 1.2 m × 1.2 m  is 
submerged  in the water with upper edge 0.6 m below the 
water surface. Locate the horizontal line on the surface of 
the square such that the force on the upper portion equals 
the force on the lower portion.

 Solution. Refer to Fig. 3.25. ABCD is the square plate 
submerged vertically in water with upper edge AB at a 
depth of 0.6 m below the free water surface (F. W. S.) 
 Let LM be the line such that force on ALMB equals the 
force on LDCM, and evidently the force on each portion 
equals half the total force on the entire plate ABCD. 
 Total pressure on the plate ABCD
   = wAx –

   = w × (1.2 × 1.2) × 1.20.6
2

 + 
 

   = 1.728 w 
 Total pressure on the position ALMB

   = w × ( 1.2 × y) × 0.6
2
y + 

 
 = 1.2 wy 0.6

2
y + 

 

 Now, pressure force on ALMB = 1
2

 × pressure force on ABCD

0.3 m

A
A

B

B

0.45 m

0.3 m

0.6 m

Tank

Water

Fig. 3.24

L
M

A B

C Square
plate

D
1.2 m

y

1.2 m

0.6 m

F.W.S.

Fig. 3.25
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  1.2 wy 0.6
2
y + 

 
 = 1

2
 × 1.728 w

 or, 0.6y +
2

2
y  = 0.72

 or, y2 + 1.2y – 1.44 = 0

 or, y = 
2– 1.2 (1.2) 4 1.44 – 1.2 2.683

2 2
± + × ±

=

   = 0.7415 m or – 1.9415 m.
 i.e., y = 0.7415 m (Ans.)
 Example 3.18.  A rectangular vertical door, 2.4 m (height) × 1.2 m (wide), is fastened by two 
hinges situated 18 cm below the top and 18 cm above the bottom on one vertical edge, and by one  
clamp at the centre of other vertical edge. The door is subjected to water pressure on one side and 
the depth of water above the top of door is 1.2 m. Calculate the reactions at the hinges and at the 
clamp.
 Solution. Refer to Fig. 3.26.

18 cm

2.4 m

1.2 m

1.2 m

x

hHinge

Hinge

Clamp

Door

G

C

F.W.S.

18 cm

Fig. 3.26

  Depth of centroid of the door, –x = 2.41.2
2

+  = 2.4 m

  Area of the door, A = 2.4 × 1.2 = 2.88 m2

 Total pressure on the door,
  P = wAx – = 9.81 × 2.88 × 2.4 = 67.8 kN
 Depth of centre of pressure,

  h – = GI x
Ax

+

  
3(1.2 2.4 /12)

2.88 2.4
×

×
 + 2.4 = 2.6 m
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 i.e., ( 2.4 + 1.2 ) – 2.6 = 1 m from the base 
 Let, Rth = Reaction at the top hinge,
  Rbh = Reaction at the bottom hinge, and 
  Rcl = Reaction at the clamp.
 The symmetry of the arrangement suggests that half of the total pressure force is taken by the 
two hinges and the other half by the clamp.

	 ∴ Reaction at the clamp. Rcl = 67.8
2

= 33.9 kN (Ans.)

 Taking moments of all forces about the horizontal axis through the bottom hinge, we get:

  P × ( 1 – 0.18) = Rcl × 2.4 – 0.18
2

 
 
 

 + Rth × (2.4 – 0.18 – 0.18)

  67.8 × 0.82 = 33.9 × 1.02 + Rth × 2.04
 or, Rth = 10.3 kN (Ans.)
	 ∴ Reaction at the bottom hinge, Rbh = 33.9 – Rth = 33.9 – 10.3 = 23.6 kN (Ans.)

3.5.  INCLINED IMMERSED SURFACE 

 Refer to Fig. 3.27. Consider a plane inclined surface, immersed in a liquid.
 Let, A = Area of the surface,
  x – = Depth of centre of gravity of immersed surface from the free 

liquid surface,
  θ = Angle at which the immersed surface is inclined with the 

liquid surface, and
  w = Specific weight of the liquid.

 (a) Total pressure (P):
 Consider a strip of thickness dx, width b at a 
distance l from O (A point, on the liquid surface, 
where the immersed surface will meet, if produced).
The intensity of pressure on the strip
   = wl sinθ
  Area of the strip = b.dx
 Pressure on the strip
   = Intensity of pressure × area 
   = wl sin θ . b. dx
 Now total pressure on the surface,

  P = sin . . sin . .wl b dx w l b dxθ = θ∫ ∫
 But, . .l b dx∫  = moment of surface area about 00

   = 
sin
Ax
θ

,

	 ∴ P = w sinθ . 
sin
Ax wAx=
θ

(same as in Arts. 3.3 and 3.4)

G

C

�

x

O Liquid surface O

h

l

b

dx

Fig. 3.27. Inclined immersed surface.
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 (b) Centre of pressure (h –):
 Referring to Fig 3.27, let C be the centre of pressure of the inclined surface.
 Let, h – = Depth of centre of pressure below free liquid surface,
  IG = Moment of inertia of the immersed surface about OO,
  x – = Depth of centre of gravity of the surface from the 

liquid surface,
 	 θ = Angle at which the immersed surface is inclined with 

the liquid surface, and 
  A = Area of the surface.
 Consider a strip of thickness of dx, width b and at distance l from OO.
 The intensity of pressure on the strip  =  wlsin θ
  Area of strip = b . dx
	 ∴ Pressure on the strip = Intensity of pressure × area = wl sinθ b . dx
  Moment of the pressure about OO  = (wl sin θ . b.dx) l = wl2 sinθ . b . dx
 Now sum of moments of all such pressures about O,

  M = 2 2sin . sin . .wl b dx w l b dxθ = θ∫ ∫
 But,  2

0. .l b dx I=∫  = moment of inertia of the surface about the point 0 (or 
the second moment of area)

  M = w sin θ . I0 ...(i)

 The sum of moments of all such pressures about O is also equal to 
sin
Ph
θ

 ...(ii)

 where, P is the total pressure on the surface.
 Equating eqns. (i) and (ii), we get:

  
sin
Ph
θ

 = w sin θ . I0

  
sin

wA x h
θ

 = w sin θ . I0 ( P = wA x –)

 or, h – = 
2

0 sinI
Ax

θ  ...(iii)

 Also, I0 = IG + Ah2 ...Theorem of parallel axes.
 where, IG = Moment of inertia of figure about horizontal axis through its centre of gravity, and

 h = Distance between 0 and the centre of gravity of the figure = l 
sin

x = θ 
 in this case.

 Rearranging equation (iii), we have:

  h – = 
2sin

Ax
θ  (IG + Al2)

   = 
2 22 sinsin

sin
G

G
IxI A x

Ax Ax
  θθ  + = +  θ  

 Hence, centre of pressure h – = 
2sinGI x

Ax
θ
+  ...(3.3)
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 It will be noticed that if θ = 90° eqn (3.3) becomes 
the same as equation (3.2).
 Example 3.19. A 1m wide and 1.5 m deep 
rectangular plane surface lies in water in such a way 
that its plane makes an angle of 30° with the free water 
surface. Determine the total pressure and position of 
centre of pressure when the upper edge is 0.75 m below 
the free water surface.

 Solution.  Width of the plane surface = 1m
  Depth of the plane surface = 1.5 m
  Inclination, θ = 30° 
 Distance of upper edge from free water surface  
   = 0.75 m
 (i) Total pressure, P:
    Using the relation, P = wA x –

  where, w = 9.81 kN/m3,
  Area, A = 1.5 × 1 = 1.5 m2,
  x – = LU + UM = 0.75 + MN sin 30°

   = 0.75 + 1.5
2

 × 0.5 = 1.125 m

  P = 9.81 × 1.5 × 1.125 m
   = 16.55 kN (Ans.)
 (ii) Centre of pressure, h –:

    Using the relation, h – = 
2sinGI x

Ax
θ
+

 where, IG = 
31 1.5

12
×  = 0.281 m4

	 i.e., h – = 
20.281 (0.5)

1.5 1.125
×
×

 + 1.125 = 1.166 m (Ans.)

 Example 3.20.  A circular plate 1.5 m diameter is submerged in water, with its greatest and 
least depths below the surface being 2 m and 0.75 m respectively. Determine:
 (i) The total pressure on one face of the plate, and
 (ii) The position of the centre of pressure.

 Solution. Diameter of the plate, = 1.5 m
 Area of the plate,

  A = 
4
p . d2 = 

4
p  × 1.52 = 1.767 m2

 Refer to Fig. 3.29
  Distance, SN = 0.75 m, UM = 2m
 Distance of c.g. from free surface,

L

Rectangular
plane surface

S

�������

Free water surface

x
h

U N

C

G

1.5 m

�

0.75 m

M

1m

Fig. 3.28
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m
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m

x2
m

�

�

Free water surface

Fig. 3.29

  x – = SN + GN sin θ
   = 0.75 + 0.75 sin θ

 But, sin θ = –LM UM UL
MN MN

=

   = 2 – 0.75
1.5

 = 0.8333

	 ∴ x – = 0.75 + 0.75 × 0.8333 = 1.375 m
 (i) Total pressure, P:
  We know that,
  P = wA x – = 9.81 × 1.767 × 1.375
   = 23.83 kN (Ans.)
 (ii) Centre of pressure, h –:
  Using the relation,

  h – = 
2sinGI x

Ax
θ
+

   = 
4 2/ 64 1.5 (0.8333)

1.767 1.375
p × ×

×
 + 1.375 = 1.446

 i.e., h – = 1.446 m (Ans.) 
 Example 3.21. An annular plate 2m external diameter and 1m internal diameter with its greatest 
and least depths below the surface being 1.5 m and 0.75 m respectively. Calculate the magnitude, 
direction and location of the force acting upon one side of the plate due to water pressure.
 Solution. Refer to Fig. 3.30. From the geometry of the figure, we have:
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F.W.S.

1.5 m

�

Annular
plate

0.75 mh x

C

G

2
m

1 m

Fig. 3.30

  sin θ = 1.5 – 0.75
2

 = 0.375

	 ∴ θ = sin–1 (0.375) = 22°

  Area of the plate, A = 
4
p  (22 – 12) = 2.356 m2

  Depth of centroid, x – = 1.5 0.75
2
+  = 1.125 m

 Total pressure force,
  P = wA x – = 9.81× 2.356 × 1.125 = 26 kN (Ans.)
 This force acts perpendicular to the plate  so it is acting in a direction which is 90° – 22° = 68°  
to the vertical (Ans.)
 Depth of centre of pressure,

  h – = 
2sinGI x

Ax
θ
+

   = 
4 4 2

2 2

(2 – 1 ) (sin 22 )
64

(2 – 1 ) 1.125
4

p
× °

p
×

 + 1.125

   = 0.1033
2.651

 + 1.125 = 1.164 m (Ans.)

 Example 3.22.  A triangular plate of 1 metre base and 1.5 metre altitude is immersed in water. 
The plane of the plate is inclined at 30° with free water surface and the base is parallel to and at a 
depth of 2 metres from water surface. Find the total pressure on the plate and the position of centre 
of pressure.
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 Solution. Refer to Fig. 3.31.
Area of the plate,

 A = 1
2

 × 1 × 1.5 = 0.75 m2

 Inclination of the plate, θ = 30°
 Total pressure on the plate, P:
 The depth of c.g. of the plate from water 
surface,

 x –  = 2 + 1.5
3

 sin 30°

  = 2 + 0.5 × 0.5 = 2.25 m
 Using the relation,
 P  = wA x – = 9.81× 0.75 × 2.25
  = 16.55 kN (Ans.)

 Depth of centre of pressure, h –:
 Moment of inertia of a triangular section 
about its c.g.,

  IG = 
31 1.5

36
×  = 0.09375 m4

 Using the relation,

  h – = 
2 2sin 0.09375 sin 30

0.75 2.25
GI x

Ax
θ °
+ =

×
 + 2.25

   = 2.264 m (Ans.)

 Example 3.23. A trapezoidal plate 
measuring 1 m at the top edge and 1.5 m at 
the bottom edge is immersed in water with the 
plan making an angle of 30° to the free surface 
of water. The top and the bottom edges lie at 
0.5 m and 1 m respectively from the surface. 
Determine the hydrostatic force on the plate.

 Solution.
 Refer to Fig. 3.32, Given:
 a = 1 m; b = 1.5 m; 

 h  = AB = 1.0 – 0.5
sin 30°

=1m 

 Distance of centroid of a trapezium plate 
from its base,
 hG = 2

3
h a b

a b
+ 

 + 

   =  1 2 1 1.5
3 1 1.5

× + 
 + 

 = 0.467 m

 Depth of centroid from the free water, surface,
  x – =  1.0 – BC sin 30° = 1.0 – 0.467 × sin 30° = 0.7665 m

Water surface

1.5 m

1
m

2
m

C

G

h
x

30°

Fig. 3.31
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 Area of trapezium, A = 1 1.5
2 2

a b h+ +   =   
   

 × 1 = 1.25 m2

 ∴ Hydrostatic force P = wA x – = 9.81 × 1.25 × 0.7665 = 9.399 kN (Ans.)
 Example 3.24. An inclined rectangular 
sluice gate AB 1.2 m by 5 m size as shown in 
Fig. 3.33 is installed to control the discharge 
of water. The end A is hinged. Determine the 
force normal to the gate applied at B to open 
it.
 Solution.  Size of the gate  =  1.2 m × 5m
 Area of the gate = 1.2 × 5 = 6 m2

 Refer to Fig. 3.33.
 Depth of c.g. of the gate from free water 
surface,
  x –  = 5 – BG sin 45°
   = 5 – 0.6 × 0.707 = 4.576 m
 The total pressure force (P) acting on 
the gate,
  P = wA x –

   = 9.81 × 6 × 4.576 = 269.3 kN
 This force acts at a depth h, given by the relation:

  h – = 
2sinGI x

Ax
θ
+

 where, IG = M.O.I. of gate = 
3 35 1.2

12 12
bd ×

=  = 0.72 m4, θ = 45°

 i.e., h – = 
20.72 sin 45

6 4.576
× °
×

 + 4.576 = 4.589 m

 From Fig. 3.33, we have h
OC

 = sin 45°

  Distance, OC = 4.589
sin 45 0.707

h
=

°
 = 6.49 m;

  Distance, OB = 5
sin 45°

 = 7.072 m

	 ∴  Distance, BC = OB – OC = 7.072 – 6.49 = 0.582 m
  Distance, AC = AB – BC = 1.2 – 0.582 = 0.618 m
 Taking moments about the hinge A, we get:
   F × AB = P × AC

 or, F = 269.3 0.618
1.2

P AC
AB
× ×

=  = 138.69 kN (Ans.)

 Example 3.25. A 6 m × 2 m rectangular gate is hinged at the base and is inclined at an angle 
of 60° with the horizontal. The upper end of the gate is kept in position by a weight of 60 kN acting 
at angle of 90° as shown in Fig. 3.34. Neglecting the weight of the gate, find the level of water when 
the gate begins to fall.

1.2
m

Hinge A
P

F

5 m

hx

O
Free water surface

B

G

C

45º

O

Fig. 3.33
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 Solution.  Length of the gate, l =  6 m
  Width of the gate, b = 2 m
  Inclination, θ = 60°
  Weight, W = 60 kN
 Level of water when the gate begins to fall:
 Refer to Fig. 3.34
 Let, h = Height of free water surface from the bottom when the gate just begins to fall. 
 Then, length of gate in the shape of plate, submerged in water,

 AD = 
sin sin 60 0.866
AC h h

= =
θ °

 = 1.1547 h
	 ∴ Area of the gate immersed in 
water,
 A = AD × width
 = 1.1547 h × 2 = 2.309 h m2

 Also depth of c.g. of the immersed 
area,

 x – = 
2
h  = 0.5 h

 Total pressure on the gate,
 P = wA x – = 9.81 × 2.309 h × 0.5 h
 = 11.326 h2 kN
 The centre of pressure of the 
immersed surface (h –) is given by:

 h – = 
2sinGI x

Ax
θ
+

 where, IG = moment of inertia of 
the immersed area 

 =
3 2

12 12
b AD×

=  (1.1547 h)3

 = 0.2566 h3

  h – = 
3 20.2566 (sin 60 )

2.309 0.5
h

h h
× °
×

 + 0.5 h = 0.667 h metres.

 Distance of centre of pressure from the hinge (or pivot) along the length of the gate,

  AE = – – 0.667
sin 60 0.866
h h h h

=
°

 = 0.384 h

 Taking moments about the hinge, we get:
  P × AE = 60 × AB
  11.326 h2 × 0.384 h =  60 × 6

 or h3 = 60 6
11.326 0.384

×
×

 = 82.774

 or h = 4.36 m (Ans.)
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 Example 3.26. Fig. 3.35 shows a circular opening in the sloping wall of the reservoir closed by 
disc valve 0.9 m diameter. The disc is hinged at H and a balance weight W is just sufficient to hold 
the valve closed when the reservoir is empty. How much additional weight should be placed on the 
arm, 1.2 m from the hinge, in order that the valve shall remain closed until the water level is 0.72 m 
above the centre of the valve.
 Solution. Dia. of the valve, d = 0.9 m

  Area of the valve, A = p
4

d2 = p
4

 × 0.92 = 0.636 m2

  Inclination, θ = 60°
 Distance of c.g. of the valve from free water surface, x – = 0.72 m
 Additional weight, W′:
 Total pressure on the valve, P = wA x – = 9.81 × 0.636 × 0.72 = 4.49 kN

G

60°
H

W

1.2 m
0.

45
m

0.
6

m

Hinge

0.053 m

P

h
=

0
.7

7
3

m

0
.7

2
m

Sloping wall
Circular opening

Disc valve

Water surface

Fig. 3.35

 Distance of centre of pressure (h –) is given by:

  h – = 
2 4 2sin / 64 0.9 (sin 60 )

0.636 0.72
GI x

Ax
θ p × × °
+ =

×
 + 0.72

   = 0.773 m (from free water surface)
   = 0.053 m below the centroid G.
 Taking moments of all the forces about the hinge, 
we have:

  P 0.053 0.6
sin 60

 + ° 
 = W ′ × 1.2

 or, 4.49 (0.0612 + 0.6) = W′ × 1.2 or W′ 
   = 2.47 kN (Ans.)
 Example 3.27. Fig. 3.36 shows a gate supporting 
water. Taking the width of the gate as unity find: (i) 
Depth of water (h) so that the gate tips about the hinge;
 (ii) Reaction at the hinge.
 Solution. Inclination of the gate, θ = 60°
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e
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 (i) Depth of water, h:
  As the depth of water increases, the total pressure P on the gate moves upwards, and just before 
tipping, P acts at the hinge.
	 ∴ Depth of centre of pressure
  h – = (h – 2) m
 But h – is also given by:

  h – = 
2sinGI x

Ax
θ
+

  Taking width of gate unity, we have:
  Area, A = AC × 1 = 

sin 60
h

°
 × 1

   = 1.1547 h  
sin 60

hAC = ° 


  Distance of c.g. from water surface, x – = 
2
h  = 0.5 h. 

 Moment of inertia, IG = 
31 1

12 12
AC×

=  × (h / sin 60°)3 = 0.1283 h3

	 ∴ h – = 
3 20.1283 (sin 60 )

1.1547 0.5
h

h h
× °
×

 + 0.5 h = 0.667 h

  Equating the two values of h, we get:     h – 2 = 0.667 h     or     0.333 h = 2
 or,  h = 6 m (Ans.)
 Example 3.28. A gate supporting water takes the form of an inclined shield which swings 
around a hinged axis O (Fig. 3.37).
 Determine: (i) The position x of the hinge at which a water level of h = 5.1 m on the left would 
cause the gate to tip over the hinge;
 (ii) The magnitude of hydrostatic free on the gate just before it opens (tips about the hinge) 
automatically. Neglect frictional effects.
 Solution. Refer to Fig. 3.37. 
 (i) The position x of the hinge:
 The gate would tip about the hinge point O when the 
line of action of the resultant pressure force lies from O to 
B anywhere on the gate; the limiting condition being the 
situation when the resultant force passes through the hinged 
point O. The resultant also passes through the centroid of 

the pressure diagram, and the centroid lies at a distance 1
3

 
× AB from the bottom point A.
	 ∴ x = 1

3
 × AB

 or, AB (length of the gate) = 3x
  Depth of water, h = 3x × sin 45°
 i.e. 5.1 = 3x × sin 45°

	 ∴ x = 5.1
3 sin 45× °

 

   = 2.4 m (Ans.)
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 (i) The magnitude of hydrostatic force P:
  P = Area of pressure diagram × width of gate 

   = 1 1
2

AB wh × × × 
 

 ... considering unit width

   = 1 (3 2.4) 9.81 5.1 1
2

 × × × × ×  
 ( AB = 3x)

   = 180.11 kN (Ans.)

 Example 3.29. A  3.6 m square gate provided in an oil tank is hinged at its top edge (Fig. 3.38). 
The tank contains gasoline (sp. gr = 0.7) upto a height of 1.8 m above the top edge of the plate. 
The space above the oil is subjected to a  negative pressure of 8250 N/m2. Determine the necessary 
vertical pull to be applied at the lower edge to open the gate. (GATE)

 Solution. Refer to Fig. 3.38.
 Head of oil equivalent to negative pressure 8250 N/m2,

Negative pressure (8250 N/m )
2

Hinge

Gate

Gasoline surface

Gasoline (S = 0.7)

45°

1.8 m

P

Fig. 3.38

  h = 8250
0.7 9810

p
w
=

×
 = 1.2 m

 This negative pressure will reduce the oil head above the top edge of the gate from 1.8 m to  
1.2 m (= 0.6 m) of oil. Calculations for the magnitude and location of the pressure force are thus to 
be made corresponding to 0.6 m of oil.
 Now, x – = 0.6 + 3.6

2
 sin 45° = 1.873 m

  Area, A = 3.6 × 3.6 = 12.96 m2

  Pressure, P = wA x – = 0.7 × 9810 × 12.96 × 1.873 = 166690 N

  Centre of pressure, h – = 
2sinGI x

Ax
θ
+

   = 
( ) ( )231 3.6 3.6 sin 45

12
12.96 1.873

× × × °

×
 + 1.873 = 2.16 m

 ∴ Vertical distance of centre of pressure below top edge of the gate
   = 2.16 – 0.6 = 1.56 m
 Taking moments about the hinge, we get:

  F sin 45° × 3.6 = P × 1.56
sin 45°
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 Hence, vertical force, F = 2 2
1.56 166690 1.56

3.6 (sin 45 ) 3.6 (sin 45 )
P × ×

=
× ° × °

 = 144465 N (Ans.)

 Example 3.30. There is an opening in a container shown in Fig. 3.39. Find the force F and the 
reaction at the hinge.

 Solution. Gauge pressure = 23.5 kN/m2

   = 23.5
9.81 0.8×

  3	m of oil ph
w

 = 
 


 The free liquid surface may be considered as 3 m above the hinge A (Fig. 3.40)

Plate
(1.2 m × 1.2 m)

Oil (S = 0.8)

Container

B 30°

A

1.2 m

23.5 kN/m
2

Hinge

F

Fig. 3.39

 Now, distance of centroid G of the plate from the oil surface,
  x – = 3 + 0.6 sin 30° = 3.3 m
 Total pressure on the plate,
  P = wA x –
   = (9.81 × 0.8 ) × ( 1.2 × 1.2) × 3.3
   = 37.29 kN

Oil surface
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2

m

0.
6

m
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P
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h
x
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Fig. 3.40. Free body diagram.
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 Distance of centre of pressure (h –) is given by:

  h – = 

3
22

1.2 1.2 (sin30 )sin 12
(1.2 1.2) 3.3

GI x
Ax

×
× °θ

+ =
× ×

 + 3.3 = 3.309 m

 Taking moments about the  hinge A, we get:

  F × 1.2 = P × CA = P × ( – 3)
sin 30
h 

 ° 

 or, F × 1.2 = 37.29 × (3.309 – 3)
sin30°

   = 23.045
 or, F = 19.2 kN
 Let, RA = Reaction at the hinge,
 Then, RA + F = P
 or, RA = P – F
   = 37.29 – 19.2
   = 18.09 kN (Ans.)
 Example 3.31.  Fig. 3.41. shows a rectangular sluice gate AB, 3 m wide and 4.5 m long hinged 
at A. It is kept closed by a weight fixed to the gate. The total  weight of the gate and weight fixed to 
the gate is 515 kN. The centre of gravity of the weight and gate is at G. Find the height of the water 
h which will first cause the gate to open.
 Solution.  Width of gate, b = 3 m, Length of gate; l = 4.5 m
  Area,  A = 3 × 4.5 = 13.5 m2

  Weight of gate, W = 515 kN; angle of inclination, θ = 45°
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 Height of water, h: x – = h – LS = h – (AS – AL) = h – (AB sin θ – LG tan θ)
   = h – (4.5 sin 45° – 0.9 tan 45°)
   = h – ( 3.18 – 0.9) = (h – 2.28) m
 The total pressure (P) is given by:
  P = wA x – = 9.81 × 13.5 × (h – 2.28) = 132.43 (h – 2.28)
 The total pressure is acting at centre of pressure at C as shown in the Fig. 3.41. The depth of C 
from the free surface is given by:

  h – = 

3
22

3 4.5 (sin 45 )sin 12 ( – 2.28)
13.5 ( – 2.28)

GI x h
Ax h

×
× °θ

+ = +
×

 or, h – = 0.843 ( – 2.28)
( – 2.28)

h
h

+

 Now taking moments about hinge A, we get:
  515 × LG = P × AC

 or, 515 × 0.9 = 132.43 (h – 2.28) × 
sin 45

AT
°

	 ∴ AT = 515 0.9 sin 45 2.47
132.43( – 2.28) ( – 2.28)h h

× × °
=  ...(i)

 But, AT = h – – VA

 or, AT = 0.843 ( – 2.28) –
( – 2.28)

h VA
h

+  ...(ii)

 But, VA = VS – AS = h – 4.5 sin 45°
   = h – 3.18
 Substituting this value in (ii), we get:

  AT = 0.843
( – 2.28)h

 + (h – 2.28) – (h – 3.18)

   = 0.843
( – 2.28)h

 + 3.18 –2.28

 or, AT = 0.843 0.9
– 2.28h

+  ...(iii)

 Equating the values of AT from (i) and (iii), we get:

  2.47
– 2.28h

 = 0.843
– 2.28h

 + 0.9

  2.47 = 0.843 + 0.9 (h – 2.28) = 0.843 + 0.9 h – 2.052
 or, 0.9 h = 2.47 – 0.843 + 2.052 = 3.679

  h = 3.679
0.9

 = 4.08 m (Ans.)

3.6.  CURVED IMMERSED SURFACE 

 Consider a curved surface LM submerged in a static fluid as shown in Fig. 3.42. At any point on 
the curved surface, the pressure acts normal to the surface. Thus if dA is the area of a  small element 
of the curved surface lying at a vertical depth of h from surface of the liquid, then the total pressure 
on the elemental area is,
  dp = p × dA = (wh) × dA ...(3.4)
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 This force dP acts normal to the surface. Further 
integration of eqn. (3.4) would provide the total pressure 
on the curved surface and hence,

  P = whdA∫  ...(3.5)

 But, is case of curved surface the direction of the 
total pressures on the elementary areas are not in the 
same direction, but varies from point to point. Thus the 
integration of eqn. (3.5) for curved surface is impossible. 
The problem, however, can be solved by resolving the 
force P into horizontal and vertical components PH and PV. 
Then total force on the curved surface is,

  P = 2 2
H VP P+  ...(3.6)

 The direction of the resultant force P with the horizontal is given by: tan θ = V

H

P
P

 or, θ = tan–1 V

H

P
P

 
 
 

 ...(3.7)

 Here, PH = Total pressure force on the projected area of the curved 
surface on vertical plane, and

  PV = Weight of the liquid supported by the curved surface upto free 
surface of liquid.

 Example 3.32. The profile of a vessel is quadrant of a circle 
of radius R. Determine the horizontal and vertical components of 
the total pressure force, from the first principles.

 Solution. Consider an elementary strip of radius R at depth h 
and subtending an angle as shown in Fig. 3.43.
 Let the vessel has a unit depth perpendicular to the plane of 
paper. Then Area of the element,
  dA = Rdα × unit depth = Rdα
  Depth, h = R sinα
  Intensity of pressure, p = wh = w R sinα
  Pressure force, dp = p × dA = wRsinα × Rdα
   = wR2 sin α	dα
 Vertical component of dP,
  dPV = wR2 sin α dα × sin α = w R2 sin2α dα
 Horizontal component of dP,
  dPH = wR2 sin α dα × cos α = wR2 sinα cosα dα
	 ∴ Total vertical pressure force,

  PV = 
/2

2 2

0

sinwR d
p

α α∫

   = 
/22

0

1 – cos2
2 2

wR d
p α  α 

   
∫

Liquid surface
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�
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Fig. 3.43



Chapter 3 : Hydrostatic Forces on Surfaces         131

   = 
/22 2

/2
0

0

sin 2–
2 2 4

wR wRp
p α p

α = 
 

   = w
2

unit length
4
R p

× 
 

   = specific weight × ( volume of liquid contained in curved surface).
	  Thus the vertical component of pressure force on a curved surface equals the weight of the 

volume liquid extending vertically from the curved surface to the free surface of liquid.
(Ans.)

 Total horizontal  pressure force,

  PH = 
/2

2

0

sin coswR d
p

α α α∫

   = 
/22

0

2sin cos
2

wR d
p

α α α∫

   = 
/2 /22 2 2

0
0

cos2sin 2 –
2 2 2 2

wR wR wRd
p pα α α = =  ∫

   = w (R × unit length) × 
2
R w A x≡  

	  Thus the horizontal component of pressure force on a curved surface equals the force on 
projected area of curved surface on a vertical plane.

 Example 3.33. A hemisphere projection of diameter 
0.6 m exists on one of the vertical sides of a tank. If the tank 
contains water to an elevation of 1.5 m above the centre of 
the hemisphere, calculate the vertical and horizontal forces 
acting on the projection.

 Solution. Refer to Fig. 3.44.
  Vertical force, PV = PV1

 – PV2
   = Weight volume of water MNST – 

weight  of volume of water LNST
   = Weight of water contained by the 

hemisphere LNM

   = 31 4
2 3

w R × p 
 

   = 9.81 × 1 4
2 3
×  × p × (0.3)3

   = 0.555 kN (Ans.)
 Horizontal force, PH = wA x –

   = 9.81× p × (0.3)2 × 1.5 = 4.16 kN (Ans.)
 Example 3.34. Fig. 3.45. shows a curved surface LM,  which is in the form of a quadrant of a 
circle of radius 3 m, immersed in the water. If the width of the gate is unity, calculate the horizontal 
and vertical components of the total force acting on the curved surface.
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Water PV2

PV1

S

O

T

Fig. 3.44
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 Solution. Radius of the gate = 3 m
  Width of the gate = 1m
 Refer to Fig. 3.45.
  Distance LO = OM = 3 m
 Horizontal component of total force, PH:
 Horizontal force (PH) exerted by water on gate 
is given by,
 PH = Total pressure force on the projected area 
of curved surface LM on vertical plane
 = Total pressure force on OM
 (projected area of curved surface on vertical 
plane
   = OM × 1) = wA x –

 But, A = OM × 1 = 3 × 1 = 3m2 and x – = 1 + 3
2

 = 2.5 m

  PH = 9.81 × (3 × 1) × 2.5 = 73.57 kN (Ans.)
 The point of application of PH is given by: 

  h –  = GI x
Ax

+

 where, IG = M.O.I. of OM about its c.g. = 
3 3

41 3 2.25 m
12 12
bd ×

= =

	 ∴ h – = 2.25
(3 1) 2.5× ×

 + 2.5 = 2.8 m from water surface (Ans.)

 Vertical component of total force, PV:
 Vertical force (PV) exerted by water is given by:
  PV = Weight of water supported by LM upto free surface
   = weight of portion ULMOS
   = weight of ULOS + weight of water in LOM 
   = w (volume of ULOS + volume of LOM)

   = 
2 2( ) 39.81 1 9.81 1 3 1

4 4
LOUL LO

   p × p ×
× + × = × + ×      

   = 9.81 ( 3 + 7.068) kN = 98.77 kN (Ans.)

 Example 3.35.  Fig. 3.46 shows a gate having 
a quadrant shape of radius of 1 m subjected to 
water pressure. Find the resultant force and its 
inclination with the horizontal. Take the length of 
the gate as 2 m.

 Solution.
 Radius of the gate, r = 1m
  Length of the gate = 2 m
 Horizontal force, PH:
 PH = Force on the projected area of the  curved 

surface on vertical plane

M

1 m

4 r/3�

O

PH

PV

L Water surface

Fig. 3.46

Free water surface

Curved surface

1 m

3 m

M

PH

h

x

S U

L
O

Fig. 3.45. Curved surface (gate).
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   = force on MO = wA x –

 where, w = 9.81 kN/m3,
  A = Area of MO (projected area) = 1 × 2 = 2 m2

  –x = 1 0.5m
2
=

  PH = 9.81 × 2 × 0.5 = 9.81 kN
 Vertical force, PV:
  PV = Weight of water (imagined) supported by LM

   = w × area of LOM × 2.0 = 
2

2
4

rw p ×
× ×

   = 29.81 1 2 15.4 kN
4
p

× × × =

 (i) Resultant force P:

  P = 2 2 2 29.81 15.4H VP P+ = +  = 18.26 kN (Ans.)

 (ii) The angle made by the resultant force with the horizontal, θ:
  We know that,

  tan θ = 15.4 1.569
9.81

V

H

P
P

= =  or 		θ = 57.48° (Ans.)

 Example 3.36.  A liquid of specific gravity 0.9 is filled in a container, shown in Fig. 3.47, upto a 
depth of 2.4 m. Determine the magnitude and direction of hydrostatic pressure force per unit length 
of container exerted on its vertical face MN and curved corner NQ.

M

N

QS

Container

L

T

V

U

3.6 m

1.2 m 1.2 m

1.2 m

1.2 m

Sp.gr. = 0.9

Liquid

Fig. 3.47

 Solution. Refer to Fig 3.47.
 Vertical face MN:

  P = wAx – = w × (MN × unit length) × 
2

MN

   = (9.81 × 0.9) × (1.2 × 1) × 1.2
2

 = 6.357 kN (Ans.)

 This force acts horizontally towards right and its point of application is given by:

  h – = 

31.21 1.212
1.2 2(1.2 1)
2

GI x
Ax

×
+ = +

× ×
 = 0.8 m (Ans.)
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 Curved surface NQ:
 Horizontal component  of hydrostatic pressure force on the curved corner NQ,
  PH = Specific weight × vertical projected area × depth of centre of 

vertical projection

   = w × ( QU × unit length) ×  VU
2

UQ + 
 

   = (9.81 × 0.9) × ( 1.2 × 1) × 1.21.2
2

 + 
 

 = 19.07 kN

 Vertical component of hydrostatic pressure force on the curved corner,
  PV = Weight of liquid contained in portion MNQUV
   = Specific weight [ Volume of liquid in portion MNUV + volume 

of liquid in portion NQU]

   = w [ MN × NU × unit length + 21 ( )
4

NUp × × unit length]

   = (9.81 × 0.9) [1.2 × 1.2 ×1 + 1
4

 × p × (1.2)2 × 1] = 22.7 kN

  Resultant pressure force, P = 2 2 2 2(19.07) (22.7)H VP P+ = +  = 29.65 kN (Ans.)

 The angle made by the resultant with the horizontal,

  θ = –1 –1 22.7tan tan
19.07

V

H

P
P

   =      
 = 49.97° (Ans.)

 Example 3.37. A cylinder 2.2 m in diameter and 3.3 m long supported as shown in Fig. 3.48 
retains water on one side. If the cylinder weighs 165 kN, calculate the vertical reaction at L and 
horizontal reaction at M.
 Neglect the frictional effects.
 Solution.
 Radius of cylinder

                  = 2.2 1.1 m
2

=

 Length of cylinder = 3.3 m
 Weight of cylinder = 165 kN
	  The horizontal component of 

the resultant hydrostatic force 
acting on the gate is the hori-
zontal force on the projected 
area of the curved surface on 
a vertical plane.

  i.e. PH  = Hydrostatic pressure 
force on the curved area LSN 
projected on the vertical plane LON,

   = wAx –

   = 9.81 × (2.2 × 3.3) × 2.2
2

 = 78.34 kN

	 ∴  Horizontal reaction at M =  78.34 kN (Ans.)

2.2 m

N

S

O M

L

PH
PV

F.W.S.

Fig. 3.48
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	  The vertical component of the resultant hydrostatic force is the weight of water supported by 
the curved surface LSN which represents a semicircle.

 ∴ PV = w × volume of surface LSN

   = w × 2× (radius)  × length
2
p 

 
 

   = 9.81 × 2(1.1) 3.3
2
p × ×  

 = 61.53 kN

 PV  is acting in the upward direction,
	 ∴ For equilibrium of cylinder,
  Vertical reaction at L = Weight of cylinder – PV
   = 165 – 61.53 = 103.47 kN (Ans.)
 Example 3.38.  Fig. 3.49 shows a radial gate. If it is 3 m long,  find the magnitude and direction 
of the resultant force acting on it.
 Solution. Length of radial gate = 3 m
 Refer to Fig. 3.49.

Water surface

PH

P

S

M

L T U

Hinge

O

3
9
.2

5
°

60°

Fig. 3.49

  MU = 3 sin 60° = 2.6 m
 Horizontal force on the curved surface,
  PH = wA x –

   = 9.81 × (2.6 × 3) × 2.6
2

   = 99.47 kN

 It will act at 2.6
3

 or 0.867 m above M.

  Vertical force, PV = Weight of water displaced
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   = weight of volume equal to LMU × 3.
 Now, Area LMU = area LOM – area MUO

   = 
0

2
0

60 1– 2.6 3 cos60
2360

Rp × × × °

   = p × 32
 × 1/6 – 1

2
 × 2.6 × 3 × 0.5 = 4.712 – 1.95 = 2.762 m2

  PV = 2.762 × 3 × 9.81 = 81.28 kN; 

  P = 2 2 2 299.47 81.28 128.45 kNH VP P+ = + =

 Hence magnitude of resultant force = 128.45 kN (Ans.)
 Let, θ = Inclination of P with horizontal.

 Then, tan θ = 81.28
99.47

V

H

P
P

=  = 0.817   or   θ = 39.25° (Ans.)

 and P must pass through O.
  As PH acts at (2.6 – 0.867) = 1.733 m below water surface,

  OT = 1.733
tan39.25 0.817

ST
=

°
 = 2.12 m, and

  UT = OT – OU = 2.12 – 3 cos 60° = 0.62 m
 Hence point of application of P is 0.62 m to the left of MU and 1.733 m below water surface. 
(Ans.)
 Example 3.39. A cylinder having 3 m diameter and 1.5 m length is resting on the floor. On 
one side, water is filled upto half the depth while on the other side oil of relative density 0.8 filled 
upto the top (Fig 3.50). If the weight of the cylinder is 33.75 kN, determine the magnitudes of the 
horizontal and vertical components of the force which will keep the cylinder just touching the floor.
 Solution. Given: Diameter of the cylinder, d = 3 m; Length of the cylinder, l = 1.5 m
  Weight of the cylinder, W = 30 kN; Relative density of the oil = 0.8
  Specific weight of the oil, woil = 9.81 × 0.8 = 7.85 kN/m3

3
m

1
.5

m

L

S

M

W =
33.75 kNPH1

PV1 PV2

PH2

Oil surface

Water surface

Cylinder

Fig. 3.50

 Horizontal components:
  Horizontal force, PH1  = 7.85 × (3 × 1.5) × 3

2
 = 52.98 kN
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 This will act at 3
3

 or 1 m from bed.

  Horizontal force, PH2 = 9.81 × (1.5 × 1.5) × 1.5
2

 = 16.55 kN

 This will act at 1.5
3

 or 0.5 m from bottom.

 Hence,  (52.98 – 16.55) = 36.43 kN force acting towards right is required to hold the    
     cylinder stationary.  (Ans.)
 If it acts at a distance y, then taking moments about the bed, we get:
  PH1 × 1 – PH2 × 0.5 = (PH1 – PH2) × y
  52.98 – 16.55 × 0.5 = (52.98 – 16.55) × h1

	 ∴ y = 52.98 – 16.55 0.5 44.7
52.98 –16.55 36.43

×
=  = 1.227 m (Ans.)

 Vertical components:

  PV1
 = 

21.57.85 1.5 41.61 kN
2

p ×
× × =

  It will act at 4 1.5
3
×
p

 = 0.636 m to left of LM;

  PV2
 = 

21.59.81 1.5 26 kN
4

p ×
× × =

 It will act at 0.636 m right of LM.
 Since vertical forces must balance, therefore,
  External force required = 41.61 + 26 – 33.75 = 33.86 kN (Ans.)
 This external force is required in vertically downward direction. To find out its line of action, 
taking moments about the vertical line along which  PV2 acts, we get:
  W × 0.636 + 33.86 × x = PV1 × (0.636 + 0.636)
  33.75 × 0.636 + 33.86 x = 41.61 × 1.272
  x = 0.929 m (Ans.)
 Example 3.40. A tank is filled with water under pressure and the pressure gauge fitted at the 
top indicates a pressure of 18 kPa. The tank measures 3 m perpendicular to the plane of the paper, 
and the curved surface LM of the top is quarter of a circular cylinder of radius 2.4 m. Determine:
 (i) Horizontal and vertical components of water pressure on the curved surface LM, and
 (ii) Magnitude and direction of the resultant force.

 Solution. Refer to Fig. 3.51.
  Pressure indicated by pressure gauge, p = 18 kPa = 18 × 103 N/m2

	 ∴ The water head equivalent,

  h = 
318 10 1.835 m

9810
p
w

×
= =

 Hence the free water surface can be imagined to be 1.835 m above the top of the tank.
 PH (Horizontal component) = Hydrostatic pressure force on vertical projection MN or the 
curved surface LM 
   = wA x –
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   = 9.81 × (2.4 × 3) × 2.41.835 +
2

 
 
 

	 	 	 = 214.37 kN → (Ans.)

Pressure gauge

18 kPa

S

PH

�

PV

Water tank
full of water

Imaginary free
water surface

T

1.835 m

2.4 m

NL

P M

Fig. 3.51

  PV (Vertical component) = Weight of volume of water above LM upto imaginary water 
surface i.e., of  volume  SLMNT

   = { }211.835 2.4 2.4
4

× + × p ×  × 3 × 9.81 = 262.75kN ↑ (Ans.)

  The resultant force, P = 2 2 2 2( ) ( ) (214.37) (262.75)H VP P+ = +

   = 339.1 kN (Ans.)
 The inclination of P with the horizontal,

  θ = –1 –1 262.75tan tan
214.37

V

H

P
P

   =      
 50.8°  (Ans.)

 Example 3.41. In the Fig. 3.52. is shown the cross-section of the tank full of water under 
pressure. The length of the tank is 3 m. An empty cylinder lies along the length of the tank on one of 
its corners as shown. Find the horizontal and vertical components of the force acting on the curved 
surface LMN of the cylinder.
 Solution. Length of the tank = 3 m
  Radius, r = 1.5 m
  Pressure, p = 30 kN/m2

  Pressure head, hp = 30 3m
9.81

p
w
= 
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 Free water surface will be at a height of 3 from 
the top of the tank; equivalent free water surface is 
shown in Fig. 3.53.
 (i) Horizontal component of force, PH :
  PH = wA x –

 where, w = Specific weight of water
    ( = 9.81 kN/m2)
  A = Area projected on vertical plane
   = 2.25 × 3 = 6.75 m2

  x – = 3 + 2.25 4.125 m
2

=

  PH = 9.81 × 6.75 × 4.125
   = 273.15 kN (Ans.)
 (ii) Vertical component of force, PV :
  PV = Weight of water enclosed or supported actually or imaginary by curved 

surface LMN
   = Weight of water in the portion NOTULMN
   = Weight of water in NOTZMN – weight of water in LUZM.
  But, weight of water in NOTZMN = weight of water in NOM + weight of water in OMZTO

   = 
2

3
4
rw OM MZ

 p
+ × × 

 

   = 
21.59.81 1.5 3.75 3

4
 p ×

+ × × 
 

   = 217.5 kN
  Weight of water in LUZM = w (area of LUZM) × 3
   = 9.81 [area of LUZQ + LQMS – LSM] × 3

 In ∆LSO, sin θ = 0.75 0.5
1.5

LS
OL

= = , ∴	θ = 30°

  MS = MO – SO = 1.5 – OL cos θ
   = 1.5 – 1.5 × cos 30° = 0.2 m
 Area LSM = LMO – LSO

   = 2 30 1–
360 2

r OS LS°
p × × ×

°

   = 2 1 11.5 –
12 2

p × × × (1.5 × cos 30°) × (1.5 sin 30°)

   = 0.589 – 0.487 = 0.102 m
	 	∴ Weight of water in LUZM
   = 9.81[ LQ × ZQ + LQ × QM – 0.102] × 3
   = 9.81[ 0.2 × 3 + 0.2 × 1.5 sin 30° – 0.102 ] × 3 ( LQ = MS)
   = 9.81 (0.6 + 0.15 – 0.102) × 3
   = 19.07 kN
  PV = 217.5 – 19.07 = 198.43 kN (Ans.)

30 kN/m
2

1.5 m

N

M

Empty
cylinder

Tank full
of water

2
.2

5
m

L

r =

Fig. 3.52

3
.7

5
m 3

m

T U Z

Water

2
.2

5
m

N

O S

QL

�

�
��

m

M

Fig. 3.53
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 Example 3.42. A cylindrical tank of 1.5 m diameter and height 0.75 m has a hemispherical 
dome. The tank contains oil of relative density 0.84 [ Fig. 3.54]. The dome is joined to the cylinder 
portion by four equally spaced bolts. If the pressure gauge at a point M, 0.3 m, above the base of the 
tanks, reads 50 kPa determine the force on each bolt.
 Solution. Equivalent of pressure pL in terms of oil column,
  pL = w0 hL

  50 = (0.84 × 9.81)hL

	 ∴ hL = 50 6.07 m of oil
0.84 9.81

=
×

1.5 m dia.

0
.7

5
m

Oil
R.D. = 0.84

Hemispherical
dome

L

O

50 kPa

0
.3

m

5.62 m
6
.0

7
m

0. 3 m

N�M�

S

Imaginary water
surface

NM

L

O
0.45 m

1.5 m dia

 Fig. 3.54 Fig. 3.55

 The imaginary oil surface at an elevation of hL = 6.07 m is now considered (Fig. 3.55).
 Above the base plane MN of the dome the elevation of the imaginary oil surface is
   = 6.07 – 0.45 = 5.62 m
 By symmetry there is no horizontal force on the done.
 The vertical force PV = Weight of oil above the dome surface upto the imaginary oil surface  
= Weight of volume MSNN′M′

   = 0.84 × 9.81 { }2
3(1.5) 1 45.62 – (0.75)

4 2 3
  p × × × p 
  

   = 8.24 ( 9.931– 0.884) = 74.55 kN
 This force is shared by four bolts.

	 ∴ Tensile force on each bolt = 74.55 .
4

= 18 64 kN (Ans.)

3.7.  DAMS 

 A dam is a massive structure, built up mostly with R.C.C. or stone or earth, across a river 
or a stream for the purpose of impounding or storing water. Its cross-section may be triangular, 
rectangular or trapezoidal. That side of the dam to which the water from the river or the stream 
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approaches is known upstream  and the other, downstream. A dam which resists the water pressure 
by its own weight only, is termed as a gravity dam (viz Bhakra dam).
 Fig 3.56 shows the trapezoidal cross-section of the dam with a vertical face and a straight slope 
or batter for the back.

wh

h
/3

Water surface

a

H

(Heel)

H

X X

G

W

�

L C
e

x

b

b/2 b/2

x�

R

M
T

(Toe)

P

h

y

e

Fig. 3.56

 Let, a = Top width of the dam,
  b = Base width of the dam,
  H = Height of the dam, and
  h = Height of water column.
 Consider 1 m length of the dam.
  Weight of masonry = Area × length × density of masonry 

	 ∴ W = 
2

a b+ 
 
 

 × H × 1× density of masonry ...(3.8)

 Let the c.g. of the section be at a distance x from the vertical face. Now dividing the trapezium 
into a rectangle and a triangle and taking moments about the vertical face, we get:

    a × h × 1
2 2
a
+  (b – a) × –

3
b ah a  +     

   = –
2

b aa h h x  × + ×    

 ∴ x – = 

1 –( – )
2 2 3

–
2

a b aa h b a h a

b aa h h

 × × + × +  
 × + × 
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 or, x – = 
2 2

3( )
a ab b

a b
+ +

+
 ...(3.9)

  Total water pressure (P) =  Area × average pressure

	 ∴ P = 
2

( )
2 2

wh whl h× × =

 This pressure acts at h/3 from the base of dam. Let the resultant R of P and W cuts the base of 
the dam at the point M.
 Then, from triangle GLM, we get:

   tan α = LM P
GL W

=

 i.e., 
/ 3
x

h
′

 = or . / 3P Px h
W W

′ =  ...(3.10)

 The eccentricity of the resultant force, e = ( x + x′) – b/2 ...(3.11)
 If e is +ve maximum stresses will develop towards the toe (T ) and if it is –ve, maximum stresses 
will develop towards heel (H)
 Stresses at the base:

  Direct stress, sd = Weight of masonry
Area at the base 1

W W
b b

= =
×

 (compressive) ...(3.12)

  Bending stress, sb = 3
( . ) / 2
1/12

My W e b
I l b

×
± =

× ×
 

[Bending will take place about Y–Y axis]

   = 2
6 .W e

b
±  (–ve sign stands for tensile stress here) ...(3.13)

 Maximum intensity of stress,
  smax = sd + sb

   = 2
6 61W We W e

b b bb
 + + = + + 
   ( Compressive) ...(3.14)

 Minimum intensity of stress,

  smin = 2
6 6(– ) – 1 –d b

W We W We
b b bb

 s + s = =  
 

 (Compressive)

...(3.15)
 It may be noted that smin may be tensile or compressive.

3.8.  POSSIBILITIES OF DAM FAILURE 

 The following are the possibilities of dam failure:
 (i) Failure due to sliding along its base. (ii) Failure due to tension or compression.
 (iii) Failure due to shear at the weakest section. (iv) Failure due to overturning.
 (i) Failure due to sliding along its base:
 The sliding of the dam is caused by the horizontal water pressure, P. The foundation offers 
frictional resistance which resists sliding. The dam will be stable against sliding if the frictional 
resistance is more than the sliding (or driving) force P.
 Now,  frictional force, F = µW
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where, µ is the co-efficient of friction between two adjacent surfaces along which sliding is likely 
to take place.
  Sliding or driving force = P

 Factor of safety against sliding = W
P
µ  (This value must be greater than unity).

 (ii) Failure due to tension or compression:
 The dam will be stable if no tensile stress across the cross-section is produced. It means sd 
should be more than or equal to sb. In certain cases where tension cannot be avoided it should not 
increase more than 0.4 N/mm2.
 i.e., sd ≥	 sb

  
W
b

 ≥ 2
6 . 6or 1 or

6
W e e be

bb
×

≥ ≤  ...(3.16)

 Now, when e = 
6
b

  HM = x + x′ = 2
2 2 6 3
b b b be+ = + =  ...(3.17)

 Therefore the resultant must always be in the middle third of the base.
 (iii) Failure due to shear at the weakest section:
 If, A′ = The least cross-sectional area of the dam at any section, and 
	 	 ss(max) = Maximum safe shear stress of the dam material,
 Then, resistance against shear = ss(max) × A′

 Factor of safety against shear  = (max)s A
P

′s ×
′

 (It must be greater than unity)

 where, P′ = Total liquid pressure due to water column above the section.
 (iv) Failure due to overturning:
 Referring to Fig. 3.56 we find that water pressure tends to overturn the wall about the toe T 
whereas W tends to counteract the turning effect.
 Taking moments of P and W about toe T, we get overturning moment = P × h/3.
 and resisting moment   =  W (b – x)

 Factor of safety against overturning = ( – )
( / 3)

W b x
P h×

   = 3 ( – )W b x
Ph

  (It must be greater than unity)

 Example 3.43. A concrete dam of trapezoidal section having water on vertical face is 12 m 
high. The base of the dam is 8 metres wide and top 2 metres wide. Find the resultant thrust on the 
base per metre length of dam, and the point where it intersects the base. Take the specific weight of 
masonry as 240 kN/m3  and water level coinciding with the top of the dam.
 Solution. Refer to Fig. 3.57.
  Top width = 2 m, base width = 8 m, height = 12 m
 Consider 1 m length of dam.
 Weight of masonry,

  W = 8 2
2
+ 

 
 

  × 12 × 1 × 24 = 1440 kN
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 Water pressure,

 P = 
2 29.81 12 706 kN

2 2
wh ×

= =

 Resultant thrust, R = 2 2P W+

 = 2 2(706) (1440)+  = 1604 kN (Ans.)

 The point, where the resultant thrust cuts 
the base:
 Let x metres be the distance of c.g. from the 
vertical face. Dividing the trapezium into rectangle 
and triangle and taking moments about the vertical 
face, we have:

 12 × 2 × 2 1
2 2
+  × 12 × 6 62

3
 + 
 

 = (12 × 2 + 1
2

 × 12 × 6) × x

 = 24 + 36 × 4 = 60 x

 or, x = 24 36 4 2.8 m
60
+ ×

=

 The value of ‘x’ can also be found by using the relation:

  x = 
2 2 2 22 2 8 8 2.8 m
3( ) 3(2 8)

a ab b
a b
+ + + × +

= =
+ +

 From Fig. 3.57, tan α = 706
1440

P
W

=

 Also, tan α = 706 706 4or 1.96 m
4 1440 1440
x x
′ ×′= = =

 Now, the point where the resultant thrust cuts the base
   = x + x′ = 2.8 + 1.96 = 4.76 m from H (heel) (Ans.)
 Example 3.44. A masonry dam trapezoidal in cross-section is 4 m wide at the top, 8 m wide 
at the base and 10 m high. It retains water level with top against a vertical face. Obtain stress 
distribution at the base if specific gravity of masonry is 2.5.
 Solution.  Refer to Fig. 3.58.
  Top width = 4 m; base width = 8 m; height = 10 m
  Density of masonry = 2.5 × 9.81 = 24.5 kN/m3

 Consider 1 m length of the dam.
 Weight of masonry acting through c.g.,

  W = 8 4
2
+ 

 
 

 × 10 × 1 × 24.5 = 1470 kN

  Water pressure, P = 
2 29.81 10 490.5 kN

2 2
wh ×

= =

 Let x metres be the distance of c.g. from the vertical face. Dividing the trapezium into a rectangle 
and a triangle and taking moments about the vertical face, we have:

h
=

4
m

Water surface
a =
2 m

(Heel)

H

G

W

�

L

x

b = 8 m

x�

R

M
T

(Toe)

P

h
=

1
2

m
Fig. 3.57
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 10 × 4 × 4 1
2 2
+  × 10 × 4 44

3
 + 
 

 

 = 110 4 10 4
2

 × + × × 
 

× x 

 or, 80 + 20 × 5.333 = 60x

 x = 80 20 5.33 3.11 m
60

+ ×
=

 From Fig. 3.58.,

 tan α = 490.5
1470

P
W

=

 Also, tan α = 
10 / 3

x′

	 ∴ 490.5 1
10 / 3 1470 3

x′
= =

 or, x′ = 1 10 10 1.11 m
3 3 9
× = =

 Now, x + x′ = 3.11 + 1.11 = 4.22 m 
which is well within two third base width.
 Eccentricity of resultant thrust,
 e = (x + x′) – 4 = 4.22 – 4 = 0.22 m
 Bending stress,

 sb = ( . ).M W e yy
I I

=

 = 3
1470 0.22 8 / 2

1 8
12

× ×
×

 = 2
3

1470 0.22 4 12 30.3 kN/m
8

× × ×
= ±

 Direct stress,

  sd = 2Weight of masonry 1470 183.7 kN/m
Area of base 8 1

= =
×

  smax = sd + sb = 183.7 + 30.3 = 214 kN/m2 (comp.) (Ans.)
  smin = sd – sb = 183.7 – 30.3 = 153.4 kN/m2 (comp.) (Ans.)
 Example 3.45.  A masonry weir is of trapezoidal cross-section with a top width of 2m and of 
height 5m with upstream slope of 1 vertical in 0.1 horizontal and a downstream slope of 1 vertical in 
0.75 horizontal. If the weir has water stored upto its crest on the upstream side and has a tail water 
of 2 m depth on the downstream, calculate, per unit  length of weir:
 (i) The resultant force on the base of the weir.
 (ii) The minimum and maximum stresses on the base of the weir.
 Assume specific weight of masonry as 22 kN/m3 and neglect uplift forces.
 Solution. Refer to Fig. 3.59.
 Consider 1 m length of the weir.
 (i) Resultant force on the base:
  The forces acting on the weir are:

�

Water level
a = 4 m

(Heel)

H

G

W

L C

e

x

b = 8 m

4 m 4 m

x�

R

M
T

(Toe)

Ph
=

1
0

m

h = m
10
3

153.4 (Comp.)
214 (Comp.)

Fig. 3.58
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 (i) Weight of masonry, W = W1 + W2 + W3
 (ii) Vertical force due to water on the upstream slope, PV1
 (iii) Vertical force due to tail water on the downstream slope, PV2
 (iv) Horizontal force due to upstream side, PH1
 (v) Horizontal water force on the downstream side, PH2

2.0 m

5.0 m

0.5 m

Base width = b

Masonry
weirUpstream

C

W1

W2 W3

PH2

PV2

A

2.0 m
3.75 m

6.25 m

2.0 m

B (Toe)

Downstream

D

PV1

PH1

Fig. 3.59

 The magnitudes of these forces, their distances from the toe of the weir (edge B) and the 
moments of these forces about B are tabulated in the table below:
Force Description

Magnitude, 
kN

Horiz.
force

Magnitude, kN
Vert.
force

Lever arm
about B

(m)

Moment Moment
(Clockwise) (Anticlockwise)

W1 (0.5 × 5) × 1
2

× 1 × 22 27.5 5.917 162.7

W2 (2.0 × 5.0) × 10 × 22 220.0 4.75 1045.0

W3 (3.75 × 5) × 1
2

 × 1 × 22 206.25 2.50 515.6

PV1 (0.5 × 5) × 1
2

 × 1 × 9.81 12.26 6.083 74.6

PV2 (1.5 × 2.0) × 1
2

× 1 × 9.81 14.71 0.50 7.36

PH1 (5 × 1) × 5
2

 × 9.81 122.62 1.667 204.4

PH2 (2 × 1) × 2
2

 × 9.81 – 19.62 0.667 13.08

Sum 103 480.72 204.4 1818.34
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  Sum of vertical forces, ΣV = 480.72 kN
  Sum of horizontal forces, ΣH = 103 kN

  Resultant, R = 2 2( ) ( )V HΣ + Σ

   = 2 2(480.72) (103)+  = 491.63 kN (Ans.)

 If θ is the inclination of the resultant to horizontal, then:

  tan θ = 480.72 4.667
103

V
H
Σ

= =
Σ

 or, θ = tan–1(4.667) = 77.9°  (Ans.)
 (ii) The minimum and maximum stresses; s1, s2:
  ΣM = 1818.34 – 204.4 = 1613.94 kNm
  x = Distance of point of action of the resultant from B

   = 1613.94 3.357 m
480.72

M
V

Σ
= =

Σ
 As b = base width = 6.25 m, the

  Eccentricity, e = x – 
2
b  = 3.357 – 6.25 0.232m

2
=

  Maximum and minimum stresses,

  s1, 2 = 61V e
b b
Σ  ± 

 

   = 480.72 6 0.2321
6.25 6.25

× ± 
 

	 ∴	 s1 = 94.04 kN/m2 (Ans.)
  s2 = 59.78 kN/m2 (Ans.)

 Example 3.46. The curved face of a dam is shaped according to the relation 
2xy

12.25
=  as 

shown in the Fig. 3.60. If the width of the dam is unity and height of water retained by the dam is  
12 m, determine the magnitude and direction of the resultant water pressure acting on the curved 
face of the dam.
 Solution. Profile of the curved face of the dam:

Water surfaceL T

Dam

dy

M

h
=

1
2

m

x

Fig. 3.60
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  y = 
2

12.25
x

 or, x2
 = 12.25 y

 or, x = 3.5 y

 Height of water,

  h = 12 m

 Width, b = 1m

 Magnitude and direction of resultant water pressure:

  Horizontal component, PH = Pressure due to water on curved area projected on  
    vertical plane  
   = Pressure on area MT = wA x –

 where, A =  MT × 1 = 12 × 1 = 12 m2

  x = 12/2 = 6 m

	 ∴ PH = 9.81 × 12 × 6 = 706.3 kN

  Vertical component, PV = Weight of water supported by the curve LM

   = weight of water in portion LMT

   = w × (Area of LMT) × width of dam = w 
12

0

.x dy
 
 
  
∫ × 1.0

 where, x . dy = area of strip

   = 
12

0

9.81 3.5 y dy∫  ( )3.5x y=

   = 9.81 × 3.5 
23/2

03 / 2
y 

  
 = 34.33 × 2/3 [(12)3/2] = 951.4 kN

 Resultant water pressure on the dam,

  P = 2 2 2 2(706.3) (951.4)H VP P+ = +

 or, P = 1184.9 kN (Ans.)

 Direction of the resultant is given by:

  tan α = 951.4 1.347
706.3

V

H

P
P

= =

 ∴ α = 53.4° (Ans.)

 Example 3.47.  Fig. 3.61 shows a gate whose profile is given by x = y . It holds water to a 

depth of 1 m behind it. If the width of the gate is 5 m, determine the moment M required to hold the 
gate in place.

 Solution.  Profile of the gate: x = y
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1
m

Water surface

PH

Gate

M

x = y

dx

x
x

y
PV

O

Fig. 3.61

  Horizontal force, PH = wAx – = 9.81 × (1× 5) × 1
2

 = 24.25 kN

 It will act at 1
3

 m or 0.333 m from the bottom.

  PV = Weight of liquid above the gate

   = 5 × w y dx∫
   = 

1
2

2
0

5
or

x y
w x dx

y x

 =
 
 = 

∫


   = 
13

0
5 9.81

3
x

×

   = 5 × 9.81× 1
3

 = 16.35 kN

 The vertical line along which PV will act is obtained by taking moments of elementary force  
5 wy.dx  about Y-axis and equating it to PV × x –.

 i.e. PV × x – = 
1 1

2

0 0

5 (1 – ) 5 (1 – )wy x dx w x x dx=∫ ∫

   = 
13 4

0

1 1 55 – 5 –
3 4 3 4 12
x x ww w  = = 

 

	 ∴ x – = 5 5 9.81 0.25m
12 12 16.35V

w
P

×
= =

× ×

 Moment M:
 Moment (M) of PH and PV about Z- axis passing through 0 is given by:
  M = PH × 0.333 + PV × 0.25
   = 24.52 × 0.333 + 16.35 × 0.25 = 12.25 kNm
 i.e. M = 12.25 kNm (Ans.)
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 Example 3.48. A dam has a parabolic shape 
2

0
0

xy y
x

 =  
 

 as shown in Fig 3.62 having x0  

= 6 m and y0 = 9 m. The fluid is water with density = 1000 kg/m3. Compute the horizontal, vertical 
and the resultant thrust exerted by water per metre length of the dam.
 Solution. Given:  Width of the dam = 1 m;

  Equation of the curve, y = 
2

0
0

xy
x

 
 
 

; x0 = 6m; y0 = 9m;

  Density of water, ρ = 1000 kg/m3

 Horizontal, vertical and resultant thrust exerted by water:

 Equation of the curve OL: y = 
2

0
0

xy
x

 
 
 

   = 
2 2 2

9 9
6 36 4
x x x  = × = 

 

 or, x2 = 4y         or        x = 2 y

 Horizontal thrust:
 Horizontal thrust exerted by water,
  Fx = Force exerted by water on vertical surface OM; the surface 

obtained by projecting the curved surface on vertical plane.
   = ρgA h –

   = 1000 × 9.81 × (9 × 1) × 9
2

 = 397305 N

 or,   397.3 kN (Ans.)
 Vertical thrust:
 Vertical thrust exerted by water,
 Fy =  weight of water supported by curved 
surface OL upto free water surface 
 = weight of water in portion OLM × width 

of dam ρg × area of OLM × width of 
dam

 = 1000 × 9.81 × 
9

0

 ×  ∫ x dy  × 1.0

 = 1000 × 9.81 × 
9

0
2 ×  ∫ y dy  × 1.0

 = 19620 × 
93/2

03 / 2
y 

  
 = 19620 × 2

3
 × (9)3/2

 = 353160 N or 353.16 kN (Ans.)
 Resultant thrust:
 Resultant thrust exerted by water,

  F = 2 2 2 2(397.3) (353.16)x yF F+ = +  = 531.57 kN (Ans.)

Y

M

O
Origin

L

x

x

x0 = 6 m

dy
y = 9 m0

X

2
x

x 0

y
=

y 0

y

Fig. 3.62
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 Direction of the resultant is given by,

  tan θ = 353.16 0.889
397.3

y

x

F
F

= =

	 ∴	 θ = tan–1(0.889) = 41.63° (Ans.)

3.9.   LOCK GATES 

 Lock gates are provided in navigation chambers to change the water level in a canal or river 
for navigation. There are two sets of gates G1 and G2, one set on either side of the chamber. The 
working of the gates (Fig.3.63) is as follows:
 Suppose the ship is at position 1 (on the left hand side of the chamber) and it is to be transferred 
to position 2 (on the right hand side). To do so the following procedure is adopted: 
 (i) Open the sluice S1 on the upstream gate G1 and fill the chamber upto level L–L.
 (ii) Open the lock gate G1 on the upstream and permit the ship to enter the chamber.
 (iii) Close the gate G1.
 (iv) Open the sluice S2 and allow the water to fall to level MM.
 (v) Open the downstream gate G2 and permit the ship to leave the chamber.
 (vi) Reverse the procedure in case the ship is to be transferred from position 2 to position 1.
 Total pressure on the gates and reactions at top and bottom hinges:

( )a

L

M

Chamber

M

S1
S2

G1

Sluice Sluice

G , G = Lock gates1 2

G2

Upstream

Downstream

Ship (Position 1)

Ship (Position 2)
L

�

� �b

G1
G2

Fig. 3.63

 Fig. 3.64 shows plan and elevation of a pair of lock gates. Let AB and BC be two lock gates, 
each carried on two hinges fixed on their top and bottom at both A and C. Due to action of water, the 
gates are tightly closed to one another at B.
 Consider the gate AB:
 Let, P = Resultant force due to water acting at right angle to the gate,
  N = Reaction force supplied by gate BC to gate AB  and acting 

perpendicular to the contact surfaces,
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  R = Resultant reaction of the top and bottom hinges (assumed to 
lie in the same horizontal plane in which P and N lie), and

	 	 α = Angle of inclination of gate to normal side of lock.
 As the gate is in equilibrium under the forces, P, N  and R, they will all intersect at one point. 
Let P and N intersect at D; then R must pass through this point. Then triangle ABD  will be isosceles, 
as ∠DBA and ∠DAB equal α.
 Resolving the forces in a direction parallel to gate (AB),
  R cos α = N cos α	 ∴ R = N ...(3.18)
 Resolving normal to the gate (AB), P = R  sin α	+ N sin α	= ( R + N) sin α	= 2R sin α

	 ∴ R = 
2sin

P
α

 ...(3.19)

 (Also, inclination of R to centre line of gate = α)
 Consider water pressure on the gate.
 Let, H1 = Height of water to left of gate (i.e.  upstream side),
  H2 = Height of water to right of gate (i.e. downstream side),
  H = Height of top hinge from the bottom of gate,
  P1 = Total pressure of water to left of gate,
  P2 = Total pressure of water to right of gate,
  Rt = Reaction of top hinge, and
  Rb = Reaction of bottom hinge.

Water surface

Hingle

Gate AB

Water surface

H2
F2

H /32

H1

F1

Hingle

Elevation

Downstream
side

(180 – 2 )�

R

A

D

N

B

�

�
�

P

Contact
surface

Plan

Upstream
side

W
id

th
o
f

lo
ck

H /31

C

Fig. 3.64. Resultant pressure on lock gates.
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Then, Rt + Rb = R

Also, P1 = 1
2

wH  × wetted area of the gate (It will act at the centre of pressure 

which is 1
3

H  from the bottom).

and, P2 = 2
2

wH  × wetted area of the gate (It will act at 2
3

H  from the bottom).

Then,  P = P1 – P2

 It may be noted that only half the water pressure may be taken as acting on the hinge edge of 
the gate; the remaining half will be taken by the reaction of the gate BC.
 Taking moments about the lower hinge, we have:

  R1 sin α × H = 1 1 2 2–
2 3 2 3
P H P H   × ×   

   
 ...(i)

 Resolving the forces horizontally, we get:

  Rt  sin α + Rb sin α = 1 2–
2 2
P P  ...(ii)

 Then, form eqns. (i) and (ii), Rt and Rb may be found.

 Example 3.49. Each gate of a lock is 6 m high and 5 m wide, supported on one side by two 
hinges, each 0.5m from the top and from bottom. The angle between the gates in closed position is 
120°. If the water levels are 5m and 1.25 m on the upstream and downstream sides respectively, find:
 (i) The magnitude and position of the resultant water pressure on each gate,
 (ii) The magnitude of reaction between the gates, and
 (iii) The magnitudes of the reactions at the hinges.
 Assume the reaction between the gates to be in the same horizontal plane as that of the resultant 
water pressure.    [Jadavpur University]

 Solution.  Height of each gate = 6 m; width of each gate = 5 m
  Height of water on upstream side, H1  = 5 m
  Height of water on downstream side, H2  = 1.25 m

  Angle between the gates  =  120°, ∴ α = 180 – 120
2

 = 30°

 (i) The magnitude and position of the resultant pressure:
   Upstream side:  Wetted area of gate, A1  =  5 × 5 = 25 m2

     Total pressure on each gate, P1  =  wA1x –
1 = 9.81× 25 × 5

2
 = 613.12 kN

     Position of centre of pressure h –
1  = 1

3
H  from the bottom = 5

3
m or 1.667m from

the bottom 
   Downstream side:  Wetted area of gate, A2  = 5 × 1.25 = 6.25 m2

     Total pressure on each gate, P2  = wA2x –
2 = 9.81× 6.25 × 1.25

2
 = 38.32 kN

     Position of centre of pressure h –
2  = 1.25

3
 = 0.417 m from the bottom.

   Now, resultant water pressure on each gate,
    P = P1 – P2 = 613.12 – 38.32 = 574.8 kN (Ans.) 
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Fig. 3.65 (a). Elevation and plan of lock gates.

  Let h – is height of P from the bottom, then taking moments of P1, P2 and P about the bottom, we 
get:
  P × h – = P1 × h –

1 – P2 × h –
2  

 or, 574.8 × h – = 613.12 × 1.667 – 38.32 × 0.417 = 1006.09
	 ∴ h – = 1.75 m from the bottom (Ans.)

Downstream

H2 = 1.25 m

H
1

=
5

m

h =
1.75 m h1 =

1.667 m
h2 = 0.417 m

6
m

P2Rb

0.5 m Bottom hinge

Upstream

P ( = R)

Top hinge

0.5 m

Rt

Fig. 3.65 (b). Resultant pressure and reactions at hinges of lock gates.
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 (ii) The magnitude of reaction between the gates, N:
  Refer to Fig. 3.65 (a).
  Resolving the forces at D in a direction parallel to gate (i.e. along AB), we have: 
  N cos α = R cos α    or    N = R
  Resolving normally to gate (i.e. normal to AB), we have:
  P = R sin α + N sin α = (R + N) sin α = 2N sin α

	 ∴	 		 Ν	(	=	R)	 574.8
2sin 2sin30

P
= =

α °
	

	 	 		 	=	574.8	kN (Ans.)
 (iii) The magnitudes of the reactions at the hinges:
  Refer to Fig. 3.65 (b).
  Let, Rt = Reaction at the top hinge, and
  Rb = Reaction at the bottom hinge.
  Then, Rt + Rb = R = 574.8 kN
  Taking moments of hinge reactions Rt, Rb and P(= R) about the bottom hinge, we have: 
  Rt ( 6 – 1) + Rb × 0 = R × ( 1.75 – 0.5)
  5Rt = 574.8 × (1.75 – 0.5)
  ∴ Rt = 143.7 kN (Ans.)
  and, Rb = 574.8 – 143.7 = 431.1 kN (Ans.)

HIGHLIGHTS

 1. The term hydrostatics means the study of pressure, exerted by a fluid at rest.
 2. Total pressure (P) is the force exerted by a fluid on a surface (either plane or curved) when 

the fluid comes in contact with the surface.
  For vertically immersed surface, P = wA x –

  For inclined immersed surface,  P = wA x –

  where A = area of immersed surface, and x – = depth of centre of gravity of immersed surface 
from the free liquid surface.

 3. Centre of pressure (h –) is the point through which the resultant pressure acts and is always 
expressed in terms of depth from the liquid surface.

  For vertically immersed surface, h – = GI x
Ax

+

  For inclined immersed surface,  h – = 
2sinGI x

Ax
θ
+

  where IG stands for moment of inertia of figure about horizontal axis through its centre of 
gravity.

 4. The total force on a curved surface is given by:

    P = 2 2
H VP P+

  where, PH = Horizontal force on curved surface
    = Total pressure force on the projected area of the curved surface 

on the vertical plane = wA x –, and
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   PV = Vertical force on submerged curved surface
    = Weight of liquid actually or imaginary supported by curved 

surface.
  The direction of the resultant force P with the horizontal is given by:

   tan θ = –1or = tanV V

H H

P P
P P

θ

 5. Resultant force on a sluice gate P = P1– P2
  where, P1 = Pressure force on the upstream side of the sluice gate, and 
   P2 = Pressure force on the downstream side of the sluice gate.
 6. For a lock gate, the reaction between two gates is equal to the reaction at the hinge,
  i.e., N = R

  Also reaction between the two gates, N = 
2sin

P
α

  where, P = Resultant water pressure on the lock gate = P1 – P2, and 
	 	 	 α = Inclination of the gate to normal side of lock.

OBJECTIVE TYPE QUESTION

Choose the correct Answer:
 1. The intensity of pressure p is related to specific 

weight w of the liquid and vertical depth h of the 
point by the equation

  (a) p = wh (b) h = pw
  (c) p = wh2 (d) p = wh3.
 2. The point of application of the total pressure on 

the surface is 
  (a) centroid of the surface 
  (b) centre of pressure
  (c) either of the above
  (d) none of the above.
 3. If A is the area of the immersed surface, w is the 

specific weight of the liquid and x – is the depth of 
horizontal surface from the liquid surface, then 
the total pressure P on the surface is given by

  (a) p = wA2 x – (b) p = w2A x –

  (c) p = wA x – (d) p = wA x –2

 4. Centre of pressure (h 
–

) in case of an inclined 
immersed surface is given by

  (a) sinGIh x
Ax

θ
= +  (b) 2

sinGIh x
A x

θ
= +

  (c) 
2 sinGIh x
Ax

θ
= +         (d) 

2sinGIh x
Ax

θ
= +

 5. The side of the dam to which the water from the 
river or the stream approaches is known as 

  (a) downstream (b) upstream
  (c) either of the above (d) none of the above.
 6. Which of the following is a possibility of  dam 

failure?
  (a) Failure due to sliding along its base
  (b) Failure due to tension or compression
  (c) Failure due to shear at the weakest section
  (d) Failure due to overturning
  (e) All of the above.
 7. Lock gates are provided to
  (a) change the water level in a canal or river for 

irrigation
  (b) store water for irrigation purpose 
  (c) either of the above
  (d) none of the above.
 8. Total force on a curved surface is given by

  (a) 2 2 3/2( )H VP P P= +  (b) 2 2
H VP P P= +

  (c) ( )5/22 2
H VP P P= +  (d) P = PH + PV.

 9. Resultant pressure on a sluice gate is given by
  (a) P = P1 – P2 (b) P = P1 + P2

  (c) 2 2
1 2P P P= +  (d) 2 2 3/2

1 2( ) .P P P= +

 10. The term........ means the study of pressure  
exerted by a fluid at rest.

  (a) hydrostatics (b) fluid mechanics
  (c) continuum (d) kinetics.
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ANSWERS

 1. (a) 2. (b) 3. (c) 4. (d) 5. (b) 6. (e)
  7. (a)    8. (b) 9. (a) 10. (a)

THEORETICAL QUESTIONS

 1. Define the following terms:
  (i) Total pressure, and
  (ii) Centre of pressure.
 2.  Derive expressions for total pressure and centre 

of pressure for a vertically immersed surface.
 3. Derive an expression for the depth of centre of 

pressure from free surface of liquid of an inclined 
plane surface submerged in the liquid.

 4. Derive an expression for the reaction between 
the gates as:

   R = 
2sin

P
α

  where, P = Resultant force due to water acting 
at right angles to the gate, and 

  α = Angle of inclination of gate to normal side 
of lock.

UNSOLVED EXAMPLES

 1. A rectangular plate 2m × 4m is vertically im-
mersed in water is such a way that 2 metres side 
is parallel to the water surface and 2.5 metres 
below it. Find the total pressure on the rectan-
gular plate. Take w = 9.81 kN/m3.

 [Ans. 353.16 kN]
 2.  A circular door of 0.5 m diameter closes on an 

opening in the vertical side of a bulk head, which 
retains water. The centre of the opening is at a 
depth of 2m from the water level. Determine the 
total pressure on the door. Take specific gravity 
of sea water as 1.03. [Ans. 3.968 kN]

 3. A circular plate of diameter 1.5 m is placed verti-
cally in water in such a away that the centre of 
the plate is 3 m below the free surface of water. 
Determine:

  (i) Total pressure on the plate, and
  (ii) Position of the centre of pressure

[Ans. (i) 52 kN, (ii) 3.0468 m]
 4. A rectangular sluice gate is situated on the verti-

cal wall of a lock. The vertical side of the sluice 
is ‘d’ metres in length and depth of centroid of 
the area is ‘p’ metres below the water surface. 
Prove that the depth of pressure is equal to 

2
.

12
dp

p
 

+ 
 

 5. A circular opening, 3 m diameter, in a vertical 
side of a tank is closed by a disc of 3 m diameter 
which can rotate about a horizontal diameter. 
Calculate:

  (i) The force on the disc, and
  (ii) The torque required to maintain the disc in 

equilibrium in the vertical position when 
the head of water above the horizontal 
diameter is 6 m.

[Ans.  416 kN (ii) 39 kNm]
 6. An isosceles triangular plate of base 5 m and 

altitude 5 m is immersed vertically in an oil of 
specific gravity 0.8. The base of the plate is 1 
m below the free water surface, determine: 

  (i) The total pressure, and
  (ii) The centre of pressure.

[Ans. (i) 261.93 kN (ii) 3.19 m]
 7. Determine the total pressure and centre of pres-

sure on an isosceles triangular plate of base 4 m 
and altitude 4 m when it is immersed vertically 
in an oil of specific gravity 0.9. The base of the 
plate coincides with the free oil surface.

[Ans. 94.15 kN, 1.99 m]
 8. A tank contains water upto a height of 0.5 m 

above the base. An immiscible liquid of specific 
gravity 0.8 is filled on the top of water upto 1 m 
height. Calculate: (i) Total pressure on one side 
of the tank; (ii) The position of centre of pressure 
for one side of the tank, which is 2m wide.

[Ans. 18.15 kN, 1.009 m from the top]
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 9. A circular plate of 1 m diameter is immersed in 
water in such a way that its plane makes an angle 
of 30° with the horizontal and its top edge is 1.25 
m below the water surface. Find the total pres-
sure on the plate and the point, where it acts.  
 [Ans. 11.56 kN, 1.51 m]

 10.  A triangular plate of 1 m base and 1.5 m altitude 
is immersed in water. The plane of the plate is 
inclined at 30° with water surface while the base 
is parallel to and at a depth of 2 m from the water 
surface. Calculate:

  (i) The total pressure on the plate, and
  (ii) The position of the centre of pressure

[Ans.  16.54 kN, (ii) 2.264 m]
 11. A circular plate 3 metres in diameter is sub-

merged in water in such a way that the greatest 
and least depths of the surface (below water 
surface) are 2 m and 1 m respectively, calculate:

  (i) The total pressure on front face of the plate; 
  (ii) The position of centre of pressure.

[Ans. (i) 104 kN, (ii) 1.54 m]
 12.  A rectangular plane surface 1 m wide and 3 m 

deep lies in water in such a way that its plane 
makes an angle of 30° with the free water sur-
face. Determine the total pressure and position 
of centre of pressure when the upper edge is 
2 m below the free surface.

[Ans. 228.69 kN, 3.427 m from free surface]
 13. Fig 3.66 shows a gate having a quadrant shape 

of radius of 3 m. Find the resultant force due to 
water per metre length of the gate. Also find the 
angle at which this resultant force will act.

[Ans. 82.2 kN, 57°31′]

3
m

3 m
Free water surface

Fig. 3.66

 14. A masonry dam 7 m high has a top width of 1.5 
m and bottom width of 5 m. Maximum water 
level in the dam is 1.0 m below the top of the 
dam. Determine the maximum and minimum 
pressure intensities at the base when the dam 
is full. Take weight of water = 9.81 kN/m3 and 
weight of masonry = 21.6 kN/m3.

[Ans. 117.5 kN/m2, 78.8 kN/m2 both compressive]
 15. The masonry dam of trapezoidal section has its 

upstream face vertical. The height is 10 m and 
top is 3 m wide. Find the minimum width of 
base if there is no tension at the base and water 
reaches the top of the dam. Take weight of water 
= 9.81 kN/m3 and weight of masonry = 22 kN/
m3. What is then maximum compressive stress 
at the base? [Ans. b = 6 m, 330 kN/m2]

 16. Each gate of a lock is 6 m high and is supported 
by two hinges placed at the top and bottom of 
the gate. When the gates are closed, they make 
an angle of 120°. The width of lock is 5 m. If 
the water levels are 4 m and 2 m on upstream 
and downstream sides respectively, find:

  (i) Resultant water pressure on each gate, and 
  (ii) Reaction at the hinges.

[Ans. (i) 169.9 kN (ii) Rt = 43.9 kN, Rb = 126 kN]

  2.5Width of each lock gate =
cos30°

 
  
Hint :

 17. A gate which is 2 m wide and 1.2 m high lies in 
vertical plane and is hinged at the bottom. There 
is a liquid on upstream side of the gate which 
extends 1.5 m above the top of the gate and has  
a specific gravity of 1.45. On the downstream 
side of the gate there is water upto the top of the 
gate. Find: 

  (i) The resultant force acting on the gate,
  (ii) The position of the centre of pressure, and 
 (iii) The least force acting horizontally on the 

top of the gate which is capable of opening 
it. [IIT Kharagpur]

  [Ans. (i) 57.48 kN,  (ii) 2.123 m below the 
free surface of upstream, (iii) 27.66 kN]

 18. Fig. 3.67 shows a flash board. Find the depth of 
water h and the compressive force in the strut per 
metre of the crest at the instant when the water 
is just ready to tip the flash board. 

  [IIT Kharagpur]
[Ans. 2.6 m, 38.26 kN]
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 19. A rectangular door covering an opening 3m × 
1.75 high in a vertical wall, is hinged about its 
vertical edge by two points placed symmetri-
cally 0.4 m from either end. The door is locked 
by clamp placed at the centre of other vertical 

edge. Determine the reactions at the two hinges 
and the clamp, when the height of water is 1m 
above the top edge of the opening.

   [Ans. 48.28 kN; 37.96 kN, 10.137 kN]
 20. Determine the magnitude and direction of the 

resultant force acting on the radial gate shown 
in Fig. 3.68, if its length is 4 m.

 [Ans. 303.63 kN, α = 39.32°]
HingeWater surface

Radial
gate

60°

Fig. 3.68



4.1.  BUOYANCY  

 Whenever a body is immersed wholly or partially 
in a fluid it is subjected to an upward force which tends 
to lift (or buoy) it up. This tendency for an immersed 
body to be lifted up in the fluid, due to an upward force 
opposite to action of gravity is known as buoyancy. The 
force tending to lift up the body under such conditions is 
known as buoyant force or force of buoyancy or upthrust. 
The magnitude of the buoyant force can be determined 
by Archimedes’ principle which states as follows:
 “When a body is immersed in a fluid either 
wholly or partially, it is buoyed or lifted up by a force, 
which is equal to the weight of fluid displaced by the 
body.”

160
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Fig. 4.1

4.2.   CENTRE OF BUOYANCY  

 The point of application of the force of buoyancy on the body is known as the centre  of buoyancy. 
It is always the centre of gravity of the volume of fluid displaced.
 Example 4.1. A wooden block of width 1.25 m, depth 0.75 m and length 3.0 m is floating in 
water. Specific weight of the wood is 6.4 kN/m3. Find:
 (i) Volume of water displaced, and
 (ii) Position of centre of buoyancy.

 Solution.  Width of the wooden block = 1.25 m
  Depth of the wooden block = 0.75 m
  Length of the wooden block = 3.0 m
 Volume of the block = 1.25 × 0.75 × 3 = 2.812 m3

  Specific weight of wood, w = 6.4 kN/m3

  Weight of the block = 6.4 × 2.812 = 18 kN
 (i) Volume of water displaced:
  For equilibrium the weight of water displaced
                     =  Weight of wooden block = 18 N
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  Volume of water displaced

    = Weight of water displaced
Weight density of water

    = 18
9.81

 = 1.835 m3 (Ans) (Weight density of water = 9.81 kN/m3)

 (ii) Position of centre of buoyancy:
  We know that,
    Volume of wooden block in water = Volume of water displaced.
  or, 1.25 × h × 3.0 = 1.835
  (where, h = depth of wooden block in water)

	 	 ∴ h = 1.835
1.25 3.0×

 = 0.489 m

    Hence centre of buoyancy = 0.489
2 = 0.244 from the base (Ans.)

 Example 4.2.  A wooden block of specific gravity 0.7 and having a size of 2 m × 0.5m ×  
0.25 m is floating in water. Determine the volume of concrete of specific weight 25 kN/m3, that may 
be placed which will immerse (i) the block completely in water, and (ii) the block and concrete 
completely in water.
 Solution.   Size of the block = 2 m × 0.5 m × 0.25 m
	 ∴  Volume of the block = 0.25 m3

  Specific gravity of the block  = 0.7
  Specific weight of the block = 0.7 × 9.81 = 6.867 kN/m3 
  Weight of the block = 6.867 × 0.25 = 1.716 kN
  ( Specific weight of water = 9.81 kN/m3)
 Let,   Wc = Weight of concrete required to be placed on the block, and 
  Vc = Volume of concrete required to be placed on the block.
  Total weight of the block = Wc + 1.716 kN ...(i)
 (i) Immersion of the block only:
  When the block is completely immersed, the volume of water displaced = 0.25 m3

	 	 ∴ Upward thrust at the time of complete immersion
     = 0.25 × 9.81 = 2.45 kN ...(ii)
  Now equating (i) and (ii), we get:
    Wc + 1.716 = 2.45
  or Wc = 0.734 kN

    Volume of concrete, Vc = Weight 0.734
Sp. weight 25

= = 0.0294 m4 (Ans.)

 (ii) Immersion of block and concrete:
    Total weight of the block  = 25 Vc + 1.716 ...(i)
    Upward thrust = (Vc + 0.25) × 9.81 ...(ii)
  Equating (i) and (ii), we get:
    25Vc + 1.716 =  (Vc + 0.25) × 9.81
  or, 25 Vc + 1.716 = 9.81Vc + 2.45 or 15.19 Vc = 0.734
  or, Vc = 0.0483 m3 (Ans.)
 Example 4.3. Find the density of a metallic body which floats at the interface of mercury of 
specific gravity 13.6 and water such that 35 percent of its volume is submerged in mercury and 65 
percent in water.
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 Solution. Let, V = Volume of the body, m3.
 Then, volume of body submerged in mercury

   = 35
100

 × V = 0.35 V m3

 Volume of body submerged in water 

   = 65
100

 × V = 0.65 V m3

 The body will be in equilibrium when,
 Total buoyant (upward) force = weight of 
the body
 But, Total buoyant force = Force of buoyancy due to water + force of buoyancy due to mercury
   = weight of water displaced by the body + weight of mercury displaced by the body
   = (weight density of water × volume of water displaced) + (weight density of 

mercury × volume of mercury displaced) 
   = 9.81 × 0.65 V (kN) + 13.6 × 9.81 × 0.35 V (kN)
 and,  Weight of the body  = weight density × volume of the body
    = wbody × V
 ( where, wbody = weight density of the metallic body)
 For equilibrium, we have:
   9.81 × 0.65 V + 13.6 × 9.81× 0.35 V  = wbody × V
	 ∴  wbody = 53.07 kN/m3 (Ans.)
 Example 4.4.  A metallic cube 30 cm side and 
weighing 450 N is lowered into a tank containing 
a two-fluid layer of water and mercury. Determine 
the position of block at mercury-water interface 
when it has reached equilibrium.  
                                             (Anna University)
 Solution. Refer to Fig. 4.3. The metallic cube 
sinks  beneath the water surface and comes to rest  
at the water-mercury interface.
 As per principle of floatation, we have weight 
of cubical block = buoyant force 
 = weight of water and mercury displaced by 
the block.
 Thus,   450  = 9810 (h1 × 0.3 × 0.3) + 9810 × 13.6 (h2 × 0.3 × 0.3)
   = ( h1 + 13.6 h2) × (9810 × 0.3 × 0.3)

 or,     (h1 + 13.6 h2) = 450
9810 0.3 0.3× ×

 = 0.509 m ...(i)

 Also, h1 + h2 = 0.3 m ...(ii)
 From (i) and (ii), we have the depth of cube below the water-mercury interface,

  h2 = (0.509 – 0.3)
12.6

 = 0.01658 m or 16.58 mm (Ans.)

 Example 4.5. A 8 cm side cube weighing 4 N is immersed in a liquid of relative density 0.8 
contained in a rectangular tank of cross-sectional area 12 cm × 12 cm. If the tank contained liquid 
to a height of 6.4 cm before the immersion, determine the levels of the bottom of the cube and the 
liquid surface.

Water

Mercury

Metallic body

Fig. 4.2

30 cm h1

h2

Cube

Mercury

Water

Fig. 4.3
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 Solution.  Refer to Fig. 4.4.
 Let, h1 = Depth to which the bottom of the cube falls below original liquid surface 

(cm),
  h2 = Height of rise of liquid above the original liquid surface (cm) , and
  (h1 + h2) = Depth and submergence of the cube (cm).
 Now,Volume L = Volume M

8 cm

6.4 cm

12 cm

Tank

Liquid
(R.D. = 0.8)

A B

Original liquid
surface

h2

h1
L

M M
Cube

Fig. 4.4

  8 × 8 × h1 = (122 – 82) × h2
 or, h1 = 1.25 h2
 Weight of the cube, W = 4N ...(Given)
  W = Buoyant force = 1 2

6
(8 8) ( + ) 0.8 9810

10
h h× × × ×

 or, 4 = 0.5023 (h1 + h2)
 or, 4 = 0.5023 (1.25 h2 + h2) = 1.13 h2

	 ∴ h2 = 3.54 cm
 and, h1 = 1.25 × 3.54 = 4.425 cm
 Level of bottom of cube above plane AB = 6.4 – h1 = 6.4 – 4.425 = 1.975 cm (Ans.)
 Level of the liquid surface above plane AB = 6.4 + h2 = 6.4 + 3.54 = 9.94 cm (Ans.)

 Example 4.6.  A cube 50 cm side is inserted in a two-layer fluid with specific gravity 1.2  and 
0.9 respectively. The upper and lower halves of the cube are composed of materials with specific 
gravity 0.6 and 1.4  respectively. What is the distance of the top of cube above interface? (UPSC)

 Solution. Refer to Fig. 4.5.
 Weight of cube = [S1 (= 0.6) × 9.81× 0.5 × 0.5 × 0.25)] + [S2 (= 1.4) × 9.81× 0.5 × 0.5 × 0.25]
   = 1.226 kN
 Let,   h  = Height of top of the cube above the interface.
 Then,   Buoyant force  = Weight of lighter and heavier liquids displaced by the block

www.EasyEngineering.net
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   = [S′ (= 0.91) × 9.81× 0.5 × 0.5 × h] + [ S′′ (= 1.2) × 9.81 × 0.5 × 0.5 (0.5 – h)]
    = 2.207 h + 1.471 – 2.943 h = – 0.736 h = 1.471
  As per principle of floatation, we have: Weight of block = Buoyant force
 i.e. 1.226 = – 0.736 h + 1.471

	 ∴	 h = (1.471 – 1.226)
0.736

= 0.333 m or 33.3 cm (Ans.)

 Example 4.7. A spherical object of 1.45 m  diameter is 
completely immersed in a water reservoir and chained to the 
bottom. If the chain has a tension of 5.20 kN, find the weight 
of the object when it is taken out of the reservoir into the air.
 Solution. Given: d = 1.45 m; T = 5.20 kN.
 Weight of the object, W:
 Buoyant force, PB = W (weight of the object) + T  
           (tension in the chain)
	 ∴ W = PB – T

  = ( )34 1.45
3 2
p × × 9.81 – 5.20

  = 10.46 kN (Ans.)
 Example 4.8. A cylinder of mass 10 kg and area of 
cross-section 0.1 m2 is tied down with string in a vessel 
containing two liquids as shown in figure 4.7. Calculate 
gauge pressure on the the cylinder bottom and the tension in 
the string. Density of water = 1000 kg/m3. Specific gravity of  
A = 0.8. Specific gravity of B (water) = 1.0                         (GATE)
 Solution. Given:  Mass of cylinder, m = 10 kg
    Area of cross-section  =  0.1m2

    Density of water (liquid B) = 1000 kg/m3

    Density of liquid A = 0.8 × 1000  =  800 kg/m3

 Tension in string, T:
    Volume of liquid A displaced = 0.1 × 0.1 
     = 0.01 m3

Water

PB

W

T

Spherical
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Fig. 4.6
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	 ∴  Mass of liquid A displaced, mA = 0.01 × 800 = 8 kg
	 ∴  Volume of liquid B displaced = 0.1 × 0.125 = 0.0125 m3

	 ∴  Mass of liquid B displaced, mB = 0.0125 × 1000 = 12.5 kg
   Total mass of liquid displaced = mA + mB = 8 + 12.5 = 20.5 kg
   Upward thrust = 20.5 × 9.81 = 201.1 N
   Weight of cylinder  = mg = 10 × 9.81 = 98.1 N
   Net upward thrust  = 201.1 – 98.1 = 103 N
	 ∴  Tension in the string, T = 103 N (Ans.)
 Pressure (gauge) on the cylinder bottom, p:

   p = Net upward thrust 103
Area of cross-section 0.1

=  = 1030 N/m2 (Ans.)

4.2.   TYPES OF EQUILIBRIUM OF FLOATING BODIES  

 The equilibrium of floating bodies is of the following types:
 1. Stable equilibrium,  2.  Unstable equilibrium, and   3.  Neutral equilibrium.

4.3.1. Stable Equilibrium
 When a body is given a small angular displacement (i.e. tilted slightly), by some external 
force, and then it returns back to its original position due to the internal forces (the weight and the 
upthrust), such an equilibrium is called stable equilibrium.

4.3.2. Unstable Equilibrium
 If the body does not return to its original position from the slightly displaced angular position 
and heels farther away, when given a small angular displacement, such an equilibrium is called an 
unstable equilibrium.

4.3.3. Neutral Equilibrium
 If a body, when given a small angular displacement, occupies a new position and remains at 
rest in this new position, it is said to possess a neutral equilibrium.

4.4.   METACENTRE AND METACENTRIC HEIGHT

 Metacentre : 
 Fig. 4.8 (a) shows body floating in a liquid in a state of equilibrium. When it is given a small 
angular displacement [see Fig. 4.8 (b)] it starts oscillating about some point (M). This point, about 
which the body starts oscillating, is called metacentre.
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 The metacentre may also be defined as  a point of intersection of the axis of body passing 
through c.g.(G) and, original centre of buoyancy (B) and a vertical line passing through the centre 
of buoyancy (B1) of the tilted position of the body.
 The position of metacentre, M remains practically constant for the small angle of tilt θ.
 Metacentric height:
 The distance between the centre of gravity of a floating body and the metacentre (i.e. distance 
GM as shown in Fig.4.8 (b) is called metacentric height.
	  For stable equilibrium, the position of metacentre M remains higher than c.g. of the body, G.
	  For unstable equilibrium, the position of metacentre M remains lower than G.
	  For neutral equilibrium, the position of metacentre M coincides with G.

4.5   DETERMINATION OF METACENTRIC HEIGHT  

 The metacentric height may be determined by the following two methods:
 1. Analytical method.
 2. Experimental method.

4.5.1 Analytical Method
 Refer to Fig. 4.8 (b). It shows the tilted position of the floating body, the line L′ON′ represents 
the water surface. The portion N′ON of the body is submerged and the portion L′OL is lifted because 
of tilting. As a result of this, the centre of buoyancy changes it position from B to B1. The intersection 
of axis of the body and the vertical line through B1 locates the metacentre, M of the body.
 To find the metacentric height GM consider an elementary cylindrical prism QQ′ of  portion 
N′ON at a distance ‘x’ from O. Let the area of this elementary prism be δA. The height of this 
elementary prism is given by x.θ. The volume of this elementary prism is given by:
  δV = x.θ.δA. ...(i)
 The upward force or buoyancy force acting at this prism (δPB) is given by:
  δPB = w.δV = w. x.θ.δA ...(ii)
 (where, w = unit weight of liquid)
 The moment of this buoyancy force about O
  x.δP = w.θ.x2.δA ...(iii)
 For the total portion N′ON, this moment is given by:

  . Bx dP∫  = 2 2. . .θ = θ∫ ∫w x dA w x dA  ...(iv)

 or, . Bx dP∫  = w θ.I

 (where, I = moment of inertia of the sectional area at the water line about the axis through O)

. Bx dP∫ gives the change in moment due to buoyancy.

 Now, . ( . . )Bx dP w I= θ∫  = PB × BB1

 (where, PB = total force of buoyancy)
 But, BB1 = BM × θ and PB = W  = w × V

	 ∴ w.θ.I = w.V.BM.θ or BM = 1
V  ...(4.1)
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 Now metacentric height, GM = BM ± BG
   + ve sign :  when G is lower than B
   – ve sign  :  when G is higher than B

4.5.2. Experimental Method
 Refer to Fig. 4.9.
 In this method, a known weight W1 is shifted by a distance z across the axis of tilt. The change 
in moment due to this shift is W1 z. Let the angle of tilt be θ. This angle of tilt may be measured 
experimentally by using a plumb bob. The change in moment due to this tilt is equal to W.GG1 or 
W.GM tan θ.
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Fig. 4.9. Experimental method for determination of metacentric height.

	 ∴ W1.z = W.Gm.tanθ or GM = 1.
.tan

W z
W θ

 ...(4.2)

 If, l = Length of plumb bob, and
  d = Displacement of the plumb bob,

 Then, tan θ = d
l

 and,  metacentric height is given by:

  GM = 1. .
.

W z l
W d

 ...(4.3)

 Example 4.9. A wooden block of specific gravity 
0.75 floats in water. If the size of the block is 1 m ×   
0.5 m × 0.4 m, find its metacentric height.
 Solution. Size (or dimensions) of the block = 1m 
× 0.5 m × 0.4 m
 Specifice gravity of wood = 0.75
 Specific weight w = 0.75 × 9.81 = 7.36 kN/m3

 Weight of wooden block = specific weight × volume
  = 7.36 × 1× 0.5 × 0.4 = 1.472 kN
 Let depth of immersion = h metres.
 Weight of water displaced
  = Specific weight of water × volume of the 
         wood submerged in water
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   = 9.81 × 1 × 0.5 × h = 4.9 h kN
 Now, for equilibrium:
  Weight of wooden block = Weight of water displaced  i.e., 1.472 = 4.9 h

 or, h = 1.472
4.9

 = 0.3 m

	 ∴ Distance of centre of buoyancy from bottom i.e.,

  OB = 0.3
2 2
h = = 0.15 m

 and, OG = 0.4
2

 = 0.2 m

	 ∴ BG = OG – OB = 0.2 – 0.15 = 0.05 m

 Also, BM = I
V

 Where, I = Moment of inertia of a rectangular section 

   = 
31 0.5

12
×  = 0.014 m4

 and, V = Volume of water displaced (or volume of wood in water)
   = 1 × 0.5 × h = 1× 0.5 × 0.3 = 0.15 m3

  BM = 1 0.0104
0.15V

=  = 0.069 m

 We know that the metacentric height,
  GM = BM – BG  (G is above B)
   = 0.069 – 0.05 = 0.019 m (Ans.)
 Example 4.10. A solid cylinder 2 m in diameter and 2m high is floating in water with its axis 
vertical. If the specific gravity of the material of cylinder is 0.65 find its metacentric height. State 
also whether the equilibrium is stable or unstable.

 Solution. Given: Diameter of cylinder, d = 2 m; Height of cylinder, h = 2m; Specific gravity = 
0.65
 Depth of cylinder in water = Sp. gravity × h
   = 0.65 × 2.0 = 1.3 m
 Distance of centre of buoyancy (B) from O, 

  OB = 1.3
2

 = 0.65 m

 Distance of centre of gravity (G) from O,

  OG = 2.0
2

 = 1.0 m

  BG = OG – OB = 1.0 – 0.65 = 0.35 m

 Also, BM = I
V

 Where, I = Moment of inertia of the plan of the body 
    about Y–Y

   = 4
64 64

dp p=  × 24 = 0.785 m4

 and,  V = Volume of cylinder of water
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   = 
4
pd2 × depth of cylinder in water

   = 
4
p × 22 × 1.3 = 4.084 m3

	 ∴ BM = 0.785
4.084

I
V

=  = 0.192 m

 We know that the metacentric height,
  GM = BM – BG = 0.192 – 0.35
   = – 0.158 m (Ans.)
 –ve sign means that the metacentric (M) is below the centre of gravity (G). Thus the cylinder is 
in unstable equilibrium. (Ans.)
 Example 4.11. A weight of 100 kN is moved through a distance of 8 metres across the deck of a 
pontoon of 7500 kN displacement floating in water. This makes a pendulum 2.5 metres long to move 
through 120 mm horizontally. Calculate the metacentric height of the pontoon.
 Solution.  Weight of the movable load, W1 = 100 kN
  Distance through which load is moved, z = 8 m
  Weight of pontoon, W = 7500 kN
  Length of the plumb bob, l = 2.5 m
  Displacement of the plumb bob, d = 120 mm = 0.12 m
 Let,  GM = metacentric height of the pontoon.
 Using the relation:

  GM = 1. . 100 8 2.5
. 7500 0.12

W z l
W d

× ×=
×

= 2.22 m (Ans.)

 Example 4.12. A body has the cylindrical upper portion of 4m diameter and 2.4 m deep. The 
lower portion, which is curved, displaces a volume of 800 litres of water and its centre of buoyancy 
is situated 2.6 m below the top of the cylinder. The centre of gravity of the whole body is 1.6 m below 
the top of the cylinder and the total displacement of water is 52 kN. Find the metacentric height of 
the body.
 Solution. Given:  Diameter of body, d = 4 m
  Depth of cylindrical portion = 2.4 m
  Volume of curved portion = 800 litres = 0.8 m3

 Distance between centre of buoyancy of curved portion 
and top of body,
  OB1 = 2.6 m
 Distance between centre of gravity of the whole body and 
top of the cylinder,  OG = 1.6 m

  Total volume of water displaced, V = 52
9.81

 = 5.3 m3

 Volume of water displaced by the cylindrical portion 
  = 5.3 – 0.8 = 4.5 m3

 If y is the distance between the water surface and the top 
of the body, then: 

  4.5 = 
4
p  × 42 × (2.4 – y)

1.6 m
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  y = 2.4 – 2
4.5 4

4
×

p ×
 = 2.04 m

 Distance of the centre of buoyancy of the cylindrical portion from the top of the body,

  OB2 = y + ( )2.4 – 2.4 – 2.042.04 2.22 m
2 2

y = + =

 If B be the centre of buoyancy of the whole body, then:

  OB = (0.8 2.6) (4.5 2.22)
0.8 4.5

× + ×
+

= 2.227 m

 Now,   BG = OB – OG = 2.277 – 1.6 = 0.677 m

 Now, BM =  I
V

 where,  I = Moment of inertia of the cylindrical portion (top portion) about its c.g.

   = 
64
p  × 44 m4 = 12.566 m4

 and, V = 5.3 m3 (already calculated earlier)

  BM = 12.566
5.3

= 2.37

 Metacentric height, GM = BM – BG = 2.37 – 0.677 = 1.693 m (Ans.)
 Example 4.13. A solid cube of sides 0.5 m each is made of a material of relative density 0.5. The 
cube floats in a liquid of relative density 0.95 with two of its faces horizontal. Examine its stability.
     (MDU, Haryana)
 Solution. Given: Side of the cube = 0.5 m; Specific gravity of cube material = 0.5, Relative 
density of liquid = 0.95.
 Depth of cube in liquid,

  h = 0.5 0.5
0.95
×  0.263 m

 Distance of centre of buoyancy (B) from O,

  OB = 0.263
2

= 0.1315 m

 Distance of centre of gravity (G) from O, 

  OG = 0.5
2

 = 0.25 m

  BG = OG – OB = 0.25 – 0.1315 
   = 0.1185 m
 B lies below G.

  BM = I
V

 where, I = Moment of inertia of the plane of the 
body about YY

   = 1
12

 (0.5) (0.5)3 = 0.005208 m4

  V = Volume of liquid displaced 
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   = 0.5 × 0.5 × 0.263 = 0.06575 m3

	 ∴ BM = 0.005208
0.06575

I
V

=  = 0.0792 m

  Metacentric height, GM = BM – BG = 0.0792 – 0.1185 = – 0.0393 m
 –ve sign means that the metacentre (M) is below the centre of gravity (G). Thus the cube will 
be unstable.
 Example 4.14. A hollow cylinder 
closed at both ends has an outside 
diameter of 1.25 m, length 3.5 m and 
specific weight 75 kN/m3. If cylinder is 
to float just in stable equilibrium in sea 
water (specific weight 10 kN/m3), find its 
minimum permissible thickness.
 Solution. Given: d = 1.25 m, l = 3.5 
m, wc = 75 kN/m3; ww = 10 kN/m3

 Minimum permissible thickness, t:
 Let, h =  Depth of immersion, m.
 Weight of sea water displaced

  = 
4
p  d 2 h × ww

  = 
4
p ×1.252 × h × 10 = 12.27 h kN

  Weight of cylinder = Volume of cylinder × Specific weight.
 = (Volume of two end sections + volume of circular portion) × specific weight

   = { }2 2 22 – ( – 2 )
4 4 cd t d d t l wp p × × + ×  

   = 22
4 cd t dtl wp × + p ×  

 (assuming t << l )

  (Ignoring term involving t2)

    22 1.25 1.25 3.5 75
4

t tp × × × + p × × × ×  
   = 1215 t kN
 Under equilibrium conditions:
  Weight of cylinder = Weight of sea water displaced.
 i.e., 12.27 h = 1215 t or h = 99 t
 Volume of cylinder under water or volume of sea water displaced,

  V = 1215
10

t = 121.5t

 If M is the metacentre, then:

  BM = 
41.25 0.0009964

121.5
I
V t t

p ×
= =

  OB = 99
2 2
h t=  = 49.5t

  OG = 3.5
2

 = 1.75 m

Hollow cylinder
(both ends closed)

t

M

G

B

F.W.S.

l
=

3
.5

m
h

O

1.25 m

Fig. 4.14
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  BG = OG – OB = 1.75 – 49.5 t
 For the cylinder to float just in stable equilibrium:

  BG = BM i.e.,  1.75 – 49.5 t = 0.00099
t

 or, 49.5 t2 – 1.75 t + 0.00099 = 0

 or, t = 
21.75 (1.75) – 4 49.5 0.00099 1.75 1.69
2 49.5 99

± × × ±=
×

   = 0.0347 m           or    6.06 × 10–4 m
 Hence, minimum permissible thickness = 6.06 × 10–4 m or 0.606 mm (Ans.)
 Example 4.15. A solid of 200 mm diameter and 800 mm length has its base 20 mm thick and of 
specific gravity 6. The remaining part of the cylinder is of specific gravity 0.6. State, if it can float 
vertically in water.
 Solution. Given:  Dia. of cylinder = 200 mm = 0.2 m

  Area of cylinder, A = 
4
p  × 0.22 = 0.0314 m2

  Length of cylinder = 800 mm = 0.8 m
  Thickness of base = 20 mm = 0.02 m
  Sp. gr. of base = 6, Sp. gr. of remaining portion = 0.6
 Distance between combined centre of gravity (G) and the bottom of the cylinder (O),

  OG = 
( )0.78 0.020.78 0.6 0.02 0.02 6

2 2
( 0.78 0.6) ( 0.02 6)

A A

A A

   × × + + × × ×     
× × + × ×

 (where, A = area of cylinder)

   = 0.1919 0.0012
0.468 0.12

+
+

= 0.3284 m (or 328.4 mm)

 Combined sp. gr. of the cylinder

   = (0.78 0.6) (0.02 6)
0.78 0.02
× + ×

+
 = 0.735

 Depth of immersion of the cylinder
   = 0.8 × 0.735 = 0.588 m
 Distance of centre of buoyancy from the bottom of the cylinder,

  OB = 0.588
2

= 0.294 (or 29.4 mm)

  BG = OG – OB = 0.3284 – 0.294
   = 0.0344 m (or 34.4 mm)

 Now, BM = I
V

 where, I = Moment of inertia of circular section

   = 
64
p  × 0.24 = 2.5 × 10–5 p m4

 and, V  = volume of water displaced

   = 
4
p × 0.22 × 0.588 = 0.00588 p

Sp. gr. = 0.6

Sp. gr. = 6

200 mm

Y

Y
Plan

O
20 mm

M

G

B8
0
0

m
m

Fig. 4.15
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Composite
cylinder

Wood
(Sp. gr. = S )2

Y

Y

O

Metal
(Sp. gr. = S )1

M
b

h

a

G

B

80 mm

Fig. 4.16

	 ∴ BM = 
–52.5 10

0.00588
× p

p

   = 0.00425 m or 4.25 mm
 Now metacentric height,
  GM = BM – BG = 4.25 – 34.4 mm = – 30.15 mm
 Negative sign means that the metacentre (M) is below the centre of gravity (G). Thus the 
cylinder is in unstable equilibrium and it cannot float vertically in water. (Ans.)
 Example 4.16. An 80 mm diameter composite solid cylinder consists of an 80 mm diameter,  
20 mm thick metallic plate having specific gravity 4.0 attached at the lower end of  an 80 mm 
diameter wooden cylinder of specific gravity 0.8. Find the limits of the length of the wooden portion 
so that the composite cylinder can float in stable equilibrium in water (specific gravity 1.0) with its 
axis vertical.    (MGU Kerala)
 Solution. Refer to Fig. 4.16. Given: d = 80 mm; a = 20 mm; S1 = 4; S2 = 0.8
 Limits of the length of the wooden portion:
 The cylinder will float vertically in water if its metacentric height GM is +ve. To find the 
metacentric height, the locations of centre of gravity G and centre of buoyancy B of the combined 
cylinder is to be found.
 The distance of the centre of gravity of the solid cylinder from O is given by:

  OG = 

2 2
1 2

2 2
1 2

4 2 4 2

4 4

p p     × × × + × × × +          
p p × × + × ×  

a bd a S d b S a

d a S d b S

   = 
( ) ( )1 2

1 2

2 2
× × + × +

× + ×

a ba S b S a

a S b S

   = 
( ) ( )2020 4 0.8 20

2 2
20 4 0.8

× × + × +

× + ×

bb

b

   = 
( ) 2

800 0.8 20 1000 202 2
80 0.8 100

  + + + +  
=   + +   

b bb b

b b  ...(i)

 (Dividing numerator and denominator by 0.8 and simplifying)
 Let, height of immersion of cylinder = (h + a)
 Also,   Weight of cylinder = Weight of water displaced

 or,  2
4

dp × a × S1 + 2
4

dp × b × S2

   = 2
4

dp ( h + a) × Swater

     a × S1 + b × S2 = (h + a)          ( Swater = 1)
 or, 20 × 4 + b × 0.8 = (h + a)
 i.e.   h + a  =  80 + 0.8 b                       ...(ii)

 Now,     OB = 80 0.8 40 0.4
2 2

h a b b+ += = +   ...(iii)
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  BG = OG – OB =

2
1000 20

2
100

bb

b

 
+ + 

 + 
   – (40 + 0.4b)   [From (i) and (iii)]

   = 
2

21 1000 20 – (4000 80 0.4 )
(100 ) 2

bb b b
b

  
+ + + +  +   

   = 1
(100 )b+

[0.1b2 – 60b – 3000] ...(iv)

  I = Second moment of area of the section about Y–Y = 
4

64
dp

  V = Volume of water displaced = 
4
p  d2 (h + a)

  BM = 
4 4 2

22

/ 64 4
64 16( )( )( )

4

I d d d
V h ad h ad h a

p p= = × =p +p ++

   = 
2(80)

16(80 0.8 )b+
  using (ii) for (h + a)

   = 400 500
80 0.8 100b b

=
+ +

 ...(v)

          GM = BM – BG = 500 1–
(100 ) (100 )b b+ +

 

[0.1b2 – 60b – 3000]  [using (iv)] and (v)]

 or, GM = 
23500 60 – 0.1

(100 )
b b

b
+

+
 ...(vi)

 It should be +ve and in the limit = 0
 i.e.  0.1b2 – 60b – 3500 = 0
 or, b2 – 600b – 35000 = 0

 or, b = 
2600 (600) 4 35000
2

+ + ×  (taking +ve value of b)

 or, b = 653.55 mm. This is the upper limit for b. (Ans.)
 The lower limit for b will be b = h, and from eqn. (ii), we have:
  h + a = 80 + 0.8 b
  b + 20 = 80 + 0.8 b
  b = 300 mm (Ans.)
 It may be checked from eqn. (ii) that it gives a + ve value of GM.

 Example 4.17. A hollow wooden cylinder of specific gravity 0.6 has an outer diameter of 600 
mm and an inner diameter of 300 mm. It is required to float in oil of specific gravity 0.9. Calculate:
 (i) The maximum length (height) of the cylinder so that it shall be stable when floating with it 

axis vertical;
 (ii) The depth to which it will sink.

 Solution. Outer diameter of cylinder, D = 600 mm = 0.6 m
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 Inner diameter of cylinder, d = 300 mm = 0.3 m
  Specific weight = 0.6 × 9.81 = 5.886 kN/m3

	 ∴  Weight of cylinder = volume of cylinder × specific weight

   = p/4 (D2 – d2) × l × 5.886 = 
4
p  (0.62 – 0.32) × l × 5.886 

   = 1.248 l kN
 (where,  l = length/height of the cylinder)
 This also represents the weight of oil displaced.

	 ∴ Volume of oil displaced, V = 1.248
0.9 9.81

l
×

= 0.1413 l

 i.e. Volume of cylinder immersed in oil, V = 0.1413l

 Depth of immersion, h = volumeof cylinder under oil
cross-section area of cylinder

   = 
2 2

0.1413

(0.6 – 0.3 )
4

l
p  = 0.666 l

 Height of centre of buoyancy (B) from O, 

 i.e. OB = 0.666
2 2

lh =  = 0.333 l

 If M is the metacentre, then

  BM = 
4 4(0.6 – 0.3 ) 0.042264

0.1413
I
V l l

p

= =

  OM = OB + BM = 0.333 l + 0.0422
l

 Distance of centre of gravity (G) from the point O,

  OG = 
2
l  = 0.5 l

 For stable equilibrium, M should be at a level 
greater than G, i.e. OM > OG

 or,     
0.04220.333 0.5l l

l
 + > 
 

 or,   0.0422 0.167 l
l

>  or  0.0422 > 0.167 l2

 or,   0.167 l2 < 0.0422   or  
1/20.0422 0.503 m

0.167
l  < < 

 
	 ∴ lmax = 0.503 m (Ans.)
 and, h = 0.666 l = 0.666 × 0.503 = 0.335 m (Ans.)
 Example 4.18. A rectangular pontoon 12 m long,9 m wide and 3 m deep weighs 1380 kN and 
floats in sea water. The pontoon carries on its upper deck a boiler 6 m diameter and weighing 864 kN. 
The centre of gravity of each unit coincides with geometrical centre of the arrangement and lies in 
the same vertical line.
  (i) What is the metacentric height?

M
Oil surface

Oil
(S = 0.9)

G

Bh

l

O

600 mm

300
mm

Axis

Wooden
cylinder
(S = 0.6)

Fig. 4.17
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 (ii) Is the arrangement stable?
 Take specific weight of sea water = 10 kN/m3

 Solution. Total weight of the arrangement, W = 1380 + 864 = 2244 kN
 This also represent the weight of water displaced.
 Volume of sea water displaced,

	 ∴  V =
Weight of water displaced 2244
Specific weight of water 10

=  = 224.4 m3

 i.e. Volume of the arrangement under water, V = 224.4 m3

 Depth of immersion,

  h = 
Volumeof thearrangement under water

Cross-sectionalarea of the pontoon

   = 224.4 2.077 m
9 12

=
×

  Distance of centre of buoyancy (B) from the base point O, OB = 2.077
2

 = 1.0385 m

 Let, M be the metacentre.

 Then, BM = 

31 12 9
12

224.4

× ×
=I

V  – 3.248 m

  OM = OB + BM = 1.0385 + 3.248 = 4.286 m

M

3
m

Boiler

G

B

O

9 m

Water surface

Rectangular pontoon

3
m

Fig. 4.18

 To find the position of combined centre of gravity above the base point O, taking moments 
about O, we get:
  1380 × 1.5 + 864 × 6 = 2244 × OG

 ∴ OG = 1380 1.5 864 6
2244

× + ×  = 3.232 m

 (i) Metacentric height, GM:  GM = OM – OG = 4.286 – 3.232 = 1.054 m (Ans.)
 (ii) Stability of the arrangement:
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 Since OM > OG, M is at a higher level than G.
 Hence the arrangement is stable (Ans.)
 Example 4.19. A buoy having a diameter of 2.4 m and length 1.95 m is floating with its axis 
vertical in sea water (specific weight = 10 kN/m3). Its weight is 16.5 kN and a load of 1.65 kN  
is placed centrally at its top. If the buoy is to remain in stable equilibrium, find the maximum 
permissible height of the centre of gravity of the load above the top of the buoy.

 Solution. Given:  Diameter of the buoy, d = 2.4 m; Length of the buoy, l = 1.95 m
  Weight of the buoy, Wbuoy = 16.5 kN
  Weight placed at the top of the buoy, W = 1.65 kN
  Specific weight of sea water = 10 kN/m3

  Total weight of the arrangement Wt = Wbuoy + W
   = 16.5 + 1.65 = 18.15 kN
 This is also the weight of water displaced by the arrangement.
 Volume of water displaced,

  V = Sp.weight of water
tW

   = 18.15
10

 = 1.815 m3

M

Weight = 1.65 kN

Cylindrical buoy

G

B

1
.9

5
m y

O

2.4 m dia

Water surface

Fig. 4.19

 Depth of immersion,

  h = Volumeof water displaced
Cross-sectionalarea of thebuoy

   = 2
1.815

( / 4) 2.4p ×
= 0.4 m

 Height of centre of buoyancy (B) above base point O,

  OB = 0.4
2 2
h =  = 0.2 m

 If M is the metacentre, then:

  BM = 
4( / 64) 2.4

1.815
I
V

p ×=

  OM = OB + BM = 0.2 + 0.897 = 1.097 m
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 Let,  y = Height of centre of gravity of the load above the base O.
 To find the position of combined centre of gravity above the base point O, taking moments 
about O, we get:

  16.5 × 1.95
2

+ 1.65 × y = 18.15 × OG

 or, 16.087 + 1.65 y = 18.15 × OG

 or, OG = 16.087 1.65
18.15

y+ = 0.886 + 0.091y

 The equilibrium will be stable when OM > OG i.e. 1.097 > (0.886 + 0.091y)
 or, 0.211 > 0.091y     or     0.091y < 0.211 or y < 2.318 m
 But the height of buoy = 1.95 m
	 ∴ The height of centre of gravity of the load above the buoy should not be greater than (2.318 
– 1.95) or 0.368 m (Ans.)
 Example 4.20. A wooden cylinder (sp. gravity = 0.54) of diameter d and length l is required to 
float in oil (sp. gravity = 0.81). Find the l/d ratio for the cylinder to float with its longitudinal axis 
vertical in oil.
 Solution. Given: Diameter of the cylinder = d; Length of the cylinder = l;
  Sp. gravity, S1 = 0.54; sp. gravity of oil, S2 = 0.81.

 1
d ratio:

 Let,  h  = Depth of cylinder immersed in oil.
 Now,  Weight of cylinder  = Weight of oil displaced ...(principle of buoyancy)

 or, 
4
p  d 2l × S1 = 

4
p  d 2 h × S2

Wooden cylinder
(S = 0.54)1

M

O

h

Oil
(S = 0.81)2

l

d

B

G

Fig. 4.20

  l × 0.54 = h × 0.81 i.e., h = 0.54 2
0.81 3

l l=

	 ∴ The distance of centre of buoyancy B from O, OB = 1
2 3
h l=

 The distance of centre of gravity G from base point O, OG = l/2
	 ∴ If M is the metacentre, then:

  BM = 

4
2 2 2

2

364
16 32216

4 3

p

= = = =
p ×

dI d d d
V h ld h l
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	 ∴ OM = OB + BM = 
21 3

3 32
dl

l
+

 For stable equilibrium: OM > OG    or    
231

3 32 2
d ll

l
 

+ > 
 

 or, 
23

32
d

l
 > 

23– or
2 3 32 6
l l d l

l
  > 
 

 or, 
2

2
3
32

d
l

 > 
2

2
1 18or
6 32

l
d

>

 or, 
2

2
l
d

 < 
1/218 18or

32 32
l
d

 <  
 

 or  (9/16)1/2 or 3/4

	 ∴ l
d

 <  3/4 (Ans.)

 Example 4.21. A log of wood 0.9 m in diameter and 7.5 long is floating in river water. If the 
specific gravity of log is 0.7, what is the depth of the wooden log in water?
 Solution. Given: Diameter of the wooden log, d = 0.9 m;
  Length of the log, l = 7.5 m
  Specific gravity, S = 0.7
  Weight of the log = (0.7 × 9.81) × p

4
 d   2l 

   = 0.7 × 9.81 × p
4

 × 0.92 × 7.5 = 32.76 kN

0
.9

m

M Wooden log
(S = 0.7)

r sin �

r cos �

O

r
2�

NL

h

Water surface

Q

Fig. 4.21

 This also represents the weight of water displaced.

  Volume of water displaced = 32.76
9.81

 = 3.34 m3

 Let,  h = Depth of immersion.
	 ∴ Volume of log inside water = Volume of water displaced = 3.34 m3

  3.34 = Area LQNL × 7.5

  Area, LQNL = 3.34
7.5

= 0.4453 m2

 Also,  Area, LQNL = Area LQNOL + area LON
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   = 2 360 – 2 1 2 sin cos
360 2

r r rθ p + × θ × θ  

   = ( )2 21 – sin cos
180

r rθp + θ θ

	 ∴ 0.4453 = p × 0.452 ( )1 –
180
θ  + 0.452 sinθ cosθ

 or, 0.4453 = 0.6362 – 0.003534	θ	+	0.2025	sin θ cos θ
 or,  0.003534 θ	– 0.2025 sin θ	cos θ		= 0.6362 – 0.4453 = 0.1909

 or, θ – 0.2025 sin cos
0.003534

θ θ  = 0.1909
0.003534

 or, θ – 57.3 sin θ cos θ = 54.02
 or,  θ – 57.3 sin θ cos θ – 54.02 = 0
  By hit and trial, we get, θ		 71.5°
	 ∴  Depth of wooden log in water, h  r + r cos θ
    0.45 + 0.45 cos 71.5° or h = 0.593 m (Ans.)
 Example 4.22.  A float valve regulates the flow of oil of specific gravity 0.8 in a cistern. The 
spherical float is 150 mm in diameter. AOB is a weightless link carrying the float at one end, and 
a valve at the other end which closes the pipe through which oil flows into the cistern. The link is 
mounted in a frictionless hinge at 0 and angle AOB is 135°. The length of OA is 200 mm, and the 
distance between the centre of the float and hinge is 500 mm. When the flow is stopped AO will be 
vertical. The valve is to be pressed on to the seat with a force of 10 N to completely stop the flow of 
oil into the cistern. It was observed that the flow of oil is stopped when the free surface of oil in the 
cistern is 350 mm below the hinge. Determine the weight of the float. [UPSC Engg. Services ]
 Solution. Refer to Fig. 4.22.
  Specific gravity of oil = 0.8
  Diameter of the float, d = 150 mm = 0.15 m
	 	 ∠AOB = 135°
 Weight of the float, W:

50
0

m
m

Lin
k

Hinge
Cistern

Spherical float

Oil
(S = 0.8)

B M

L

200 mm

3
5
0

m
m

Oil supply

O
A

(= 10 N)
P

45°

h

Fig. 4.22

 When the oil flow is stopped, the level of oil is as shown in Fig. 4.22; the centre of float is below 
the level of oil by a depth h.
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  In DOBM:          sin 45° = 0.35
0.5

OL LM hOM
OB OB

+ += =

  0.5 sin 45° = 0.35 + h or h = 0.00355 m

  Volume of oil displaced = 2
3

 pr3 + pr3 × h

   = 
3 2

32 0.15 0.15 0.00355 0.000946 m
3 2 2

   × p + p + × =   
   

  Buoyant force = Weight of oil displaced
   = Volume of oil displaced × sp. gravity of oil
   = 0.000946 × (0.8 × 9.81) = 0.007424 kN or 7.42 N
 Since the buoyant force and the weight of the float passes through the same vertical line, 
therefore,
 Net force on float = Buoyant force – Weight of float = 7.42 – W
 Taking moments about the hinge O, we get:
  P × 0.2 = (7.42 – W) × BM
 or, 10 × 0.2 = (7.42 – W) × 0.5 cos 45°

	 ∴ W = 7.42 – 10 0.2
0.5 cos45

×
°

= 1.76 N i.e. W= 1.76 N (Ans.)

 Example 4.23. A cylindrical buoy is 2 m in diameter and 2.5m long and weighs 22 kN. The 
specific weight of sea water is 10.25 kN/m3. Show that the buoy does not float with its axis vertical?
What minimum pull should be applied to a chain attached to the centre of the base to keep the buoy 
vertical?    [UPSC]
 Solution. Given:  Diameter of the buoy, d = 2 m;
  Length of the buoy, l  = 2.5 m;
  Weight of the buoy, W = 22 kN;
  Specific weight of sea water  = 10.25 kN/m3.
 Part I: To show that the buoy does not float 
with its axis vertical:

  V = Weight of water displaced
Specific weight of water

 (Weight of the buoy = Weight of water displaced)

   = 22
10.25

 = 2.146 m2

 i.e., Volume of buoy immersed in water 
   = 2.146 m3

 Let,  h = Depth of immersion.

 Then,  h = 
Volumeof buoyimmersed in water
Cross - sectionalarea of the buoy

   = 2
2.146

( / 4) 2p ×
= 0.683 m

 Distance of centre of buoyance (B) from the base point O,

B
h

G

O

2 m dia.

Cylindrical
buoy

2.5 m

Water surface

Fig. 6.23
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  OB = 0.683 0.342m
2 2
h = 

 Let, M be the metacentre.

 Then: BM = 
4( / 64) 2

2.146
I
V

p ×= = 0.366 m

  OM = OB + BM = 0.342 + 0.366 = 0.708 m

 Distance of centre of gravity (G) from the base point O, OG = 2.5
2

 = 1.25 m

 Since OM < OG, therefore, the buoy is unstable when floating with axis vertical. (Ans.)
 Part II: Minimum pull required to keep the buoy vertical:
 Let, T =  Minimum pull (kN) which should be applied to chain attached to the centre of the base 
to keep the buoy vertical.
  Total downward force = W + T = (22 + T)

  Displaced volume of water = ( ) 322 m
10.25

T+

  New depth of immersion, h′	 =	 2
22 22 m

32.210.25 ( / 4) 2
T T+ +=

× p ×

 ∴	 OB′ = 22 22 m
2 2 32.2 64.4

T Th′ + += =
×

  B′M′ = 
4( / 64) 2 8.05

22 22
10.25

I
TV T

p ×= =+ +

 To find new centre of gravity G′ due to self weight acting at G and tension T in the chain, taking 
moments about point O, we get:
  22 × 1.25 = (22 + T ) × OG′

	 ∴ OG′ = 22 1.25
22 T
×
+

  B′G′ = OG′ – OB′  = 22 1.25 22–
22 64.4

T
T

× +
+

 For stable equilibrium, M′ must lie above G′, i.e.
	 	 B′M′ > B′G′

 ∴ 8.05
22 T+

 > 22 1.25 22–
22 64.4

T
T

× + 
 + 

 or, 228.05
22 64.4

T
T

+ + + 
 > 22 1.25

22 T
×
+

 or, 
28.05 64.4 (22 )

(22 ) 64.4
T

T
× + +

+ ×
 > 22 1.25

22 T
×
+

 or, 518.42 + (22 + T)2 > 22 × 1.25 × 64.4
 or, (22 + T)2 > [22 × 1.25 × 64.4 – 518.42]   or   > 1252.58
 or, 22 + T > 35.39 or T > 13.39 kN
 Hence, minimum pull in the chain required to keep the buoy vertical = 13.39 kN (Ans.)

Water surface

B h�

O

T

G

Fig. 4.24
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 Example 4.24. A solid cone floats in a liquid with its apex downwards. The specific gravity of 
the material of the cone and the liquid are 0.7 and 0.95 respectively. Determine the least apex angle 
of cone for stable equilibrium.
 Solution.  Specific weight of cone = 0.7 × 9.81 = 6.87 kN/m2

  Specific weight of liquid = 0.95 × 9.81 = 9.32 kN/m2

 Let, H = Height of the cone,
  h = Height of cone immersed in liquid, and
  2α = Apex angle of the cone.
  Weight of the cone = Volume × sp. weight

   = 2 3 21 16.87 tan 6.87 kN
3 3

R H Hp × = p α ×

  tan . . tan and tanR i e R H r h
H

 α = = α = α  


  Weight of liquid displaced = 1
3
pr2h × 9.32 = 1

3
ph3 tan2α × 9.32 kN 

 Now,  Weight of cone = Weight of liquid displaced (since the cone is floating)

 i.e., 1
3
pH3tan2a × 6.87 = 1

3
ph3 tan2 α × 9.32 kN

	 ∴ h = H
1/36.87

9.32
 
  

 = 0.9 H

 Distance of centre of buoyancy from the apex, OB = 3 3 0.9 0.675
4 4

h H H= × =

 Distance of centre of gravity G from the apex, OG = 3
4

 H = 0.75 H

 For stable equilibrium, the metacentre (M) 
should be above G or may coincide with G.
 i.e.  BG ≤ BM   or   OG – OB ≤ BM       ...(i)

 Now, BM = I
V

 where,  I = Moment of inertia of the circular 
section about the liquid level 

   = 
4 44 tan

4 4
hr p × αp =

 and,  V = Volume of liquid displaced 

   = 1
3

 ph3 tan2 α

 Substituting various values in (i), we get:

  0.75 H – 0.675 H ≤ 

4 4

3 2

tan
4

1 tan
3

h

h

 p α
 
 
 p α 
 

 or 0.75 H ≤ 
4 4

3 2
tan 3
4 tan

h
h

α ×
p α

 or, 0.075 H ≤ 0.75 h tan2α
 or, 0.075 H ≤ 0.75 × (0.9 H) tan2α     (  h = 0.9 H)

G

B

O

2 �

��

Solid cone

Liquid surface M

H

R

h

r

Fig. 4.25
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 or tan2 α	 ≥ 0.75 0.111
0.75 0.9

≥
×

 or tan α	 ≥ 0.333 or α	≥ 18° 24′
	 ∴ Least apex angle, 2α = 36° 48′ (Ans.)
 Example 4.25. A cone of specific gravity S, is floating in water with its apex downwards. It has 
a radius R and vertical height H. Show that for stable equilibrium of cone,

 (i) Sec2 α	 H
h

  (ii) H <
1/22 1/3

1/31 –
R S

S
 
 
 

 where, h is the depth of immersion and α	is the half apex angle.
 Solution.  Radius of the cone = R; Height of the cone = H;
  Sp. gravity of the cone = S
 Let, h = Depth of immersion, 2α = apex angle,
  r = Radius of cone at the water surface, O = apex of the cone,
  G = Centre of gravity of the cone,
  B = Centre of buoyancy, and
  M = Position of metacentre.
 Then, OG = 3/4 H; OB = 3/4 h

 (i) Sec2 α	 H
h :

 Now, BM = I
V

 where, I = Moment of inertia 

   = 
4

4
rp , and

  V = Volume of water displaced

   = 21
3

r hp

  BM = 
4 2

2

/ 4 3
1 4
3

r r
hr h

p = ×
p

  Substituting r = h tan α, we get:

  BM = 
2 23 tan

4
h

h
α×

   = 3
4

 h tan2 α tanr
h

 = α 
 


  OM = OB + BM = 23 3 tan
4 4

h h+ α

   = 2 23 3(1 tan ) sec
4 4

h h+ α = α

 For stable equilibrium:
  BM > BG     or    OM > OG

   = 2 23 3sec or
4 4

Hh H Sec
h

α > α >  ...Proved (Ans.)

R

M

H

h

� �

G

Water surface

B

r

Fig. 4.26
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 (ii) H < 
 
 
 

1/22 1/3

1/3
R S

1 – S
:

 As per principle of floatation:
  Weight of cone = weight of water displaced 

 or,  21
3 cR H wp ×  = 21

3
r h wp ×

 (where wc and w are the specific weights of cone material and water respectively).
  Substituting, R = H tan α,    and    r = h tan α, we get:

  1
3

 pH2 tan2 α × H × wc = 1
3

 p h2 tan2 α × h × w

  H3 tan2α × S = h3 tan2α  cw S
w

 = 
 


 or, h3 = H3 S or h = H.S1/3

 (where, S  is the sp. gravity of cone material).

 From the relations Sec2 α > H
h

 and h = H.S1/3 (derived above), we have Sec2 α > 1/3
1

S

 or, (1 + tan2 α) > 1/3
1

S
 or tan2α > 1/3

1
S

– 1 or tan2 α > 
1/3

1/3
1 – S

S

  Substituting, tan α =  R
H

, we get 
1/32

2 1/3
1 – SR

H S
>

 or, 
2

2
H
R

 < 
1/3

1/31 –
S

S
 or H2 <

2 1/3

1/31 –
R S

S

 or, H < 
1/22 1/3

1/31 –
R S

S
 
 
 

 ...Proved  (Ans.)

 Example 4.26. A solid cone (S = 0.8) 
diameter 36 cm and height 30 cm floats with its 
vertex downwards in water as shown is fig. 4.27. 
Is this cone in stable equilibrium?
 Solution. Given: D = 36 cm, H = 30 cm;  
S  = 0.8
 Let,  θ = Semivertex angle,

 Then,   tan θ = 18 0.6
30

=

	 or,	 θ = tan–1(0.6) = 30.96°
 Diameter of the cone at water surface, 

  d = 2y tan θ 
/ 2 tand
h

 = θ 
 


 Weight of cone = Weight of water displaced     
2 21 1( )

3 2 3 2
D dH w S h w   × p × × × = p × ×   

   
 ∴ D2HS = d   2y

G

B

�

BMA

O

h

H

D

d

Fig. 4.27
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   = (2h tan θ)2 × h = 4h3 tan2 θ

   = 4h3 ( )2

2
D
H

 ( )/ 2 tanD
H

= θ

 or, h3 = H3S
 or, h = HS1/3

   = 30 × (0.8)1/3 = 27.85 cm
 If B is the centre of buoyancy,

  OB = 3 3 27.85
4 4

h = × = 20.89 cm

  OG = 3 3 30 22.5 cm
4 4

H = × =

 Now, d = 2h tan θ = 2× 27.85 × 0.6 = 33.42 cm

  BM = 

( )
4 2

2
( ) / 64 3

161
3 2

dI d
V hd h

 p= =  
 

p ×

   = 
2(33.42)3

16 27.85
×  = 7.52 cm

  OM = OB + BM
   = 20.89 + 7.52 = 28.41 cm
  OG =  22.5 cm
  MG = OM – OG = 28.41 – 22.5 = 5.91 cm
 i.e., M is above G by 5.91 cm
 Hence the cone is under stable equilibrium.  (Ans.)
 Example 4.27. A ship 63 m long and  9 m broad has a displacement of 16000 kN. When a 
weight of 200 kN  is moved across the deck through a distance of 5.4 m, the ship is tilted through 
5°. The second moment of area of the water line section about its fore–and–oft  axis is 75 per cent of 
that of circumscribing rectangle, and centre of buoyancy is 2.1m below the water line. Determine.
 (i) The metacentric height, and (ii) The position of centre of gravity of ship.
 Take specific weight of sea water = 10.25 kN/m3

 Solution. Length of the ship,  l = 63 m
  Breadth of the ship, b = 9 m
  Displacement, W  = 16000 kN
  Angle of tilt, θ  =  5°
  Movable weight, W1  =  200 kN
  Distance moved by W1,  z  =  5.4 m
 (i) Metacentric height, GM:
 We know, 

         GM = 1.
tan

W z
W θ

  (Eqn. 4.2)

                = 200 5.4 0.77m
16000 tan5

× =
× °

 i.e.  GM = 0.77 m (Ans.)

6
3

m

9 m

1
.8

3
8

m

0.77 m

Water lineO

M

G

B

2
.1

m

Fig. 4.28 Fig. 4.29



Chapter 4 : Buoyancy and Floatation         187

 (ii) The position of centre of gravity of the ship:

 Distance between the metacentre M and the centre of buoyancy is given by:  BM = I
V

 where, I = Second moment of area of the water line section 

   = 
3

463 90.75 2870
12

m
 ×× = 
 

 and, V = Volume of water displaced by the vessel 

   = 3Weight of the vessel 16000 1561 m
Specific weight of vessel 10.25

= =

	 ∴ BM = 2870
1561

= 1.838 m

 Now, OG = OM + MG = (OB – MB) + MG
   = ( 2.1 – 1.838) + 0.77 = 1.032 m
 i.e. OG = 1.032 m (below the water line) (Ans.)

4.6.  OSCILLATION (ROLLING OF A FLOATING BODY 

 It has been observed that whenever a body floating in a liquid is given a small angular 
displacement, it starts oscillating about its metacentre M (see Fig. 4.30) in the same manner as a 
pendulum oscillates about its point of suspension.
 Let, W = Weight of floating body,
 	 θ = Angle (in radians) through which the body is depressed,
 	 α = Angular acceleration of the body in rad/s2,
  T = Time of rolling (i.e. one complete oscillation) in seconds,
  k = Radius of gyration about G, and
  I = Moment of inertia of the body about its centre of gravity G

   = 2W k
g

  GM = Metacentric height of the body.

G

B
PB

W

M

W

�

AG
B1

PB

PB = Buoyant force

Fig. 4.30

 When the force which has caused angular displacement is removed the only force acting on the 
body is due to the  restoring couple due to  the weight W of the body and the force of buoyancy PB.
	 ∴  Restoring couple = W × GA
   = W × GM tan θ ...(i)
   = W . GM . θ
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 [assuming θ to be small (tan θ	= θ)]

 Angular acceleration of the body, α = 
2

2– d
dt
θ

 – ve sign indicates that the force is acting in such a way that it tends to decrease the angle θ.
 Also,  Inertia torque = Moment of inertia × Angular acceleration

   = 
2

2
2. – W dI k

g dt
θα = ×  ...(ii)

 Equating (i) and (ii), we get:

   W. GM.θ = 
2 2

2 2
2 2– or . . 0θ θ× + θ =W d W dk k W GM

g gdt dt
 Dividing both sides by W, we get:

   
2 2

2 .k d GM
g dt

θ× + θ  = 0

 Again, dividing both sides by 
2k

g
, we get:

   
2

2 2
.GM gd

dt k
θθ +  = 0

 The above equation is a differential equation of second degree, whose solution is:

  Q = C1 sin 22 2
. .cosGM g GM gt C t

k k
   

× + ×   
   

 ...(iii)

 where, C1 and C2 are constants of integration.
 The values of C1 and C2 are obtained from the following boundary conditions:
 1.  At t = 0, θ = 0
   C2 =  0 [By substitution of  t = 0, θ = 0 in (iii)]

 2.  At t = 
2
T , θ = 0

  ∴ 0 =  C1 sin 2
.

2
GM g T

k
 

× 
 

 Since C1 cannot be equal to zero, therefore:

  2
.sin

2
GM g T

k
 

× 
 

 = 0 or 2
.

2
GM g T

k
× = p  ( sin p = 0)

 or, T = 
2

2
.

k
GM g

p  ...(4.4)

 Example 4.28. A ship of weight 32000 kN is floating in sea water. The centre of buoyancy is  
1.6 meters below its centre of gravity. The moment of inertia of the ship area at the water level is  
8320 m4. If the radius of gyration of the ship is 3.2 m, find its period of rolling. 
 Take sp. weight of sea water = 10.1 kN/m3

 Solution. Given:  Weight of the ship, W  =  32000 kN
  Distance between centre of buoyancy and centre of gravity, BG  = 1.6 m
  Moment of inertia, I = 8320 m4

  Radius of gyration, k = 3.2 m
 Period of rolling of the ship, T:
 Volume of sea water displaced,
  V = 3Weight 32000 3168.3m

Specific weight of sea water 10.1
= =
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  Using the relation, BM =  8320 2.626m
3168.3

= =I
V

 Also,  the metacentric height, GM = BM – BG = 2.626 – 1.6 = 1.026 m

  Now using the relation, T = 
2 23.22 2
. 1.028 9.81

k
GM g

p = p
×

 = 6.33 s (Ans.)

HIGHLIGHTS

 1. The tendency for an immersed body to be lifted up in the fluid due to an upward force op-
posite to action of gravity is known as buoyancy.

 2. The floating bodies may have the following types of equilibrium:
 (i) Stable equilibrium,
 (ii) Unstable equilibrium, and
 (iii) Neutral equilibrium.
 3. The metacentre is defined as a point of intersection of the axis of body passing through c.g. 

(G) and original centre of buoyancy (B), and a vertical line passing through the centre of 
buoyancy (B1) of the titled position of the body.

 4. The distance between the centre of gravity (G) of a floating body and the metacentre (M) is 
called metacentric height.

 5. The metacentric height (GM) by experimental method is given by:

    GM = 1 1. . .
. tan

W z l W z
W d W

 = θ 
  where, W1 = Known weight,
    z = Distance through which W1 is shifted across the axis of the tilt, 
    l = Displacement of the plumb bob, and

 	 	 	 θ = Angle of tilt ( )tan .d
l

θ =

 6. Time of rolling,  T = 2p 
2

.
k

GM g

  where, k =  Radius of gyration about c.g. (G), and
    GM = Metacentric height of the body.

OBJECTIVE TYPE QUESTIONS

Choose the Correct Answer.
 1. The tendency for an immersed body to be lifted 

up	in	the	fluid,	due	to	an	upward	force	opposite	
to the action of gravity is known as 

  (a) buoyancy 
  (b) centre of buoyancy
  (c) buoyant force
  (d) none of the above.

 2. The magnitude of the buoyant force can be 
determined by

  (a) Newton’s second law of motion
  (b) Archimedes’ principle
  (c) Principle of moments
  (d) none of the above.
 3.	 When	a	body	is	immersed	in	a	fluid,	partially	or	

completely, the force of buoyancy is equal to 
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  (a) the weight of the body
  (b)	 the	weight	of	the	fluid	displaced	by	the	body
  (c)	 the	weight	of	the	volume	of	the	fluid	equal	

to the volume of body
  (d) none of the above.
 4. The point of application of the force of buoyancy 

on the body is known as 
  (a) centre of gravity
  (b) centre of buoyancy
  (c) metacentre
  (d) none of the above.
 5.	 “When	 a	 body	 is	 immersed	 in	 a	 fluid	 either	

wholly or partially, it is buoyed or lifted up by 
a	 force	which	 is	 equal	 to	 the	weight	 of	 fluid	
displaced by the body”.

  This principle was enunciated by
  (a) Archimedes (b) Newton
  (c) Pascal (d) Kirchhoff.
 6.	 A	floating	body	is	in	stable	equilibrium	when	
  (a) the metacentre is below its centre of gravity
  (b) the metacentre is above its centre of gravity
  (c) the metacentric height is zero.
  (d) its centre of gravity is below the centre of 

buoyancy.

 7.	 An	ice-cube	is	floating	in	glass	of	water.	As	the	
cube melts the water level

  (a) remain constant (b) falls
  (c) rises (d) none of the above.
 8. If the position of metacentre M remains lower 

than c.g. of the body, G, the body will remain in 
a state of

  (a) stable equilibrium 
  (b) unstable equilibrium
  (c) neutral equilibrium 
  (a) any of the above.
 9. Metacentric height can be determined by 
  (a) only analytical method
  (b) only experimental method
  (c) both (a) and (b) 
  (d) none of the above.
 10. If a body does not return to its original position 

from the slightly displaced angular position and 
heels farther away, when given a small angular 
displacement; such an equilibrium is called

  (a) stable equilibrium 
  (b) unstable equilibrium
  (c) neutral equilibrium
  (d) any of the above.

ANSWERS

 1. (a) 2. (b) 3. (b) 4. (b) 5. (a) 6. (b)  
 7. (b) 8. (b) 9. (c) 10. (b).

THEORETICAL QUESTIONS

 1. What is buoyancy?
 2. What is centre of buoyancy?
 3.	 Explain	briefly	the	following	types	of	equilib-

rium	of	floating	bodies:
  (i) Stable equilibrium,
  (ii) Unstable equilibrium, and

  (iii) Neutral equilibrium.
 4.	 Define	and	explain	the	following	terms:
  (i) Metacentre, and
  (ii) Metacentric height.
 5. Derive an expression for calculating time of 

rolling	of	a	floating	body.

UNSOLVED EXAMPLES

 1. A wooden block of width 2.5 m, depth 1.5 m 
and	length	6	m	is	floating	horizontally	in	water.	
If	the	specific	gravity	of	block	is	0.65	find:

  (i) The volume of water displaced, and 
  (ii) Position of centre of buoyancy.
   [Ans. (i) 14.625 m3; (ii) 0.4875 m from base]
 2.	 A	wooden	block	4	m	×	1	m	×	0.5	m	is	floating	

in	water.	 Its	 specific	gravity	 is	 0.76.	Find	 the	
volume of concrete, of sp. gravity 2.5, that may 
be placed on the block which will immerse  

(i) the block completely in water, and (ii) the 
block and concrete completely in water.

   [Ans. (i) 0.2 m3; (ii) 0.33 m3]
 3.	 The	following	data	relate	to	a	pontoon	floating	

in sea water:
  Length = 5 m, width 3 m, height = 1.2 m
  The depth of immersion = 0.8 m
  Centre of gravity above the bottom of pontoon 

= 0.6 m
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  Sp. gravity of sea water = 1.025
  Determine the metacentric height.  

 [Ans.  0.7375 m]
 4.	 A	wooden	block	1	m	×	0.4	m	×	0.3	m	is	floating	in	

water.	If	its	specific	gravity	is	0.8	determine	the	
metacentric height for tilt about its longitudinal 
axis. [Ans. 0.0255 m]

 5. The following data relate to a body (consisting 
of cylindrical upper portion and curved lower 
portion)	floating	in	water:

  Diameter of cylindrical upper portion = 2 m
  Depth of upper portion = 1.2 m
  Volume of water displaced by the curved lower 

portion = 0.4 m3

  Centre of buoyancy of the lower portion below 
the top of the cylinder = 1.3 m

  Centre of bouyancy of whole body below the 
top of cylinder = 0.8 m

  Total displacement of water = 25.5 kN. Deter-
mine the metacentric height of the body.

   [Ans. GM = 0.182 m]
 6. A wooden block of size 2 m × 1 m × 0.8 m is 

floating	in	water.	If	its	specific	gravity	is	0.7	find	
its metacentric height. [Ans. 0.0288 m]

 7. A wooden cylinder of sp. gravity 0.6 and di-
ameter	0.4	m	is	required	to	float	in	an	oil	of	sp.	
gravity 0.8. Find the maximum length of the 
cylinder	in	order	that	it	may	float	vertically	in	
water. [Ans. 0.326 m]

 8. A solid cylinder 4 m in diameter and 4 m high is 
floating	in	water	with	its	axis	vertical.	If	its	spe-
cific	gravity	is	0.6,	find	the	metacentric	height.	
Also state whether the equilibrium is stable or 
unstable. [Ans. GM = – 0.3833 m, unstable]

 9. A weight 100 kN is moved through a distance 
of 9 metres across the deck of pontoon of 7500 
kN	displacement,	floating	in	water.	This	makes	
a pendulum 2.7 metres long, move through 0.13 
m horizontally. Calculate the metacentric height 
of the pontoon. [Ans. 2.5 m]

 10.	 The	following	data	correspond	to	a	ship	floating	
in a sea water:

  Weight of the ship = 4000 tonnes
  Centre of buoyancy below its c.g. (G) = 2 m
  Moment of inertia of the ship area at the water 

level = 10400 m4

  Radius of gyration of the ship = 4 m
  Sp. gravity of sea water = 1.03
  Find the period of rolling of the ship.
   [Ans. 9.73 s]
 11.	 Find	the	density	of	a	metallic	body	which	floats	

at	 the	 interface	of	mercury	of	 specific	gravity	
13.6 and water such that 40 per cent of its vol-
umes is submerged in mercury and 60 per cent 
in water. [Ans. 59.25 kN/m3]

 12.	 A	hollow	wooden	cylinder	of	 specific	gravity	
0.56 has an outer diameter of 600 mm and an 

inner	diameter	of	300	mm.	It	is	required	to	float	
in	oil	of	specific	gravity	0.85.	Calculate:

  (i) The maximum length/height of the cylinder 
so	that	it	shall	be	stable	when	floating	with	
its axis vertical.

  (ii) The depth to which it will sink.
   [Ans.  (i) 0.5 m (ii) 0.3295 m]
 13.  A pontoon measuring 10 m (length) × 7.5 m 

(width)	×	2.5	m	(depth)	weighing	800	kN	floats	
in sea water. On its upper deck it carries a boiler 
5 m in diameter and weighing 500 kN. The 
centre of gravity of each unit coincides with 
geometrical centre of the arrangement and lies 
in the same vertical line.

  Calculate the metacentric height.
	 	 Take	the	specific	weight	of	sea	water	=	10	kN/

m3 [Ans. 0.875 m]
 14. A log of wood 0.6 m in diameter and 5 m long 

is	floating	in	river	water.	If	the	specific	gravity	
of log is 0.7 what is depth of the wooden log in 
water ? [Ans. 0.395 m]

 15.	 A	wooden	cylinder	 (specific	gravity	=	0.6)	of	
circular	cross-section	is	required	to	float	in	oil		
of	specific	gravity	0.8.	If	l and d are the length 
and	diameter	of	the	cylinder	respectively,	find	

the l
d

ratio	 for	 the	 cylinder	 to	 float	with	 its	

longitudinal axis vertical in oil. 

[Ans. l
d  < 0.816]

 16.	 A	solid	cone	(sp.	gravity	of	material	=	0.7)	floats	
in water with its apex downward. Determine the 
least apex angle of cone for equilibrium.  
 [Ans. 39°7′]

 17. A	cylindrical	buoy	weighing	20	kN	is	floating	in	
ocean. The buoy has a diameter of 2 m and height 
2.5	m.	Can	the	buoy	float	with	its	axis	vertical?	
If now, a chain may be tied at the bottom of the 
buoy and anchored, what is the tension required 
in the anchor chain to make the buoy stable?

  Take sp. gravity of sea water = 1.025.
   [Ans. 12.9 kN]
 18. A vessel has a length of 60 m, width 12 m and 

a displacement of 19620 kN. When a weight  of 
294.3 kN is rolled off transversely across the 
deck through a distance of 6.5 m, the vessel tilts 
through 5°. The second moment of area of the 
water line section about its fore-and-oft axis is 75 
per cent of that of the circumscribing rectangle. 
The centre of buoyancy is 2.75 m below the 
water line. Find:

  (i) The metacentric height;
  (ii) The position of centre of gravity of the vessel.
	 	 Take	specific	weight	of	sea	water	 

                                                 = 10.104 kN/m3 
[Ans. (i) 1.1145 m  (ii) 0.53 m below water surface]
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5.1. INTRODUCTION 

 Fluid kinematics may be defined as follows:
 Fluid kinematics is a branch of ‘Fluid mechanics’ 
which deals with the study of velocity and acceleration of 
the particles of fluids in motion and their distribution in 
space without considering any force or energy involved.
The motion of fluid can be described fully by an 
expression describing the location of a fluid particle in 
space at different times thus enabling determination of 
the magnitude and direction of velocity and acceleration 
in the flow field at any instant of time.
 In the chapter we shall deal with the conception of 
fluid flow in general.

5.2. DESCRIPTION OF FLUID MOTION

 The motion of fluid particles may be described by 
the following methods:
 1. Langrangian method.
 2. Eulerian method.

5.2.1. Langrangian Method

 In this method, the observer concentrates on the 
movement of a single particle. The path taken by the 
particle and the changes in its velocity and acceleration 
are studied.
 In the Cartesian system, the position of the fluid 
particle in space (x, y, z) at any time t from its position 
(a, b, c) at time t = 0 shall be given as:
  x = f1 (a, b, c, t) 
  y = f2 (a, b, c, t)
  z = f3 (a, b, c, t) ...(5.1)
 The velocity and acceleration components (obtained 
by taking derivatives with respect to time) are given by:
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  u = x
t
∂
∂

 Velocity components: v = y
t

∂
∂

 ...(5.2)

  w = z
t

∂
∂

  ax = 
2

2
x

t
∂
∂

Acceleration components :  ay = 
2

2
y

t
∂
∂

 ...(5.3)

  az = 
2

2
z

t
∂
∂

 At any point, the resultant velocity or acceleration shall be the resultant of three components of 
the respective quantity at that point.

	 ∴  Resultant velocity, V = 2 2 2u v w+ +  ...(5.4)

   Acceleration, a = 2 2 2
x y za a a+ +  ...(5.5)

 Similarly, other quantities like pressure, density, etc. can be found.
 This method entails the following shortcomings:
 1. Cumbersome and complex.
 2. The equations of motion are very difficult to solve and the motion is hard to understand.

5.2.2. Eulerian Method

 In Eulerian method, the observer concentrates on a point in the fluid system. Velocity, 
acceleration and other characteristics of the fluid at that particular point are studied.
This method is almost exclusively used in fluid mechanics, especially because of its mathematical 
simplicity. In fluid mechanics, we are not concerned with the motion of each particle, but we study 
the general state of motion at various points in the fluid system.
 The velocities at any point (x, y, z) can be written as:
  u = f1 (x, y, z, t)
  v = f2 (x, y, z, t) ...(5.6)
  w = f3 (x, y, z, t)
 The components of acceleration of the fluid particle can be worked out by partial differentiation 
as follows:

  du = . . . .u u u udx dy dz dt
x y z t
∂ ∂ ∂ ∂

+ + +
∂ ∂ ∂ ∂

  ax = . . . .u u dx u dy u dz u dt
dt x dt y dt dz dt t dt
∂ ∂ ∂ ∂ ∂ = + + + ∂ ∂ ∂ 

 But, 
dx
dt

 = , ,dy dzu v w
dt dt

= =
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 ∴ ax = 
du
dt

 = u u u uu v w
x y z t
∂ ∂ ∂ ∂ + + + ∂ ∂ ∂ ∂ 

 Similarly, ay = dv
dt

 = v v v vu v w
x y z t
∂ ∂ ∂ ∂ + + + ∂ ∂ ∂ ∂ 

 ...(5.7)

  az = dw
dt

 = w w w wu v w
x y z t

∂ ∂ ∂ ∂ + + + ∂ ∂ ∂ ∂ 
 

 Now, resultant velocity: V = 2 2 2u v w+ +  ...(5.8)

 Resultant acceleration, a = 2 2 2
2x ya a a+ +  ...(5.9)

 In vector notation:
 Velocity vector: V = ui + vj + wk ...(5.10) 

 Acceleration vector: a = dV V V V Vu v w
dt x y z t

∂ ∂ ∂ ∂ = + + + ∂ ∂ ∂ ∂ 
 ...(5.11)

  a = ax i + ay   j + az k ...(5.12)

 and, |V| = 2 2 2u v w+ +  ...(5.13)

  |a| = 2 2 2
x y za a a+ +  ...(5.14)

 Vectorially, 

  a = ( . ) VV V
t

∂
∇ +

∂
 ...(5.15)

 The velocity, in general, is a function of space(s) and time (t) i.e.
  V = f (x, y, z,t)
 or, V = f (s, t)
 and ,  The acceleration,

  a = .dV V ds V
dt s dt t

∂ ∂
= +

∂ ∂

	 ∴ a = V VV
s t

∂ ∂
+

∂ ∂
 ...(5.16)

 Thus the acceleration consists of the two parts:

 (i) ∂
∂
VV
s

: This part is due to change in position or movement and is called convective accel-

eration.

	 	 ∴      Convective acceleration  = 
21 ( )

2
V VV
s s

∂ ∂
=

∂ ∂
 ...(5.17)

     = terms in the parenthesis of Eqn. (5.7)

 (ii) ∂
∂
V
t

: This part is with respect to time at a given location and is called local (or temporal) 

acceleration.

	 	∴               Local acceleration = V
t

∂
∂

 ...(5.18)
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     = , ,u v w
t t t

∂ ∂ ∂
∂ ∂ ∂

 in Eqn. (5.7)

 Tangential and normal acceleration: Refer to Fig. 5.1.
 When the motion is curvilinear eqn. 5.16 gives the tangential acceleration. A particle moving 

in a curved path will always have a normal acceleration an = 
2V

r
 towards the centre of the curved 

path (r being the radius of the path), though its tangential acceleration ( as ) may be zero as in the 
case of uniform circular motion.
 For motion along a curved path, in general,
  a = as + an

   = 
2V V VV

s t r
 ∂ ∂

+ + 
∂ ∂   ...(5.19)

5.3.  TYPES OF FLUID FLOW 

 Fluids may be classified as follows:
 1. Steady and unsteady flows
 2. Uniform and non-uniform flows
 3. One, two and three dimensional flows
 4. Rotational and irrotational flows
 5. Laminar and turbulent flows
 6. Compressible and incompressible 

flows.

5.3.1. Steady and Unsteady Flows
 Steady flow. The type of flow in which 
the fluid characteristics like velocity, pressure, density, etc. at a point do not change with time is 
called steady flow. Mathematically, we have:

  
0 0 0, ,x y z

u
t

∂ 
 ∂ 

 = 0; 
0 0 0 0 0 0, , , ,

0;
x y z x y z

v w
t t
∂ ∂   =   
∂ ∂   

 = 0

  
0 0 0, ,x y z

p
t

∂ 
 ∂ 

 = 
0 0 0, ,

0; 0;
x y zt

∂ρ  = ∂ 
 and so on

 where (x0, y0, z0) is a fixed point in a fluid field where these variables are being measured w.r.t. time.
 Example. Flow through a prismatic or non-prismatic conduit at a constant flow rate Q m3/s is 
steady.

 (A prismatic conduit has a constant size shape and has a velocity equation in the form u = ax2 + 
bx + c, which is independent of time t).
 Unsteady flow. It is that type of flow in which the velocity, pressure or density at a point 
change w.r.t. time. Mathematically, we have:

  
0 0 0, ,x y z

u
t

∂ 
 ∂ 

 ≠ 0; 
0 0 0 0 0 0, , , ,

0;
x y z x y z

v w
t t
∂ ∂   ≠   
∂ ∂   

 ≠ 0

  
0 0 0, ,x y z

p
t

∂ 
 ∂ 

 ≠ 0; 
0 0 0, ,x y zt

∂ρ 
 ∂ 

 ≠	0; and so on

Curved
path

V = ( , )f s t P

as

a =n

V
2

r

Fig. 5.1. Tangential and normal acceleration.
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 Example. The flow in a pipe whose valve is being opened or closed gradually (velocity equation 
is in the form  u = ax2 + bxt ).

5.3.2. Uniform and Non-uniform Flows
 Uniform flow. The type of flow, in which the velocity at any given time does not change with 
respect to space is called uniform flow. Mathematically, we have:

  
constantt

V
s =

∂ 
 ∂ 

 = 0

 where, ∂V =  Change in velocity, and
  ∂s =  Displacement in any direction.
 Example. Flow through a straight prismatic conduit (i.e. flow through a straight pipe of 
constant diameter).
 Non-uniform flow. It is that type of flow in which the velocity at any given time changes with 
respect to space. Mathematically,

  
constantt

V
s =

∂ 
 ∂ 

	 ≠	 0

 Example. (i) Flow through a non-prismatic conduit.
  (ii) Flow around a uniform diameter pipe-bend or a canal bend.

5.3.3. One, Two and Three Dimensional Flows
 One dimensional flow. It is that type of flow in which the flow parameter such as velocity is a 
function of time and one space co-ordinate only. Mathematically:
  u = f (x),v = 0 and w = 0
 where u, v and w are velocity components in x, y and z directions respectively.
 Example. Flow in a pipe where average flow parameters are considered for analysis.
 Two dimensional flow. The flow in which the velocity is a function 
of time and two rectangular space coordinates is called two dimensional 
flow. Mathematically:
  u = f1 (x,y)
  v = f2 (x, y)
  w = 0
 Examples.  (i)  Flow between parallel plates of infinite extent.
  (ii) Flow in the main stream of a wide river.
 Three dimensional flow. It is that type of flow in which the velocity 
is a function of time and three mutually perpendicular directions. 
Mathematically:
  u = f1 (x, y, z)
  v = f2 (x, y, z)
  w =  f3 (x, y, z)
 Examples. (i) Flow in a converging or diverging pipe or channel.
  (ii) Flow in a prismatic open channel in which the width and the water depth are 

of the same order of magnitude.

Fig. 5.2. One dimensional flow.

Fig. 5.3. Two dimensional flow.
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5.3.4. Rotational and Irrotational Flows
 Rotational flow. A flow is said to be rotational if the fluid particles while moving in the 
direction of flow rotate about their mass centres. Flow near the solid boundaries is rotational.
 Example. Motion of liquid in a rotating tank.
 Irrotational flow. A flow is said to be irrotational if 
the fluid particles while moving in the direction of flow 
do not rotate about their mass centres. Flow outside the 
boundary layer is generally considered irrotational.
 Example. Flow above a drain hole of a stationary 
tank or a wash basin.

 Note.			If	the	flow	is irrotational as well as steady, it is known as Potential flow.

5.3.5. Laminar and Turbulent Flows
 Laminar flow. A laminar flow is one in which paths taken by the individual particles do not 
cross one another and move along well defined paths (Fig. 5.5), This type of flow is also called 
stream-line flow or viscous flow.
 Examples. (i) Flow through a capillary tube.
  (ii) Flow of blood in veins and arteries.
  (iii) Ground water flow.
 Turbulent flow. A turbulent flow is that flow in which fluid particles move in a zig zag way 
(Fig. 5.6).
 Example. High velocity flow in a conduit of large size. Nearly all fluid flow problems 
encountered in engineering practice have a turbulent character.

 Fig. 5.5. Laminar flow. Fig. 5.6. Turbulent flow.

 Laminar and turbulent flows are characterised on the basis of Reynolds number (refer to  
chapter 10).
 For Reynolds number (Re) < 2000 ... flow in pipes is laminar.
 For Reynolds number (Re) > 4000 ... flow in pipes is turbulent
 For Re between 2000 and 4000 ... flow in pipes may be laminar or turbulent.

5.3.6. Compressible and Incompressible Flows
 Compressible flow. It is that type of flow in which the density (ρ) of the fluid changes from 
point to point (or in other words density is not constant for this flow).
 Mathematically:  ρ  ≠ constant.
 Example. Flow of gases through orifices, nozzles, gas turbines, etc.
 Incompressible flow. It is that type of flow in which density is constant for the fluid flow. 
Liquids are generally considered flowing incompressibly.
 Mathematically:  ρ = constant.
 Example. Subsonic aerodynamics.

Fig. 5.4. Thee dimensional flow.
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1

2

3

Fig. 5.7. Path lines.

5.4.  TYPES OF FLOW LINES 

 Whenever a fluid is in motion, its innumerable particles move along certain lines depending 
upon the conditions of flow. Although flow lines are of several types, yet some important from 
subject point of view are discussed in the following subarticles.

5.4.1. Path line
 A path line (Fig. 5.7) is the path followed by a fluid particle in motion. A path line shows the 
direction of particular particle as it moves ahead. In general, this is the curve in three-dimensional 
space. However, if the conditions are such 
that the flow is two-dimensional the curve 
becomes two-dimensional.

5.4.2. Stream line
 A stream line way be defined as an 
imaginary line within the flow so that the 
tangent at any point on it indicates the velocity 
at that point.
 Equation of a stream line in a three-dimensional flow is given as:

  dx
u

 = dy dz
v w

=  ...(5.20)

 Following points about streamlines are worth noting:
 1. A streamline cannot intersect itself, nor two streamlines can cross.
 2. There cannot be any movement of the fluid mass across the 

streamlines.
 3. Streamline spacing varies inversely as the velocity; converging of streamlines in any particular 

direction shows accelerated flow in that direction.
 4. Whereas a path line gives the path of one particular particle at successive instants of time, a 

streamline indicates the direction of a number of particles at the same instant.
 5. The series of streamlines represent the flow pattern at an instant.
	  In steady flow, the pattern of streamlines remains invariant with time. The path lines and 
streamlines will then be identical.
	   In unsteady flow, the pattern of streamlines may or may not remain the same at the next 
instant.

5.4.3. Stream Tube
 A stream tube is a fluid mass bounded by a group of streamlines. The contents of a stream tube 
are known as ‘current filament’.

Fig. 5.9. Stream tube.

Fig. 5.8. Stream line.
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 Examples of stream tube: Pipes and nozzles.
 Following points about stream tube are worth noting:
 1. The stream tube has finite dimensions.
 2. As there is no flow perpendicular to stream lines, therefore, there is no flow across the surface 

(called stream surface) of the stream tube. The stream surface functions as if it were a solid 
wall.

 3. The shape of a stream tube changes from one instant to another because of change in the 
position of streamlines.

5.4.4. Streak Line
 The streak line is a curve which gives an instantaneous picture of the location of the fluid 
particles, which have passed through a given point.
 Examples. (i) The path taken by smoke coming out of chimney (Fig. 5.10).
  (ii) In an experimental work to trace the motion of fluid particles, a coloured dye 

may be injected into the flowing fluid and the resulting coloured filament lines 
at a given location give the streak lines (Fig 5.11).

 Note.    In case of a steady flow there is no geometrical distinction between the streamlines, path lines and 
streak lines; they are coincident if they originate at the same point. For an unsteady flow (e.g. a person 
giving out whiff of smoke from a cigarette), the path, streak and stream lines are all different.

NozzleStreak line

Smoke
generator

Dye injected

 Fig. 5.10. Streak line of smoke issuing from a nozzle. Fig. 5.11. Streak lines at t = t1.

 Example 5.1.  In a fluid, the velocity field is given by
  V = (3x + 2y) i + (2z + 3x2) j + (2t – 3z) k
 Determine:
 (i) The velocity components u, v, w at any point in the flow field;
 (ii) The speed at point (1, 1, 1);
 (iii) The speed at time t = 2s at point (0, 0, 2).
 Also classify the velocity field as steady, or unsteady, uniform or non-uniform and one, two or 
three dimensional.
 Solution. Given:  Velocity field, V = (3x + 2y) i + (2z + 3x2) j + (2t – 3z) k  
 (i) Velocity components:
  The velocity components are:
    u = 3x + 2y, v = (2z + 3x2), w = (2t – 3z)  (Ans.)
 (ii) Speed at point (1, 1, 1), V(1,1, 1):
  Substituting x = 1, y = 1, z = 1 in the expressions for u, v and w, we have:
    u = (3 + 2) = 5, v = (2 + 3) = 5, w = ( 2t – 3)
	 	∴ V2 = u2 + v2 + w2
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     = 52 + 52 + (2t – 3)2

     = 25 + 25 + 4t2 – 12t + 9
     = 4t2 – 12t + 59

	 	∴ V(1, 1, 1) = 24 – 12 + 59t t   (Ans.)

 (iii) Speed at t = 2s at point (0, 0, 2):
    Substituting t = 2, x = 0, y = 0, z = 2 in the expressions for u, v and w, we get:
     u = 0, v = (2 × 2 + 0) = 4, w = ( 2 × 2 – 3 × 2) = – 2
	 	∴ V2 = u2 + v2 + w2 = 0 + 42 + (–2)2 = 20

  or, V(0,0.2) = 20  = 4.472 units (Ans.)

 Velocity field, type:
 (i) Since V at given (x, y, z) depends on t it is unsteady flow, (Ans.)
 (ii) Since at given t velocity changes in the X direction it is non-uniform flow. (Ans.)
 (iii) Since V depends on x, y, z it is three dimensional flow. (Ans.)
 Example 5.2 Velocity for a two dimensional flow field is given by
  V = (3 + 2xy + 4t2) i + (xy2 + 3t) j
 Find the velocity and acceleration at a point (1,2) after 2 sec.

 Solution. Given: Velocity field:  V = (3 + 2xy + 4t2) i + (xy2 + 3t) j
 Velocity at (1, 2), V(1,2):
 Substituting x = 1, y = 2, t = 2 in the expression of velocity field, we get: 
  V = (3 + 2 × 1 × 2 + 4 × 22) i + (1 × 22 + 3 × 2) j
   = (3 + 4 + 16) i + (4 + 6) j
   = 23i + 10j

	 ∴ V(1,2) = 2 223 10+  = 25.08 units (Ans.)

 Acceleration at point (1, 2), a(1,2):

 We know that:  a = dV V V Vu v
dt x y t

∂ ∂ ∂ = + + ∂ ∂ ∂ 
 Also, V = (3 + 2xy + 4t2)i + (xy2 + 3t) j ...(Given)

	 ∴ V
x

∂
∂

 = 2yi + y2 j,

  V
y

∂
∂

 = 2xi + 2xyj, and

  V
t

∂
∂

 = 8 ti + 3 j

	 ∴ a = (3 + 2xy + 4t2) (2yi + y2j) + (xy2 + 3t) (2xi + 2xyj) + (8ti + 3j)
  ( u = 3 + 2xy + 4t2 and  v = xy2 + 3t)
 Substituting the values, we get:
  a = (3 + 2 × 1 ×2 + 4 × 22) (2 × 2i + 22 j) + (1 × 22 + 3 × 2)
    (2 × 1i + 2 × 1 × 2j) + ( 8 × 2 × i + 3 j)
   = (3 + 4 + 16) (4i + 4j) + (4 + 6) (2i + 4j) + (16i + 3j)
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   = 23(4i + 4j) + 10 (2i + 4j) + (16i + 3j)
   = 92i + 92j + 20i + 40j + 16i + 3j
   = 128 i + 135 j

	 ∴ a(1,2) = 2 2128 135+  = 186.03 units (Ans.)

 Example 5.3. Find the velocity and acceleration at a point (1, 2, 3) after 1 sec. for a three-
dimensional flow given by u = yz + t, v = xz – t, w = xy m/s.
 Solution. Given: Three-dimensional flow field is given as:
  u = yz + t, v = xz – t, w = xy m/s
 Velocity at a point 1, 2, 3 V(1, 2, 3):
 Velocity at a point (1, 2, 3) after 1s is calculated as follows:
  u = yz + t = 2 × 3 + 1= 7 m/s, v = xz – t = 1× 3 – 1 = 2 m/s and
  w = xy = 1 × 2 = 2 m/s.
	 ∴ V(1,2,3) = 7i + 2j + 2k

   = 2 2 27 2 2+ +  = 7.55 m/s

 Hence, V(1, 2, 3) = 7.55 m/s (Ans.)
 Acceleration, a(1,2,3):
 Now, V = (yz + t)i + (xz – t) j + xy k m/s

 Acceleration,  a = dV V V V Vu v w
dt x y z t

∂ ∂ ∂ ∂ = + + + ∂ ∂ ∂ ∂ 
  a = (yz + t) (zi + yk) + (xz – t) (zi + xk) + xy (yi + xj) + (1i – 1j)
	 ∴ a(1, 2, 3)

 = 7( 3j + 2k) + 2(3i + 1k) + 2 (2i + 1j) + (1i – 1j)
   = (21j + 14k) + (6i + 2k) + (4i + 2j) + (1i – 1j)
   = (10i + 23j + 16k) + (1i – 1j)
 The convective acceleration components are: (10, 23, 16) m/s2

 The local acceleration components are: (1, –1) m/s2 along x and y directions.
 The total acceleration of fluid particles at the points (1, 2, 3) is given by:

  a(1, 2, 3) = 2 2 2(10 1) [23 (–1)] 16+ + + +

   = 2 2 211 22 16+ +  = 29.34 m/s2

 Hence, a(1, 2, 3) = 29.34 m/s2 (Ans.)

 Example 5.4. The velocity along the centreline of a nozzle of length l is given by

    
2

2 1 –
2
xV t
l

 =  
 

 where V = velocity in m/s, t = time in seconds from commencement of flow, x = distance from 
inlet to nozzle. Calculate the local acceleration, convective acceleration and the total acceleration 
when t = 6s, x = 1m and l = 1.6 m.

 Solution. The velocity along the centreline of a nozzle, V = 
2

2 1 –
2
xt
l

 
 
 

 ...(Given)
 Local acceleration:

   Local acceleration =  
2

2 1 –
2

V x
t l

∂  =  ∂  
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 At  t = 6 s      and      x = 1m,

  V
t

∂
∂

 = 
212 1 –

2 1.6
 
 × 

 = 0.945 m/s2 (Ans.)

 Convective acceleration:

  Convective acceleration = VV
x

∂
∂

   = 
2 12 1 – 2 2 1 – –

2 2 2
x xt t
l l l

    × ×    
    

   = 
324– 1 –

2
t x
l l

 
 
 

 At   t = 6s      and      x = 1 m,

  Convective  acceleration = 
324 6 1– 1 –

1.6 2 1.6
×  

 × 
   = – 29.24 m/s2 (Ans.)
 Total acceleration:
  Total acceleration = Local acceleration + convective acceleration
   = 0.945 + (– 29.24) = – 28.295 m/s2 (Ans.)

 Example 5.5. A conical pipe diverges uniformly from 100 mm to 200 m diameter over a length 
of 1 m. Determine the local and convective acceleration at the mid-section assuming 
 (i) Rate of flow is 0.12 m3/s  and it remains constant;
 (ii) Rate of flow varies uniformly from 0.12 m3/s to 0.24 m3/s in 5 sec., at t = 2 sec.
 Solution. Given: 
  Diameter at the inlet, D1 = 0.1m.
  Diameter at the outlet, D2 = 0.2 m
  Length, l = 1 m
 Diameter at any distance x metres from 
the inlet,
  D = 2 1

1
–D DD x
l

 + × 
 

   = 0.2 – 0.10.1
1

x + × 
 

   = 0.1 + 0.1x = 0.1 (1 + x)
	 ∴ Cross-sectional area,

  Ax = { }22 0.1(1 )
4 4xD xπ π
× = +

   = 0.00785 (1 + x)2

 Velocity of flow, ux (= u) = 20.00785(1 )x

Q Q
A x

=
+

     Velocity gradient, 2 3
– 2

0.00785 (1 ) 0.00785(1 )
u Q Q
x x x x
∂ ∂  = = ∂ ∂ + + 

 (i) Discharge Q = 0.12 m3/s = constant (at any section)

          Acceleration  = u uu
t x

∂ ∂
+

∂ ∂

D = 0.2 m2
D = 0.1 m1

Dx

l = 1 m

2

x

Conical pipe

Fig. 5.12
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 (a) The local acceleration:
  The local acceleration at mid-section

     = u
t

∂
∂

 = 0, since the flow is steady (Ans.)

 (b) The convective acceleration:
  The convective acceleration,

    ax = 2 3
– 2

0.00785 (1 ) 0.00785(1 )
u Q Qu
x x x
∂

= ×
∂ + +

     = 
2

2 5
– 2

(0.00785) (1 )
Q

x+

	 	∴  The convective acceleration at mid-section,

  (ax)x = 0.5m = 
2

2 5
– 2 (0.12)

(0.00785) (1 0.5)
×

+

   = – 61·5 m/s2 (Ans.)
 The –ve sign indicates decrease in velocity along the direction of flow (this is so as the cross-
sectional area is increasing)
 (ii) Discharge Q varies w.r.t. time:
  The discharge Q varies from 0.12 m3/s to 0.24 m3/s in 5 s.
  At t =  2 s, the discharge is,

    Q = 30.24 – 0.120.12 2 0.168 m /s
5

+ × =

 (a) The local acceleration:
  The local acceleration at mid-section,

     = 2 2
1

0.00785 (1 ) 0.00785 (1 )
u Q Q
t t tx x

∂ ∂ ∂ = = × ∂ ∂ ∂+ + 

     = 2
1 0.168 – 0.12

20.00785(1 0.5)
 ×  
 +

  [since discharge changes 0.12 m3/s to 0.168 m3/s in 2s]
   = 1.36 m/s2 (Ans.)
 (b) The convective acceleration:
  The convective acceleration at mid-section,

    (ax)x = 0.5 = 
2 2

2 5 2 5
2 – 2 0.168

(0.00785) (1 ) (0.00785) (1 0.5)
Q

x
− ×

=
+ +

     = – 120·6 m/s2 (Ans.) 
  Total acceleration along the main flow is,
    (a)total = (a)local + (a)conv.
     = 1.36 – 120.6 = – 119.24 m/s2 (Ans.)

 Example 5.6.  At entry to the pump intake the velocity is found to vary inversely as the square 
of radial distance from inlet to suction pipe. The velocity was found to be 0.6 m/s at a radial distance 
of 1.5 m. Calculate the acceleration of flow at radial distances of 0.5 m, 1.0 m and 1.5 m from the 
inlet. Consider the streamlines to be radial.
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 Solution. The distribution of velocity is given by the relation:

  v = 2
C
r

 ...(1)

 (where,     r = radial distance from the intake)
 Since the streamlines are radial, normal acceleration is zero.

  Acceleration, a = 
t s

∂ν ∂ν
+ ν

∂ ∂

 But 
t

∂ν
∂

 = 0... the flow being steady (as the velocity is dependent only on the radial distance 

from intake).

	 ∴ a = .
s
∂ν

ν
∂

 Also, v = 2 andC
s rr
∂ν ∂ν

=
∂ ∂

 (since, r is measured along the streamline)

 and, v
r
∂
∂

 = 3
2– C
r

 ∴ a = 
2

2 3 5
2 2– –v C C Cv

s r r r
∂  = = ∂  

 ...(2)

 At r = 1.5 m, v = 0.6 m/s
 Substituting these values in eqn. (1), we get:

  0.6 = 21.5
C   or  C = 1.35 m3/s

 Substituting, now, C = 1.35 in eqn. (2), we have:

  a = 
2

5 5
2 1.35 3.645–

r r
×

− =

 (i) Acceleration of flow at r = 0.5 m = 5
3.645–
(0.5)

 = –116.64 m/s2 (Ans.)

 (ii) Acceleration of flow at r = 1.0 m = 5
3.645–
(1.0)

 – 3.645 m/s2 (Ans.)

 (iii) Acceleration of flow at r = 1.5 m = 5
3.645–
(1.5)

= – 0.48 m/s2 (Ans.)

 Example 5.7. For a three-dimensional flow the velocity distribution is given by  u = – x,  
v = 3 – y and w = 3 – z. What is the equation of a streamline passing through (1,2,2)?

 Solution. Given: u = – x, v = 3 – y, w = 3 – z ...(velocity distribution)
 Equation of a streamline passing through (1, 2, 2):
 The streamlines are defined by:

  dx
u

 = dy dz
v w

=
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 Substituting for u,v and w, we get:

  
–
( )

dx
x
i

 = 3 – 3 –
( ) ( )

dy dz
y z

ii iii

=

 Considering the expressions (i) and (ii) and integrating, we get:

  
–
dx

x∫  = 
(3 – )

dz
y∫

   = – logex = – loge (3 – y) + C1

 (where, C1 = constant of integration).
 Since the streamline passes through x = 1, y = 2       ∴ C1 = 0
	 ∴ (x)–1 = (3 – y)–1       or            x = (3 – y) ...(1)
 Considering the expressions (i) and (iii), and integrating, we get:

  
–
dx

x∫  = 
3 –

dy
z∫

 or, – logex = – log (3 – z) + C2

 (where C2 = constant of integration)
 Since the streamline passes through x = 1, z = 2        ∴ C2 = 0
	 ∴ x–1 = (3 – z)–1

 or, x = ( 3 – z) ...(2)
 From (1) and (2), the equation of the streamline passing through (1, 2, 2) is given as:
  x = (3 – y) = (3 – z) (Ans.)

 Example 5.8. Obtain the equation to the streamlines for the velocity field given as:
  V = 2x3i – 6x2yj

 Solution. Given: Velocity field, V = 2x3i – 6x2yj
 Here, u = 2x3, v = 6x2y
 The streamlines in two dimensions are defined by:

  dx
u

 = dy
v

 or, dy
dx

 = 
2

3
– 6 – 3

2
v x y y
u xx
= =

 Separating the variables, we have:

  dy
y

 = –3dx
x

 Integrating, we get:
  ln (y) = – 3ln (x) + C1
 or, ln (y) + 3 ln (x) = C1
 or, yx3 = C (Ans.)

 Note.    The	streamlines	in	the	first	quadrant	can	be	sketched	by	giving	different	values	for	the	constant																																																																		

 
3

CC y
x

 = 
 

.
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 Example 5.9. For the following flows find the equation of the streamline passing through (2,2):
 (i) V = 3 xi – 3yj
 (ii) V = –y2i – 6xj
 Solution. Equation of the streamline passing through (2, 2):
 (i)   V  =  3xi – 3yj
    u  =  3x and v = – 3y
  The equation of a streamline in two-dimensional flow is given as: 

  dx
u

 = dy
v

 or, 
3
dx
x

 = –
3
dy

y

  Integrating both sides, we get:

  
3
dy

x∫  = –
3
dy

y∫

  
1 ( )
3

ln x  = 
1 1– ( ) ( )
3 3

ln y ln C+

 where, C is constant.
 or, ln (xy) = ln (C)      or      xy = C
  For the streamline passing through (2, 2),
  C = 2 × 2 = 4
  Hence, the required streamline equation is: xy = 4 (Ans.) 
 (ii)   V  = – y2i – 6xj
    u  = – y2 and v = – 6x

  2– dx
y

 = –
6
dy

x
          or         6x dx = y2dy

  6x dx∫  = 2y dy∫

 or, 
26

2
x

 = 
3

3
y C+

 or, 
3

23 –
3
yx  = C

 Putting, x = 2, y = 2, we get:

  3 × (2)2 – 
3(2)

3
 = C         or       C = 28

3
  Hence the equations of the required streamline is:

  
3

23 –
3
yx  = 28

3
  9x2 – y3  =  28 (Ans.)
 Example 5.10. The velocity vector in a flow is given by: 
  V = 3xi + 4yj – 7zk
 Determine the equation passing through a point L(1, 2, 3).
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 Solution. The equation of a streamline is given as:

  dx
u

 = dy dz
v w

=

 Here,   u = 3x, v = 4y,   and   w = – 7z

	 ∴ 
3
dx
x

 = –
4 7
dy dz

y z
=

 Considering equations involving x and y, on integration we get: 

  
1 ( )
3

ln x  = 1
1 ( ) ( )
4

ln y ln C′+  where C′1 = a constant

 or, y = C1 x
4/3  ...(i)

 where, C1 is another constant:
 Similarly, by considering equations with x and z and on integration, we have:

  
1 ( )
3

ln x  = 2
1– ( ) ( )
7

ln z ln C′+ , where C′2 =  a constant

 or, z = 2
7/3

C
x

 ...(ii)

 where, C2 is another constant.
 Inserting the coordinates of the point L(1, 2, 3), we get:

 From eqn. (i) C1 = 4/3 4/3
2

( ) (1)
y

x
=  = 2

 From eqn. (ii) C2 = zx7/3 = 3 × (1)7/3 = 3
 Hence, the streamline passing through L is given by: 

  y = 2x4/3 and z = 7/3
3

x
 (Ans.)

5.5.  RATE OF FLOW OR DISCHARGE 

 Rate of flow (or discharge) is defined as the quantity of a liquid flowing per second through a 
section of pipe or a channel. It is generally denoted by Q. Let us consider a liquid flowing through 
a pipe.
 Let, A = Area of cross-section of the pipe, and
  V = Average velocity of the liquid.
	 ∴  Discharge, Q = Area × average velocity i.e., Q = A.V ...(5.21)
 If area is in m2 and velocity is in m/s, then the discharge,
  Q = m2 × m/s = m3/s = cumecs.

5.6.  CONTINUITY EQUATION 

 The continuity equation is based on the principle of conservation of mass. It states as follows:
 “If no fluid is added or removed from the pipe in any length then the mass passing across 
different sections shall be same.”
 Consider two cross-sections of a pipe as shown in Fig 5.13
 Let, A1 = Area of the pipe at section 1–1,
  V1 = Velocity of the fluid at section 1–1,
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  ρ1 = Density of the fluid at section 1–1,
 and  A2, V2, ρ2 are corresponding values at sections 2–2.
 The total quantity of fluid passing through section 1–1= ρ1 A1 V1
 and, the total quantity of fluid passing through section 2–2 = ρ2A2V2
 From the law of conservation of mass (theorem of continuity), we have:
  ρ1A1V1 = ρ2A2V2 ...(5.22)
 Eqn. (5.22) is applicable to the compressible as well as 
incompressible fluids and is called Continuity Equation. In case 
of incompressible fluids, ρ1 =	ρ2 and the continuity eqn. (5.21) 
reduces to:
  A1 V1 = A2V2 ...(5.23)
 Example 5.11. The diameters of a pipe at the sections 1-1and 
2-2 are 200 mm and 300 mm respectively. If the velocity of water 
flowing through the pipe at section 1-1 is 4m/s, find:
 (i) Discharge through the pipe, and
 (ii) Velocity of water at section 2-2
 Solution. Diameter of the pipe at section 1-1,
  D1 = 200 mm = 0.2 m

	 ∴   Area, A1 = 2 2
1 0.2

4 4
Dπ π

= ×  = 0.0314 m2

  Velocity, V1 = 4 m/s
 Diameter of the pipe at section 2-2,
  D2 = 300 mm

	 ∴   Area, A2 = 2 2
2 0.3

4 4
Dπ π

= ×  = 0.0707 m2

 (i) Discharge through the pipe, Q:
  Using the relation,
   Q = A1V1, we have:
   Q = 0.0314 × 4 = 0.1256 m3/s  (Ans.)
 (ii) Velocity of water at section 2-2, V2:
  Using  the relation,
   A1V1 = A2V2, we have:

   V2 = 1 1

2

0.0314 4
0.0707

AV
A

×
=

    = 1.77 m/s (Ans.)

 Example 5.12. A pipe (1) 450 mm in diameter branches into two pipes (2 and 3) of diameters 
300 mm and 200 mm respectively as shown in Fig. 5.15. If the average velocity in 450 mm diameter 
pipe is 3 m/s find:
 (i) Discharge through 450 mm diameter pipe;
 (ii) Velocity in 200 mm diameter pipe if the average velocity in 300 mm pipe is 2.5 m/s.

 Solution.  Diameter, D1 = 450 mm = 0.45 m

	 ∴  Area, A1 = 20.45
4
π
×  = 0.159 m2

1

2

2

1

Fig. 5.13. Fluid flow through
a pipe.

1

2

2

1

D1 = 200 mm

D2 = 300 mm

Fig. 5.14
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V1 = 3 m/s

V 2
= 2.5 m/s

V
3 = ?

D 2
= 300 mm

D
3 = 200 mm

D1 = 450 mm

2

3

1

Fig. 5.15

  Velocity, V1 = 3 m/s
  Diameter, D2 = 300 mm = 0.3 m

	 ∴   Area, A2 = 
4
π  × 0.32 = 0.0707 m2

  Velocity, V2 = 2.5 m/s
  Diameter, D3 = 200 mm = 0.2 m

  Area, A3 = 
4
π  × 0.22 = 0.0314 m2

 (i) Discharge through pipe (1) Q1:
  Using the relation, Q1 = A1V1= 0.159 × 3
   = 0.477 m3/s (Ans.)
 (ii) Velocity in pipe of diameter 200 mm i.e. V3:
  Let Q1, Q2 and Q3 be the discharge in pipes 1, 2 and 3 respectively.
  Then, according to continuity equation:
  Q1 = Q2 + Q3 ...(i)
 where, Q1 = 0.477 m3/s (calculated earlier)
 and, Q2 = A2V2 = 0.0707 × 2.5 = 0.1767 m3/s
	 																							∴ 0.477 = 0.1767 + Q2 [from eq. (i)]
 or, Q3 = 0.477 – 0.1767  0.3 m3/s
 But, Q3 = A3V3

	 																							∴ V3 = 3

3

0.3
0.0314

Q
A

=  = 9.55 m/s

 i.e. V3 = 9.55 m/s (Ans.)

5.7.  CONTINUITY EQUATION IN CARTESIAN CO-ORDINATES 

 Consider a fluid element (control volume) – parallelopiped with sides dx, dy and dz as shown in 
Fig. 5.16.

Z

Y

O
X

B

C G

F

E

D

A

H

dz

dy

dx

Fig. 5.16. Fluid element in three-dimensional flow.
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 Let, 	ρ = Mass density of the fluid at a particular instant;
 u, v, w = Components of velocity of flow entering the three faces of the parallelopiped.
 Rate of mass of fluid entering the face ABCD (i.e. fluid influx).
   = ρ × velocity in X-direction × area of ABCD
   = ρ udy dz ...(i)
 Rate of mass of fluid leaving the face EFGH (i.e. fluid efflux).

   = ρ u dy dz + ( )u dy dz dx
x
∂

ρ
∂

 ...(ii)

 The gain in mass per unit time due to flow in the X-direction is given by the difference between 
the fluid influx and fluid efflux.
	 ∴ Mass accumulated per unit time due to flow in X-direction

   = – ( )u dy dz u u dx dy dz
x
∂ ρ ρ + ρ ∂ 

   = – ( )u dx dy dz
x
∂

ρ
∂

 ...(iii)

 Similarly, the gain in fluid mass per unit time in the parallelopiped due to flow in Y and 
Z-directions

   = –
y
∂
∂

 (ρv) dx dy dz  (in Y-direction) ...(iv)

   = –
z
∂
∂

 (ρw) dx dy dz  (in Z-direction) ...(v)

 The total (or net) gain in fluid mass per unit for fluid along three co-ordinate axes

   = – ( ) ( ) ( )u v w dx dy dz
x y z
∂ ∂ ∂ ρ + ρ + ρ ∂ ∂ ∂ 

 ...(vi)

 Rate of change of mass of the parallelopiped (control volume)

   = 
t
∂
∂

 (ρ dx dy dz) ...(vii)

 Equations (vi) and (vii), we get:

           – ( ) ( ) ( )u v w dx dy dz
x y z
∂ ∂ ∂ ρ + ρ + ρ ∂ ∂ ∂ 

 = ( )dx dy dz
t
∂

ρ
∂

 Simplification and rearrangement of terms would reduce the above expression to:

                        ( ) ( ) ( )u v w
x y z t
∂ ∂ ∂ ∂ρ

ρ + ρ + ρ +
∂ ∂ ∂ ∂

 = 0 ...(5.24)

 This eqn. (5.24) is the general equation of continuity in three-dimensions and is applicable to 
any type of flow and for any fluid whether compressible or incompressible.

 For steady flow 0
dt
∂ρ = 

 
 incompressible fluids (ρ = constant) the equation reduces to: 

       u v w
x y y
∂ ∂ ∂

+ +
∂ ∂ ∂

 = 0 ...(5.25)

 For two dimensional flow, eqn. (5.25) reduces to:
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  u v
x y
∂ ∂

+
∂ ∂

 = 0 ( w = 0)

 For one dimensional flow, say in X-direction, eqn. (5.25) takes the form:

  u
x
∂
∂

 = 0 ( v = 0, w = 0)

 Integrating with respect to x, we get:
  u = constant ...(5.26)
 If the area of flow is a then the rate of flow is
  Q = a.u = constant for steady flow
 which is the same eqn. (5.23) and states that if area of flow a is constant the velocity of flow u 
will also be constant.

5.8.  EQUATION OF CONTINUITY IN POLAR COORDINATES 

 Consider a fluid element LMST as shown in Fig. 5.17. The sides of the element has the following 
dimensions.
  LT = MS = dr; LM = rdθ and ST = (r + dr)dθ 
 Let, Vr = Component of the velocity in the radial direction, and
  Vθ = Component of the velocity in the tangential direction.
 Further, let thickness of the element perpendicular to the plane of  paper be unity. As the fluid 
flows  through the element, changes will place in its velocity as well as in the density.

�

d�

dr

(

)

r +
dr

d�

v �v r

v drr +
�

�

v

r

r

v d
�

+ �
�

��

v
�

L

M

T

S

Element

r

r

r·d�

Fig. 5.17. Control volume for equation of continuity in polar coordinates.

 Flow in radial direction:
 Mass of fluid entering the face LM during time dt is given by:
  Fluid influx = Density × (velocity × area) × time
   = ρ × (vr × rdθ) × dt 
 Mass of fluid leaving the face ST during the same time dt is given by:

  Fluid efflux  = ( )r rv v dr
r
∂ ρ + ρ ∂ 

 (r + dr) dθ.dt

 Mass accumulated in the element because of flow in radial direction
   = Fluid inffux – fluid efflux
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   = ρ × (vr × rdθ) × dt – ( )r rv v dr
r
∂ ρ + ρ ∂ 

 (r + dr) dθ dt 

   = – ( ) ·r rv dr d v dr d dt
r
∂ ρ θ + ρ θ ∂ 

    [Neglecting terms containing (dr)2]
 Flow in tangential direction:
 The mass accumulated due to flow in the tangential direction (by a similar treatment as discussed 
earlier).

   = { }– ( ) – ( )v dr v v d dr dt v dr d dtθ θ θ θ
 ∂ ∂
ρ ρ + ρ θ = ρ θ ∂θ ∂θ 

	 ∴ Total gain in fluid mass

   = – ( ) ( )r rv dr d v dr rd v dr d dt
r θ
∂ ∂ ρ θ + ρ θ + ρ θ ∂ ∂θ 

   = – ( ) ( )r rv v r v dr d dt
r θ
∂ ∂ ρ + ρ + ρ θ ∂ ∂θ 

 ...(i)

 Also, the rate of change of fluid mass in the element LMST

   = 
t
∂
∂

 (Density × Volume) dt

   = ( )
2

rd r dr d dr dt
t t
∂ θ + + θ ∂ ρ × ∂   ∂

  (ρrdθ	dr) dt ...(ii)

 As per law of conservation of mass: 
 The total gain in mass = The rate of change of fluid mass in the element LMST

	 ∴																										 – ( ) ( ) ( )r rv v r v dr d dt r d dr dt
r tθ
∂ ∂ ∂ ρ + ρ + ρ θ = ρ θ ∂ ∂θ ∂ 

 or,        ( ) ( ) ( )r rv v r v dr d r d dr
r tθ
∂ ∂ ∂ ρ + ρ + ρ θ + ρ θ ∂ ∂θ ∂ 

 = 0 

 For steady and compressible flow, rd dr
t
∂
ρ θ

∂
 = 0

	 ∴                                   ( ) ( )r rv v r v dr d
r θ
∂ ∂ ρ + ρ + ρ θ ∂ ∂θ 

 = 0 ...(5.27)

 Further, for incompressible flow, ρ = constant.

	 ∴  ( ) ( )r rv v r v
r θ
∂ ∂

+ +
∂ ∂θ

 or,  r r vv v
r r r

θ∂∂
+ +

∂ ∂θ
 = 0 ...(5.28)

 Example 5.13. Determine which of the velocity component sets given below satisfy the equation 
of continuity:
 (i) u = A sin xy
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  v = – A sin xy
 (ii) u = x + y
  v = x – y
 (iii) u = 2x2 + 3y
  v = – 2xy + 3y3 + 3zy

  w = 3–
2

 z2 – 2xz – 6yz

 Solution. (i)  u = A sin xy; v = – Asin xy

  u
x
∂
∂

 = Ay cos xy ; v
y
∂
∂

 = – Ax cos xy

  u v
x y
∂ ∂

+
∂ ∂

 = Ay cos xy – Ax cos xy ≠ 0

  i.e. Continuity equation is not satisfied. (Ans.)
 (ii) u = x + y; v = x – y

    u
x
∂
∂

 = 1; v
y
∂
∂

 = 1

    u v
x y
∂ ∂

+
∂ ∂

 = 1 – 1 = 0

  i.e. Continuity equation is satisfied (Ans.)

 (iii)  u = 2x2 + 3y; v = – 2xy + 3y3 + 3zy; w = 3–
2

 z2 – 2xz – 6yz

    u
x
∂
∂

 = 4x; v
y
∂
∂

 = – 2x + 9y2 + 3z ; w
z

∂
∂

 = – 3z – 2x – 6y

  Hence,        u v w
x y z
∂ ∂ ∂

+ +
∂ ∂ ∂

 = 4x – 2x + 9y2 + 3z – 3z – 2x – 6y ≠ 0

  i.e. Continuity equation is not satisfied (Ans.)
 Example 5.14. Calculate the unknown velocity component in the following, so that the equation 
of continuity is satisfied.

 (i) u = Aex (ii)  u = xAln
l

 
 
 

 (iii) u = ?

  v = ?  v = ?  v = Axy
 Solution. 
 (i) u = Aex;  v = ?

    u
x
∂
∂

 = Aex = – v
y
∂
∂

    v = – – ( )x xAe dy Ae y f x= +∫  (Ans.)

 (ii) u = – xAln
l

 
 
 

 ; v = ?

    u
x
∂
∂

 = 1– – –
( / )

A A v
x l l x y

∂
× = =

∂
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    v = ( )A Aydy f x
x x

= +∫  (Ans.)

 (iii) u = ?; v = Axy

    v
y
∂
∂

 = Ax = – u
x
∂
∂

    u = 
2

– – ( )
2

AxAx dx f y= +∫  (Ans.)

 Example 5.15. In three-dimensional incompressible third flow, the velocity components in x 
and y-directions are:
  u = x2 + y2z3;  v = – (xy + yz + zx)
 Use continuity equation to evaluate an expression for the velocity component w in the z-direction. 
 (Banglore University)
 Solution. The continuity equation for a steady, three-dimensional incompressible fluid flow is   

  u v w
x y z
∂ ∂ ∂

+ +
∂ ∂ ∂

 = 0 ...(i)

  u = x2 + y2z3; v = – (xy + yz + zx)

  u
x
∂
∂

 = 2x ; v
y
∂
∂

 = – (x + z)

 Substituting these values in eqn. (i), we get:

   2x – (x + z) + w
z

∂
∂

 = 0

 or, w
z

∂
∂

 = – x + z

 Integrating w.r.t.z we have:

  w = 
2

–
2
zxz C+ +

 where C is a constant of integration which should be independent of z but may be function of x 
and /or  y i.e.  C = f (x, y)

	 ∴ w = 
2

– ( , )
2
zx f x y+ +  (Ans.)

 Example 5.16. Given  u = ln (y
2 + z2) and  w = ln (x2 + y2). What is the most general form of v 

so that the flow is possible for a steady three-dimensional incompressible flow?

 Solution. u = ln (y2 + z2);  w = ln (x2 + y2)

  u
x
∂
∂

 = 0; w
z

∂
∂

 = 0

 Substituting these values in continuity equation, we get:

  u v w
x y z
∂ ∂ ∂

+ +
∂ ∂ ∂

 = 0

  v
y
∂
∂

 = 0
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 Upon integration w.r.t. z., we get:
  v = f(x, z)
 By symmetry, one of the values of velocity component could be
  v = ln (x2 + z2) (Ans.)

 Example 5.17. For an incompressible fluid the velocity components are: u = x3 – y3 – z2 x,  

v = y3 –z3, w = – 3x2z – 3y2z + 
3

3
z . Determine whether the continuity equation is satisfied.

 Solution. Given: u = x3 – y3 – z3 x, v = y3 – z3, w = –3x2z – 3y2z + 
3

3
z  ... velocity components

 Now,  u
x
∂
∂

 = 3x2 – z2

  v
y
∂
∂

 = 3y2

  w
z

∂
∂

 = – 3x2 – 3y2 + z2

	 ∴ u v w
x y z
∂ ∂ ∂

+ +
∂ ∂ ∂

 = (3x2 – z2) + 3y2 + (– 3x2 – 3y2 + z2) = 0

 Hence, the continuity equation is satisfied. (Ans.)
 Example 5.18.  In a three-dimensional incompressible flow, the velocity components in y and z 
directions are v = ax3 – by2 + cz2; w = bx3 – cy2 + az2x. Determine the missing component of velocity 
distribution such that continuity equation is satisfied.

 Solution. Given:  v  = ax3 – by2 + cz2, and
   w = bx3 – cy2 + az2x
 Missing component, u:
 The continuity equation for an incompressible fluid flow is given as:

  u v w
x y z
∂ ∂ ∂

+ +
∂ ∂ ∂

 = 0 ...(i)

 From the given velocity components:

  v
y
∂
∂

 = – 2by ; w
z

∂
∂

 = 2az x

 Substituting these values in eqn. (i), we get:

  – 2 2u by az x
x
∂

+
∂

 = 0

 or, u
x
∂
∂

 = 2by – 2az x

 Integrating w.r.t.  x, we get:

  u = 
2

2 – 2
2
xbyx az C+  (Ans.)

 [where C = f(y, z), the exact value will be known if the boundary conditions are known].
 The constant of integration C is either a numerical constant or a function which is independent 
of x. If this constant is omitted, the velocity component may be expressed as: 
  u = 2byx – azx2 (Ans.)
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 Example 5.19. The velocity components in x and y directions are given as u = 2xy3/3 –x2y and 
v = xy2 – 2yx3/3. Indicate whether the given velocity distribution is:
   (i) A possible field of flow;
 (ii) Not a possible field of  flow.   [UPSC Exam .]
 Solution. Given.  u = 2xy3/3 – x2y, v = xy2 – 2yx3/3 ...Velocity components
 A possible flow field (two-dimensional) must satisfy the continuity equation.

	 ∴ u v
x y
∂ ∂

+
∂ ∂

 = 0 ...(i)

 Now, u
x
∂
∂

 = 3 32 2– 2 , 2 –
3 3

vy xy xy x
y
∂

=
∂

 Substituting these values in eqn. (i), we get:

   3 3 3 32 2 2– 2 2 – ( – )
3 3 3

y xy xy x y x   + =   
   

 Since the continuity equation is not satisfied, the given velocity components, therefore, do not 
represent a possible flow field. (Ans.)
 Example 5.20. In an incompressible flow, the velocity vector is given by:
  V = (6xt + yz2)i + ( 3t + xy2)j + (xy – 2xyz – 6 tz) k
 (i) Verify whether the continuity equation is satisfied.
 (ii) Determine the acceleration vector at point L (2, 2, 2) at t = 2.0.
 Solution. (i) V = (6xt + yz2) i + (3t + xy2) j + (xy – 2xyz – 6tz) k ...(Given)
   = ui + vj + wk

  u = 6xt + yz2, u
x
∂
∂

 = 6t

   v = 3t + xy2, v
y
∂
∂

= 2xy

  w = xy – 2xyz – 6tz, = w
z

∂
∂

– 2xy – 6t

  u v w
x y z
∂ ∂ ∂

+ +
∂ ∂ ∂

 = 6t + 2xy – 2xy – 6t = 0

  Hence, the continuity equation is satisfied (Ans.)
 (ii)   Acceleration, a  =  axi + ay j + azk

    ax = u u u uu v w
t x y z

∂ ∂ ∂ ∂
+ + +

∂ ∂ ∂ ∂

     = 6x + (6xt + yz2) (6t) + (3t + xy2) (z2) + (xy – 2xyz – 6tz) (2yz)
    At point L (2,2,2) and at t  =  2,
    ax = 6 × 2 + (6 × 2 × 2 + 2 × 22) ( 6 × 2) + (3 × 2 + 2 × 22) (22) 
      + (2 × 2 – 2 × 2 × 2 × 2 – 6 × 2 × 2) ( 2 × 2 × 2)
     = 12 + (32) (12) + (14) (4) + (–36)(8) = 164 units

    ay = v v v vu v w
t x y z
∂ ∂ ∂ ∂

+ + +
∂ ∂ ∂ ∂

     = 3 + (6xt + yz2)(y2) + (3t + xy2)(2xy) + (xy – 2xyz – 6tz) (0)
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  At point L(2, 2, 2) and at t = 2
  ay = 3 + (6 × 2 × 2 + 2 × 22) (22) + (3 × 2 + 2 × 22) (2 × 2 × 2)   
    + (2 × 2 – 2 × 2 × 2 – 6 × 2 × 2) (0)
   = 3 + (32) (4) + (14) (8) = 243 units.

 Similarly, az = w w w wu v w
t x y z

∂ ∂ ∂ ∂
+ + +

∂ ∂ ∂ ∂

   = – 6z + (6xt + yz2) (y – 2yz) + (3t + xy2) (x – 2xz)
    + (xy – 2xyz – 6tz) (– 2xy – 6t)
  At point L (2, 2, 2) and at t = 2,
  az = – 6 × 2 + (6 × 2 × 2 + 2 × 22) (2 – 2 × 2 × 2) + ( 3 × 2 + 2 × 22) 
    (2 – 2 × 2 × 2) + ( 2 × 2 – 2 × 2 × 2 × 2 – 6 × 2 × 2) (– 2 × 2 × 2 – 6 × 2)
   = – 12 + (32) (– 6) + (14) (– 6) + (– 36) (– 20) = 432 units.
  Hence at L (2, 2, 2) and at t = 2,
  a = axi + ay j + az k
 or, a = 164 i + 243j + 432k (Ans.)
 Example 5.21. A two-dimensional incompressible flow in cylindrical polar coordinates is given 
by:
  vr = 2r sin θ cos θ; vθ = – 2r sin2θ
 Determine whether these velocity components represent a physically possible flow field.
 Solution. The continuity equation for a steady, two-dimensional incompressible flow is

  r r vv v
r r r

θ∂∂
+ +

∂ ∂θ
 = 0 ...[Eqn. (5.28)]

 From the given velocity components, we have:

  rv
r

∂
∂

 = 
r
∂
∂

 ( 2r sin θ cos θ) = 2 sin θ cos θ

  
vθ∂
∂θ

 = 2(– 2 sin )r∂
θ

∂θ
 = – 4r sin θ cos θ

 Inserting these values in the above equation, we get:

   2 sin cos 4 sin cos2sin cos –r r
r r
θ θ θ θ

+ θ θ  = 0

 or      2sinθ cos θ + 2 sin θ cos θ – 4 sin θ cos θ  = 0
 i.e., L. H. S. = 0
 Thus the continuity equation is satisfied and hence the flow is physically possible. (Ans.)
 Example 5.22. The tangential component of velocity in a two-dimensional flow of incompressible 
fluid is 

  vθ = 2
sin– C
r

θ

 where C is a constant.
 (i) Using continuity equation, determine the expression for radial velocity v.
 (ii) Find the magnitude and direction of resultant velocity.

 Solution. Given: vθ = 2
sin– C
r

θ
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 (i) Expression for vr :
  The continuity equation for a two-dimensional, steady incompressible flow is

   r r vv v
r r r

θ∂∂
+ +

∂ ∂θ
 = 0 [Eqn. (5.28)]

  or ( ) ( )rrv v
r θ
∂ ∂

+
∂ ∂θ

 = 0 ...(i)

  For the given velocity component:

   
vθ∂
∂θ

 = 2 2
sin– – cosC C
r r

∂ θ  = θ ∂θ  
 ...(ii)

  From eqn. (i) and (ii), we have:

   ( )rrv
r
∂
∂

 = 2 cosC
r

θ

  Integrating both sides w.r.t. r we have:

   rvr = 2
0

coscos –
r C Cdr

rr
θ

θ =∫

	 	∴ Radial component;  vr = θ
2

cosC
r

  (Ans.)

 (ii) Resultant velocity: 

    Resultant velocity = 2 2
rv vθ+

     = 
2 2

2 2
cos sin– –C C
r r

θ θ   +   
   

     = 2 2
2 (cos sin )C

r
θ + θ = 2

C
r

 (Ans.)

5.9.  CIRCULATION AND VORTICITY 

 Let us consider a closed curve in a two-
dimensional flow field shown in Fig. 5.18; the 
curve being cut by the stream lines. Let P be 
the point of intersection of the curve with one 
stream line, θ be the angle which the stream 
line makes with the curve. The component of 
velocity along the closed curve at the point of 
intersection is equal to V cos θ. Circulation Γ is 
defined mathematically as the line integral of the 
tangential velocity about a closed path (contour).
 Thus,

  Γ = cos .V dsθ∫
 where, V = Velocity in the flow field at 

the element ds, and
	 	 θ = Angle between V and tangent to the path (in the positive anticlockwise direction 

along the path) at that point.

Stream lines

Tangent to ds

P

V

�

V
sin

�

V cos �

Fig. 5.18. Circulation in a two-dimensional flow.
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 Circulation around regular curves can be obtained by integration. Let us consider the circulation 
around an elementary box (fluid element ABCD) shown in Fig. 5.19.
 Starting from A and proceeding anticlockwise, we have:

  d Γ = vu x v x y
x
∂ ∆ + + ∆ ∆ ∂ 

 – –uu y x v y
y
∂ + ∆ ∆ ∆ ∂ 

   = – .v u x y
x y
∂ ∂  ∆ ∆ ∂ ∂ 

 The vorticity (Ω) is defined as the 
circulation per unit of enclosed area,

  Ω = . ThusΓ
Α

,

  Ω = –
.

d v u
x y x y
Γ ∂ ∂

=
∆ ∆ ∂ ∂

 ...(5.29)

 If  a flow possesses vorticity, it is 
rotational. Rotation ω (omega) is defined as 
one-half of the vorticity, or

  ω = 1 –
2

v u
x y
∂ ∂ 

 ∂ ∂ 
 The flow is irrotational if rotation ω is 
zero.
 For a three-dimensional flow the rotation is possible about three axes. The expressions for 
rotation ωz,ωx and ωy can be obtained in like manner:

  ωz = 1 –
2

v u
x y
∂ ∂ 

 ∂ ∂ 
 

  ωx = 1 –
2

w v
y z

∂ ∂ 
 ∂ ∂ 

 ...(5.30)

  ωy = 1 –
2

u w
z x
∂ ∂ 

 ∂ ∂ 
 In the vector notation, the above equation can be rewritten as:

  ω = 1 [ ]
2 x y zi j kω + ω + ω

   = 1 ( )
2

V∆ ×  ...(5.31)

 The vector (∆ × V) is the curl of velocity vector.
 Vorticity in a fluid motion is taken numerically equal to twice the value of rotation. 
  Vorticity, Ω = curl V = (∆ × V) ...(5.32)
 Which may be expressed as:

  Ω = ( )

i j k

V
x y z

u v w

∂ ∂ ∂
∇ ×

∂ ∂ ∂

X

D
C

A
B

Fluid element

v

u
�x

�y

Y

u + y�
�

�

u

y

v + x�
�

�

v

x











Fig. 5.19. Irrotational flow condition.
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   = Ω xi  + Ω y j  + Ω zk  ...(5.33)
 The vorticity components are separately given by:

  Ωx = 2 –x
w v
y z

∂ ∂ ω =  ∂ ∂ 

  Ωy = 2 –y
u w
z x
∂ ∂ ω =  ∂ ∂ 

  Ωz = 2 –z
v u
x y
∂ ∂ ω =  ∂ ∂ 

 ...(5.34)

 The motion is described as irrotational when the components of rotation or vorticity are ‘zero’ 
throughout certain portion of the fluid.
 When torque is applied to the fluid particle it will give rise to rotation; the torque is due to 
shear stress. Therefore, the rotation of fluid particle will always be associated with shear stress. As 
the shear stresses, in turn, depend upon the viscosity, the rotational flow occurs where the viscosity 
effects are predominant. However, in the cases where the viscosity effects are small, the flow is 
sometimes assumed to be irrotational. This simplifies analysis of problems of fluid flow.
 Example 5.23.  Given that
  u = – 4ax (x2 – 3y2)
  v = 4ay (3x2 – y2)
 Examine  whether these velocity components represent a physically possible two-dimensional 
flow; if so whether the flow is rotational or irrotational?
 Solution. Given: u  = – 4ax (x2 – 3y2)
  v = 4ay(3x2 – y2) ...Velocity components

 A two-dimensional flow will be continuous if u v
x y
∂ ∂

+
∂ ∂

 = 0

 Now,  u
x
∂
∂

 = 
x
∂
∂

 [ – 4ax (x2 – 3y2)] = 
x
∂
∂

(– 4ax3 + 12axy2) = – 12 ax2 + 12ay2

 and, v
y
∂
∂

 = 
y
∂
∂

 [4ay (3x2 – y2)] = 
y
∂
∂

[12ayx2 – 4ay3] = 12ax2 – 12 ay2 

	 ∴ u v
x y
∂ ∂

+
∂ ∂

 = (– 12ax2 + 12 ay2) + (12ax2 – 12ay2) = 0

 Hence the given velocity components represent a physically possible two-dimensional flow. 
(Ans.)
 The flow will be irrotational if,

  u
y
∂
∂

 = v
x
∂
∂

 

 Now,  u
y
∂
∂

 = 
y
∂
∂

[– 4ax (x2 – 3y2)] = 
y
∂
∂

(– 4ax3 + 12axy2) = 24 axy

  v
x
∂
∂

 = 
x
∂
∂

 [4ay (3x2 – y2)] = 
x
∂
∂

[12ayx2 – 4ay3] = 24 ayx

	 ∴ u
y
∂
∂

 = v
x
∂
∂

, hence the flow is irrotational. (Ans.)
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 Example 5.24. Given that  u = xy, v = 2yz. Examine whether these velocity components 
represent two or three-dimensional incompressible flow; if three-dimensional, determine the third 
component.
 Solution. Given:  u = xy, v = 2yz    ...Velocity components
 A two dimensional flow should satisfy the continuity equation,

  u v
x y
∂ ∂

+
∂ ∂

 = 0 

 But, ( )u xy
x x
∂ ∂

=
∂ ∂

 = y

 and, v
y
∂
∂

 = (2 )yz
y
∂
∂

 = 2z

	 ∴ y + 2z ≠ 0
 Hence, the flow is not two-dimensional.
 For the flow to be three-dimensional, it should satisfy the continuity equation,

  u v w
x y z
∂ ∂ ∂

+ +
∂ ∂ ∂

 = 0

 or, 2 wy z
z

∂
+ +

∂
 = 0

 or, w
z

∂
∂

 = – (y + 2z)

 or, w = [– (y + 2z)] dz + f (x, y, t)

   = 
2

– 2. ( , , )
2
zyz f x y t

 
+ + 

 
   = – yz + z2 + f (x, y, t)
 Hence,  the third component, 
  w = – yz + z2 + f (x, y, t) (Ans.)

 Example 5.25. For a two-dimensional flow, the velocity components are u = x/(x2 + y2), v = y/
(x2 + y2). Determine: (i) The acceleration components ax and ay; (ii) The rotation of wz.

 Solution. Given: a = x/(x2+ y2), v = y/ (x2 + y2) ... Velocity components
 (i) The acceleration components, ax and ay:
  We know that:

  ax = u uu v
x y
∂ ∂

+
∂ ∂

 ...(i)

  ay = v vu v
x y
∂ ∂

+
∂ ∂

 ...(ii)

  u
x
∂
∂

 = 
2 2 2 2

2 2 2 2 2 2 2 2
( ) 1 – (2 ) –

( ) ( )
x x y x x y x

x x y x y x y
∂ + ×  = = ∂ + + + 

  u
y
∂
∂

 = 2 2
x

y yx y
∂ ∂  = ∂ ∂+ 

 [x(x2 + y2)–1] = x × [– (x2 + y2)–2 × 2y] = 2 2 2
2

( )
xy

x y
−

+
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  v
x
∂
∂

 = 2 2 –1
2 2 [ ( ) ]y y x y

x xx y
∂ ∂  = + ∂ ∂+ 

 = 2 2 –2
2 2 2

2– ( ) 2 –
( )

xyy x y x
x y

× + × =
+

  v
y
∂
∂

 = 
2 2

2 2 2 2 2
( ) 1 – (2 )

( )
y x y y y

y x y x y
∂ + ×  = ∂ + + 

 = 
2 2

2 2 2
–

( )
x y
x y+

  Substituting these values in eqns. (i) and (ii), we get:

  ax = 
2 2

2 2 2 2 2 2 2 2 2 2
( – ) 2–

( ) ( ) ( )
x y x y xy

x y x y x y x y
× ×

+ + + +

   = 
2 3 2 3 2

2 2 3 2 2 3 2 2 3
– 2 – ––

( ) ( ) ( )
xy x xy x xy
x y x y x y

=
+ + +

 = 
2 2

2 2 3 2 2 2
( ) –

( ) ( )
x x y x
x y x y

+
=

+ +

  Hence,  ax = 
( )+2 2 2

x–
x y

 (Ans.)

    ay = 
2 2

2 2 2 2 2 2 2 2 2 2
2 ( – )–

( ) ( ) ( )
x xy y x y

x y x y x y x y

    × + ×       + + + +     

     = 
2 2 2 2 2 3

2 2 3 2 2 3 2 2 3
2 ( – ) – 2 ––

( ) ( ) ( )
x y y x y x y x y y

x y x y x y
+

+ =
+ + +

 

     = 
2 2

2 2 3 2 2 2
– ( ) –
( ) ( )
y x y y
x y x y

+
=

+ +
 

  Hence,  ay = 
( )+2 2 2

y–
x y

(Ans.)

 (ii) The rotation of ωz:
  We know that:

  ωz = 1 –
2

v u
x y
∂ ∂ 

 ∂ ∂ 

   = 2 2 2 2 2 2
1 2 2–
2 ( ) ( )

xy xy
x y x y

 + + + 
 = 0 

  Hence the flow is irrotational. (Ans.)
 Example 5.26. If the velocity field is given by u = (16y – 8x), v = (8y – 7x) find the circulation 
around the closed curve defined by x = 4, y = 2, x = 8, y = 8.
 Solution. Given:
  u = (16 y – 8x), v = (8y – 7x) ...Velocity field
 Refer to Fig 5.20.
  ΓABCD = ( )

ABCD

udx vdy+∫

   = ( )
AB

udx vdy+ +∫ ( )
BC

udx vdy+ +∫ ( )
CD

udx vdy+∫ ( )
DA

udx vdy+ +∫

   = 
8 8

4 2

(16 – 8 ) (8 – 7 )y x dx y x dy+∫ ∫  + 
4 2

8 8

(16 – 8 ) (8 – 7 )y x dx y x dy+∫ ∫



Chapter 5 : Fluid Kinematics         223

y = 2

y = 8

x = 4

x = 8

Y

X

A B

CD

Fig. 5.20

    
8 82 2
4 216 – 4 4 – 7yx x y xy   = +     

4 22 2
8 816 – 4 4 – 7yx y y xy   + +   

  (i) (ii) (iii) (iv)
 In integral (i): y = 2
 In integral (ii): x = 8
 In integral (iii): y = 8
 In integral (iv): x = 4
 Substituting these values, we have:
	 	 ΓABCD = [16 × 2 × 8 – 4 × 8 × 8 – 16 × 2 × 4 + 4 × 42]
    + [4 × 82 – 2 × 8 × 8 – 4 × 22 + 7 × 8 × 2]
    + [16 × 8 × 4 – 4 × 42 – 16 × 8 × 8 + 4 × 82]
    + [ 4 × 22 – 7 × 4 × 2 – 4 × 82 + 7 × 4 × 8]
   = [256 – 256 – 128 + 64] + [256 – 448 – 16 + 112]
    + [512 – 64 – 1024 + 256] + [16 – 56 – 256 + 224]
   = – 64 – 96 – 320 – 72 = – 552
  Area of the curve ABCD = ( 8 – 4) × (8 – 2) = 24

	 ∴  Circulation per unit area = 552–
24

 = – 23 (Ans.)

 Example 5.27. A fluid flow is given by

  vr = 2 21 – cos , – 1 sint
a av
r r

   θ = + θ   
   

 (i) Show that it represents a physically possible flow.
 (ii) Determine whether the flow is rotational or irrotational.

 Solution. Given: vr = 2 21 – cos , – 1 sina av
r rθ

   θ = + θ   
   

  ...Velocity components
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 (i) Is the flow physically possible?
  The continuity equation for an incompressible fluid flow is given by:

  1r r vv v
r r r

θ∂∂
+ +

∂ ∂θ
 = 0 ...(1)

  Now, rv
r
∂
∂

 = 2 3
11 – cos – cos [ 2].a a

r r r
∂    θ = θ −   ∂    

  and, vθ
∂
∂θ

 = 2 2– 1 sin – 1 cosa a
r r

∂       + θ = + θ      ∂θ       

  Substituting these values in eqn. (1), we get:

    2 2 2
1 1 11 – cos – cos (–2). – 1 cosa aa
r rr r r

      θ + θ + + + θ           

    = 3 2 3
cos cos 2 cos cos cos– – –a a a

r rr r r
θ θ θ θ θ

+  = 0

  Since the continuity equation is satisfied, therefore, the flow is physically possible. (Ans.)
 (ii) Flow–rotational or irrotational?
  Let us check for rotationality.
  Vorticity is given by:

   Ω = 1– rv v v
r r r
θ θ∂ ∂
+

∂ ∂θ
 ...(2)

  Now, 
v
r
θ∂

∂
 = 2 3

1( ) – 1 sin – sin (–2)av a
r r r rθ
∂ ∂     = + θ = θ    ∂ ∂     

  and, rv∂
∂θ

 = 2 2( ) 1 – cos 1 – (– sin )r
a av
r r

∂ ∂     = θ = × θ    ∂θ ∂θ     

  Substituting these values in eqn. (2), we get:

    Ω = 3 2
1 1– sin (–2). – 1 sinaa

rr r
    θ + + θ       

      2
1 1 – (– sin )a
r r
  − × θ    

     = 3 3 3
2 sin sin sin sin sin– – –a a a

r rr r r
θ θ θ θ θ

+  = 0

  Hence the flow is irrotational. (Ans.)
 Example 5.28. The velocity components for a fluid flow are:  u = a + by – cz, v = d – bx – ez, 
w = f + cx – ey where a, b, c, d, e and f are arbitrary constants.
 (i) Show that it is a possible case of fluid flow.
 (ii) Is the fluid flow irrotational? If not, determine the vorticity and rotation.

[RGVP Bhopal]

 Solution. Given: u = a + by – cz, v = d – bx – ez, w = f + cx – ey ...Velocity components.
 (i) Possible case of fluid flow?
  Continuity equation is given as:



Chapter 5 : Fluid Kinematics         225

    u v w
x y z
∂ ∂ ∂

+ +
∂ ∂ ∂

 = 0

  Now, u
x
∂
∂

 = ( – )a by cz
x
∂

+
∂

= 0,

    v
y
∂
∂

 = ( – )d bx ez
y
∂

−
∂

 = 0, and w
z

∂
∂

 = ( – )f cx ey
z
∂

+
∂

 = 0

  Since the equation of continuity is satisfied, therefore, the field is possible case of fluid  
flow.  (Ans.)

 (ii) Is the flow field irrotational?
  For the flow to be irrotational, curl V = O i.e. (∆ × V) = 0

  Now, (∇× V) = 

i j k

x y z
u v w

∂ ∂ ∂
∂ ∂ ∂

  Substituting velocity components, we have:

    (∇× V) = 

( – ) ( – ) ( – )

i j k

x y z
a by cz d bx ez f cx ey

∂ ∂ ∂
∂ ∂ ∂

+ − +

  or, (∇× V) = ( – ) – ( – – )i f cx ey d bx ez
y z
∂ ∂ + ∂ ∂ 

   

      ( – ) – ( – )j a by cz f cx ey
z x
∂ ∂ + + + ∂ ∂ 

      ( – ) – ( – )k d bx ez a by cz
x y
∂ ∂ + − + ∂ ∂ 

     = i (– e + e) + j ( – c –c) + k ( – b – b)
  Since (∇ × V) ≠ 0. the flow is not irrotational (Ans.)
  Vorticity Ω:
 Vorticity,  Ω	 =	 (∇ × V) = – 2 ( cj + bk)

   = 2 22 c b+

 Hence, Ω = +2 22 c b  (Ans.)

 Rotation, ω

 We know,  ω = 
2
Ω

   = 2 2 2 21 [2 ]
2

c b c b+ = +

 Hence, Rotation, ω	 = 2 2c + b (Ans.)
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 Example 5.29. Determine the components of rotation for the following velocity field pertaining 
to the flow of an incompressible fluid:
  u = Cyz; v = Czx; w = Cxy,  where C = constant. 
 State whether the flow is rotational or irrotational.
 Solution. Given:  u = Cyz;  v = Czx; w = Cxy ... Velocity field
 The components of rotation are:

  ωx = ( )1 1– –
2 2

w v Cx Cx
y z

∂ ∂  = ∂ ∂ 
 = 0

  ωy = ( )1 1– –
2 2

u w Cy Cy
z x
∂ ∂  = ∂ ∂ 

 = 0

  ωz = ( )1 1– –
2 2

v u Cz Cz
x y
∂ ∂  = ∂ ∂ 

 = 0

 Since each of the rotation components is zero, the given flow field represents irrotational 
flow. (Ans.)
 Example 5.30. Determine the components of rotation about the various axes for the following 
flows:
 (i) u = y2, v = –3x

 (ii) u = 3xy, v = 2 23 3–
2 2

x y

 (iii) u = xy3z, v = – y2z2, w = yz2 – 
3 2

2
y z

 Solution. The components of rotation about the various axes are:

  ωz = 1 –
2

v u
x y
∂ ∂ 

 ∂ ∂ 

  ωx = 1 –
2

w v
y z

∂ ∂ 
 ∂ ∂ 

  ωy = 1 –
2

u w
z x
∂ ∂ 

 ∂ ∂ 
 (i) u = y2; v = –3x

    ωz = 
1 1– ( – 3 – 2 )
2 2

v u y
x y
∂ ∂  = ∂ ∂ 

 (Ans.)

  As the flow is two-dimensional in x–y plane, ωx = ωy = 0 (Ans.)

 (ii) u = 3xy; v = 2 23 3–
2 2

x y

    ωz = 
1 1–
2 2

v u
x y
∂ ∂  = ∂ ∂ 

(3x – 3x) = 0 (Ans.)

  As the flow is two-dimensional in the x – y plane, ωx = ωy = 0 (Ans.)

 (iii) u = xy3z;  v = – y2z2;  w = yz2 – 
3 2

2
y z
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    ωz = 21 1– (0 – 3 )
2 2

v u xy z
x y
∂ ∂  = ∂ ∂ 

 = 23–
2

xy z  (Ans.)

    ωx = 
1 – –
2

2 2
2 21 3 2

2 2
zz zw v y y

y z
 ∂ ∂  = +  ∂ ∂   

 (Ans.)

    ωy = 31 1– ( – 0)
2 2

u w xy
z x
∂ ∂  = ∂ ∂ 

31
2

xy=  (Ans.)

5.10.  VELOCITY POTENTIAL AND STREAM FUNCTION 

5.10.1. Velocity Potential

 The velocity potential is defined as a scalar function of space and time such that its negative 
derivative with respect to any direction gives the fluid velocity in that direction. It is denoted by φ 
(phi). Thus mathematically the velocity potential is defined as:
  φ = f (x, y, z, t) ...for unsteady flow,
 and, φ = f (x, y, z) ...for steady flow; 

 such that: u = –
x
∂φ
∂

  v = –
y
∂φ
∂

 ...(5.35)

  w = –
z
∂φ
∂

 where,  u, v  and w are the components of velocity in the x, y and z directions respectively. 
 The negative sign  signifies that φ decreases with an increase in the values of x, y and z. In other 
words it indicates that the flow is always in the direction of decreasing φ.
 For an incompressible steady flow the continuity equation is given by:

  u v w
x y z
∂ ∂ ∂

+ +
∂ ∂ ∂

 = 0

 By substituting the values of  u, v  and w in terms of φ from eqn. 5.35, we get:

  – – –
x x y y z z
∂ ∂φ ∂ ∂φ ∂ ∂φ     + +    ∂ ∂ ∂ ∂ ∂ ∂    

 = 0

  
2 2 2

2 2 2
d

x y z
φ ∂ φ ∂ φ
+ +

∂ ∂ ∂
 = 0 ...(5.36)

 This equation is known as Laplace equation.
 Thus any function φ that satisfies the Laplace equation will correspond to some case of fluid 
flow.
 The rotational components are given by [eqn. (5.30)]:

  ωx = 1 –
2

w v
y z

∂ ∂ 
 ∂ ∂ 

  ωy = 1 –
2

u w
z x
∂ ∂ 

 ∂ ∂ 
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  ωz = 1 –
2

v u
x y
∂ ∂ 

 ∂ ∂ 
 By substituting the values of  u, v and w in term of φ from eqn. (5.35), we get:

  ωx = 1 – – –
2 y z z y
 ∂ ∂φ ∂ ∂φ    

   ∂ ∂ ∂ ∂    

   = 
2 21 –

2 y z z y
 ∂ φ ∂ φ

+ 
∂ ∂ ∂ ∂ 

  ωy = 1 – – –
2 z x x z
 ∂ ∂φ ∂ ∂φ    

    ∂ ∂ ∂ ∂    

   = 
2 21 –

2 z x x z
 ∂ φ ∂ φ

+ 
∂ ∂ ∂ ∂ 

  ωz = 
2 21 1– – – –

2 2x y y x x y y x
  ∂ ∂φ ∂ ∂φ  ∂ φ ∂ φ    = +    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     

 However, if φ is a continuous function then,

  
2

y z
∂ φ
∂ ∂

 = 
2 2 2

; ;
z y z x x z
∂ φ ∂ φ ∂ φ

=
∂ ∂ ∂ ∂ ∂ ∂

 and 
2 2

x y y x
∂ φ ∂ φ

=
∂ ∂ ∂ ∂

	 ∴ ωx = ωy = ωz = 0 i.e. the flow is irrotational.
 Thus if velocity potential (φ) satisfies the Laplace equation, it represents the possible steady, 
incompressible, irrotational flow. Often an  irrotational flow is known as potential flow.
 Equipotential line:
 An equipotential line is one along which velocity potential φ is constant.
 i.e. For equipotential line, φ = constant.
	 ∴ dφ = 0
 But, φ = f(x, y) for steady flow.

	 ∴ dφ = dx dy
x y
∂φ ∂φ

+
∂ ∂

 But, 
x
∂φ
∂

 = – u and  
y
∂φ
∂

 = – v

	 ∴ dφ = – udx – vdy = – ( udx + vdy)
 For equipotential line, dφ = 0
 or, – ( udx + vdy) = 0
 or, (udx + vdy) = 0

 or, dy
dx

 = – u
v

 ...(5.37)

 where, dy
dx

 = slope of equipotential line.

5.10.2. Stream Function
 The stream function is defined as a  function of space and time, such that its partial derivative 
with respect to any direction gives the velocity component at right angles to this direction. It is 
denoted by ψ (psi).
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 In case of two-dimensional flow, the stream function may be defined mathematically as 
  ψ = f ( x, y, t) ...for unsteady flow, and
  ψ = f ( x, y) ... for steady flow,

 such that: u = 
y

∂ψ
∂

 ...(5.38)

  v = –
x

∂ψ
∂

 For two-dimensional flow the continuity equation is

  u v
x y
∂ ∂

+
∂ ∂

 = 0

 Substituting the values of  u and v from eqn. (5.38), we get:

  –
x y y x
∂ ∂ψ ∂ ∂ψ   +   ∂ ∂ ∂ ∂  

 = 0

  
2 2

x y x y
∂ ψ ∂ ψ

−
∂ ∂ ∂ ∂

 = 0

 Hence, existence of ψ means a possible case of fluid flow.
 — The flow may be ‘rotational’ or ‘irrotational’.
 The rotational component ωz is given by:

  ωz = 1 –
2

v u
x y
∂ ∂ 

 ∂ ∂ 
 Substituting the values of  u and v from eqn. (5.38), we get:

  ωz = 1 –
2 x x y y
 ∂ ∂ψ ∂ ∂ψ    −   ∂ ∂ ∂ ∂    

 or, ωz = 
2 2

2 2
1
2 x y

 ∂ ψ ∂ ψ
− + 

∂ ∂ 
 ...(5.39)

 This equation is known as Poisson’s equation. For an irrotational flow, since ωz = 0, eqn.(5.39) 
becomes:

  
2 2

2 2x y
∂ ψ ∂ ψ

+
∂ ∂

 = 0     i.e.,       ∆2ψ = 0

 which is the Laplace equation in ψ.
 In the polar co-ordinates:

  vr = 1 , v
r rθ
∂ψ ∂ψ

=
∂θ ∂

 — Let ψ(x, y) represent the stream line L (See Fig. 5.21). The (ψ + dψ) represents the adjacent 
stream line M. The velocity vector V perpendicular to the line AB has components  u and v in the 
direction of X-axis and Y-axis respectively. From continuity consideration, we have:
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Y

X

v

u

dx

– vdx

dy
udy

( + + )x x, y y� �

O

M

Stream lines

L

� ��� �d

B

A
( , )x y

V

Fig. 5.21. Flow between two points and its relation to stream function.

  Flow across, AB = Flow across AO + flow across OB
  Vds = – vdx + udy
 (The minus sign indicates that the velocity v is acting in the downward direction).

  Vds = dx dy d
x y

∂ψ ∂ψ
+ = ψ

∂ ∂
 ...(5.40)

 i.e. dq = dψ ...(5.41)
 Obviously, the stream function can also be defined as the flux or flow rate between two stream 
lines. The units of ψ are m3/s discharge per unit thickness of flow.
 Properties of stream function
 The properties of stream function are:
 1. On any stream line, ψ is constant everywhere.

  
constant, represents the family of stream lines.
constant, is a stream line equation.

ψ = 
 ψ = 

 2. If the flow is continuous, the flow around any path in the fluid is zero.
 3. The rate of change of ψ with distance in arbitrary direction is proportional to the component 

of velocity normal to that direction.
 4. The algebraic sum of stream function for two incompressible flow patterns is the stream 

function for the flow resulting from the superimposition of these patterns.

 i.e. 1 2

s s
∂ψ ∂ψ

+
∂ ∂

 = 1 2( )
s

∂ ψ + ψ
∂

 ...(5.42)

 Cauchy Riemann equations:
 From the above discussion of velocity potential function and stream function we arrive at the 
following conclusions:
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  Potential function (φ) exists only for irrotational flow.
  Stream function (ψ) applies to both the rotational and irrotational flows (which are steady 

and incompressible).
  In case of irrotational flow, both the stream function and velocity function satisfy Laplace 

equation and as such they are interchangeable.
 For irrotational incompressible flow, the following relationship between φ and  ψ holds good:

  u = –
x y
∂φ ∂ψ

=
∂ ∂

 ...(5.43)

  v = – –
y x
∂φ ∂ψ

=
∂ ∂

 These equations, in hydrodynamics, are sometimes called “Cauchy Riemann equations”.

5.10.3. Relation between Stream Function and Velocity Potential
 One of the properties of a stream function is that the difference of its values at two points 
represent the flow across any line joining the points. Thus if two lie on the same stream line, then, 
there being no flow across a stream line, the difference between the stream  functions ψ1 and ψ2 = 0; 
this means the streamline is given by:
  ψ = constant.
 Similarly, φ = constant, represents a case for which the velocity potential is same at every point, 
and hence it represents an equipotential line.
 Let, two curves φ = constant and ψ = constant intersect each other at any point. At the point of 
intersection the slopes are:

 For the curve φ = constant:   Slope = –
–

y u ux
x v v

y

∂φ 
 ∂ ∂ = = =
∂φ∂  

 ∂ 

 

 For the curve ψ = constant:   Slope  = – –y v vx
x u u

y

∂ψ 
 ∂ ∂ = = =
∂ψ∂ + 

 ∂ 

 Now, product of the slopes of these curves

   = –u v
v u
×  = –1

 It shows that these two sets of curves, viz stream lines and equipotential lines intersect each 
other orthogonally at all points of intersection.

5.11.  FLOW NETS 

 A grid obtained by drawing a series of stream lines and equipotential lines is known as a flow 
net. The flow net provides a simple graphical technique for studying two-dimensional irrotational 
flows especially in the cases where mathematical relations for stream function and velocity function 
are  either not available or are rather difficult and cumbersome to solve.

5.11.1. Methods of Drawing Flow Nets
 The following methods are used for drawing flow nets:
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 1. Analytical method (or Mathematical analysis):
 — Here, the equations corresponding to the curves φ and ψ are first obtained and the 

same are plotted to give the flow net pattern for the flow of fluid between the given 
boundary shape.

 — This method can be applied to problems with simple and ideal boundary conditions.
 2. Graphical method:
 — A graphical method consists of drawing stream lines and equipotential lines such that 

they cut orthogonally and form curvilinear squares.
 — This method consumes lot of time and requires lot of erasing to get the proper shape 

of a flow net.  
 3. Electrical analogy method:
 — This method is a practical method of drawing a flow net for a particular set of boundaries.
 — It is based on the fact that the flow of fluids and flow of electricity through a conductor 

are analogous. These two systems are similar in the respect that electric potential is 
analogous to the velocity potential, the electric current is analogous to the velocity of 
flow, and the homogeneous conductor is analogous to the homogeneous fluid.

 4. Hydraulic models:
  — Stream lines can be traced by injecting a dye in a seepage model or Heleshaw apparatus.
  — Then, by drawing equipotential lines the flow net is completed.
 Fig 5.22. shows some typical flow nets.

Fig. 5.22. Typical flow nets.

5.11.2. Uses and Limitations of Flow Nets
 Use of flow nets:
 The following are the uses of flow-net analysis:
 1. To determine the stream lines and equipotential lines.
 2. To determine quantity of seepage and upward lift pressure below hydraulic structure.
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 3. To determine the velocity and pressure distribution, for given boundaries of flow (provided 
the velocity distribution and pressure at any reference section are known).

 4. To determine the design of the outlets for their streamlining.
 Limitations of flow nets:
 The following are the limitations of flow net:
 1. The flow net analysis cannot be applied in the region close to the boundary where the effects 

of viscosity are predominant.
 2. In case of a flow of a fluid past a solid body, while the flow net gives a fairly accurate pic-

ture of the flow pattern for the upstream part of the solid body, it can give little information 
concerning the flow conditions at the rear because of separation and eddies.

 Example 5.31. Verify whether the following functions are valid potential functions:
 (i) φ = A(x2 – y2) (ii)  φ = A cos x

 Solution.  (i) 	φ = A (x2 – y2):

  
x
∂φ
∂

 = 2 Ax ;     
y
∂φ
∂

 = – 2 Ay

  
2

2x
∂ φ
∂

 = 2 A ;      
2

2y
∂ φ
∂

 = – 2 A

  
2 2

2 2 2 (–2 )A A
x y
∂ φ ∂ φ

+ = +
∂ ∂

 = 0 

  Hence, φ = A (x2 – y2) is a valid potential function (Ans.)  
 (ii) φ = A cos x:

  
x
∂φ
∂

 = – A sin x ; 
y
∂φ
∂

 = 0

  
2

2x
∂ φ
∂

 = – A cos x ; 
2

2y
∂ φ
∂

 = 0 

  
2 2

2 2x y
∂ φ ∂ φ

+
∂ ∂

 = – A cos x ≠ 0

 Hence, φ = A cos x is not a valid function (Ans.)

 Example 5.32. Which of the following functions represent possible irrotational flow.?
 (i) ψ = A(x2 – y2) (ii) ψ = xy

 (iii) φ	= 2– sinr
r

  θ 
 

 (iv) φ	= cos cosUUr
r

θ + θ

 Solution. For an irrotational fluid flow phenomenon φ as well ψ satisfy Laplace equation.
 (i) ψ = A(x2 – y2):

  
x

∂ψ
∂

 = 2 Ax ;     
y

∂ψ
∂

 = – 2 Ay

  
2

2x
∂ ψ
∂

 = 2A ;       
2

2y
∂ ψ
∂

 = – 2A
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2 2

2 2x y
∂ ψ ∂ ψ

+
∂ ∂

 = 2 A – 2A = 0

  Hence, ψ = A(x2 – y2) represents a possible irrotational flow (Ans.)
 (ii) ψ = xy:

    
x

∂ψ
∂

 = y ; 
y

∂ψ
∂

 = x

    
2

2x
∂ ψ
∂

 = 0; 
y

∂ψ
∂

 = 0

	 	∴ 
2 2

2 2x y
∂ ψ ∂ ψ

+
∂ ∂

 = 0

  Hence, ψ = xy represents a possible irrotational flow. (Ans.)

 (iii) φ = 2– sinr
r

  θ 
 

:

  Laplace equation in radial coordinates (r, θ) is given as:

  
2 2

2 2 2
1 1
r r r r
∂φ ∂ φ ∂ φ

+ +
∂ ∂ ∂θ

 = 0

  
r
∂φ
∂

 = 2
21 sin
r

 + θ 
 

  
2

2r
∂ φ
∂

 = 3
2– sin
r

θ

  ∂φ
∂θ

 = 2– cosr
r

  θ 
 

  
2

2
∂ φ
∂θ

 = 2 2– – sin – sinr r
r r

   θ = θ   
   

  L.H.S. of Laplace equation is:

   2 3 2
1 2 2 1 21 sin – sin – sinr
r rr r r

   × + θ θ + θ     

   = 3 3 3
1 2 2 2 1sin – –
r rr r r

 θ + + 
 

   = 3
2sin 0
r

 θ ≠ 
 

  Hence, the given function doesnot represent any possible irrotational flow. (Ans.)

 (iv)  φ = cos cosUUr
r

θ + θ :

    
r
∂φ
∂

 = 2cos – cosUU
r

θ θ

    
2

2r
∂ φ
∂

 = 3
2 cosU
r

θ
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  ∂φ
∂θ

 = – sin – sinUUr
r

θ θ

  
2

2
∂ φ
∂θ

 = – cos – cosUUr
r

θ θ

  The Laplace equation, in radial coordinates (r,θ), is given by:

  
2 2

2 2 2
1 1
r r r r
∂φ ∂ φ ∂ φ

+ +
∂ ∂ ∂θ

 = 0

  Substituting for L.H.S. terms, we get:

   = 2 3 2
1 2 1cos – cos cos – cos – cosU U UU Ur
r rr r r
   θ θ + θ + θ θ     

   3 3 3
1 1 2 1 1cosU
r rr r r

 θ − + − − 
 

 = 0

  The Laplace equation is satisfied and hence the given function φ represents a possible 
irrotational flow. (Ans.)
 Example 5.33. The velocity components in a fluid flow are given by:
  u = 2xy; v = a2 + x2 – y2

 (i) Show that the flow is possible.
 (ii) Derive the relative stream function.

 Solution. Given: u = 2xy; v = a2 + x2 – y2 ...Velocity components

 (i)   u
x
∂
∂

 =  2y ; v
y
∂
∂

 = – 2y

                                 2 (– 2 )u v y y
x y
∂ ∂

+ = +
∂ ∂

 = 0

  The continuity equation for steady, incompressible flow is satisfied. 
  Hence, flow is possible. (Ans.)
 (ii) The stream function ψ is related to u and v as:

  u = 2xy
y

∂ψ
=

∂

  or, ψ = 22 ( )xy dy xy f x= +∫  ...(i)

   –
x

∂ψ
∂

 = 2 2 2 2– – ( ) –y f x v a x y′ = = +

  Hence, f′(x) = – (a2 + x2)

  or, f (x) = 
3

2– –
3
xa x  + constant

  Inserting for f (x) in eqn. (i) we get:

    ψ = 
3

2 2 constant
3
xxy ax− − +

  Thus,  the relative ψ = xy2 – a2x – 
3

3
x

 + constant (Ans.)
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 Example 5.34. A stream function is given by:
  ψ = 3x2y + (3 + t)y2

 Find the flow rates across the faces of the triangular prism having a thickness of 2.5 m in the 
Z- direction at the time instant t = 3 seconds.
 Solution. Refer to Fig. 5.23.
  ψ = 3x2y + ( 3 + t) y2 ...Given
 The coordinates of point M are: (0,1)
	 ∴ ψM = 0 + (3 + 3) × 12 = 6
 The coordinates of point L are: (1.5, 0)
	 ∴	 ψL = 3 × 1.52 × 0 + (3 + 3) × 0 = 0
 The coordinates of point L are: (0,0)
	 ∴ Flow rate across face MO = 2.5 (ψM – ψO)
   = 2.5 (6 – 0) = 15 m3/s (Ans.)
 Flow rate across face LO = 2.5 (ψL – ψO)
   = 2.5 (0 – 0) = 0
	 ∴ Flow rate across face LM = 2.5 (ψM – ψL)
   = 2.5 (6 – 0) = 15 m3/s (Ans.)

 Example 5.35. A flow is described by the stream function ψ = 4xy . Locate the point at which 
the velocity vector has a magnitude 7 units and makes an angle of 150° with X-axis.

 Solution. Stream function, ψ = 4xy ...Given
 The velocity components for the given flow field are:

  u = (4 ) 4xy x
y y

∂ψ ∂
= =

∂ ∂

  v = – – (4 ) – 4xy y
x x

∂ψ ∂
= =

∂ ∂

  V = 2 2u v+  or        7 = 2 2 2 2(4 ) (–4 ) 4x y x y+ = +  ...(i)

 Also, tan θ = v
u

     or     – 4tan150 –
4

y y
x x

° = =

 or, – 0.577 = – y
x

    or               y = 0.577 x

 Substituting for y in eqn. (i), we get:

  7 = 2 24 (0.577 ) 4.62x x x+ =

	 ∴ x = 7
4.62

= 1.515 (Ans.)

 Example. 5.36. Find a relevant stream function to each of the following sets of velocity 
components of steady, incompressible flow:
 (i) u = 2cx; v = – 2cy
 (ii) u = – cx/y; v = c ln (xy)
 (iii) u =  x + y ; v = x – y
 Solution. (i)  u = 2cx; v = – 2cy:

Fig. 5.23
1.5 m

1m

Y

X
LO

M
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  u
x
∂
∂

 = 2c; v
x
∂
∂

 = – 2c

  v v
x y
∂ ∂

+
∂ ∂

 = 2i + (–2c) = 0. Hence the flow is possible and ψ exists.

  u = 2cx
y

∂ψ
=

∂

 	 ψ = 2cxy + f (x)

  –
x

∂ψ
∂

 = – 2cy – f′(x)  = v = – 2cy

  Hence,  f   ′(x) = 0 and f (x) = c1 = a constant
 ∴ ψ = 2cxy + c1 (Ans.)
 (ii) u = – cx/y;  v = c ln (xy):

    u
x
∂
∂

 = – c/y; v
y
∂
∂

 = c/y

    u v
x y
∂ ∂

+
∂ ∂

 = –c/y + c/y = 0

  Hence, the flow is possible and ψ exists.

    u = 
y

∂ψ
∂

 = – cx/y

    ψ = – cx ln (y) + f (x)

    –
x

∂ψ
∂

 = ( ) – ( ) ( )c ln y f x v c ln xy′ = =  = c ln (x) + c ln (y)

  or, f   ′(x) = – c ln (x)

    f (x) = 2( ). – ( ( ) – )c ln x dx c x ln x x c− = +∫
  where, c2 = a constant.
  Hence, the stream function representing this flow is:
	 	∴	 ψ = – cx ln (y) – c (x ln (x) – x) + c2
     = – cx ln (y)  – cx ln (x) + cx + c2
  or, ψ = – cx ln (xy) + cx + c2 (Ans.)
 (iii) u = x + y; v = x – y:

    u
x
∂
∂

 = 1; v
y
∂
∂

 = –1

    u v
x y
∂ ∂

+
∂ ∂

 = 1 + (–1) = 0. Hence the flow is possible and ψ exists.

    u = 
y

∂ψ
∂

 = x + y

    ψ = 
2

( )
2
yxy f x+ +
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    –
x

∂ψ
∂

 = – – ( ) –y f x v x y′ = =

  or, f′(x) = – x

  and, f(x) = 
2

– –
2
xx dx c= +∫ . where c = constant

	 	∴ ψ = 
2 2

–
2 2
y xxy c+ +

  or, ψ = 2 21 ( )
2

y – x + xy + c  (Ans.)

 Example 5.37. For the following stream functions calculate velocity at a point (1, 2):
 (i) ψ = 3 xy (ii) y = 3x2y – y3

 Solution. (i) ψ = 3xy:    ...(Given)

  u = 3x
y

∂ψ
=

∂

  v = – – 3y
x

∂ψ
=

∂
  At  (1,2):  u = 3 × 1 = 3
  v = – 3 × 2 = – 6

	 	∴ V = 2 2 2 2(3) (– 6)u v+ = +  = 45  units. (Ans.)

 (ii) ψ = 3x2y – y3:    ...(Given)

    u = 
y

∂ψ
∂

 = 3x2 – 3y2

    v = – – 6xy
x

∂ψ
=

∂
        At (1,2):   u = 3 × (1)2 – 3 × (2)2 = – 9
  v  = – 6 × 1 × 2 = – 12

  V = 2 2 2 2(–9) (–12)u v+ = +  = 15 (Ans.)

 Example 5.38. What is the irrotational velocity field associated with the potential φ = 3x2 – 3x 
+ 3y2 + 16 t2 + 12zt. Does the flow field satisfy the incompressible continuity equation?
 [UPSC] 

 Solution. Given: φ = 3x2 – 3x + 3y2 + 16t2 + 12 zt
 The velocity field is represented by:

  u = – , –v
x y
∂φ ∂φ

=
∂ ∂

	 ∴ u = 2 2 2– (3 – 3 3 16 12 ) – 6 3x x y t zt x
x
∂

+ + + = +
∂
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 and, v = 2 2 2– (3 – 3 3 16 12 ) – 6x x y t zt y
y
∂

+ + + =
∂

 Also, u
x
∂
∂

 = ( – 6 3) – 6x
dx
∂

+ =

 and, v
y
∂
∂

 = ( – 6 )y
dy
∂  = – 6

 The continuity equation for an incompressible fluid is:

  u v
x dy
∂ ∂

+
∂

 = 0

 Substituting the values, we get:

  u v
x dy
∂ ∂

+
∂

 = – 6 – 6 = – 12

 This shows that the given velocity field does not satisfy the continuity equation. (Ans.)
 Example 5.39. The velocity potential function for a two-dimensional flow is φ = x( 2y – 1). At 
a point P (4, 5) determine:
    (i)   The velocity, and
 (ii) The value of stream function. [UPTU]
 Solution. Given: φ = x (2y – 1) ...Velocity potential function.
 (i) The velocity at a point P(4, 5):
  The velocity components in x and y directions are:

    u = –
x dx
∂φ ∂

= −
∂

 [x (2y – 1)] = – 2y + 1

    v = – –
y y
∂φ ∂

=
∂ ∂

 [x (2y – 1)] = – 2x

	 	∴  Resultant velocity,

    V = 2 2 2 2( 2 1) ( 2 )u v y x+ = − + + −

	 	∴	At the point P(4, 5) when x = 4 and y = 5, we have:

    V = 2 2 2 2(– 2 5 1) (– 2 4) 9 8× + + × = +  = 12.04 units (Ans.)

 (ii) The value of stream function at the point (4, 5):
  For stream function,

  dψ = dx dy
x y

∂ψ ∂ψ
+

∂ ∂

  or, dψ = – vdx udy+

  or, dψ = + 2xdx + (– 2y + 1) dy
  Integrating both sides, we get:

    ψ = 
2 2

2 2
2 2
x y y C

 
+ × + − × + + 
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  (where C = constant of integration)
  For ψ = 0 at the origin, the constant C = 0
	 	∴ ψ = + x2 – y2 + y
  At the point P(4,5),
    ψ = + (4)2 – (5)2 + 5 = – 4 units (Ans.)
 Example 5.40. For a two-dimensional flow the velocity function is given by the expression,                        
φ = x2 – y2.
 (i) Determine velocity components in x and y directions.
 (ii) Show that the velocity components satisfy the conditions of flow continuity and irrotationality.
 (iii) Determine stream function and the flow rate between the stream lines (2, 0) and (2, 2).
 (iv) Show that the streamlines and potential lines intersect orthogonally at the point (2, 2).
 Solution. Given: φ = x2 – y2     ...Velocity function.
 (i) Velocity components in x and y directions:
  The velocity components in x and y directions are:

    u = 2 2– – ( – )x y
x x
∂φ ∂

=
∂ ∂

 = – 2x (Ans.)

    v = 2 2– – ( – )x y
y y
∂φ ∂

=
∂ ∂

 = + 2y (Ans.)

 (ii) Continuity, irrotationality = ?
  From the velocity components, we have:

    u
x
∂
∂

 = – 2, 2v
y
∂

= +
∂

  Conditions of flow continuity will be satisfied if:

    u v
x y
∂ ∂

+
∂ ∂

 = 0

  Substituting the values, we get – 2 + 2 = 0
  Hence, the velocity components satisfy the flow continuity conditions (Ans.)

  Now, ∇ × V = 

– 2 2 0

i j k

x y z
x y

∂ ∂ ∂
∂ ∂ ∂

+

     = (0) – ( 2 ) (–2 ) – (0)i y j x
y z z x
∂ ∂ ∂ ∂   + +   ∂ ∂ ∂ ∂  

      ( 2 ) – (–2 )y x
x y
∂ ∂ + + ∂ ∂ 

  Since curl V is zero, hence the flow is irrotational. ...(Proved)
 (iii) Stream function and flow rate:
  The differential dψ for the stream function is (eqn. 5.40):

    dψ = –dx dy vdx udy
x y

∂ψ ∂ψ
+ = +

∂ ∂

     = – (+ 2y) dx + (– 2x) dy = – 2d (xy)
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  Integrating, we get:
 			 ψ = – 2xy + C  (Ans.)
  (where, C = constant of integration)
  Now, ψ (2, 0) = 2 × 2 × 0 = 0
  and, ψ (2, 2) = 2 × 2 × 2 = 8
  Hence, flow between the streamlines through (2, 0) and (2, 2)
     = 8 – 0 = 8 m3/s (Ans.)
 (iv) Intersection of stream lines and potential lines orthogonally at point (2, 2) = ?
  Slope of stream line,

    
const.

y
x ψ =

∂ 
 ∂ 

 = 2
2

v y
u x

+
− = −

−
 = 1 at (2, 2)

   Slope of potential line,

    
const.

y
x φ =

∂ 
 ∂ 

 = 2
2

u x
v y

− =  + 
 = – 1 at (2, 2)

   Thus,  
const. cosnt.

y y
x xψ = φ =

∂ ∂   ×   
∂ ∂   

 = 1 × (–1) = – 1

  which shows that the stream lines and the potential lines intersect orthogonally. ....(Proved)

 Example 5.41. A two-dimensional flow field is given by φ = 3xy, determine: 
 (i) The stream function.
 (ii) The velocity at L(2, 6)  and M (6,6) and the pressure difference between the points L and M.
 (iii) The discharge between the stream lines passing through the points L and M.

 Solution. Given. φ = 3xy      ...Flow field
 (i) The stream function ψ:

  We know that: u = – – (3 ) – 3xy y
x x
∂φ ∂

= =
∂ ∂

    v = – – (3 ) – 3xy x
y y
∂φ ∂

= =
∂ ∂

  Also, u = – 3y
y

∂ψ
=

∂
,   and       v  = – – 3x

x
∂ψ

=
∂

  Again, dψ = dx dy
x y

∂ψ ∂ψ
+

∂ ∂
   or  ∂ψ  = 3xdx + (– 3y) dy

  Integrating both sides, we get:
    ψ = 3 (–3 )x dx y dy+∫ ∫

     = 
2 2

3 – 3
2 2
x y C× × +  = 2 23 ( – )

2
x y C+

  (where, C = constant of integration.)
  For ψ = 0 at the origin, the constant C = 0

	 	∴ ψ = 2 23 ( – )
2

x y  (Ans.)
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 (ii) Velocities at L and M:
  At L(2, 6):  u = – 3 × 6 = –18, v = –3 × 2 = – 6

	 	∴  VL = 2 2 2 2(–18) (–6)u v+ = +  = 18.97 units (Ans.)

  At M(6, 6):  u = – 3 × 6 = –18, v = –3 × 6 = – 18

	 	∴ VM  = 2 2 2 2(–18) (–18)u v+ = +  = 25.45 units (Ans.)

  Pressure difference between L and M:
  For two-dimensional plane flow:

    
2

2
L Lp V

w g
+  = 

2

2
M Mp V
w g

+

	 	∴ 
–L Mp p
w

 = 2 21 648 – 360( – )
2 2 9.81M LV V

g
=

×
 = 14.68 units (Ans.)

 (iii) The discharge between the streamlines, q:

    ψ = 2 23 ( – )
2

x y

    ψL(2, 6) = 2 23 (2 – 6 )
2

 = – 48 units.

    ψM(2, 6) = 2 23 (6 – 6 ) 0
2

=

	 	∴ q = ψM 
 – ψL = 0 – (– 48) = 48 units (Ans.)

 Example 5.42. If φ = 3xy, find x and y components of velocity at (1, 3) and (3, 3). Determine the 
discharge passing between stream lines passing through these points. [Roorkee University]

 Solution. Given: φ = 3xy   ...Velocity potential function.
 The velocity components in terms of φ are given by:

  u = –
x
∂φ
∂

, –v
y
∂φ

=
∂

 But, 
x
∂φ
∂

 = (3 ) 3xy y
x
∂

=
∂

, and

  
y
∂φ
∂

 = (3 ) 3xy x
y
∂

=
∂

	 ∴ u = – 3y and v = – 3x
 Hence, the velocity components at (1, 3) and (3, 3) are:
 At (1, 3) : u = – 3 × 3  = – 9
  v = – 3 × 1 = – 3
 At (3, 3) : u = – 3 × 3 = – 9
  v = – 3 × 3 = – 9
 Discharge between the streamlines:
 The total derivative ψ may be written as:

  dψ = dx dy
x y

∂ψ ∂ψ
+

∂ ∂





(Ans)





(Ans)
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 But, u = 
y

∂ψ
∂

 and –v
x

∂ψ
=

∂

	 ∴	 ∂ψ = – vdx + udy
 or, ∂ψ = 3xdx – 3ydy

 Integrating, we get:  ψ = 2 23 3–
2 2

x y C+

 (where, C = constant of integration)
 Discharge between the streamlines passing through (1, 3) and (3, 3)

   = (1,3) (3,3)
3 3(1 – 9) – (9 – 9) –
2 2

ψ − ψ = = 12 units  (Ans.)

 Example 5.43. The streamlines are represented by:
 (a) ψ = x2 – y2 (b) ψ = x2 + y2

 (i) Determine the velocity and its direction at (2, 2).
 (ii) Sketch the streamlines and show the direction of flow in each case.

 Solution. In a two-dimensional steady flow the velocity components in terms of ψ are given as:

  u = 
y

∂ψ
∂

 and –v
x

∂ψ
=

∂

 Case (a) ψ = x2 – y2:
 (i) Velocity and its direction at (2, 2):
  	 ψ = x2 – y2 ...(1)

	 	∴ 
y

∂ψ
∂

 = – 2y     and    2x
x

∂ψ
=

∂

	 	∴ u = – 2y     and        v = – 2x

	 ∴ V = 2 2 2 2 2 2(–2 ) (–2 ) 2u v y x x y+ = + = +  ...(2)

 i.e. V = 2 22 x y+

	 ∴  Velocity at (2, 2) = 2 2 22 2+  = 4 2  units (Ans.)

 Its direction has a slope, – 2
– 2

y v x
x u y
∂

= − = −
∂

 = + 1 ...(3)

	 ∴ Velocity vector is inclined at 45° to x-axis (Ans.)
 (ii)  Stream lines-sketch:
  The streamlines are lines of constant ψ, and for constant ψ, eqn. (1) represents hyperbola, 

which may be plotted for different values of ψ as shown in the table given below:

   
2 2

2

–x y

x y

 ψ =
 
 = ± + ψ 
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y 0 1 2 3

ψ = 1 x = 2y± + ψ ± 1 2± 5± 10±

ψ = 2 x = 2y± + ψ 2± 3± 6± 11±

ψ = 3 x = 2y± + ψ 3± 4± 7± 12±

  Fig. 5.24 shows the pattern of stream lines.
 Case (b) ψ = 2 2x + y :

 (i) Velocity and its direction at (2, 2)
 	 ψ = x2 + y2 ...(4)

  Now,      
y

∂ψ
∂

 = 2y   and  2x
x

∂ψ
=

∂

  Hence, u = 2y   and   v = – 2x
  The resultant velocity,

   V = 2 2 2 2(2 ) (–2 )u v y x+ = +

    = 2 22 x y+

	 	 ∴  Velocity at (2, 2) = 2 22 2 2+  = 4 2  units (Ans.)

  Its direction has a slope,

    y
x
∂
∂

 = – 2 2 1
2 2

v x x
u y y

− = − = = =

  i.e., velocity makes an angle θ with the axis shown in Fig. 5.25, given by:
  tan θ = 1 or θ = 45° (Ans.)
 (ii) Stream lines-sketch:
  For a streamlines ψ = constant, and for non-zero value of ψ, eqn. (4) represents concentric 

circles with centre at the origin (0, 0) and radius ψ . In the 1st (i.e. positive) quadrant.  
( x, y both positive),  u = 2y and v = – 2x is negative. Therefore, streamlines have clockwise 
direction as shown in Fig 5.26.

 

Y

V

�

X

Y

X
O

�
=

1
�

=
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�
=

2

 Fig. 5.25 Fig. 5.26. Pattern of streamlines ψ = x2 + y2. 
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Y

O
�

=
1 �
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�
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�
=

3 �
=

3

Fig. 5.24. Pattern of streamlines of ψ = x2 – y2.
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 Example 5.44. If the expression for stream function is described by ψ = x3 – 3xy2, determine 
whether flow is rotational or irrotational. If the flow is irrotational, then indicate the correct value 
of the velocity potential. 
 (a) φ = y3 – 3xy2 (b) φ = – 3x2y [UPSC]

 Solution. Given: ψ = x3 – 3xy2   ...Stream function
 A two-dimensional flow in x – y plane will be irrotational if the vorticity vector in the z-direction 
is zero.

 i.e., Ωz = –v u
x y
∂ ∂
∂ ∂

 = 0 ...(1)

 We know, u = ( )3 2– 3 – 6x xy xy
y y

∂ψ ∂
= =

∂ ∂
, and

  v = ( ) ( )3 2 2 2 2 2– – – 3 – 3 – 3 – 3( – )x xy x y x y
x x

∂ψ ∂
= = =

∂ ∂

	 ∴ u
y
∂
∂

 = – 6, and v
x
∂
∂

 = – 6x

 Substituting these value in eqn. (1), we get:
  Ωz = – 6x – (– 6x) = 0
 Hence, the flow is irrotational. (Ans.)
 For an irrotational flow Laplace equation in φ must be satisfied. 

 i.e. 
2 2

2 2x y
∂ φ ∂ φ

+
∂ ∂

 = 0

 Let us check the validity for each expression for φ:
 (a) φ = y3 – 3xy2

  
2

2x
∂ φ
∂

 = – 6y   and   
2

2y
∂ φ
∂

 = 6y

	 ∴ 
2 2

2 2x y
∂ φ ∂ φ

+
∂ ∂

 = – 6y + 6y = 0

 (b) φ = – 3x2y

  
2

2x
∂ φ
∂

 = – 6y   and   
2

2y
∂ φ
∂

 = 0

	 ∴ 
2 2

2 yx
∂ φ ∂ φ

+
∂∂

 ≠ 0

 Hence, the correct value of  φ  = y3 – 3xy2 (Ans.)

 Example 5.45. In a two-dimensional incompressible flow, the fluid velocity components are 
given by u = x – 4y  and  v = – y – 4x. Show that velocity potential exists and determine its form as 
well as stream function.    [PTU]
 Solution. Given: u = x – 4y and v = – y – 4x    ...Velocity components.
 The velocity potential will exist if flow is irrotational. Therefore, the vorticity component in the 
Z-direction must be zero.
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 Now, Ωz = –v u
x y
∂ ∂
∂ ∂

 Here, v
x
∂
∂

 = ( – – 4 ) – 4y x
x
∂

=
∂

,

 and, u
y
∂
∂

 = ( – 4 ) – 4x y
y
∂

=
∂

	 ∴ –v u
x y
∂ ∂
∂ ∂

 = – 4 – (– 4) = 0

 Since the vorticity is zero, the flow is irrotational; hence the velocity potential exists. (Ans.)
 Total change in velocity potential,

  dφ = dx dy
x y
∂φ ∂φ

+
∂ ∂

   = – udx – vdy = – (x – 4y)dx – (– y – 4x)dy
 or dφ = – xdx + 4ydx + ydy + 4xdy
 Integrating, we get:

  φ = 
2 2

– 4 4
2 2
x yxy xy C+ + + +

   = 2 21 ( – ) 8
2

y x xy C+ +

 (where, C = constant of integration).
 For φ = 0 at the origin, the constant C = 0

	 ∴ φ = 2 21 ( – ) 8
2

y x xy+  (Ans.)

 For stream function,

  dψ = dx dy
x y

∂ψ ∂ψ
+

∂ ∂

 We know, u = 
y

∂ψ
∂

   and   v = –
x

∂ψ
∂

	 ∴ dψ = –vdx + udy = [ – ( – y – 4x)]dx + ( x – 4y)dy
 or dψ = (y + 4x)dx + ( x – 4y)dy
 Integrating, we get:

  ψ = 
2 2

14 – 4
2 2
x yxy xy C+ × + × +

   = xy + 2x2 + xy – 2y2 + C1

   = 2 (x2 – y2) + 2xy + C1
 (where C1 = constant of integration)
 For φ = 0 at the origin, the constant C1 = 0
 ∴	 ψ = 2(x2 – y2) + 2xy (Ans.)

 Example 5.46. In the two-dimensional incompressible flow field the velocity components are 
expressed as: 
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  u = 
3

22 –
3
yx x y +  ; v = 

3
2 – 2 –

3
xxy y

 (i) Determine the velocity, and acceleration at point L (x = 1 m, y = 3 m).
 (ii) Is the flow possible? If so, obtain an expression for the stream function.
 (iii) What is the discharge between streamlines passing through (1, 3) and (2, 3)?
 (iv) Is the flow irrotational? If so, determine the corresponding velocity potential.
 (v) Show that each of the stream, and potential functions satisfy Laplace equation.   

  [MDU Haryana]

 Solution. Given:  u = 2x – x2y + 
3

3
y ; v = 

3
2 – 2 –

3
xxy y   ...Velocity components

 (i) Velocity and acceleration at point L(x = 1 m, y = 3 m):

  u = 
3

22 –
3
yx x y +  = 2 × 1 – 12 × 3 + 

33
3

 = 8 m/s

  v = 
3

2 – 2 –
3
xxy y  = 1 × 32 – 2 × 3 – 

31
3

 = 2.67 m/s

  Resultant velocity, V = 2 2 2 2(8) (2.67)u v+ = + = 8.43 m/s (Ans.)

  If the velocity is at an angle θ with X-axis, then: 

  tan θ = 2.67 0.3337
8

v
u
= =  		or		θ = 18.45°

For a steady flow,

  ax = u uu v
x y
∂ ∂

+
∂ ∂

   = ( )
3 3

2 2 2 22 – (2 – 2 ) – – –
3 3
y xx xy xy xy xy y x

   
+ +   

   
 	∴ Acceleration in the X-direction at x = 1and y = 3,
    ax = 8 (2 – 2 × 1 × 3) + 2.67 (32 – 12) = – 10.64 m/s2

  Further, ay = v vu v
x y
∂ ∂

+
∂ ∂

     = 
3 3

2 2 2 22 – ( – ) – – (2 – 2)
3 3
y xx xy y x xy xy xy

   
+ +   

   
     = 8 (32 – 12) + 2.67 (2 × 1 × 3 – 2) = 74.68 m/s2

  Resultant acceleration,  a = 2 2 2 2(– 10.64) (74.68)x ya a+ = +  = 75.43 m/s2 (Ans.)

 (ii) Is the flow physically possible:

   u v
x y
∂ ∂

+
∂ ∂

 = (2 – 2xy) + (2xy – 2) = 0

  As the continuity equation is satisfied, hence the flow is physically possible. (Ans.)
  Expression for stream function:
  The differential dψ for stream function is,
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    dψ = dx dy
x y

∂ψ ∂ψ
+

∂ ∂

     = – vdx + udy

     = 
3 3

2 2– 2 – 2 –
3 3
x yxy y dx x x y dy

   
− + +   
   

     = 
3 3

2 2– 2 2 –
3 3
x yxy y dx x x y dy

   
+ + + +   

   

  or, dψ = 
3 3

3 3
x ydx dy+  + 2d(xy) – 

2 2

2
x yd

 
 
 

 On integration, we get:

  ψ = 
4 4 2 2

2 –
12 12 2
x y x yxy+ +  (Ans.)

 (iii) Discharge between stream lines passing through (1, 3) and (2, 3):

  ψ(1, 3) = 
4 4 2 21 3 1 32 1 3 –

12 12 2
×

= + + × ×  = 8.33 m3/s

  ψ(2, 3) = 
4 4 2 22 3 2 32 2 3 –

12 12 2
×

+ + × ×  = 2.08 m3/s

      Hence, discharge between the stream lines

 	 ψ(1, 3) – ψ(2, 3) = 8.33 – 2.08 = 6.25 m3/s (Ans.)

 (iv) Is the flow irrotational?

    Rotation (angular velocity), ωx = 1 –
2

v u
x y
∂ ∂ 

 ∂ ∂ 

     = ( ) ( )2 2 2 21 – – – 0
2

y x y x  = 

  As the rotation is zero, the flow is irrotational and the potential function does exist. (Ans.)
  Velocity potential:

    dφ = dx dy udx vdy
x y
∂φ ∂φ

+ = +
∂ ∂

     = 
3 3

2 22 – – 2 –
3 3
y xx x y dx xy y dy

   
+ +   

   

     = 2xdx – 2y dy + 
3 3

2 2–
3 3
y xdx xy dy dy x ydx

   
+ +   

   

  or, dφ = 3 31 12 – 2 ( ) – ( )
3 3

x dx ydy d xy d x y+

  On integration, we get:

    φ = 
3 3

2 2– –
3 3

xy x yx y +  (Ans.)
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 (v) Check for Laplace equation:

  We known that, ψ = 
4 4 2 2

2 –
12 12 2
x y x yxy+ +

  
x

∂ψ
∂

 = 
3

22 –
3
x y xy+ ; 

2
2 2

2 –x y
x

∂ ψ
=

∂

  
y

∂ψ
∂

 = 
3

22 –
3
y x yx+ ; 

2
2 2

2 –y x
y

∂ ψ
=

∂

	 	∴ 
2 2

2 2x y
∂ ψ ∂ ψ

+
∂ ∂

 = 2 2 2 2( – ) ( – ) 0x y y x+ =

  Hence, stream function (ψ) satisfies Laplace equation. (Ans.)

  Also,  φ = 
3 3

2 2– –
3 3

xy x yx y +

    
x
∂φ
∂

 = 
3

22 –
3
yx x y+ ; 

2

2 2 – 2xy
x
∂ φ

=
∂

    
y
∂φ
∂

 = 
3 2

2
2– 2 – ; 2 2

3
xy xy xy

y
∂ φ

+ = − +
∂

	 	∴ 
2 2

2 2x y
∂ φ ∂ φ

+
∂ ∂

  = (2 – 2xy) + (– 2 + 2xy) = 0

  Hence, potential function satisfies Laplace equation. (Ans.)
 Example 5.47. In a two-dimensional flow the velocity components are  u = Cy;  v = 0 (where 
C is constant). Find the circulation about the circle x2 + y2 – 2ay = 0 situated in the flow (a is the 
radius of the circle).

 Solution. Given: u = Cy; v = 0    ...Velocity components
 Equation of the circle: x2 + y2 – 2ay  = 0 (where, a = radius of the circle)
 Circulation about the circle, Γ:
 First method:
 We know, Γ	 =	 ΩA
 where, Ω = Vorticity, and
  A = Area.

 Here, Ω = – 0 – ( ) –v u Cy C
x y y
∂ ∂ ∂

= =
∂ ∂ ∂

 Now, A = πa2

	 ∴	 Γ = – C × πa2 = – C πa2 m2/s (Ans.)
 Second method:
 Refer to Fig.  5.27.
 We know, Γ = .V dsθ∫
 (where, Vθ	is the tangential velocity)
   = . .u dx C y dx=∫ ∫ 

Y

X

O

O

a cos �

a a sin �

a

ds

(90° – )�

P x, y( )

�

Fig. 5.27. Circulation about a circle.
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 From Fig. 5.27,
  x = a cos θ; y = a + a sin θ = a(1+ sin θ)
	 ∴ dx = – a sin θ dθ

	 ∴ Γ = 
2

0

(1 sin ).(– sin )Ca a d
π

+ θ θ θ∫

   = 
2

2 2

0

– (sin sin )Ca d
π

θ + θ θ∫

   = 
2

2

0

1 – cos– sin
2

Ca d
π 2θ θ + θ 
 ∫

   = ( )
22

0

– 2sin 1 – cos
2

Ca d
π

θ + 2θ θ∫

   = 
22

0

sin 2– – 2cos –
2 2

Ca πθ θ + θ  

   = 
2

–
2

Ca  [ (– 2 + 2π – 0) – (– 2 + 0 – 0)]

   = 
2

2– 2 –
2

Ca C a× π = π  m2/s

 i.e. Γ = – Cπa2 m2/s (Ans.)
 Example 5.48. The flow field of a fluid is given by V = xyi + 2yzj – (yz + z2)k
 (i) Show that it represent a possible three-dimensional steady incompressible continuous flow.
 (ii) Is this flow rotational or irrotational?
  If rotational, determine at point A (2, 4, 6):
 (a) Angular velocity,
 (b) Vorticity,
 (c) Shear strains, and
 (d) Dilatency.

 Solution. Given:   V = xyi + 2yzj – (yz + z2) k ... Fluid flow field
 Here, u = xy,, v = 2yz, w = – (yz + z2)

  u
x
∂
∂

 = y, v
y
∂
∂

 = 2z, – ( 2 )w y z
z

∂
= +

∂

 (i) Is the flow physically possible?
  Flow will be three-dimensional steady incompressible continuous flow, if continuity equation 

is satisfied,

  i.e. u v w
x y z
∂ ∂ ∂

+ +
∂ ∂ ∂

 = 0   or   y + 2z – (y + 2z) = 0

  Vectorially, 2. ( ) (2 ) [– ( )] 2 – ( 2 ) 0V xy yz yz z y z y z
x y z
∂ ∂ ∂

∇ + + + = + + =
∂ ∂ ∂

  Hence, the given flow is a three-dimensional steady incompressible flow. (Ans.)
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 (ii) Flow-rotational or irrotational?

  Now, u
y
∂
∂

 = x, 0v
x
∂

=
∂

  Since, u
y
∂
∂

 ≠ v
x
∂
∂

,

  therefore, the flow is rotational. (Ans.)
 (a) Angular velocity, ω:

  We know, ω = 

2

1 ( )
2

2 – ( )

i j k

V
x y z

xy yz yz z

 
 ∂ ∂ ∂ ∆ ×
∂ ∂ ∂ 

 + 

   = { }{ }2 21 (– – ) – (2 ) ( ) – – ( )
2

i yz z yz j xy yz z
y z z x

 ∂ ∂ ∂ ∂  + +  ∂ ∂ ∂ ∂ 

    (2 ) – ( )k yz xy
x y
∂ ∂  +  ∂ ∂ 

   = 1
2

 [i (– z – 2y) – j (0 – 0) + k (0 – x)] 

  At A (2, 4, 6), ω = 1– (14 2 )
2

i k+  (Ans.)

 (b) Vorticity, Ω:
 	 Ω = 2ω = – (14i + 2k) (Ans.)
 (c) Shear strains:

  gxy = 1 1 1(0 ) (0 2)
2 2 2

v u x
x y
∂ ∂ + = + = + = ∂ ∂ 

1  (Ans.)

  gyz = 1 1 1(2 – ) (2 4 – 6)
2 2 2

v w y z
z y
∂ ∂ + = = × = ∂ ∂ 

1  (Ans.)

  gxz = 1 1 (0 0)
2 2

u w
z x
∂ ∂ + = + = ∂ ∂ 

0  (Ans.)

 (d) Dilatency (linear strains):

  ex = u y
x
∂

= =
∂

4   (Ans.)

  ey = 2 2 6v z
y
∂

= = × =
∂

12   (Ans.)

  ez = w
z

∂
∂

 = (y + 2z) = – (4 + 2 × 6) = – 16 (Ans.)

 Example 5.49. The stream function ψ = 4xy, in which ψ is in cm2/second and x and y are in 
metres, describe the incompressible flow between the boundaries shown below (Fig. 5.28).
Calculate:
 (i) Velocity at B,
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 (ii) Convective acceleration at B, and
 (iii) Flow rate per unit width across AB. [UPSC]
 Solution. Given: ψ = 4xy ... Stream function
 (where ψ is in cm2/s and x and  y in metres)
 Co-ordinates of A are: (3, 0)
 Co-ordinates of B are:

  x = 3 m, y = 3 3 1 m
3x

= =

    33,xy y
x

 = ∴ = 
 


 Hence, co-ordinates of B are: (3, 1)
 (i) Velocity at B:
  Velocity components are given by:

    u = (4 ) 4xy x
y y

∂ψ ∂
= =

∂ ∂
 , and

    v = – – (4 ) – 4xy y
x x

∂ψ ∂
= =

∂ ∂
  At point B: u = 4 × 3 = 12 cm/s, and
    v = – 4 × 1 = – 4 cm/s

	 	∴ Velocity at B, VB = 2 2 2 212 (– 4)u v+ = +  = 12.65 cm/s (Ans.)

 (ii) Convective acceleration at B, aB:

  Convective acceleration,  a  = 2 2
x ya a+

    ax = u uu v
x y
∂ ∂

+
∂ ∂

, and ay = v vu v
x y
∂ ∂

+
∂ ∂

  But, u = 4x and v = – 4y

	 	∴ u
x
∂
∂

 = 4, 0u
y
∂

=
∂

; 0, – 4v v
x y
∂ ∂

= =
∂ ∂

	 	∴ ax = (4x) (4) + (– 4y) (0) = 16x, and
    ay = (4x) (0) + (– 4y) (–4) = 16y

  Also, a = 2 2 2 2(16 ) (16 )x ya a x y+ = +

	 	∴ Convective acceleration at B (3,1) is,

  aB = 2 2 2(16 3) (16 1) 16 3 1× + × = +  = 50.6 cm/s2 (Ans.)

 (iii) Flow rate per unit width across AB, qAB:
    qAB = ψB – ψA = ψ(3, 1) – ψ(3, 0) 
     = 4 × 3 × 1 – 4 × 3 × 0 = 12 cm3/s/cm
  i.e. qAB = 12 cm3/s/cm (Ans.)

Y

X

B

A

xy = 3

x = 3

Fig. 5.28
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HIGHLIGHTS

 1. Fluid kinematics  is a branch of fluid mechanics which deals with the study of velocity and 
acceleration of the particles of fluids in motion and their distribution in space without con-
sidering any forces or energy involved.

 2. The motion of fluid particles may be described by the following methods:
 (i) Langrangian method. In this method, the observer concentrates on the movement of 

a single particle. The path taken by the particle and the changes in its velocity and 
acceleration are studied.

 (ii) Eulerian method.  In Eulerian method, the observer concentrates on a point in the fluid 
system. Velocity, acceleration and other characteristics of the fluid at that particular 
point are studied.

  The components of acceleration of the fluid particle are given by:

  ax = u u u uu v w
x y z t
∂ ∂ ∂ ∂ + + + ∂ ∂ ∂ ∂ 

  ay = v v v vu v w
x y z t
∂ ∂ ∂ ∂ + + + ∂ ∂ ∂ ∂ 

  az = w w w wu v w
x y z t

∂ ∂ ∂ ∂ + + + ∂ ∂ ∂ ∂ 

  Resultant velocity, V = 2 2 2u v w+ +

  V  = ui + vj + wk ... in vector notation.

  Resultant acceleration, a = 2 2 2
x y za a a+ +

  a = axi + ayj + azk ... in vector notation.

   Also, a = V VV
s t

∂ ∂
+

∂ ∂

 where,  V V
s
∂
∂

 ...is called convective acceleration,

 and,   V
t

∂
∂

 ... is called local acceleration.

 3. Types of fluid flow:
 (i) Steady and unsteady flows
 (ii) Uniform and non-uniform flows
 (iii) One, two and three-dimensional flows
 (iv) Rotational and irrotational flows
 (v) Laminar and turbulent flows
 (vi) Compressible and incompressible flows.
 4. Types of flow lines:
 (i) Path line. It is the path followed by a fluid particle in motion.
 (ii) Stream line. It is an imaginary line within the flow so that the tangent at any point on 

it indicates the velocity at that point.
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 (iii) Stream tube. It is a fluid mass bounded by a group of stream lines.
 (iv) Streak line. It is a curve which gives an instantaneous picture of the location of the 

fluid particles which have passed through a given point.
 5. The continuity equation based on the principle of conservation of mass is stated as follows:  

“If no fluid is added or removed from the pipe in any length then the mass passing across 
different sections shall be same”.

 	 ρ1A1V1 = ρ2A2V2 ...in case of compressible fluids
  A1V1 = A2V2 ...in case of incompressible fluids.
  The continuity equation in three dimensions in cartesian co-ordinates is given as:

  u v w
x y z
∂ ∂ ∂

+ +
∂ ∂ ∂

 = 0     ...for steady flow of incompressible fluid (ρ = constant)

  The continuity equation in polar co-ordinates is given as:

   1 ( ) ( ) ( )r rv v v
r r r θ

∂ ∂
ρ + ρ + ρ

∂ ∂θ
 = 0 ... for compressible flow

   r r vv v
r r r

θ∂∂
+ +

∂ ∂θ
 = 0 ...for incompressible flow

  where, vr = Velocity component in radial direction, and
   vθ = Velocity component in tangential direction.
 6. Circulation (Γ) is defined mathematically as the line integral of the tangential velocity about 

a closed path (contour).
  Γ = cos .V dsθ∫
 where, V = Velocity in the flow field, and 
  θ = Angle between V and the tangent to the path (in the positive 

anticlockwise direction along the path) at that point.

  Vorticity (Ω) is defined as the circulation per unit of enclosed area . .i e
A
Γ Ω = 

 
.

  If  a flow possesses vorticity, it is rotational. The flow is irrotational if rotation (ω) is zero.
  The expression for rotation are:

  wz = 1 –
2

v u
x y
∂ ∂ 

 ∂ ∂ 
;  1 –

2x
w vw
y z

∂ ∂ =  ∂ ∂ 
;  1 –

2y
u ww
z x
∂ ∂ =  ∂ ∂ 

 7. Velocity potential (φ) is defined as a scalar function of space and time such that its negative 
derivative with respect to any direction gives the fluid velocity in that direction.

    u = –
x
∂φ
∂

, v = –
y
∂φ
∂

, –w
z
∂φ

=
∂

  Stream function (ψ) is defined as a scalar function of space and time, such that its partial 
derivative with respect to any direction gives the velocity components at right angles (in the 
counterclockwise direction) to this direction.

    u = , v
y x

∂ψ ∂ψ
= −

∂ ∂
 

  Existence of ψ means a possible case of flow.
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  u = –
x y
∂φ ∂ψ

=
∂ ∂

 ... are known as Cauchy-Reimann equations.

  v = – –
y x
∂φ ∂ψ

=
∂ ∂

 8. Flow net. A grid obtained by drawing a series of stream lines and equipotential lines is known 
as a flow net.OBJECTIVE TYPE QUESTIONS

OBJECTIVE TYPE QUESTIONS








 Choose the Correct Answer
 1.	 The	motion	of	fluid	particles	may	be	described	

by which of the following methods?
  (a) Langrangian method 
  (b) Eulerain method
  (c) Both (a) and (b) 
  (d) None of the above.
 2. In which of the following methods, the observer 

concentrates	on	a	point	in	the	fluid	system?
  (a) Langrangian method 
  (b) Eulerian method
  (c) Any of the above 
  (d) None of the above.
 3.	 Normal	acceleration	in	fluid-flow	situation	exists	

only when
  (a)	 the	flow	is	unsteady
  (b)	 the	flow	is	two-dimensional
  (c) the streamlines are straight and parallel
  (d) the streamlines are curved.
 4.	 In	a	steady	flow	the	velocity
  (a) does not change from place to place
  (b) at a given point does not change with time
  (c) may change its direction but the magnitude
    remains unchanged
  (d) none of the above.
 5.	 The	flow	in	a	pipe	whose	valve	is	being	opened	

or closed gradually is an example of 
  (a)	 steady	flow	 (b)	 unsteady	flow
  (c)	 rotational	flow
  (d)	 compressible	flow.
 6.	 The	 type	of	flow	in	which	 the	velocity	at	any	

given time does not change with respect to space 
is called

  (a)	 steady	flow
  (b)	 compressible		flow
  (c)	 uniform	flow	 (d)	 rotational	flow.
 7.	 Flow	in		a	pipe	where	average	flow	parameters	

are considered for analysis is an example of 
  (a)	 incompressible	flow

  (b)	 one-dimensional	flow
  (c)	 two-dimensional	flow
  (d)	 three-dimensional	flow.
 8.	 The	flow	in	a	river	during	the	period	of	heavy	

rainfall is
  (a) steady, non-uniform and three-dimensional
  (b) steady, uniform, two-dimensional
  (c) unsteady, uniform, three-dimensional
  (d) unsteady, non-uniform and three-dimensional.
 9.	 Flow	between	parallel	plates	of	infinite	extent	is	

an example of 
  (a)	 one-dimensional	flow
  (b)	 two-dimensional	flow
  (c)	 three-dimensional	flow
  (d)	 compressible	flow.
 10.	 If	the	flow	is	irrotational	as	well	as	steady	it	is	

known as
  (a)	 non-uniform	flow
  (b)	 one-dimensional	flow
  (c)	 potential	flow	
  (d) none of the above.
 11.	 High	velocity	flow	in	a	conduit	of	large	size	is	

known as
  (a)	 laminar	flow
  (b)	 turbulent	flow
  (c) either of the above 
  (d) none of the above.
 12. If the Reynolds number is less than 2000, the 

flow	in	a	pipe	is
  (a)	 laminar	flow	 (b)	 turbulent	flow
  (c)	 transition	flow	 (d) none of the above.
 13.	 The	path	followed	by	fluid	particle	in	motion	is	

called a
  (a) streamline (b) path line
  (c) streak line (d) none of the above.
 14. A....is an imaginary line within the flow so 

that the tangent at any point on it indicates the 
velocity at that point. 

  (a) streak line (b) stream line
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  (c) path line (d) none of the above.
 15. A stream line is one

  (a) in which stream function does not change
  (b)	 in	which	the	flow	cannot	cross	the	bounding	

surface
  (c) which has a constant area throughout its 

length so that the velocity remains constant.
  (d) none of the above.

 16. ...... is a curve which gives an instantaneous 
picture	of	the	location	of	the	fluid	particles	which	
have passed through a given point.

  (a) Path line (b) Stream line
  (c) Streak line (d) None of the above.
 17.	 In	fluid	mechanics,	the	continuity	equation	is	a	

mathematical statement embodying the principle 
of 

  (a) conservation of momentum
  (b) conservation of mass
  (c) conservation of energy
  (d) none of the above.
 18.	 An	irrotational	flow	is	one	in	which
  (a) the stream lines of flow are curved and 

closely spaced 
  (b)	 the	fluid	does	not	rotate	as	it	moves	along
  (c)	 the	net	rotation	of	fluid	particles	about	their	

mass centres remains zero
  (d) none of the above.
 19.	 In	a	fluid-flow	the	stream	lines	are	lines
  (a) along which the vorticity is zero
  (b) along which the stream function ψ = constant
  (c) which are parallel to the equipotential lines
  (d)	 which	exist	in	irrotational	flow	only.
 20.	 .......	is	defined	mathematically	as	the	line	integral	

of the tangential velocity about a closed path 
(contour).

  (a) circulation (b) vorticity
  (c) either of the above  (d) none of the above.
 21. The concept of stream function which is based 

on the principle of continuity is applicable  to
  (a)	 irrotational	flow	only	
  (b)	 two-dimensional	flow	only

  (c)	 three-dimensional	flow	
  (d)	 uniform	flow	only.
 22. The motion is described as ......when the compo-

nents of rotation or vorticity are zero throughout 
certain	point	of	the	fluid.

  (a) rotational (b) irrotational
  (c) either of the above (d) none of the above.
 23.	 ........	is	defined	as	a	scalar	function	of	space	and	

time such that its negative derivative with respect 
to	any	direction	gives	the	fluid	velocity	in	that	
direction.

  (a) Velocity potential function
  (b) Stream function
  (c) Circulation
  (d) Vorticity.
 24. If velocity potential (φ)	 satisfies	 the	Laplace	

equation,	it	represents	the	possible.....	flow.
  (a) unsteady, compressible, rotational
  (b) steady, compressible, irrotational
  (c)  unsteady, incompressible, rotational
  (d) steady, incompressible, irrotational.
 25.	 A	flownet	is	a	graphical	representation	of	stream	

lines and equipotential lines such that these lines
  (a) intersect each other orthogonally forming 

curvilinear squares
  (b) intersect each other at various different 

angles forming irregular-shaped nets
  (c) indicate the direction and magnitude of vec-

tor
  (d) none of the above.
 26.	 The	flow-net	analysis	can	be	used	to	determine
  (a) the stream lines and equipotential lines
  (b) quantity of seepage and upward lift pressure 

below hydraulic structures
  (c)	 the	efficient	boundary	shapes,	for	which	the	

flow	does	not	separate.
  (d) the velocity and pressure distribution for 

given boundaries of flow (provided the 
velocity distribution and pressure at any 
reference section are known).

  (e) all of the above.

ANSWER

 1. (c) 2. (d) 3. (b) 4. (b) 5. (b) 6. (c) 
 7. (b) 8. (d) 9. (b) 10. (c) 11. (b) 12. (a) 
 13. (b) 14. (b) 15. (b) 16. (c) 17. (b) 18. (c) 
 19. (b) 20. (a) 21. (b) 22. (b) 23. (a) 24. (d) 
 25. (a) 26. (e).
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THEORETICAL QUESTIONS

 1. Differentiate between the Eulerian and Lagrang-
ian	methods	of	representing	fluid	flow.

 2. Distinguish between pathlines, stream lines and 
streak lines.

 3.	 Define	convective	and	local	accelerations.
 4.	 Define	tangential	and	normal	accelerations.
 5.	 How	are	fluid	flows	classified?
 6.	 Define	 steady,	 non-steady,	 uniform	 and	 non-

uniform	flows.
 7. Differentiate between the rotational and irrota-

tional	flows.
 8. Sketch the velocity distribution for uniform 

irrotational	flow.
 9. How is the continuity equation based on the 

principle of conservation of mass stated?
 10. Derive the continuity equation in cartesian co-

ordianates.
 11.	 How	is	‘circulation’	defined?

 12. What do you understand by vorticity?
 13.	 Define	and	explain	briefly	the	following:
  (i) Velocity potential; (ii) Stream function.
 14. In the analysis of two-dimensional irrotational 

flow	what	 use	 can	 the	 velocity	 potential	 and	
stream function be put to?

 15.	 To	what	type	of	flow	is	the	concept	of	velocity	
potential and stream function applicable?

 16.	 If	stream	function	exists	in	a	flow	problem,	does	
it imply that velocity potential also exists?

 17. From the consideration of vorticity and rotation 
show	that	in	case	of	ideal	fluids	the	flow	is	ir-
rotational.

 18. Show that the stream lines and equipotential lines 
form a net of mutually perpendicular lines.

 19.	 What	is	a	‘flow-net’?	Enumerate	the	methods	of	
drawing	flow	nets.

 20.	 Is	the	flow-net	analysis	applicable	to	rotational	
flow?	If	not,	why?

UNSOLVED EXAMPLES

 1.	 Given	the	velocity	field:
  V = (6 + 2xy + t2)i – ( xy2 + 10t) j + 25k.
  What is the acceleration of a particle at (3, 0, 2) 

at time t = 1 ? [IIT Bombay]
   [Ans. + 58.35 units]
 2. The velocity along a stream line passing through 

the origin is given by:

  V = 2 22 x y+  .

  What is the velocity and acceleration at (4, 3)?  
[Ans. 10 m/s, 20 m/s2]

 3.	 The	velocity	 components	 in	 a	 steady	flow	are:	
u = 2kx; v = 2ky; w = – 4kz.

  What is the equation of a stream line passing 
through the point (1, 0, 1)?

   2
10,Ans. y z
x

 = =  

 4. Determine whether the continuity equation is 
satisfied	by	the	following	velocity	components	
for	an	incompressible	fluid:

  u = x2y, v = 2xy – xy2, w = x2 – z2

  [Ans.	Yes,	the	continuity	equation	is	satisfied]
 5. A conical pipe diverges uniformly from 0.1 m to 

0.2 m diameter over a length of 1m. Determine 
the local and convective accelerations at the 

mid-section assuming (i)	rate	of	flow	is	0.1m3/s 
and it remains constant, and (ii)	 rate	 of	 flow	
varies uniformly from 0.1 to 0.2 m3/s in 5 sec., at  
t = 2 sec.

   [Ans. (i) zero, – 42.76 m/s2 
   (ii) 1.132 m/s2, – 83.81 m/s2]
 6. Determine the missing component of velocity 

distribution such that they satisfy continuity 
equation  u = 2x2 + 2xy, v = 2yz2 + 3z2, w = ?

   32– 4 – 2 – ( , , )
3

Ans. w xz yz z f x y t = +  
 7. The velocity components in a three-dimensional 

fluid	flow	are:
  u = x2 + y2 z3, v = – (xy + yz + zx)
  Determine the missing component of velocity 

distribution such that continuity equation is 
satisfied.

   
2

– ( , , )
2

Ans. zw xz f x y t
 

= + +  
 8.	 The	velocity	components	of	fluid	flow	(incom-

pressible) are:
  u = x2y, v = 2yz – xy2, w = x2 – z2

	 	 Show	that	this	flow	is	kinematically	possible.
 9.	 In	a	three-dimensional	incompressible	fluid	flow,	

the velocity components are:
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  u = x2 + z2 + 5, v = y2 + z2 – 3
  (i) Determine the third component of velocity.
  (ii)	 Is	the	fluid	flow	irrotational?
   [Ans. (i) w = – 2( x + y)z + f (x, y, t) (ii) No.]
 10. The velocity potential function (φ) is given by:

  
3 3

2 2– –
3 3

xy x yx yφ = + +

  Determine the velocity components in x and y 
directions and show that φ represents a possible 
case	of	flow.

 
3 3

2 2. 2 – , – – 2
3 3

Ans y xu x x y v xy y
 

= + = 
 

 11. If φ = 2xy determine ψ.
   [Ans. ψ = (y2 – x2) + C]
 12. Does the velocity potential exist for two-dimen-

sional	incompressible	flow	prescribed	by
  u = x – 4y; v = – (y + 4x)?
  If so determine its form as well as that of stream 

function. 

   

2 2

2 2

. – – 4 constant
2 2

2 – 2 constant

Ans x y xy

x y xy

 
φ = + 

 
 ψ = + + 

 13.	 A	 two-dimensional	 flow	 is	 described	 by	 the	
velocity components:

   u = 5x3 and  v = – 15 x2y
  Determine the stream function, velocity and 

acceleration at P(x = 1m, y = 2 m).  
 [Ans. 10 m3/s, 30.41 m/s, 167.70 m/s2]

 14. If  u = ax and v = ay and w = – 2 az are the ve-
locity	components	for	a	fluid	flow	in	a	particular	
case, check whether they satisfy the continuity 
equation.	If	they	do,	is	the	flow	rotational	or	ir-
rotational? Also obtain equation of stream line 
passing through the point (2, 2, 4)

   [Ans. Yes, irrotational, x = y, xz1/2 = 4]
 15.	 If	the	velocity	field	is	given	by	u = x2 + 2xy and 

v = (y2 + 2xy), determine the circulation around 

a	closed	curve	defined	by:
  x = 1, x = 3,  y = 1,  y = 4. [Ans. – 86]
 16.	 If	the	velocity	field	is	given	by
  u = x2 – y2 + x and  v = – (2xy + y),
  determine φ and ψ.

2 3
– (2 – 1) – ,

2 3
Ans. y xx C


φ = +


   – (2 )x y C
ψ = + + 



 17.	 In	a	two-dimensional	flow	field	for	an	incom-
pressible	fluid	the	velocity	components	are:

   
3

22 –
3
yu x x y= +

  
3

2 – 2 –
3
xv xy y=

  Find an expression for the stream function ψ.

   
2 2 4 4

– 2 – –
2 12 12

Ans. x y x yxy
 

ψ =  
 18. From the law of conservation of mass, show that 

whether	the	flow	field	represented	by

   u = – 3x + y2 – 1
x

 and v = x2 + 3y + y log x

	 	 is	a	possible	velocity	field	for	two-dimensional
	 	 incompressible	fluid	flow.	 [IIT Delhi]
   [Ans. Not possible]
 19. If	for	two-dimensional	flow	the	stream	function	

is given by ψ =2xy, calculate the velocity at 
the point (3, 6). Show that velocity potential 
φ exists for this case and deduce it. Draw the 
stream lines corresponding to ψ	= 100 amd ψ = 
300; also equipotential lines corresponding to 
φ = 100 and φ = 300. About six points on each 
line	to	represent	its	trend	would	suffice.	 	
 [UPSC]

   2 2[ 2 45, ].Ans. y xφ = +



6.1. INTRODUCTION 

 When the fluids are at rest, the only fluid property 
of significance is the specific weight of the fluids. On 
the other hand, when a fluid is in motion various other 
fluid properties become significant, as such the nature 
of flow of a real fluid is complex. The science which 
deals with the geometry of motion of fluids without 
reference to the forces causing the motion is known 
as “hydrokinematics” (or simply kinematics). Thus, 
kinematics involves merely the description of the motion 
of fluids in terms of space-time relationship. The science 
which deals with the action of the forces in producing or 
changing motion of fluids is known as “hydrokinetics” 
(or simply kinetics). Thus, the study of fluids in motion 
involves the consideration of both the kinematics 
and kinetics. The dynamic equation of fluid motion is 
obtained by applying Newton’s second law of motion 
to a fluid element considered as a free body. The fluid is 
assumed to be incompressible and non-viscous.
In fluid mechanics the basic equations are: (i) Continuity 
equation, (ii) Energy equation, and (iii) Impulse-
momentum equation. In this chapter energy equation 
and impulse-momentum equations will be discussed 
(Continuity equation has already been discussed in  
Chapter 5).

259

6.2.  DIFFERENT TYPES OF HEADS (OR ENERGIES) OF A LIQUID  
 IN MOTION 

 There are three types of energies or heads of flowing liquids:
 1.  Potential head or potential energy:
  This is due to configuration or position above some suitable datum line. It is denoted by z.
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 2. Velocity head or kinetic energy:
  This is due to velocity of flowing liquid and is measured as 

2

2
V

g
 where, V is the velocity of 

flow and ‘g’ is the acceleration due to gravity (g = 9.81)

 3. Pressure head or pressure energy:
  This is due to the pressure of liquid and reckoned as p

w
where, p is the pressure, and w is the 

weight density of the liquid.

 Total head/energy:
 Total head of a liquid particle in motion is the sum of its potential head, kinetic head and 
pressure head. Mathematically,

  Total head, H = z + 
2

2
pV

g w
+  m of liquid ...[6.1 (a)]

  Total energy, E = z + 
2

2
pV

g w
+  Nm/kg of liquid ...[6.1 (b)]

 Example 6.1. In a pipe of 90 mm diameter water is flowing with a mean velocity of 2 m/s and 
at a gauge pressure of 350 kN/m2. Determine the total head, if the pipe is 8 metres above the datum 
line. Neglect friction.
 Solution. Diameter of the pipe  = 90 mm
  Pressure, p = 350 kN/m2

  Velocity of water, V = 2 m/s
  Datum head, z = 8 m
  Specific weight of water, w = 9.81 kN/m3

 Total head of water, H:

  H = z +
2

2
pV

g w
+

   = 
22 3508

2 9.81 9.81
+ +

×
 = 43.88 m

  H = 43.88 m (Ans.)

6.3.  BERNOULLI’S EQUATION 

 Bernoulli’s equation states as follows:
 “In an ideal incompressible fluid when the flow is steady and continuous, the sum of 
pressure energy, kinetic energy and potential (or datum) energy is constant along a stream line.” 
Mathematically,

  
2

2
p V
w g

+  + z = constant

 where, p
w

 = Pressure energy,

  
2

2
V

g
 = Kinetic energy, and

  z = Datum (or elevation) energy.
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 Proof:
 Consider an ideal incompressible liquid through a non-uniform pipe as shown in Fig 6.1. Let us 
consider two sections LL and MM and assume that the pipe is running full and there is continuity of 
flow between the two sections;
 Let, p1 = Pressure at LL,
  V1 = Velocity of liquid  at LL,
  z1 = Height of LL above the datum,
  A1 = Area of pipe at LL, and
  p2, V2, z2, A2 = Corresponding values at MM.
 Let the liquid between the two sections LL and MM move to L′ L′ and M′M′ through very small 
lengths dl1 and dl2 as shown in Fig. 6.1. This movement of liquid between LL  and MM is equivalent 
to the movement of the liquid between LL and  L′L′ and MM and M′ M′, the remaining liquid 
between  L′ L′ and MM being unaffected.
 Let, W = Weight of liquid between LL and L′ L′ .
 As the flow is continuous,
 ∴ W = wA1 . dl1 = wA2 . dl2
 or, A1 . dl1 = W

w
 ...(i)

 Similarly, A2 . dl2 = W
w

 ...(ii)

 ∴ A1 . dl1 = A2.dl2 
 Work done by pressure at LL, in moving the liquid to  L′ L′ 
   = Force × distance = p1 . A1 . dl1

L

1

2

M

z1

z2

p2
dl

1

dl2

p1

M

L

Pipe

L�

M�

M�

L�

Fig. 6.1. Bernoulli’s equation.

 Similarly, work done by the pressure at MM in moving the liquid to M′M′ = – p2.A2 . dl2
 (– ve sign indicates that direction of p2 is opposite to that of p1)
 ∴ Total work done by the pressure
   = p1 . A1 dl1 – p2 A2 dl2
   = p1 . A1 dl1 – p2 A1 dl1  ( A1dl1 = A2dl2)
   = A1 . dl1 (p1 – p2) 



262         Fluid Mechanics

   = 1 2( )W p p
w

−    1 1. WA dl
w

 = 
 


  Loss of potential energy = W (z1 – z2)

  Gain in kinetic energy = 
2 2

2 22 1
2 1– ( – )

2 2 2
V V WW V V

g g g
 

= 
 

 Also, Loss of potential energy + work done by pressure = Gain in kinetic energy

 ∴ 1 2 1 2( – ) ( – )WW z z p p
w

+  = 2 2
2 1( – )

2
W V V

g

 or, (z1 – z2) + 1 2–p p
w w

  
 

 = 
2 2

2 1–
2 2
V V

g g
 
 
 

 or, 
2

1 1
12

p V z
w g

+ +  = 
2

2 2
22

p V z
w g

+ +  ...(6.2)

 which proves Bernoulli’s equation.
 Assumptions:
 It may be mentioned that the following assumptions are made in the derivation of Bernoulli’s 
equation:
 1. The liquid is ideal and incompressible.
 2. The flow is steady and continuous.
 3. The flow is along the stream line, i.e., it is one-dimensional.
 4. The velocity is uniform over the section and is equal to the mean velocity.
 5. The only forces acting on the fluid are the gravity forces and the pressure forces.

6.4.  EULER’S EQUATION FOR MOTION 

 Consider steady flow of an ideal fluid along the stream tube. Separate out a small element of 
fluid of cross-sectional area dA and length ds from stream tube as a free body from the moving fluid.
 Fig. 6.2 shows such a small element LM of fluid of cross-section area dA and length ds.
 Let, p = Pressure on the element at L,
  p + dp = Pressure on the element at M, and
  V = Velocity of the fluid element.

ds

dA

dw = g dA.ds�

p

p + dp

�

Dire
ctio

n of flo
w

Streamline

M

L

ds

dz�

Fig. 6.2. Forces on a fluid element (Euler’s equation).
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 The external forces tending to accelerate the fluid element in the direction of stream line are as 
follows:
 1. Net pressure force in the direction of flow is,
  p.dA – (p + dp) dA = – dp . dA ...(i)
 2. Component of the weight of the fluid element in the direction of flow is
   = – ρ.g.dA.ds. cosθ

   = – ρ g . dA . ds  ( )dz
ds

 ( )cos dz
ds

θ =

   = – ρ.g.dA.dz ...(ii)
  Mass of the fluid element = ρ.dA.ds ...(iii)
 The acceleration of the fluid element

  a = .dV dV ds dVV
dt ds dt ds

= × =  ...(iv)

Now, according to Newton’s second law of motion, Force = Mass × acceleration

 ∴ – dp.dA – ρ.g.dA. dz = p.dA. ds × V. dV
ds

 Dividing both sides by ρ.dA, we get:

  –dp
ρ

– g.dz = V. dV

 or, dp
ρ

 + V . dV + g . dz = 0 ...(6.3)

 This is the required Euler’s equation for motion, and is in the form of differential equation.
 Integrating the above eqn., we get:

  1 . .dp V dV g dz+ +
ρ ∫ ∫ ∫  = constant

  
2

2
p V gz+ +
ρ

 = constant

 Dividing by g, we get:

  
2

2
p V z
g g

+ +
ρ

 = constant

 or, 
2

2
p V z
w g

+ +  = constant

 or,  in other words,

  
2

1 1
12

p V z
w g

+ +  = 
2

2 2
2+ + z

2g
p V
w

 which proves Bernoulli’s equation.
 Euler’s equation in Cartesian coordinates:
 Consider an infinitely small mass of fluid enclosed in an elementary parallelopiped of sides 
dx, dy and dz as shown in Fig. 6.3. The motion of the fluid element is influenced by the following 
forces:
 (i) Normal forces due to pressure:
 The intensities of hydrostatic pressure acting normal to each face of the parallelepiped are 
shown in Fig. 6.3.
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 The net pressure force in the X-direction 

   = p  .  dy . dz – 
pp dx
x

∂ + ∂ 
 dy dz

   = – . .p dx dy dz
x

∂
∂

 (ii) Gravity or body force:
 Let  B be the body force per unit mass of fluid  having components Bx , By and Bz in the X, Y and 
Z directions respectively.
 Then, the body force acting on the parallelopiped in the direction of X-coordinate is = Bx .ρ.dx .dy.
dz.

L

Y

X
S

P

Z

N

p

p

M

R

p

dy

dz

dx

Q

p + dy
�p

�y

p + dx
�p

�x

p + dz
�p

�z

T

Fig. 6.3. Normal surface forces on a non-viscous fluid element.

 (iii)  Inertia forces:
 The inertia force acting on the fluid mass, along the X-coordinate is given by,

  Mass × acceleration = ρ. dx . dy. dz. du
dt

 As per Newton’s second law of motion summation of forces acting in the fluid element in any 
direction equals the resulting inertia forces in that direction. Thus, along X-direction:

  Bx .ρ. dx.dy.dz – p
x

∂
∂

 dx.dy.dz. = ρ.dx.dy.dz. du
dt

 Dividing both sides by ρ.dx.dy.dz, we have:

  1–x
pB
x

∂
ρ ∂

 = du
dt

 ...(i)

 In this equation each term has dimensions of force per unit mass or acceleration. Obviously 
the total acceleration in a given direction is prescribed by the algebraic sum of the body force 
and the pressure gradient in that direction since the velocity components are functions of 
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position and time, i.e., u = f(x, y, z, t), therefore, the total derivative of velocity u in the X-direction 
can be written as:

  du = u u u udt dx dy dz
t x y z

∂ ∂ ∂ ∂+ + +
∂ ∂ ∂ ∂

 or, du
dt

 = . . .dyu u dx u u dz
t x dt y dt z dt

∂ ∂ ∂ ∂+ + +
∂ ∂ ∂ ∂

 Substituting, dx
dt

 = u, dy
dt

 = v and dz
dt

 = w; we have:

  du
dt

 = u u u uu v w
t x y z

∂ ∂ ∂ ∂+ + +
∂ ∂ ∂ ∂

 ...(ii)

 Combining eqns. (i) and (ii), we get the force components as:

  1–x
pB
x

∂
ρ ∂

 = u u u uu v w
t x y z

∂ ∂ ∂ ∂+ + +
∂ ∂ ∂ ∂

 ...(iii)

 Similarly, 1–y
pB
y

∂
ρ ∂

 = v v v vu v w
t x y z

∂ ∂ ∂ ∂+ + +
∂ ∂ ∂ ∂

 ...(iv)

 and, 1–z
pB
z

∂
ρ ∂

 = w w w wu v w
t x y z

∂ ∂ ∂ ∂+ + +
∂ ∂ ∂ ∂

 ...(v)

 For steady flow: u
t

∂
∂

 = v w
t t

∂ ∂=
∂ ∂

 = 0

 Thus, the Euler’s equation for a steady three-dimensional flow can be written as:

  1–x
pB
x

∂
ρ ∂

 = u u uu v w
x y z

∂ ∂ ∂+ +
∂ ∂ ∂

 ...(vi)

  1–y
pB
y

∂
ρ ∂

 = v v vu v w
x y z

∂ ∂ ∂+ +
∂ ∂ ∂

 ...(vii)

  1–z
pB
z

∂
ρ ∂

 = w w wu v w
x y z

∂ ∂ ∂+ +
∂ ∂ ∂

 ...(viii)

 In Euler’s equation each term represents force per unit mass. Thus, if each equation is multiplied 
by the respective projections of the elementary displacement, the resulting equation would represent 
energy. Thus, in order to get total energy in the three-dimensional-steady-incompressible flow, the 
energy terms can be combined as follows:

  1–x
pB dx dx
x

∂
ρ ∂

 = u u uu dx v dx w dx
x y z

∂ ∂ ∂+ +
∂ ∂ ∂

 ...(ix)  

  1–y
pB dy dy
y

∂
ρ ∂

 = v v vu dy v dy w dy
x y z

∂ ∂ ∂+ +
∂ ∂ ∂

 ...(x)

  1–z
pB dz dz
y

∂
ρ ∂

 = w w wu dz v dz w dz
x y z

∂ ∂ ∂+ +
∂ ∂ ∂

 ...(xi)

 From the equation of a stream line in a three-dimensional flow, we have:

  dx
u

 = dy dz
v w

=

  udy = vdx; vdz = wdy; udz = wdx
 Substituting these values in eqns. (ix), (x) and (xi), we get:

  1–x
pB dx dx
x

∂
ρ ∂

 = u u uu dx u dy u dz
x y z

∂ ∂ ∂+ +
∂ ∂ ∂

 ...(xii)
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  1–y
pB dy dy
y

∂
ρ ∂

 = v v vv dx v dy v dz
x y z

∂ ∂ ∂+ +
∂ ∂ ∂

 ...(xiii)

  1–z
pB dz dz
z

∂
ρ ∂

 = w w ww dx w dy w dz
x y z

∂ ∂ ∂+ +
∂ ∂ ∂

 ...(xiv)

 Acceleration terms are of form uu
x

∂
∂

 which can be replaced by 
2( )1

2
u
x

∂
∂

. Thus,

  1–x
pB dx dx
x

∂
ρ ∂

 = 2 2 2 21 1( ) ( ) ( ) ( )
2 2

u dx u dy z dz d u
x y z

∂ ∂ ∂ + + = ∂ ∂ ∂ 
 ...(xv)

 Similarly,  By dy – 1 p
y

∂
ρ ∂

dy = 1
2

 d (v2) ...(xvi)

 and, Bz dz – 1 p
y

∂
ρ ∂

 dz = 1
2

 d (w2) ...(xvii)

 Adding eqns. (xv), (xvi) and (xvii), we get:

  Bxdx + Bydy + Bzdz – 1 p p pdx dy dz
x y z

∂ ∂ ∂ + + ρ ∂ ∂ ∂ 

   = 1
2

[d(u2) + d(v2) + d(w2)]

 or, Bxdx + Bydy + Bzdz – 1 dp
ρ

 = 1
2

 d (V2) ...(xviii)

 where, V = Total velocity vector.
 When gravity is the only body force acting on the third element, then: 
  Bx = 0, Bz = 0 and By = – g
 By = – g since the gravitational force acts in the downward direction which is negative ‘with’ 
respect to Y, which is positive upward. Inserting these values in (xviii), we get: 

  – g – 1 dp
ρ

 = 1
2

 d (V2)

 or, – g – 1 dp
ρ

 = VdV

 or, dp
ρ

 + VdV + g = 0 which is the same as Euler’s equation (6.3).

 Hydrostatic equation from Euler’s equation:
 If the fluid is at rest then the velocity terms in Euler’s eqns, (vi), (vii) and (viii), vanish and we 
have:

  1–x
pB
x

∂
ρ ∂

 = 0; 1–y
pB
y

∂
ρ ∂

 = 0; 1–z
pB
z

∂
ρ ∂

 = 0

 Further, if gravity is the only body force, then:
  Bx = 0; By = – g; Bz = 0

 ∴ 1 p
x

∂
ρ ∂

 = 0; 1 p
z

∂
ρ ∂

 = 0 ...(xix)

 and, – g – 1 p
y

∂
ρ ∂

 = 0 ...(xx)
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 Eqn. (xix) signifies that fluid pressure p is independent of x and z. In that case p dp
y dy

∂ =
∂

 and

  – g – 1 dp
dyρ

 = 0

 or, dp = – ρgdy   or   dp = – wdy
 Integrating both sides, we get:

  
2

1

dp∫  = – w 
2

1

dy∫
 or, (p2 – p1) = – w (y2 – y1)
 or, dp =  wdy
 which represents the hydrostatic equation. Thus, hydrostatic equation is merely a corollary of 
Euler’s equation.
 Example 6.2. A discharge through a 24 cm diameter horizontal pipe increases linearly from 30 
to 120 litres/sec. of water in 4 seconds.
 (i) What pressure gradient must exist to produce this acceleration?
 (ii) What is the difference in pressure intensity that exists between two sections that lie 9 m apart?

 Solution. The Euler’s equation for one-dimensional flow along the pipe axis may be written as:

  1–x
pB
x

∂
ρ ∂

 = u uu
t x

∂ ∂+
∂ ∂

 ...(i)

 As the pipe is of uniform cross-sectional area, the velocity remains constant along the flow 
direction and therefore,

  u
x

∂
∂

 = 0

 Further, since the pipe has been laid horizontally, therefore, the body forces per unit volume in 
the direction X = 0
 Thus, the eqn. (i) reduces to:

  1 p
x

∂−
ρ ∂

 = u
t

∂
∂

 The change in velocity when the flow changes from 30 to 120 litres/sec

  ∂u = (u2 – u1) = 
–3 –3

2 2

120 10 30 10–
(0.24) (0.24)

4 4

× ×
π π× ×

 = 1.989 m/s

 This change takes place in 4 sec,

 ∴ u
t

∂
∂

 = 1.989
4

 = 0.497 m/s2

 (i) Pressure gradient, ∂p
∂x  :

  p
x

∂
∂

 = – u
t

∂ρ
∂

= – 1000 × 0.497 = – 497 N/m2/m (Ans.)

 (ii) Difference in pressure intensity between the sections:
  Difference in pressure intensity between two sections that lie 9 m apart
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1
Large tank

( – ) = 10 mz z1 2

2

Brine

Fig. 6.4

   = p
x

∂
∂

 × 9 = – 497 × 9 = – 4473 N/m2 (Ans.)

 Example 6.3. Brine of specific gravity 1.15 is draining 
from the bottom of a large open tank through an 80 mm pipe. 
The drain pipe ends at a point 10 m below the surface of the 
brine in the tank. Considering a stream line starting at the 
surface of the brine in the tank and passing through the centre 
of the drain line to the point of discharge and assuming the 
friction is negligible, calculate the velocity of flow along the 
stream line at the point of discharge from the pipe. 
                         (UPTU)

 Solution. Refer to Fig. 6.4.
 Section 1– The surface of brine in the tank
 Section 2 – The point of discharge.
 Applying Bernoulli’s equation between point 1 and 2, we get:

  
2

1 1
12

p V z
w g

+ +  = 
2

2 2
22

p V z
w g

+ +

 Here, p1 = p2 = patm. (atmospheric pressure),
  V1 = 0             and           (z1 – z2) = 10 m

 ∴ V2
2 = 2g (z1 – z2) = 2g × 10 = 2 × 9.81 × 10 = 196.2

 or, V2  14 m/s (Ans.)

 Example 6.4. A pipeline (Fig. 6.5) is 15 cm in diameter and it is at an elevation of 100 m at 
section A. At section B it is at an elevation of 107 m and has diameter of 30 cm. When a discharge of 
50 litre/sec of water is passed through this pipeline, pressure at A is 35 kPa. The energy loss in pipe 
is 2m of water. Calculate pressure at B if flow is from A to B. (Anna University)

 Solution. Given: DA = 15 cm = 0.15 m; DB = 30 cm = 0.3 m;
  pA = 35 kPa; Q = 50 litre/sec = 0.05 m3/s;
  hf = 2 m of water; Direction of flow: from A to B

30 cm dia.

B

A

Pipeline

15 cm dia.

Fig. 6.5

 Pressure at B, pB:

  VA = 
2 2

0.05

0.15
4 4A

Q

D
=π π× ×

 = 2.829 m/s
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  VB = 
2 2

0.05

(0.3)
4 4B

Q

D
=π π× ×

 = 0.707 m/s

 Applying Bernoulli’s equation between sections A and B, we get: 

  
2

2
A A

A
P V z
w g

+ +  = 
2

2
B BP V

w g
+  + zB + hf

 or, BP
w

 = 
2 2–
2

A BA V Vp
w g

 
+  

 
 + (zA – zB) – hf

 or, pB = pA + w 
2 2–

( – ) –
2

A B
A B f

V V
z z h

g
  

+  
  

   = 
2 2(1000 9.81) 2.829 – 0.70735 (100 – 107) – 2

1000 2 9.81
  ×+ +  ×  

  35 + 9.81 (0.3824 – 7 – 2) = – 49.54 kPa.
 i.e., pB = – 49.54 kPa. This shows that the given pressure at A, 35 kPa is gauge pressure and 
hence there is vacuum at point B. (Ans.)
 Example 6.5.  An open circuit wind tunnel draws in air from the atmosphere through a well 
contoured nozzle. In the test section, where the flow is straight and nearly uniform, a static pressure 
tap is drilled into the tunnel wall. A manometer connected to the tap shows that the static pressure 
within the tunnel is 45 mm of water below atmosphere. 
Assume that air is incompressible and at  25°C, 
pressure is 100 kPa (absolute). Calculate the velocity 
in the wind tunnel section (Refer to Fig. 6.6). Density of 
water is 999 kg/m3 and characteristic gas constant for 
air is 287 J/kg K.               (GATE)

 Solution. Given: T0 = 25 + 273 = 298 K; 
                                   p0 = 100 kPa (abs.); V0 = 0;
 Velocity in the wind tunnel section V1:
 As per the problem, air is assumed as incompressible (i.e., ρ0 = ρ1 = ρ). Velocity at test section 
can be found by using the equation:

  
2

0 0
02

p V z
w g

+ +  = 
2

1 1
12

p V z
w g

+ +

 where, z0 = z1;  V0 = 0,  p0 = 100 kPa (abs.)
  p1 = 45 mm of water below atmosphere

   = 999 × 9.81 45 Pa
1000

   = 999 × 9.81 × –345 10 kPa = 0.44 kPa
1000

×

   = 999 × 9.81 –345 10 kPa = 0.44 kPa
1000

×  below atmosphere

 ∴ p1(absolute) = Patm. (in kPa) – 0.44 kPa
   = 100 – 0.44 = 99.56 kPa

 Also, pV = mRT = ρRT  ( where, m
V

ρ = )

Test section

To manometer

1

t0 = 25°C

p0 = 100 kPa

V0 = 0

V1

Fig. 6.6
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 or, ρ = 
3100 10

287 298
p

RT
×=
×

 = 1.169 kg/m3

 ∴ w = ρg = 1.169 × 9.81 = 11.468 N/m3

 Substituting these values in (i), we get:

  
3100 10

11.468
×  = 

23
199.56 10

11.468 2 9.81
V× +
×

  8719.9 = 8681.5 + 
2

1
2 9.81

V
×

 ∴ V1 = (8719.9 – 8681.5) 2 9.81× × = 27.45 m/s (Ans.)

 Example 6.6. Water flows in a circular pipe. At one section the diameter is 0.3 m, the static 
pressure is 260 kPa gauge, the velocity is 3 m/s and the elevation is 10  m above ground level. 
The elevation at a section downstream is 0 m, and the pipe diameter is 0.15 m. Find out the gauge 
pressure at the downstream section.
Frictional effects may be neglected. Assume density of water to be 999 kg/m3. 

(RGPV, Bhopal)
 Solution. Refer to Fig. 6.7. D1 = 0.3 m; D2 = 0.15 m; z1 = 0; z2 = 10 m; p1 = 260 kPa, V1 =  
3 m/s; ρ = 999 kg/m3.
 From continuity equation, A1 V1 = A2V2,

2D
= 0.15 m

2

D = 0.3 m

1

p = 260 kPa

(gauge)
1

10 m

1

Fig. 6.7

  V2 = 
2
11

1 122 2

4

4

DA V V
A D

π 
 × = × π 
 

   = ( )2 2
1

1
2

0.3 3 12m/s
0.15

D V
D

  × = × = 
 

  Weight density of water, w = ρg = 999 × 9.81 = 9800.19 N/m3

 From Bernoulli’s equation between sections 1 and 2 (neglecting friction effects as given), we 
have:
  

2
1 1

12
p V z
w g

+ +  = 
2

2 2
22

p V z
w g

+ +

    
2260 1000 (3) 10

9800.19 2 9.81
× + +

×
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   = 
2

2 (12) 0
9800.19 2 9.81

p + +
×

  26.53 + 0.459 + 10 = 2
9800.19

p  + 7.34

 or, p2 = 290566 N/m2 = 290.56 kPa (Ans.)
 Example 6.7. The water is flowing through a tapering pipe having diameters 300 mm and 150 
mm at sections  1 and 2 respectively. The discharge through the pipe is 40 litres/sec. The section 1 
is 10 m above datum and section 2 is 6 m above datum. Find the intensity of pressure at section 2 if 
that at section 1 is 400 kN/m2.
 Solution.  At Section 1:
  Diameter, D1 = 300 mm = 0.3 m

 ∴  Area, A1 = 
4
π  × 0.32 = 0.0707 m2

  Pressure, p1 = 400 kN/m2

 Height of upper end above the datum, z1 = 10 m
 At Section 2:
  Diameter, D2 = 150 mm = 0.15 m

 ∴  Area, A2 = 
4
π  × 0.152 = 0.01767 m2

 Height of lower end above the datum, z2 = 6 m
 Rate of flow (i.e., discharge),

  Q = 40 litres/sec = 
3

6
40  10

10
×

   = 0.04 m3/s

2

6 m

D
= 300 mm

1

D
= 150 mm

2

p 2
= ?

p 1
= 400 kN/m

2

Datum line

10 m

1

Fig. 6.8

 Intensity of pressure at section 2, p2:
 Now, Q = A1 V1 = A2V2

 ∴ V1 = 
1

0.04
0.0707

Q
A

= = 0.566 m/s
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 and, V2 = 
2

0.04
0.01767

Q
A

=  = 2.264 m/s

 Applying Bernoulli’s equation at sections 1 and 2, we get:

  
2

1 1
12

p V z
w g

+ +  = 
2

2 2
22

p V z
w g

+ +

 and, 2p
w

 = 
2 2

1 1 2–
2 2

p V V
w g g

 
+  

 
 + (z1 – z2)

   = 400 1
9.81 2 9.81

+
×

(0.5662 – 2.2642) + (10 – 6)

 ( w = 9.81 kN/m3)
   = 40.77 – 0.245 + 4 = 44.525 m
 ∴ p2 = 44.525 × w = 44.525 × 9.81 = 436.8 kN/m2 (Ans.)
 Example 6.8. A pipe 200 m long slopes down at 1 in 100 and tapers from 600 mm diameter at 
the higher end to 300 mm diameter at the lower end, and carries 100 litres/sec of oil (sp. gravity 
0.8). If the pressure gauge at the higher end reads 60 kN/m2, determine:
 (i) Velocities at the two ends;
 (ii) Pressure at the lower end.
  Neglect all losses.
 Solution. Length of the pipe, l = 200 m; diameter of the pipe at the higher end, D1 = 600 mm  
= 0.6 m,

 ∴ Area, A1 = 
4
π  × 0.62 = 0.283 m2

 Diameter of the pipe at the lower end,
  D2 = 300 mm = 0.3 m

 ∴ Area, A2 = 
4
π  × 0.32 = 0.0707 m2

 Height of the higher end, above datum,

  z1 = 1
100

× 200 = 2 m

 Height of the lower end, above datum z2= 0
 Rate of oil flow, Q = 100 litres/sec = 0.1 m3/s
 Pressure at the higher end, p1 = 60 kN/m2

 (i) Velocities, V1, V2: 
  Now, Q = A1 V1 = A2 V2
  where, V1 and V2 are the velocities at the higher and lower ends respectively.

  ∴ V1 = 
1

0.1
0.283

Q
A

=  = 0.353 m/s (Ans.)

   and V2 = 
2

0.1
0.0707

Q
A

=  = 1.414 m/s (Ans.)

 (ii) Pressure at the lower end p2:
  Using Bernoulli’s equation for both ends of pipe, we have:

2 Slope 1 in 100
= 600 mm

D2

D1

p 2
= ?

p1
= 60 kN/m

2

Datum line
= 300 mm

1

Fig. 6.9
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2

1 1
12

p V z
w g

+ +  = 
2

2 2
22

p V z
w g

+ +

  
260 0.353 2

0.8 9.81 2 9.81
+ +

× ×
 = 

2
2 1.414

0.8 9.81 2 9.81
p +
× ×

 + 0

  7.64 + 0.00635 + 2 = 2
0.8 9.81

p
×

+ 0.102

 ∴ 2
0.8 9.81

p
×

 = 9.54 m

 or, p2 = 74.8 kN/m2 (Ans.)

 Example 6.9. A 6m long pipe is inclined at an angle of 20° with the horizontal. The smaller 
section of the pipe which is at lower level is of 100 mm diameter and the larger section of the pipe is 
of 300 mm diameter as shown in Fig. 6.10. If the pipe is uniformly tapering and the velocity of water 
at the smaller section is 1.8 m/s, determine the difference of pressures between the two sections.

 Solution. Length of the pipe, l = 6 m
 Angle of inclination, θ = 20° 
 At Section 1:
  Diameter, D1 =  100 mm = 0.1 m

 ∴   Area, A1 = 
4
π  × 0.12 = 0.00785 m2

  Velocity, V1 = 1.8 m/s
  Datum, z1 = 0

 At Section 2:
  Diameter, D2 = 300 mm = 0.3 m

 ∴  Area, A2 = 
4
π  × 0.32 = 0.0707 m2

  Datum, z2 = 0 + 6 sin θ = 6 sin 20° = 6 × 0.342 = 2.05 m
 Let, p1 = Pressure at section 1 in kN/m2, and
  p2 = Pressure at section 2 in kN/m2.

 Difference of pressures, (p1 – p2) :
 From the equation of continuity, we know that:
  A1V1 = A2V2

 ∴ V2 = 1 1

2

0.00785 1.8
0.0707

AV
A

×= = 0.2 m/s.

 Applying Bernoulli’s equation to both sections of the pipe, we get:

  
2

1 1
12

p V z
w g

+ +  = 
2

2 2
22

p V z
w g

+ +

 or, 1 2–p p
w w

  
 

 = 
2 2

2 1–
2 2
V V

g g
 
 
 

 + (z2 – z1)

   = 2 2
2 1 2 1

1 ( – ) ( – )
2

V V z z
g

+

2

= 300 mm
D 2

D1

Datum line

20°

6 m

= 100 mm

1

Fig. 6.10
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   = 1
2 9.81×

 (0.22 – 1.82) + (2.05 – 0) = 1.88

 ∴ (p1 – p2) = w × 1.88 = 9.81 × 1.88 = 18.44 kN/m2 (Ans.)
   [ w (for water) = 9.81 kN/m3] 

 Example 6.10. Water is flowing through a pipe having diameters 600 mm and 400 mm at the 
bottom and upper end respectively. The intensity of pressure at the bottom end is 350 kN/m2 and the 
pressure at the upper end is 100 kN/m2. Determine the difference in datum head if the rate of flow 
through the pipe is 60 litres/sec.

 Solution. At Section 1:
  Diameter, D1 = 600 mm = 0.6 m

 ∴  Area, A1 = 
4
π  × 0.62 = 0.283 m2

  Pressure, p1 = 350 kN/m2

 At Section 2:
  Diameter, D2 = 400 mm = 0.4 m

  Area, A2 = 
4
π × 0.42 = 0.1257 m2

  Pressure, p2 = 100 kN/m2

 Rate of flow,

  Q = 60 litres/sec = 60
1000

= 0.06 m3/sec.

 Now, Q = A1V1 = A2V2
 [where, V1 and V2 are the velocities at sections 1 and 2 respectively.]

 ∴ V1 = 
1

0.06
0.283

Q
A

=  = 0.212 m/s

 and, V2 = 
2

0.06
0.1257

Q
A

=  = 0.477 m/s

 Applying Bernoulli’s equation at sections 1 and 2, we get:

  
2

1 1
12

p V z
w g

+ +  = 
2

2 2
22

p V z
w g

+ +

  
2

1
350 0.212
9.81 2 9.81

z+ +
×

 = 
2

2
100 0.477
9.81 2 9.81

z+ +
×

  35.67 + 0.0023 + z1 = 10.19 + 0.0116 + z2
  z2 – z1 =  25.47 m (Ans.)

 Example 6.11. Gasoline (sp. gr. 0.8) is flowing upwards a vertical pipeline which tapers from 
300 mm to 150 mm diameter. A gasoline mercury differential manometer is connected between  
300 mm and 150 mm pipe section to measure the rate of flow. The distance between the manometer 
tappings is 1 metre and gauge reading is 500  mm of mercury. Find: 
 (i) Differential gauge reading in terms of gasoline head;
 (ii) Rate of flow.
  Neglect friction and other losses between tappings.         [MGU, Kerala]

D 1
= 600 mm

D 2
= 400 mm

z1

z2

p 1
= 350 kN/m

2

p 2
= 100 kN/m

2

Datum line

1

2

Fig. 6.11
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 Solution.  Sp. gravity of gasoline = 0.8
 At Inlet:
  Diameter, D1 = 300 mm = 0.3 m

 ∴  Area, A1 =  
4
π  × 0.32 = 0.0707 m2

 At Outlet:
  Diameter, D2 = 150 mm = 0.15 m

 ∴  Area, A2 = 
4
π  × 0.152 = 0.01767 m2

  Length of the pipe  = 1m
  Let datum of the pipe at inlet, z1 = 0
 ∴ Datum of the pipe at outlet, z2 = 0 + 1 = 1 m
 Gauge reading, h = 500 mm of mercury = 0.5 m of mercury.
 (i) Differential gauge reading in terms of gasoline head:
   The gauge reading = 0.5 m of mercury

     = 13.6 – 0.8 0.5
0.8

×  of gasoline

     = 8 m of gasoline (Ans.)
 (ii) Rate of flow, Q:
  Let, V1 = Velocity of gasoline at the inlet, and
    V2 = Velocity of gasoline at the outlet.
  We know that, as per equation of continuity:
    A1V1 = A2V2

  ∴ V2 = 1 1 1

2

0.0707
0.01767

AV V
A

×=  = 4V1

  Now, using Bernoulli’s equation for the inlet and outlet of the pipe, we get:

   
2

1 1
12

p V z
w g

+ +  = 
2

2 2
22

p V z
w g

+ +

   { } 2 2
1 2 1 2– –

2 2
p p V V
w w g g

 
+  

 
 + (z1 – z2) = 0

   
2 2

1 1(4 )8 – [0 – 1]
2 2
V V

g g
 

+ + 
 

 = 0

  or, 
2

1158 – – 1
2
V
g

 = 0

  or, 
2

115
2
V
g

 = 7

  ∴ V1 = 
1/27 2 9.81

15
× × 

  
 = 3.026 m/s.

  ∴ Rate of flow, Q = A1V1 = 0.0707 × 3.026 = 0.2139 m3/s (Ans.)

 Example 6.12. The suction pipe of a pump rises at a slope of 3 vertical in 4 along the pipe which 
is 12 cm in diameter. The pipe is 7.2 m long; its lower end being  just below the water surface in the 

1
m

D = 300 mm1

Inlet

Outlet

D =

150 mm
2

Gasoline
(Sp. gr. = 0.8)

Fig. 6.12
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reservoir. For design reasons, it is desirable that pressure at inlet to the pump shall fall to more than 
75 kPa below atmospheric pressure. Neglecting friction, determine the maximum discharge that the 
pump may deliver. Take atmospheric pressure as 101.32 kPa. (Bangalore University)
 Solution. Refer  to Fig. 6.13. Given: d = 12 cm = 0.12 m; l =  7.2 m; patm. = 101. 32 kPa = 101.32 
kN/m2.
 Applying Bernoulli’s equation at point 1 (F.W.S.) and 
point 2 (suction point to pump), we get:

  
2

1 1
12

p V z
w g

+ +  = 
2

2 2
22

p V z
w g

+ +  ...(i)

 Velocity V1 on the free water surface (F.W.S.) = 0 
(sump being very large)
  p1 = patm. = 101.32 kN/m2,  
  p2 = 101·32 – 75 = 26.32 kN/m2

 Taking point 1 as the datum head, we have:

  z1 = 0; z2 = 37.2
4

× = 5.4 m

 Inserting the various values in eqn (i), we have:

  101.32 0 0
9.81

+ +  = 
2

226.32 5.4
9.81 2

V
g

+ +

 or, V2 = 6.64 m/s
 ∴  Discharge that the pump may deliver,

 Q =  A2 × V2 = 2(0.12) 6.64
4
π × ×  = 0.075 m3/s (Ans.)

6.5.  BERNOULLI’S EQUATION FOR REAL FLUID 

 Bernoulli’s equation earlier derived was based on the assumption that fluid is non-viscous and 
therefore frictionless. Practically, all fluids are real (and not ideal) and therefore are viscous as 
such there are always some losses in fluid flows. These losses have, therefore, to be taken into 
consideration in the application of Bernoulli’s equation which gets modified (between sections 1 
and 2) for real fluids as follows:

  
2

1 1
12

p V z
w g

+ +  = 
2

2 2
22 L

p V z h
w g

+ + +  ...(6.4)

 where, hL = Loss of energy between 
    sections 1and 2.
 Example 6.13. The following data relate to a conical 
tube of length 3.0 m fixed vertically with its smaller end 
upwards and carrying fluid in the downward direction.
The velocity of flow at the smaller end = 10 m/s.
The velocity of  flow at the larger end = 4 m/s.

 The loss of head in the tube 
2

1 2. ( – )0 4 V V
2g

=

where, V1 and V2 are velocities at the smaller and larger 
ends respectively.

Pump

4 3

F.W.S.

Reservoir/sump

7
.2

m

2

Suction pipe

1

Fig. 6.13

2

Conical tube

Smaller end

Larger end

3 m

1

Fig. 6.14
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 Pressure head at the smaller end = 4 m of liquid.
 Determine the pressure head at the larger end.
 Solution.  Length of tube, l = 3.0 m
  Velocity, V1 = 10 m/s.

  Pressure head, 1p
w

 =  4 m of liquid.

  Velocity, V2 = 4 m/s.

  Loss of head, hL = 
2 2

1 20.4( – ) 0.4(10 – 4)
2 2 9.81

V V
g

=
×

 = 0.73 m

 Pressure head at the larger end, 2p
w :

 Applying Bernoulli’s equation at sections (1) and (2), we get:

  
2

1 1
12

p V z
w g

+ +  = 
2

2 2
2

p V
w g

+  + z2 + hL

 Let the datum line passes through section (2).
 Then, z2 = 0, z1 = 3.0 m

 ∴ 
2104 3.0

2g
+ +  = 

2
2 4

2 2
p

g
+  + 0 + 0.73

 or, (4 + 5.09 + 3.0) = 2p
w

+ 0.815 + 0.73

 or, 12.09 = 2p
w

+ 1.54

 ∴ 2p
w

 = 10.55 m of liquid (Ans.)

 Example 6.14. In a smooth inclined pipe of uniform diameter 250 mm, a pressure of 50 kPa 
was observed at section 1 which was at elevation 10 m. At another section 2 at elevation 12 m, the 
pressure was 20 kPa and the velocity was 1.25 m/s. Determine the direction of flow and the head 
loss between these two sections. The fluid in the pipe is water. The density of water at 20°C and 760 
mm Hg is 998 kg/m3.                       (PTU)

 Solution. Given: 
  D = 250 mm = 0.25 m, 
  p1 = 50 kPa = 50 × 103 N/m2;
  z1 = 10 m; z2 = 12 m; 
  p2 = 20 kPa = 20 × 103 N/m2,
  V1 = V2 = 1.25 m/s, ρ = 998 kg/m3.
 Refer to Fig. 6.15.
 Loss of head hL:
 Total energy at section 1–1,

  E1 = 
2 3

1 1
1

50 10
2 998 9.81

p V z
w g

×+ + =
×

 + 
21.25

2 9.81×
 + 10 = 15.187 m

 Total energy of section 2–2,

  E2 = 
2 3 2

2 2
2

20 10 1.25
2 998 9.81 2 9.81

p V z
w g

×+ + = +
× ×

 + 12 = 14.122 m

250 mm
2

1

1

2

z1 = 10 m

p1 = 50 kPa

p2 = 20 kPa

z2 = 12 m

Fig. 6.15
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 ∴  Loss of head, hL = E1 – E2 = 15.187 – 14.122 = 1.065 m (Ans.)
 Direction of flow:
 Since E1 > E2 direction of flow is from section 1-1 to section 2-2. (Ans.)

 Example 6.15. A pipe line carrying oil (sp. gr. 0.8) changes in diameter from 300 mm at position 
1 to 600 mm diameter at position 2 which is 5 metres at a higher level. If the pressures at positions 
1and 2 are 100 kN/m2 and 60 kN/m2 respectively and the discharge is 300 litres/sec., determine:
 (i) Loss of head, and
 (ii) Direction of flow.
 Solution.  Discharge, Q = 300 litres/sec

   = 300
1000

 = 0.3 m3/s.

  Sp. gr. of oil = 0.8
 ∴  Weight of oil, w = 0.8 × 9.81 = 7.85 kN/m3

 At position ‘1’:
  Diameter of pipe, D1 = 300 mm = 0.3 m

 ∴   Area of pipe, A1 = 
4
π  × 0.32 = 0.0707 m2

  Pressure, p1 = 100 kN/m2

 If the datum line passes through section 1 (Fig. 6.16) then datum, z1 = 0

D 1
= 300 mm

D 2
= 600 mm

p 1
= 100 kN/m

2

p 2
= 60 kN/m

2

1

2

5 m

Datum line

Fig. 6.16

  Velocity, V1 = 
1

0.3
0.0707

Q
A

=  = 4.24 m/s

 At position ‘2’:
  Diameter of pipe, D2 = 600 mm = 0.6 m

 ∴  Area of pipe, A2 = 
4
π  × 0.62 = 0.2888 m2

  Pressure, p2 = 60 kN/m2

  Datum, z2 = 5m

  Velocity, V2 = 
2

0.3
0.2828

Q
A

= = 1.06 m/s.
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 (i) Loss of head, hL:
  Total energy at position 1,

    E1 = 
2

1 1
12

p V z
w g

+ +

   = 
2(4.24)100 0

7.85 2 9.81
+ +

×
 = 12.74 + 0.92 = 13.66 m

  Total energy at position 2,

    E2 = 
2

2 2
22

p V z
w g

+ +

   = 
2(1.06)60 5

7.85 2 9.81
+ +

×
= 7.64 + 0.06 = 7.7 m

  ∴   Loss of head, hL = E1 – E2
   = 13.66 – 7.7 = 5.96 m
  i.e., hL = 5.96 m (Ans.)
 (ii) Direction of Flow:
  Since E1 > E2 therefore flow takes place from 1 to 2. (Ans.)

 Example 6.16. A conical tube is fixed vertically with its smaller end upwards and it forms a 
part of pipeline. The velocity at the smaller end is 4.5 m/s  and at the large end 1.5 m/s. Length of 
conical tube is 1.5 m. The pressure at the upper end is equivalent to a head of 10 m of water.
 (i) Neglecting friction, determine the pressure at the lower end of the tube.

 (ii) If head loss in the tube is 
2

1 20.3 ( – )
2

V V
g

, where V1  is the velocity at the smaller end and V2 

is the velocity at the larger end, determine the pressure at the lower end (larger cross-sec-
tion).    (MDU, Haryana)

 Solution. Given: V1 = 4.5 m/s; V2 = 1.5 m/s; L = z1 – z2 = 1.5 m;

  1p
w

 = 10 m of water; hf = 
2

1 20.3( – )
2

V V
g

 Pressure at the lower end, p2:

 (i) Neglecting friction:
  Applying Bernoulli’s equation between points 1 and 2, we get:

    
2

1 1
12

p V z
w g

+ +  = 
2

2 2
22

p V z
w g

+ +

  or, 2p
w

 = 2 21
1 2 1 2

1 ( – ) ( – )
2

p V V z z
w g

+ +

     = 110
2 9.81

+
×

 (4.52 – 1.52) + 1.5

     = 10 + 0.917 + 1.5  12.42 m of water
  or, p2 =  12.42 × 9810 N/m2 = 12.42 × 9810 × 10–5 bar
     = 1.218 bar (Ans.)

1

2

1.5 m

Fig. 6.17
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 (ii) Considering loss of head (hf) in the tube :

  hf = 
2

1 20.3( – )
2

V V
g

  Applying Bernoulli’s equation between points 1 and 2, we have:

    
2

1 1
12

p V z
w g

+ +  = 
2

2 2
2

p V
w g

+  + z2 + hf

  or, 2p
w

 = 2 21
1 2 1 2

1 ( – ) ( – )
2 f

p V V z z h
w g

+ + −

     = 
2 2 24.5 – 1.5 0.3(4.5 – 1.5)10 1.5

2 9.81 2 9.81
+ + −

× ×

     = 10 + 0.917 + 1.5 – 0.138 = 12.279 m of water
  or, p2 = 12.279 × 9810 × 10–5 bar = 1.204 bar (Ans.)

 Example 6.17. A drainage pump has tapered suction pipe. The pipe is running full of water. 
The pipe diameters at the inlet and at the upper end are 1 m and 0.5 m respectively. The free water 
surface is 2 m above the centre of the inlet and centre of upper end is 3 m above the top of free water  
surface. The pressure at the tip end of the pipe is 25 cm of mercury and it is known that loss of head 
by friction between top and the bottom section is one-tenth of the velocity head at the top section. 
Compute the discharge in litre/sec. Neglect loss of head at the  entrance of the tapered pipe. 
 (UPTU)
 Solution. Given: D1 = 1m; D2 = 1.5 m;

  p1 =  76 cm of Hg = 76 13.6
100

× = 10.336 of water;

  p2 = 25 cm of Hg = 25 13.6
100

× = 3.4 m of water; hf = 
2

21 .
10 2

V
g

 Discharge, Q:
 Refer to Fig. 6.18. Applying continuity equation for the flow through pipe, we get:
  A1V1 = A2V2

  2
1 14

D Vπ  = 2
2 24

D Vπ

 or, D2
1V1 = D2

2V2
 or, 12 × V1 = (0.5)2 V2
 or, V2 = 4V1
         Now, applying Bernoulli’s equation at 1-1 and 2-2,
we get:
  

2
1 1

12
p V z
w g

+ +  = 
2

2 2
22 f

p V z h
w g

+ + +

  
2

110.336 0V
g

+ +  = 
2 2

1 116 1613.4 5
2 10 2
V V
g g

+ + + ×

  
2 2 2

1 1 116 1.6 –
2 2 2
V V V
g g g

+  = 10.336 – 3.4 – 5 = 1.936

 or, 16.6  V2
1 = 2 × 9.81× 1.936 = 37.98

 ∴ V1 = 1.513 m/s

3 m

2 m

2

D = 0.5 m2

D = 1 m1

2

1

Suction
pipe

1

Fig. 6.18
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 Discharge Q = A1V1 = 
4
π  × 12 × 1.513 = 1.188 m3/s = 1188 litres/sec. (Ans.)

 Example 6.18. The closed tank of a fire engine is partly filled with water, the air space above 
being under pressure. A 6 cm bore connected to the tank discharges on  the roof of a building 2.5 m 
above the level of water in the tank. The friction losses are 45 cm of water.
Determine the air pressure which must be maintained in the tank to deliver 20 litres/sec. on the 
roof.    (Madras University)
 Solution. Refer to Fig. 6.19 Given: Diameter of hose pipe d = 6 cm = 0.06 m; Friction, hf = 45 
cm or 0.45 m of water.

1

2.5 m

Water

Closed
tank

2

Air

Roof

Hose pipe
( = 6 cm)d

Fig. 6.19

  Discharge, Q = 20 litres/sec. or 0.02 m3/s.

 Velocity of water in the pipe, V = 
2

0.02

(0.06)
4

Q
A

= π ×
 = 7.07 m/s.

 Applying Bernoulli’s theorem at points 1 and 2 respectively, we get:

  
2

1 1
12

p V z
w g

+ +  = 
2

2 2
22 f

p V z h
w g

+ + +

 Here, V1 = 0; z1 = 0; p2 = 0; V2 = 7.07 m/s; z2 = 2.5 m; hf = 0.45 m
 Inserting the various values in the above equation, we get:

  1p
w

 + 0 + 0 = 0 + 
2(7.07)

2g
 + 2.5 + 0.45

 or, 1
9.81

p  = 
2(7.07)

2 9.81×
+ 2.5 + 0.45 

   = 5.497 m of water (where p1 is in kN/m2)
 ∴ p1 = 9.81 × 5.497 = 53.93 kN/m2 (gauge) (Ans.)
 Example 6.19.  A siphon consisting of a pipe of 12cm diameter is used to empty kerosene oil 
(Sp. gr. = 0.8) from the tank A. The siphon discharges to the atmosphere at an elevation of 1.2 m. 
The oil surface in the tank is at an elevation of 4.2 m. The centre line of the siphon pipe at its highest 
point C is at an elevation of 5.7 m. Determine:
 (i) The discharge in the pipe.
 (ii) The pressure at point C.
 The losses in the pipe may be assumed to be 0.45 m up to summit and 1.25 m from the summit 
to the outlet.
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 Solution. Consider points 1 and 2 at the surface of the oil in the tank A  and at the outlet as 
shown in Fig. 6.20. The velocity V1 can be assumed to be zero. Applying Bernoulli’s equation at 
points 1 and 2, we get:

  
2

1 1
12

p V z
w g

+ +  = 
2

2 2
2

p V
w g

+  + z1 + hf(1 – 2)
 (losses)

  0 + 0 + 4.2 = 0  + 
2

2
2
V

g
 + 1.2 + (0.45 + 1.25)

 or, V2 = 5.05 m/s

1

Tank A

5.7 m

Siphon
(d = 12 cm)

Kerosene oil
(Sp.gr. = 0.8)

4.2 m

21.2 m

C

V2

Fig. 6.20

 (i) The discharge in the pipe, Q:

  Q = A 2V2 = 2(0.12) 5.05
4
π × × = 0.057 m3/s (Ans.)

 (ii) The pressure at point C:
  Applying Bernoulli’s equation at points 1 and C, we get:

  
2

1 1
12

p V z
w g

+ +  = 
2

2
C Cp V

w g
+  + zC + hf(1 – C)

  0 + 0 + 4.2 = 
2(5.05)

2 9.81
Cp

w
+

×
 + 5.7 + 0.45

   or, Cp
w

 = – 3.25 m

  or, pC = (0.8 × 9.81) × (– 3.25) 
     = – 25.5 kN/m2 or – 25.5 kPa (gauge) (Ans.)

 Example 6.20. The outlet at the bottom of a tank is so formed that velocity of water at point A 
(see Fig. 6.21) is 2.2 times the mean velocity within the outlet pipe. What is the greatest length of 
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pipe l which may be used without producing 
cavitation? Neglect all other losses.
 Take atmospheric pressure = 96.24 
kPa (abs.) and vapour pressure = 3.9 kPa 
(abs.)

 Solution. Given: VA = 2.2 V2; p1 = p2 
= patm.= 96.24 kPa = 96.24 kN/m2 
 Vapour pressure, pA= 3.9 kPa  
                                      = 3.9 kN/m2 (abs.)
 Applying Bernoulli’s equation to 
points 1 and A, we get:

 
2

1 1
12

p V z
w g

+ +  = 
2

2
A A

A
p V z
w g

+ +

 96.24 0 1.7
9.81

+ +  = 
23.9 0

9.81 2 9.81
AV+ +

×
 ∴ VA = 14.76 m/s

  V2 = 14.76
2.2 2.2

AV =  

   = 6.71 m/s
 Applying Bernoulli’s equations to point 1 and 2, we get:

  
2

1 1
12

p V z
w g

+ +  = 
2

2 2
22

p V z
w g

+ +

  96.24
9.81

 + 0 + (l + 1.1) = 
296.24 6.71

9.81 2 9.81
+

×
 + 0

 ∴ l = 1.195 m (Ans.)
 Example 6.21. A turbine  has a supply line of diameter 45 cm and a tapering draft tube as 
shown in Fig. 6.22. When the flow in the pipe is 0.6 m3/s the pressure head at point L upstream of 
the turbine is 35 m and at a point M in the draft tube, where the diameter is 65 cm, the pressure 
head is – 4.1 m. Point M is 2.2 m below the point L. Determine the power output of the turbine by 
assuming 92% efficiency.

 Solution. VL = 
2

0.6

(0.45)
4

L

Q
A

= π ×
= 3.77 m/s

   VM = 
2

0.6

(0.65)
4

M

Q
A

= π ×
 = 1.81 m/s

Applying Bernoulli’s equation to points L and M:

 
2

2
L L

L
P V z
w g

+ +  = 
2

2
M M

M T
P V z H
w g

+ + +

 35 + 
2(3.77) 2.2

2 9.81
+

×
 =  – 4.1 +

2(1.81) 0 +
2 9.81 TH+

×

1

A

2

V2

Tank
1.1 m

l

Fig. 6.21

M

Draft
tube

L

45 cm dia.

Turbine (T)

65 cm
dia

2.2 m

Fig. 6.22
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 ∴ HT = 41.86 m
 Power output of the turbine,
  P = wQHT × η
   = 9.81 × 0.6 × 41.86 × 0.92 = 226.68 kW (Ans.)
 Example 6.22. Fig 6.23 shows a pipe connecting a reservoir to a turbine which discharges 
water to the tail race through another pipe. The head loss between the reservoir and the turbine is 
8 times the kinetic head in the pipe and that from the turbine to the tail race is 0.4 times the kinetic 
head in the pipe. The rate of flow is 1.2 m3/s and the pipe diameter in both cases is 1.1 m. Determine:
 (i) The pressure at the inlet and exit of the turbine.
 (ii) The power generated by the turbine.

 Solution. Given: d = 1.1 m; Q = 1.2 m3/s, hf (1 – 2) = 
2

8
2
V

g
× ; 

2

(3 – 4) 0.4
2f
Vh

g
= ×

 (i) The pressure at the inlet and exit of the turbine; p2, p3:

   Flow velocity in the pipe, 
2 2

1.2 1.263 m/s
(1.1)

4 4

QV
d

= = =π π ×

  Since the pipes before and after the turbine are of equal diameter, therefore, 
   V2 = V3 = 1.263 m/s

1

2

Turbine (T)

1.1 m dia

3

5 m
1.1 m

dia.

50 m

4

Fig. 6.23

        Further, V1 = V4 = 0; p1 = p4 = 0 (atmospheric pressure)
  Applying Bernoulli’s equation between point 1 and 2, we get:

  
2

1 1
12

p V z
w g

+ +  = 
2 2

2 2 2
2 8

2 2
p V Vz
w g g

+ + + ×

  0 + 0 + 50 = 
2 2

2 (1.263) (1.263)0 8
2 9.81 2 9.81

p
w

+ + + ×
× ×

 or, 2p
w

 = 49.27 m of water = 483.34 kN/m2 or kPa (Ans.)



Chapter 6 : Fluid Dynamics         285

  Applying Bernoulli’s equation between points 3 and 4, we have:

  
2

3 3
32

p V z
w g

+ +  = 
22

34 4
4 0.4

2 2
Vp V z

w g g
+ + + ×

  
2

3 (1.263) 5
2 9.81

p
w

+ +
×

 = 0 + 0 + 0 + 0.4 × 
2(1.263)

2 9.81×

  or, 3p
w

 = – 5.049 m of water = – 49.53 kN/m2 or kPa (Ans.)

 (ii) The power generated by the turbine, P:
  Applying Bernoulli’s equation between points 2 and 3, we get:

  
2

2 2
22

p V z
w g

+ +  = 
2

3 3
3 THp V z

w w
+ + +

  where, HT = Energy developed by the turbine per unit weight of liquid = Nm/N or m of liquid
  49.27 = – 5.049 + HT  ( V2 = V3 and z2 = z3)
  ∴ HT = 54.32 m of water.
  Hence, power generated by the turbine,
  P  = wQHT = 9.81 × 1.2 × 54.32 = 639.46 kW (Ans.)

 Example 6.23.  In Fig. 6.24 is shown a turbine with inlet pipe and a draft tube. If the efficiency 
of turbine is 80 per cent and discharge is 1000 litres/s, find:
 (i) The power developed by the turbine, and
 (ii) The reading of the gauge G. (Panjabi University)

 Solution.  Efficiency of the turbine, η = 80%
 Discharge through the turbine Q = 1000 litres/sec. = 1m3/s
 Diameter of the inlet pipe = 0.4 m
 ∴ Area of the inlet pipe,
  A = (π/4) × 0.42 = 0.1257 m2

 ∴ Velocity of water through the pipe,

  V = 1
0.1257

Q
A

=  = 7.96 m/s

 (i) Power developed by the turbine, P:
  Applying Bernoulli’s equation at 1 and 2, we get:

  
2

1 1
12

p V z
w g

+ +   =   
2

2 2
2

p V
w g

+  + z2 + losses + HT

  where, HT = Energy developed by the turbine per unit weight of liquid = Nm/N or m of liquid

    
2350 7.96 5

9.81 2 9.81
+ +

×
 = 0 + 0 + 0 + HT (V = V1 = 7.96 m/s) (neglecting losses)

  ∴ HT = 35.68 + 3.23 + 5 = 43.91 m (where, w = 9.81 kN/m3)
    Power developed, P = wQHT × η kW (where, w = 9.81 kN/m3)
     = 9.81 × 1 × 43.91 × 0.8 = 344.6 kW
  i.e., P =  344.6 kW (Ans.)

Turbine

1

2

Q

Q

0.5 m dia

Draft tube
G

Inlet pipe

0.4 m dia

350 kN/m
2

1 m
2

m
3

m

Water

Fig. 6.24
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 (ii) Reading of the gauge G, pG:
  Applying Bernoulli’s equation at 1 and G, we get:

  
2

1 1
12

p V z
w g

+ +  = 
2

2
G G

G T
p V z H
w g

+ + +

  
2350 7.96 3

9.81 2 9.81
+ +

×
 = 

2

2
G Gp V

w g
+ + 0 + 43.91 ...(i)

  But, VG = 2
1

( / 4) 0.5G

Q
A

=
π ×

 = 5.09 m/s

  Substituting the value of VG in (i) and rearranging, we get:

  Gp
w

 = 
2 2350 7.96 5.093 –

9.81 2 9.81 2 9.81
+ +

× ×
 – 43.91

   = 35.68 + 3.23 + 3 – 1.32 – 43.91 = – 3.32 m of water
  ∴ pG = 9.81 × (– 3.32) = – 32.57 kN/m2 (Ans.)

 Example 6.24. Fig. 6.25 shows a pump P pumping 72 litres/sec. of water from a tank.
 (i) What will be the pressures at points L and M when the pump delivers 12 kW of power to the 

flow? Assume the losses in the system to be negligible.
 (ii) What will be the pressure at M when the loss in the inlet up to the pump is negligible and 

between the pump and the point M, a loss equal to 1.8 times the velocity head at B takes place.

 Solution. Given: Q  = 72 litres/sec.
   = 0.072 m3/s;

M

S

L

16 cm dia

P

Pump

10 cm dia.

1.3 m

3.5 m

Fig. 6.25

  Power delivered by the pump = 12 kW;
 Also, Q = 0.072 = ALVL = AMVM
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  VL = 0.072
LA

 = 
2

0.072

(0.16)
4
π ×

 = 3.581 m/s

  VM = 
2

0.072 0.072

(0.1)
4

MA
= π ×

 = 9.167 m/s

 Power delivered by the pump P
   = wQHP = 12 kW
 or, 9.81 × 0.072 × HP

 = 12
 ∴    HP = 16.99 m = Head delivered by the pump.
 (i) Pressures at point L and M:
  Applying Bernoulli’s equation to points S and L, we have:

    
2

2
S S

S
p V z
w g

+ +  = 
2

2
L L

L
p V z
w g

+ +

    0 + 0 + 3.5 = 
2(3.581) 0

2 9.81
Lp

w
+ +

×

  or,  Lp
w

 = 2.846 m or pL  = 9.81 × 2.846 = 27. 92 kN/m2 or  27.92 kPa (Ans.)

  By applying Bernoulli’s equation between S and L with level at L as datum, we get:

  
2

2
S S

S P
p V z H
w g

+ + +  = 
2

2
M M

M
p V z
w g

+ +

  0 + 0 + 3.5 + 16.99 = 
2(9.167)

2 9.81
Mp

w
+

×
 + (3.5 + 1.3)

  or, Mp
w

 = 11.407 m or pM  = 9.81 × 11.407 = 111.9 kN/m2 or kPa (Ans.)

 (ii) Pressure at M when losses are considered:
  By applying Bernoulli’s equation between S and M with level at L as datum, considering 

losses, we have: 

  
2

2
S S

S P
p V z H
w g

+ + +  = 
2

2
M Mp V

w g
+ + zM + losses 

2
. . 1.8

2
MVi e
g

 
× 

 

  or, 0 + 0 + 3.5 + 16.99 = 
2 2(9·167) (9·167)(3.5 1.3) 1·8

2 9.81 2 9·81
Mp

w
+ + + + ×

× ×

  or, 3.5 + 16.99 = Mp
w

 + 16.79

  or,  Mp
w

= 3.7 m or  pM = 9.81 × 3.7 = 36.3 kN/m2 or kPa (Ans.)

 Example 6.25.  Fig. 6.26 shows a pump drawing a solution (specific gravity =1.8) from a 
storage tank through an 8 cm steel pipe in which the flow velocity is 0.9 m/s. The pump discharges 
through a 6 cm steel pipe to an overhead tank, the end of discharge is 12 m above the level of 
the solution in the feed tank. If the friction losses in the entire piping system are 5.5 m and pump 
efficiency is 65 per cent, determine:
 (i) Power rating of the pump.
 (ii) Pressure developed by the pump.
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 Solution. Given: d2 = 8 cm or 0.08 m; d3 = 6 cm  or  0.06 m;  V2 = 0.9 m/s, ηpump = 65%
 (i) Power rating of the pump:
  From continuity equation, we have:
    A2V2 = A3V3 

  or, V3 (=V4) = 
2

2 2
23

(0.08) 0.9
4 1.6 m/s

(0.06)
4

A V
A

π × ×
= =π ×

1

4

Overhead
tank

2

Suction
pipe

Delivery
pipe

Storage
tank

8 cm
dia.

3
Pump

12 m
6 cm

dia

Fig. 6.26

  Applying Bernoulli’s equation between points 1 and 4, we get:

    
2

1 1
12 P

p V z H
w g

+ + +  = 
2

4 4
2

p V
w g

+  + z4 + Losses

  (where, HP = Energy added by the pump per unit weight of liquid in Nm/N or m of the liquid 
pumped)

    0 + 0 + 0 + HP = 0 + 
2(1.6)

2 9.81×
 + 12 + 5.5

  or, HP = 17.63 m of liquid

  ∴ Power rating of the pump = 
( )2

pump

(9.81 1.8) 0.08 0.9 17.63
4

0.65
PwQH

π× × × × ×
=

η

     = 2.167 kW (Ans.)
 (ii) Pressure developed by the pump, (p3 – p2 ):
  Applying Bernoulli’s equation between points 2 and 3, we have:

    
2

2 2
22 P

p V z H
w g

+ + +  = 
2

3 3
32

p V z
w g

+ +

    3 2–p p
w

  
 

 = 
2 2

2 3–
2 P

V V H
g

 
+ 

 
   ...( z2 = z3)

     = 
2 2(0.9) – (1.6)

2 9.81×
 + 17.63 = 17.54 m

  or, p3 – p2 = 17.54 × (9.81× 1.8) = 309.72 kN/m2 or kPa (Ans.)
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 Example 6.26. A pump is 2.2 m above the water level in the sump and has a pressure of –20 
cm of mercury at the suction side. The suction pipe is of 20 cm diameter and the delivery pipe is 
short 25 cm diameter pipe ending in a nozzle of 8 cm diameter. If the nozzle is directed vertically 
upwards at an elevation of 4.2 m above the water sump level, determine:
 (i) The discharge.
 (ii) The power input into the flow by the pump. 
 (iii) The elevation, above the water sump level, to which the jet would reach.
 Neglect all losses.

 Solution. (i) The discharge, Q:
 Applying Bernoulli’s equation to points 1 and 2 (Fig 6.27), we get

2.2 m

1

Water
sump

2

20 cm dia.
25 cm dia.

4

Pump

Nozzle

Jet
h

4.2 m

3

Fig. 6.27

    
2

1 1
12

p V z
w g

+ +  = 
2

2 2
22

p V z
w g

+ +

  0 + 0 + 0 = (– 0.2 × 13.6) + 
2

2 2.2
2
V

g
+

  or, V2 = 3.194 m/s

    Discharge, Q = 20.21
4
π ×  × 3.194 = 0.1 m3/s (Ans.)

 (ii) The elevation, to which the jet will reach, h:
  Also, Q = A2V2 = A3V3

  ∴ 2(0.2) 3.194
4
π × ×  = 2

3(0.08)
4

Vπ × ×

  or, V3 = 19.962 m/s

  or, 
2

3
2
V

g
 = 

2(19.962)
2 9.81×

 = 20.31 m

  Hence, the height to which the jet will reach, h = 20.31 m (Ans.)
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 (iii) The power input to the flow by the pump, P:
  The elevation of point 4, the summit of the jet, is 
   = 4.2 + 20.31 = 24.51 m
  Applying Bernoulli’s equation to points 1 and 3, we get:

    
2

1 1
12 P

p V z H
w g

+ + +  = 
2

3 3
32

p V z
w g

+ +

    0 + 0 + 0 + HP = 0 + 20.31 + 4.2
  or, HP = 24.51m
  Power delivered by the pump, p = wQHp 
     = 9.81 × 0.1 × 24.51 = 24.04 kW (Ans.)
 Example 6.27. Fig 6.28 shows a pump employed for lifting water from a sump. If it is required 
to pump 60 litres/sec. of water through a 0.1 m diameter pipe from the sump to a point 10 m above, 
determine the power required. Also determine pressure intensities at L and M. 
Assume an overall efficiency of 70 percent. (Delhi University)
 Solution. Quantity of water to be pumped , Q = 60  litres/sec.

Water sump

1

2

4
m

L

M
0.1 m dia.

Pump

6
m

4
m

Fig. 6.28

   = 60
1000

 = 0.06 m3/s

  Dia of the pipe, d = 0.1 m
 ∴  Area of the pipe, A = (π/4) × 0.12 = 0.00785 m2

  Overall efficiency, η0 = 70%
 Power required, P:
  As per continuity equation, Q = AV
 [where, V = velocity of water in the pipe]
 ∴ 0.06 = 0.00785 V

 or, V = 0.06
0.00785

 = 7.64 m/s
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 Applying Bernoulli’s equation at 1 and 2 points, we get:

  
2

1 1
12 p

p V z H
w g

+ + +  = 
2

2 2
22

p V z
w g

+ +

 (where, Hp = Energy added by the pump per unit weight of liquid in Nm/N or m of the liquid 
pumped)
  0 + 0 + 0 + Hp = 0 + 

2(7.64) 10
2 9.81

+
×

 (V = V2 = 7.64 m/s)

 ∴ Hp = 12.97 m of water
 ∴ Power required to run the pump,

  P = 
0

9.81 0.06 12.97 kW
0.7

PwQH × ×=
η

 ( w = 9.81 kN/m3)

 i.e., P = 10.9 kW (Ans.)
 Pressure intensities at L and M:
 Applying Bernoulli’s equation at 1 and L, we get:

  
2

1 1
12

p V z
w g

+ +  = 
2

2
22

Lp V
z

w g
+ +

  0 + 0 + 0 = 
27.64 4

2 9.81
Lp

w
+ +

×

 ∴ Lp
w  = – 

27.64
2 9.81×

  –14 = – 6.97 m ( VL = V 2 = 7.64 m/s)

 or, PL = 9.81 × (– 6.97) = – 68.4 kN/m2 (Ans.)
 Applying Bernoulli’s equation at l and M, we get:

   
2

1 1
12 P

p V z H
w g

+ + +  =  
2

2
M M

M
p V z
w g

+ +

          0 + 0 + 0 + 12.97 =  
27.64 8

2 9.81
Mp

w
+ +

×

 ∴ Mp
w

 = 12.97 – 
27.64

2 9.81×
 – 8 = 12.97 – 2.97 – 8 = 2 m

 or,         pM = 9.81 × 2 = 19.62 kN/m2 (Ans.)

6.6.  PRACTICAL APPLICATIONS OF BERNOULLI’S EQUATION 

 Although Bernoulli’s equation is applicable in all problems of incompressible flow where there 
is involvement of energy considerations but here we shall discuss its applications in the following 
measuring devices:
 1. Venturimeter     
 2. Orificemeter
 3. Rotameter and elbow meter   
 4. Pitot tube.

6.6.1. Venturimeter
 A venturimeter is one of the most important practical applications of Bernoulli’s theorem. It is 
an instrument used to measure the rate of discharge in a pipeline and is often fixed permanently at 
different sections of the pipeline to know the discharges there.
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 A venturimeter has been named after the 18th century Italian engineer Venturi.
 Types of venturimeters:
 Venturimeters may be classified as follows:
 1. Horizontal venturimeters.
 2. Vertical venturimeters.
 3. Inclined venturimeters.

6.6.1.1. Horizontal venturimeters
 A venturimeter consists of the following three parts:
 (i) A short converging part,   
 (ii) Throat, and   
 (iii) Diverging part.
 Expression for rate of flow:
 Fig 6.29 shows a venturimeter fitted in horizontal pipe through which a fluid is flowing.
 Let, D1 = Diameter at inlet or at section 1,

  A1 = Area at inlet ( )2
14

dπ=

  p1 = Pressure at section 1,
  V1 = Velocity of fluid at section 1,
 and  D2, A2, p2, and V2 are the corresponding values at section 2.
 Applying Bernoulli’s equation at sections 1 and 2, we get:

  
2

1 1
12

p V z
w g

+ +  = 
2

2 2
22

p V z
w g

+ +  ...(i)

 Here, z1 = z2  ... since the pipe is horizontal.

 ∴ 
2

1 1
2

p V
w g

+  = 
2

2 2
2

p V
w g

+

 or, 1 2–p p
w

 = 
2 2

2 1–
2 2
V V

g g
 ...(ii)

 But, 1 2–p p
w

 = Difference of pressure heads at sections 1 and 2  and is equal to h.

d1

d2

d1d2

d1

h

1

Inlet (= 7.5 )d1

Throat

Throat ratio varies to

Conver-
gent
part

Divergent part

2

1
4

3
4(

(

Fig. 6.29. Venturimeter.
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 i.e., 1 2–p p
w

 = h

 Substituting this value of 1 2–p p
w

 in eqn. (ii), we get:

  h = 
2 2

2 1–
2 2
V V

g g
 ...(iii)

 Applying continuity equation at sections 1 and 2, we have:

  A1V1 = A2V2 or V1 = 2 2

1

A V
A

 Substituting the value of V1 in eqn. (iii), we get:

  h = 

2
2 2

2 2 2
12 2 2

2
1

– 1 –
2 2 2

A V
AV V A

g g g A

 
     =  

 

 or,  h = 
2 2 2

2 1 2
2
1

–
2
V A A

g A
 
 
 

 or 
2

2 1
2 2 2

1 2
2

–
AV gh

A A
 

=  
 

 or, V2 = 
2
1 1

2 2 2 2
1 2 1 2

2 2
– –
A Agh gh

A A A A

 
= 

 

 ∴  Discharge, Q = A2V2 = A2
1

2 2
1 2

2
–

A gh
A A

×

 or, Q = 1 2
2 2
1 2

2
–

A A gh
A A

×  ...(6.5)

 or, Q = C h

 where, C  = constant of venturimeter

   = 1 2
2 2
1 2

2
–

A A g
A A

 Eqn. (6.5) gives the discharge under ideal conditions and is called theoretical discharge. Actual 
discharger (Qact) which is less than the theoretical discharge (Qth.) is given by:

  Qact = Cd × 1 2
2 2
1 2

2
–

A A gh
A A

×  ...(6.6)

 where, Cd = Co-efficient of venturimeter (or co-efficient of discharge) and its value is less than 
unity (varies between 0.96 and 0.98)
   Due to variation of Cd venturimeters are not suitable for very low velocities.
 Value of ‘h’ by differential U-tube manometer:
 Case. I. Differential manometer containing a liquid heavier than the liquid flowing through the 
pipe.
 Let, Shl = Sp. gravity of heavier liquid,
  Sp = Sp. gravity of liquid flowing through pipe, and
  y = Difference of the heavier liquid column in U-tube.
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 Then h = y – 1hl

p

S
S

 
 
 

 ...(6.7)

 Case. II. Differential manometer containing a liquid lighter than the liquid flowing through the 
pipe.
 Let, Sll = Sp. gravity of lighter liquid,
  Sp = Sp. gravity of liquid flowing through pipe, and
  y = Difference of lighter liquid column in U-tube. 

 Then, h = y 1 – ll

p

S
S

 
 
 

 ...(6.8)

 Example 6.28. A horizontal venturimeter with inlet diameter 200 mm and throat diameter 
100 mm is used to measure the flow of water. The pressure at inlet is 0.18 N/mm2 and the vacuum 
pressure at the throat is 280 mm of mercury. Find the rate of flow. The value of Cd may be taken as 
0.98.

 Solution. Inlet diameter of venturimeter, D1 = 200 mm = 0.2 m

 ∴  Area of inlet, A1 = 2 20.2 0.0314 m
4
π × =

  Throat diameter, D2 = 100 mm = 0.1 m

 ∴  Area of throat, A2 = 20.1
4
π ×  = 0.00785 m2

  Pressure at inlet, p1 = 0.18 N/mm2 = 180 kN/m2 

 ∴ 1p
w

 =  180
9.81

 = 18.3 m

 Vacuum pressure at the throat,

   2p
w

 = – 280 mm of mercury

   = – 0.28 m of mercury = – 0.28 × 13.6 = – 3.8 m of water
  Co-efficient of discharge, Cd = 0.98

 ∴  Differential head, h = 1 2–p p
w w

= 18.3 – (– 3.8) = 22.1 m

 Rate of flow, Q:
 Using the relation,

  Q = Cd × 1 2
2 2
1 2

2
–

A A gh
A A

× , we have:

   = 
2 2

0.0314 0.007850.98 2 9.81 22.1
(0.0314) – (0.00785)

×× × × ×

   = 0.000241 20.82
0.0304

×

 or Q = 0.165 m3/s (Ans.)
 Example 6.29. A horizontal venturimeter with inlet diameter 200 mm and throat diameter  
100 mm is employed to measure the flow of water. The reading of the differential manometer 
connected to the inlet is 180 mm of mercury. If the co-efficient of discharge is 0.98, determine the 
rate of flow.
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 Solution.  Inlet diameter of venturimeter, D1 = 200 mm = 0.2 m
 ∴  Area at inlet, A1 = 

4
π × 0.22 = 0.0314 m2 

  Throat diameter, D2 = 100 mm = 0.1 m
 ∴  Area of throat, A2 = 20.1

4
π ×  = 0.00785 m2

  Reading of differential manometer, y  =  180 mm (= 0.18 m) of mercury 
  Co-efficient of discharge, Cd = 0.98
 Rate of flow, Q:
 To find difference of pressure head (h) using the relation,

  h = – 1hl

p

S
S

 
 
 

, we have:

 where, Shl = Sp.gr. of mercury (heavy liquid) = 13.6, and
  Sp = Sp. gr. of liquid through the pipe i.e., water = 1

  h = 13.60.18 –1
1

 
  

 = 2.268 m

 To find Q, using the relation,

  Q = Cd 1 2
2 2
1 2

2
–

A A gh
A A

× , we get:

  Q = 
2 2

0.0314 0.007850.98 2 9.81 2.268
(0.0314) – (0.00785)

×× × × ×

 or Q = 0.000241
0.0304

 × 6.67 = 0.0528 m3/s (Ans.)

 Example 6.30. A horizontal venturimeter with inlet and throat diameters 300 mm and 100 mm 
respectively is used to measure the flow of water. The pressure intensity at inlet is 130 kN/m2  while 
the vacuum pressure head at the throat is 350 mm of mercury. Assuming that 3 per cent of head is 
lost in between the inlet and throat, find:
   (i)  The value of Cd (co-efficient of discharge) for the venturimeter, and
  (ii) Rate of flow.
 Solution. Inlet diameter of the venturimeter, D1 = 300 mm = 0.3 m

 ∴  Area at inlet, A1 = 20.3
4
π × = 0.07 m2

  Throat diameter, D2 = 100 mm = 0.1 m

 ∴  Area of throat, A2 = 20.1
4
π × = 0.00785 m2

  Pressure at inlet, p1 = 130 kN/m2

 ∴  Pressure head, 1p
w

 = 130
9.81

 = 13.25 m

 Similarly, pressure head at throat,

  2p
w

 = – 350 mm of mercury = – 0.35 × 13.6 m of water = – 4.76 m

 (i) Co-efficient of discharge, Cd:

    Differential head, h = 1 2–p p
w w

 = 13.25 – (– 4.76) = 18.01 m
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    Head lost, hf = 3% of h = 3
100

× 18.01 = 0.54 m

  ∴ Cd = 
– 18.01 – 0.54

18.01
fh h

h
= = 0.985

 (ii) Rate of flow, Q:
  Using the relation,

  Q = 1 2
2 2
1 2

2
–

d
A AC gh
A A

× × , we have:

  Q = 
2 2

0.07 0.007850.985 2 9.81 18.01
0.07 – 0.00785

×× × × ×

   = 0.000541 18.79
0.0956

×  = 0.146 m3/s (Ans.)

 Example 6.31. A venturimeter (throat diameter = 10.5  
cm) is fitted to a water pipeline (internal diameter = 21.0 
cm) in order to monitor flow rate. To improve accuracy of 
measurement, pressure difference across the venturimeter is 
measured with the help of an inclined tube manometer, the 
angle of inclination being 30° (Fig. 6.30). For a manometer 
reading of 9.5 cm of mercury, find the flow rate. Discharge 
co-efficient of venturimeter is 0.984.      (GATE)
 Solution.  Internal dia., D1 = 21.0 cm = 0.21 m;

  Area of inlet, A1 = 2 2
1 (0.21)

4 4
Dπ π= ×  = 0.0346 m2

  Throat dia, D2 = 10.5 cm = 0.105 m

 ∴  Area at throat, A2 = 2 2
2 (0.105)

4 4
Dπ π× = × = 0.00866 m2

 Discharge co-efficient of venturimeter, Cd = 0.984

  Pressure head, h = y 13.6– 1 (9.5 sin30 ) – 1
1

Hg

water

S
S

   = °     

   = 59.85 cm = 0.5985 m
 Discharge (Q) through a venturimeter is given by:

  Q = 1 2
2 2
1 2

2
–

d
A AC gh

A A
×

   = 
2 2

0.0346 0.008660.984 2 9.81 0.5985
(0.0346) – (0.00866)

×× × × ×

   = 0.984 × 0.008945 × 3.427 = 0.0302 m3/s (Ans.)

 Example 6.32. Water at the rate of 30 litres/sec. is flowing through a 0.2 m. I.D. pipe. A 
venturimeter of throat diameter 0.1 m is fitted in the pipeline. A differential manometer in the 
pipeline has an indicator liquid M and the manometer reading is 1.16 m. What is the relative density 
of the manometer liquid M? Venturi co-efficient = 0.96; Density of water =  998 kg/m3. 

(Anna University)

Hg

From

venturi

Water
y

9.5 cm

30°

Fig. 6.30
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 Solution. Given: Q = 30 litres/sec. = 30 × 10–3 m3/s = 0.03 m3/s = D1
 = 0.2 m; D2 = 0.1 m; 

Cd = 0.96; ρw = 998 kg/m3; y = 1.16 m
 Assume venturimeter to be horizontal. The flow rate is given by,

  Q = Cd × 1 2
2 2
1 2

2
–

A A gh
A A

×  ...(i)

 Here, A1 = 2 2
1 0.2

4 4
Dπ π× = × = 0.03141 m2, and

  A2 = 2 2
2 0.1

4 4
Dπ π× = ×  = 0.007854 m2

 Substituting the various values in (i), we get:

  0.03 = 0.96 ×
2 2

0.03141 0.007854 2 9.81
0.03141 – 0.007854

h× × × ×

 or, 0.03 = 0.96 × 0.008112 × 4.43 × h

 or, h = 
20.03

0.96 0.008112 4.43
 
 × × 

 = 0.756 m

 Also, h = y – 1hl

ll

S
S

 
 
 

 [Eqn. (6.7)]

  0.756 = 1.16 1
0.998

hlS − 
 

 ∴ Shl = 
0.756 1
1.16

 + 
 

 × 0.998 = 1.648 

 Hence specific gravity/relative density of the manometer fluid M = 1.648 (Ans.)
 Example 6.33. A venturimeter is installed in a pipeline carrying water and is 30 cm in diameter. 
The throat diameter is 12.5 cm. The pressure in pipeline is 140 kN/m2, and the vacuum in the throat 
is 37.5 cm of mercury. Four percent of the differential head is lost between the gauges. Working from 
first principles find the flow rate in the pipeline in l/s assuming the venturimeter to be horizontal.

(PTU)
 Solution. Refer to Fig. 6.29. Given: D1 = 30 cm = 0.3 m; D2 = 12. 5 cm; = 0.125 m; p1 = 140 
kN/m2, p2 = – 37.5 cm of mercury

   = 37.5 13.6– 5.1
100

× = − m of water; 

  hf = 4% of differential head.
 Flow rate in pipeline, Q:

  1p
w

 = 
3140 10

9810
× = 14.27 m of water

  2p
w

 = – 5.1 m of water (Calculated above)

  hf = 4% of differential head

    = 1 24 4–
100 100

p p
w w

  = 
 

 [(14.27 – (– 5.1)] = 0.775 m of water.

 Applying Bernoulli’s equation to the entrance (1) and throat (2) of the venturimeter, we get:

  
2

1 1
12

p V z
w g

+ +  = 
2

2 2
2

p V
w g

+  + z2 + hf
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 or, 
2 2

1 2–
2

V V
g

 = 2 1–p p
w w

  
 

 + hf ( z1 = z2)

 or, 
2 2

1 2–
2

V V
g

 = – 5.1 – 14.27 + 0.775 = – 18.59

  
22

1 2

1
1 –

2
V V

g V
    

  
 = – 18.59

 Also, A1V1 = A2V2

 or, 2

1

V
V

 = ( )
2 2 211 1
22 22

0.34 5.76
0.125

4

DA D
A DD

π 
   = = = =  π   
 

 or, 
2

1
2

V  [1 – (5.76)2] = – 18.59

 or, 
2

1 (–32.18)
2

V ×  = 2 × 9.81 × (–18.59)

 or, V1 = ( )1/22 9.81 18.59
32.18

× ×  = 3.367 m/s

 Hence,  Discharge, Q = A1V1 = 4
π  × (0.3)2 × 3.367 × 103 l/s

   = 238 l/s (Ans.)

6.6.1.2. Vertical and inclined venturimeters
 Vertical or inclined venturimeters are employed for measuring discharge on pipelines which are 
not horizontal. The same formula for discharge as used for horizontal venturimeter holds good in 
these cases as well.

 Here, h = 1 2–p p
w w

  
 

 + (z1 – z2)

 [In horizontal venturimeters z1 – z2 = 0 as z1 = z2]
 Vertical Venturimeters
 Example 6.34. A 200 mm × 100 mm venturimeter is provided in a vertical pipe carrying water, 
flowing in the upward direction. A differential mercury manometer connected to the inlet and throat 
gives a reading of 220 mm. Find the rate of flow. Assume Cd = 0.98.
 Solution.  Diameter at the inlet,  D1  = 200 mm = 0.2 m

 ∴  Area of inlet, A1 = 
4
π × 0.22 = 0.0314 m2

  Diameter at the throat, D2 = 100 mm = 0.1 m

 ∴  Area at the throat, A2 = 
4
π  × 0.12 = 0.00785 m2

  Sp. gravity of heavy liquid (in the manometer), Shl = 13.6
  Sp. gravity of liquid flowing through pipe, Sp = 1.0
  Co-efficient of discharge, Cd = 0.98
  Reading of the differential manometer, y = 220 mm = 0.22 m
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 Rate of flow, Q:
 Differential head,

  h = 1 2
1 2– – 1hl

p

Sp pz z y
w w S

   + + =   
   

   = ( )13.60.22 – 1.0 2.77 m
1.0

=

 Using the relation, Q = 1 2
2 2
1 2

. 2
–

d
A AC gh

A A
, we have

  Q = 
2 2

0.0314 0.007850.98 2 9.81 2.77
0.0314 – 0.00785

×× × × ×

   = 0.000241
0.0304

× 7.34 = 0.0584 m3/s (Ans.)

 Example 6.35. A 300 mm × 150 mm venturimeter is provided in a vertical pipeline carrying 
oil of specific gravity 0.9, flow being upward. The difference in elevation of the throat section and 
entrance  section of the venturimeter is 300 mm. The differential U-tube mercury manometer shows 
a gauge deflection of 250 mm. Calculate:
 (i) The discharge of oil, and
 (ii) The pressure difference between the entrance section and the throat section.
 Take the co-efficient of meter as 0.98 and specific gravity of mercury as 13.6. [UPTU]
 Solution.  Diameter at inlet, D1 = 300 mm = 0.3 m

 ∴  Area of inlet, A1 = 2 20.3 0.07m
4
π × =

  Diameter at throat, D2 = 150 mm = 0.15 m

 ∴  Area at throat, A2 = 2 20.15 0.01767 m
4
π × =

 Specific gravity of heavy liquid (mercury) 
in U-tube manometer, Shl =13.6
 Specific gravity of liquid (oil) flowing 
through pipe, Sp = 0.9
 Reading of differential manometer, 
y = 250 mm = 0.25 m
 The differential ‘h’ is given by:

 h = 1 2
1 2–p pz z

w w
   + +   
   

 = – 1hl

p

Sy
S

 
 
 

= 0.25 13.6 – 1
0.9

 
  

  = 3.53 m of oil
 (i) Discharge of oil, Q:
  Using the relation, 

    Q =  1 2
2 2
1 2

2
–

d
A AC gh

A A
× × , we have:

300

300

150 mm

mm

mm

Throat

Inlet

250 mm

Fig. 6.31
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  Q = 
2 2

0.07 0.017670.98 2 9.81 3.53
0.07 – 0.01767

×× × × ×

   = 0.001212 8.32
0.0677

×  = 0.1489 m3/s. (Ans.)

 (ii) Pressure difference between entrance and throat sections, p1 – p2:

  We know that, h = 1 2
1 2– 3.53p pz z

w w
   + + =   
   

  or, 1 2
1 2– ( – )p p z z

w w
  + 
 

 = 3.53

  But, z2 – z1 = 300 mm or 0.3 m ... (Given)

  ∴ 1 2– – 0.3p p
w w

  
 

 = 3.53 or 1 2–p p
w

 = 3.83 

  or, p1 – p2 = (9.81 × 0.9) × 3.83 = 33.8 kN/m2 (Ans.) 
 Example 6.36. A vertical venturimeter carries a liquid of relative density 0.8 and has inlet 
and throat diameters of 150 mm and 75 mm respectively. The pressure connection at the throat is  
150  mm above that at the inlet. If the actual rate of flow is 40 litres/sec and the Cd = 0.96, calculate 
the pressure difference between inlet and throat in N/m2. (Anna University)
 Solution. Given: Sp. gravity = 0.8, D1 = 150 mm = 0.15 m; D2 = 75 mm = 0.075 m; z2 – z1 = 
150 mm = 0.15 m, Qact = 40 litres/sec. = 0.04 m3/s, Cd = 0.96.
 Pressure difference (p1 – p2):

  A1 = 2
14 4

Dπ π= × 0.152 = 0.01767 m2

  A2 = 2
24 4

Dπ π=  × (0.075)2 = 0.00442 m2

  Qact = 1 2
2 2
1 2

2
–

d
A AC gh

A A
× × , we get:

  0.04 = 
2 2

0.01767 0.004420.96 2 9.81
0.01767 – 0.00442

h×× × × ×

 or, 0.04 = 0.96 × 0.004565 × 4.429 h

 ∴ h = 
20.04 4.247 m

0.96 0.004565 4.429
  = × × 

 Also, h = 1 2
1 2–p pz z

w w
   + +   
   

 or, 4.247 = 1 2
1 2– ( – )p p z z

w w
  + 
 

   = 1 2– – 0.15p p
g

 
 ρ 

 ( z2 – z1 = 0.15 m)

 or,  (p1 – p2) = ρg (4.247 + 0.15)
   = (0.8 × 1000 × 9.81) (4.247 + 0.15) N/m2

   = 34.51 kN/m2 (Ans.)

�p

2

( – )z z2 1

1

Fig. 6.32. Vertical venturimeter.
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 Inclined Venturimeters
 Example 6.37. Determine the rate of flow of water through a pipe of 300 mm diameter placed 
in an inclined position where a venturimeter is inserted, having a throat diameter of 150 mm. The 
difference of pressure between the main and throat is measured by a liquid of sp. gravity 0.7 in an 
inverted U- tube which gives a reading of 260 mm. The loss of head between the main and throat is 
0.3 times the kinetic head of the pipe.
 Solution. Diameter at inlet,
           D1 = 300 mm = 0.3 m
 ∴ Area of inlet,

            A1 =
20.3

4
π × = 0.07 m2

 Throat diameter, 
           D2 = 150 mm = 0.15 m
 ∴ Area at throat,

                A2 =
2 20.15 0.01767 m

4
π × =

 Specific gravity of lighter liquid 
(U-tube), Sll = 0.7
 Specific gravity of liquid (water) 
flowing through pipe, Sp = 1.0
 Reading of differential manometer,
              y = 260 mm = 0.26 m
 Difference of pressure head, h is 
given by:

  1 2
1 2–p pz z

w w
   + +   
   

 = h

 Also, h = y ( )0.71 – 0.26 1 –
1.0

ll

p

S
S

  = 
 

 = 0.078 m of water

  Loss of head, hL = 0.3 × kinetic head of pipe ...(Given)
 Now, applying Bernoulli’s equation at sections ‘1’ and ‘2’, we get

  
2

1 1
1 2

p Vz
w g

+ +  = 
2

2 2
2 2 L

p Vz h
w g

+ + +

 
2 2

1 2 1 2
1 2– –

2 2
p p V Vz z
w w g g

   + + +   
   

 = hL

 But, 1 2
1 2–p pz z

w w
   + +   
   

 = 0.078 m of water ... (as above)

 and, hL = 0.3 × 
2

1
2
V

g
 ...(Given)

 ∴ 
2 2

1 20.078 –
2 2
V V

g g
+  = 

2
10.3

2
V

g
×

 or, 
2 2

1 20.078 0.7 –
2 2
V V

g g
+  = 0 ...(i)

W
at

er
(S

p.
gr

. =
1.

0)

2
Throat

1

y = 260 mm

Liquid
(Sp. gr. = 0.7)

Inlet

Fig. 6.33
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 Applying continuity equation at sections ‘1’ and ‘2’, we get:
  A1V1 = A2 V2

 ∴ V1 = 
2

2 2 2
22

1

/ 4 0.15
4/ 4 0.30

A V VV
A

π ×= × =
π ×

 Substituting this value of V1 in eqn. (i), we get:

 
2 2

2 2( / 4)0.078 0.7 –
2 2

V V
g g

+ ×  = 0

 or, ( )2
2 0.70.078 – 1

2 16
V

g
+  = 0 

 or, ( )
2

2 – 0.956
2
V

g
×  = – 0.078

 or, V2
2 = 0.078 2 9.81

0.956
× × = 1.6 m2 or V2 = 1.26 m/s

 ∴  Rate of flow,  Q = A2V2 = 0.01767 × 1.26 = 0.0222 m3/s. (Ans.)

 Example 6.38. The following data relate to an inclined venturimeter:
 Diameter of the pipeline = 400 mm
 Inclination of the pipeline with the horizontal = 30°
 Throat diameter = 200 mm
 The distance between the mouth and throat of the meter = 600 mm
 Sp. gravity of oil flowing through the pipeline = 0.7
 Sp. gravity of heavy liquid (U-tube) = 13.6
 Reading of the differential manometer = 50 mm
 The co-efficient of the meter = 0.98
 Determine the rate of flow in the pipeline. (Delhi University)

 Solution. Diameter at inlet, D1 = 400 mm = 0.4 m

 ∴  Area of inlet,  A1 = 
4
π  × 0.42 = 0.1257 m2

  Throat diameter,   D2 = 200 mm = 0.2 m

 ∴ Area at throat,  A2 = 20.02
4
π × = 0.0314 m2

 Reading of the differential manometer (U-tube), 
y = 50 mm = 0.05 m
 Difference of pressure head h is given by:

  h = y – 1hl

p

S
S

 
 
 

 where,  Shl = Sp. gravity of heavy liquid (i.e., 
mercury) in U-tube = 13.6, and
 Sp = Sp. gravity of liquid (i.e., oil) flowing through 
the pipe = 0.7

 ∴ h = 0.05 ( )13.6 – 1
0.7

 = 0.92 m of oil

2

Oil
(sp. gr. = 0.7)

30°

600

m
m

1

50 mm

Mercury
(sp. gr. = 13.6)

Inlet

Fig. 6.34
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 Now, applying Bernoulli’s equation at sections ‘1’ and ‘2’, we get:

  
2

1 1
1 2

p Vz
w g

+ +  = 
2

2 2
2 2

p Vz
w g

+ +   ...(i)

 or,   
2 2

1 2 1 2
1 2– –

2 2
p p V Vz z
w w g g

   + + +   
   

 = 0

 But, 1 2
1 2–p pz z

w w
   + +   
   

 = h

  or, 1 2–p p
w w

  
 

 + (z1 – z2)  = h

 It may be noted that differential gauge reading will include in itself the difference of  pressure 
head and the difference of datum head.
 Thus, eqn. (i) reduces to:

  
2 2

1 2–
2 2
V Vh

g g
+  = 0 ...(ii)

 Applying continuity equation at sections ‘1’ and ‘2’ we get:
  A1V1 = A2V2

 or, V1 = 
2

2 2 2
22

1

( / 4) 0.2
4( / 4) 0.4

A V VV
A

π ×= × =
π ×

 Substituting the value of V1 and h in eqn. (ii),  we get:

  
2 2

2 20.92 –
16 2 2

V V
g g

+
×

 = 0

 or, ( )2
2 11 –

2 16
V

g
 = 0.92 or 2

2
15
16

V ×  = 0.92

 or, V 2
2 = 0.92 2 9.81 16

15
× × ×  = 19.25  or   V2  = 4.38 m/s

  Rate of flow of oil, Q = A2V2 = 0.0314 × 4.38 = 0.1375 m3/s (Ans.)

6.6.2. Orificemeter

 Orificemeter or orifice plate is a device (cheaper  than a venturimeter) employed for measuring 
the discharge of fluid through a pipe. It also works on the same principle of a venturimeter.
 It consists of a flat circular plate having a circular sharp edged hole (called orifice) concentric 
with the pipe. The diameter of the orifice may vary from 0.4 to 0.8 times the diameter of the pipe but 
its value is generally chosen as 0.5. A differential manometer is connected at section (1) which is at a 
distance of 1.5 to 2 times the pipe diameter upstream from the orifice plate, and at section (2) which 
is at a distance of about half the diameter of the orifice from the orifice plate on the downstream side.
 Let, A1 = Area of pipe at section (1),
  V1 = Velocity at section (1),
  p1 = Pressure at section (1), and
    A2 V2 and p2 are corresponding values at section (2).



304         Fluid Mechanics

Flow outFlow in

DownstreamUpstream

1

V1
V2

A0

A2

1

Flat circular plate

2

2 C A Ac = /2 0

Pipe

Vena
Contracta

y

Differential
manometer

Fig. 6.35. Orificemeter

 Applying Bernoulli’s equation at sections (1) and (2), we get:

  
2

1 1
12

p V z
w g

+ +  = 
2

2 2
22

p V z
w g

+ +

 or, 1 2
1 2–p pz z

w w
   + +   
   

 = 
2 2

2 1–
2 2
V V

g g

 or, h =  
2 2

2 1–
2 2
V V

g g

   1 2
1 2– differentialheadp ph z z

w w
    = + + =        


 or, 
2

2
2
V

g
 = h + 

2
1

2
V

g
 ...(i)

 or, V2 = 
2

21
12 2

2
Vg h gh V

g
 

+ = + 
 

 Now, section (2) is at vena contracta and A2 represents the area at vena contracta. If A0 is the 
area of orifice, then we have:
  Cc = 2

0

A
A

 (where, Cc = co-efficient of contraction)
 ∴ A2 = A0 Cc ...(ii)
 Using continuity equation, we get:

  A1V1 = A2V2 or V1 = 2 2

1

A V
A

 or, V1 = 0 2

1

cA C V
A

 ...(iii)

 Substituting the value of V1 in eqn. (i), we get:

  V2 = 
2 2 2
0 2

2
1

. .2 cA C Vgh
A

+
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 or, V2
2 = 

2
2 20
2 2

1
2 Agh C V

A
 + ⋅ ⋅ 
 

 or, 
2

2 20
2 2

1
1 – AV C

A
    

  
 = 2gh

 ∴ V2 = 
2 2

0 1

2

1 – ( / ) c

gh

A A C

 ∴  The discharge, Q = A2V2 = A0.Cc.V2
   [ A2 = A0  . Cc... as above {eqn. (ii)}]

   = 0 2 2
0 1

2

1 – ( / )
c

c

ghA C
A A C

 ...(iv)

 The above expression is simplified by using,

  Cd = 
2

0 1
2 2

0 1

1 – ( / )

1 – ( / )
c

c

A A
C

A A C

 (where, Cd = co-efficient of discharge)

  Cc = 
2 2

0 1
2

0 1

1 – ( / )

1 – ( / )
c

d
A A C

C
A A

 Substituting this value of Cc in eqn. (iv), we get:

  Q = 
2 2

0 1
0 2 2 2

0 1 0 1

1 – ( / ) 2

1 – ( / ) 1 – ( / )
c

d
c

A A C ghA C
A A A A C

⋅ ×

   = 0 0 1
2 2 2

0 1 1 0

2 2

1 – ( / ) –
d dC A gh C A A gh

A A A A

⋅ ⋅ ⋅
=

 i.e., Q = 0 1
2 2
1 0

2

–
d

A A ghC
A A

⋅  ...(6.9)

 It may be noted that Cd (co-efficient of discharge) of an orifice is much smaller than that of a 
venturimeter.
 Difference between a venturimeter and an orificemeter:
 A venturimeter is a device which is inserted into pipeline to measure incompressible fluid 
flow rates. It consists of a convergent section which reduces the diameter to between one-half to 
one-fourth of the pipe diameters. This is followed by a divergent section. The pressure difference 
between the position just before the venturi and at the throat of the venturi is measured by a 
differential manometer. The working of the venturi is based on the Bernoulli’s principle, that is, 
when the velocity head increases in an accelerated flow, there is a corresponding reduction in the 
piezometric head.
 The orificemeter is opening, usually round, located in the side wall of the tank or reservoir, 
for measuring the flow of a liquid. The main feature of the orificemeter is that most of the potential 
energy of the liquid is converted into kinetic energy of the free jet issuing through the orifice.
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 The main points of difference between a venturimeter and orificemeter are:
 1. The venturimeter can be used for measuring the flow rates of all incompressible flows. (gases 

with low pressure variations, as well as liquids), whereas orificemeters are generally used for 
measuring the flow rates of liquids.

 2. Venturimeter is installed in pipeline only, and the accelerated flow through the apparatus, is 
subsequently decelerated to the original velocity at the outlet of the venturimeter. The flow 
continues through the pipeline. In the orificemeter the entire potential energy of the fluid is 
converted to kinetic energy, and the jet discharges freely into the open atmosphere.

 3. In venturimeter, the flow velocity is measured by noting the pressure difference between the 
inlet and the throat of the venturimeter, whereas in the orificemeter the discharge velocity is 
measured by using Pitot tube or by trajectory method.

 Example 6.39. The following data relate to an orificemeter:
 Diameter of the pipe = 240 mm
 Diameter of the orifice = 120 mm
 Sp. gravity of oil = 0.88
 Reading of differential manometer = 400 mm of mercury
 Co-efficient of discharge of the meter = 0.65.
 Determine the rate of flow of oil.
 Solution.  Diameter of the pipe D1 = 240 mm = 0.24 m

 ∴  Area of the pipe, A1 = 
4
π  × 0.242 =0.0452 m2

  Diameter of the orifice, D0 =  120 mm = 0.12 m

 ∴  Area of the orifice, A0 = 
4
π  × 0.122 = 0.0113 m2

  Co-efficient of discharge, Cd = 0.65
  Sp. gravity of oil, S0 = 0.88
  Reading of differential manometer, y = 400 mm of mercury = 0.4 m of mercury 

 ∴  Differential head, h = y – 1hl

o

S
S

 
  

 [where, Shl = sp. gravity of heavier liquid = 13.6 (for mercury)]

   = 13.60.4 – 1
0.88

 
  

 = 5.78 m of oil

 Discharge Q:

 Using the relation, Q = 0 1
2 2
1 0

. . 2

–
d

A A ghC
A A

, we have:

  Q = 
2 2

0.0113 0.0452 2 9.81 5.780.65
(0.0452) – (0.0113)

× × × ×
×

   = 0.000353
0.0437

 = 0.08 m3/s (Ans.)

 Example 6.40. Water flows at the rate of 0.015 m3/s through a 100 mm diameter orifice used in 
a 200 mm pipe. What is the difference of pressure head between the upstream section and the vena 
contracta section? Take co-efficient of contraction Cc = 0.60 and Cv = 1.0. (Delhi University)
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 Solution. Given: Q = 0.015 m3/s; D0 = 100 mm = 0.1 m; D1 = 200 mm = 0.2 m; Cc = 0.60; Cv 
= 1.0
 Difference in pressure head h: Refer to Fig. 6.35.

  A1 = 2
14 4

Dπ π=  × 0.22 = 0.03142 m2

  A0 = 2
04 4

Dπ π=  × 0.12 = 0.007854 m2

  Cd  = Cc × Cv = 0.60 × 1.0 = 0.6

 Using the relation: Q = 0 1
2 2
1 0

2

–
d

A A ghC
A A

 or, 0.015 = 
2 2

0.007854 0.03142 2 9.810.6
(0.03142) – (0.007854)

h× × ×
×  ...[Eqn. (6.9)]

 or, 0.015 = 0.0010930.6
0.03042

h×

 or, h = 
20.015 0.03042

0.6 0.001093
× 

 × 
 = 0.484 m of water (Ans.)

 Example 6.41. (a) Derive an expression for the volumetric flow rate of a fluid flowing through 
an orificemeter. Write down the advantages and disadvantages of using orificemeter over a 
venturimeter.
 (b) Water is flowing through a pipeline of 50 cm ID at 30°C. An orifice is placed in the pipeline 
to measure the flow rate. Orifice diameter is 20 cm. If the manometer reads 30 cm of Hg, calculate 
the water flow rate and velocity of the fluid through the pipe. 
  ρwater at 30°C = 987 kg/m3

  ρHg
 = 13600 kg/m3

 Orifice co-efficient. = 0.6

 Sol. (a) Refer to Article 6.6.2.
 Advantage  of orificemeter over venturimeter is that its length is short and hence it can be used 
in a wide variety of application. Venturimeter has excessive length.
 The disadvantage of orificemeter is that a sizeable pressure loss is increased because of the 
flow separation downstream of the plate. In a venturimeter the expanding section keeps boundary 
layer separation to a minimum, resulting in good pressure recovery across the meter.
 (b) Given: D1 = 50 cm = 0.5 m; D0 = 20 cm = 0.2; y = 30 cm of Hg = 0.3 m of Hg
  ρwater at 30°C = 981 kg/m3, ρHg = 13600 kg/m3; 
  C0 = 0.6.
 Water flow rate, Q:
  A1 = 2

14 4
Dπ π= × 0.52 = 0.1963 m2

  A0 = 2
04 4

Dπ π=  × 0.22 = 0.0314 m2

   h = y ( )
2

13600– 1 0.3 – 1 3.834m
987

Hg

H O

ρ 
= = ρ 

  Using the relation; Q = 0 1
2 2
1 0

2

–
d

A A ghC
A A

, we get:
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  Q = 
2 2

0.0314 0.1963 2 9.81 3.8340.6
(0.1963) – (0.0314)

× × × ×
×

   = 0.053460.6
0.1938

×  = 0.1655 m3/s (Ans.)

 Velocity of water through pipe,

  V1 = 
1

0.1655
0.1963

Q
A

=  = 0.843 m/s (Ans.)

6.6.3. Rotameter and Elbow meter

6.6.3.1. Rotameter. Refer to Fig. 6.36.
 Construction: It consists of a tapered metering 
glass tube, inside of which is located a rotor or active 
element (float) of the meter. The tube is provided with 
inlet and outlet connections. The specific gravity of the 
float or bob material is higher than that of the fluid to 
be metered. On a part of the float spherical slots are cut 
which cause it (float) to rotate slowly about the axis of 
the tube and keep it centred. Owing to this spinning, 
accumulation of any sediment on the top or sides of 
float is checked. However, the stability of the bob may 
also be ensured by using a guide along which the float 
would slide.
 Working : When the rate of flow increases the float 
rises in the tube and consequently there is an increase in 
the annular area between the float and the tube. Thus, 
the float rides higher or lower depending on the rate of 
flow.
 The discharge through a rotameter is given 
by: 

  Q = Cd Aann. [2gVfl (ρfl – ρf)/Afρf]
1/2 ... (6.10)

 where, Q = Volume flow rate,
  Cd = Co-efficient of discharge,
  Aann. = Annular area between float and tube,
  Vfl = Volume of float,
  ρfl = Density of float material,
  ρf = Density of fluid, and
  Af = Maximum cross-sectional area of the fluid.
 As the flow area Aann. is a function of height of float in the tube, the flow rate scale can be 
engraved on the tube corresponding to a particular float.
 Advantages :
 1. Simpler in operation.
 2. Handling and installation easy.
 3. Wide variety of corrosive fluids can be handled.
 4. Low cost, relatively.

Inlet

Outlet

Guidewire for
the float

Transparent
tapered glass
metering tube

Float or bob

Fig. 6.36. Rotameter.
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 Limitations :
 1. Mounted vertically, limited to small pipe sizes and capacities.
 2. Less accurate, compared to venturimeter and orificemeter.

6.6.3.2. Elbow meter
 When liquid flows around a pipe bend, there is an increase in pressure with radius, i.e. the 
pressure at the outer wall of the bend is more than that at the inner wall. This difference of pressure 
which exists between the outside and inside of the bend is used for the measurement of discharge in 
a pipeline.
 As shown in Fig. 6.37. the pipe bend is provided  with two pressure tappings, one  each 
at the inner and outer walls of the bend. These tappings are connected to the limbs of U-tube 
manometer. 

Q

Flexible
tubing

U-tube
manometer

Horizontal datum

po

pi

V

Pipe bend

zozi

Fig. 6.37. Elbow meter.

 As per literature, the following relation between velocity and pressure difference is available:

  
2

2
VK

g
 = 0

0 – i
i

p pz z
w w

   + +   
   

 ...(6.11)

where, K = Constant (depends upon the shape and size of the bend), 
    ranges from 1.3 to 3.2, and
  V = Velocity of flow.
 Suffices 0 and i represent the conditions at the outer and inner walls of the pipe bend.

 or, V = 0
0

1 2 – i
i

p pg z z
w wK

   + +   
   

 ...[6.11 (a)]

 ∴  Discharge, Q = AV = 0
02 – i

d i
p pC A g z z
w w

   + +   
   

 ...(6.12)

 where, Cd = 1
k

 = Co-efficent of discharge, and

  A = Cross-sectional area of the pipe.
  (Cd varies between 0.56 and 0.88)
 The following empirical relation has been suggested:
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  Cd = ,bR
D

 

 where, Rb = Radius of pipe bend, and
  D = Diameter of the pipe.
  An elbowmeter can be conveniently used for the measurement of discharge in pipes which  

are fitted with elbows and bends.
  Its accuracy, with proper calibration, approaches that of a venturimeter or nozzle.

6.6.4. Pitot Tube
 Pitot tube is one of the most accurate devices for velocity measurement. It works on the 
principle that if the velocity of flow at a point becomes zero, the pressure there is increased due to 
conversion of kinetic energy into pressure.
 It consists of a glass tube in the form of a 90° bend of short length open at both its ends. It is 
placed in the flow with its bent leg directed upstream so that a stagnation point is created immediately 
in front of the opening (Fig. 6.38). The kinetic energy at this point gets converted into pressure energy 
causing the liquid to rise in the vertical limb, to a height equal to the stagnation pressure.

Piezometer

V

P S

Pipe

Pitot
tube

Liquid outLiquid in

ho =
p

w
o

V
2

p

w
s

h =s

2g

Fig. 6.38. Pitot tube.

 Applying Bernoulli’s equation between stagnation point (S) and point (P) in the undisturbed 
flow at the same horizontal plane, we get:

  
2

0
2

p V
w g

+  = sp
w

 or h0 +
2

2
V

g
 = hs

 or, V = 02 ( – )sg h h  or 2g h∆  ...(1)

 where, p0 =  Pressure at point ‘P’, i.e. static pressure, 
  V = Velocity at point ‘P’, i.e. free flow velocity,
  ps = Stagnation pressure at point ‘S’, and
  ∆h = Dynamic pressure
   = Difference between stagnation pressure head (hs) and static    
    pressure head (h0).
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 The height of liquid rise in the Pitot tube indicates the stagnation head. The static pressure head 
may be measured separately with a piezometer (Fig. 6.38).
 Both the static pressure as well as stagnation pressure can be measured in a device known as 
Pitot static tube. (Fig. 6.39).

3d

d0.3d

Direction
of flow

8d to 10 d

Static hole

Static hole

To manometer
(Stagnation pressure)

To manometer
(Static pressure limb)

Fig. 6.39. Pitot static tube.

 It consists of two concentric Pitot tubes with an annular space in between as shown in the 
figure. The outer tube has additional two or more holes drilled perpendicular to the direction of flow 
and thus the liquid level in it gives the static head, while the inner tube works as a normal Pitot tube. 
If a differential manometer is connected to the tubes of a Pitot static tube it will measure the dynamic 
pressure head.
 If y is the manometric difference, then

  ∆h = y – 1mS
S

  
 

 where, Sm = Specific gravity of manometric liquid, and 
  S = Specific gravity of the liquid flowing through the pipe.
 When a Pitot tube is placed in the fluid-stream the flow along its outer surface gets accelerated 
and causes the static pressure to decrease. Also the stem, which is perpendicular to the flow direction, 
tends to produce an excess pressure head. In order to take these effects into account eqn. (1) is 
modified to give the actual velocities as:
  V = 2C g h∆  ...(2)

 where,  C = A connective coefficient which takes into account the effect of stem and bent leg.
 The most commonly used form of Pitot static tube known as the Prandle-Pitot-tube is so 
designed that the effect of stem and bent leg cancel each other, i.e., C = 1.

 Example 6.42. A submarine fitted with a Pitot tube moves horizontally in sea. Its axis is  
12 m below the surface of  water. The Pitot tube fixed in front of the submarine and along its axis 
is connected to the two limbs of a U-tube containing mercury, the reading of which is found to be  
200 mm. Find the speed of the submarine.
 Take the specific gravity of sea water = 1.025 times fresh water.
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 Solution.  Reading of the manometer, y  = 200 mm = 0.2 m of mercury
  Sp. gravity of mercury, Shl = 13.6
  Sp. gravity of sea water, Sl = 1.025

 To find the head, (h), using the relation:  h = y – 1hl

l

S
S

 
 
 

, we have:

  h = ( )13.60.2 – 1
1.025

 = 2.45

 ∴ Velocity of the submarine
  V = 2 2 9.81 2.45gh = × ×  = 6.93 m/s or 24.9 km/h (Ans.)

 Example 6.43.  Petroleum oil (sp. gr. = 0.9  and viscosity = 13 cP) flows isothermally through 
a horizontal 5 cm pipe. A Pitot tube is inserted at the centre of a pipe and its leads are filled with 
the same oil and attached to a U-tube containing water. The reading on the manometer is 10 cm. 
Calculate the volumetric flow of oil in m3/s. The co-efficient of Pitot tube is 0.98. 

(Delhi University)

 Solution. Given: Sp gr. of oil = 0.9; µ = 13 cP  = 13
100

× 0.1 Ns/m2 = 0.013 Ns/m2;

  y = 10 cm of Hg = 0.1 m of Hg., D = 5 cm = 0.05 m;
 Co-efficient of Pitot tube, Cv = 0.98
 Volumetric flow of oil:
  Differential head, h = y ( )13.6– 1 0.1 – 1 1.411

0.9
Hg

Oil

S
S

 
= = 

 

 ∴  Actual velocity of flow, V = 2 0.98 2 9.81 1.411vC gh = × × = 5.156 m/s

  Volumetric flow of oil = A × V = 
4
π × 0.052 × 5.156 = 0.01 m3/s (Ans.)

 Example 6.44. For the flow situation shown in Fig. 6.40 determine the ratio 1

2

h
h

if the area 

ratio 1

2

A
A

 = 1.8.

 Neglect loses due to friction.

 Solution. Refer to Fig. 6.40.
 For Pitot tube :
 ps + ρa gh1 = p2 + ρbgh1 ...(i)
 For piezometric tubes:
 p1 + ρagh2 = p2 + ρbgh2  ...(ii)
 Subtracting (ii) from (i), we get:

 (ps – p1) + ρag(h1 – h2) = ρbg(h1 – h2)

 (ps – p1) = (h1 – h2) (ρb – ρa)g

 1–s

a

p p
gρ

= (h1 – h2) – 1b

a

ρ 
 ρ 

 ...(iii)

 .....Dividing by ρag.
 From piezometric tappings,
 (p1 – p2) = h2g (ρb – ρa)

�b

h2

h1

A1
A2

Density = �a

Fig. 6.40
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  1 2–
a

p p
gρ

 = h2 – 1b

a

ρ 
 ρ 

 ... (iv)

   ...Dividing by ρag
 By Bernoulli’s equation:

  
2

1 1
2a

p V
g g

+
ρ

 = 
2

2 2
2a

p V
g g

+
ρ

 ...(z1 = z2)

  1 2–
a

p p
gρ

 = 
2 2

2 1–
2

V V
g

 or, 1 2–
a

p p
gρ

 = 
2 22 2

1 2 1 1

1 2
– 1 – 1

2 2
V V V A

g V g A
      =      
      

 ...(v)

 From (iii), (iv) and (v), we have:

 ∴ 2 – 1b

a
h ρ 

 ρ 
 = 2

1 2( – ) – 1 (1.8) – 1b

a
h h ρ     ρ 

 or, 1

2
– 1 2.24h

h
  × 
 

 = 1 
2

1 1–
2

s

a

p p Vh
g g

 
∆ = = ρ 



 or, 1

2

h
h

 = 1.446 (Ans.)

6.7.  FREE LIQUID JET 

 Refer to Fig. 6.41. A jet of liquid issuing from the nozzle in atmosphere is called a free liquid 
jet. The parabolic path traversed by the liquid jet under the action of gravity is known as trajectory.
Let the jet A make an angle θ with the horizontal direction. If U is the velocity of the water jet, then 
U cos θ and and U sin θ are the horizontal and vertical components of this velocity respectively. 
Consider another point P(x, y) on the centre line of the jet.

Nozzle

U
si

n
�

U cos �

U cos �

Trajectoryu = U cos �

�

U

A B

r

hy

x y
P

( , )

x

v

Fig. 6.41

 Let, u = Velocity of the jet at point P in X- direction,
  v = Velocity of the jet at point P in Y-direction, and
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  t = Time taken by a liquid particle to reach from A to P.
 Then, x = u × t = U cos θ × t        (where,  u = U cos θ) ...(i)

  y = U sin θ × t – 21
2

gt  ...(ii)

 (It may be noted that horizontal component of velocity U is U cos θ which remains constant 
whereas the vertical component U sin θ is affected by gravity.)

 From eqn. (i) we have, t =  
cos
x

U θ
 Substituting the value of t in eqn. (ii), we get:

  y = U sin θ × 
2

2 2
1–

cos 2 cos
x xg

U U
×

θ θ

   = x tan θ  –
2

2 22 cos
gx

U θ

  y = x tan θ – 
2 2

2
sec

2
gx

U
θ    2

2
1 sec

cos
 = θ θ 
  ...(6.13)

 This is the equation of a parabola.
 (i) Maximum height attained by the jet, h:
  Using the relation:
    V2

2 – V1
2 = – 2gh (– ve sign is used as the particle is moving upward)

  where, V1 = Initial vertical component = U sin θ, and
    V2 = 0 at the highest point.
  ∴ 0 – (U sin θ )2 = – 2gh

  or h = 
2 2sin
2

U
g

θ  ...(6.14)

 (ii) Time of flight, T:
  Time of flight is the time taken by the fluid particle in reaching from A to B (Fig. 6.41). From 

eqn. (ii), we have:

    y = U sin θ × t – 21
2

gt

   When the particle reaches the point B, y = 0, t = T
  Putting these values in the above equation, we get:

    0 = U sin θ  × T – 21
2

g T×

  or, T = 2 sinU
g

θ  ...(6.15)

  Time taken to reach the highest point, T ′ = 2 sin sin
2 2

UT U
g g

θ θ= =

  i.e., T ′ = sinU
g

θ  ...(6.16)

 (iii) Horizontal range of the jet, r:
  The range (r) of the jet is the total horizontal distance travelled by the fluid particle. 
  Then r, (i.e., distance AB) = Velocity component in direction × time taken by the particle to 

reach from A to B



Chapter 6 : Fluid Dynamics         315

       = U cos θ  × T = U cos θ  × 2 sinU
g

θ

       = 
2 22sin cos sin 2U U

g g
× θ × θ θ=

  i.e.,  r = 
2 sin 2U

g
θ  ...(6.17)

  The range will be maximum, when sin 2θ = 1
  i.e.,  2θ = 90° or θ = 45°

  Then maximum range, rmax = 
2 2sin(2 45 )U U

g g
× ° =

  i.e.,  rmax = 
2U

g
 Example 6.45. A nozzle is situated at a distance of 1.2 m above the ground level and is inclined 
at 60° to the horizontal. The diameter of the nozzle is 40 mm and the jet of water from the nozzle 
strikes the ground at a horizontal distance of 5 m. Find the flow rate.
 Solution. Distance of nozzle above the ground = 1.2 m
 Angle of inclination, θ = 60°
 Diameter of the nozzle,
 d = 40 mm = 0.04 m
 ∴ Area of nozzle,

 A =
4
π × 0.042 = 0.001256 m2

  The horizontal distance, x = 5 m
 The co-ordinates of the point M, which 
on the centre line of the jet of water and is 
situated on the ground, with respect to L 
(origin) are: x = 5 m, y = – 1.2 m ( Point M is vertically down by 1.2 m)
 The equation of the jet is given by :

  y = x tan θ 
2

2 2–
2 cos

gx
U θ

 ...(i)

 where, U = Velocity of the jet.
 Flow rate, Q:
 The eqn. (i) can be written as:

  y = x tan θ  –
2

2
2 sec

2
gx
U

θ

  – 1.2 = 5 tan 60° – 
2

2
2

9.81 5 (1 tan 60 )
2U

× + °  ( sec2 θ = 1 + tan2 θ)

  – 1.2 = 5 × 1.732 – 2
122.62 (1 3)

U
+

  – 1.2 = 8.66  – 2
498.48

U

 or, U2 = 498.48
(8.66 1.2)+

 = 49.74 or U = 7.05 m/s

L

1.2 m

Jet

60°
Nozzle

5 m

M

Fig. 6.42
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 Hence, flow rate,       Q = A × U = 0.001256 × 7.05 = 0.00885 m3/s (Ans.)
 Example 6.46. It is required to place an orifice in the side of a tank at such an elevation  that 
the jet will attain a maximum horizontal distance from the tank at the level of its base. What is the 
proper distance from the orifice to the free surface when the depth of liquid in the tank is maintained 
at 1.2 m?
 Solution. Depth of liquid in the tank = 1.2 m
  x = 2gh t×  ...(i)

 and, y = – 1
2

 gt2 ...(ii)

 Eliminating t, we get:

  y = 
21–

2 2
xg
gh

 ×  
 

   = 
21–

2 2
xg
gh

× ×

 or, y = 
2

–
4
x
h

 Also, 1.2 = h  + y or   y = 1.2 – h

 ∴   (1.2 – h) = 
2

–
4
x
h

 or,   x2 = – 4h (1.2 – h) = – 4.8 h + 4h2

  For horizontal distance x to be maximum dx
dh

= 0

 ∴   2 dxx
dh

 = – 4.8 + 8h = 0 or h = 0.6 m

 Thus, the orifice should be located at a distance of 0.6 m below the free surface. (Ans.)

 Example 6.47. Ten nozzles each 25 mm in diameter, all inclined at an angle of 45° with the 
horizontal are used in an ornamental fountain. The jet issuing from the nozzle falls into a basin at a 
point 1.5 m vertically beneath the nozzle and 4.5 m horizontally from it. The velocity co-efficient of 
nozzle is 0.97. Determine:
 (i) Pressure head at the nozzle, and
 (ii) Total discharge from the nozzles.

 Solution. Diameter of each nozzle,
  d = 25 mm = 0.025 m
 Angle of inclination, θ = 45°
 Velocity co-efficient of nozzle,
  Cv =  .97
 (i) Pressure head at the nozzle, H:
  Refer to Fig. 6.44.
  Horizontal distance  traversed,
  x = 4.5 m
  Vertical distance traversed, 
  y = – 1.5 m

Liquid jet

Tank

y

x

1
.2

m

h

Fig. 6.43

� = 45°

U

Jet

Basin

1
.5

m

4.5 m

Fig. 6.44
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  For horizontal motion:
    x = U cos θ × t
  or, 4.5 = U cos 45° × t = 0.707 Ut  ... (i)
  For vertical motion:
    y = U sin θ . t – 21

2
gt

  or, – 1.5 = 0.707 Ut – 21
2

gt  ...(ii) 

  From (i) and (ii), we get:

    – 1.5 = 4.5 – 1
2

 × 9.81 × t2 or 4.905 t2 = 6

  or, t = ( )1/26
4.905

 = 1.106s

  From eqn. (i), we have:
    U = 4.5

0.707 1.106×
 = 5.75 m/s

  Also, U = Cv × 2gh  or 5.75 = 0.97 × 2 9.81 H× ×

  or, 5.93 = 2 9.81 H× ×  or H =
25.93

2 9.81×
 = 1.79 m

   i.e., Pressure head at the nozzle = 1.79 m (Ans.)
 (ii) Total discharge from the nozzles:
  Total discharge, Q = (π/4 × d2 × U) × number of nozzles
     = π/4 × 0.0252 × 5.75 × 10 = 0.0282 m3/s
  i.e., Total discharge through nozzles = 0.0282 m3/s. (Ans.)
 Example 6.48. A fireman must reach a window 40 m above the ground with a water jet, issued 
from a nozzle 30 mm in diameter and discharging 30 kg/s. Assuming the nozzle height to be 2 m 
above the ground, determine the greatest horizontal distance from the building where the fireman 
can stand and still reach the jet into the window. (MDU, Haryana)
 Solution Given: D = 30 mm = 0.03 m;  m = 30 kg/s
 Refer to Fig. 6.45.

A

Ground

U

2 m

�

Water jet

x

40 m

Window

y

Fig. 6.45
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 Greatest horizontal distance, x:
 Now, m = ρAU  (where, U = velocity of water jet)

 ∴ U = 
2

30 42.44 m/s
1000 (0.03)

4

m
A

= =πρ × ×

 Let,  θ = Angle of inclination of the nozzle.

 Then, x = U cos θ × t or t = 
cos
x

U θ

  y = U sin θ × t – 21
2

gt

   = ( )21sin –
cos 2 cos
x xU g

U U
θ ×

θ θ

   = 
22

2
2 2 2

1tan – tan – sec
2 cos 2

gxxx g x
U U

θ = θ θ
θ

 or,  
2

2
2tan – sec –

2
gxx y
U

θ θ = 0 ...(i)

 The maximum value of x is obtained by differentiating (i) w.r.t. θ, and putting dx
dθ

 = 0

 ∴ 2 2 2
2sec tan – 2sec sec tan sec 2

2
gdx dxx x x

dt dU
   θ + θ × × θ × θ θ+ θ × ×   θ   

 = 0

 Putting dx
dθ

= 0, we get:

  2 2 2
2sec – (2 sec .tan )

2
gx x
U

θ θ θ  = 0

 or, x sec2 θ = 2 2
2 2 sec .tan

2
g x
U

× θ θ

 or, x = 
2

tan
U

g θ

 Also, y = 40 – 2 = 38 m
 Substituting for x and y in eqn. (i), we get:

  
2 2

2
2tan – sec  – 38

tan tan2
gU U

g gU
 

× θ × θ θ θ 
 = 0

  
2 2

2– – 38
2 sin

U U
g g θ

 = 0

 Substituting for U = 42.44 m/s, we get:

  
2 2

2
(42.44) (42.44)– – 38

9.81 2 9.81 sin× × θ
 = 0

  2
91.8183.6 – – 38

sin θ
 = 0

  sin2 θ = 91.8 0.6305
(183.6 – 38)

=
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 or, sin θ = 0.794   or   θ = sin–1 (0.794) = 52.56°

 Hence, x = 
22 (42.44)

tan 9.81 tan(52.56 )
U

g
=

θ × °
= 140.58 m (Ans.)

 Example 6.49. The nozzle shown in Fig 6.46. has a jet diameter of 25 mm. The pressures on the 
water surface on the two sides of the arrangement are p1 = 170 kN/m2 (gauge) and  p2 = 300 mm of 
Hg. Determine:
 (i) The discharge through the nozzle;
 (ii) The maximum height of the free jet above the nozzle. [IIT Delhi]
 Solution.  Diameter of the jet = 25 mm = 0.025 m
  Pressure, p1 = 170 kN/m2

  Pressure, p2 = 300 mm or 0.3 m of Hg
   = 0.3 × 13.6 = 4.08 m of water.
 (i) Discharge through the nozzle, Q:
  Applying Bernoulli’s equation to 1 (water surface) and 2 (the jet as it emerges from the noz-

zle), we get:

  
2

1 1
12

p V z
w g

+ +  = 
2

2 2
22

p V z
w g

+ +

  170 0 3
9.81

+ +  = 
2

24.08 0
2
V

g
+ +

  17.33 + 3 = 4.08 + 
2

2
2
V

g

Water

Water

Air Air
1

2

45°

45°

3
m

p1 = 170 kN/ m
2

p2 = 300 mm of Hg

Jet trajectory
V

Fig. 6.46

  or, V 22 = [(17.33 + 3) – 4.08] × 2g = 16.25 × 2 × 9.81
  ∴ V2 = 17.85 m/s (V2 = V)
  Hence, Q = A × V2 
     = (π/4) × 0.0252 × 17.85 = 0.00876 m3/s or 8.76 litres/sec. (Ans.)
 (ii) Maximum height of the free jet above the nozzle:
  Vertical component of the jet velocity = Vsin 45° = 17.85 sin 45° = 12.62 m/s
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  ∴ Maximum height to which jet will rise,

  h = 
212.62

2 9.81×
 = 8.12 m (Ans.)

 Example 6.50. A vertical jet of water 75 mm in diameter leaving the nozzle with a 9.2 m/s 
velocity strikes a horizontal and movable disc weighing 170 N (Fig.6.47). The jet is then deflected  
horizontally. Determine the vertical distance y above the nozzle tip at which the disc will be held in 
equilibrium.    [Roorkee University]
 Solution.  Diameter of the jet, d = 75 mm = 0.075 m
  Velocity of the jet at nozzle exit; V  = 9.2 m/s
  Weight of the disc, W  = 170 N
 Vertical Distance, y:
 Let, v = Jet velocity at an elevation y.
 Applying Bernoulli’s theorem between the jet at 
nozzle exit and the jet at an elevation y, we get: 

  
2

2
V

g
 = 

2

2
v y
g

+

 or, V2 = v2 + 2gy ...(i)
 Also the momentum equation is written as

  .wQ v
g

 = 170

 where,  Q = (π/4) × d2 × V = (π/4) × 0.0752 × 9.2
   = 0.0406 m3/s, and
  w = 9810 N/m3

 ∴ 9810 0.0406
9.81

v× ×  = 170

 or, v = 170 9.81 4.187 m/s
9810 0.0406

× =
×

 Substituting this value of v in (i), we get:
  9.22 = (4.187)2 + 2 × 9.81× y
 or, 84.64 = 17.53 + 19.62 y

 or, y = 84.64 – 17.53
19.62

 = 3.43 m (Ans.)

6.8.  IMPULSE-MOMENTUM EQUATION 

 The impulse-momentum equation is one of the basic tools (other being continuity and 
Bernoulli’s equations) for the solution of flow problems. Its application leads to the solution of 
problems in fluid mechanics which cannot be solved by energy  principles alone. Sometimes it is 
used in conjunction with the energy equation to obtain complete solution of engineering problems.
 The momentum equation is based on the law of conservation of momentum or momentum 
principle which states as follows:
 “The net force acting on a mass of fluid is equal to change in momentum of flow per unit 
time in that direction”.
 As per Newton’s second law of motion,
   F = ma

y

Nozzle

75 mm dia.

Jet of water

Disc ( = 170 N)W

Fig. 6.47
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 where,  m = Mass of fluid,
   F = Force acting on the fluid, and
   a = Acceleration (acting in the same direction as F).

 But acceleration, a =  dv
dt

 ∴ F = ( ). d mvdvm
dt dt

=  ...(6.18)

 (‘m’ is taken inside the differential, being constant)
 This equation is known as momentum principle. It can also be written as:
  F.dt = d (mv) ...(6.19)
 This equation is known as Impulse-momentum equation. It may be stated as follows:
 “The impulse of a force F acting on a fluid mass ‘m’ in a short interval of time dt is equal to 
the change of momentum d(mv) in direction of force”.
 The impulse-momentum equations are often called simply momentum equations.
 Applications of impulse-momentum equation:
 The impulse-momentum equation is used in the following types of problems: 
 1. To determine the resultant force acting on the boundary of flow passage by a stream of fluid 

as the stream changes its direction, magnitude or both. Problems of this type are:
 (i) Pipe bends, (ii) Reducers, (iii) Moving vanes,    (iv) Jet propulsion, etc.
 2. To determine the characteristic of flow when there is an abrupt change of flow section. Prob-

lems of this type are:
 (i) Sudden enlargement in a pipe, (ii) Hydraulic jump in a channel, etc.
 Steady flow momentum equation:
 The entire flow space may be considered to be made up of innumerable stream tubes. Let us 
consider one such stream tube lying in the X-Y plane (Fig 6.48) and having steady flow of fluid. 
Flow can be assumed to be uniform and normal to the inlet and outlet areas.
 Let,  V1,ρ1 = Average velocity and density (of fluid mass) respectively at the entrance, and
 V2, ρ2 = Average velocity and density respectively at the exit.
Further let the mass of fluid in the region 
1 2 3 4 shifts to new position 1′ 2′ 3′ 4′ 
due to the effect of external forces on the 
stream after a short interval. Due to gradual 
increase in the flow area in the direction of 
flow, velocity of fluid mass and hence the 
momentum is gradually reduced. Since the 
area 1′ 2′ 3 4 is common to both the regions 
1 2 3 4 and 1′ 2′ 3′ 4′, therefore, it will not 
experience any change in momentum. 
Obviously, then the changes in momentum 
of the fluid masses in the sections 1 2 2′ 1′ 
and 4 3 3′ 4′ will have to be considered.
According to the principle of mass conservation,
Fluid mass with the region 1 2 2′ 1′ = Fluid mass within the region 4 3 3′ 4′
  ρ1 A1 ds1 = ρ2A2ds2 ...(6.20)
 ∴ Momentum of fluid mass contained in the region 1 2 2′ 1′ 

V 1

ds 1

ds2

1

1�

4�

��

��

4

2

3

V2

ds2 = dtV2

ds1 = dtV1

�1

�2

Fig. 6.48
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   = (ρ1A1 ds1) V1 = (ρ1A1 V1. dt) V1 
 Momentum of fluid mass contained in the region 4 3 3′ 4′
   = (ρ2A2 ds2) V2 = (ρ2A2 V2. dt) V2
 ∴  Change in momentum = (ρ2A2 V2.dt) V2 – (ρ1A1 V1. dt) V1 
 But, ρ1 =  ρ2 = ρ ...for steady incompressible flow
 and, A1V1 = A2V2 = Q ...from continuity considerations
 ∴  Change in momentum = ρQ(V2 – V1) dt
 Using impulse-momentum principle, we have:
  Fdt = ρQ (V2 – V1)dt ...(6.21)

 or, F = 2 1( – )wQ V V
g

 ...(6.22)

 The quantity wQ
g

 = ρQ is the mass flow per second and is called mass flux.

 Resolving V1 and V2 along X-axis and Y-axis, we get:
 Components along X-axis: V1 cos θ1 and V2 cos θ2
 Components along Y- axis : V1 sin θ1 and V2 sin θ2
 (where, θ1 and θ2 are the inclinations with the horizontal of the centre line of the pipe at 1-2 and 
3-4).
 ∴  Components of force F along X-axis and Y-axis are:

  Fx = 2 2 1 1( cos – cos )wQ V V
g

θ θ  

  Fy = 2 1 1( sin sin )WQ V V
g 2θ − θ  ...(6.23)

 Eqn. (6.23) represents the components of the force exerted by the pipe bend on the fluid mass. 
Usually, we are interested in the forces by the fluid on the pipe bend. Since action and reaction are 
equal and opposite (Newton’s third law of motion), the fluid mass would exert the same force on 
the pipe bend but in opposite direction and as such the force components exerted by the fluid on the 
pipe bend are given as follows:

   
1 1 2 2

1 1 2 2

( cos – cos )

( sin – sin )

x

y

wQF V V
g

wQF V V
g

= θ θ 

= θ θ


 ...(6.24)

 Since the dynamic forces (eqn. 6.23) must be supplemented by the static pressure forces acting 
over the inlet and outlet sections, therefore, we have:

    
1 1 2 2 1 1 1 2 2 2

1 1 2 2 1 1 1 2 2 2

( cos – cos ) cos – cos

( sin – sin ) sin – sin

x

y

wQF V V p A p A
g

wQF V V p A p A
g

= θ θ + θ θ 

= θ θ + θ θ


  ...(6.25)

 The magnitude of the resultant force acting on the pipe bend,

  FR = 2 2
x yF F+  ...(6.26)

 and, the direction of the resultant force with X-axis,

  θ = –1tan y

x

F
F

 
 
 

 ...[6.26 (a)]
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 Example 6.51. In a 45° bend a rectangular air duct of 1 m2 cross-sectional area is gradually 
reduced to 0.5 m2

 area. Find the magnitude and direction of force required to hold the duct in 
position if the velocity of flow at 1 m2 section is 10 m/s, and pressure is 30 kN/m2.
 Take the specific weight of air as 0.0116 kN/m3. [Anna University]

 Solution. Refer to Fig. 6.49
  Area at section, ‘1’ = 1 m2; Area at section ‘2’ = 0.5 m2

  Velocity at section ‘1’, V1 = 10 m/s
  Pressure at section ‘1’, p1 = 30 kN/m2

  Sp. weight of air, w = 0.0116 kN/m3

 As per continuity equation,  
  A1V1 = A2V2

 ∴ V2 = 1 1

2

1 10 20 m/s
0.5

AV
A

×= =

  Discharge, Q = A1V1 = 1× 10 = 10 m3/s
 Applying Bernoulli’s equation at sections ‘1’ and ‘2’, we get:

  
2

1 1
12

p V z
w g

+ +  = 
2

2 2
22

p V z
w g

+ +

 But, z1 = z2

 ∴ 
2

1 1
2

p V
w g

+  = 
2

2 2
2

p V
w g

+

V1 p1

p 2

+–

–

+

Y2

2

2 45°

45°
�

2

p2 2A cos 45°

p
2

2
A

si
n

4
5
°

V
2
si

n
4
5
°

V2 cos 45°

V2

X

Fy
FR

Fx

p 2
2

A

45°

Fig. 6.49

  
230 10

0.0116 2 9.81
+

×
 = 

2
2 20

2 9.81
p
w

+
×

 or, 2586 + 5.1 = 2 20.4p
w

+

 or, 2p
w

 = 2586 + 5.1 – 20.4 = 2570.7
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 or, p2 = 2570.7 × 0.0116 = 29.82 kN/m2

 Magnitude and direction of force (resultant) FR:
 Force along X-axis:

  Fx = 1 2 1 1 2 2( – ) ( ) ( )x x x x
wQ V V p A p A
g

+ +

 where, V1x = 10 m/s; V2x = V2 cos 45° = 20 × 0.707 = 14.14 m/s
 (p1A1)x = p1A1 = 30 × 1 = 30 kN; (p2A2)x = – p2A2 cos 45° = – 29.82 × 0.5 × 0.707 = – 10.54 kN

 ∴ Fx = 0.0116 10 (10 –14.14) 30 – 10.54 19.41 kN ( )
9.81

× + = →

 Force along Y-axis:

  Fy = 1 2 1 1 2 2( – ) ( ) ( )y y y y
wQ V V p A p A
g

+ +

 where, V1y = 0; V2y = V2 sin 45° = 20 × 0.707 = 14.14 m/s
     (p1 A1)y = 0; (p2 A2)y = – p2A2 sin 45° = – 29.82 × 0.5 × 0.707 = – 10.54 kN

 ∴ Fy = 0.0116 10 (0 – 14.14) 0 – 10.54 – 10.71 kN ( )
9.81

× + = ↓

 ∴ Resultant force, FR = 2 2 2 2(19.41) (10.71)x yF F+ = + = 22.17 kN (Ans.)

 The direction of FR with X-axis is given as: 

  tan θ = 10.71 0.5518
19.41

y

x

F
F

= =

 or, θ = tan–1 0.5518 = 28.88º or 28°53′ (Ans.)
 Example 6.52. 250 litres/sec. of water is flowing in a pipe having a diameter of 300 mm. If 
the pipe is bent by 135°, find the magnitude and direction of the resultant force on  the bend. The 
pressure of the water flowing is 400 kN/m2. Take specific weight of water as 9.81 kN/m3. 

[Delhi University] 
 Solution.  Diameter of the bend at inlet, D1 = 300 mm = 0.3 m
  Diameter of the bend at outlet, D2 = 300 mm = 0.3 m
 ∴  Area, A1 = A2 = (π/4) × 0.32 = 0.07068 m2

  Discharge, Q = 250 litres/sec. = 0.25 m3/s.

  Pressure,  p1 = p2 = 400 kN/m2

  Velocity at section 1-1, V1 =  
1

0.25 3.54 m/s
0.07068

Q
A

= =

  Velocity at section 2-2, V2 = V1 = 3.54 m/s ( A1 = A2)
 Force along X-axis:

  Fx = 1 2 1 1 2 2[ – (– cos45 )] cos45wQ V V p A p A
g

° + + °

   = 9.81 0.25 [3.54 – (– 3.54 0.707)]
9.81

× ×  

  + ( 400 × 0.07068) + (400 × 0.07068 × 0.707)
   = 0.25 × (3.54 + 3.54 × 0.707) + 28.27 + 19.98
   = 49.76 kN (→)
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 Force along Y-axis:

  Fy = wQ
g

 [ 0 – V2 sin 45°] – p2 A2 sin 45°

   = 9.81 0.25
9.81

× (0 – 3.54 × 0.707) – 400 × 0.07068 × 0.707

   = – 0.625 – 19.98 = – 20.6 kN(↓)
 The magnitude of the resultant force,

  FR = 2 2 2 249.76 20.6x yF F+ = + =  53.85 kN  (Ans.)

 The  direction of FR with X- axis is given as:

  tan θ = 20.6 0.414
49.76

y

x

F
F

= =

 ∴ θ = tan–1 0.414 = 22.5° (Ans.)
 Example 6.53. 360  litres per second of water is flowing in a pipe. The pipe is bent by 120°. 
The pipe bend measures 360 mm × 240  mm and volume of the bend  is 0.14 m3. The pressure at the 
entrance is 73 kN/m2 and the exit is 2.4 m above the entrance section.
 Find the force exerted on the bend.

 Solution.  Discharge through the pipe, Q = 360 litres/sec. = 0.36 m3/s
  Volume of bend = 0.14 m3

  Diameter of the bend at 1-1,  D1  = 360 mm = 0.36 m

 ∴   Area,  A1 = 
4
π  × 0.362 = 0.1018 m2

  Diameter of the bend at 2-2,  D2  =   240 mm = 0.24 m

 ∴   Area, A2 = 
4
π  × 0.242 = 0.04524 m2
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 Velocity at section 1-1, V1 = 
1

0.36 3.54 m/s
0.1018

Q
A

= =

V1 p1

p2

V2

2

2

360 mm dia.
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240
m

m
dia.

V2

2

2

60°

V cos 60°2

V
si

n
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°

2

2

2

60°

p A cos 60°2 2

p
A

2
2

si
n

6
0
°p A2 2
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FY

�

Fx

Fig. 6.51

 Velocity at section 2-2, V2 = 
2

0.36 7.96 m/s
0.04524

Q
A

= =

 Considering a horizontal line through the section 1-1 as datum for elevation head and applying 
Bernoulli’s equation to the sections 1-1 and 2-2, we get:

  
2

1 1
12

p V z
w g

+ +  = 
2

2 2
22

p V z
w g

+ +

  
272 3.54 0

9.81 2 9.81
+ +

×
 = 

2
2 7.96 2.4

2 9.81
p
w

+ +
×

 ( p1 = 72 kN/m2 ... Given)

  7.34 + 0.64 = 2 3.23 2.4p
w

+ +

 ∴ 2p
w

 = 2.35  or  p2 = 2.35 × 9.81 = 23.05 kN/m2

 Force along the X-axis:

  Fx = wQ
g

 [V1 – (– V2 cos 60°)] + p1 A1 + p2A2 cos 60°

   = 9.81 0.36
9.81

×  [ 3.54 – (–7.96 × 0.5)] + 72 × 0.1018 + 23.05 

× 0.04524 × 0.5
   = 0.36 (3.54 + 3.98) + 7.33 + 0.52 = 10.55 kN (→)
 Force along Y-axis:

  Fy = wQ
g

 [0 – V2 sin 60°]–p2 A2 sin 60°–weight of water in the bend 
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   =  9.81 0.36
9.81

×  (0 – 7.96 × 0.866) – 23.05 × 0.04524 × 0.866 – 0.14 × 9.81

    = 0.36 (– 6.89) – 0.9 – 1.37 = – 4.75 kN (↓)
 Magnitude of the resultant force acting on the bend,

  FR = 2 2 2 210.55 4.75x yF F+ = +  = 11.57 kN (Ans.)

 Direction of the resultant force with the X-axis,

  tan θ = 4.75 0.4502
10.55

y

x

F
F

= =  or θ =  24.24° (Ans.)

 Example 6.54. Fig. 6.52 shows a 90° reducer-bend through which water flows. The pressure 
at the inlet is 210 kN/m2 (gauge ) where the cross-sectional area is 0.01 m2. At the exit section, the 
area is 0.0025 m2 and the velocity is 16 m/s. The pressure at the exit is atmospheric. Determine the 
magnitude and direction of  the resultant force on the bend.
 Solution.  Area at section 1-1, A1  = 0.01 m2

  Area at section 2-2, A2 = 0.0025 m2

  Velocity at the exit, V2 = 16 m/s.
  Discharge, Q = A2 V2 = 0.0025 × 16 = 0.04 m3/s.

 ∴ V1 = 
1

0.04 4 m/s
0.01

Q
A

= =

 Assume the bend is horizontal and in XY plane.
 Force along X-axis:

  Fx = 1 1 1( – 0)wQ V p A
g

+

   = 9.81 0.04
9.81

× (4 – 0) + 210 × 0.01 = 0.16 + 2.1 = 2.26 kN (→)

FR

F
y

=
0
.6

4
k
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2

22
p2 = 0
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1

Fx = 2.26 kN

Fig. 6.52

 Force along Y-axis:

  Fy = wQ
g

[0 – (– V2)] + p2A2
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   = 9.81 0.04
9.81

× (0 + 16) + 0 = 0.64 kN (↑)

 Magnitude of the resultant force acting on the bend,

  FR = 2 2 2 22.26 0.64x yF F+ = +  = 2.35 kN (Ans.)

 Direction of the resultant force with the X-axis,

  tan θ  = 0.64 0.2832
2.26

y

x

F
F

= =   ∴ θ = tan–1 0.2832 = 15.8°

 ∴ θ = 15.8° (Ans.)
 Example 6.55. Water enters a reducing pipe horizontally and comes out vertically in the 
downward direction. If the inlet velocity is 5 m/s and pressure is 80 kPa (gauge) and the diameters 
at the entrance and exit sections are 30 cm and 20 cm respectively, calculate the components of the 
reaction acting on the pipe.    (RGPV, Bhopal)

 Solution. Given: D1 = 30 cm = 0.3 m; D2 = 20 cm = 0.2 m; V1 = 5 m/s; p1 = 80 kPa = 80 kN/m2.
 Components of the reaction acting on the pipe: Refer to Fig. 6.53.
 From continuity equation, we have:
  Q = A1V1 = (π/4) × 0.32 × 5 = 0.3534 m3/s

    A1V1 = A2V2   or   2 2
20.3 5 0.2

4 4
Vπ π× × = × ×

 ∴ V2 = 11.25 m/s
 Assume the bend is horizontal and in XY plane.
 Applying Bernoulli’s equation between sections (1) 
and (2), we have:

  
2

1 1
12

p V z
w g

+ +  = 
2

2 2
22

p V z
w g

+ +

 or, 2p
w

 = 
2 2

1 1 2–
2

p V V
w g

 
+  

 
 

                             (z1 = z2)

   = 
2 25 – 11.2580 2.978 m

9.81 2 9.81
 

+ = × 
 or, p2 = 9.81× 2.978 = 29.22 kN/m2

 Force along X-axis:
  Fx = 1 1 1( – 0)wQ V p A

g
+

   = 29.81 0.3534 (5 – 0) 80 0.3
9.81 4
× π+ × ×  = 7.42 kN (Ans.)

  Fy = 2
2 2 2 2 2[0 – (– )] wQVwQ V p A p A

g g
+ = +

   = 29.81 0.3534 11.25 29.22 0.2
9.81 4

× × π+ × ×  = 4.89 kN (Ans.)

 Example 6.56. The angle of a reducing bend is 60° (that is deviation from initial direction to 
final direction). Its initial diameter is 300 mm and final diameter 150 mm and is fitted in a pipeline, 

Y

X

1

V1

V2

p1

2

Bend

p2

Fig. 6.53
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carrying a discharge of 360 litres/sec. The pressure at the commencement of the bend is 2.943 bar. 
The friction loss in the pipe bend may be assumed as 10 per cent of kinetic energy at exit of the bend.  
Determine the force exerted by the reducing bend. [UPSC Exams.]
 Solution.  Diameter at the inlet, D1  =  300 mm = 0.3 m
 ∴  Area, A1 = (π/4) × 0.32 = 0.07068 m2

  Diameter at the outlet, D2 = 150 mm = 0.15 m
 ∴  Area, A2 = (π/4) × 0.152 = 0.01767 m2

  Discharge through the bend, Q = 3600 litres/sec. = 0.36 m3/s
  Pressure at the inlet, p1 = 2.943 bar = 294.3 kN/m2

 [1 bar = 105 N/m2 = 102 kN/m2]

  Velocity at the inlet, V1 = 
1

0.36 5.09 m/s
0.07068

Q
A

= =
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V
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  Velocity at the outlet, V2 = 
2

0.36 20.37 m/s
0.01767

Q
A

= =

  Friction loss in the pipe = 
2

20.1
2
V

g
×  ...(Given)

 Applying Bernoulli’s equation at sections 1-1 and 2-2, we get:

  
2

1 1
12

p V z
w g

+ +  = 
2 2

2 2 2
2 0.1

2 2
p V Vz
w g g

+ + + ×

 (∴ z1 = z2 since the bend lies in the horizontal plane)

  
2294.3 5.09

9.81 2 9.81
+

×
 = 

2 2
2 20.37 20.370.1

2 9.81 2 9.81
p
w

+ + ×
× ×

  30 + 1.32 = 2p
w

 + 21.15 + 2.11
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 ∴   2p
w

 = 8.06 or p2 = 9.81× 8.06 = 79.07 kN/m2

 Force along X-axis:

  Fx = 1 2 1 1 2 2[ – cos 0 ] – cos60wQ V V p A p A
g

6 ° + °

   = 9.81 0.36
9.81

× (5.09 – 20.37 × 0.5) + 294.3 × 0.07068 

– 79.07 × 0.01767 × 0.5
   = – 1.8342 + 20.8 – 0.698 = 18.27 kN (→)
 Force along the Y-axis:

  Fy = 2 2 2(0 – sin 60 ) – sin 60wQ V p A
g

° °

   = 9.81 0.36
9.81

× (0 – 20.37 sin 60°) – 79.07 × 0.01767 × sin 60°

   = – 6.35 – 1.21 = – 7.56 kN or 7.56 kN (↓)
 Magnitude of the resultant force acting on the bend,

  FR = 2 2 2 218.27 7.56x yF F+ = + = 19.77 kN

 Direction of the resultant force with the X-axis,

  tan θ = 7.56 0.4138
18·27

y

x

F
F

= =

  θ = tan–1 0.4138 = 22.48°
 An equal and opposite force will be exerted by the reducing bend. (Ans.)

 Example 6.57. A 0.4 m × 0.3 m, 90° vertical bend carries 0.5 m3/s oil of specific gravity 
0.85 with a pressure of  118 kN/m2 at inlet to the bend. The volume of the bend is 0.1 m3. Find 
the magnitude and direction of the force on the bend. Neglect friction and assume both inlet and 
outlet sections to be at same horizontal level. Also assume that water enters the bend at 45° to the 
horizontal.    (PTU)

 Solution. Given: D1 = 0.4 m, ∴ A1 = 20.4
4
π ×  = 0.12566 m2; D2 = 0.3 m;

 ∴ A2 = 20.3
4
π × = 0.07068 m2; Q = 0.5 m3/s; Soil

 = 0.85; p1 = 118 kN/m2; Volume of bend = 

0.1 m3

 Refer to Fig. 6.55.

  V1 = 
1

0.5 3.98 m/s
0.12566

Q
A

= =

  V2 = 
2

0.5 7.074 m/s
0.07068

Q
A

= =

 Applying Bernoulli’s equation between sections (1) and (2), we get: 

  
2

1 1
12

p V z
w g

+ +  = 
2

2 2
2 losses

2
p V z
w g

+ + +

 Since, z1
 = z2 and losses are negligible (Given),
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 ∴ 
2

1 1
2

p V
w g

+  = 
2

2 2
2

p V
w g

+

 Substituting the values, we get:

   
3 2118 10 (3.98)

(1000 0.85 9.81) 2 9.81
× +

× × ×
 = 

2
2 (7.074)

(1000 0.85 9.81) 2 9.81
p +

× × ×

 or, 
3 2118 10 (3.98)

850 2
× +  = 

2
2 (7.074)

850 2
p +

 or, p2 = 
3 2 2

2118 10 (3.98) – (7.074)850 103464 N/m
850 2

 × + =  
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 Magnitude and direction of the force (resultant), FR:
 Force along X-axis:

  Fx = [ ]1 2 1 1 2 2– ( ) ( )x x x x
wQ V V p A p A
g

+ +

 where, V1x = V1 cos 45° = 3.98 cos 45° = 2.814 m/s, 
  V2x cos 45° = 7.074 × cos 45° = 5.0 m/s
  (p1A1)x = p1A1 cos 45° = 118 × 103 × 0.12566 cos 45° = 10484.89 N,
  (p2A2)x  = – p2A2 cos 45° = –103464 × 0.07068 cos 45° = –5170.96 N

 ∴ Fx = (1000 0.85 9.81)0.5
9.81

× × [2.814 – 5.0] + 10484.89 + (– 5170.96)  4385 N (→)

 Force along Y-axis:

  Fy = wQ
g

 [V1y – V2y] + (p1 A1)y + (p2A2)y – W

  V1y = V1 sin 45°= 3.98 sin 45° = 2.814 m/s, V2y = – V2 sin 45°
   = – 7.074 × sin 45° = – 5.0 m/s
  (p1 A1)y = p1 A1 sin 45° = 118 × 103 × 0.12566 sin 45° = 10484.89 N
  (p2A2)y = p2A2 sin 45° = 103464 × 0.07068 × sin 45° = 5170.96 N
  W = 0.1(0.85 × 1000) × 9.81 = 833.85 N



332         Fluid Mechanics

 ∴ Fy = (1000 0.85 9.81)0.5
9.81

× ×  [2.814 – (–5.0)] + 10484.89 + 5170.96 – 833.85 = 18143 N (↑)

 ∴ Resultant force on the bend,

  FR = 2 2 2 2(4385) (18143)x yF F+ = +  = 18665 (Ans.)

 Inclination of Fx to the X-direction is,

  θ = ( )–1 –1 18143tan tan
4385

y

x

F
F

 
= 

 
 = 76.4° (Ans.)

 Example 6.58. The following data refer to the Y-fitting shown in Fig. 6.56.
 Reading of the pressure gauge at section 1-1 = 30 kN/m2.
 Discharge in at the section 1-1 = 15 litres/sec.
 Discharge out from the section 3-3 = 5 litres/sec.
 Assuming one-dimensional flow, neglecting elevation head and energy loss while making the 
energy balance, determine:
 (i) The pressures at the sections 2-2 and 3-3;
 (ii) The force needed to hold the fitting in position. (Roorkee University)
 Solution. Refer to Fig. 6.56.
 Given: D1 = 100 mm = 0.1 m. D2 = 80 m, = 0.08 m; D3 = 60 mm = 0.06 m
 ∴  Area, A1 = (π/4) × 0.12 = 0.007854 m2, 
  Area, A2 = (π/4) × 0.082 = 0.005026 m2, and
         Area, A3 = (π/4) × 0.062 = 0.002827 m2

 Pressure at the section 1-1, p1 = 30 kN/m2

 Now, Q1 = Q2 + Q3   or   15 = Q2 + 5
 ∴ Q2 = 10 litres/sec.

 Velocity at the section 1-1,  V1 = 
–3

1

1

15 10 1.91 m/s
0.007854

Q
A

×= =

 Velocity at the section 2-2,  V2 = 
–3

2

2

10 10
0.005026

Q
A

×= = 1.99 m/s

 Velocity at the section 3-3,   V3 = 
–3

3

3

5 10 1.77 m/s
0.002827

Q
A

×= =

 (i) Pressures at sections 2-2 and 3-3; p2, p3:
 Applying Bernoulli’s equation between sections 1-1 and 2-2, we get:

  
2

1 1
12

p V z
w g

+ +  = 
2

2 2
22

p V z
w g

+ +

  2 1–p p
w w

 = 
2 2

1 2–
2 2
V V

g g
 (Neglecting elevation datum)

 or, 2 1–p p
w

 = 
2 2

1 2–
2

V V
g

   = 
2 21.91 – 1.99 – 0.0159

2 9.81
=

×

 or, p2 – p1 = – w × 0.0159 = – 9.81 × 0.0159 = – 0.156 kN/m2
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 ( w = 9.81 kN/m3 for water)
 or, p2 = – 0.156 + p1 = – 0.156 + 30 = 29.84 kN/m2 (Ans.)
 Similarly, for sections 1-1 and 3-3; we get:

1

p1 = 30 kN/m
2

1

2

3

3

2

100 mm dia.

80 mm dia.

60°

60 m
mdia.

p2

V2

V1

V
3

Y-Fitting

p
3

3

3

60°

V3

V3 cos 60°

V
3

si
n

6
0
°

F
=

y
1
2
.7

N

�

Fx = 47.1 N

F
R = 48.78 N

p A3 3 cos 60°

p
A

3
3

si
n

6
0
°

p A3 3

3

3

60°

p1

Fig. 6.56

  3 1–p p
w

 = 
2 2 2 2

1 3– 1.91 – 1.77
2 2 9.81

V V
g

=
×

 = 0.02626

 or,  p3 – p1 = 9.81× 0.2626 = 0.26
 ∴     p3 = 0.26 + p1 = 0.26 + 30 = 30.26 kN/m2 (Ans.)
 (ii) Force needed to hold the fitting in position :
 Force along X-axis:

  Fx = 3wQ
g

(0 – V3 cos 60°) – p3 A3 cos 60°

 (The velocities V1 and V2 and pressure p1 and p2 have no components in X-direction)

   = 
–39.81 5 10

9.81
× × (0 – 1.77 × 0.5) – 30·26 × 0.002827 × 0.5

   = – 0.004425 – 0.0427 = – 0.00471 kN or – 47.1 N
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 or, Fx = 47.1 N (←)
 Force along Y-axis:

  Fy = 31 2
1 2– – wQwQ wQV V

g g g
V3 sin 60° + p1A1 – p2A2 – p3A3 sin 60°

   = w
g

(Q1V1 – Q2V2 – Q3V3 sin 60°) + p1A1 – p2A2 – p3A3 sin 60°

   = 9.81
9.81

 (15 × 10–3 × 1.91 – 10 × 10–3 × 1.99 – 5 × 10–3 × 1.77 

   × 0.866) + 30 × 0.007854 – 29.84 × 0.005026 – 30.26 × 0.002827 
     × 0.866
   = (0.02865 – 0.0199 – 0.007664) + 0.2356 – 0.1499 – 0.0741
   = 0.0127 kN or 12.7 N (↑)
 The magnitude of resultant force acting on the fitting is

  FR = 2 2 2 247.1 12.7x yF F+ = +  = 48.78 N (Ans.)

 and the direction  of the resultant force with X-axis (Fig. 6.56) is

  tan θ = 12.7 0.2696
47.1

y

x

F
F

= =

 ∴ θ = 15.09° (Ans.)
 An equal and opposite force will be needed to hold the fitting in position. (Ans.)
 Example 6.59. At inlet to a horizontal pipe of radius a, fitted at side of a vertical tank, the 
velocity distribution is uniform with magnitude V0. But at the outlet section, where the flow is fully 
developed, the velocity distribution is given by,

  u = 
2

0 22 1 – rV
a

 
 
 

where, u is the velocity at any radius r from the axis of the pipe. Determine the horizontal force 
required to hold the pipe in position.  (UPSC)
 Solution. For uniform velocity at inlet,
  Momentum = 2 2 2

0 0AV a Vρ = ρπ  (where, a = radius of the pipe)

  At outlet, momentum = 2u d Aρ∫

   = 
22

0 2
0

2 1 – 2 .
a

rV r dr
a

  
ρ π  

  ∫

   = 
2

2 2 20
4 0

8 ( – ) .
aV a r r dr

a
π ρ ∫

   = 
2

4 2 3 50
4

0

8 ( – 2 )
a

V a r a r r dr
a

π ρ +∫

   = 
2 2 4 6

4 20
4

0
8 – 2

2 4 6

a
V r r ra a
a

 
π ρ × × +  

   = 
2 6 6 6

0
48 –

2 2 6
V a a a
a

 
π ρ + 

 



Chapter 6 : Fluid Dynamics         335

   = 2 2
0

4
3

V aπ ρ

  Assuming that the pressures at inlet and outlet are same, the force required is equal to change 
in momentum, or

  Force,  F  =  Momentum at outlet – Momentum at inlet

   = ( )2 2 2 2 2 2
0 0 0

4 4– – 1
3 3

V a a V a Vπρ ρπ = πρ

   =  2 2
0

1
3

π ρ a V  (Ans.)

  If the pressures at inlet and outlet are different (p1 – p0) = ∆p 0, then the force required,

  F = 2 2 2
0

1
3

a V p aπρ + ∆ × π  (Ans.)

 Example 6.60. Fig. 6.57 shows a rocket of circular cross-section with 2 m as its maximum 
diameter. The rocket is moving at 200 m/s and the jet of gases leaves at 1000 m/s relative to the 
rocket. The outside air pressure is 98.1 kN/m2 and that of the jet is 93.1 kN/m2. The density of outside 
air is 11.76 N/m3. The rocket breathes in air at the rate of 100 m3/s. Neglecting compressibility 
effects and assuming that the mass rate of flow of exhaust gases equals the mass flow rate of air 
breathed in, calculate:
 (i) Thrust developed by the rocket.
 (ii) Energy supplied by the rocket to the air stream per unit weight of air flowing through the 

rocket.
 (iii) Energy supplied per second by the rocket to the air stream.
 (iv) Power developed by the rocket. [IIT Delhi]

V = 200 m/s

Q = 1000 m /s
3

Velocity of gases
(relative to rocket)

= 1000 m/s

Breathers

Fig. 6.57

 Solution. Given:  Maximum diameter of the rocket, D = 2 m
  Speed of the rocket, V1 = 200 m/s
  Velocity of gases (relative to rocket), V2  = 1000 m/s
  Outside air pressure, p1 = 98.1 kN/m2

  Jet pressure, p2 = 93.1 kN/m2

  Density of outside air, w =  11.76 N/m3

  Rate of air breathed in by the rocket, Q  =  100 m3/s
 (i) Thrust developed by the rocket:
  Applying momentum equation to the control volume, we get:
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Control volume

F p A2 2pQV1 pQV2
p A1 1

Fig. 6.58

  F + p1A1 – p2A2 = ρQ(V2 – V1)
  or, F = ρQ(V2 – V1) + (p2 – p1) A2

  ( A1 = A2 and pressure p1 is everywhere the same except in the jet)

  or, F = 11.76
9.81

 × 100 (1000 – 200) + (93.1 – 98.1) 103 × 
4
π  × 22 N

  or, F = 80.2 × 103 N = 80.2 kN
  Thrust on the rocket is equal and opposite to F = 80.2 kN. (Ans.)
 (ii) Energy supplied by the rocket:
  Absolute velocity of the jet = 1000 – 200 = 800 m/s
  Energy per unit weight of air at section (2)

   = 
32 293.1 10 800

2 11.76 2 9.81
p V
w g

×+ = +
×

   = 7.92 × 103 + 32.62 × 103 = 40.54 × 103 Nm/N of air
  Energy per unit weight of air at section (1)

   = 
3

398.1 10 8.34 10
11.76

p
w

×= = ×  Nm/N of air

  (Absolute velocity being zero)
  ∴ Energy supplied by the rocket per unit weight of air
   = (40.54 – 8.34) × 103 Nm = 32.2 kNm/N (Ans.)
 (iii) Energy supplied per second by the rocket:
  Energy supplied per second by the rocket
   = wQ × 32.2 × 103 = 11.76 × 100 × 32.2 × 103 
   = 37.86 × 106 Nm (Ans.)
 (iv) Power developed by the rocket:
  Power developed by the rocket = Energy supplied per second 
   = 37.86 × 106 Nm/s = 37.86 × 103 kW (Ans.)

6.9.  KINETIC ENERGY AND MOMENTUM CORRECTION  
          FACTORS (CORIOLIS CO-EFFICIENTS)

 While deriving Bernoulli’s equation, it is assumed that the velocity distribution across a single 
stream tube is uniform. But if there is an appreciable variation in the velocity distribution (on 
account of viscous and boundary resistance) correction factors α and β have to be applied to obtain 
the exact amount of kinetic energy or momentum available at a given cross-section.
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 Kinetic energy correction factor (α):
 ‘Kinetic energy correction factor’ is defined as the ratio of the kinetic energy of flow per 
second based on actual velocity across a section to the kinetic energy of flow per second based on 
average velocity across the same section. It is denoted by α. 

 Mathematically, α = Kineticenergypersecond basedon actualvelocity
Kineticenergypersecond basedon average velocity

 ...(6.27)

 Refer to Fig. 6.59.
 Let, u  = Average velocity at the section LL,
  u = Local or point or actual velocity,
  dA = Elementary area, and
  A = Area of cross-section.
 For the velocity variation across the section LL of the 
stream tube the total K.E. for the entire section is given 
as:

  K.E. = 2 2 31 1 1( )
2 2 2

mu Au u Au= ρ = ρ  ...(i)

 True K.E. for the entire cross-section

   = 2 2 31 1. ( . . )
2 2 2

A

dm u dA u u u dAρ= ρ =∫ ∫ ∫  ...(ii)

  α  = 

3
3

3

2 1

2

A

u dA
u dA

A uAu

ρ

 =  ρ  

∫
∫  ...(6.28)

 α = 1   for uniform velocity distribution and tends to become greater than 1 as the distribution 
of velocity becomes less and less uniform.
  α = 1.02 to 1.15  for turbulent flows.
  α = 2  for laminar flow.
 It may be noted that in most of the fluid mechanics computations, α is taken as 1 without 
introducing much error, since the velocity is a small percentage of the total head.
 Momentum correction factor (β):
 ‘Momentum correction factor’ is defined as the ratio of momentum of the flow per second 
based on actual velocity to the momentum of the flow per second based on average velocity across 
a section. It is denoted by β.

 Mathematically, β = 
Momentum per second based on actual velocity 

Momentum per second based on average velocity  ...(6.29)

 Refer to Fig. 6.59.
 The momentum of fluid mass m is
   = 2( )mu Au u Au= ρ = ρ  ...(iii)

 The true momentum at the section LL is given as:

  
2. ( . )dm u dA u u u dA

LL LL A

= ρ = ρ∫ ∫ ∫  ...(iv)

Streamline

u

u

L

Elementary

area dA

L

Velocity
profile

Fig. 6.59
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  β  = ( )
2

2

2
1A

A

u dA
u dA

A uAu

ρ

=
ρ

∫
∫  ...(6.30)

  β = 1  for uniform flow,
  β = 1.01 to 1.07 for turbulent flow in pipes, and

  β  = 4 1.33
3

=  for  laminar flow in pipes.

 The value of β may be greater for open channel flow.
 In most cases, β is taken as 1.
 Note:    Since majority of the flow situations are turbulent in character, the usual practice is to assign unit value 

to α and β.
 Example 6.61. The velocity distribution for turbulent flow in pipe is given approximately by 
Prandtl’s one-seventh power law.

  u = 
1/7

0
m

yU
r

 
 
 

where u is the local velocity of  flow at a distance y from the pipe wall, Um is the maximum velocity 
at the centre line of the pipe and r0 is the pipe radius. Find the following:
 (i) Average velocity,
 (ii) Kinetic energy correction factor, and
 (iii) Momentum correction factor. [Delhi University]
 Solution. (i)  Average velocity:
 Refer to Fig. 6.60. Consider an elementary area dA in the form of a ring at a radius (r0 – y) and 
of thickness dy, then,

Pipe

Velocity
profile

r0

Um

u

Velocity distribution

y

dy
r
0dy

y

Cross-section

Fig. 6.60. Velocity distribution and cross-section of a circular pipe.

  dA = 2π(r0 – y) dy
 Rate of fluid flowing through the ring
   = dQ = Area of ring element × local velocity
   = 2π(r0 – y) dy u
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 ∴  Total flow, Q = 
0

0
0

2 ( – )
r

u r y dyπ∫

   = 
0 1/7

0
00

2 ( – )
r

m
yU r y dy
r

 π  
 ∫

   = 
0

1/7
01/7

0 0

2 ( ) ( – )
( )

r
mU y r y dy

r
π ∫

   = 
0

1/7 8/7
01/7

0 0

2 ( – )
( )

r
mU r y y dy

r
π ∫

   = 
0

8/7 15/7
01/7

00

2 7 7. –
8 15( )

r
mU r y y

r
π  

  

   = 8/7 15/7
0 0 01/7

0

2 7 7.( ) – ( )
8 15( )

mU r r r
r
π  

  

   = 15/7 15/7
0 01/7

0

2 7 7( ) – ( )
8 15( )

mU r r
r
π  

  

   = 15/7
01/7

0

2 7 7( ) –
8 15( )

mU r
r
π  ×   

   = ( )2
0

492
120mU rπ  ...(i)

 If u is the average velocity, then Q = 2
0Au r u= π  ...(ii)

 From (i) and (ii), we get:

  2
0r uπ  = ( )2

0
492

120mU rπ

 ∴ u  = 
( )2

0

2
0

492 49120
60

m
m

U r
U

r

π
=

π

 i.e., u  = 49
60 mU (Ans.)

 (ii)  Kinetic energy correction factor, α:

  α = 
0

3
3

0

1
r

u dA
Au ∫  [Eqn. (6.28)]

   = 
0 3/7

3
03

00

1 2 ( – )
r

m
yU r y dy
rAu

  π 
 ∫

   = 
03

3/7
03 3/7

0 0

2 ( – )
( )

r
mU y r y dy

Au r
π ∫
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   = 
03

3/7 10/7
03 3/7

0 0

2 ( – )
( )

r
mU r y y dy

Au r
π ∫

   = 
03

10/7 17/7
03 3/7

00

2 7 7–
10 17( )

r
mU r y y

Au r
π  ×  

   = 
3

17/7 17/7
0 03 3/7

0

2 7 7( ) – ( )
10 17( )

mU r r
Au r

π  
  

   = 
3

17/7
03 3/7

0

2 49 ( )
170( )

mU r
Au r

π  
  

  Substituting the values, A = πr0
2 and 49

60 mu U= , we get:

   α  = 

( )
3

17/7
03

2 3/7
0 0

2 49 ( )
17049 ( )

60

m

m

U r
r U r

π  
  

π
= 1.06 (Ans.)

 (iii)  Momentum correction factor, β:

  β = 2
2

1 u dA
Au ∫  [ Eqn. (6. 29)]

   = 
0 2/

2
02

00

1 2 ( – )
r y

m
yU r y dy
rAu

  π 
 ∫

   = 
02

2/7
02 2/7

0 0

2 ( – )
( )

r
mU y r y dy

Au r
π ∫

   = 
02

2/7 9/7
02 2/7

0 0

2 ( – )
( )

r
mU r y y dy

Au r
π ∫

   = 
02

9/7 16/7
02 2/7

00

2 7 7–
9 16( )

r
mU r y y

Au r
π  ×  

   = 
2

16/7 16/7
0 02 2/7

0

2 7 7( ) – ( )
9 16( )

mU r r
Au r

π  
  

   = 
2

16/7
02 2/7

0

2 49 ( )
144( )

mU r
Au r

π  
  

  Substituting the values, A = π r0
2  and 49

60 mu U= , we get:

  β = 

( )
2

16/7
02

2 2/7
0 0

2 49 ( )
14449 ( )

60

m

m

U r
r U r

π  
  

π
= 1.02 (Ans.)

 Example 6.62. In a circular pipe the velocity profile is given as

  u = ( )2
1 –m

rU
R
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 where u is the velocity at any radius r, Um is the velocity at the pipe axis, and R is the radius of 
the pipe. Find:
 (i) Average velocity,
 (ii) Energy correction factor, and
 (iii) Momentum correction factor. [Anna University]
 Solution. Refer to Fig. 6.61. Consider an elementary area dA in the form of a ring at a radius r 
and of thickness dr, then dA = 2π r.dr
 Flow rate through the ring = dQ = Elemental area × local velocity = 2πr.dr.u

 ∴  Total flow Q = 
0

2 . .
R

r u drπ∫

   = 
2

2
0

2 1 –
R

m
rU r dr
R

 
π  

 ∫

   = 
3 2 4

2 2
00

2 – 2 –
2 4

R R

m m
r r rU r dr U
R R

   
π = π      ∫

   = 
2 2 2

2 – 2
2 4 4m m

R R RU U
   

π = π   
   

 i.e., Q = 
2

2
4m

RU
 

π  
 

 ...(i)

Pipe

Velocity
profile

Um

u

Velocity distribution

R

dr

r
R

dr

Cross-section

r

Fig. 6.61.  Velocity distribution and cross-section of a pipe.

 (ii) Average velocity, u :
  If u is the average flow velocity, then:
  Q = 2Au R u= π  ...(ii)

  From (i) and (ii), we get:

  2R uπ  = 
2

2
4m

RU
 

π  
 

 ∴ u  = 

2

2

2
4m

RU

R

 
π  

  =
π 2

mU  (Ans.)
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 (iii) Kinetic energy correction factor, α:

  α = 3
3

0

1
R

u dA
Au ∫  ...[Eqn. 6.28]

   = ( )
32

3
3

0

1 1 – 2
R

m
rU rdr
RAu

 
π  ∫

   = 
3 2 4 6

3 2 4 6
0

2 3 31 – –
R

mU r r r r dr
Au R R R

 π + 
 ∫

   = 
3 3 5 7

3 2 4 6
0

2 3 3– –
R

mU r r rr dr
Au R R R

 π + 
 ∫

   = 
3 2 4 6 8

3 2 4 6
0

2 3 3– –
2 4 6 8

R
mU r r r r

Au R R R
 π +  

   = 
3 2 2 2

2
3

2 3– –
2 4 2 8

mU R R RR
Au

 π +  

   = 
3 2

3
2

8
mU R

Au
 π
 
 

  Substituting the values A = πR2 and
2
mUu = , we get:

  α = 

( )
3 2

3
2

2
8

2

m

m

U R
UR

 π ×  
 

π ×
 = 2 (Ans.)

 (iv) Momentum correction factor, β:

  β = 2
2

1 u dA
Au ∫  ...[Eqn. 6.29]

   = ( )
22

2
2

0

1 1 – 2
R

m
rU r dr
RAu

 
π  ∫

   = 
2 2 4

2 2 4
0

2 1 – 2
R

mU r r r dr
Au R R

 π × + 
 ∫

   = 
2 3 5

2 2 4
0

2 – 2
R

mU r rr dr
Au R R

 π × + 
 ∫

   = 
2 2 4 6

2 2 4
0

2 1– 2
2 64

R
mU r r r

Au R R
 π × + ×  

   = 
2 2 2 2

2
2 –

2 2 6
mU R R R

Au
 π +  

   = 
2 2

2
2

6
mU R

Au
 π
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  Substituting the values A = πR2 and 
2
mUu = , we get:

  β = 

( )
2 2

2
2

2
6

2

m

m

U R
UR

 π
 
 

π ×
 = 1.33 (Ans.)

6.10.  MOMENT OF MOMENTUM EQUATION 

 Moment of momentum equation is derived from moment of momentum principle which states 
as follows:
 “The resulting torque acting on a rotating fluid is equal to the rate of change of moment of 
momentum”.
 When the moment of momentum of flow leaving a control volume is different from that  
entering it, the result is a torque acting over the control volume.
 Let, Q = Steady rate of flow of fluid,
  ρ = Density of fluid, 
  V1 = Velocity of fluid at section 1,
  r1 = Radius of curvature at section 1, and
   V2 and r2 = Velocity and radius of curvature at section 2.
 Momentum of fluid at section 1= Mass × velocity = ρQ × V1
 ∴ Moment of momentum per second of fluid at section 1 = ρQ × V1  × r1
 Similarly, moment of momentum per second of fluid at section 2 = ρQ × V2 × r2
 ∴ Rate of change of moment of momentum = ρQ V2 r2 – ρQV1r1 = ρQ(V2 r2 – V1r1)
 According to the moment of momentum principle,
 Resultant torque = Rate of change of moment of momentum
  T = ρQ (V2 r2 – V1r1) ...(6.31)
 Eqn. (6.31) is known as moment of momentum equation. This equation is used:
 (i) To find torque exerted by water on sprinkler, and
 (ii) To analyse flow problems in turbines and centrifugal pumps.
 Example 6.63. Fig. 6.62 shows an 
unsymmetrical sprinkler. It has a frictionless 
shaft and equal flow through each nozzle with 
a velocity of  8 m/s relative to the nozzle. Find 
the speed of rotation in r.p.m.

 Solution. Refer to Fig. 6.62.
 rA = 0.4 m, rB = 0.6 m
 Velocity relative to the nozzle
 VA (= VB) = 8 m/s
 Let,   ω = Angular velocity of the sprinkler.
  Absolute velocity, V1 = VA + ω rA = 8 + ω × 0.4 = 8 + 0.4 ω
  Absolute velocity, V2 = VB – ωrB = 8 – ω × 0.6 = 8 – 0.6 ω
 Speed of rotaiton, N (r.p.m.):
 The moment of momentum of the fluid entering sprinkler is given zero and also there is no 
external torque applied on the sprinkler. Hence resultant torque is zero, i.e.
  T = 0

0.4 m 0.6 m

BA

8 m/s 8 m/s

�

Fig. 6.62
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 ∴ ρQ (V2r2 – V1 r1) = 0
 or, V2r2 – V1r1 = 0 ( ρQ 0)
 or, (8 – 0.6 ω) × 0.6 = (8 + 0.4 ω) × 0.4
 or, 4.8 – 0.36 ω = 3.2 + 0.16 ω
 or, 0.52 ω = 1.6
 or, ω = 3.077 rad/s

 But, ω  = 2
60

Nπ

 ∴ N = 60 60 3.077
2 2
×ω ×=
π π

 = 29.4 r.p.m. (Ans.)

 Example 6.64. A lawn sprinkler shown in Fig 6.63 has 12 mm diameter nozzle at the end of a 
rotating arm and discharges water with a velocity of 15 m/s. Determine:
 (i) Torque required to hold the rotating arm stationary, and
 (ii) Constant speed of rotation of the arm, if free to rotate.
 Solution. Diameter of each nozzle = 12 mm = 0.012 m
 ∴  Area of each nozzle

   = 2 20.012 0.000113m
4
π × =

 Velocity of flow, VA (= VB) = 15 m/s
 ∴ Discharge through each nozzle,
  Q = Area × velocity
   = 0.000113 × 15 = 0.001695 m3/s
 (i) Torque required to hold the rotating 

arm stationary:
  Torque exerted by water coming thorugh 

nozzle A on the sprinkler
   = 9810

9.81A AQV rρ × =  × 0.001695 × 15 × 0.3 = 7.627 Nm

  Torque exerted by water coming through nozzle B on the sprinkler

   = 9810
9.81B BQV rρ × =  × 0.001695 × 15 × 0.375 = 9.534 Nm

  ∴ Total torque exerted by water on sprinkler
   = 7.627 + 9.534 = 17.161 Nm
   ∴ Torque required to hold the rotating arm stationary
   = Torque exerted by water on sprinkler
   = 17.161 Nm (Ans.)
 (ii) Constant speed of rotation of the arm, if free to rotate, N (r.p.m.):
  Let,   ω = Angular speed of rotation of the sprinkler.
  Then, absolute velocities of flow of water at the nozzles A and B are,
  V1 = 15 – 0.3 ω
  and V2 = 15 – 0.375 ω
  Torque exerted by water coming out at A, on sprinkler

   = 1
9810
9.81AQV rρ × =  × 0.001695 × (15 – 0.3 ω) × 0.3

   = 0.5085 (15 – 0.3 ω)

0.3 m 0.375 m

BA

15 m/s

15 m/s

�

Fig. 6.63
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  Torque exerted by water, coming out at B, on sprinkler

   = 2
9810
9·81BPQV r× =  × 0.001695 × (15 – 0.375 w) × 0.375

   = 0·6356 (15 – 0·375 ω)
  ∴ Total torque exerted by water
   = 0.5085 (15 – 0.3 ω) + 0.6356 (15 – 0.375 ω)
  Since moment of momentum of the flow entering is zero and no external torque is applied on 

sprinkler, so the resultant torque on the sprinkler must be zero.
  ∴  0.5085 (15 – 0.3 ω) + 0.6356 (15 – 0.375 ω) = 0
    7.627 – 0.1526 ω + 9.534 – 0.238 ω  = 0
    17.161 – 0.3906 ω = 0

  or, ω = 17.161 43.93 rad/s
0.3906

=

  Also, ω = 2 43.93
60

Nπ =

  ∴ N = 60 43.93
2

×
π

 = 419.5 r.p.m. (Ans.)

6.11. VORTEX MOTION 

 Vortex motion is defined as a motion in which the whole fluid mass rotates about an axis.  A 
mass of fluid in rotation about a fixed axis is called vortex.
 A vortex motion is characterised by a flow pattern wherein the stream lines are curved. When 
fluid flows between curved stream lines, centrifugal forces are set up and these are counter-balanced 
by the pressure force acting in the radial direction.
 The vortex flow is of the following types:
 1. Forced vortex flow, and
 2. Free vortex flow.

6.11.1 Forced Vortex Flow
 Forced vortex flow is one in which the fluid mass is made to rotate by means of some external 
agency. The external agency is generally the mechanical power which imparts a constant torque on 
the fluid mass. Then, in such a flow there is always expenditure of energy. The forced vortex motion 
is also called flywheel vortex or rotational vortex.
 In this type of flow, the fluid mass rotates at a 
constant angular velocity ω. The tangential velocity 
of any fluid particle is given by:
  ν = ωr ...(6.32)
(where, r = radius of the fluid particle from the axis 
of rotation)

 ∴   Angular velocity.  ω = v
r

 = constant . ..[6.32 (a)]

 Example: 
 1. Rotation of water through the runner of a tur-

bine.
 2. Rotation of liquid inside the impeller of a centrifugal pump.
 3. Rotation of liquid in a vertical cylinder (Fig. 6.64).

Liquid

Cylinder

(a) Stationary cylinder (b) Rotating cylinder

�

Fig. 6.64. Forced vortex flow.
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6.11.2 Free Vortex Flow
 Free vortex flow is one in which the fluid mass rotates without any external impressed contact 
force. The whole fluid mass rotates either due to fluid pressure itself or the gravity or due to rotation 
previously imparted. The free vortex motion is also called potential vortex or irrotational vortex.
 Example: 
 1. Flow around a circular bend.
 2. A whirlpool in a river.
 3. Flow of liquid in a centrifugal pump casing after it has left the impeller.
 4. Flow of water in a turbine casing before it enters the guide vanes.
 5. Flow of liquid through a hole/outlet provided at the bottom of a shallow vessel (e.g., wash 

basin, bath tub, etc.)
 In free vortex the relation between velocity and radius is obtained by putting the value of 
external torque equal to zero, or, the time rate change of angular momentum (i.e., moment of 
momentum) must be zero.
 Let us consider a particle of mass m at a radius distance r from the axis of rotation, having a 
tangential velocity, v. Then:
  Moment of momentum = (m × v) × r = mvr
 ∴ Time rate of change of momentum 

   = ( )mvr
t

∂
∂

  But for the vortex, = ( ) 0mvr
t

∂ =
∂

 Integrating, we get: mvr = constant
 Since m is constant, vr = constant = C ...(6.33)
 where C is a constant and is known as strength of vortex.

 ∴ v = C
r

 ...(6.34)

 or, v α 1
r

 ...(6.34 a)

 i.e. tangentital velocity is inversely proportional to 
distance r.

6.11.3. Equation of Motion for Vortex Flow.
 Refer to Fig. 6.65. ABCD is fluid element rotating 
at a  uniform velocity in a horizontal plane about an axis 
perpendicular to the plane of paper and passing through 0.
 Let, r = Radius of the element from O, 
  ∆r  = Radial thickness of the element,
  ∆A = Area of cross-section of element, and
  ∆θ = Angle subtended by the element at O.
 The various forces acting on the element are:

 1. Centrifugal force, 
2mv

r
acting away from the centre, O,

 2.  Pressure force p∆A on the face AB, and

r

�
r

��

A

O

D C

B v

p

p + r�
�

�

p

r
�� ��

Fig. 6.65. Flow in a circular path.
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 3.  Pressure force ( )pp r A
r

∂+ ∆ ∆
∂

 on the face CD.

 Equating the forces in the radial direction, we get:

  ( ). –pp r A p A
r

∂+ ∆ ∆ ∆
∂

 = 
2mv

r
 But, m =  mass density × volume = ρ × ∆A × ∆r

 ∴   ( ) –pp r A p A
r

∂+ ∆ ∆ ∆
∂

 = 
2vA r

r
ρ∆ ∆

 or,    –pA r A p A
r

∂ρ∆ + ∆ ∆ ∆
∂

 = 
2vA r

r
ρ∆ ∆

 or, p r A
r

∂ ∆ ∆
∂

 = 
2vA r

r
ρ∆ ∆

 or, p
r

∂
∂

 = 
2v

r
ρ  ...(6.35)

 The expression p
r

∂
∂

 is called pressure gradient in the radial direction.

 

( )Since is + , therefore,pressure increases with the increase of radius .p ve r
r

∂
∂

 In the vertical plane, the variation of pressure is given by the hydrostatic law, i.e.,

  p
z

∂
∂

 = – ρg ...(6.36)

 As the pressure is a function of r and z, therefore total derivative of p,

  ∂p = p pdr dz
r z

∂ ∂+
∂ ∂

 Substituting the values of p
r

∂
∂

 and p
z

∂
∂

 from eqns. (6.35) and (6.36) respectively, we get:

  dp = 
2

–v dr g dz
r

ρ ρ  ...(6.37)

 Eqn. (6.37) gives the variation of pressure of a rotating fluid in 
any plane.

6.11.4. Equation of Forced Vortex Flow
 In case of forced vortex flow,
  v = ωr ...[Eqn. 6.32]
 (where, ω = constant angular velocity)
 Putting the value of v in eqn. (6.37), we get:

  dp = 
2 2

–r dr g dz
r

ρω ρ

 or, dp = pω2rdr – ρgdz
 Considering points 1 and 2 in the fluid having forced vortex 
flow (Fig. 6.66) and integrating the above eqn. for these points, we 
get:

�

Fluid

r2

r1

2

1

z1

z2

Fig. 6.66. Forced vortex flow.
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2

1

dp∫  = 
2 2

2

1 1

–r dr g dzρω ρ∫ ∫

 or, [p]1
2 = 

22
2 2

1
1

– [ ]
2
r g z

 
ρω ρ  

 or, (p2 – p1) = 
2

2 2
2 1 2 1( – ) – ( – )

2
r r g z zρω ρ

   = 2 2 2 2
2 1 2 1( – ) – ( – )

2
r r g z zρ ω ω ρ

   = 2 2
2 1 2 1( – ) – ( – )

2
v v g z zρ ρ  [ v1 = ω1r1 and v2 = ω2r2]

 — When the points 1 and 2 lie on the free surface of the liquid, then p1 = p2 and the above equa-
tion becomes:

  0 = ( )2 2
2 1 2 1– – ( – )

2
v v g z zρ ρ

 or, g(z2 – z1) = 
2 2
2 1–

2
v v 

 
 

 or, z2 – z1 = 
2 2
2 1–
2

v v
g

 — When the point 1 lies on the axis of rotation, then:
  ν1 = ωr1 = ω × 0 = 0; the above eqn. reduces to:

  z2 – z1 = 
2
2

2
v
g

 If, z2 – z1 = z  (say), then we have:

  z = 
2 2 2
2 2

2 2
v r
g g

ω=  ...(6.38)

 Thus, z varies with square of r. Hence eqn. (6.38) is an equation of parabola which means that 
the free surface of the liquid is a paraboloid.
 Example 6.65. Prove that in case of force vortex, the 
rise of liquid level at the ends is equal to the fall of liquid 
level at the axis of rotation.
 Solution. Refer to Fig. 6.67.
 Let,  R = Radius of the cylinder, and OO = Initial 
liquid level when the cylinder is stationary.
 Let the cylinder is rotated at constant angular velocity 
ω. The liquid will rise at the ends and will fall at the centre.
 Let, yr = Rise of liquid at the ends (from OO), and
  yf = Fall of liquid at the centre (from OO)
 Now, initial height of liquid = (h + yf)
 ∴ Volume of liquid in cylinder

   = πR2(h + yf) ...(i)
 Volume of liquid = [Volume of cylinder up to level MM]

Cylinder

Liquid

h

LL

O

M

Axis of rotation

M

O

yf

yr

R

Fig. 6.67
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    – [ volume of paraboloid]
   = (πR2 × liquid height up to level MM) 

   – ( )21 height of paraboloid
2

R× π ×

   = 
2

2 ( ) – ( )
2f r f r
RR h y y y yππ × + + +

   = 
2

2 2 ( ) – ( )
2f r f r
RR h R y y y yππ + π + +

   = 
2

2 ( )
2 f r
RR h y yππ + +  ...(ii)

 Equating (i) and (ii), we get:

  πR2 (h + hf) = 
2

2 ( )
2 f r
RR h y yππ + +

  πR2h + πR2yf = 
2 2

2
2 2f r
R RR h y yπ ππ + +

 or, 
2

2 –
2f f
RR y yππ  = 

2

2 r
R yπ

 or, 
2

2 f
R yπ  = 

2

2 r
R yπ

 or, yf = yr
 i.e., Fall of liquid at centre = Rise of liquid at the ends .....Proved.
 Example 6.66. A cylindrical tank 0.9 m in diameter and 2 m high open at top is filled with water 
to a depth of 1.5 m. It is rotated about its vertical axis at N. r.p.m. Determine the value of N which 
will raise water level even with the brim. (GATE)

 Solution. Refer to Fig. 6.68. Given: Radius, R = 0.9 0.45m
2

= ; Length, = 2m; Initial height of  
water = 1.5 m.
 Speed which will raise water level even with brim, N:
 When the vessel is rotated, parboloid is formed.
 Volume of air before rotation = Volume of air after rotation

        πR2 × 2 – πR2 × 1.5 = 21
2

R zπ

 or, z = 1.0 m
 Using the relation:

  z = 
2 2

2
r
g

ω , we get:

  1.0 = 
2 2

2 9.81
Rω

×
  (Here, r = R)

  ω = 2
1.0 2 9.81 9.843

(0.45)
× × =

 But, ω = 2
60

Nπ  

 ∴ N = 9.843 60
2

×
π

 = 93.99 r.p.m. (Ans.)

2 m

1.5 m

Axis of rotation

R

z

0.9 m

Cylindrical
tank

Fig. 6.68
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 Example. 6.67. Find the maximum speed of an open circular cylinder, having 180 mm diameter, 
1200 mm length and containing water up to a height of 960 mm, at which it should be rotated about 
its vertical axis so that no water spills. (MU)

 Solution. Given: Radius of the cylinder,  R = 180 90 mm = 0.09 m
2

=

  Length of the cylinder, l = 1200 mm = 1.2 m
  Initial height of water, h = 960 mm = 0.96 m
 Maximum speed of rotation, N:
 Let,   ω = Angular velocity of the cylinder when the water is about to spin.
 We know,   Rise of liquid at the ends = Fall of liquid at centre
 But,  Rise of liquid at the ends = Length of cylinder – initial height
   = 1.2 – 0.96 = 0.24 m
 ∴  Fall of liquid at centre = 0.24 m
 ∴ Height of parabola = 0.24 + 0.24 = 0.48 m
 ∴ z = 0.48 m
 Using the relation:
  z = 

2 2

2
R
g

ω , we get

  0.48 = 
2 2(0.09)
2 9.81

ω ×
×

 or, ω 2 = 2
0.48 2 9.81

(0.09)
× ×  = 1162.67 or ω  = 34.09 rad/s

 But, ω = 2
60

Nπ             ∴ 34.09 = 2
60

Nπ

 or, N = 34.09 60
2

×
π

 = 325.5 r.p.m (Ans.)

 Example 6.68. A  0.225m diameter cylinder is 1.5 m long and contains water up to a height of 
1.05 m. Estimate the speed at which the cylinder may be rotated about its vertical axis so that the 
axial depth becomes zero.
 Solution. Radius of the cylinder,

  r = 0.225 0.1125 m
2

=

  Length of the cylinder, l = 1.5 m
  Initial height of water = 1.05 m
 When axial depth is zero,
  depth of paraboloid = 1.5 m
 Speed of rotation N:
 Using the relation:

  z = 
2 2

2
R
g

ω , we get:

  1.5 = 
2 20.1125
2 9.81

ω ×
×

Cylinder

Axis of rotation

1
.0

5
m

1
.5

m

Fig. 6.69
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 or, ω2 = 2
1.5 2 9.81 2325.33

0.1125
× × =

 or, ω = 48.22 rad/s

 But, ω = 2
60

Nπ

 ∴ 48.22 = 2
60

Nπ

 or, N = 48.22 60
2

×
π

 = 460.46 r.p.m (Ans.)

 Example 6.69. For example 6.68 find the difference in total pressure force due to rotation:
 (i) At the bottom of cylinder, and
 (ii) On the sides of the cylinder.
 Solution. Given: Same as in example 6.68.
 (i) Difference in total pressure force at the bottom of the cylinder:
  Total pressure force at the bottom before rotation,

  Fbefore rot. = wAh
  where, w = 9810 N/m3,
  A = Area of bottom = πR2 = π × 0·11252 = 0.03976 m2

  h = 1.05 m.
  ∴ Fbefore rot. = 9810 × 0.03976 × 1.05 = 409.55 N
  After rotation, the depth of water at the bottom is not constant and hence the pressure force 

due to the height of water will not be constant.

  Consider an elementary ring of radius r and width dr as shown in Fig. 6.70. Let 
2 2

2
rz
g

 ω= 
 

 

be the height of water from the bottom of the tank up to free suface of water at a radius r.
  Hydrostatic force on the ring at the bottom,
  dF = w × area of ring × z

   = 
2 2

9810 2
2

rr dr
g

ω× π ×

   = 
2

39810 2
2

r r dr
g

ω× π × ×

   = 3141.6 ω2r3dr
  Total pressure force at the bottom,

  Fafter rot. = 
0.1125

2 3

0

3141.6dF r dr= ω∫ ∫

   = 
0.11254

2

0
3141.6

4
rω

    [ ω = 48.22 rad/s, example 6.68]

   = 
4

2 0·11253141.6 48.22
4

× ×

1
.5

m

r

0.225 m

z

r

dr

Fig. 6.70
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   = 292.52 N
  ∴ Difference in pressure force at the bottom

   = Fbefore rot. – Fafter rot.
   = 409.55 – 292.52 = 117.03 N (Ans.)
 (ii) Difference in total pressure force on the sides of the cylinder:
  Total pressure force on the sides of the cylinder before rotation,

    Fbefore rot. = wAh
  where, ω = 9810 N/m3,
    A = Surface area of the sides of the cylinder up to height of water 
   = πD × height of water
   = π × 0.225 × 1.05 = 0·7422 m2, and
    h  = c.g. of the wetted area of the sides

   = 1 1.05 0.525m.
2

× =

  ∴ Fbefore rot. = 9810 × 0.7422 × 0.525 = 3822.5 N
  After rotation, the water is up to the top of the cylinder and force on the sides,

    Fafter rot. = w × A × h
  where, w = 9810 N/m3

  A = Wetted area of sides
   = πD × height of water = π × 0.225 × 1.5 = 1.06 m2, and

    h = 1 1height of water = 1.5 0.75 m.
2 2

× × =

  ∴ Fafter rot. =
 9810 × 1.06 × 0.75 = 7798.95 N

  ∴ Difference in pressure force on the sides
   = Fafter rot, – Fbefore rot.

   = 7798.95 – 3822.5 = 3976·45 N (Ans.)
 Example 6.70. An open cylindrical vessel 180 mm in diameter and 450 mm deep is filled with 
water up to the top. Estimate the volume of water left in the vessel when it is rotated about its vertical 
axis:
 (i) With a speed of 200 r.p.m., and
 (ii) With a speed of 400 r.p.m.

 Solution. Radius of the vessel, R = 180 90 mm = 0.09 m
2

=

  Initial height of water = 450 mm = 0.45 m
 ∴  Initial volume of water = π × 0.092 × 0.45 = 0.01145 m2

 (i) Volume of water left at a speed of 200 r.p.m.:

    Angular speed, ω =  2 2002 20.94 rad./s
60 60

N π ×π = =

  Height of parabola is given by:

    z = 
2 22 2 (20.94) 0.09 0.181 m

2 2 9.81
R
g

×ω = =
×

  Since the vessel is initially full of water, water will be spilled when it is rotated.
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    Volume of water spilled = Volume of paraboloid.

   But, volume of paraboloid, = 1
2

 (Area of cross-section × height of parabola)

   = 2 2 31 1 0.09 0.181 0.002303 m
2 2

R z× π × = × π × × =

  ∴ Volume of water left = Initial volume – volume of water spilled
   = 0.01145 – 0.00203 = 0.009147 m3 (Ans.)
 (ii) Volume of water left at a speed of 400 r.p.m.:

    Angular speed, ω = 4002 41.88 rad/s
60 60

N 2π ×π = =

    Height of the parabola, z =  
2 22 2 (41.88) 0.09 0.724 m

2 2 9.81
R
g

×ω = =
×

  Since the height of parabola is more than the height of the cylinder, therefore, the shape of 
the imaginary parabola will be as shown in Fig. 6.71

  Let, r = Radius of the parabola at the bottom of the vessel
   = 0.724 – 0.45 = 0.274 m
  Volume of water left in the vessel
   = Volume of water in the portions LMN and PQS
   = Initial volume of water–volume of paraboloid LOS + volume 
    of paraboloid NOP
  Now, volume of paraboloid LOS

     = 1
2

 (πR2 × height of parabola)

     = 1
2

 × π × 0.092 × 0.724 = 0.00921 m2

  For the imaginary parabola (NOP),
    ω = 41.88 r.p.m.
    z = 0.274 m
    r = Radius at the bottom of the vessel
   Using the relation,

    z = 
2 2

2
r
g

ω , we get:

    0.274 = 
2 241.88

2 9.81
r×

×

   or,  r2 = 2
0.274 2 9.81

41.88
× ×  = 0.003065 m2

   ∴ r = 0.0554 m
   ∴ Volume of paraboloid NOP

     = 1
2

(area at the top of the imaginary parabola × height of parabola)

     = 21 0.274
2

r× π ×

     = 1
2

 × π × 0.05542 × 0.274 = 0.00132 m3

0
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  ∴ Volume of water left
   = 0.01145 – 0.00921 + 0.00132
   = 0.00356 m3 (Ans.)

6.11.5. Rotation of Liquid in a Closed Cylindrical Vessel
 When a cylindrical vessel sealed at the top and filled with some liquid is rotated about its 
vertical geometrical axis, the shape of paraboloid formed due to rotation of the vessel will be as 
shown in Fig 6.72 for different speeds of rotation.

Liquid

Closed
cylindrical
vessel

� = 0 �
�

�
�

( )c( )b( )a

Fig. 6.72. Rotation of liquid in a closed cylindrical vessel.

 — Fig. 6.72 (a) shows the cylindrical vessel when it is stationary (i.e., it is not rotated, ω = 0)
 — Fig. 6.72 (b) shows the shape of the paraboloid formed when the speed of rotation is ω1.
 — Fig. 6.72 (c) shows the shape of the paraboloid formed when the speed of rotation is  

ω 2(ω 2 > ω 1). In this case the following are unknown:
 1. Radius of the parabola at the top of the vessel, and
 2. Height of the parabola formed corresponding to the angular speed, ω2.
 To solve these, two unknown equations are required:

 (i) One equation is: z =  
2 2

2
r
g

ω   ...(i)

 (ii) Second equation is from the fact that for closed Vessel:
  Volume of air before rotation =  Volume of air after rotation
  Volume of air before rotation = Volume of closed vessel – volume of liquid in the vessel 
  Volume of air after rotation = Volume of paraboloid formed

   = 21
2

r zπ × .

 Example 6.71. A cylindrical vessel closed at the top and bottom is 0.24 m in diameter,1.44 m 
long and contains water up to height of 0.96 m.
 (i) Find the height of paraboloid formed, if it is rotated at 480 r.p.m about its vertical axis.
 (ii) Find the speed of rotation of the vessel, when axial depth of water is zero.
 Solution. Radius of the vessel,

  R = 0.24
2

= 0.12 m

  Length of the vessel, L = 1.44 m
  Initial height of water = 0.96 m
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 (i) Height of the paraboloid, z:
    Speed, N = 480 r.p.m.

  ∴ ω = 2 4802
60 60

N π ×π = = 50.26 rad/s

  When the vessel is rotated, paraboloid is formed (Fig. 6.73)
   Let, r = Radius of paraboloid at the top of the vessel, and
    z = Height of the paraboloid.
   As the vessel is closed one, therefore,
  Volume of air before rotation = Volume of air after 

rotation

   or,  πR2L – πR2 × 0.96 =  21
2

r zπ  

  or, πR2 (1.44 – 0.96) = 21
2

r zπ

  or,   r2z = 2 × 0.122 (1.44 – 0.96) = 0.0138 ...(i)
  Using the relation,

    z = 
2 2

2
r
g

ω , we get:

    z = 
2 250.26

2 9.81
r×

×
 = 128.75 r2

  ∴ r2 = 
128.75

z

  Substituting this value of r2 in (i), we get:

   = 
128.75

z  × z = 0.0138

  ∴ z2 = 0.0138 × 128.75 = 1.777
  or, z = 1.333 m (Ans.)
 (ii) Speed of rotation, N:
  Let ω is the angular velocity, when axial depth is zero.
  When axial depth is zero:
  The height of paraboloid at the top = r
  Using the relation,

  z = 
2 2

2
r
g

ω , we get:

  1.44 = 
2 2

2 9.81
rω

×

  ∴ ω2r2 = 1.44 × 2 × 9.81 = 28.25 ...(i)
  Volume of air before rotation = Volume of air after rotation
  ∴ πR2 (1.44 – 0.96) = Volume of paraboloid

   = 
2

21 1.44
2 2

rr z ππ = ×

  or, π × 0.122 × 0.48 = 0.72 πr2

0.24 m

z

0
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  ∴ r2 = 
20.12 0.48 0.0096
0.72

× =

  Substituting the value r2 in (i), we get:
    ω2 × 0.0096 = 28.25

  ∴ ω = ( )1/228.25 54.25 rad/s
0.0096

=

  But, ω = 2
60

Nπ  ∴ 54.25 = 2
60

Nπ

  or, N = 54.25 60
2

×
π

 = 518 r.p.m. (Ans.)

 Example 6.72. A vessel, cylindrical in shape and closed at the top and bottom, is  0.24 m in 
diameter, 1.44 m long and contains water up to a height of 0.96 m. If it is rotated at 700 r.p.m. what 
is the area  uncovered at the bottom of the tank?

 Solution. Radius of vessel, R = 0.24 0.12 m
2

=

  Length of the vessel, L = 1.44 m
  Initial height of water  = 0.96 m
  Speed, N = 700 r.p.m.

 ∴  Angular speed, ω  = 2 7002 73.3 rad/s
60 40

N π ×π = =

 Area uncovered at the bottom of the tank:
 If the tank is not closed at the top and also is very long, then the height of parabola corresponding 
to ω = 73.3 rad/s will be

   = 
2 22 2 73.3 0.12 3.943 m

2 2 9.81
R
g

×ω = =
×

 From Fig. 6.75, y1 + 1.44 + y2 = 3.943
 or, y1 + y2 = 2.503 m ...(i)
 For the parabola GOH, we have:

  (1.44 + y1) = 
2 2 2 2

21 1
1

73.3 273.85
2 2 9.81

r r r
g

ω ×= =
×

 ...(ii)

 For the parabola IOJ, we have:

  y1 = 
2 2 2 2

22 2
2

73.3 273.85
2 2 9.81

r r r
g

ω ×= =
×

 ...(iii)

 Now,      Volume of air before rotation
   = Volume of air after rotation
 Volume of air before rotation
   = πR2 (1.44 – 0.96) = π × 0.122 × 0.48
   = 0.0217 m3  ...(iv)
 Volume of air after rotation = Volume of paraboloid GOH – volume of paraboloid IOJ.

   = 2 2
1 1 2 1

1 1(1.44 ) –
2 2

r y r y× π × + π ×   ...(v)

y1

y2

A G H B

D J C

O

I

1
.4

4
m

r1

r2

E F

Fig. 6.75 
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 Equating (iv) and (v), we get:

  0.0217 = 2 2
1 1 2 1[ (1.44 ) – ]

2
r y r yπ +  ...(vi)

 But from (ii), we have: r1
2 = 11.44

273.85
y+  

 
 Substituting this value of r1

2 in (vi), we get:

  0.0217 = 21
1 2 1

1.44 (1.44 ) –
2 273.85

y y r y + π   +    
 Now, substituting the value of y1 from (iii) in the above eqn., we get:

  0.0217 = 
2

2 2 22
2 2 2

1.44 273.85 (1.44 273.85 ) – 273.852 273.85
r r r r

  π + + ×    

 or, 0.0217 2 273.85× ×
π

 = (1.44 + 273.85 r2
2)2 – (273.85)2 r2

4

 2Multiplying both sides by 273.85 × π 

 or, 3.783 = (2.074 + 788.69 r2
2 + 74994 r2

4) – 74994 r2
4

 or, 788.69r2
2 = 1.709

 or, r2
2 = 0.002167 m2

 ∴ Area uncovered at the base

   = π r2
2 = π × 0.002167 = 0.0068 m2 (Ans.)

 Example 6.73. A vessel, cylindrical in shape and closed at the top and bottom, is 0.45 m in 
diameter and 1.5 m long. It contains water up to a depth of 1.2 m. The air above the water surface is 
at a pressure of 90 kN/m2. If the vessel is rotated at a speed of 300 r.p.m. about its vertical axis find 
the pressure head at the bottom of the vessel:
 (i) At the centre, and (ii)  At the edge.
 Solution. Radius of the vessel,

  R = 0.45 0.225m
2

=

  Length of the vessel, L = 1.5 m

  Initial height of water = 1.2 m
 Pressure of air above water, p = 90 kN/m2

  Head due to pressure, h =  90 9.17 m
9.81

p
w

= =

 ( w for water = 9.81 kN/m3)
  Speed of the vessel, N = 300 r.p.m.
 ∴  Angular velocity,

  ω = 
2 3002 31.41 rad/s

60 60
N π ×π = =

 Let, y1 = Height of paraboloid formed (assuming vessel 
to be very long and open at the top).

 Then, y1 = 
2 22 2 31.41 0.225 2.545 m

2 2 9.81
R
g

×ω = =
×

 ...(i)

r1

A B

D C

E H F

O

J

K

M
0.225 m

1
.5

m

1
.2

m

y2

y1

Fig. 6.76
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 Let, r1 = Radius of actual parabola of height y2.

 Then, y2 = 
2 2 2 2

21 1
1

31.41 50.28
2 2 9.81

r r r
g

ω ×= =
×

 ...(ii)

 The volume of air before rotation
   = πR2 (1.5 – 1.2) = π × 0.2252 × 0.3 = 0.0477 m3

 Volume of air after rotation

   = 2
1 2

1
2

r yπ ×

 But,  Volume of air before rotation = Volume of air after rotation

 ∴ 0.0477 = 2
1 2

1
2

r yπ

 But from (ii), y2 = 50.28

 ∴ 0.0477 = 2 2
1 1

1 50.28
2

r rπ ×

 or, r1
4 = –4 40.0477 2 6.039 10 m

50.28
× = ×

π ×

 or, r1 = (6.039 × 10–4)1/4 = 0.156 m
 Substituting the value of r1 in (ii), we get:

  y2 = 50.28 r1
2 = 50.28 × (0.156)2 = 1.224 m

 Pressure head at bottom of the vessel:
 (i) At the centre:
  The pressure head at the centre i.e., at J.
   = Pressure head due to air + OJ
   = 9.17 + (HJ – HO) ( OJ = HJ – HO)

   = 9.17 + (1.5 – 1.224) 
2

1.5 m
1.224 m

HJ
HO y

= 
 = = 

   = 9.446 m of water (Ans.)
 (ii) At the edge:
  The pressure head at the edge M 
   = Pressure head due to air + height of water above M
   = 9.17 + AM 
   = 9.17 + (AK + KM) = 9.17 + (y1 + KM)
   = 9.17 + (y1 + OJ) 
   = 9.17 + 2.545 + 0.276 ( y1 = 2.545 m)

   = 11.99 m of water (Ans.) 
–

1.5 – 1.224 0.276m
OJ HJ HO= 

 = = 
 Example 6.74. A vessel cylindrical in shape and closed at the top and bottom is of radius  R 
and height H. The vessel is completely filled with water. If it is rotated about its vertical axis with a 
speed ω radians/sec., what is the total pressure force exerted by water on the top and bottom of the 
vessel ?
 Solution. Radius of the vessel = R
  Height of the vessel = H
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   Angular speed = ω
 As the vessel is closed and completely filled with 
water, and when it is rotated, the water will exert force on 
the complete top and bottom of the vessel.
 Total pressure force exerted on the top of the vessel, 
Ftop:
As the top of the vessel is in contact with water and is in 
horizontal plane, the pressure variation at any radius in 
horizontal plane is given as:

  p
r

∂
∂

 = 
2v

r
ρ  [Eqn. (6.35)]

   = 
2 2

2r r
r

ρω = ρω  [ v = ωr)

 Integrating both sides, we get:

  dp∫  = 2 rdrρω∫
 or, p = 2 2

2
rρ ω

 Refer to Fig. 6.77. Consider an elementary ring of 
radius r and width dr on the top of the vessel.
  Area of the elementary ring = 2πrdr
  Force on the elementary ring = Intensity of  pressure  
    × area of ring
   = p × 2πr dr

   = 2 2 .
2

r r drρ ω × 2π  ( )2 2
2

p rρ= ω

 ∴ Total force on the top of the vessel,

  Ftop = 2 2

0

2
2

R

r r drρ ω × π∫
   = 2 3

0

2
2

R

r drρ ω × π∫

   = 
4 4

2 2

0
2

2 4 2 4

R
r R ρ ρω × π = ω × 2π ×  

   = 2 4
4

Rρ ω × π

 i.e., Ftop = 2 4
4

Rρ ω π  ...(6.39)

 Total pressure force exerted on the bottom of the vessel, Fbottom:
  Fbottom = Total force on the top of the vessel + Weight of water in    
     cylinder 
   = 2 4 2

4
R R Hρ ω π + ω × π ×

 i.e., Fbottom = 4 2
4

R R Hρ ωπ + ωπ  ...(6.40)

r

R

dr

�

R

Cylindrical
vessel

H Water

Elementary
ring

Fig. 6.77
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 Example 6.75. A vessel cylindrical in shape and closed at the top and bottom is 0.3 m in 
diameter and 0.225 m in height. The vessel is completely filled with water. If it is rotated about its 
vertical axis with a speed of 300 r.p.m., what is the total pressure force exerted by water on the top 
and bottom of vessel ?

 Solution. Radius of the vessel, R = 0.3 0.15m
2

=  

  Height of the vessel, H = 0.225 m.
  Speed,  N =  300 r.p.m.

 ∴  Angular speed, ω =  2 3002
60 60

N π ×π =  = 31.41 rad/sec

 Total pressure force exerted by water on the top of the vessel, Ftop:

 Using the relation: Ftop = 2 4
4

Rρ ×ω × π  [Eqn. (6.39)]

    = 2 4
4

w R
g

ω π
×

 3, 9.81 kN/mw w
g

 ρ = =  
  

    = 9.81
9.81 4×

 × (31.41)2 × π × (0.15)4 = 0.392 kN

 i.e.,  Ftop = 0.392 kN   (Ans.)
 Total pressure force exerted by water on the bottom of the vessel, Fbottom:
            Fbottom = Ftop + w × π R2 × H
    = 0.392 + 9.81 × π × 0.152 × 0.225 = 0.548 kN
 ∴  Fbottom = 0.548 kN  (Ans.)

 Example 6.76.  A closed vertical cylinder 0.4 m in diameter and 0.4 m in height is completely 
filled with oil of specific gravity 0.80. If the cylinder is rotated about its vertical axis at 200 rpm, 
calculate the thrust of oil on top and bottom covers of the cylinder. (UPTU)

 Solution. Given:  R = 0.4 0.2m;
2

=  H =  0.4 m; S = 0.8; N = 200 r.p.m.

 Ftop:

 Using the relation: Ftop = 2 4
4

Rρ ω × π  [Eqn. (6.39)]

   = ( )2
40.8 1000 2 200 (0.2)

4 60
× π ×× × π × = 440.98 N (Ans.)

 Again, using the relation: Fbottom = Ftop + w × πR2 × H
   = 440.98 + (0.8 × 1000 × 9.81) × π × 0.22 × 0.4 
   = 835.46 N (Ans.)
 Example 6.77. A hollow sphere of radius R, completely filled with the liquid, is rotated about 
its vertical axis at an angular speed ω. Locate the circular line maximum pressure with respect to 
the centre of the sphere.    (Delhi University)
 Solution. The circular line of maximum pressure will be a horizontal circle on the internal 
surface of the circle aa. Let its location be at a distance h below the centre of the sphere. All points 

on the circle aa will be subjected to a centrifugal pressure 2 21
2

rρω , and a hydrostatic pressure ρg 

(R + h).
 The total pressure on any point,



Chapter 6 : Fluid Dynamics         361

  p = 2 21 ( )
2

r g R hρω +ρ +

   = { }2 2 2 21 –
2

r g R R rρω + ρ +  2 2( – )h R r=

 For p to be maximum:

  dp
dr

 = { }2 2 –1/21 10 2 ( – ) (– 2 )
2 2

r g R r r= ρω × + ρ ×

 or, 
2

g
ω  = 

2 2
1
–R r

 or (R2 – r2) = 
2

2
g 

 
ω 

 or, h2 = R2 – r2 = 
2

2
g 

 
ω 

 or h = 2
g

ω

 Thus the circular line of maximum pressure is a horizontal circle, at a distance 2
gh =

ω
 below 

the centre of the sphere. (Ans.)

6.11.6. Equation of Free Vortex Flow
 In the case of free vortex flow, from eqn. (6.34), we have:

  v = C
r

 Substituting the value of v in eqn. (6.37), we get:

  dp = 
2

–v dr g dz
r

ρ ρ

   = 
2

2 –C dr gdz
r r

ρ × ρ
×

   = 
2

3 –C dr g dz
r

ρ ρ

 Refer to Fig. 6.79. Consider two points 1and 2 in the fluid having radii r1 and r2 respectively from 
the central axis, their heights being z1 and z2 from bottom of the vessel.
 Integrating the above equation for the points 1 and 2, we get:

  
2

1

dp∫  = 
2 22

3
1 1

–C dr g dz
r

ρ ρ∫ ∫

 or, p2 – p1 = 
2 2

2
3

1 1

–drC g dz
r

ρ ρ∫ ∫

   =  
2–3 1

2
2 1

1
– ( – )

–3 1
rC g z z

+ 
ρ ρ + 

            = 
2

2
2 12

1

1– – ( – )
2

C g z z
r

 ρ ρ  

              = 
2

2 12 2
2 1

1 1– – – ( – )
2
C g z z

r r
ρ   ρ  

R

R
h

aa

r

Hollow
sphere

Fig. 6.78
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Vessel

2

1

r2

Fluidr1

z1
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             = 2 2
2 1 2 1– [ – ] – ( – )

2
v v g z zρ ρ  2 1

2 1
,C Cv v

r r
 = = 
 


   = 2 2
1 2 2 1( – ) – ( – )

2
v v g z zρ ρ

 Dividing both sides by ρg, we get:

  2 1–p p
gρ

 = 
2 2
1 2

2 1
– – ( – )

2
v v z z

g

 or, 2 1–p p
g g

 
 ρ ρ 

 = 
2 2
1 2

1 2– ( – )
2 2
v v z z
g g

 
+ 

 

 or, 
2

1 1
12

p v z
g g

+ +
ρ

 = 
2

2 2
22

p v z
g g

+ +
ρ

 ...(6.41)

 Eqn. (6.41) is the Bernoulli’s equation. Hence Bernoulli’s equation is applicable in the case of 
free vortex flow.
 Example 6.78. In a free cylindrical vortex flow, at a point in the fluid at a radius of 300 mm and 
a height of 150 mm, the velocity and pressure are 15 m/s and 120 kN/m2 respectively. If the fluid is 
air having weight density of  0.012 kN/m3, find the pressure at a radius of 600 mm and at a height 
of 300 mm.
 Solution. At point 1:
  Radius, r1 = 300 mm = 0.3 m
  Height, z1 = 150 mm = 0.15 m
  Velocity, v1 = 15 m/s
  Pressure, p1 = 120 kN/m2

 At point 2:
  Radius, r2 = 600 mm = 0.6 m
  Height, z2 = 300 mm = 0.3 m
  Density of air, w = 0.012 kN/m2

 Pressure, p2:
 We know, for free vortex flow:
  v × r = constant [Eqn. (6.33)]
 ∴ v1 r1 = v2r2

 or, v2 = 1 1

2

15 0.3 7.5 m/s
0.6

v r
r

×= =

 Using the equation:

  
2

1 1
12

p v z
w g

+ +  = 
2

2 2
22

p v z
w g

+ +

 or, 
2120 15 0.15

0.012 2 9.81
+ +

×
 = 

2
2 7.5 0.3

2 9.81
p
w

+ +
×

 or, 10000 + 11.47 + 0.15 = 2p
w

 + 2.86 + 0.3

 or, 10011.62 = 2 3.16p
w

+
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 or, 2p
w

 = 10008.46

 or, p2 = 0.012 × 10008.46 = 120.1 kN/m2 (Ans.)
 Example 6.79.  Two statonary, horizontal flat plates with an external diameter of 400 mm are 
placed 10  mm apart. A vertical pipe 50 mm in diameter delivers 0.005 m3/s of water to the centre 
of the plates. The water is discharged to the periphery of the plates at atmospheric pressure of  
98 kN/m2. Assuming radial flow and neglecting losses, determine the absolute pressure at the 
entrance of the flow.    [UPSC Exams.]
 Solution.  Diameter of annular space, di = 50 mm = 0.05 m
  External diameter of the plate, d0  =  400 mm = 0.4 m
  Distance between the plates, t = 10 mm = 0.01 m
  Atmospheric pressure, p0 = 98 kN/m2

  Discharge, Q  = 0.005 m3/s

Vi

400 mm

10 mm

50 mm dia. pipe

Stationary
circular plates

Fig. 6.80

 Absolute pressure at the entrance of the flow, pi :
 Using the continuity equation, the velocity at the entrance to the annular space, 

  Vi = 0.005 3.18 m/s
0.05 0.01i

Q
d t

= =
π π × ×

 Velocity at the periphery of plates,

  V0 = 
0

0.005 0.398 m/s
. 0.4 0.01

Q
d t

= =
π π × ×



364         Fluid Mechanics

 Applying the Bernoulli’s equation between the inlet to and exit from plates, we get:

  
2

2
i i

i
p V z
w g

+ +  = 
2

0 0
02

p V z
w g

+ +

  
23.18

2 9.81
ip

w
+

×
 = 

3 298 10 0.398
9810 2 9.81

× +
×

 ( zi = z0)

 or, 0.515ip
w

+  = 9.989 + 0.00807

 or, ip
w

 = 9.482 or pi = 9810 × 9.482 = 93018 N/m2 or 93 kN/m2

 Hence,  pi  = 93 kN/m2 (Ans.) 

6.12. LIQUIDS IN RELATIVE EQUILIBRIUM 

 When a tank filled with a liquid is made to move with a constant acceleration, initially the fluid 
particles will move relative to each other and to the boundaries of the tank but, after a certain duration 
of time there will not be any relative movement between the fluid particles and boundaries of the 
container and the whole fluid mass moves as a single unit (A similar situation arises when the fluid 
mass is made to rotate with a uniform velocity). When such motion occurs, the fluids are said to be 
in “relative equilibrium”. Under such circumstances, since there is relative motion, the fluid is not 
subjected to shearing forces. Furthermore, the fluid pressure acts normal to the surface in contact 
with it.
 Analysis of the fluid masses subjected to acceleration or deceleration  can be made by using the 
principles of hydrostatics and giving due considerations to the effects of accelerating or decelerating  
forces.

6.12.1. Liquid in a Container Subjected to Uniform Acceleration in the 
             Horizontal Direction
 Consider a tank filled with liquid and being accelerated horizontally to the right with uniform 
acceleration ax.
 After slashing of the liquid particles for some time the motion of the liquid stabilizes and the 
liquid moves as a solid mass under the action of accelerating force. The final position of the liquid in 
the tank is as shown in Fig. 6.81, slope being upwards in the direction opposite to that of horizontal 
acceleration.

max

mg

L

P

�

�

�

L

Y

X

Original
liquid surface

Lines of
constant pressure

ax

Fig. 6.81. Liquid under constant linear acceleration in horizontal direction.
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 Now, let us consider the equilibrium of a fluid particle L lying on the free surface. The pressure 
force P exerted by the surrounding fluid on particle L is normal to the free surface. The particle is 
subjected to the following forces:
 (i) Normal pressure force P,
 (ii) Weight mg acting vertically downwards, and
 (iii) The accelerating force max acting in horizontal direction.
 Resolving horizontally and vertically respectively, we have:
  P sin θ = max ...(i)
  P cos θ = mg ...(ii)
 Dividing (i) by (ii), we get: 

  tan θ = xa
g

 ...(6.42)

 Since the term xa
g

 is constant at all points on the free liquid surface, hence tan θ is constant and 

consequently the free surface is a straight plane inclined at θ (downward) along the direction of 
acceleration (See Fig. 6.81).
 Considering the equilibrium of a fluid element at depth h from the free surface we have:

h1

h2

Pressure
profile

Constant
pressure lines

wh1
wh2

Pressure
profile

Free surface

Fig. 6.82.  Pressure distribution for horizontally accelerated fluid.

  pdA = patm.dA + whdA
 where, patm = Atmospheric pressure, and 
  dA = Cross-sectional area of an elementary prism.
 or, p = patm + wh; p = wh (gauge) ... (6.43)
 This means that pressure at any point in a liquid subjected to constant horizontal acceleration 
equals the head above that point. Thus, lines of constant pressure will be parallel to the free liquid 
surface. Fig. 6.82 shows the constant pressure lines and the variation in liquid pressure on near and 
front of the tank. With the decrease in depth in the direction of acceleration, the pressure along the 
bottom of the tank also decreases.
  If the tank is completely filled with liquid and is closed at the top, the pressure builds up at 

the rear and is greater than that at the point (there being no preliminary adjustment in the 
surface elevation). The slope of the constant pressure lines is, however, still governed by the 

relation: tan θ = xa
g

.

  It may be noted that so long as the container provides a continuous connection in the liquid 
mass, its shape does not matter.
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 Note.    The fuel tank of an aeroplane during take-off is an example of liquid in a container subjected to uniform 
acceleration in the horizontal direction.

 Example 6.80. An open tank 6 m long, 2.4 m deep and 3.6 m wide contains oil of specific 
gravity 0.85 to a depth of 1.2 m. If the tank is accelerated along its length on a horizontal track at a 
constant acceleration 3.2 m/s2, determine:
 (i) The new position of the oil surface.
 (ii) Pressures at the bottom of the tank at the front and rear edges.
 (iii) The amount of spill if the tank is given a horizontal acceleration of 4.8 m/s2 instead of  

3.2 m/s2.
 Solution. Given: Tank dimensions: 6 m (length) × 3.6 m (width) × 2.4 m (depth),
  Sp. gr. of oil = 0.85; ax = 3.2 m/s2.
 Refer to Fig. 6.83.

�

�

New oil
surface

X

U

Original
free oil surface

ax

1.2 m

2
.4

m

T

L

O

6 m

S N

(3.2 m/s )
2

M

Oil

Fig. 6.83

 (i) New position of the oil surface, θ:
  Inclination of the new oil surface (θ) is given by:

  tan θ = 3.2 0.3262
9.81

xa
g

= =

  ∴ θ = tan–1 (0.3262) = 18.07° (Ans.)
 (ii) Pressures at the bottom of the tank at the front and rear edges:
  The depth of  oil at the front edge N,

  hN = 1.2 – 6 tan
2

× θ

   = 1.2 – 3 × 0.3262 = 0.221 m
  The depth of oil at the rear edges,

  hS = 1.2 + 6
2

 × tan θ 

   = 1.2 + 3 × 0.3262 = 2.179 m
  ∴ Pressure at N, pN = whN = (9.81 × 0.85) × 0.221 = 1.843 kN/m2 (Ans.)
  and,  Pressure at S, pS = whS = (9.81 × 0.85) × 2.179 = 18.169 kN/m2 (Ans.)
 (iii) The amount of spill with an acceleration of 4.8 m/s2:
  Refer to Fig. [ 6.84 (i)].
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  Inclination of the oil surface,

  tan θ′ = 4.8 0.4893
9.81

xa
g

= =

  (θ′ = tan–1 (0.4893) = 26.07°)
  If there were no spill, the oil surface would swing about an axis at O. Piezometric head at N,

  hS′ = 61.2 tan 1.2 3 0.4893 2.668m
2

′+ θ = + × =

2
.4

m
1
.2

m

6 m

S
N

N�

U

T

O

��

T�

2
.4

m

6 m
S

N
V

T UNew oil
surface

4.5 m/s
2

��

( )i
( )ii

Fig. 6.84

  Since this is larger than the depth of the tank there will be a spill of the oil. The new oil surface 
will have a depth of hS = depth of tank = 2.4 m at S and a slope of θ′.

  X-intercept of the surface at the bottom (SV) can be found from ∆TSV as follows.

  TS
SV

 = tan θ′

  or, SV = 2.4 4.9m
tan 0.4893
TS = =

′θ
  TV is the new oil surface [Fig. 6.84 (ii)].
    Volume of oil = ∆TSV × width of tank

     = ( ) 31 2.4 4.9 3.6 21.17 m
2

× × × =

  Original volume of oil = 6 × 3.6 × 1.2 = 25.92 m3

  ∴  Spill of oil = 25.92 – 21.17 = 4.75 m3 (Ans.)
 Example 6.81. A spherical tank of raidus 1.5 m radius is half-filled with oil of specific gravity 
0.9. If the tank is given a horizontal acceleration of 11 m/s2, calculate:
 (i) The inclination of the oil surface to the horizontal.
 (ii) Maximum pressure on the tank.
 Solution. Given:  Radius of the tank, r = 1.5 m; Sp. gr. of oil = 0.9; ax = 11 m/s2.
 (i) The inclination of the oil surface to the horizontal θ:

  Refer to Fig. 6.85: tan θ =  11 1.1213
9.81

xa
g

= =

  ∴ θ = tan–1 (1.1213) = 48.3° (Ans.)
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Fig. 6.85

  (LM is the original oil surface and RS is the 
new oil surface. The surface tilts around 0).

 (ii) Maximum pressure on the tank:
  The maximum pressure acts on the boundary 

point where the depth (measured normal to 
the free surface) is maximum.

  In this case maximum depth is OT = r = 1.5 m

  Hence, ( )
max

p
w

  = 1.5

  or,         pmax  =   w × 1.5 = (9.81× 0.9) × 1.5
                        =  13.24 kN/m2 (Ans.)
 Example 6.82. A closed tank 5m long, 1.8 m wide and 1.6 m deep initially contains water to a 
depth of 1.1 m. The top has an opening in the front part to have air space at atmospheric pressure. 
If the tank is given acceleration at a constant value of 2.5  m/s2 along its length, calculate the total 
pressure force on the top of the tank.
 Solution. Given: Dimensions of the closed tank = 5 m × 1.8 m × 1.6 m; ax = 2.5 m/s2

 In the Fig. 6.86. EF is the original water surface.
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Fig. 6.86

 After the acceleration of ax = 2.5 m/s2, the water surface slope is 

  tan θ = 2.5 0.2548
9.81

xa
g

= =

 or, θ  = tan–1 (0.2548) = 14.29°
  Since there is no spill of water, the air space will remain same as at start. 
 Air space volume, Vair =  0.5 × 5 × 1.8 = 4.5 m3

 Let JH be the new water surface at an inclination of θ to the horizontal.
 If,   JB = x and BH = y, b = breadth of the tank, then:
    y = x tan θ

 and, Vair = 21 1 1tan tan
2 2 2

x y b x b x b× × × = × × θ × = θ
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 or, 4.5 = 21 1.8 0.2548
2

x × ×

 ∴ x = 4.43 m, and y = 4.43 × 0.2548 = 1.13 m
 Hence CH = Depth of water in the front = 1.6 – 1.13 = 0.47 m
  AJ = 5 – x = 5 – 4.43 = 0.57 m
  AG = AJ tan θ = 0.57 × 0.2548 = 0.145 m
 The pressure profile on the top is represented by the ∆AGJ extending over the width. Pressure 
force on the top,

  Ptop = ( )1 breadth
2

AG AJ w× × × ×

   = 1
2

 × 0.145 × 0.57 × 1.8 × 9.81 = 0.73 kN (Ans.)

 The force acts vertically upwards at 0.57 0.19 m
3 3

AJ = =  from A at the mid-width section.

 Note:    In this case free surface does not tilt at the mid-length. As there is no spill the volume of water and 
air volume are conserved.

 Example 6.83. A closed tank 12 m long, 3.6 m high and 2.4 m wide contains oil of specific 
gravity 0.85 and is given a horizontal acceleration of 0.28 g to the right in the direction of 12 m side.
 (i) Calculate: The pressure difference between  (a) a point on the top rear edge and a point on  

the front edge, and (b) a point on the bottom front edge and a point on the top front edge.
 (ii)  Sketch the lines of equal pressure.
 Solution. Given: Dimensions of the closed tank = 12 m × 2.4 m × 3.6 m;
 Specific gravity of oil = 0.85; Horizontal acceleration, ax = 0.28 g
 Refer to Fig. 6.87. At an acceleration of ax let UV be the hydraulic gradient line. Its inclination 
is given by,

3
.6

m

l = 12 m

S
M

ax

Datum

U
Hydraulic grade line

�

V

� L

h = hL M

h = hS T

Lines of equal
pressure

Closed tank
Oil (Sp.gr = 0.85)

Fig. 6.87

  tan θ = – 0.28 0.28xT L ah h g
l g g

= = =
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     or, θ = tan–1 (0.2) = 15.64°
 (a) pL – pT :

    hT – hL = l ×  tan θ = 12 × 0.28 = 3.36 m

  But, hT – hL = –T L
T L

p pz z
w w

   + +   
   

  Here, zT  = zL
  ∴  pT  – pL = w × 3.36 = (9.81 × 0.85) × 3.36 = 28.02 kN/m2 (Ans.)
 (b) pM – pL:
  Along ML the hydraulic gradient line is constant.
  Hence, hM = hL

    –M L
M L

p pz z
w w

   + +   
   

 = 0

  or, pM – pL = w (zL – zM)
     = (9.81× 0.85) × 3.6 = 30.02 kN/m2 (Ans.)
 (ii) Since the pressure distribution is hydrostatic 

in any vertical direction and the hydraulic 
gradient line is inclined at θ to horiznotal 
(line UV) the lines of equal pressure will 
be parallel to UV, as shown in Fig. 6.87.

 Example 6.84. A tank LMNSTU shown in 
Fig. 6.88. is filled with water. A small opening at T 
keeps the pressure at T atmospheric.
 (i) Calculate the acceleration ax required to 

cause onset of cavitation at L.
 (ii) What will be the pressure at that accelera-

tion at points M, N, S and U?
 Assume local atmospheric pressure head = 
10 m of water and vapour pressure head = 0.48 m 
(abs.) of water.
 Solution. (i) Acceleration ax: 
 At the acceleration ax the hydraulic 
gradient line will be inclined at θ, given by

  tan θ = xa
g

 Since pT = pressure at T = atmspheric 
pressure, the hydraulic gradient line will pass 
through T as shown in Fig. 6.89 by the line 
VTW.
 Then above an arbitrary datum:
  hT = hU , and
  hL = hM
 Also, hT – hL = LU tan θ = 4.8 tan θ
 At the onset of cavitation at L, 

5.9 m

2
.1

m 4.8 m

S

L

N

U

M

1.1 m

1
.4

m

0.7 m

T

ax

Opening

Tank

Fig. 6.88

S
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V

L

N

Datum

U

M

W

T

ax

hLhT

Fig. 6.89
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  pL = pv = Vapour pressure.
 Considering the absolute pressures,

  hT – hL = –T L
T L

p pz z
w w

   + +   
   

   = ( )– –T L
T L

p p z z
w w

  + 
 

   = (10 – 0.48) + (1.4) = 10.92 m
 But, hT – hL = 4.8 tan θ

 Hence, tan θ = – 10.92 2.275
4.8 4.8

x T La h h
g

= = =

 or ax = 9.81× 2.275 = 22.32 m/s2 (Ans.)
 (ii) Pressures at point M, N, S and U:
  Pressure at M, pM :

  hM – hL = – 0M L
M L

p pz z
w w

   + + =   
   

  Mp
w

 = Tp
w

 + (zL – zm) = 0.48 + 0.7 = 1.18 m

  ∴ pM = 9.81 × 1.18 = 11.576 kN/m2 (abs.) (Ans.)
  Pressure at U, pU:

  hT – hU = – 0S U
T u

p pz z
w w

   + + =   
   

  Up
w  = ( )– 10 1.4 1.4mT

T u
p z z
w

+ = + =

  ∴ pU = 9.81×11.4 = 111.834 kN/m2 (abs.) (Ans.)
  Pressure at S, pS :
  hS – hT = 1.1 tan θ = 1.1 × 2.275 = 2.5 m

  Also, hS – hT = – 0S T
S T

p pz z
w w

   + + =   
   

  Sp
w

 = Tp
w

 + (zT – zS) + 2.5

   = 10 + 0 + 2.5 = 12.5 m
  ∴ pS = 9.81 × 12.5 = 122.625 kN/m2 (Ans.)
  Pressure at N, pN :
  hS – hN = – 0S N

S N
p pz z
w w

   + + =   
   

  Np
w

 = Sp
w

 + (zS – zN)

   = 12.5 + 2.1 = 14.6 m
  ∴ pN = 9.81 × 14.6 = 143.226 kN/m2 (abs.) (Ans.)

 Example 6.85. A closed oil tanker 3.5 m long, 1.8 m wide and 2 m deep contains 1.6 m depth 
of oil of specific gravity 0.8. Calculate:
 (i) The acceleration which may be imparted to the tank in the direction of its length so that bot-

tom front end of the tank is just exposed.
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 (ii) The net horizontal force acting on the tanker side and show that this equals the force neces-
sary to accelerate the liquid mass in the tanker.

 Take specific weight of water = 9.81 kN/m3
 (Roorkee University)

 Solution. Given: Dimensions of the tank: 3.5 m (length) × 1.8 m (width) × 2 m (depth);
 Depth of oil = 1.6 m; Sp. gr. of oil = 0.8
 (i) Acceleration ax:
 The following points are worth  noting : 
  Since the tank is closed, therefore, the liquid 

cannot spill from it under any acceleration 
imparted to it. The quantity of oil inside the 
tank remains the same.

  The oil surface which was initially horizontal  
(indicated by TU) assumes the profile MVS 
when the front bottom end M is just exposed.

 Equating volumes of oil before and after the 
motion, we have:
 Volume of rectangle LMUT = Volume of 
trapezium LMVS

    3.5 × 1.6 × 1.8 = 3.5 (3.5 – ) 2 1.8
2

x+ × ×

 ∴ x = 1.4 m

  tan θ = 2 1.428
1.4

MN
NV

= =

 Also, tan θ  = 1.428xa
g

=

 ∴ ax = 9.81 × 1.428 = 14.01 m/s2 (Ans.)
 When the free surface MV is extended, it meets LS 
produced at W.

  SW
SV

 = tan θ  = 1.428

 ∴ SW = (3.5 – 1.4) × 1.428 = 3 m
 This represents an imaginary column of oil above S.
 Now, pS = w × SW = (9.81 × 0.8) × 3 = 23.544 kN/m2

 and, pL = w × LW = (9.81 × 0.8) × (3 + 2) = 39.24 kN/m2

 ∴ Pressure force on the trailing/rear face LS,
  PLS = pavg. × area

   = ( )23.544 39.24
2
+  × (2 × 1.8) = 113 kN

 ( )2Alternatively: (9.81 0.8) (2 1.8) 3 113kN
2LSP wAx = = × × × × + =  

 The force needed to accelerate the liquid mass in the tank, 
  F = Mass of oil × uniform linear acceleration 
   = (0.8 × 1000) × 3.5 × 1.6 × 1.8 × 14.01 × 10–3 kN  113 kN (Ans.)
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T

Closed oil tanker
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 Obviously the difference between the force on the two ends of the tanker is equal to the force 
necessary to accelerate the liquid mass in the tanker.

6.12.2.   Liquid in a Container Subjected to Uniform Acceleration in the Vertical  
   Direction
 Consider a tank containing liquid and 
moving vertically upwards with uniform 
acceleration ay (Fig 6.92). The liquid in the 
tank will have a free horizontal surface but 
pressure intensity at any point in the liquid will 
be different from what it would be when in a 
state of absolute rest:
 Applying Newton’s second law of motion, 
we have:
  SFy = m × ay 
 The force  SFy = Pressure force acting 
    upwards – weight of 
    prism acting downwards
   = [p (intensity of pressure) × dA (area)] – (w × volume of prism)
   = p × dA – w × h × dA

 Also, m = w
g

 × volume of elementary prism

   = ( )w h dA
g

× ×

 ∴   p × dA – w × h × dA = ( ) y
w h dA a
g

× ×

 or, p = wh 1 ya
g

 
+ 

 
 ...(6.44)

 This equation (6.44) reveals the following:
  The free liquid surface remains horizontal.
  The pressure variation in the vertical 

direction is linear.
  The pressure intensity at any point is more 

than the static pressure wh by an amount 
ya

wh
g

 
 
 

 as shown in Fig. 6.93 (a).

 If the liquid mass is uniformly accelerated 
vertically downward direction, ay shall be 
negative and then eqn. (6.43) reduces to 

 p = 1 – ya
wh

g
 
 
 

 ...(6.44)

 i.e.,  Intensity of pressure at any point is 
less than static pressure wh by an amount 

ya
wh

g
 
 
 

, as shown in (Fig. 6.93 (b)).
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acceleration
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wh
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y

Fig. 6.93. (b)

 If the tank is lowered vertically at the gravitational acceleation, then ay = g and eqn. (6.44) 
reduces to p = 0. Obviously the pressure is uniform and equivalent to surrounding  atmospheric 
pressure, and no force acts either on the base or on the tank walls.
 Example 6.86. An open cubical tank with each side 1.8 m contains oil of specific weight  
8 kN/m3 up to a depth  of 1.8 m. 
 Calculate:

 (i) The force acting on side of the tank when it is being moved with an acceleration of 2/
3
g m s  

in vertically upward and downward directions.
 (ii) The pressure at the bottom of the tank when acceleration rate is g m/s2 vertically downwards.
 Solution: Given: Each side of cubical tank = 1.8 m; Sp. wt of oil, w = 8 kN/m3; ay (upward and 

downward) = 2m/s ;
3
g  ay (downward) = g m/s2.

 (i) The force acting on the side of  the tank:
 (a) When ay is vertically upward:

   p = ( ) 2/ 3 11 8 1.8 1 8 1.8 1 19.2 kN/m
3

ya gwh
g g

   + = × + = × + =   
   

  On a vertical side, the intensity of pressure varies linearly
    from zero at the top to 19.2 kN/m2 at the bottom.
  Force on the side of the tank = pavg × area

    = 19.2 0 (1.8 1.8)
2

+ × × = 31.1 kN (Ans.)

 (b) When ay is vertically downward:

   p = ( ) 211 – 8 1.8 1 – 9.6 kN/m
3

ya
wh

g
 

= × = 
 

  Force on the side of the tank = pavg. × area 

    = 9.6 0 (1.8 1.8)
2
+ × × = 15.55 kN (Ans.)

 (ii) The pressure at the bottom when ay = g:
  When the tank is lowered vertically at an acceleration, then: 

   p = 1 – 1 – 0ya gwh wh
g g

   = =   
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  i.e., the liquid remains at the atmospheric pressure throughout and there is no force on the 
base or on the tank walls. (Ans.)

6.12.3. Liquid in Container Subjected to Uniform Acceleation 
            Along Inclined Plane.
 Fig. 6.94 shows a tank filled with a liquid being accelerated  up an inclined plane  with uniform 
acceleration a.
 Horizontal component of acceleration, ax = a cos α
 Vertical component of acceleration, ay = a sin α
 A particle L of mass m lying on the liquid surface is in equilibrium under the action of following 
forces:

Liquid surface

L

Tank

P

a

mg

�

�

�

�

�
L

P

m.ay

m.ax

mg

Fig. 6.94.  Acceleration of fluid mass along an upward slope.

 (i) Weight mg acting vertically downward,
 (ii) Pressure force P acting normal to the surface of the fluid element, and
 (iii) Accelerating force, (m.a) having component m.ax in the horizontal direction and a component 

m.ay in the vertical direction.

Liquid surface

�

�

�

a

mg
P

�

�

L

P

m.ay

m.ax

mg

Fig. 6.95. Acceleration of fluid mass along a downward slope.

 Resolving  horizontally and vertically respectively, we get:
  P sin θ = m.ax  ...(i)
  P cos θ = m.ay + mg ...(ii)
 Dividing (i) by (ii), we get:
  tan θ  = x

y

a
a g+

 ...(6.45)

 When the fluid mass is subjected to acceleration down the slope, we have:
  P sin θ = m . ax ...(iii)
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  P cos θ = mg – m.ay ...(iv)
 Dividing (iii) by (iv), we get:

  tan θ  = 
–

x

y

a
g a

 ...(6.46)

 Example 6.87. An open rectangular  tank 6 m long and 2.4 m wide is filled with water to 
a depth of 1.8 m. Find the slope of water surface when the tank moves with an acceleration of 
2.5 m/s2 
 (i) up a 30° inclined plane, and (ii) down a 30° inclined plane.

 Solution. Given: Dimensions of the tank: 6 m (length) × 2.4 m (width);
 Acceleration, a = 2.5 m/s2; Inclination, α = 30°.
 Horizontal and vertical components of acceleration are:
  ax = a cos α = 2.5 × cos 30° = 2.165 m/s2

  ay = a sin α = 2.5 × sin 30° =1.25 m/s2

 Let, θ be the slope of the free liquid surface.
 (i) When the tank moves with acceleration up the inclined plane:

  tan θ  = 2.165 0.196
1.25 9.81

x

y

a
a g

= =
+ +

  θ = tan–1 (0.196) = 11.1° (Ans.)
 (ii) When the tank moves with an acceleration down the inclined plane :

  tan θ = 2.165 0.253
– 9.81 – 1.25

x

y

a
g a

= =

  θ = tan–1 (0.253) = 14.2° (Ans.)

HIGHLIGHTS

 1. The science which deals with the geometry of motion of fluids without reference  to the forces 
causing the motion is known as hydrokinematics.

 2. The science which deals with the action of forces in producing or changing motion of fluids 
is known as hydrokinetics (or simply kinetics).

 3. Different types of heads are:
 (i) Potential head (or potential energy)
 (ii) Velocity head (or kinetic energy)
 (iii) Pressure head (or pressure energy).
 4. Bernoulli’s equation  states as follows:
  “In an ideal, incompressible fluid when the flow is steady and continuous, then sum of pres-

sure energy, potential (or datum) energy and kinetic energy is constant along a streamline.” 
Mathematically,

  
2

2
p V z
w g

+ +  = constant

  where p
w

 = Pressure energy or head,

    
2

2
V

g
 = Kinetic energy or head, and
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    z = Datum (or elevation) energy or head.
  5. Euler’s equation for motion is given as:

    . .dp v dv g dz+ +
ρ

 = 0  ...differential form

 6. Bernoulli’s equation for real fluid is given as:

    
2

1 1
12

p V z
w g

+ +  = 
2

2 2
22 L

p V z h
w g

+ + +

  where, hL = loss of energy between sections 1 and 2.
 7. Practical applications of Bernoulli’s equation are:
 (i) Venturimeter; (ii) Orificemeter;
 (iii) Rotometer and elbow meter; (iv) Pitot tube.
  In case of a venturimeter,the actual discharge (Qact) is given as:

    Qact. = Cd × 1 2
2 2
1 2

2
–

A A gh
A A

×

  where, Cd = Co-efficient of discharge (varies between 0.96 and 0.98),
    A1 = Area at inlet,
    A2 = Area at outlet, and
    h = Difference of pressure head at sections 1 and 2.
 8. Free liquid jet:
  A jet of liquid from the nozzle in atmosphere is called a free liquid jet. The parabolic path 

traversed by the liquid jet under the action of gravity is known as trajectory.
 (i) Equation of the jet:

     y = 
2 2

2
sectan –

2
gxx

U
θ

θ

  where, x, y = Co-ordinates of any point on jet with respect to the nozzle,
    U = Velocity of the jet of water issuing from the nozzle, and
    θ = Inclination of the jet issuing from nozzle with horizontal.

 (ii) Maximum height attained by the jet 
2 2sin
2

U
g

θ
=

 (iii) Time of flight, 2 sinUT
g

θ
=

 (iv) Time taken to reach the highest point; sinUT
g

θ′ =

 (v) Horizontal range of the jet, 
2 sin 2Ur

g
θ

=

 (vi) Maximum range, 
2

max 2
Ur

g
=

   (The range will be maximum when θ = 45°)
 9. Momentum principle states as follows:
   “The net force acting on a mass of fluid is equal to the change in momentum of flow per 

unit time in that direction”.
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 10. Impulse-momentum equation F.dt = d(mv) may be stated as follows:
  “The impulse of a force F acting on a fluid mass m in a short interval of time dt is equal to 

the change of momentum d(mv) in the direction of force.”
 11. Kinetic energy correction factor (α).

    α =  Kineticenergypersecond basedon actualvelocity
Kineticenergypersecond basedon average velocity

  Momentum correction factor (β).

    β = Momentumpersecond basedor actualvelocity
Momentumpersecond basedon average velocity

  The values of α and β may be calculated by using the following equations:

    α 
2 21 1and =

A A

u udA dA
A u A u

   = β   
   ∫ ∫

  where, A = Area of cross-section,
    u = Local velocity,
    u  = Average velocity, and
    dA = Elementary area.
 12.  Moment of momentum equation. This equation is derived from moment of momentum principle 

which states that the resulting torque acting on a rotating fluid is equal to the rate of change 
of momentum.

  Mathematically, it is written as:
    T = ρQ (V2r2 – V1r1) 
  Vortex motion:
  The pressure variation along the radial direction for vortex flow along a horizontal plane,

    p
r

∂
∂

 = 
2v

r
ρ

  and, pressure variation in the vertical plane,

    p
r

∂
∂

 = –ρg

  Forced vortex flow:
   Forced vortex flow is one in which the fluid mass is made to rotate by means of some 

external agency.
    v = ω × r

    z = 
2 2 2 2 2

2 2 2
v r R
g g g

ω ω
= =

  where, z = Height of the paraboloid formed, and
    ω = Angular velocity.
      For a forced vortex flow in an open tank:
      Fall of liquid level at centre = Rise of liquid level at the ends
     In case of a closed cylinder:
  Volume of air before rotation = volume of air after rotation.
  — If a closed cylindrical vessel completely filled with water is rotated about its verti-

cal axis, the total pressure force acting on the top and bottom are:
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    Ftop = 2 4

4
Rρ

ω π

  and, Fbottom = Ftop + weight of water in cylinder
     = Ftop + w × πR2 × H
  where,  ω = Angular velocity,
    R = Radius of the vessel,
    H = Height of the vessel, and

    ρ = Densityof fluid w
g

 = 
 

.

  Free vortex flow:
  When no external torque is required to rotate the fluid mass, type of flow is called free vortex 

flow. In case of free vortex flow:
    v × r = constant       ...(i)

    
2

1 1
12g

p v z
g

+ +
ρ

 = 
2

2 2
22

p v z
g g

+ +
ρ

       ...(ii)

OBJECTIVE TYPE QUESTIONS

Choose the Correct Answer:
 1. Velocity head is given by

  (a) V
g

 (b) 
2

2
V

g

  (c) 
3

2
V

g
 (d) 

2

22
V
g

.

 2. Bernoulli’s equation, mathematically is written as

  (a) constant
2

p V z
w g

+ + =

  (b) 
2

2 constant
2

p V z
gw

+ + =

  (c) 
2

constant
2

p V z
w g

+ + =

  (d) 
2 2

constant.
2

p V z
w g

+ + =

 3. Which of the following assumptions is made in 
the derivation of Bernoulli’s equation?

  (a) The liquid is ideal and incompressible
  (b) The flow is steady and continuous
  (c) The flow is one-dimensional
  (d) The velocity is uniform over the section and 

is equal to mean velocity
  (e) All of the above.

 4. Euler’s equation (in differential form) is written 
as:

  (a) 2 . . 0dp v dv g dz+ + =
ρ

  (b) . . 0dp v dv g dz+ + =
ρ

  (c) 2. . 0dp v dv g dz+ + =
ρ

  (d) 2 . . 0.dp v dv g dz+ + =
ρ

 5. In which of  the following measuring devices 
Bernoulli’s equation is used:

  (a) Venturimeter (b) Orificemeter
  (c) Pitot tube (d) All the above.
 6. The co-efficient of discharge of an orificemeter 

is ......that of a venturimeter.
  (a) equal to (b) much smaller than
  (c) much more than (d) any of these.
 7. Which of the following equations is known as 

momentum principle:

  (a) 
2( )d m vF

dt
=  (b) dvF

dt
=

  (c) ( )d mvF
dt

=  (d) 2
( ) .d mvF
dt

=
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 8.  The piezometric head is the summation of :
  (a) velocity head and pressure head
  (b) pressure head and elevation head
  (c) velocity head and elevation head
  (d) none of the above.
 9. The total energy-line is always higher than the 

hydraulic gradient line, the vertical distance 
between the two representing: 

  (a) the pressure head
  (b) the piezometric head
  (c) the velocity head
  (d) none of the above.
 10. The total-energy-line in pipe flow is a graphical 

representation of the Bernoulli’s equation and 
represents the sum of  velocity head, pressure 
head and the elevation head above:

  (a) the top of the pipeline 
  (b) the arbitrary horizontal datum
  (c) the centre line of pipe 
  (d) the bottom of the pipe.
 11. The total energy represented by the Bernoulli’s 

equation 
2

2
p V z
w g

 
+ + 

 
 has the units:

  (a) Nm/s (b) Ns/m
  (c) Nm/m (d) Nm/N.
 12. The Bernoulli’s equation written in the conven-

tional form 
2

2
p V z
w g

+ + = constant represents 

total energy per unit of certain quantity. Identify 
this quantity from the choices given below:

  (a) energy per unit mass
  (b) energy per unit weight
  (c) energy per unit volume
  (d) energy per unit specific weight.
 13. A venturimeter is used for measuring:
  (a) pressure (b) flow rate
  (c) total energy (d) piezometric head.
 14. The co-efficient of discharge (Cd) of venturimeter 

lies within the limits:
  (a) 0.95 to 0.99 (b) 0.8 to 0.85
  (c) 0.7 to 0.8 (d) 0.6 to 0.7
 15. A Pitot-tube is used for measuring:
  (a) velocity of flow (b) pressure of flow
  (c) flow rate (d) total energy.
 16. When a Pitot-tube is put to use it must be ensured 

that its alignment is such that:

  (a) the horizontal leg should be inclined at 45° 
in plan

  (b) its horizontal leg is at right angles to the flow 
direction

  (c) its opening faces upstream and the 
horizontal leg is perfectly aligned with the 
direction of flow

  (d) none of the above.
 17. The hydraulic gradient-line indicates the varia-

tion of which of the following:
  (a) Velocity head in flow direction
  (b) Piezometric head in the direction of flow
  (c) Total energy of flow in the direction of flow
  (d) None of the above.
 18. The kinetic energy correction factor is expressed 

by:

  (a) 1

A

u dA
A u

 
 
 ∫  (b) 

21

A

u dA
A u

 
 
 ∫

  (c) 
31

A

u dA
A u

 
 
 ∫  (d) 

31

A

u dA
A u

 
 
 ∫

 19. The momentum correction factor β is used to 
account for:

  (a) change in direction of flow
  (b) change in total energy
  (c) non-uniform distribution of velocities at inlet 

and outlet sections
  (d) change in mass rate of flow.
 20. The change in moment of momentum of fluid 

due to flow along a curved path results in: 
  (a) a change in pressure
  (b) torque
  (c) a change in the total energy
  (d) none of the above.
 21. Which of the following is an example of free 

vortex flow?
  (a) A whirlpool in a river
  (b) Flow of liquid through a hole provided at the 

bottom of a container
  (c) Flow of liquid around a circular bend in a 

pipe.
  (d) All of the above.
 22. In case of forced vortex, the rise of liquid level 

at the ends is .... the fall of liquid level at the axis 
of rotation.

  (a) less than (b) more than
  (c) equal to (d) none of the above.
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 23. In case of a closed cylindrical vessel sealed  at 
the top and the bottom the volume of air before 
rotation is ...... the volume of air after:

  (a) more than (b) less than
  (c) equal to (d) none of the above.
 24. If a closed cylindrical vessel completely filled 

with water is rotated about its vertical axis, the 
total pressure force acting on the top is equal to: 

  (a) 2

4
Rρ

ω π  (b) 
2

2

4
Rρ

ωπ

  (c) 2 3

4
Rρ

ω π  (d) 2 4.
4

Rρ
ω π

 25. For a free vortex flow the equation is: 

  (a) 1 1 2 2
1 22 2

p V p Vz z
g g g g

+ + = + +
ρ ρ

  (b) 
2 2

1 1 2 2
1 22 2

p V p Vz z
g g g g

+ + = + +
ρ ρ

  (c) 
2 2 2 2
1 1 2 2

1 2
p V p Vz z
g g g g

+ + = + +
ρ ρ

  (d) 
3 3

1 1 2 2
1 2.

2 2
p V p Vz z
g g g g

+ + = + +
ρ ρ

ANSWERS

 1. (b) 2. (c) 3. (e) 4. (b) 5. (d) 6. (b)
 7. (c) 8. (b) 9. (c) 10. (b) 11. (d) 12. (b)
 13. (b) 14. (a) 15. (a) 16. (c) 17. (b) 18. (c)
 19. (c) 20. (b) 21. (d) 22. (c) 23. (c) 24. (d)
 25. (b).

THEORETICAL QUESTIONS

 1. Explain briefly the following heads:
  (i) Potential head 
  (ii) Velocity head
  (iii) Datum head.
 2. State and prove Bernoulli’s equation.
 3. List the assumptions which are made while 

deriving Bernoulli’s equation.
 4. Derive Euler’s equation of motion.
 5. What are the limitations of the Bernoulli’s equation?
 6. Describe an orificemeter and find an expression 

for measuring discharge of fluid through a pipe 
with this device.

 7. Why is co-efficient of discharge of an orifice-
meter much smaller than that of venturimeter?

 8. What is a pitot tube? How is it used to measure 
velocity of flow at any point in a pipe or channel?

 9. What is a free jet of liquid? Derive an expression 
for the path travelled by free jet issuing from a 
nozzle?

 10. Prove that the equation of the free jet of liquid 
is given by the expression

    y = 
2

2
2tan – sec

2
gxy x
U

= θ θ

  where x, y = co-ordinates of a point on the jet,
     U = velocity of the jet, and
     θ = inclination of the jet with horizontal.
 11. What is an impulse-momentum equation?
 12. What is the moment of momentum equation?
 13. Define the terms: (i) Vortex flow, (ii) Forced 

vortex flow, and (iii) Free vortex flow.
 14. Differentiate between forced vortex flow and 

free vortex flow.
 15. Derive an expression for the depth of paraboloid 

formed by the surface of a liquid contained in 
a cylindrical tank which is rotated at a constant 
angular velocity ω about its vertical axis.

 16. Derive an expression for difference of pressure 
between two points in a free vortex flow.
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UNSOLVED EXAMPLES

 1. The diameters of a tapering pipe at the sections 
1-1 and 2-2 are 100 mm and 150 mm respec-
tively. If the velocity of water flowing through 
the pipe at section 1-1 is 5 m/s, find:

  (i) Discharge through the pipe, and
  (ii) Velocity of water at section  2-2.
   [Ans. (i) 0.039 m3/s, (ii) 2.22 m/s]
 2. A pipe (1) 400 mm in diameter, conveying water, 

branches into two pipes (2 and 3 of diameters 
300 mm and 200 mm respectively.

   (i) Find the discharge in pipe (1) if the aver-
age velocity of water in this pipe is 3 m/s.

   (ii) Determine the velocity of water in 200 
mm pipe if the average velocity in 300 
mm diameter pipe is 2 m/s. 

 [Ans. (i) 0.377 m3/s, (ii) 7.5 m/s]
 3. The water is flowing through a pipe having di-

ameters 200 mm and 100 mm at sections 1 and 
2 respectively. The rate of flow through the pipe 
is 35 litres/s. The section 1 is 6 m above datum 
and section 2 is 4 m above datum. If the pressure 
at section 1 is 400 kN/m2, find the intensity of 
pressure at section 2. [Ans. 410.5 kN/m2]

 4. A pipe 300 metres long has a slope of 1 in 100 
and tapers from 1.0 m diameter at the higher 
end to 0.5 m at the lower end. Quantity of water 
flowing is 90 litre/s. If the pressure at higher end 
is 70 kN/m2, find the pressure at the lower end. 
 [Ans. 100 kN/m2]

 5. A pipe 5 m long is inclined at an angle of 15° with 
the horizontal. The diameters of pipe at smaller 
section (at lower level) and larger section are 80 
mm and 240 mm respectively.

  If the pipe is uniformly tapering and the velocity 
of water at the smaller section is 1 m/s, find 
the difference of pressures between the two 
sections.  [Ans.  12.2 kN/m2]

 6. Water is flowing at the rate of 40 litres/s through 
a tapering pipe. The diameters at the bottom and 
upper ends are 300 mm and 200 mm respectively. 
If the intensities of pressure at the bottom and 
upper ends are 250 kN/m2 and 100 kN/m2 
respectively, find the difference in datum head.  
 [Ans. 13.7 m]

 7. A 2 m long conical tube is fixed vertically with 
its smaller end upwards. It carries liquid in 
downward direction. The flow velocities at the 
smaller and larger ends are 5 m/s and 2 m/s re-
spectively. The pressure head at the smaller end 
is 2.5 m of liquid. If the loss of head in the tube 

is 
2

1 20.35( – )
2

V V
g

 (V1 and V2 being the velocities 

at the smaller and larger ends respectively ) 
determine the pressure head at the larger end. 

   [Ans. 5.4 m of liquid]
 8. A pipeline carrying oil (sp. gr. =  0.87) changes 

in diameter from 200 mm diameter at position 
‘1’ to 500 mm diameter at position ‘2’ which is 
4 metres at a higher level. If the pressures at 1 
and 2 are 100 kN/m2 and 60 kN/m2 respcetively 
and the discharge is 0.2 m3/s, determine:

  (i) Loss of head, and
  (ii) Direction of flow.
   [Ans. (i) 2.6 m (ii) from 1 to 2]
 9. The following data relate to an orificemeter:
  Diameter of the pipe = 300 mm
  Diameter of the orifice = 150 mm
  Reading of the differential manometer = 500 mm 

of mercury
  Sp. gravity of oil = 0.9
  Co-effiecient of discharge of meter = 0.64
  Determine the rate of flow. [Ans. 0.137 m3/s]
 10. A venturimeter with 150 mm diameter at inlet 

and 100 mm at throat is laid with its axis horizon-
tal and is used for measuring the flow of oil of sp. 
gr. 0.9. The oil mercury differential manometer 
shows a gauge difference of 200 mm. Calculate 
the discharge. Assume the co-efficient of meter 
as 0.98. [Ans. 0.06393 m3/s]

 11. A horizontal venturimeter with inlet and throat 
diameters 160 mm and 60 mm respectively is 
used to measure the flow of an oil of specific 
gravity 0.8. If the discharge of the oil is 0.05 
m3/s, find the deflection of oil mercury gauge. 
Take venturimeter constant = 1.

 [Ans. 296 mm]
 12. A horizontal venturimeter 300 mm × 150 mm 

is used to measure the flow of oil of sp. gravity 
0.8. The discharge of oil through venturimeter 
is 0.5 m3/s. Find the reading of oil-mercury dif-
ferntial manometer. Take venturimeter constant 
= 0.98. [Ans. 248. 9 mm]

 13. A venturimeter with inlet and throat diameters 
300 mm and 150 mm respectively is attached in a 
vertical pipe in which flow occurs from bottom to 
top. The distance between the point of entrance 
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and to the point of throat of the venturimeter is 
750 mm. If the difference of mercury levels in 
the two limbs of differential gauge is 220 mm, 
find the discharge passing through the vertical 
pipe. Take co-efficient of discharge, Cd = 0.98.

 [Ans. 0.146 m3/s]
 14. A venturimeter has its axis vertical, the inlet 

and throat diameters being 150 mm and 75 mm 
respectively. The throat is 225 mm above inlet 
and venturimeter constant = 0.96. Petrol of sp. 
gravity 0.78 flows up through the meter at a 
rate of 0.029 m3/s. Find the pressure difference 
between inlet and throat. [Ans. 18.9 kN/m2]

 15. A venturimeter is used for measuring the flow of 
petrol in a pipeline inclined at 35° to horizontal. 
The sp. gravity of the petrol is 0.81 and throat 
area ratio is 4. If the difference in mercury levels 
in the gauge is 50 mm, calculate the flow in m3/s 
if the pipe diameter is 300 mm. Take venturim-
eter constant = 0.975. [Ans. 0.07 m3/s]

 16. The following data relate to venturimeter fitted 
to an inclined pipe in which water is flowing.

  Diameter  of the pipe = 300 mm
  Throat diameter = 150 mm
  Sp. gravity of liquid used in U-tube manometer 

= 0.8
  Reading of manometer = 400 mm
  Loss of head between the inlet and throat = 0.3 

× kinetic head of the pipe.
  Find the discharge. [Ans. 0.0226 m3/s]
 17. A vertical venturimeter of d/D ratio equal to 0.6 

is fitted in a 100 mm diameter pipe. The throat 
is 200 mm above the inlet. The venturimeter 
constant = 0.92. Determine:

  (i) Pressure difference as recorded by two 
gauges fitted at the inlet and throat.

  (ii) Difference on a vertical differential mercury 
manometer (sp. gravity = 13.6) when a 
liquid of sp. gravity 0.8 flows through the 
meter at the rate of 0.05 m3/s.

   [Ans. (i) 130.47 kN/m2 (ii) 1.026 m]
 18. A 300 mm diameter 150° bend discharges 0.35 

m3/s of water in the atmosphere.  If the pressure 
of water entering the bend is 150 kN/m2 (gauge), 
determine the force required to hold the bend in 
place. Assume the bend to be in horizontal plane.

   [Ans. 10.86 kN, 4.57° with negative X-axis]
 19. A 45° reducing bend is connected in pipeline, 

the diameters at the inlet and outlet of the bend 
being 400 mm and 200 mm respectively. Find 

the force exerted by water on the bend if the 
intensity of pressure at inlet of the bend is 215.8 
kN/m2. The rate of flow of water is 0.5 m3/s. 

   [Ans. 22.7 kN: 20°3.5′]
 20. A 300 mm diameter pipe carries water under a 

head of 20 metres with a velocity of 3.5 m/s. If 
the axis of the pipe turns through 45°, find the 
magnitude and direction of the resultant force at 
the bend. [Ans. 11.27 kN, 67°28′]

 21. A pipeline of 600 mm diameter, carrying oil (sp. 
gravity = 0.85) at the flow rate of 1800 litres/
sec. has a 90° bend in the horizontal plane. The 
pressure at the entrance to the bend 1.471 bar and 
the loss of head in the bend is 2 m of oil. Find 
the magnitude and direction of the force exerted 
by the oil on the bend and show the direction of 
the force on a sketch of the bend.  
 [UPSC Exams.]

   [Ans. 69.357 kN, 42.3°]
 22. A jet of water is coming out from a nozzle with 

a velocity of 20 m/s. The nozzle is situated at a 
distance of 20 m from a vertical wall 8 m high. 
Find the angle of projection of the nozzle to the 
horizontal so that the jet of water just clears the 
top of the wall. [Ans. 73° 0.8′or 38°47′]

 23. A nozzle inclined at an angle of 45° to the hori-
zontal is situated at a distance of 1 m above the 
ground level. If the diameter of the nozzle is 50 
mm and the jet of water from the nozzle strikes 
the gound at a horizontal distance of 4 m, find 
the rate of flow of water. [Ans. 0.011 m3/s]

 24. A jet issuing from a 30 mm nozzle held at 0.6 
m above the ground level at an angle of 30° 
to the horizontal strikes the ground 4 m away. 
Determine:

  (i) The maximum height reached,
  (ii) The range of the jet, and
  (iii) The discharge.
  [Ans. (i) 0.458 m above the nozzle tip  

(ii) 3.18 m, 0.00425 m3/s]
 25. A 30 mm fire nozzle held at 1.5 m above ground 

discharging 10 lps has to reach a window in a 
wall 15 m away and 10 m above ground. At 
what angle or angles of the inclination to the 
horizontal, the nozzle is to be held? Neglect air 
resistance. [Ans. 32°]

 26. In Fig 6.96 what is the power developed by the 
turbine assuming efficiency of 80%?

   [Ans. 54 kW]
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1
m

Turbine

200 kN/m
2

– 20 kN/m
2

0.6 m dia.

0.3 m
3
/s 0.4 m dia.

Fig. 6.96

 27. The sprinkler shown in Fig 6.97 has nozzles of 
5 mm diameter and carries a total discharge of 
0.20 litres/sec. Determine:

          (i) The angular speed of rotation of the sprin-
kler, and

   (ii) The torque required to hold the sprinkler 
stationary.

  Assume no friction at the pivot.
  [Ans. (i) 10.192 rad./s (ii) 0.05086 Nm]

1

0.1 m 0.2 m

2

Fig. 6.97

 28. Find the maximum speed of an open circular 
cylinder having 150 mm diameter, 1 m length 
and containing water up to a height of 800 mm 
at which it should be rotated about its vertical 
axis so that no water spills. [Ans. 356.67 r.p.m.]

 29. A 150 mm diameter open circular cylinder is 1 
m long and contains water up to a height of 0.7 
m. Estimate the speed at which the cylinder may 
be rotated about its vertical axis so that the axial 
depth becomes zero. [Ans. 563.88 r.p.m.]

 30. For the unsolved example 29, find the difference 
in total pressure force due to rotation:

  (i) At the bottom of the cylinder, and 
  (ii) On the sides of the cylinder.
   [Ans. (i) 34.72 N (ii) 1178.4 N]
 31. An open cylindrical vessel 120 mm in diameter 

and 300 mm deep is filled with water up to the 

top. Estimate the volume of water left in the 
vessel when it is rotated about its vertical axis:

  (i) With a speed of 300 r.p.m. and
  (ii) With a speed of 600 r.p.m.
   [Ans. (i) 2369.37 cm3 (ii) 702. 67 cm3]
 32. A cylindrical vessel closed at the top is 0.2 m in 

diameter, 1.2 m long and contains water up to a 
height of 0.8 m.

  (i) Find the height of the paraboloid formed, if 
it is rotated at 400 r.p.m. about its vertical 
axis.

  (ii) Find the speed of rotation of the vessel when 
axial depth is zero.

   [Ans. (i) 0.845 m (ii) 567.2 r.p.m.]
 33. A vessel cylindrical in shape and closed at the 

top and bottom is 300 mm in diameter, 1 m long 
and contains water up to a depth of 0.8 m. The 
air above the water surface is at a pressure of 60 
kN/m2. If the vessel is rotated at a speed of 250 
r.p.m. about its vertical axis find the pressure 
head at the bottom of the vessel

  (i) At the centre, and
  (ii) At the edge.
  [Ans. (i) 6.439 m of water, (ii) 7.225 m of water.]
 34. A vessel cylindrical in shape and closed at the 

top and bottom is 200 mm in diameter and 0.15 
m in height. The vessel is completely filled with  
water. If it is rotated about its vertical axis with 
a speed of 200 r.p.m., what is the total pressure 
force exerted by water on the top and bottom of 
the vessel? [Ans. 0.0344 kN, 0.0806 kN]

 35. An open tank 5m long, 2m deep and 3 m wide 
contains oil of relative density 0.9 to a depth of 
0.9 m. If the tank is accelerated along its length 
on a horizontal track at a constant value of 
3 m/s2, determine:

  (i) The new positon of the oil surface.
  (ii) The pressures at the bottom of the tank at the 

front and rear edges.
  (iii) The amount of spill if the tank is given a 

horizontal acceleration of 4.5 m/s2 instead 
of  3 m/s2.

  [Ans. (i) θ = 17°; (ii) 1.189 kN/m2, 14.67 kN/m2; 
(iii) 0.42 m3]

 36. A spherical tank of 1.2 m radius is half-filled with 
oil of relative density 0.8. If the tank is given a 
horizontal acceleration of 10 m/s2, calculate:

  (i) The inclination of the oil surface to horizon-
tal.

  (ii) The maximum pressure on  the tank.
   [Ans. (i) 45.55°; (ii) 9.4 kN/m2]
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 37. A closed tank 6 m long, 2 m wide and 1.8 m 
deep initially contains water to a depth of 1.2 m. 
The top has an opening in the front part to have 
air space at atmospheric pressure. If the tank 
is given a horizontal acceleration at a constant 
value of 2.4 m/s2 along its length, calculate the 
total pressure force on the top of the tank.

   [Ans. 0.792 kN]
 38. An open cubical tank with each side 1.5 m 

contains oil of the specific weight 7.5 kN/m3. 
Calculate:

  (i) The force acting on side of the tank when it 
is being moved with an acceleration of 

2m/s
2
g  in vertically upward and downward 

directions.
  (ii) The pressure at bottom of the tank when the 

acceleration rate is g m/s2 vertically down-
wards.

   [Ans (i) 18.984 kN; 6.328 kN (ii) zero]
 39. An open rectangular tank 5 m long × 2 m wide 

is filled with water to a depth of 1.5 m. Find the 
slope of water surface when tank moves with an 
acceleration of 3m/s2

  (i) up a 30° inclined plane, and 
  (ii) down a 30° inclined plane.
   [Ans. (i) 12.89°; (ii) 17.37°]
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DIMENSIONAL ANALYSIS

7.1. DIMENSIONAL ANALYSIS—
 INTRODUCTION 

 Dimensional analysis is a mathematical technique 
which makes use of the study of the dimensions for 
solving several engineering problems. Each physical 
phenomenon can be expressed by an equation giving 
relationship between different quantities, such quantities 
are dimensional and non-dimensional. Dimensional 
analysis helps in determining a systematic arrangement 
of the variables in the physical relationship, combining 
dimensional variables to form non-dimensional 
parameters. It is based on the principle of dimensional 
homogeneity  and uses the dimensions of relevant 
variables affecting the phenomenon.
 Dimensional analysis has become an important tool 
for analysing fluid flow problems. It is specially useful in 
presenting experimental results in a concise form.

 Uses of dimensional analysis:
 The uses of dimensional analysis may be summarised 
as follows:
 1. To test the dimensional homogeneity of any equa-

tion of fluid motion.
 2. To derive rational formulae for a flow phenomenon.
 3. To derive equations expressed in terms of non-

dimensional parameters to show the relative sig-
nificance of each parameter.

 4. To plan model tests and present experimental 
results in a systematic manner, thus making it 
possible to analyse the complex fluid flow phe-
nomenon.

Chapter
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 Advantages of dimensional analysis:
 Dimensional analysis entails the following advantages:
 1. It expresses the functional relationship between the variables in dimensionless terms. 
 2. In hydraulic model studies it reduces the number of variables involved in a physical phenom-

enon, generally by three.
 3. By the proper selection of variables, the dimensionless parameters can be used to make  certain 

logical deductions about the problem.
 4. Design curves, by the use of dimensional analysis, can be developed from experimental data 

or direct solution of the problem.
 5. It enables getting up a theoretical equation in a simplified dimensional form.
 6. Dimensional analysis provides partial solutions to the problems that are too complex to be 

dealt with mathematically.
 7. The conversion of units of quantities from one system to another is facilitated. 

7.2.  DIMENSIONS 

 The various physical quantities used in fluid phenomenon can be expressed in terms of 
fundamental quantities or primary quantities. The fundamental quantities are mass, length, time 
and temperature, designated by the letters, M, L, T, θ respectively. Temperature is specially useful 
in compressible flow. The quantities which are expressed in terms of the fundamental or primary 
quantities are called derived or secondary quantities, (e.g., velocity, area, acceleration etc.). The 
expression for a derived quantity in terms of the primary quantities is called the dimension  of the 
physical quantity.
 A quantity may either be expressed dimensionally in M-L-T or F-L-T system (some engineers 
prefer to use force instead of mass as fundamental quantity because the force is easy to measure). 
Table 7.1 gives the dimensions of various quantities used in both the systems.

 Example. 7.1. Determine  the dimensions of the following quantities:
 (i) Discharge, (ii) Kinematic viscosity,
 (ii) Force, and (iv) Specific weight.

 Solution. (i) Discharge = Area × velocity

   = 
3

2 L LL
T T

× =  = L3T–1 (Ans.)

 (ii) Kinematic viscosity (v) = µ
ρ

  where µ is given by: t = µ du
dy

	 ∴ µ = Shear stress Force/area
1/du L I T

dy T L

t
= =

×

   = 
2

2 2 2

Mass × acceleration
1 1Area 1/

LM MLT
T L L T

T T

×
= =

× × ×

   = –1 –1M ML T
LT

=  and –3
3

Mass
Volume

M ML
L

ρ = = =
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	 ∴ Kinematic viscosity (v) = 
–1 –1

–3
ML T

ML
µ
=

ρ
= L2T–1 (Ans.)

 (iii) Force = mass × acceleration

     = 2 2
length
time

MLM
T

× = = MLT–2 (Ans.)

 (iv) Specific weight  = 
–2

3
Weight Force
Volume Volume

MLT
L

= =  = ML–2T–2 (Ans.)

Table 7.1. Quantities used in Fluid Mechanics and Heat Transfer and their Dimensions

S.No. Quantity Dimensions
M-L-T System F-L-T System

(a) Fundamental Quantities
1. Mass, M M FL–1T2

2. Length, L L L
3. Time, T T T

(b) Geometric Quantities
4. Area, A L2 L2

5. Volume, V  — L3 L3

6. Moment of inertia L4 L4

(c) Kinematic Quantities
7. Linear velocity, u, V, U LT–1 LT–1

8. Angular velocity, ω; rotational speed, N T–1 T–1

9. Acceleration, a LT–2 LT–2

10. Angular acceleration, α T–2 T–2

11. Discharge, Q L3T–1 L3T–1

12. Gravity, g LT–2 LT–2

13. Kinematic viscosity, v L2T–1 L2T–1

14. Stream function, y, circulation, Γ L2T–1 L2T–1

15. Vorticity, Ω T–1 T–1

(d) Dynamic Quantities
16. Force, F MLT–2 F
17. Density, ρ ML–3 FL–4T2

18. Specific weight, w ML–2T–2 FL–3

19. Dynamic viscosity, µ ML–1T–1 FL–2 T
20. Pressure, p; shear stress, t ML–1T–2 FL–2

21. Modulus of elasticity, E, K ML–1T–2 FL–2

22. Momentum MLT–1 FT
23. Angular momentum or moment of momentum ML2T–1 FLT
24. Work, W; energy, E ML2T–2 FL
25. Torque, T ML2T–2 FL
26. Power, P ML2T–3 FLT–1

(e) Thermodynamic Quantities 
27. Temperature θ θ
28. Thermal conductivity MLT–3 θ–1 FT–1 θ–1

29. Enthalpy per unit mass L2T–2 L2T–2
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S.No. Quantity Dimensions
M-L-T System F-L-T System

30. Gas constant L2T–2 θ–1 L2T–2 θ–1

31. Entropy ML2T–2 θ–1 FLθ–1

32. Internal energy per unit mass L2T–2 L2T–2

33. Heat transfer ML2T–3 FLT–1

7.3.   DIMENSIONAL HOMOGENEITY 

 A physical equation is the relationship between two or more physical quantities. Any correct 
equation expressing a physical relationship between quantities must be dimensionally homogeneous 
(according to Fourier’s principle of dimensional homogeneity) and numerically equivalent. 
Dimensional homogeneity states that every term in an equation when reduced to fundamental 
dimensions must contain identical powers of each dimension. A dimensionally homogeneous 
equation is applicable to all systems of units. In a dimensionally homogeneous equation, only 
quantities having the same dimensions can be added, subtracted or equated. Let us consider the 
equation:
  p = wh
  Dimensions of L.H.S. = ML–1T–2

  Dimensions of R.H.S. = ML–2 T–2 × L = ML–1T–2

  Dimensions of L.H.S. = Dimensions of R.H.S.
	 ∴  Equation p = wh  is dimensionally homogeneous; so it can be used in any 

system of units.
 Applications of Dimensional Homogeneity:
 The principle of homogeneity proves useful in the following ways:
 1. It facilitates to determine the dimensions of a physical quantity.
 2. It helps to check whether an equation of any physical phenomenon is dimensionally 

homogeneous or not.
 3. It facilitates conversion of units from one system to another.
 4. It provides a step towards dimensional analysis which is fruitfully employed to plan experiments 

and to present the results meaningfully.
 Example 7.2. Determine the dimensions of E in the dimensionally homogeneous Einstein’s 
equation

  E = 2
2

–

–

1mc 1
v1
c

 
 

      
 where v is the velocity and m is the mass.

 Solution. Since the expression is dimensionally homogeneous, the term

    
2

1

1 – v
c

 
 
 

 should be dimensionless

 i.e., [c] = [v] = L
T
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	 ∴ [E] = 
2

2 2 –2
2[ ] Lm c M ML T

T
 

= = 
 

 i.e. E has the dimensions of energy. (Ans.)

7.4.  METHODS OF DIMENSIONAL ANALYSIS 

 With the help of dimensional analysis the equation of a physical phenomenon can be developed 
in terms of dimensionless groups or parameters and thus reducing the number of variables. The 
methods of dimensional analysis are based on the Fourier’s principle of homogeneity. The methods 
of dimensional analysis are:
 1. Rayleigh’s method
 2. Buckingham’s π-method
 3. Bridgman’s method
 4. Matrix-tensor method
 5. By visual inspection of the variables involved
 6. Rearrangement of differential equations.
 Here only first two methods will be dealt with.

7.4.1. Rayleigh’s Method
 This method gives a special form of relationship among the dimensionless groups, and has the 
inherent drawback that it does not provide any information regarding the number of dimensionless 
groups to be obtained as a result of dimensional analysis. Due to this reason this method has become 
obsolete and is not favoured for use.
 Rayleigh’s method is used for determining the expression for a variable which depends upon 
maximum three or four variables only. In case the number of independent variables becomes more 
than four, then it is very difficult to find the expression for the dependent variable.
 In this method a functional relationship of some variables is expressed in the form of an 
exponential equation which must be dimensionally homogeneous. Thus if X is a variable which 
depends on X1, X2, X3, ...Xn; the functional equation can be written as:
  X = f (X1, X2, X3, ..... Xn) ...(7.1)
 In the above equation X is a dependent variable, while X1, X2, X3, ....Xn are independent 
variables. A dependent variable is the one about which information is required while independent 
variables are those which govern the variation of dependent variable.
 Eqn. (7.1) can also be written as:

  X = ( )1 2 3, , , ....a b c n
nC X X X X  ...(7.2)

where, C is a constant and a, b, c,... are the arbitrary powers. The values of a, b, c,... n are obtained 
by comparing the powers of the fundamental dimensions on both sides. Thus the expression is 
obtained for dependent variable.
 Example 7.3. Find an expression for the drag force on smooth sphere of diameter D, moving 
with a uniform velocity V in a fluid density ρ  and dynamic viscosity µ. (PTU)
 Solution. The force drag F is a function of
 (i) Diameter D, (ii) Velocity V,
 (iii) Fluid density ρ, and (iv) Dynamic viscosity µ.
 Mathematically, F = f (D, V, ρ,	µ) or F = C (Da. Vb. ρc. µd) ...(1)
 where, C is a non-dimensional constant.
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 Using M-L-T system the corresponding equation for dimensions is:
  MLT–2 = [CLa. (LT–1)b . (ML–3)c. (ML–1T–1)d]
 For dimensional homogeneity the exponents of each dimension on both sides of the equation 
must be identical. Thus:
 For M: 1 = c + d ...(i)
 For L: 1 = a + b – 3c – d ...(ii)
 For T: –2 = – b – d ...(iii)
 There are four unknowns (a, b, c, d) but equations are three in number. Therefore, it is not 
possible to find the values of a, b, c and d. However, three of them can be expressed in terms of 
fourth variable which is most important. Here the role of viscosity is vital one and hence a, b, c are 
expressed in terms of d (i.e.  power to viscosity)
	 ∴ c = 1 – d ... from (i)
  b = 2 – d ... from (iii)
 Putting these values in (i), we get:
  a = 1 – b + 3c + d = 1 – 2 + d + 3 (1 – d) + d
   = 1 – 2 + d + 3 – 3d + d = 2 – d
 Substituting these values of exponents in eqn. (1), we get:
  F = C[D2 – d . V2 – d . ρ1 – d . µd ]

   = C[D2 V2 ρ(D–d . V–d. ρ–d . µd)] = C 2 2
d

D V
VD

 µ ρ  ρ  

   = 2 2D V
VD
µ ρ f ρ 

 (Ans.)

 Example 7.4. The efficiency η of  a fan depends on the density ρ, the dynamic viscosity µ of 
the fluid, the angular velocity ω, diameter D of the rotor and the discharge Q. Express η in terms of 
dimensionless parameters.    [UPSC]
 Solution. The efficiency η of a fan is a function of:
 (i) Density ρ, (ii) Viscosity µ,
 (iii) Angular velocity ω, (iv) Diameter D, and
 (v) Discharge Q.
 Mathematically, η = f (ρ,	µ,	ω, D, Q)
 or, η = C (ρa,	µb,	ωc, Dd, Qe) ...(1)
 where C is a non-dimensional constant.
 Using M-L-T system, the corresponding equation for dimensions is:
  M°L°T° = C[(ML–3)a (ML–1T–1)b (T–1)c (L)d (L3 T–1)e]
 For dimensional homogeneity the exponents of each dimension on both sides of the equation 
must be identical. Thus:
 For M:  0 = a + b
 For L:  0 = – 3a – b + d + 3e 
 For T:   0 = – b – c – e
 There are five variables  and we have only three equations. Experience has shown that 
recognized dimensionless groups appear if the exponents of D, ω and ρ are evaluated in terms of b 
and e (exponents of viscosity and discharge which are more important)
	 ∴ a = – b; c = ( b + e);
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  d = 3a + b – 3e = 3 (– b) + b – 3e = – 2b – 3e = – (2b + 3e)
 Substituting these values of exponents in eqn. (1), we get:
  η = C(ρ–b . µb . ω–(b + e) . D–(2b + 3e) . Qe)
   = C(ρ–b . µb . ω–b . ω–e D–2b . D–3e . Qe)

   = 2 3

b eQC
D D

 µ   
   ρω ω    

   = 2 3, Q
D D

 µ   f    ρω ω   
 (Ans.)

 Example 7.5. The resistance force R of a supersonic plane during flight can be considered as 
dependent upon the length of the aircraft l, velocity V, air viscosity µ, air density ρ and bulk modulus 
of air K. Express the functional relationship between these variables and the resisting force.

[Anna University]
 Solution. The resistance force R is a function of:
 (i) Length l, (ii) Velocity V,
 (iii) Air viscosity µ, (iv) Air density ρ, and
 (v) Bulk modulus K.
 Mathematically, R = f (l, V,	µ,	ρ, K)
 or, R = C(la . Vb . µc . ρd . Ke) ...(1)
 where, C is a non-dimensional constant.
 Using M-L-T system, the corresponding equation for dimensions is:
  MLT–2 = C[La . (LT–1)b . (ML–1T–1)c . (ML–3)d . (ML–1T–2)e]
 For dimensional homogeneity the exponents of each dimension on both sides of the equation 
must be identical. Thus:
 For M:  1 = c + d + e
 For L:  1 = a + b – c – 3d – e
 For  T:  – 2 = – b – c – 2e
 There are five variables and we have only three equations. Expressing the three unknowns (a, 
b, d)  in terms of c and e (exponents of viscosity and bulk modulus which are more important).
	 ∴ d = 1 – c – e
  b = 2 – c – 2e
  a = 1 – b + c + 3d + e
   = 1 – (2 – c – 2e) + c + 3 (1 – c – e) + e
   = 1 – 2 + c + 2e + c + 3 – 3c – 3e + e = 2 – c
 Substituting these values of exponents in eqn. (1), we get:
  R = C (l2 – c . V2 – c – 2e . µc . ρ1 – c – e . Ke)
   = C l2 . V2 . ρ(l–c . V–c . µc . ρ–c) . V–2e . ρ–e . Ke

   = C l2 V2 ρ 2.
c eK

lV V
µ   

   ρ ρ   

   = 2 2
2, Kl V

lV V
 µ   ρf     ρ ρ    

 (Ans.)
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 Example 7.6. A partially submerged body is towed in water. The resistance R to its motion 
depends on the density ρ, the viscosity µ of water, length l of the body, velocity V of the body and 
acceleration due to gravity. Show that the resistance to motion can be expressed in the form

  R = 2 2
2, lgL V

LV V
 µ    ρ f    ρ    

 Solution. The resistance R is a function of:
 (i) Density ρ, (ii) Viscosity µ,
 (iii) Length l, (iv) Velocity V, and
 (v) Acceleration due to gravity g.
 Mathematically, R = f (ρ,	µ, l, V, g)
 or, R = C ( ρa. µb. lc . Vd . ge) ...(1)
 where, C is a non-dimensional constant.
 Using M-L-T system, the corresponding equation for dimensions is:
  MLT–2 = C[(ML–3)a . (ML–1T–1)b . (L)c . (LT–1)d. (LT–2)e ]
 For dimensional homogeneity the exponents of each dimension on both sides of the equation 
must be identical. Thus:
 For M:  1 = a + b
 For L:  1 = – 3a – b + c + d + e
 For T:  – 2 = – b – d – 2 e
 There are five variables and we have only three equations.  To get the required result, we shall 
evaluate exponents of ρ, l, V (i.e. a, c, d) in terms of other unknowns (i.e. b, e)
	 ∴ a = 1 – b
  d = 2 – b – 2e
  c = 1 + 3a + b – d – e = 1 + 3 (1 – b) + b – (2 – b – 2e) – e
   = 1 + 3 – 3b + b – 2 + b + 2e – e = 2 – b + e
 Substituting these values of components in eqn. (1), we get:
  R = C[ρ1 – b . µb . l2 – b + e . V2 – b – 2e . ge]
   = C[ρl2V2 (ρ–b . µb . l–b . V–b) (le . V–2e . ge)]

   = 2 2
2.

b elgC l V
lV V

 µ   ρ   ρ    

   = 2 2
2, lgl V

lV V
 µ   ρ f    ρ    

 ...(Proved.)

 Example 7.7. The pressure drop ∆p in a pipe of diameter D and length l depends on the density 
ρ and viscosity µ of fluid flowing, mean velocity V of flow and average height of protuderance t. 
Show that the pressure drop can be expressed in the form:

  ∆p = 2 , ,l tV
D VD D

µ ρ f ρ 
 [RGPV, Bhopal]

 Solution. The pressure drop ∆p, is a function of : D, l, ρ, µ, V and t
 Mathematically, ∆p = f (D, l, ρ, µ, V, t)
 or, ∆p = C (Da . lb . ρc . µd . Ve . t f) ...(1)
 where, C is a non-dimensional constant.
 Using M-L-T system, the corresponding equation for dimensions is:
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  ML–1T–2 = C [La . Lb . (ML–3)c . (ML–1T–1)d . (LT–1)e . (L)f ]
 For dimensional homogeneity the exponents of each dimension on both sides of the equation 
must be identical. Thus,
 For M:  1 = c + d
 For L:  – 1 = a + b – 3c – d + e + f
 For T:  – 2 = – d – e
 There are six variables and we have only three equations. To get the required result, we shall 
evaluate exponents of D, ρ and V (i.e. a, c and e) in terms of the unknowns (i.e. b, d, f).
	 ∴ c = 1 – d; e = 2 – d
  a = – 1 – b + 3c + d – e – f
   = – 1 – b + 3 (1 – d) + d – (2 – d) – f
   = – 1 – b + 3 – 3d + d – 2 + d – f
   = – (b + d + f)
 Substituting these values of exponents in eqn. (1), we get:
  ∆p = C (D–(b + d + f) . lb . ρ2–d . µd . V2 – d . t f)
   = C[ρV2 (D–b . lb) (D–d) . ρ–d . µdV–d) (D–f . t f)

   = 2
b d fl tC V

D VD D
 µ     ρ       ρ    

   = 2 , ,l tV
D VD D

µ ρ f ρ 
 ...Proved

 From experiments it has been observed that ∆ρ is a linear function of t
D

.

	 ∴ ∆p = 2 ,l tV
D VD D

µ ρ f ρ 

 or, p
w
∆  = 

2
,V l t

g D VD D
µ f ρ 

  w
g

 ρ = 
 


 This is usually written in the form,

  hf = 
24

2
flV
gD

 (Darcy-Weisbach formula)

 where, f is the co-efficient of friction  which depends upon the Reynolds number VDρ 
 µ 

 and 

the surface finish of the pipe .t
D

 
 
 

7.4.2. Buckingham’s π-Method/Theorem
 When a large number of physical variables are involved Rayleigh’s method of dimensional 
analysis becomes increasingly laborious and cumbersome. Buckingham’s method is an improvement 
over Rayleigh’s method. Buckingham designated the dimensionless group by the Greek capital 
letter π(Pi). It is therefore often called Buckingham π-method.The advantage of this method over 
Rayleigh’s method is that it lets us know, in advance, of the analysis, as to how many dimensionless 
groups are to be expected.
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 Buckingham’s π-theorem states as follows:
 “If there are n variables (dependent and independent variables) in a dimensionally 
homogeneous equation and if these variables contain m fundamental dimensions (such as M, 
L, T, etc.) then the variables are arranged into (n-m) dimensionless terms. These dimensionless 
terms are called π-terms.”
 Mathematically, if any variable X1, depends on independent variables, X2, X3, X4, ....Xn; the 
functional equation may be written as:
  X1 = f (X2, X3, X4, ...Xn) ...(7.3)
 Eqn. (7.3) can also be written as:
  f1(X1, X2, X3, ...Xn) = 0 ...(7.4)
 It is a dimensionally homogeneous equation and contains n variables. If there are m fundamental 
dimensions, then according to Buckingham’s π-theorem, it [eqn. (7.4)] can be written in terms of 
number of π-terms (dimensionless groups) in which number of π-terms is equal to (n-m). Hence, 
eqn. (7.4) becomes as:
  f1 (π1, π2, π3 ...πn – m) = 0 ...(7.5)
 Each dimensionless π-term is formed by combining m variables out of the total n variables with 
one of the remaining (n-m) variables i.e. each π-term contains ( m + 1) variables. These m variables 
which appear repeatedly in each of π-terms are consequently called repeating variables and are 
chosen from among the variables such that they together involve all the fundamental dimensions and 
they themselves do not form a dimensionless parameter. Let in the above case X2, X3 and X4 are the 
repeating variables if the fundamental dimensions m (M, L, T) = 3, then each term is written as:

 
( )

( )

1 1 1

2 2 2

– – –

1 12 3 4

2 52 3 4

– 2 3 4

. . .

. . .
:
:

. . .n m n m n m

a b c

a b c

a b c
n m n

X X X X

X X X X

X X X X

π =

π =




π = 

 ...(7.6)

where a1, b1, c1; a2, b2, c2 etc. are the constants, which are determined by considering dimensional 
homogeneity. These values  are substituted in eqn. (7.6) and values of π1,	π2,	π3 ....πn – m are obtained. 
These values of π’s are substituted in eqn. (7.5). The final general equation for the phenomenon may 
then be obtained by expressing anyone of the π-terms as a function of the other as

 
1 2 3 4 –

2 1 3 4 –

( , , ,..... )

( , , ,..... )
n m

n m

π = f π π π π 
π = f π π π π 

 ...(7.7)

 Selection of repeating variables:
 The following points should be kept in view while selecting m repeating variables:
 1. m repeating variables must contain jointly  all the fundamental dimensions involved in the 

phenomenon. Usually the fundamental dimensions are M, L and T. However, if only two 
dimensions are involved, there will be 2 repeating variables and they must contain together 
the two dimensions involved.

 2. The repeating variables must not form the non-dimensional parameters among themselves.
 3. As far as possible, the dependent variable should not be selected as repeating variable.
 4. No two repeating variables should have the same dimensions.
 5. The repeating variables should be chosen in such a way that one variable contains geometric 

property (e.g. length, l; diameter, d; height, H etc.), other variable contains flow property 
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(e.g. velocity, V; acceleration, a etc.) and third variable contains fluid property (e.g. mass 
density, ρ; weight density, w dynamic viscosity, µ etc.).

 The choice of repeating variables, in most of fluid mechanics problems, may be:
 (i) l, V, ρ (ii) d, V, ρ   (iii) l, V, µ    (iv) d, V, µ.
 The procedure for solving problems by Buckingham’s π-theorem in the Example 7.8 
below:
 Example 7.8. The resistance R experienced by a partially submerged body depends upon the 
velocity V, length of the body l, viscosity of the fluid µ, density of the fluid ρ and gravitational 
acceleration g. Obtain a dimensionless expression for R. [UPTU]
 Solution. Step 1.  The resistance R is a function of:
 (i) Velocity V, (ii) Length l, (iii) Viscosity µ, 
 (iv) Density ρ, and (v) Gravitational acceleration g.
 Mathematically, R = f (V, l, µ,	ρ,	g) ...(i)
 or, f1 (R, V, l, µ,	ρ, g) = 0 ...(ii)
	 ∴ Total number of variables, n = 6

 –2 –1 –1 –1 –3 –2

is obtained by writing dimensions of each variableas:

, , = , , .Thus the
fundamental dimensions in the problem are  , , and hence 3

m

R MLT V LT ML T ML g LT
M L T m

 
 

= = µ ρ = = 
 = 

 Number of dimensionless π-terms = n – m = 6 – 3 = 3
 Thus three π–terms say π1,	π2, and π3 are formed.
 The eqn. (ii) may be written as:
  f1 (π1,	π2,	π3) = 0 ...(iii)
 Step 2.  Selection of repeating variables: Out of six variables R, V, l, µ,	ρ, g three variables (as m = 3) 

are to be selected as repeating variables. R  is a dependent variable and should not be selected 
as a repeating variable. Out of the remaining five variables one variable should have geometric 
property, second should have flow property and third one should have fluid property; these 
requirements are met by selecting l, V and ρ as repeating variables. The repeating variables 
themselves should not form a dimensionless term  and must contain jointly all fundamental 
dimensions equal to m i.e. 3 here. Dimensions of l, V  and ρ are L, LT–1, ML–3 and hence the 
three fundamental dimensions exist in l, V and ρ  and also no dimensionless group is formed 
by them.

 Step 3.  Each π-term (= m + 1 variables) is written as given in eqn. (7.6), i.e.,

   

1 1 1

32 2

3 3 3

1

2

3

. . .

. . .

. . .

a b c

ca b

a b c

l V R

l V

l V g

π = ρ


π = ρ µ 


π = ρ 

 ...(iv)

 Step 4.  Each π-term is solved by the principle of dimensional homogeneity, as follows: 
	 	π1-term:
  π1 = la1 . Vb1 . ρc1 . R
  M0L0T0 = La1 . (LT–1)b1 . (ML–3)c1 . (MLT–2)
  Equating the exponents of M, L  and T respectively, we get:
  For M:  0 = c1 + 1
  For L :  0 = a1 + b1 – 3c1 + 1
  For T:  0 = – b1 – 2
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	 	∴ c1 = – 1; b1 = – 2
  and, a1 = – b1 + 3c1 – 1 = 2 – 3 – 1 = – 2
  Substituting the values of a1, b1, and c1 in π1, we get:

	 	∴ π1 = l–2 . V–2 . ρ–1 . R = 2 2
R

l V ρ
       ...(v)

	 	π2–term:
  π2 = la2 . V b2 . ρc2 . µ
  M0L0T0 = La2 . (LT–1)b2 . (ML–3)c2 . (ML–1T–1)
  Equating the exponents of M, L and T respectively, we get:
  For M:  0 = c2 + 1
  For L:  0 = a2 + b2 – 3c2 – 1
  For T:  0 = – b2 – 1
	 	∴ c2 = – 1; b2 = – 1
  and, a2 = – b2 + 3c2 + 1= 1 – 3 + 1 = – 1
  Substituting the values of a2, b2, and c2 in π2, we get:

	 	∴	 π2 = l –1 . V–1 . ρ	–1 . 
lV
µ

µ =
ρ

	 	π3-term:
  π3 = la3 . V b3 . ρc3 . g
  M0L0T0 = La3 . (LT–1)b3 . (ML–3)c3 . (LT–2)
  Equating the exponents of M, L and T respectively, we get:
  For M:  0 = c3
  For L:  0 = a3 + b3 – 3c3 + 1
  For T:  0 = – b3 – 2
	 	∴ c3 = 0; b3 = – 2
  and, a3 = – b3 + 3c3 – 1 = 2 + 0 – 1 = 1
  Substituting the values of a3 , b3, and c3 in π3, we get:

	 	∴ π3 = l1 . V–2 . ρ0 . g = 2
lg
V

 Step 5.   Substitute the values of	π1,	π2,	π3 in eqn. (iii). The functional relationship becomes: 

  1 2 2 2, ,R lgf
lVl V V
µ 

 ρρ 
 = 0

 or, 2 2
R

l V ρ
 = 2, lg

lV V
µ f ρ 

   = ,Vl V
lg

ρ f µ 

 The above step has been made on the postulate that reciprocal of pi-term and its square root is 
non-dimensional.

  R =  2 2 ,Vl Vl V
lg

ρ ρ f µ 
 (Ans.)
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 The resistance R is thus a function of Reynolds number Vlρ 
 µ 

 and Froude’s number V
lg

 
 
 

.

 Example 7.9. Using Buckingham’s π-theorem, show that the velocity through a circular orifice 
is given by
  V = 2 ,DgH

H VH
µ f  ρ 

 where, H = Head causing flow,
  D = Diameter of the orifice,
  µ = Co-efficient of viscosity,
  ρ = Mass density, and
  g = Acceleration due to gravity. [GATE]

 Solution. V  is a function of: H, D, µ,	ρ and g 
 Mathematically, V = f (H, D, µ,	ρ, g) ...(i)
 or, f1 (V, H, D, µ,	ρ, g) = 0 ...(ii)
	 ∴ Total number of variables, n = 6
 Writing dimensions of each variable, we have:
  V = LT–1, H = L, D = L, µ = ML–1T–1, ρ = ML–3, g = LT–2

 Thus, number of fundamental dimensions, m = 3
	 ∴ Number of π-terms = n – m = 6 – 3 = 3
 Eqn. (ii) can be written as:
  f1 (π1, π2, π3) = 0 ...(iii)
 Each π-term contains (m + 1) variables, where m = 3 and is also equal to repeating variables. 
Choosing H,g, ρ as repeating variables (V being a dependent variable should not be chosen as 
repeating variable), we get three π-terms as:
  π1 = Ha1 . gb1 ρc3 . V
  π2 = Ha2 . gb2 ρc2 . D
  π3 = Ha3 . gb3 ρc3 . µ
 π1-term:
  π1 = Ha1 . gb1 ρc1 . V

  M0L0T0 = La1 . (LT–2)b1 . (ML–3)c1 . (LT–1)
 Equating the exponents of M, L and T respectively, we get:
 For M:  0 = c1
 For L:  0 = a1 + b1 – 3c1 + 1
 For T:  0 = –2b1 – 1

	 ∴ c1 = 0; b1 = – 1
2

 and, a1 = – b1 + 3c1 –1 = 1
2

 + 0 –1 = – 1
2

 Substituting the values of a1, b1 and c1 in π1, we get:

	 ∴ π1 = 
1––1/2 02. · · VH g V

gh
ρ =
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	 π2-term:
  π2 = Ha2 . gb2.ρc2 . D
  M0L0T0 = La2 . (LT–2)b2 . (ML–3)c2 . L
 Equating the exponents of M, L and T respectively, we get:
 For M:  0 = c2
 For L:  0 = a2 + b2 – 3c2 + 1
 For T:  0 = – 2b2
	 ∴ c2 = 0; b2 = 0
 and, a2 = – b2 + 3c2 – 1 = –1
 Substituting the values of a2, b2, and c2 in π2, we get:

  π2 = H–1 . g0 . ρ0 . D = D
H

 π3-term:
  π3 = Ha3 . gb3.ρc3 . µ
  M0L0T0 = La3 . (LT–2)b3 . (ML–3)c3 . ML–1T–1

 Equating the exponents of M, L  and T respectively, we get:
 For M:  0 = c3 + 1
 For L:  0 = a3 + b3 – 3c3 – 1
 For T:  0 = – 2b3 – 1

	 ∴ c3 = –1; b3 = – 1
2

 and, a3 = – b3 + 3c3 + 1= 1 3– 3 1 –
2 2

+ =

 Substituting the values of a3, b3, and c3 in π3, we get:

  π3 = 
1–3/2 –12

3/2· · ·H g
H g

− µ
ρ µ =

ρ

   = V
H gH H V gH

µ µ
=

ρ ρ
 (Multiply and divide by V)

   = 1·
H V
µ

π
ρ

 1
V
gH

 = π 
 


 Substituting the values of π1,	π2 and π3 in eqn. (iii),  we get:

  1 1, , .V Df
H HlVgH

µ π 
 

 = 0

 or, V
gH

 = f 1, .D
H H V

µ π ρ 

 or, V = 2 ,DgH
H VH

µ f  ρ 
 ...Proved.

 (Multiplying or dividing by any constant does not change the character of π-terms).
 Example 7.10. Show that the lift FL on airfoil can be expressed as 

  FL = 2 2 ,VdV d ρ ρ f α µ 
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 where, ρ = Mass density, V = Velocity of flow,
  d = A characteristic depth,  α = Angle of incidence, and
  µ = Co-efficient of viscosity.

 Solution. Lift FL is a function of: ρ, V, d,	µ,	α
 Mathematically, FL = f (ρ, V, d, µ,	α) ...(i)
 or,   f1 (FL, ρ, V, d, µ,	α)	 ...(ii)
	 ∴	Τοtal number of variables, n = 6
 Writing dimensions of each variable, we have:
  FL = MLT–2, ρ = ML–3, V = LT–1, d = L, µ = ML–1T–1, α = M0L0T0

 Thus, number of fundamental dimensions, m = 3
	 ∴ Number of π-terms = n – m = 6 – 3 = 3
 Eqn. (ii) can be written as: f1 (π1,	π2,	π3) = 0 ...(iii)
 Each π-term contains (m + 1) variables, where m = 3 and is also equal to repeating variables. 
Choosing d, V and ρ as repeating  variables, we get these π-terms as:
  π1 = da1 . Vb1.ρc1 . FL
  π2 = da2 . Vb2.ρc2 . α
  π3 = da3 . Vb3.ρc3 . µ
 π1-term:
  π1 = da1 . Vb1.ρc1 . FL
  M0L0T0 = La1 . (LT–1)b1 . (ML–3)c1 . (MLT–2)
 Equating the exponents of M, L and T respectively, we get:
 For M:  0 = c1 + 1
 For L:  0 = a1 + b1 – 3c1 + 1
 For T:  0 = – b1 – 2
	 ∴ c1 = –1; b1 = – 2
	 ∴ a1 = – b1 + 3c1 – 1= 2 – 3 – 1 = – 2
 Substituting the values of a1, b1 and c1 in π1, we get:

  π1 = d–2 . V–2 . ρ–1 . FL = 2 2
LF

V dρ

	 π2-term:
  π2 = da2 . Vb2.ρc2 . µ
  M0L0T0 = La2 . (LT–1)b2 . (ML–3)c2 . (ML–1T–1)
 Equating the exponents of M, L  and T respectively, we get:
 For M:  0 = c2 + 1
 For L:  0 = a2 + b2 – 3c2 – 1
 For T:  0 = – b2 – 1
	 ∴ c2 = – 1; b2 = – 1
 and, a2 = – b2 + 3c2 + 1 = 1 – 3 + 1= – 1
 Substituting the values of a2, b2 and c2 in π2, we get:

  π2 = d–1 . V–1 . ρ–1 . µ = 
Vd
µ

ρ

 or, π2 = Vdρ
µ
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	 π3-term:
  π3 = da3 . Vb3 ρc3 . α
  M0L0T0 = La3 . (LT–1)b3 . (ML–3)c3 . (M0L0T0)
 Equating the exponents of M, L and T respectively, we get:
 For M:  0 = c3 + 0
 For L:  0 = a3 + b3 – 3c3 + 0
 For T:  0 = – b3 + 0
	 ∴ c3 = 0; b3 = 0
 and, a3 = – b3 + 3c3 = 0
 Substituting the values of a3, b3 and c3 in π3, we get:
  π3 = d0 . V0 . ρ0 . α = α
 Substituting the values of π1,	π2 and π3 in eqn. (iii), we get:

    1 2 2 , ,LF Vdf
V d

ρ α µρ 

  2
LF

V d2ρ
 = f ,Vdρ α µ 

 or, FL = 2 2 ,VdV d ρ ρ f α µ 
 ...Proved.

 Example 7.11. The pressure difference ∆p in a pipe of diameter D and length l due to turbulent 
flow depends on the velocity V, viscosity µ, density ρ and roughness k. Using Buckingham’s 
π-theorem, obtain an expression for ∆p. [Delhi University]
 Solution. The pressure difference ∆p  is a function of : D, l, V, µ,	ρ, k
 Mathematically, ∆p = f (D, l, V,	µ,	ρ, k) ...(i)
 or, f1 (∆p, D, l, V, µ, ρ, k) = 0 ...(ii)
	 ∴ Total number of variables, n = 7
 Writing dimensions of each variable, we have:
	 	 ∆p (dimensions of pressure) = ML–1T–2, D = L, l = L,  V = LT–1,
  µ = ML–1T–1, ρ = ML–3, k = L
 Thus, number of fundamental dimensions, m  = 3
	 ∴ Number of π-terms = n – m = 7 – 3 = 4
 Eqn. (ii) can be written as:
  f1(π1, π2, π3, π4) = 0 ...(iii)
 Each π-term contains (m + 1) variables, where m = 3 and is also equal to repeating  variables. 
Choosing D, V and ρ as repeating variables, we get four π-terms as:
  π1 = Da1 . Vb1.ρc1 . ∆p
  π1 = Da2 . Vb2.ρc3 . l
  π3 = Da3 . Vb3.ρc3 . µ
  π4 = Da4 . Vb4.ρc4 . k
 π1-term:
  π1 = Da1 . Vb1.ρc1 . ∆p
  M0L0T0 = La1 . (LT–1)b1 . (ML–3)c1 . (ML–3T–2)
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 Equating the exponents of M, L and T respectively, we get:
 For M:  0 = c1 + 1
 For L:  0 = a1 + b1 – 3c1 – 1
 For T:  0 = – b1 – 2
	 ∴ c1 = – 1; b1 = – 2
 and, a1 = – b1 + 3c1 + 1 = 2 – 3 + 1= 0
 Substituting the values of a1, b1 and c1 in π1, we get:

  π1 = D0 . V–2 . ρ–1 . ∆p = 2
p

V
∆
ρ

	 π2-term:
  π2 = Da2 . Vb2 . ρc2 . l
  M0L0T0 = La2 . (LT–1)b2 . (ML–3)c2 . L
 Equating the exponents of M, L and T respectively, we get:
 For M:  0 = c2
 For L:  0 = a2 + b2 – 3c2 + 1
 For T:  0 = – b2
	 ∴ c2 = 0; b2 = 0
 and, a2 = – b2 + 3c2 – 1= – 1
 Substituting the values of a2, b2 and c2 in π2, we get:

  π2 = D–1 . V0 . ρ0 . l = l
D

 π3-term:
  π3 = Da3 . Vb3 . ρc3 . µ
  M0L0T0 = La3 . (LT–1)b3 . (LT–3)c3 . (ML–1 T–1)
 Equating the exponents of M, L and T respectively, we get:
 For M:  0 = c3 + 1
 For L:  0 = a3 + b3 – 3c3 – 1
 For T:  0 = – b3 – 1
	 ∴ c3 = –1; b3 = –1
 and, a3 = – b3 + 3c3 + 1 = 1 – 3 + 1 = –1
 Substituting the values of a3, b3 and c3 in π3, we get:

  π3 = D–1 . V–1 . ρ–1 . µ = 
DV
µ
ρ

 π4-term:
  π4 = Da4 . Vb4 . ρc4 . k
  M0L0T0 = La4 . (LT–1)b4 . (ML–3)c4 . L
                 (Dimension of k = L)
 Equating the exponents of M, L and T respectively, we get:
 For M:  0 = c4
 For L:  0 = a4 + b4 – 3c4 + 1
 For T:  0 = – b4
	 ∴ c4 = 0; b4 = 0
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 and, a4 = – b4 + 3c4 – 1 = 0 + 0 – 1= – 1
 Substituting the values of a4, b4 and c4 in π4, we get:

  π3 = D–1 . V0 . ρ0 . k = k
D

 Substituting the values of π1,	π2,	π3 and π4 in eqn. (iii), we get:

  1 2 , , ,p l kf
D DV DV

∆ µ 
 ρρ 

 = 0

 or, 2
p

V
∆
ρ

 = f , ,l k
D DV D

µ 
 ρ 

	  Expression for difference of pressure head (hf):

 As observed from experiments, ∆p is a linear function of l
D

; therefore taking this out of 

function, we have:

  2
p

V
∆
ρ

 = ,l k
D DV D

µ f  ρ 

 or, p∆
ρ

 = 2 . ,l kV
D DV D

µ f ρ 

 Dividing both sides by g, we get:

  p
g
∆
ρ

 = 
2

. ,V l k
g D DV D

µ f  ρ 

 Now , k
DV D
µ f ρ 

 consists of following two terms:

 (i) 
DV
µ
ρ

 which is 1 1or
Reynold number Re

 (ii) k
D

 ...called roughness factor

	 ∴   1 , k
Re D
 f  

 is put equal to f

 where, f = Co-efficient of friction (function of Reynold number and 
roughness factor)

	 ∴ p
g
∆
ρ

 = 
24 .

2
f V l

gD
 , kf

DV D
 µ  = f   ρ  


 (Multiplying or dividing by any constant does not change the character of π-terms)

	 ∴ p
g
∆
ρ

 = hf =
24

2
flV

D g×
 (Ans.)

 Example 7.12. The discharge Q of a centrifugal  pump depends upon the mass density of fluid 
(ρ), the speed of the pump (N), the diameter of the impeller (D), the manometric head (Hm) and the 
viscosity of fluid (µ). Show that

  Q = ND3 f 2 2 2,gH
N D ND

µ 
 ρ 
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 Solution. The discharge Q is a function of: N, D, g, H, µ,	ρ.
 Mathematically, Q = f (N, D, g, H, µ,	ρ) ...(i)
 or, f1 (Q, N, D, g, H, µ,	ρ) = 0 ...(ii)
 Total number of variables, n = 7
 Writing dimensions of each variable, we have:
  Q = L3T–1, N = T–1, D = L, g = LT–2,
  H = L,  µ = ML–1T–1, ρ = ML–3

 Thus, number of fundamental dimensions, m = 3
	 ∴ Number of π-terms = n – m = 7 – 3 = 4
 Eqn. (ii) can be written as:
  f1 (π1,	π2,	π3,	π4) = 0 ...(iii)
 Each π-term contains (m + 1) variables, where m = 3 and is also equal to repeating  variables. 
Choosing D, N, ρ as repeating variables, we get four π-terms as: 
  π1 = Da1 . Nb1 . ρc1 . Q
  π2 = Da2 . Nb2 . ρc2 . g
  π3 = Da3 . Nb3 . ρc3 . H
  π4 = Da4 . Nb4 . ρc4 . µ
 π1-term:
  π1 = Da1 . Nb1 . ρc1 . Q
  M0L0T0 = La1 . (T–1)b1 . (ML–3)c1 (L3T–1)
 Equating the exponents of M, L and T respectively, we get:
 For M:  0 = c1

 For L:  0 = a1 – 3c1 + 3
 For T:  0 = –b1 – 1
	 ∴ c1 = 0; b1 = – 1
 and, a1 = 3c1 – 3 = 0 – 3 = – 3
 Substituting the values of a1, b1 and c1 in π1, we get:

  π1 = D–3 . N–1 . ρ0 . Q = 3
Q

ND
 π2-term:
  π2 = Da2 . Nb2 . ρc2 . g
  M0L0T0 = La2 . (T–1)b2 . (ML–3)c2 . (LT–2)
 Equating the exponents of M, L and T respectively, we get:
 For M:  0 = c2

 For L:  0 = a2 – 3c2 + 1
 For T:  0 = – b1 – 2
	 ∴ c2 = 0; b1 = – 2
 and, a2 = 3c2 – 1= 0 – 1= – 1
 Substituting the values of a2, b2 and c2 in π2, we get:

  π2 = D–1 . N–2 . ρ0 . g = 2
g

N D
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 π3-term:
  π3 = Da3 . Nb3 . ρc3 . H
  M0L0T0 = La3 . (T–1)b3 . (ML–3)c3 . L
 Equating the exponents of M, L and T respectively, we get:
 For M:  0 = c3
 For L:  0 = a3 – 3c3 + 1
 For T:  0 = – b3
	 ∴ c3 = 0; b3 = 0
 and, a3 = 3c3 – 1= 0 – 1= – 1
 Substituting the values of a3, b3 and c3 in π3, we get:

  π3 = D–1 . N0 . ρ0 . H = H
D

 π4-term:
  π4 = Da4 . Nb4 . ρc4 . µ
  M0L0T0 = La4 . (T–1)b4 . (ML–3)c4 . ML–1T–1

 Equating the exponents of M, L and T respectively, we get:
 For M:  0 = c4 + 1
 For L:  0 = a4 – 3c4 – 1
 For T:  0 = – b4 – 1
	 ∴ c4 = – 1; b4 = – 1
 and, a4 = 3c4 + 1 = 3 × (– 1) + 1 = – 2
 Substituting the values of a4, b4 and c4 in π4, we get:

  π4 = D–2 . N–1 . ρ–1 . µ = 2ND
µ

ρ

 Substituting the values of π1,	π2,	π3 and π4 in eqn. (iii) , we get:

  1 3 2 2, , ,Q g Hf
DND N D ND

µ 
 ρ 

 = 0

 As the product of two π-terms is also dimensionless, the terms π2 and π3 can be replaced by 

2 2
gH

N D
. Thus:

  1 3 2 2 2, ,Q gHf
ND N D ND

µ 
 ρ 

 = 0

 or, 3
Q

ND
 = f 2 2 2,gH

N D ND
µ 

 ρ 

 or, Q = 2
2 2 2,gHND

N D ND
µ f ρ 

 ...Proved.

 Example 7.13. Derive on the basis of dimensional analysis suitable parameters to present 
the thrust developed by a propeller.  Assume that the thrust P depends upon the angular velocity ω, 
speed of advance V, diameter D, dynamic viscosity µ, mass density ρ, elasticity of the fluid medium 
which can be denoted by the speed of sound in the medium C. [MDU, Haryana]
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 Solution. Thrust P is a function of : ω, V, D, µ,	ρ, C
 Mathematically, P = f (ω, V, D, µ,	ρ, C) ...(i)
 or, f1 (P,	ω, V, D, µ,	ρ, C) = 0 ...(ii)
 Total number of variables, n = 7
 Writing dimensions of each variable, we get:
  P = MLT –2, ω = T  –1, V = LT  –1, D = L,
  µ = ML–1T –1, ρ = ML–3, C = LT  –1

 Thus, number of fundamental dimensions, m = 3
	 ∴ Number of π-terms = n – m = 7 – 3 = 4
 Eqn. (ii) can be written as:
  f 1(π1, π2, π3, π4) = 0 ...(iii)
 Each π-term contains (m + 1) variables, where m = 3 and also equal to repeating variables. 
Choosing D, V and ρ as repeating variables, we get four π-terms as:
  π1 = 1 1 1. . .a b cD V Pρ

  π2 = 2 2 2. . .a b cD V ρ ω

  π3 = 3 3 3. . .a b cD V ρ µ

  π4 = 4 4 4. . .a b cD V Cρ
 π1-term:
  π1 = 1 1 1. . .a b cD V Pρ

  M0L0T0 = 1 1 1–1 –3 –2.( ) .( ) .a b cL LT ML MLT

 Equating the exponents of M, L and T respectively, we get:
 For M:  0 = c1 + 1
 For L:  0 = a1 + b1 – 3c1 + 1
 For T:  0 = – b1 – 2
	 ∴ c1 = – 1; b1 = – 2
 and a1 = – b1 + 3c1 – 1 = 2 – 3 – 1 = – 2
 Substituting the values of a1, b1 and c1 in π1, we get:

  π1 = –2 –2 –1
2 2. . . PD V P

D V
ρ =

ρ
 π2-term:
  π2 = 2 2 2. . .a b cD V ρ ω

  M0L0T0 = 2 2 2–1 –3 –1.( ) .( ) .a b cL LT ML T

 Equating the exponents of M, L and T respectively, we get:
 For M:  0 = c2
 For L:  0 = a2 + b2 – 3c2
 For T:  0 = – b2 – 1
	 ∴ c2 = 0; b2 = – 1
 and, a2 = – b2 + 3c2 = 1 + 0 = 1
 Substituting the values of a2, b2 and c2 in π2, we get:

  π2 = 1 –1 0· · · DD V
V
ω

ρ ω =
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	 π3-term:
  π3 = 3 3 3· · ·a b cD V ρ µ

  M0L0T0 = 3 3 3–1 –3 –1 –1· ( ) · ( ) ·a b cL LT ML ML T

 Equating the exponents  of M, L and T respectively, we get:
 For M:  0 =  c3 + 1
 For L:  0 = a3 + b3 – 3c3 – 1
 For T:  0 = – b3 – 1
	 ∴ c3 = – 1; b3 = – 1
 and,  a3 = – b3 + 3c3 + 1= 1– 3 + 1 = – 1
 Substituting the values of a3, b3 and c3 in π3, we get:

  π3 = –1 –1 –1· · ·D V
DV
µ

ρ µ =
ρ

 π4-term:
  π4 = 4 4 4· · ·a b cD V Cρ

  M0L0T0 = 4 4 4–1 –3 –1· ( ) · ( ) · ( )a b cL LT ML LT

 Equating the exponents of M, L  and T  respectively, we get:
 For M:  0 = c4 
 For L:  0 = a4 + b4 – 3c4 + 1
 For T:  0 = – b4 – 1
	 ∴ c4 = 0; b4 = – 1
 and, a4 = – b4 + 3c4 – 1 = 1 + 0 – 1= 0
 Substituting the values of a4, b4 and c4 in π4, we get:

  π4 = 0 –1 0· · · CD V C
V

ρ =

 Substituting the values of π1,	π2,	π3 and π4 in eqn. (iii), we get:

  1 2 2 , , ,P D Cf
V DV VD V
ω µ 

 ρρ 
 = 0

 or, 2 2
P

D V ρ
 = f , ,D C

V DV V
ω µ 

 ρ 

 or, P = 2 2 , ,D CD V
V DV V
ω µ ρf ρ 

 (Ans.)

 Example 7.14. Using the method of dimensional analysis  obtain an expression for the discharge 
Q  over a rectangular weir. The discharge depends on the head H over the weir, acceleration due to 
gravity g, length of weir crest L, height of the weir crest over the channel bottom Z and the kinematic  
viscosity v of the liquid.
 Solution. The discharge Q over the weir is a function of : H, g, L, Z, v
 Mathematically, Q = f (H, g, L, Z, v) ...(i)
 or,   f1 (Q, H, g, L, Z, v) ...(ii)
 Total number of variables, n = 6
 Writing dimensions of each variable, we get:
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  Q = 3 –1 –2 2 –1, , , , ,L T H L g LT L L Z L v L T= = = = =

 Thus, number of fundamental dimensions, m = 2
	 ∴ Number  of π-terms = n – m = 6 – 2 = 4
 Eqn. (ii) can be written as:
  f1 (π1,	π2,	π3,	π4) = 0 ...(iii)
 Each π-term contains (m  + 1) variables, where m = 2 and also equal to repeating variables. The 
head over the weir is the most important independent variable, and the other variable which affect 
the flow in open  channel is the acceleration due to gravity g. These two variables H and g satisfy the 
requirement of repeating variables. Choosing H and g as repeating variables, we get four π-terms as:
  π1 = 1 1. .a bH g Q

  π2 = 2 2. .a bH g L

  π3 = 3 3. .a bH g Z

  π4 = 4 4. .a bH g v

 π1-term:
  π1 = 1 1. .a bH g Q

  M0L0T0 = 1 1–2 3 –1.( ) .( )a bL LT L T

 Equating exponents of M, L and T respectively, we get:
 For M:  0 = 0
 For L:  0 = a1 + b1 + 3
 For T:  0 = – 2b1 – 1

	 ∴ b1 = – 1
2

 and, a1 = 1
1– – 3 – 3 – 5/2
2

b = =

 Substituting the values of a1 and b1 in π1, we get:

  π1 = –5/2 –1/2
1/2 5/2· ·

( )
QH g Q

g H
=

	 π2-term:
  π2 = 2 2· ·a bH g L

  M0L0T0 = 2 2–2· ( ) ·a bL LT L

 Equating exponents of M, L  and T respectively, we get:
 For M:  0 = 0
 For L:  0 = a2 + b2 + 1
 For T:  0 = – 2b2
	 ∴ b2 = 0
 and, a2 = – b2 – 1 = – 1
 Substituting the values of a2 and b2 in π2, we get:

  π2 = –1 0. . LH g L
H

=
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	 π3-term:
  π3 = 3 3. .a bH g Z

  M0L0T0 = 3 3–2.( ) .a bL LT L

 Equating the exponents of M, L and T respectively, we get: 
 For M:  0 = 0
 For L:  0 = a3 + b3 + 1
 For T:  0 = – 2b3
	 ∴ b3 = 0 
 and, a3 = – b3 – 1= – 1
 Substituting the values of a3 and  b3 in π3, we get

  π3 = –1 0. . ZH g Z
H

=

 π4-term:
  π4 = 4 4. .a bH g v

  M0L0T0 = 4 4–2 2 –1.( ) .( )a bL LT L T

 Equating the exponents of M, L  and T respectively, we get: 
 For M:  0 = 0
 For L:  0 = a4 + b4 + 2
 For D;  0 = – 2b4 – 1
  b4 = – 1/2 and a4 = – b4 – 2 = + 1/2 – 2 = –3/2
 Substituting the values of a4 and b4 in π4, we get:

  π4 = –3/2 –1/2
1/2 3/2. . vH g

g H
ν =

 Substituting the values of π1,	π2,	π3 and π4 in eqn. (iii), we get:

 1 1/2 5/2 1/2 3/2, , ,Q L Z vf
H Hg H g H

 
 
 

 = 0

 or, 1/2 5/2
Q

g H
 = 1/2 3/2 , ,v L Z

H Hg H
 f 
 

 ...(iv)

 From the equation of continuity Q = AV  and, therefore, Q
AV

 is dimensionless. In case of a 

rectangular weir, we may write:

 A ∝ LH and V ∝ g1/2 H1/2,

 Hence, 1/2 1/2
Q

LH g H
 = 1/2 3/2

Q
Lg H

 is dimensionless quantity.

 Thus the left hand side of eqn. (iv) may be transformed and written as 1/2 3/2
Q

Lg H
 and eqn. (iv) 

may be expressed as:

  1/2 3/2
Q

Lg H
 = 1 1/2 3/2 , ,v L Z

H Hg H
 f  
 

 ...(v)
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 In eqn. (v), 1/2 3/2
v v

g H H gH
=  is the inverse of Reynolds number. Eqn. (v) may be written as:

  Q = 3/2C g LH  ...(vi)

 where, C = 2 , ,
H gH H H

v L Z
 

f  
 

 and, since g is constant for a place, eqn. (vi) can be expressed as
  Q = KLH3/2  (Ans.)

 Example 7.15. The resisting force F of a plane during flight can be considered as dependent 
upon the length of aircraft l, velocity υ, air viscosity µ, air density ρ, and bulk modulus of air K. 
Express the functional relationship between these variables and the resisting force using dimensional 
analysis. Explain the physical meaning of the dimensionless groups.

[UPSC]

 Solution. The resisting force F is a function of : l, υ,	µ,	ρ, K
 Mathematically, F = f (l, υ,	µ,	ρ, K) ...(i)
 or, f1 (F, l, υ,	µ,	ρ, K) = 0 ...(ii)
 Total number of variables, n = 6
 Writing dimensions of each variable, we get:
  F = MLT–2, l = L, υ = LT–1, µ =  ML–1T–1, ρ = ML–3, K = ML–1T–2

 Thus, number of fundamental dimensions, m = 3
	 ∴ Number of π-terms = n – m = 6 – 3 = 3
 Eqn. (ii) can be written as:
  f1(π1, π2, π3) = 0 ...(iii)
 Each π-term contains (m + 1) variables, where m  = 3 and also equal to repeating variables.
 Choosing l, υ and ρ as repeating variables, we get three terms as:
  π1 = 1 1 1· · ·a b cl Fυ ρ

  π2 = 2 2 2· · ·a b cl υ ρ µ

  π3 = 3 3 3· · ·a b cl Kυ ρ

 π1-term:
  π1 = 1 1 1· · ·a b cl Fυ ρ

  M0L0T0 = 1 1 1–1 –3 –2· ( ) · ( ) ·a b cL LT ML MLT

 Equating exponents of M, L and T respectively, we get:
 For M:  0 = c1 + 1
 For L:  0 = a1+ b1 – 3c1 + 1
 For T:  0 = – b1 – 2
	 ∴ c1 = – 1, b1 = – 2
 and, a1 = – b1 + 3c1 – 1= 2 – 3 – 1= – 2
 Substituting the values of a1, b1 and c1, in π1, we get:

  π1 = –2 –2 –1
2 2. . . Fl F

l
υ ρ =

υ ρ
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	 π2-term:
  π2 = 2 2 2. . .a b cl υ ρ µ

  M0L0T0 = 2 2 2–1 –3 –1 –1. ( ) . ( ) .a b cL LT ML ML T

 Equating exponents of M, L and T respectively, we get:
 For M:  0 = c2 + 1
 For L:  0 = a2 + b2 – 3c2 – 1
 For T:  0 = – b2 – 1
	 ∴ c2 = – 1; b2 = – 1
 and, a2 = – b2 + 3c2 + 1= 1 – 3 + 1 = – 1
 Substituting the values of a2, b2 and c2 in π2, we get:

  π2 = –1 –1 –1. . .l
l
µ

υ ρ µ =
υρ

	 π3-term:
  π3 = 3 3 3. . .a b cl Kυ ρ

  M0L0T0 = 3 3 3–1 –3 –1 –2. ( ) . ( ) .a b cL LT ML ML T

 Equating exponents of M, L and T respectively, we get:
 For M:  0 = c3 + 1
 For L:  0 = a3 + b3 – 3c3 – 1
 For T:  0 = – b3 – 2
	 ∴ c3 = – 1; b3 = – 2
 and, a3 = – b3 + 3c3 + 1 = 2 – 3 + 1= 0
 Substituting the values of a3, b3, and c3 in π3, we get:

  π3 = 0 –2 –1
2. . . Kl Kυ ρ =

υ ρ

 Substituting the values of π1,	π2 and π3 in eqn. (iii), we get the functional relationship as:

  1 2 2 2, ,F Kf
ll
µ 

 υρυ ρ υ ρ 
 = 0

 or, 2 2
F

l υ ρ
 = 2, K

l
µ f υρ υ ρ 

 or, F = 2 2
2, Kl

l
µ υ ρf  υρ υ ρ 

 (Ans.)

 Physical meaning of dimensionless groups (π1,	π2,	π3):

 (i) 1 2 2
F

l
π =

υ ρ
: It is the ratio of F and dynamic force l2υ2ρ. It indicates that the resisting force 

experienced by an aircraft is dependent on the length and velocity. For any given aircraft, the 
resistance force will be proportional to the square of velocity.

 (ii) 2 l
µ

π =
υρ

: This dimensionless group is the reciprocal of Reynolds number and represents  

the role of viscous action on the resistance.
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 (iii) 3 2
K

π =
ρυ

: It takes into account the role of compressibility in influencing fluid resistance 

which an aircraft experiences.
 Example 7.16. Show that the power P developed in a water turbine can be expressed as:

  P = 
2

3 5 , ,D D N NDN D
B gH

 ρ
ρ f  µ 

 where, ρ = Mass density of the liquid,
  N = Speed in r.p.m.,
  D = Diameter of the runner,
  B = Width of the number, and
  µ = Co-efficient of dynamic viscosity.
 Under what conditions it can be used to determine the characteristic of a similar machine?  

[UPTU]
 Solution. The power P developed in a water turbine is a function of : ρ, N, D, B, µ, H, g
 Mathematically, P = f (ρ, N, D, B, µ, H, g) ...(i)
 or, f1 (P, ρ, N, D, B, µ, H, g) = 0 ...(ii)
 Total number of variables, n = 8
 Writing dimensions of each variable, we get:
  P = ML2T–3, ρ = ML–3, N = T–1, D = L, B = L, µ = ML–1T–1,
  H = L,  g = LT–2

 Thus, the number of fundamental dimensions, m = 3
	 ∴ Number of π-terms = n – m = 8 – 3 = 5
 Eqn. (ii) can be written as:
  f1(π1,	π2,	π3,	π4,	π5) = 0 ...(iii)
 Each π-term contains (m + 1) variables, where m = 3 and also equal to repeating variables. 
Choosing D, N and ρ as repeating variables, we get five π-terms as:
  π1 = 1 1 1. . .a b cD N Pρ

  π2 = 2 2 2. . .a b cD N Bρ

  π3 = 3 3 3. . .a b cD N ρ µ

  π4 = 4 4 4. . .a b cD N Hρ

  π5 = 5 5 5. . .a b cD N gρ

 π1-term:
  π1 = 1 1 1. . .a b cD N Pρ

  M0L0T0 = 1 1 1–1 –3 2 –3. ( ) . ( ) .a b cL T ML ML T

 Equating the exponents of M, L and T respectively, we get:
 For M:  0 = c1 + 1
 For L:  0 = a1 – 3c1 + 2
 For T:  0 = – b1 – 3
	 ∴ c1 = –1, b1 = – 3
 and, a1 = 3c1 – 2 = – 3 – 2 = – 5
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 Substituting the values of a1, b1 and c1 in π1, we get:

  π1 = –5 –3 –1
1 3 5. . . PD N P

N D
ρ =

ρ

	 π2-term:
  π2 = 2 2 2. . .a b cD N Bρ

  M0L0T0 = 2 2 2–1 –3. ( ) . ( ) .a b cL T ML L

 Equating the exponents of M, L and T respectively, we get:
 For M:  0 = c2
 For L:  0 = a2 – 3c2 + 1
 For T:  0 = – b2
	 ∴ c2 = 0; b2 = 0
 and, a2 = 3c2 – 1 = – 1
 Substituting the values of a2, b2 and c2 in π2, we get:

  π2 = –1 0 0. . . BD N B
D

ρ =

	 π3-term:
  π3 = 3 3 3. . .a b cD N ρ µ

  M0L0T0 = 3 3 3–1 –3 –1 –1. ( ) . ( ) . ( )a b cL T ML ML T

 Equating the exponents of M, L and T respectively, we get:
 For M:  0 = c3 + 1
 For L:  0 = a3 – 3c3 – 1
 For T:  0 = – b3 – 1
	 ∴ c3 = – 1; b3 = – 1
 and, a3 = 3c3 + 1 = – 3 + 1= – 2
 Substituting the values of a3, b3 and c3 in π3, we get:

  π3 = –2 –1 –1
2. . .D N

D N
µ

ρ µ =
ρ

	 π4-term:
  π4 = 4 4 4. . .a b cD N Hρ

  M0L0T0 = 4 4 4–1 –3.( ) . ( ) .a b cL T ML L

 Equating the exponents of M, L and T respectively, we get:
 For M:  0 = c4
 For L:  0 = a4 – 3c4 + 1
 For T:  0 = – b4
	 ∴ c4 = 0; b4 = 0
 and, a4 = 3c4 – 1 = 0 – 1 = – 1
 Substituting the values of a4, b4 and c4 in π4 we get:

  π4 = –1 0 0. . . HD N H
D

ρ =



414         Fluid Mechanics

	 π5-term:
  π5 = 5 5 5. . .a b cD N gρ

  M0L0T0 = 5 5 5–1 –3 –2.( ) . ( ) . ( )a b cL T ML LT

 Equating the exponents of M, L and T respectively, we get:
 For M:  0 = c5
 For L:  0 = a5 – 3c5 + 1
 For T:  0 = – b5 – 2
	 ∴ c5 = 0; b5= – 2
 and, a5 = 3c5– 1 = 0 – 1= – 1
 Substituting the values of a5, b5 and c5 in π5	we get:

  π5 = –1 –2 0
2. . . gD N g

DN
ρ =

 Substituting the values of π1,	π2,	π3,	π4 and π5 in eqn. (iii), we get:

    1 3 5 2 2, , , ,P B H gf
D DN D D N DN

µ 
 ρ ρ 

 = 0

 or,   1 3 5 2 2 2, , ,P B gHf
DN D D N D N

µ 
 ρ ρ 

 = 0

 4 5 2 2 2(product of two terms) (non-dimensional)H g gH
D DN D N

 π × π = × =  


 or,   1 3 5 2, , ,
gHP Bf

D NDN D D N

 µ
  ρ ρ 

 = 0

     Square root of is alsodimensionlessgH
D N2 2









 or,   
2

1 3 5 , , ,P D D N NDf
BN D gH

 ρ
  µρ 

 = 0

     ( Reciprocal of a π-term is non-dimensional)

 or, 3 5
P

N Dρ
 = 

2
, ,D D N ND

B gH
 ρ

f  µ 

 or, P = 
2

3 5 , ,D D N NDN D
B gH

 ρ
ρ f   µ 

 (Ans.)

 If the two water turbines are dynamically similar, then, all the dimensionless parameters must 
be the same in both the machines. In turbines, the viscous forces are less important as compared to 

gravity forces and, therefore, the parameter 
2D Nρ
µ

 has little significance, thus for complete 

similarity between model and prototype of water turbines following conditions need to be satisfied:
 (i) For geometric similarity: 

  
p

H
D

 
 
 

 = and
m p m

H D D
D B B

     =     
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 (ii) For kinematic similarity:

  
p

ND
gH

 
 
 

 = 
m

ND
gH

 
 
 

 (iii) For dynamic similarity:

  3 5
p

P
N D

 
 ρ 

 = 3 5
m

P
N D

 
 ρ 

 The subscripts p and m refer to the prototype and model respectively. (Ans.)

7.4.3. Limitations of Dimensional Analysis
 Following are the limitations of dimensional analysis:
 1. Dimensional analysis does not give any clue regarding the selection of variables. If the vari-

ables are wrongly taken, the resulting functional  relationship is erroneous. It provides the 
information about the grouping of variables. In order to decide whether selected variables are 
pertinent or superfluous experiments have to be performed.

 2. The complete information is not provided by dimensional analysis; it only indicates that there 
is some relationship between parameters. It does not give the values of co-efficients in the 
functional relationship. The values of co-efficients and hence the nature of functions can be 
obtained only from experiments or from mathematical analysis.

MODEL ANALYSIS

7.5.  MODEL ANALYSIS—INTRODUCTION 

 In order to know about the performance of the hydraulic structures (e.g. dams, spillways etc.) 
or hydraulic machines (e.g. turbines, pumps etc.) before actually constructing or manufacturing 
them, their models are made and tested to get the required information. The model is the small scale 
replica of the actual structure or machine. The actual structure or machine is called Prototype. The 
models are not always smaller than the prototype, in some cases a model may be even larger or of 
the same size as prototype depending upon the need and purpose (e.g. the working of a wrist watch 
or a carburettor can be studied in a large scale model).
 Advantages of model testing:
 The following are the advantages of model analysis:
 1. The model tests are quite economical and convenient (because the design, construction and 

operation of a model may be changed several times if necessary, without increasing much 
expenditure, till most suitable design is obtained).

 2. With the use of models the performance of hydraulic structures/hydraulic machines can be 
predicted in advance.

 3. While designing a particular portion of the structure if clear cut analytical and reliable method 
is not available then in such cases it becomes absolutely necessary to know about the safety 
and reliability of such parts which is possible by means of model testing.

 4. Model testing can be used to detect and rectify the defects of an existing structure which is  
not functioning properly.

 Applications of the model testing:
 Following are the important fields where applications of the model testing is of great use:
 1. Civil engineering structures such as dams, spillways, weirs, canals etc.
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 2. Flood control, investigation of silting, and scour in rivers, irrigation channels.
 3. Turbines, pumps and compressors.
 4. Design of harbours, ships and submarines.
 5. Aeroplanes, rockets and missiles.
 6. Tall buildings (to predict the wind loads on buildings, the stability characteristics of the build-

ings and airflow patterns in their vicinity).

7.6.  SIMILITUDE 

 To find solutions to numerous complicated problems in hydraulic engineering and fluid 
mechanics model studies are usually conducted. In order that results obtained in the model studies 
represent the behaviour of prototype, the following three similarities must be ensured between the 
model and the prototype.
 1. Geometric similarity,
 2. Kinematic similarity, and
 3. Dynamic similarity.
 1. Geometric similarity:
 For geometric similarity to exist between the model and the prototype, the ratios of corresponding 
lengths in the model and in the prototype must be same and the included angles between two 
corresponding sides must be the same. Models which are not geometrically similar are known as 
geometrically distorted models.
 Let, Lm = Length of model,
  Hm = Height of model,
  Dm = Diameter of model,
  Am = Area of model,  
  Vm = Volume of model,
 and, Lp, Bp, Hp, Dp, Ap and Vp = Corresponding values of the prototype.
 Then, for geometric similarity, we must have the relation:

  m

p

L
L

 = m m m
r

p p p

B H D L
B H D

= = =  ...(7.8)

 where Lr is called the scale ratio or the scale factor.

 Similarly, Ar = Area ratio = 2m
r

p

A L
A

=  ...(7.9)

 and, Vr = 3Volume ratio m
r

p

V
L

V
= =  ...(7.10)

 2. Kinematic similarity:
 Kinematic similarity is the similarity of motion. If at the corresponding points in the model and 
in the prototype, the velocity or acceleration ratios are same and velocity or acceleration vectors 
point in the same direction, the two flows are said to be kinematically similar.
 Let, (V1)m = Velocity of fluid at point 1 in the model,
  (V2)m = Velocity of fluid at point 2 in the model,
  (a1)m = Acceleration of fluid at point 1 in the model,
  (a2)m = Acceleration of fluid at point 2 in the model,
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 and (V1)p (V2)p, (a1)p, (a2)p = Corresponding values at the corresponding points of fluid velocity 
and acceleration in the prototype.
 Then, for kinematic similarity, we must have:

  ( )
1

1

( )m

p

V
V

 = 2

2

( )
( )

m
r

p

V V velocity ratio
V

=  ...(7.11)

 Similarly ( )
1

1

( )m

p

a
a

 = 2

2

( )
( )

m
r

p

a a accelerationratio
a

=  ...(7.12)

  The directions of the velocities in the model and prototype should be same.
  The geometric similarity is a prerequisite for kinematic similarity.
 3. Dynamic similarity:
 Dynamic similarity is the similarity of forces. The flows in the model and in prototype are 
dynamically similar if at all the corresponding points, identical types of forces are parallel and bear 
the same ratio. In dynamic similarity, the force polygons of the two flows can be superimposed by 
change in force scale.
 Let, (Fi)m = Inertia force at a point in the model,
  (Fv)m = Viscous force at the point in the model,
  (Fg)m = Gravity force at the point in the model,
 and, (Fi)p, (Fv)p, (Fg)p = Corresponding values of forces at the corresponding points in 

prototype.
 Then for dynamic similarity, we have:

  ( )
( )

i m

i p

F
F

 = 
( )( )

...... ( )
( ) ( )

g mv m
r

v p g p

FF
F force ratio

F F
= =  ...(7.13)

 The directions of the corresponding forces at the corresponding points in the model and 
prototype should also be same.

7.7.  FORCES INFLUENCING HYDRAULIC PHENOMENA 

 The forces which may affect/influence the flow characteristics of a problem are:
 1. Inertia force (Fi):
  It always exists in the fluid flow problem (and hence it is customary to find out the force 

ratios with respect to inertia force).
  It is equal to the product of mass and acceleration of the flowing fluid and acts in the 

direction opposite to the direction of acceleration.
 2. Viscous force (Fv):
  It is present in fluid flow problems where viscosity is to play an important role.
  It is equal to the product of shear stress (t) due to viscosity and surface area of the flow.
 3. Gravity force (Fg):
  It is present in case of open surface flow.
  It is equal to the product of mass and acceleration due to gravity.
 4. Pressure force (Fp):
  This type of force is present in case of pipe flow.
  It is equal to the product of pressure intensity and cross-sectional area of the flowing fluid.



418         Fluid Mechanics

 5. Surface tension force (Fs) :
  It is equal to the product of surface tension and length of surface of the flowing fluid.
 6. Elastic force (Fe):
  It is equal to the product of elastic stress and area of the flowing fluid.

7.8.  DIMENSIONLESS NUMBERS AND THEIR SIGNIFICANCE 

 The dimensionless numbers (also called non-dimensional parameters) are obtained by dividing 
the inertia force (which always exists when any mass in motion) by viscous force or gravity force or 
pressure force or surface tension force or elastic force. The important dimensionless numbers are :
 1. Reynolds number 2. Froude’s number
 3. Euler’s number 4. Weber’s number
 5. Mach’s number.

7.8.1. Reynolds Number (Re)
 It is defined as the ratio of the inertia force to the viscous force.
  Inertia force (Fi) = Mass × acceleration

   = velocityvolume ×
time

ρ ×

   = volume velocity
time

ρ × ×

   = ρ × AV × V 
Volumepersecond

= area velocity AV
 
 × = 



   =	 ρAV2 ...(7.14)
  Viscous force (Fv) = Shear stress × area = t × A

   = du A
dy

 µ × 
 

   = V A
L

µ ×  du V
dy L

 = 
 


	 ∴ Reynolds number, Re = 
2

i

v

F AV VL
VF A
L

ρ ρ
= =

µµ × ×

 i.e. Re = 
/

VL VL VL
v

ρ
= =

µ µ ρ
 v µ = ρ 



 For pipe flow (where the linear dimension is taken as diameter d),

  Re = Vd
v

 ...(7.15)

  Reynolds number signifies the relative predominance of the inertia to the viscous forces oc-
curring in the flow systems.

  This number is taken as the criterion of dynamic similarity in the flow situations where the 
viscous forces predominate; examples being: (i) Motion of submarine completely under water, 
(ii) Low velocity motion around automobiles and aeroplanes, (iii) Incompressible flow through 
pipes of smaller sizes, and (iv) Flow through low speed turbomachines.
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7.8.2. Froude’s number (Fr )
 It is defined as the square root of the ratio of the inertia force and the gravity force.

 Mathematically, Fr = i

g

F
F

 where, Fi = ρAV2 (Eqn. 7.14)
 and, Fg = Mass × acceleration due to gravity
   = ρ × volume × g
  = ρL3g = ρL2. L . g
  = ρ ALg ( L2 = A = area)

	 ∴ Fr = 
2AV V

ALg Lg
ρ

=
ρ

 ...(7.16)

  Froude’s number governs the dynamic similarity of the flow situations; where gravitational 
force is most significant and all other forces are comparatively negligible, examples being: 
(i) Flow over notches and weirs, (ii) Flow over the spillway of a dam, (iii) Flow through open 
channels, considering waves and jumps, and (iv) Motion of ship in rough and turbulent sea.

7.8.3. Euler’s Number (Eu )
 It is defined as the square root of the ratio of the inertia force to the pressure force.

 Mathematically, Eu = i

p

F
F

 where, Fi = ρAV2 (Eqn. 7.14)
 and, Fp = Intensity of pressure × area = p × A

	 ∴ Eu = 
2 2

/ /
AV V V

p A p p
ρ

= =
× ρ ρ

 ...(7.17)

  The Euler number is important in the flow problems/situations in which a pressure gradient 
exists: examples being: (i) Discharge through orifices, mouthpieces and sluices, (ii) Pressure 
rise due to sudden closure of valves, (iii) Flow through pipes, and  (iv) Water hammer created 
in penstocks.

7.8.4. Weber Number (We )
 It is defined as the square root of the ratio of the inertia force to the surface tension force. 

 Mathematically, We = i

s

F
F

 where, Fi = ρAV2 [Eqn. 7.14]
 and, Fs = Surface tension force = surface tension × length

	 ∴ We = 
2 2 2AV L V

L L
ρ ρ × ×

=
σ σ

 ( A = L2)

   = 
2

/
L V V

L
ρ ×

=
σ σ ρ

 ...(7.18)

  This number assumes importance in the following flow situations: (i) Capillary movement of 
water in soils, (ii) Flow of blood in veins and arteries, and (iii) Liquid atomisation.
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7.8.5. Mach Number (M  )
 It is defined as the square root of the ratio of the inertia force to the elastic force.

 Mathematically, M = i

e

F
F

 where, Fi = ρAV2 (Eqn. 7.14)
 and, Fe = Elastic force
   = Elastic stress × area
   = K × A = K × L2 (where, K = elastic stress)

	 ∴ M = 
2 2 2

2 2 /
AV L V V
KL KL K
ρ ρ

= =
ρ

 But, /K ρ  = C = Velocity of sound in the fluid

	 ∴ M = V
C

 ...(7.19)

  The Mach number is important in compressible flow problems at high velocities, such as high 
velocity flow in pipes or motion of high-speed projectiles and missiles.

7.9.  MODEL (OR SIMILARITY) LAWS 

 To ensure dynamic similarity between the model and prototype it is necessary that the ratio of the 
corresponding forces  acting at the corresponding points in the model and prototype be made equal. 
It implies that dimensionless numbers should be same for the model as well as the prototype; this 
condition is difficult to be satisfied for all the dimensionless numbers. Hence models are designed 
on the basis of the force which is dominating in the flow situation. The laws on which the models are 
designed for dynamic similarity are called model or similarity laws; these are:
 1. Reynolds model law,
 2. Froude model law,
 3. Euler model law, 
 4. Weber model law, and
 5. Mach model law.

7.10.  REYNOLDS MODEL LAW 

 In flow situations where in addition to inertia, viscous force is the other predominant force, the 
similarity of flow in the model and its prototype can be established if Reynolds number is same for 
both the systems. This is known as Reynolds law and according to this law
  (Re)model = (Re)prototype

  m m m

m

V Lρ
µ

 = p p p

p

V Lρ
µ

 ...(7.20)

 where, ρm = Density of fluid in model, 
  Vm = Velocity of fluid in model,
  Lm = Length or linear dimension of the model, 
 	 µm = Viscosity of fluid in model,
  and ρp, Vp, Lp and µp are the corresponding values of density, velocity, linear dimension 

and viscosity of fluid in prototype.
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 or,  1
( / )

p p p

m m m p m

V L
V L

ρ
× × ×

ρ µ µ
 = 1

 or, r r r

r

V Lρ
µ

 = 1 ...(7.21)

 , ,p p p
r r r

m m m

V L
V L

V L
ρ 

ρ = = = ρ 
 where, the various quantities with subscript r represent the corresponding scale ratios.

 Also,  Time scale ratio, Tr = r

r

L
V

 andL LV T
T V

 = = 
 


  Acceleration scale ratio, ar = r

r

V
T

  Force scale ratio, Fr = (mass × acc.)r
   = mr × ar
   = ρr Ar Vr

 × ar = ρr Lr  
2 Vr × ar

  Discharge scale ratio, Qr = (ρAV)r
   = ρr Ar Vr = ρr Lr  

2 Vr
  Following are some of the phenomena for which Reynolds model law can be a sufficient 

criterion for similarity of flow in the model and the prototype:
 (i) Motion of air planes,
 (ii) Flow of incompressible fluid in closed pipes,
 (iii) Motion of submarines completely under water, and
 (iv) Flow around structures and other bodies immersed completely under moving fluids.
 Example 7.17. An oil of specific gravity 0.92 and viscosity 0.03 poise is to be transported at 
the rate of 2500 litres/sec. through a 1.2 m diameter pipe. Tests were conducted on a 12 cm diameter 
pipe using water at 20°C. If the viscosity water at 20° C is 0.01 poise, find:
 (i) Velocity of flow in the model;
 (ii) Rate of flow in the model.
 Solution.  Sp. gr. of oil, Sp = 0.92

  Viscosity of oil, µp = 0.03 poise = 2 210.03 Ns/m 0.003 Ns/m
10

× =

  Rate of oil flow, Q = 2500 litres/s = 2.5 m3/s
  Diameter of prototype, Dp = 1.2 m
  Diameter of the model, Dm = 12  cm = 0.12 m

 Viscosity of water at 20°C, µm = 0.01 poise = 0.01 × 1
10

 = 0.001 Ns/m2

 (i) Velocity of flow in the model, Vm:
  The dynamic similarity for pipe flow will be obtained if Reynolds number is same for both the 
model and prototype.

	 ∴ m m m

m

V Dρ
µ

 = p p p

p

V Dρ
µ

 ...(Eqn. 7.20)

(For pipe linear dimension is D)
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 or, m

p

V
V

 = · ·p p m

m m p

D
D

ρ µ
ρ µ

   = (9.81 0.92 / 9.81) 1.2 0.001 3.067
(9.81/ 9.81) 0.12 0.003
×

× × =

 9.81 0.92 9.81and
9.81 9.81

p
p m

w S w
g g
× ×

ρ = = ρ = = 
 


 But, Vp = 
2

2.5 2.21 m/s
1.2

4

p

p

Q
A

= =
π
×

	 ∴ Vm = 3.067 × Vp = 3.067 × 2.21 = 6.78 m/s (Ans.)
 (ii) Rate of flow in the model, Qm:
  Qm = Am × Vm = (π/4) × Dm  2 × Vm
   = (π/4) × 0.122 × 6.78 = 0.07668 m3/s or 76.68 litres/s (Ans.)

 Example 7.18. A geometrically similar model of an air duct is built to 1
25

 scale and tested with 

water which is 50 times more viscous and 800 times denser than air. When tested under dynamically 
similar conditions, the pressure drop is 2 bar in the model. Find the corresponding pressure drop in 
the full scale prototype.    [Nagpur University]

 Solution.

 Given: Scale ratio, m

p

L
L

 = 1
25

  p

m

µ
µ

 = 1 1;
50 800

p

m

ρ
=

ρ

  Pressure drop in the model = 2 bar
 Pressure drop in the prototype:
 For dynamic similarity between the prototype and its model, the Reynolds number for both of 
them should be equal.

	 ∴ p p p

p

V Lρ
µ

 = m m m

m

V Lρ
µ

 or, p

m

V
V

 = p m m

m p p

L
L

µ ρ
× ×

µ ρ

 Substituting the values, we get:

  p

m

V
V

 = 1 1 16800
50 50 25

× × =

 The pressure, p = 
2 2

2
2

F L V V
A L

ρ
= = ρ

3 2

2 2

V LF m a L L V
T T

L V

 = × = ρ × = ρ × × 
 

= ρ  
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	 ∴	
Pressuredropin prototype

Pressuredropin model
 = 

2 2
–4

2
1 16 5.12 10

800 25
p p

m m

V
V

ρ  × = × = × ρ  

	 ∴ Pressure drop in prototype = Pressure drop in model × 5.12 × 10–4

   = 2 × 5.12 × 10–4 = 1.024 × 10–3 bar
   = 1.024 × 10–3 × 105 N/m2 = 102.4 N/m2

   = 102.4 1000 mm
9810

×  = 10.44 mm (Ans.)

 Example 7.19. (a) The thrust T of a screw propeller is dependent upon the diameter D, speed of 
advance V, revolutions per second N, fluid density ρ and the co-efficient of viscosity µ. Experiments 
were performed with various models of propellers. What are the dimensionless groups to which the 
data should be plotted?
 (b) The characteristics of a propeller of 4.8 m diameter and rotational speed 120 r.p.m. are 
examined by means of a geometrically similar model of 600 mm diameter. When the model is run 
at 480 r.p.m. by a torque of 30 Nm the thrust developed is 300 N and the speed of advance is 3 m/s. 
Determine the following for the full scale propeller:
 (i) Speed of advance, (ii) Thrust, and (iii) Torque.
 Solution. (a) By means of dimensional analysis, it can be shown that the appropriate non-
dimensional parameters are:

  2 2
T

D Vρ
 = ,VD DN

V
ρ f µ 

Please solve this part (a) by using Rayleigh’s method or Buckingham’s π-theorem to 
obtain the above result.

 The propeller thrust is thus governed by Reynolds number VDρ 
 µ 

 and the factor DN
V

 
 
 

. 

However, both the conditions cannot be satisfied at the same time. Usually the effect of viscosity is 

neglected and the factor DN
V

 
 
 

 is arranged to be the same for the dynamic similarity between the 

model and prototype.
 (b) Given:  Diameter of propeller, (prototype) Dp = 4.8 m
    Speed, Np = 120 r.p.m.
  Diameter of the model, Dm = 600 mm = 0.6 m
    Rotational speed, Nm = 480 r.p.m.
    Torque of the model = 30 Nm
    Thrust developed, Tm = 300 N
    Speed of advance, Vm = 3 m/s.
 (i) Speed of advance for the propeller, Vp:

  
m

DN
V

 
 
 

 = 
p

DN
V

 
 
 

 i.e., m m

m

D N
V

 = p p

p

D N
V

 or, Vp = p p
m

m m

D N
V

D N
× ×
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   = 4.8 1203
0.6 480

× × = 6m / s (Ans.)

 (ii) Thrust of the propeller, Tp:

  2 2
m

T
D V

 
 ρ 

 = 2 2
p

T
D V

 
 ρ 

 i.e. 2 2
m

m m m

T
D Vρ

 = 2 2
p

p p p

T
D Vρ

 or, Tp = 
2 2

p p p
m

m m m

V D
T

V D
ρ    

× × ×   ρ    

   = 
2 26 4.8300 1

3 0.6
   × × ×   
   

 
, the fluid

medium beingsame
p mρ = ρ 

 
 



   = 76800 N (Ans.)
 (iii) Torque of the propeller:
  Efficiency of the model propeller

   = Output
Input

= Thrust × speed of advance
Torque × angular speed

   = 300 3 0.597 or 59.7%
2 48030

60

×
=

π × ×  
 

  Assuming that the prototype has the same efficiency as the model we have for the prototype,

  0.597 = 76800 6
2 120Torque

60

×
π × ×  

 

	 ∴ Torque of the propeller = 76800 6 60
0.597 2 120

× ×
× π ×

   = 61422 Nm (Ans.)
 Example 7.20. Resistance R to the motion of a completely submerged body is given by 

2 2 VLR V L
v

 = ρ f 
 

, where ρ and v are density and kinematic viscosity of the fluid while L is the 

length of the body and V is the velocity of flow. If the resistance of a one-eighth scale airship model 
when tested in water at 12 m/s is 220 N, what will be the resistance in air of the airship at the 
corresponding speed? Kinematic viscosity of air is 13 times that of water and density of water is  
810 times of air.    [Delhi University]

 Solution. Given:  Scale ratio = 1
8

m

p

L
L

=

  Velocity of model, Vm = 12 m/s
  Resistance of model, Rm = 220 N
 The fluids for model and the prototype are water and air respectively.
	 ∴ Kinematic viscosity of air = 13 × kinematic viscosity of water
 or, vp = 13vm
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  Density of water = 810 × density of air
 or, ρm = 810 ρp
 Resistance of the airship in air, Rp:
 The resistance, R, is given by:

  R = 2 2 VLV L
v

 ρ f 
 

 From the above equation, it is obvious that flow in the model will be dynamically similar if the 
Reynolds numbers are equal in both the systems. Thus, if

  
m

VL
v

 
 
 

 = 
p

VL
v

 
 
 

 ...(i)

 then, 2 2
m

R
V L

 
 ρ 

 = 2 2
p

R
V L

 
 ρ 

 ...(ii)

 From eqn. (i), we have:

  m m

m

V L
v

 = p p

p

V L
v

 or, Vp = 1. . 12 13 19.5 m/s
8

pm
m

p m

vLV
L v

= × × =

 At this prototype velocity, the resistance of the airship is obtained from eqn. (ii) as follows:

  2 2
m

m m m

R
V Lρ

 = 2 2
p

p p p

R
V Lρ

 or, RP = 
2 2 2

2
2 2

19.5 1. . . 220 8
12 810

p p p
m

mm m

L V
R

L V
ρ  = × × × 
ρ  

   = 45.9 N (Ans.)
 Example 7.21. (a) What are the various dimensionless groups in fluid mechanics? Under what 
circumstances is each of these groups important?
 (b) The drag of a small submarine hull is desired when it is moving far below the free surface 

of water. A 1
10

 scale model is to be tested. What dimensionless group should be duplicated between 

the model and prototype and why? If the drag of the prototype at 1 knot is desired, at what speed 
should model be moved to give the drag to be expected by the prototype? Would this result still be 
true if the prototype were to be moved close to the surface? Explain. [Engg. Services]

 Solution. 
 (a) The various dimensionless groups which oftenly appear in fluid mechanics are given in the 

table (refer to page 426) along with their significance and fields of application.

 (b)   Scale ratio, Lr = 1
10

m

p

L
L

=  ...(Given)

 When a submarine is moving far below the free water surface it corresponds to the flow 
situation where the body is entirely submerged in an infinite mass of fluid at rest; the dynamic 
similarity criterion is then prescribed by Reynolds number which must be duplicated for model and 
prototype. For dynamic similarity, equating the Reynolds number, we have:
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  m m m

m

V Lρ
µ

 = p p p

p

V lρ
µ

 or, Vm = p pm
p

m p m

L
V

L
ρ µ

× × ×
ρ µ

 But, ρm = ρp and µm  = µp since water is the fluid both for model and 
prototype.

	 ∴ Vm = 1 × 1 × 10 × 1= 10 knots (Ans.)
 To evaluate the drag experienced by the prototype let us duplicate the drag co-efficient F/ρ L2V2 
for the model and the prototype as under:

  Fp = 
2 2

p p p
m

m m m

L V
F

L V
ρ    

× × ×   ρ    

   = 
2

2 11 10
10 m mF F × × × = 
 

Table: Dimensionless Groups/Numbers

Sl. No. Dimensionless 
number

Aspects
Symbol Group of 

variables
Significance Field of application

1. Reynolds
number Re

VLρ
µ

Inertia force
Viscousforce

Laminar viscous flow in confined 
passages (where viscous effects are 
significant)

2. Froude’s
number Fr V

Lg
Inertia force
Gravityforce

Free surface flows (where gravity 
effects are important)

3. Euler’s number
Eu

V
p / ρ

 
Inertia force

Pressureforce

Conduit flow (where pressure 
variations are significant)

4. Weber’s
number We /

V
Lσ ρ

Inertia force
Surface tension

Small surface waves, capillary and 
sheet flow (where surface tension is 
important)

5. Mach’s number
M

/
V

K ρ
Inertia force
ElasticForce

High speed flow (where  
compressibility effects are 
significant).

 Hence when a 1
10

 model moves at a speed of 10 knots,  the drag experienced by it will be the 

same as that experienced by the prototype moving at a speed of 1 knot.
  When the submarine moves close to the surface, the waves offer additional resistance, there-

fore, the gravity effect must also be considered. The above result would therefore, not be valid 
then.

 Example 7.22.  A model of submarine is scaled down 1/20 of the prototype and is to be tested in 
a wind tunnel. The speed of the prototype at which we are to estimate the drag is 8 m/s. What should 
be the free-stream velocity of the air? What will be ratio of the drag between the model and the 
prototype? Explain why there would be no dynamic similarity if the submarine prototype is moved 
near the free surface.
  vsea water = 1.21 × 10–2 cm2/s
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  νair = 1.64 × 10–1 cm2/s
  ρsea water = 1027 kg/m3.
  ρair = 1.34 kg/m3. [IIT Delhi]

 Solution. Given: Scale ratio = 1/20
  Speed of the prototype, Vp = 8 m/s
 Free-stream velocity, Vm:
 As the submarine is to overcome the viscous resistance, the similarity of Reynolds number is 
essential for dynamic similarity between the model and the prototype.

  
p

VL
v

 
 
 

 = 
m

VL
v

 
 
 

	 ∴ Vm = 
–1

–2
1.64 108 20
1.21 10

p m
p

m p

L
V

L
ν ×

× × = × ×
ν ×

   = 2168.6 m/s. (Ans.)
 Ratio of drag force:
  Also drag force, F = Mass × acceleration

   = 3 2 2 2V LL L V L V
T T

ρ × × = ρ × × = ρ

	 ∴ The ratio of drag force,

  p

m

F
F

 = 
2 2

p p p

m m m

L V
L V

ρ    
× ×   ρ    

   = 
2

21027 8(20)
1.34 2168.6

 × ×  
 

 = 4.17 (Ans.)

  When the prototype moves closer to the surface, gravity force will generate the surface waves 
and that too will contribute to the surface resistance and hence there would be no dynamic 
similarity. The model, therefore, will have to be tested with the similarity of Reynolds and 
Froude’s numbers.

 Example 7.23.  An orifice meter to carry water is calibrated with air in a geometrically similar 
model at 1/5 prototype scale. Dynamically similar flow will be obtained when the discharge ratio 
(air to water) is
 (i) 0.4 (ii) 2.5 (iii) 62.5.
 Assume the ratio of kinematic viscosity of air to water as 12.5.

[UPSC Exams; Fluid Mechanics]

 Solution.

 Given:  Scale ratio, m

p

L
L

 = 1
5

  air

water

v
v

 = 12.5m

p

v
v

=

 Discharge ratio:
 In case of an orifice which is to carry water and is calibrated with air, the dynamically similar 
flow will be obtained when the Reynolds numbers in model and prototype are equal, thus:
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  m m

m

V L
ν

 = p p

p

V L
ν

 or, m

p

V
V

 = 12.5 5 62.5pm

p m

L
L

ν
× = × =

ν

	 ∴ Discharge ratio (air to water),

  m

p

Q
Q

 = 
22

2
1 62.5
5

m m

pp

L V
VL

 = × = 
 

2.5 (Ans.)

 Example 7.24. A test was made on a pipe model 15 mm in diameter and 3 m long with water 
flowing through it at the corresponding speed for frictional resistance. The head loss was found by 
measurement to be 7 m of water. The prototype pipe is 300 mm in diameter and 240 m long through 
which air is flowing at 3.6 m/s. Density of water and air are 1000 kg/m3  and 1.22 kg/m3 respectively 
and co-efficients of viscosity of water and air are 0.01 and 1.8 × 10–4  poise respectively. Find:
 (i) The corresponding speed of water in the model pipe for dynamic similarity;
 (ii) Pressure drop in prototype pipe.
  Neglect change of density of the air.

 Solution. For model:
  Diameter of pipe, Dm = 15 mm = 0.015 m
  Density of water, ρm = 1000 kg/m3

  Dynamic viscosity of water, µm = 2
0.01 N.s0.01 poise 0.001
10 m

= =

  Length, Lm = 3m
 For prototype:
  Diameter of pipe, Dp = 300 mm = 0.3 m
  Density of air, ρp = 1.22 kg/m3

  Dynamic viscosity of air, µp = 
–4

–4 –5
2

1.8 10 N.s1.8 10 poise = 1.8 10
10 m
×

× = ×

  Length, Lp = 240 m
  Velocity of air, Vp = 3.6 m/s
  Head lost in model   =  7 m
	 ∴  Pressure drop in model, (∆p)m  = 7 × 9.81 = 68.67 kN/m2.

 (i) Speed of water in the model pipe, Vm:
  For dynamic similarity in the case of frictional resistance, the Reynolds number in the model 
and prototype must be same i.e.

  
m

VDρ 
 µ 

 = 
p

VDρ 
 µ 

 i.e. m m m

m

V Dρ
µ

 = p p p

p

V Dρ
µ

 or, Vm = p p m
p

m m p

D
V

D
ρ µ

× × ×
ρ µ
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   = –5
1.22 0.3 0.0013.6
1000 0.015 1.8 10

× × ×
×

   = 4.88 m/s (Ans.)
 (ii) Pressure drop in prototype pipe, (∆p)p:
  We know that for frictional resistance,

  2 2
R

L Vρ
 = f (Reynolds number)

  where, R is the resistance and L2 represents the characteristic area. In the case of pipe flow 
the characteristic area may be taken as the wetted area i.e., π DL where L is the length of pipe 
under consideration.

  As the Reynolds number is the same in model and prototype, the above equation becomes:

  2
m

R
DLV

 
 ρπ 

 = 2
p

R
DLV

 
 ρπ 

  Also, R = 
2

4
Dp π

∆ ×

  where, ∆p is the pressure drop.

	 	∴ 2
.

m

p D
LV

∆ 
 ρ 

 = 2
.

p

p D
LV

∆ 
 ρ 

  or, 2
( ) .

. .
m m

m m m

p D
L V

∆
ρ

 = 2

( ) .
. .

p p

p p p

p D
L V

∆

ρ

  or, (∆p)p = 
2

2( ) . . . .p p pm
m

m p mm

V LDp
D LV

ρ
∆

ρ

   = 
2

2
1.22 0.015 3.6 24068.67
1000 0.3 34.88

× × × ×

   = 0.182 kN/m2 (Ans.)

 Example 7.25. Water having a coefficient of kinematic viscosity of 1.12 × 10–6 m2/s and a mass 
density of 1 Mg/m3 flows at a mean speed of 1.75 m/s through a 75 mm diameter pipeline. What 
corresponding volumetric rate (measured at atmospheric pressure) of air flow through this pipeline 
would give rise to essentially similar dynamical flow conditions and why would this be so? Air may 
be assumed to have a coefficient of kinematic viscosity of 14.7 × 10–6 m2/s and a mass density of  
1.23 kg/m3. Determine for each fluid, the pressure drop which would occur in 10 m length of this 
pipeline. Take f1 = 0.010 (Darcy’s friction factor) for both fluids. (MU)

 Solution. Given:
 Water Air
  ν = 1.12 × 10–6 m2/s γ = 14.7 × 10–6 m2/s
	 	 ρ = 1 Mg/m3 = 1000 kg/m3 ρ = 1.23 kg/m3

  V = 1.75 m/s V = ?
  D = 75 mm = 0.075 m D = 75 mm = 0.075 m
  L =  10 m L = 10 m
  f 1 =  0.010 f1 = 0.010
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 For similar dynamical flow conditions, the ratio of corresponding forces acting at corresponding 
points in the model and prototype should be equal. The ratio of forces are dimensionless numbers. It 
means for dynamic similarity between model and prototype, dimensionless numbers should be same 
for model and prototype.
 In the above question, we are dealing with the flow through pipe for which Reynolds model law 
should hold good, which states that Reynolds number for the model must be equal to the Reynolds 
number for the prototype.
  (Re)water = (Re)air

  
water

VDρ 
 µ 

 = 
air

VDρ 
 µ 

 or, 
water

VD
v

 
 
 

 = 
air

VD
v

 
 
 

  Vair = water air
water

air water

D vV
D v

× ×

   = 
–6

–6
0.075 14.7 101.75 22.97 m/s
0.075 1.12 10

×
× × =

×

  Volumetric flow rate of air = Area × velocity

   = 2 2(0.075) 22.97
4 air airD Vπ π

× = × ×
4

   = 0.1015 m3/s (Ans.)
 For water:

  Re = –6
1.75 0.075 117187.5
1.12 10

VD
v

×
= =

×

 Since Reynolds number is greater than 4000, hence flow is turbulent, for which loss is given by:

  hf = 
24

2
fLV

D g×
, where f = co-efficient of friction.

   = 
2

1
2

f LV
D g×

, where f 1 = friction factor

   = 
20.010 10 1.75 0.2081 m

0.075 2 9.81
× ×

=
× ×

  Pressure drop = 0.2081 m water column
   = 0.2081 × 1000 × 9.81 N/m2 = 2041.46 Pa  2.04 kPa (Ans.)
 For air:

  Re = –6
22.97 0.075 117193.8
14.7 10

VD
v

×
= =

×

 Since Reynolds number is greater than 4000, hence flow is turbulent for which loss of head is 
given by:

  hf = 
2 2

1 0.010 10 (22.97) 35.86 m
2 0.075 2 9.81

f LV
D g

× ×
= =

× × ×

  Pressure drop = 35.86 m of air column
   = 35.86 × 1.23 × 9.81 N/m2 = 432.7 Pa  0.433 kPa (Ans.)
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 Example 7.26. A model of submarine is scaled down to 1
20

 of the prototype and is to be tested 

in a wind tunnel where free stream pressure is 2.0 MPa absolute and temperature is 50°C. The speed 
of the prototype is 7.72 m/s. Determine the free stream velocity of air and the ratio of the drags 
between model and prototype. Assume kinematic viscosity of sea water as 1.4 × 10–6 m2/s and 
viscosity of air as 0.0184 cP.    (UPTU)

 Solution. Given: Lr = 1 ;
20

m

p

L
L

=  p = 2.0 MPa = 2 × 106 N/m2; t = 50°C

  Vp = 7.72 m/s; vp = 1.4 × 10–6 m2/s; µair = 0.0184 × 10–3 Ns/m2.

  D m
m

D p

(F )V ;
(F )

:

  ρair = 
6

32 10 21.57 kg/m
287 (50 273)

p
RT

×
= =

× +

  vm = 
–3

–7 20.0184 10 8.53 10 m /s
21.57

air

air

µ ×
= = ×

ρ

 Since the submarine has to overcome the viscous resistance, there has to be dynamic similarity 
between the model and the prototype; which implies equality of Reynolds number.
 i.e. (Re)p = (Re)m

 or, p p

p

V L
v

 = m m

m

V L
v

 or, Vm = 
–7

–6
7.72 20 8.53 10 94.07 m/s

1.4 10
p p m

p m

V L v
v L

× × ×
= =

×

 Hence, free stream velocity of air = 94.07 m/s (Ans.)

 Now, ( )
( )

D m

D p

F
F

 = 
2 2 2

m m m m m m

p p p p p p

L V L V
L V L V

ρ ρ     × × = ×     ρ ρ     

 Assuming density of sea water as 1025 kg/m3,
 Ratio of drag forces,

  ( )
( )

D m

D p

F
F

 = 
221.57 1 94.07 .

1025 20 7.72
 × =  

0 00781 (Ans.)

 Example 7.27. A torpedo shaped object, 900 mm diameter is to move in air at 60 m/s and its 
drag is to be estimated from tests in water on a half scale model. Determine the necessary speed of 
the model and the drag of the full scale object if that of the model is 1140 N. Given  properties: air 
viscosity = 1.86 × 10–5

 Ns/m2, water viscosity = 1.01 × 10–3 Ns/m2, air density = 1.2 kg/m3, water 
density = 1000 kg/m3.    (Anna University)
 Solution. Given: Torpedo shaped object (Prototype): Vp = 60 m/s
  µp = –5 21.86 10 Ns/mairµ = × ;

  ρp = ρair = 1.2 kg/m3

 Model half size tested in water: µm = –3 21.01 10 Ns/m ;waterµ = ×

  ρm = ρwater  = 1000 kg/m3;  (FD)m = 1140 N



432         Fluid Mechanics

 Also, p

m

L
L

 = 1 2
(1/ 2)

= .

 Speed of the model, Vm:
 Now, (Re)model = (Re)prototype

  m m m

m

V Lρ
µ

 = p p p

p

V Lρ
µ

	 ∴ Vm = 
3

–5
1.01 10 1.2 60 2
1.86 10 1000

m m p p

p m m

V L
L

−µ ρ × × ×
= ×

µ ρ × ×
 = 7.819 m/s (Ans.)

 Drag of the full scale object, (FD)p:
  (CD)p = (CD)m;

  p

m

A
A

 = 
2

p

m

L
L

 
 
 

  
( )
( )

D p

D m

F
F

 = 
2 2 2

2 22

1( ) ( )2
1 ( )( )
2

D p p p p p p p

m m mD m m m m

C A V L V
L VC A V

× ρ ρ
=

ρ× ρ

  (FD)p = 
2 2

2 2

.
( ) p p p

D m
m m m

L V
F

L V

 ρ
×  

ρ  

   = 
2

2
2

1.2 (60)1140 (2)
1000 (7.819)

× × ×

    = 322.2 N (Ans.)

 Example 7.28.  A geometrically similar model of an air duct is built to 1
25

 scale and tested 

with water which is 50 times more viscous and 800 times denser than air. When tested under 
dynamically similar conditions, the pressure drop is 2 bar in model. Find corresponding pressure 
drop in prototype and express in water column. (MGU, Kerala)

 Solution. Given: p

m

L
L

 = 25; 1
50

p

m

µ
=

µ
; 1

800
p

m

ρ
=

ρ
; (∆p)m = 2 bar

 (∆p)p:
 For dynamic similarity, the Reynolds number must be equal in model and prototype. 

	 ∴ m m m

m

V Lρ
µ

 = p p p

p

V Lρ
µ

 or, p

m

V
V

 = p m m

m p p

L
L

µ ρ
× ×

µ ρ

   = 1 1 16800
50 25 25

× × =

  Pressure = 
2 2

2
2

F L V V
A L

ρ
= = ρ
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( )
( )

p

m

p
p

∆
∆

 = 
2

p p

m m

V
V

ρ  
 ρ  

   = 
21 16 0.000512

800 25
 × = 
 

	 ∴	 (∆)p = 2 × 0.000512 bar

   = 5 22 0.000512 10 N/m
1000

w
w

hg× × = ρ

  (where, hw = pressure drop in mm of water column)

	 ∴ hw = 
52 0.000512 10 1000 .

1000 9.81
× × ×

=
×

10 438mm  (Ans.)

( ρw = 1000 kg/m3)

 Example 7.29. A ship 300 m long moves in sea-water, whose density is 1030 kg/m3. A 1 : 100 
model of this ship is to be tested in a wind  tunnel. The velocity of air in the wind tunnel around the 
model is 30 m/s and the resistance of the model is 60 N. Determine the velocity of ship in sea-water 
and also the resistance of the ship in sea-water. The density of air is given as 1.24 kg/m3. Take the 
kinematic viscosity of sea-water and air as 0.012 stokes and  0.018 stokes respectively.

(Delhi University, 2000)
 Solution. Given:
 Prototype Model

  Lp = 300 m Lm = 1 300 3m
100

× =

  ρp = 1030 kg/m3 ρm = 1.24 kg/m3

  νp	= 0.012 × 10–4 m2/s vm = 0.018 × 10–4 m2/s (1 stoke = 10–4 m2/s)
     Vm = 30 m/s
     Rm = 60 N.
 Vp, Rp:
 For dynamic similarity between the prototype and its model, the Reynolds number for both of 
them should be equal.

	 ∴ p p

p

V L
v
×

 = m m

m

V L
v
×

 or, Vp = p m
m

m p

v L V
v L

× ×

   = 
–4

–4
0.012 10 3 30 0.2 m/s

3000.018 10
×

× × =
×

  Resistance = Mass × acceleration

   = 3 2 2 2

1
V V LL L L V
t t

ρ × = ρ × × = ρ

 Then, p

m

R
R

 = 
2 2

2 2

( )
( )

p p

m m

F L V
F L V

ρ
=

ρ
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   = 
2 2

p p p

m m m

L V
L V

ρ    
× ×   ρ    

   = 
2 21030 300 0.2 369.17

1.24 3 30
   × × =   
   

	 ∴ Rp = Rm × 369.17 = 60 × 369.17 = 22150.2 N (Ans.)

7.11.  FROUDE MODEL LAW 

 When the gravitational force can be considered to be the only predominant force which controls  
the motion in addition to the inertia force, the similarity of the flow in any two such systems can 
be established if the Froude’s number for both the systems is the same. This is known as Froude 
Model Law. Some of the phenomena for which the Froude model law can be sufficient criterion for 
dynamic similarity to be established in the model and the prototype are:
 (i) Free surface flows such as flow over spillways, sluices etc.;
 (ii) Flow of jet from an orifice or nozzle;
 (iii) Where waves are likely to be formed on the surface;
 (iv) Where fluids of different mass densities flow over one another.
 Let, Vm = Velocity of fluid in model,
  Lm = Length (or linear dimension) of the model,
  gm = Acceleration due to gravity (at a place where model is tested),
 and Vp, Lp and gp are the corresponding values of the velocity, length and acceleration due to 
gravity for the prototype.
 Then according to Froude model law:
  (Fr)m = (Fr)p

 or, m

m m

V
g L

 = p

p p

V
g L

 ...(7.22)  

As the value of g at the site of model testing will be practically the same as at the site of the proposed 
prototype, therefore, gm = gp and the eqn. (7.22) becomes:

  m

m

V
L

 = p

p

V
L

 ...(7.23)

 or, p

m

V
V

 = p
r

m

L
L

L
=  p

r
m

L
L

L
 

= 
 


 where Lr = Scale ratio for length.

  p

m

V
V

 = Vr = Scale ratio for velocity

	 ∴ p

m

V
V

 = r rV L=  ...(7.24)

 (i) Time scale ratio, Tr:

 We know, Tm = and pm
p

m p

LL T
V V

=
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	 ∴ Tr = 
/
/

p p p p m

m m m m p

T L V L V
T L V L V

= = ×

   = 1
r r

r
L L

L
× =

 i.e. Tr = rL  ...(7.25)

 (ii) Acceleration scale ratio, ar:

  We know, a = V
t

	 	∴ ar = 
/ 1 1
/

p p p p m
r

m m m m p r

a V T V T L
a V T V T L

= = × = × =

  i.e. ar = 1       ...(7.26)
 (iii) Discharge scale ratio, Qr:

    The discharge, Q = 
3

2. L LA V L
T T

= × =

	 	∴  Discharge ratio, Qr = 
33

3

( / )
( / )

p p p m

m m pm

Q L T L T
Q L TL T

   = = ×   
   

   = 3 2.51
r r

r
L L

L
× =  ...(7.27)

 (iv) Force scale ratio, Fr:
  The force may be expressed from the Newton’s second law,

    F = 3 2 2 2V Lma L L V L V
T T

= ρ × = ρ × × =ρ

	 	∴  Force ratio, Fr = 
2 2

2 2
2 2

p p p p
r r r

m m m m

F L V
L V

F L V
ρ

= = ρ
ρ

  If the same fluid is used in the model, then 1p
r

m

ρ 
ρ = = ρ 

	 	∴ Fr = 2 2 3( )r r rL L L× =     ...(7.28)

      ( )r rV L=

 (v) Pressure intensity scale ratio, pr:

  We know, p = 
2 2

2
2

F L V V
A L

ρ
= = ρ

	 	∴  Pressure ratio, pr = 
2

2
p p p

m m m

p V
p V

ρ
=
ρ

  For the same fluid ρp = ρm

	 	 ∴ pr = 
2

2
2 ( )p

r r
m

V
L L

V
= =  ...(7.29)
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 (vi) Energy or work done scale ratio Er:
    Energy = Force × distance
	 	∴ E = F × L

   and,  the energy ratio, Er = .p p p
r r

m m m

E F L
F L

E F L
= × =

             or, Er = 3 4.r r rL L L=  ...(7.30)

 (vii) The momentum or impulse scale ratio Mr:
  The momentum or impulse
     = mV = ρL3V

    and,    the momentum ratio = 
3

3
3 . .p p p p

r r r
m m m m

M L V
Lr V

M L V
ρ

= = ρ
ρ

   = 3 7/2
r r rL L L=  ...(7.31)

     ( )1rρ =

 (viii) Torque scale ratio, Tr  
*:

  The torque is given by the product of force and its perpendicular distance from the centre of 
rotation,

  T* = F . L

    and the torque ratio, Tr  
* = 

*

* .p p p
r r

m mm

T F L
F L

F LT
= × =

   = 3 4.r r rL L L=  ...(7.32)

 (ix) Power scale ratio, Pr:

  The power being the time rate of doing work, is given by: F LP
T
×

=

    and,      the power ratio, Pr = 
( ) /
( ) /

p p p p p p m

m m m m m m p

P F L T F L T
P F L T F L T

×
= = × ×

×

   = 3 3.51 1. . . .r r r r r
r r

F L L L L
T L

= =

  i.e. Pr = L3.5  r ...(7.33)

 Example 7.30. (a) With Froude’s number as the criterion of dynamic similarity for a certain 
flow situation, work out the scale factors for velocity, time, discharge, acceleration, force, work and 
power in terms of the scale factor for length.
 (b) A geometrically similar model of spillway is to be laid to a scale of 1 in 50. Calculate the 
velocity ratio, discharge ratio and acceleration ratio. [MDU, Haryana]

 Solution. (a) Refer to Article 7.11.

 (b)  Scale ratio, Lr = 50p

m

L
L

=

 Velocity ratio [Eqn. (7.24)], Vr = 50p
r

m

V
L

V
= =  = 7.07 (Ans.)
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 Discharge ratio [Eqn. (7.27)],  Qr  = 2.5 2.5( ) (50)p
r

m

Q
L

Q
= =  = 17677.6 (Ans.)

  Acceleration ratio, ar = p

m

a
a

= 1 (Ans.)

 Example 7.31.  In the model test of a spillway the discharge and velocity of flow over the model 
were 2.5 m3/s and 1.5  m/s respectively. Calculate the velocity and discharge over the prototype 
which is 36 times the model size.    [PTU]
 Solution.  Discharge over the model, Qm  = 2.5 m3/s
  Velocity of flow over the model, Vm  = 1.5 m/s
  Scale ratio (linear), Lr   =  36
 Velocity over the prototype, Vp:
 Using Froude model law [Eqn. (7.24)], we have

  p

m

V
V

 = 36 6rL = =

	 ∴ Vp = 1.5 × 6 = 9 m/s (Ans.)
 Discharge over the prototype, Qp:
 Again, using Froude model law [Eqn. (7.27)], we have

  p

m

Q
Q

 = (Lr)
2.5 = (36)2.5 = 7776

 ∴ Qp = 2.5  × 7776 = 19440 m3/s (Ans.)

 Example 7.32. In a geometrically similar model of spillway the discharge per metre length is 

0.2 m3/s. If the scale of the model is 1
36

, find the discharge per metre run of the prototype.

 Solution.  Discharge per metre length for model = 0.2 m3/s
  Scale ratio (linear), Lr = 36
 Discharge per metre run for the prototype, Qp:
 According to Froude law:

  p

m

Q
Q

 = L2.5  r [Eqn. (7.27)]

 Discharge ratio per metre length is given as:

  p

m

q
q

 = 
/
/

p p p m

m m m p

Q L Q L
Q L Q L

= ×

   = 2.5 1.51
r r

r
L L

L
× =

	 ∴ p

m

q
q

 = (36)1.5 = 216

 and, qp = 0.2 × 216 = 43.2 m3/s (Ans.)

 Example 7.33. The force required to tow a 1: 30 scale model of a motor boat in a lake at a 
speed of 2 m/s is 0.5 N. Assuming that the viscous resistance due to water and air is negligible 
in comparison with the wave resistance, calculate the corresponding speed of the prototype for 
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dynamically similar conditions. What would be the force required to propel the prototype at that 
velocity in the same lake?    [GATE Exam.]

 Solution.  Linear scale ratio, Lr = 30p

m

L
L

=

  Speed of the model, Vm  = 2 m/s
  Force required to tow the model, Fm  = 0.5 N
 Speed of the prototype, Vp:
 Since the wave resistance is the dominant force in comparison with the viscous resistance, 
therefore, the dynamic similarity will be attained when the Froude numbers in model and prototype 
are equal.
	 ∴ 

m

V
Lg

 
 
 

 = 
p

V
Lg

 
 
 

 or, m

m m

V
L g

 = p

p p

V
L g

 or, p

m

V
V

 = 30p

m

L
L

=  ( gm = gp)

 ∴ Vp = 2 30×  = 10.95 m/s (Ans.)

 Force required to propel the prototype, Fp:

 We know, Fr = 
2 2

2 2
p p p p

m m m m

F L V
F L V

ρ
=
ρ

 ( F = ρL2V2)

 or, p

m

F
F

 = 
2 2

p p

m m

L V
L V

   
×   

   
 [ ρm = ρp, fluid being same]

   = 2 2 3(30) ( 30) 30× =

	 ∴ Fp = Fm × 303 = 0.5 × 303 = 13500 N (Ans.)

 Example 7.34. A spillway model is to be built to a geometrically similar scale of 1
50

 across a 

flume of 600 mm width. The prototype is 15 metres high and the maximum head on it is expected to 
be 1.5 metres.
 (i) What height of model and what head on model should be used?
 (ii) If flow over the model for a particular head is 12 litres/ second, what flow per metre length 

of prototype is expected?
 (iii) If the negative pressure in the model is 200 mm, what is the negative pressure in prototype? 

Is it practicable?    [PTU]

 Solution. Linear scale ratio,  Lr = 50p

m

L
L

=

  Width of model, Bm = 600 mm = 0.6 m
  Flow over model, Qm = 12 litres/sec.
  Pressure in model, hm = – 200 mm of water = – 0.2 m of water
  Height of prototype, Hp = 15 m
  Head on prototype,  hp = 1.5 m
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 (i) Height of model, Hm:
  Head on model, hm:

    Linear scale ratio, Lr = 50p p

m m

H h
H h

= =

  ∴  Height of model, Hm = 15
50 50

pH
= = 0.3 m  (Ans.)

    Head on model, hm = 1.5
50 50

ph
= = 0.03 m (Ans.)

 (ii) Discharge per metre length of prototype, qp:
    Width of prototype, Bp = Bm × Lr = 0.6 × 50 = 30 m

  Now, discharge ratio [Eqn. 7.27], 2.5 2.5(50) 17677.66p
r

m

Q
L

Q
= = =

	 	∴ Qp = Qm × 17677.66 = 12 × 17677.66 = 212132 litres/sec.
  Discharge per metre length of prototype

     = 212132
30

p p

p p

Q Q
L B

= =  = 7071 litres/sec. (Ans.)

 (iii) Negative pressure head in prototype:
  Negative pressure head in prototype,
    hp = hm × Lr = – 0.2 × 50 = – 10 m (Ans.)
  Since the cavitation limits the maximum negative pressure head to 7.5 m, therefore, a negative 

head of 10 m is not practicable. (Ans.)

 Example 7.35. The performance of a spillway of an irrigation project is to be studied by means 
of a model constructed to a scale of 1 : 9,  neglecting the viscous and surface tension effects, 
determine:
 (i) Rate of flow in model for a prototype discharge of 1200 m3/s;
 (ii) The dissipation of energy in the prototype hydraulic jump, if the jump in the model  dissipates 

0.25 kW.

 Solution.  Linear scale ratio, Lr = 9p

m

L
L

=

  Rate of flow in the prototype, Qp = 1200 m3/s
  Dissipation of energy in the model, Pm = 0.250 kW
 (i) Rate of flow in the model, Qm:
  For dynamic similarity between the model and its prototype the Froude’s numbers must be 

equal.

	 	∴ 
p

V
Lg

 
 
 

 = 
m

V
Lg

 
 
 

	 ∴ p

m

V
V

 = p

m

L
L

 ( gp = gm)

  The discharge ratio,  Qr = 
22

2
p p p p p

m m mm m

Q L V L V
Q L VL V

×  
= = × 

×  
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     = 2 5/2( ) ( )r r rL L L× =

	 	∴ Qm = 5/2 5/2
1200 .

( ) (9)
p

r

Q

L
= = 34 938 m / s (Ans.)

 (ii) The dissipation of energy in the prototype hydraulic jump, Pp:
    Power = w QH (where, H = head of fluid)

	 	∴   Power ratio, Pr = 5/2 7/2( ) ( )p p p p
r r r

m m m m

P w Q H
L L L

P w Q H
= = × =  ( wp = wm)

	 	∴ Power dissipated in the prototype,
    Pp = Pm × (Lr)

7/2 = 0.25 × (9)7/2 = 546.75 kW (Ans.)

 Example 7.36. The characteristics of the spillway are to be studied by means of a geometrically 
similar model constructed to the scale ratio of 1 : 10.
 (i) If the maximum rate of flow in the prototype is 28.3 cusecs, what will be the corresponding 

flow in model?
 (ii) If the measured velocity in the model at a point on the spillway is 2.4 m/s, what will be the 

corresponding velocity in prototype?
 (iii) If the hydraulic jump at the foot of the model is 50 mm high, what will be the height of jump 

in prototype?
 (iv) If the energy dissipated per second in the model is 3.5 Nm, what energy is dissipated per 

second in the prototype?                                                           (Anna University)

 Solution. Given: Scale ratio, p

m

L
L

 = 10; Qp = 28.3 m3/s; Vm = 2.4 m/s;

  Hm = 50 mm; Em = 3.5 Nm.
 (i) Flow in the model, Qm:

    p

m

Q
Q

 = (Lr)
2.5 = (10)2.5 = 316.22

	 ∴ Qm = 28.3 . /
316.22 316.22

30 0895 m spQ
= = (Ans.)

 (ii) Velocity of flow in prototype, Vp:

    p

m

V
V

 = 10 3.162rL = =

	 	∴ Vp = Vm × 3.162 = 2.4 × 3.162 = 7.589 m/s (Ans.)
 (iii) Height of jump in prototype, Hp:

    p

m

H
H

 = Lr = 10

	 	∴ Hp = Hm × 10 = 50 × 10 = 500 mm (Ans.)
 (iv) Energy dissipated per second in the prototype, Ep:

  p

m

E
E

 = (Lr)
3.5 = (10)3.5 = 3162.28

	 	∴ Ep = Em × 3162.28 = 3.5 × 3162.28 = 11067. 98 Nm (Ans.)

 Example 7.37. A 1 : 64 model is constructed of an open channel in concrete which has 
Manning’s N = 0.014. Find the value of N for the model. (Delhi University)
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 Solution. Given: Lr = 64; Np = 0.014.
 Value of N of the model, Nm:
 The Manning’s formula is given by :

  V = 2/3 1/21 ( ) ( )R S
N

 where, R = Hydraulic radius (or hydraulic mean depth) in metres;
  S = Slope of the bed of the channel.
 Now for the model, the Manning’s formula becomes:

  Vm = 2/3 1/21 ( ) ( )m m
m

R S
N

 ...(i)

 and, for the prototype, the Manning’s formula is written as:

  Vp = 2/3 1/21 ( ) ( )p p
p

R S
N

 ...(ii)

 Dividing (ii) by (i), we get:

  p

m

V
V

 = 

2/3 1/2
2/3 1/2

2/3 1/2

1 ( ) ( )

1 ( ) ( )

p p
p p pm

p m m
m m

m

R S
N R SN

N R SR S
N

   
= ×    

   
 ...(iii)

 For dynamic similarity, Froude model law is used.

 We know that: p

m

V
V

 = rL  ...[Eqn. (17.24)]

 or, p

m

V
V

 = 64 8=

 Also, p

m

R
R

 = Lr, and 1p

m

S
S

=  as Sp and Sm are dimensionless.

 Substituting the values in (iii), we get:

  8 = 2/3 2/3( ) 1 (64)
0.014

m m
r

p

N NL
N

× × = ×

	 ∴ Nm = 2/3
8 0.014

(64)
×

= 0.007 ( Ans.)

 Example 7.38.  A 7.2 m high and 15 m long spillway discharges 94 m3/s discharge under a head 
of 2.03. If 1: 9 scale model of this spillway is to be constructed, determine model dimensions, head 
over spillway model and the model discharge. If model experiences a force of 7500 N, determine 
force on the prototype.    (Panjab University)
 Solution. Given: Height, hp = 7.2 m; Lp = 15 m; Qp = 94 m3/s, head Hp = 2.0 m;
  Lr = 9; Fm = 7500 N
 (i) Model dimensions (hm, Lm):

  p

m

h
h

 = 9p
r

m

L
L

L
= =

	 	∴ hm = 7.2
9 9
ph
=  = 0.8 m (Ans.)
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  and, Lm = 15 .
9 9
pL
= = 1 67 m  (Ans.)

 (ii) Head over the model, Hm:

  p

m

H
H

 = Lr = 9

	 	∴ Hm = 2.0 .
9 9

pH
= = 0 222m (Ans.)

 (iii) Discharge through the model, Qm:

    p

m

Q
Q

 = (Lr)
2.5 = (9)2.5 = 243

	 	∴ Qm = 94
243 243

pQ
= = 30.387 m / s (Ans.)

 (iv) Force on the prototype Fp:

    Fr = 3 3( ) (9) 729p
r

m

F
L

F
= = =

	 	∴ Fp = Fm × 729 = 7500 × 729 = 5467500 N (Ans.)

 Example 7.39. A model of rectangular pier 1.5 m wide and 4.5 m long in the river is built to a 
scale of 1: 25. The average depth of water in the river is 3 m. The model was tested in a laboratory, 
where the velocity of flow was maintained constant at 0.6 m/s. It was observed that the force acting 
on the model was 3.6 N and the height of the standing wave was 30 mm. Determine the following for 
the prototype:
 (i) The corresponding speed,
 (ii) The force acting,
 (iii) The height of the standing wave at nose, and
 (iv) The co-efficient of drag resistance. [Roorkee University]

 Solution.  Linear scale ratio, Lr = 25p

m

L
L

=

  Velocity of flow in the model, Vm =  0.6 m/s
  Force acting on the model, Fm = 3.6 N
 Height of standing wave in the model, Hm = 30 mm

 (i) The corresponding speed in the prototype Vp:

  As the flow in a river is a free surface flow affected by gravity, the dynamic similarity between 
the model and its prototype will be achieved by equating the Froude’s number.

	 	∴ p

p p

V
L g

 = m

m m

V
L g

  or, p

m

V
V

 = 25 5p

m

L
L

= =  (  gp = gm)

	 	∴ Vp = Vm × 5 = 0.6 × 5 = 3 m/s (Ans.)
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 (ii) The force acting on the prototype, Fp:

   Force = Mass × acceleration = 3 3

( / )
V VL L
T L V

ρ × = ρ ×  
or

LV
T
LT
V

 = 
 
 =  



    = 
2

3 2 2VL L V
L

ρ × = ρ

   Force ratio, Fr = 
2 2

2 2
2 2 . .p p p p

r r r
m m m m

F L V
L V

F L V
ρ

= × × = ρ
ρ

    = 2 2 3( )r r rL L L× =

	 	 ∴ Fp = Fm × Lr 
3 = 3.6 × (25)3 = 56250 N (Ans.)

    [ ρr = 1, fluid being same in model and prototype]
 (iii) The height of the standing wave in the prototype, Hp:

   p

m

H
H

 = Lr = 25

	 	 ∴ Hp = Hm × 25 =  30 × 25 = 750 mm (Ans.) 
 (iv) The co-efficeint of drag resistance:
  The co-efficient of drag resistance is defined by:

    F = 
2

.
2D

VC Aρ

	 	∴ CD = 
21

2

F

AV× ρ

  or, (CD)p = 
21

2

p

p p p

F

A V× ρ

  where, Fp = Force acting on the prototype ( = 56250 N),
    ρp = Density of water (= 1000 kg/m3),
    Ap = Width of the pier × depth of water in the river
     = 1.5 × 3 = 4.5 m2, and
    Vp = Velocity of flow in the prototype ( = 3 m/s).

	 	∴ (CD)p = 
2

56250 .
1 1000 4.5 3
2

=
× × ×

2 777 (Ans.)

  The drag co-efficient will be same for model and prototype.

 Example 7.40. A 1 : 40 model of an ocean tanker is dragged through fresh water at 2 m/s with 
a total measured drag of 117. 7 N. The skin (frictional) drag co-efficeint ‘f’ for model and prototype 
are 0.3 and 0.02 respectively in the equation Rf = f AV2. The wetted surface  area of the model 
is 25 m2. Taking the densities for the prototype and the model as 1030 kg/m3   and 1000 kgN/m3 
respectively, determine:
 (i) The total drag on the prototype;
 (ii) Power required to drive the prototype.
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 Solution. Given:
  Linear scale ratio, Lr = 40
  Velocity of model, Vm = 2 m/s
  Total drag of model, Rm = 117.7 N
  Wetted area of model, Am = 25 m2

  Co-efficient of friction for model, fm = 0.3
  Co-efficient of friction for prototype, fp = 0.02
 (i) Total drag on the prototype, Rp:
  Frictional drag on model,  (Rf)m = fm Am Vm 2 = 0.3 × 25 × 22 = 30 N
	 	 ∴ Wave drag on model,  (Rw)m = Rm – (Rf)m = 117.7  – 30 = 87.7 N
  The wave drag for the prototype can be evaluated by satisfying the following condition for 

dynamic similarity:

    2 2
w

p

R
L V

 
 ρ 

 = 2 2
w

m

R
L V

 
 ρ 

	 	∴ (Rw)p = 
2 2

2 ( )p p p
w m

m m m

L V
R

L V
ρ  

× × × ρ  

  But, 
2

p

m

V
V
 
 
 

 = p

m

L
L

2

...Froude'snumber

or or ( )

p m

p p m m

p p p p
p p

m m m m

V V
L g L g

V L V L
g g

V L V L

 
= 

 
 

  
= = =  

  





	 	∴ (Rw)p = 
3

( )p p
w m

m m

L
R

L
ρ  

× × ρ  

   = 31030 (40) 87.7
1000

× ×  40p
r

m

L
L

L
 

= = 
 


   = 5781184 N
  The frictional drag on the prototype is given by:
    (Rf)p = fp Ap Vp 

2           ...(i)
  where, Vp is velocity of prototype and is obtained from Froude model law as given below:

    m

m m

V
L g

 = p

p p

V
L g

  or  pm

m p

VV
L L

=  ( gm = gp)

	 	∴ Vp = 2 40 12.65 m/sp
m

m

L
V

L
× = × =

 Also, p

m

A
A

 = Lr 
2 = 402 = 1600

	 ∴   Ap = Am × 1600 = 25 × 1600 = 40000 m2
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  Substituting these values in (i), we get:
    (Rf)p = 0.02 × 40000 × (12.65)2 = 128018 N
  Total drag on the prototype,
    Rp = (Rw)m + (Rf)p = 5781184 + 128018
     = 5909202 N  or  5909.2 kN (Ans.) 
 (ii) Power required to drive the prototype, P:
    Power required  =  Total drag on prototype × velocity of prototype
  i.e. P = (Rf)p × Vp
     = 5909.2 × 12.65 kW
     = 74751.4 kW (Ans.)

7.12.   EULER MODEL LAW 

 In a fluid system where pressure forces alone are the controlling forces in addition to the inertia 
force, the dynamic similarity is obtained by equating the Euler number for both the model and its 
prototype. This is known as Euler model law. According to this law:
  (Eu)model = (Eu)prototype ...(7.34)
 If, Vm = Velocity of fluid in model,
  pm = Pressure of fluid in model,
  ρm = Density of fluid in model,
 and Vp, pp, ρp are the corresponding values in prototype, then by substituting these values in 
eqn. (7.34), we get:

  
/ρ

m

m m

V
p

 = 
/
p

p p

V
p ρ

 ...(7.35)

when,  ρm = ρp (i.e. same fluid in model and prototype) the above equation becomes: 

  m

m

V
p

 = p

p

V
p

 ...(7.36)

 This law is applied in the following flow problems:
 (i) Enclosed fluid system where the turbulence is fully developed so that viscous forces are 

negligible and also the forces of gravity and surface tension are entirely absent;
 (ii) Where the phenomenon of cavitation occurs.

 Example 7.41. In an aeroplane model of size 1
10

 of its prototype the pressure drop is  

7.5 kN/m2. The model is tested in water. Find the corresponding pressure drop in the prototype.
Take: Density of air = 1.24 kg/m3; Density of water = 1000 kg/m3;
Viscosity of air = 0.00018 poise; Viscosity of water = 0.01 poise.

 Solution. Linear scale ratio,  Lr = 40; Pressure drop in model, (∆p)m = 7.5 kN/m2;
Density of water, ρm = 1000 kg/m3; Viscosity of water, µm = 0.01 poise;
Density of air, ρp = 1.24 kg/m3; Viscosity of air, µp = 0.00018 poise.
 Pressure drop in the prototype (∆P)p:
 Since in the problem pressure and viscous forces are involved, therefore, for dynamic similarity 
between the model and prototype, Euler’s number and Reynolds number should be considered.
 Making Reynolds number equal, we get:
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m

VLρ 
 µ 

 = 
p

VLρ 
 µ 

 or, m m m

m

V Lρ
µ

 = p p p

p

V Lρ

µ

 or, m

p

V
V

 = p p m

m m p

L
L

ρ µ
× ×

ρ µ

 Substituting the values, we have:

  m

p

V
V

 = 1.24 0.0140 2.755
1000 0.00018

× × =

 Now making Euler’s number equal, we get:

  
/ m

V
p

 
 ρ 

 = 
/ p

V
p

 
 ρ 

 or, 
( ) /

m

m m

V
p∆ ρ

 = 
( ) /

p

p p

V
p∆ ρ

 or, m

p

V
V

 = 
( ) / ( )

( )( ) /
pm m m

p mp p

p p
pp

ρ∆ ρ ∆
= ×

∆ ρ∆ ρ

 or, ( )
( )

m

p

p
p

∆
∆

 = 10002.755 78.24
1.24

m m

p p

V
V

ρ
× = × =

ρ

	 ∴ ( )
( )

m

p

p
p

∆
∆

 = (78.24)2 = 6121.5

 or, (∆p)p = 2 2( ) 7.5 1000 N/m 1.225 N/m
6121.5 6121.5

mp∆ ×
= =

 Hence, pressure drop in the prototype = 1.225 N/m2 (Ans.)

7.13.  WEBER MODEL LAW 

 In a fluid system where surface tension effects predominate in addition to inertia force, the 
dynamic similarity is obtained by equating the Weber number for the model and its prototype, which 
is known as Weber model law. According to this law:
  (We)model  = (We)prototype

 where,  We (i.e. Weber number) =  
/

V
Lσ ρ

 If, Vm = Velocity of fluid in model,
  σm = Surface tension force in model,
  ρm = Density of fluid in model,
  Lm = Length of surface in model,
 and Vp, σp, ρp, Lp are the corresponding values of fluid in the prototype, then according to 
Weber model law, we have:
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/

m

m m m

V
Lσ ρ

 = 
/

p

p p p

V
Lσ ρ

 ...(7.37)

 Weber model law is applied in the following flow situations:
 (i) Flow over weirs involving very low heads;
 (ii) Very thin sheet of liquid flowing over a surface;
 (iii) Capillary waves in channels;
 (iv) Capillary rise in narrow passages;
 (v) Capillary movement of water in soil.

7.14.  MACH MODEL LAW 

 When in any fluid system only the forces resulting from elastic compression are significant in 
addition to inertial force, then the dynamic similarity between the model and its prototype may be 
achieved by equating the Mach numbers, which is known as Mach model law.  According to this 
law:
  (M)model = (M)prototype

 where, M = Mach number = 
/

V
K ρ

 or, 
/

m

m m

V
K ρ

 = 
/

p

p p

V
K ρ

 ...(7.38)

 where, Vm = Velocity of fluid in model,
  Km = Elastic stress for model,
  ρm = Density of fluid in model,
 and  Vp, Kp, ρp are the corresponding values for prototype.
 The similitude based on Mach model law finds application in the following:
 (i) Aerodynamic testing;
 (ii) Phenomena involving velocities exceeding the speed of sound;
 (iii) Hydraulic model testing for the cases of unsteady flow, especially water hammer problems; 

and
 (iv) Under-water testing of torpedoes.
 Example 7.42. (Model testing of ships). A 1: 20 model of a naval ship having a submerged 
area of 5 m2 and length 8 metres has a total drag of 20 N when towed through water at a velocity of 
1.5 m/s. Calculate the total drag on the prototype when moving at the corresponding speed. Use the 

relation 2
f f

1F C AV
2

= ρ for calculating the skin resistance. The value of Cf is given by,  

Cf = 0.0735/(Re)1.5.
 Take kinematic viscosity of water (or sea water) as 0.01 stoke and the specific weight of water 
(or sea water) as 9810 N/m3.
 Solution.  Linear scale ratio, Lr = 20
  Submerged area of the model, Am = 5 m2

  Length of the model, Lm  =  8 m
  Total drag of model, Rm  =  20 N
  Velocity of model, Vm  =  1.5 m/s
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 Let Ap, Lp, Rp, Vp be the corresponding  values for the prototype.
 Kinematic viscosity of sea water,
  vm = vp = 0.01 stoke = 0.01 cm2/s = 0.01 × 10–4 m2/s
 Total drag on the prototype:
 (i) Analysis of model:

    Reynolds number, Re = m m

m m

V LVL
v v

  = 
 

     6
–4

1.5 8 12 10
0.01 10

×
= = ×

×

  Also, Cf = 1/5
0.0735
( )Re

     ...(Given)

	 	∴ Cfm = 6 1/5
0.0735 0.00282

(12 10 )
=

×

  Frictional or skin resistance of the model is given by:

    Ff = 21
2 fC AVρ      ...(Given)

	 	∴ (Ff)m = (Rf)m = 2 21 1 98100.00282 5 1.5
2 2 9.81fm m m mC A V  ρ = × × × × 

 
 

     = 15.86 N
  Also, Rm = (Rw)m + (Rf)m

     
where, ( ) Wave resistanceexperienced by the model,and
( ) Frictionalor skin resistanceexperienced by the model

w m

f m

R
R

= 
 = 

	 	∴ 20 = (Rw)m + 15.86
  or (Rw)m = 20 – 15.86 = 4.14 N
 (ii) Analysis of prototype:
  Since resistance to wave formation exists, condition will be dynamically similar if the Froude’s 

number are equal.

  i.e., p

p p

V
L g

 = m

m m

V
L g

  or, Vp = Vm × 1.5 20 6.708 m/sp

m

L
L

= × =    ( )p mg g=

    Reynolds number, Re = p p

p p

V LVL
v v

  = 
 

     = 8
–4

6.708 160 10.73 10
0.01 10

×
= ×

×
 

20

8 20 160m

p

m

p

L
L
L

 
= 

 
 ∴ = × = 



	 	∴ Cfp = 8 1/5
0.0735 0.001148

(10.73 10 )
=

×
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	 	∴ Frictional or skin resistance of the prototype is given by:

        2 21 1 9810( ) ( ) 0.001148 2000 6.708
2 2 9.81f p f p fp p p pF R C A V= = ρ = × × × ×

   = 51657 N 
2 2

2

5 20

2000m
p m rA A L = × = ×

 
 = 



  Wave resistance Rw for the prototype can be evaluated by satisfying the following condition 
for dynamic similarity:

    2 2
w

p

R
L V

 
 ρ 

 = 2 2
w

m

R
L V

 
 ρ 

	 	∴ (Rw)p = 
2 2

2 ( )p p p
w m

m m m

L V
R

L V
ρ  

× × × ρ  

  But, ρp = ρm      ...(Given)

  and, 
2

p

m

V
V
 
 
 

 = p

m

L
L

  ...[From the equivalent of Froude’s number]

	 	∴	 (Rw)p = 1 × 
3

3( ) (20) 4.14 33120 Np
w m

m

L
R

L
 

× = × = 
 

  Hence, total drag on the prototype,
    Rp = (Rw)p + (Rf)p = 33120 + 51657 = 84777 N (Ans.)

7.15.  TYPES OF MODELS 

 The hydraulic models, in general, are classified into the following two broad categories:
 1. Undistorted models;
 2. Distorted models.

7.15.1. Undistorted models
 An undistorted model is one which is geometrically similar to its prototype. The conditions 
of similitude are completely satisfied for such models, hence the results obtained from the model 
tests are easily used to predict the performance of prototype  body. In such models the design and 
construction of the model and the interpretation of the model results are simpler.

7.15.2. Distorted models
 A distorted model is one which is not geometrically similar to its prototype. In such a model 
different scale ratios for the linear dimensions are adopted. For example in case of a wide and 
shallow river it is not possible to obtain the same horizontal and vertical scale ratios, however, if 
these ratios are taken to be same then because of the small depth of flow the vertical dimensions of 
the model will become too less in comparison to its horizontal length. Thus in distorted models the 
plan form is geometrically similar to that of prototype but the cross-section is distorted.
A distorted model may have the following distortions:
 (i) Geometrical distortion. The geometric distortion can be either of dimensions or that of con-

figuration.
 — The distortion of dimensions results due to adoption of different scales for vertical and 

horizontal dimensions. This type of distortion is frequently adopted in river models 
where a different scale ratio for depth is adopted.
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 — When the general configuration of the model does not bear a resemblance with it 
prototype, it becomes a distortion of configuration.

 (ii) Material distortion. It involves the use of different materials for the model and prototype.
 (iii) Distortion of hydraulic quantities. This type of distortion occurs due to certain uncontrollable 

hydraulic quantities such as velocity, discharge etc.
 Typical examples for which distorted models are required to be prepared are:
 (i) Rivers,
 (ii) Dams across very wide rivers,
 (iii) Harbours etc.
 Reasons for adopting distorted models:
 The distorted models are adopted for:
  Maintaining accuracy in vertical dimensions;
  Maintaining turbulent flow;
  Accommodating the available facilities (such as money, water supply, space etc.);
  Obtaining suitable roughness condition;
  Obtaining suitable bed material and its adequate movement.
 Merits and Demerits of Distorted Models:
 Merits:
 1. Due to increase in the depth of fluid or height of waves accurate measurements are made 

possible.
 2. The surface tension can be reduced to minimum.
 3. Model size can be sufficiently reduced, thereby its operation is simplified and also the cost 

is lowered considerably.
 4. Sufficient tractive force can be developed to move the bed material of the model.
 5. The Reynolds number of flow in a model can be increased that will yield better results.
 Demerits:
 1. The pressure and velocity distributions are not truly reproduced.
 2. A model wave may differ in type and possibly in action from that of the prototype.
 3. Slopes of river beds, earth cuts and dikes cannot be truly reproduced.
 4. It is difficult to extrapolate and interpolate results obtained from distorted models.
 5. The observer experiences an unfavourable psychological effect.

 Note.     Although the distorted models entail a number of demerits, yet by incorporating judicious allowances in 
the interpretation of the results obtained from such models, useful information can be obtained (which 
is otherwise not possible).

7.16.  SCALE EFFECT IN MODELS 

 By model testing it is  not possible to predict the exact behaviour of the prototype. The behaviour 
of the prototype as predicted by two models with different scale ratios is generally not the same. 
Such  a discrepancy or difference in the prediction of behaviour of the prototype is termed as “scale 
effect”. The magnitude of the scale effect is affected by the type of the problem and the scale ratio 
used for the performance of experiments on models. The scale effect can be positive and negative 
and when applied to the results accordingly, the corrected results then hold good for prototype.
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 Since it is impossible to have complete similitude satisfying all the requirements, therefore, 
the discrepancy due to scale effect creeps in. During investigation of models only two or three 
forces which are predominant are considered and the effect of the rest of the forces which are not 
significant is neglected. These forces which are not so important cause small but varying effect on 
the model depending upon the scale of the model,  due to which scale effect creeps in. Sometimes 
the imperfect simulation in different models causes the discrepancy due to scale effect.
 In ship models both viscous and gravity forces have to be considered, however it is not possible 
to satisfy Reynolds and Froude’s numbers simultaneously. Usually the models are tested satisfying 
only Froude’s law, then the results so obtained are corrected by applying the scale effect due to 
viscosity.
 In the models of weirs and orifices with very small scale ratio the scale effect is due to surface 
tension forces. The surface tension forces which are insignificant in prototype become quite 
important in small scale models with head less than 15 mm.
 Scale effect can be known by testing a number of models using different scale ratios, and the 
exact behaviour of the prototype can then be predicted.

7.17.  LIMITATIONS OF HYDRAULIC SIMILITUDE 

 Model investigation, although very important and valuable, may not provide ready solution to 
all problems. It has the following limitations:
 1. The model results, in general, are qualitative but not quantitative.
 2. As compared to the cost of analytical work, models are usually expensive.
 3. Transferring results to the prototype requires some judgment (the scale effect should  be al-

lowed for).
 4. The selection of size of a model is a matter of experience.

HIGHLIGHTS

 1. Dimensional analysis is a mathematical technique which makes use of the study of the 
dimensions for solving several engineering problems.

 2. Dimensional homogeneity states that every term in an equation when reduced to fundamental  
dimensions must contain identical powers of each dimension.

 3. Dimensional analysis is generally performed by two methods namely Rayleigh’s method 
and Buckingham’s π-theorem.

 4. Rayleigh’s method of dimensional analysis is useful when the number of variables is small. In 
this method, the equations are expressed in exponential forms. The dimensionless parameters 
are obtained by first evaluating the exponents so that equation is dimensionally homoge-
neous, and then by grouping together the variables with like powers to form dimensionless 
parameters.

 5. Buckingham’s π-theorem states as follows:
  “If there are n variables (dependent and independent variables) in a dimensionally homo-

geneous equation and if these variables contain m fundamental dimensions (such as M, L, 
T etc.), the variables are arranged into ( n – m) dimensionless terms. These dimensionless 
terms are called π-terms”.

 6. Model analysis is an experimental method of finding solutions of complex flow problems.
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 7. A model is a small scale replica of the actual machine or structure. For the model to yield 
useful information about the characteristics of the prototype, the model must have geometric, 
kinematic, and dynamic similarities with the prototype.

  For geometric similarity, the ratio of all linear dimensions of the model and of the prototype 
should be equal.

  Kinematic similarity means the similarity of motion between model and prototype.
  Dynamic similarity means the similarity of forces between the model and prototype.
 8. Reynolds number is defined as the ratio of inertia force and viscous force of a flowing fluid. 

It is given by

    Re = V L V L V dρ ×
= =

µ ν ν
 for pipe flow

  where, V = velocity of flow,
    d = diameter of the pipe, and
    ν = kinematic viscosity of the fluid.
 9. Froude number is the ratio of the square root-of inertia and gravity force and is given by, 

    Fe = i

g

F V
F Lg

=

 10. Euler number is the ratio of the square root of inertia force and  pressure force and is given 
by,

    Eu = 
/

i

p

F V
F p

=
ρ

 11. Weber number is the ratio of the square root of inertia force to the surface tension force and 
is given by,

    We = 
/

i

s

F V
F L

=
σ ρ

 12. Mach number is the ratio of the square root of  inertia force and elastic force and is given 
by,

    M = 
/

i

e

F V V
F CK

= =
ρ

 13. The laws on which the models are designed for dynamic similarity are called model or  
similarity laws. The model laws are:

 (i) Reynolds model law,   (ii) Froude model law,
 (iii) Euler model law,    (iv) Weber model law, and
 (v) Mach model law.
 14. The drag experienced by a ship model (a partially submerged body) is obtained by Froude’s 

method.
 15. The hydraulic models are classified as:
 (i) Undistorted models, and (ii) Distorted models.
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OBJECTIVE TYPE QUESTIONS

Choose the Correct Answer:
 1. Dimensional analysis is used to

  (a) test the dimensional homogeneity of any 
equation of fluid motion

  (b) derive rational formulae for a flow phenom-
enon

  (c) derive equations expressed in terms of non–
dimensional parameters

  (d) all of the above.
 2. Which of the following is an advantage of di-

mensional analysis?
  (a) It expresses the functional relationship be-

tween the variables in dimensionless terms
  (b) In hydraulic model studies it reduces the 

number of variables involved in a physical 
phenomenon, generally by three

  (c) By the use of dimensional analysis design 
curves can be developed from experimental 
data or direct solution of the problem

  (d) all of the above.
 3. A dimensionally homogeneous equation is ap-

plicable to
  (a) C.G.S. system only
  (b) F.P.S. system only
  (c) M.K.S. and SI systems
  (d) all systems of units.
 4. In which of the following methods of dimen-

sional analysis, a functional relationship of some 
variables is expressed in the form of an expo-
nential equation, which must be dimensionally 
homogeneous?

  (a) Buckingham’s π-method
  (b) Rayleigh’s method
  (c) Bridgman’s method
  (d) Matrix–tensor method.
 5. In dimensional analysis the Buckingham’s 

π–theorem is widely used and expresses the 
resulting equation in terms of

  (a) the repeating variables
  (b) geometric, kinematic and dynamic variables
  (c) (n – m) dimensionless parameters
  (d) n dimensionless parameters.
 6. To apply Buckingham’s π–theorem, m repeating 

variables are selected from amongst the n vari-
ables influencing the phenomenon. The repeating 
variables are selected such that they 

  (a) belong to kinematic and dynamic category 
of variables

  (b) must always contain the dependent variables
  (c) in combination contain each of the m funda-

mental dimensions involved in the problem.
  (d) none of the above.
 7. In order that results obtained in model studies 

correctly represent the behaviour of the proto-
type, which of the following similarities must be 
ensured between the model and the prototype?

  (a) Geometric similarity
  (b) Kinematic similarity
  (c) Dynamic similarity
  (d) All of the above.
 8. Dynamic similarity between the model and 

prototype is the
  (a) similarity of motion
  (b) similarity of lengths
  (c) similarity of forces
  (d) None of the above.
 9. ...... is equal to the product of shear stress due to 

viscosity and surface area of flow.
  (a) Viscous force (b) Inertia force
  (c)  Pressure force (d) Gravity force.
 10. Kinematic similarity between model and proto-

type is the
  (a) similarity of discharge 
  (b) similarity of shape
  (c) similarity of streamline pattern
  (d) none of the above.
 11. ......... is the ratio of the inertia force to the vis-

cous force.
  (a) Froude’s number
  (b) Weber’s number
  (c) Reynolds number
  (d) Mach’s number.
 12. ........ is the square root of the ratio of the inertia 

force to the pressure force.
  (a) Reynolds number
  (b) Mach’s number
  (c) Euler’s number
  (d) Froude’s number.
 13. Euler number is important in which of the fol-

lowing flow situations?
  (a) Discharge through orifices, mouthpieces and 

sluices 
  (b) Pressure rise due to sudden closure of valves
  (c) Flow through pipes
  (d) All of the above.
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 14. Mach’s number is defined as the square root of 
the ratio of the 

  (a) inertia force to the pressure force
  (b) inertia force to the surface tension force
  (c) inertia force to the elastic force
  (d) none of the above.
 15. ...... is important in compressible fluid flow 

problems at high velocities, such as high velocity 
flow in pipes or motion of high-speed projectiles 
and missiles.

  (a) Euler’s number
  (b) Mach’s number
  (c) Reynolds number 

  (d) Froude’s number.
 16. Distorted models are required to be prepared for 

which of the following?
  (a) Rivers
  (b) Dams across very wide rivers
  (c) Harbours
  (d) All of the above.
 17. The scale effect in models can be 
  (a) positive only
  (b) negative only
  (c) both positive and negative
  (d) none of the above.

ANSWERS

 1. (d) 2. (d) 3. (d) 4. (b) 5. (c) 6. (c)
 7. (d) 8. (c) 9. (a) 10. (c) 11. (c) 12. (c)
 13. (d) 14. (c) 15. (b) 16. (d) 17. (c).

THEORETICAL QUESTIONS

 1. What is dimensional analysis?
 2. What are the uses of dimensional analysis?
 3. What do you mean by fundamental units and 

derived units? Give examples.
 4. Explain the term dimensional homogeneity.
 5. Enumerate the applications of dimensional 

homogeneity.
 6. What are the various methods of dimensional 

analysis to obtain a functional relationship be-
tween various parameters influencing a physical 
phenomenon.

 7. Describe Rayleigh’s method for dimensional 
analysis.

 8. Describe Buckingham’s method or π–theorem 
to formulate a dimensionally homogeneous 
equation between the various physical quantities 
effecting a certain phenomenon.

 9. What are repeating variables? How are these 
selected by dimensional analysis?

 10. What is model analysis?
 11. What are the advantages of model testing?

 12. What are applications of model testing?
 13. What is meant by geometric, kinematic and 

dynamic similarities? Are these similarities truly 
attainable? It not why?

 14. What are dimensionless numbers?
 15. Define the following dimensionless numbers and 

state their significance for fluid flow problems.
  (i) Reynolds number,
  (ii) Froude’s number, and
  (iii) Mach’s number.
 16. Enumerate different laws on which models are 

designed for dynamic similarity. Where are they 
used?

 17. How are hydraulic models classified?
 18. What are distorted models? What are the reasons 

of constructing such models for rivers?
 19. What are the merits and demerits of distorted 

models?
 20. Explain scale effect in model testing. How is it 

found?
 21. What are the limitations of hydraulic similitude?

UNSOLVED EXAMPLES

 1. Show that the resistance R to the motion of a 
sphere of diameter D moving with a uniform 
velocity V through a real fluid of density ρ and 
viscosity µ is given by:

    F = ρD2V2f 
VD
µ 

 ρ 
 [BHU]

 2. By dimensional analysis, show that the power P 
developed by a hydraulic turbine is given by:
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    P = 
2 2

3 5 N DN D f
g H

 
ρ  

 
  where, ρ = Mass density of liquid,
    N = Rotational speed,
    D = Diameter of runner,
    H = Working head, and
    g = Acceleration due to gravity.
 3. The resistance R, to the motion of a completely 

submerged body depends upon the length of 
the body L, velocity of flow V, mass density of 
fluid ρ	and kinematic viscosity of fluid ν. By 
dimensional analysis prove that

    R = 2 2 VLV L  ρ f ν 
 4. Prove that velocity through an orifice can be 

expressed as

    V = 22 , ,DgH
H VH V H

µ σ f  ρ ρ 
  where, H = Head causing flow,
    D = Diameter of orifice,
    µ = Co-efficient of viscosity,
    ρ = Mass density, and
    σ = Surface tension.
 5. Prove that the shear stress (t) in a fluid flowing 

through a pipe can be expressed by the equation:

    t = 2 , kV
DV D
µ ρ f ρ 

  where, D = Diameter of pipe,
 	 		 ρ = Mass density,
    V = Velocity,
  		 µ = Viscosity, and
    k = Height of roughness projection.
 6. The pressure difference ∆p in a pipe of diameter 

D and length L due to viscous flow depends on 
the velocity V, viscosity µ and density ρ. Using 
Buckingham’s theorem, obtain an expression for 
∆p.

  [Hint: Choose D, V and µ as repeating variables, 
µ has been chosen repeating variable (instead of 
ρ) since the flow is viscous.]

   V L DVp
D D

 µ ρ ∆ = × f  µ  
Ans.

 7. The frictional torque T of a disc of diameter D 
rotating at speed N in a fluid of viscosity µ and 
density ρ in a turbulent flow is given by:

    T = 5 2
2D N

D N
µ ρf ρ 

  Prove this by the method of dimensions.  
 [UPSC]

 8. An oil of sp. gr. 0.9 and viscosity 0.03 poise 
is to be transported at the rate of 3000 litres/
sec. through a 1.5 m diameter pipe. Tests were 
conducted on a 15 cm diameter pipe using wa-
ter at 20°C. If the viscosity of water at 20°C is  
0.01 poise, find:

  (i) Velocity of flow in the model;
  (ii) Rate of flow in the model.
   [Ans. (i) 5.09 m/s, (ii) 80.9 litres/s].
 9. A model of a submarine of scale 1/40 is tested 

in a wind tunnel. Find the speed of air in wind 
tunnel if the speed of submarine in sea water is 
15 m/s. Also find the ratio of the resistance be-
tween the model and its prototype. Take the 
values of kinematic viscosities for sea water and 
air as 0.012 stokes and 0.016 stokes respec-
tively. The weight densities of sea water and air 
are given as 10.1 kN/m3 and 0.0122 kN/m3 re-

spectively. [Ans. 800 m/s, 0.0021m

p

F
F

= ]

 10. In 1 : 30 model of a spillway, the velocity and 
discharge are 1.5 m/sec. and 2.0 m3/sec. Find 
the corresponding velocity and discharge in the 
prototype. [Ans. 8.2 m/s, 9859 m3/s]

 11. A 120 m long surface vessel is to be tested by a 
3 m long model. If the vessel travels at 10 m/s, 
at what speed must model be towed for dynamic 
similarity between model and prototype? If the 
drag of the model is 9.37 N, what prototype drag 
is to be expected?  
 [Ans.  1.58 m/s, 596.4 kN]

 12. In an open channel water is flowing at a depth of 
1.5 m with a velocity of 7.5 m/s. At a particular 
location, a hydraulic jump is formed and the 
depth increases to 2.2 m. Another channel is 
built where a similar jump is formed. If the flow 
depth in the new dynamically similar channel is 
6 m, estimate the flow velocity and the height of 
jump. [GATE]

   [Ans. 15 m/s, 0.8 m]
 13. In order to predict the pressure drop in a large 

air duct a model is constructed with linear dimen-

sion 
1 th

10
 that of the prototype, and water is 

used as the test fluid. If water is 1000 times 
denser than air and has 100 times the viscosity 
of air, determine the pressure drop in the proto-
type for the conditions corresponding to a pres-
sure drop of 70 kPa in the model.

   [Ans. 0.07 kPa]



456         Fluid Mechanics

 14.  If model prototype ratio is 1:75, show that the 
ratio of discharges per unit width of spillway is 

given by 
3/21 .

75
 
 
 

 [AMIE]

 15. In an aeroplane model of size 
1
50

of its prototype 

the pressure drop is 4 bar. The model is tested 
in water. Find the corresponding pressure drop 
in the prototype. Take specific height of air = 
0.0124 kN/m3. The viscosity of water is  
0.01 poise while the viscosity of air is 0.00018 
poise. [Ans. 0.00042 bar]

 16. An air duct is to be modelled to a scale of 1:20 
and tested with water which is 50 times viscous 
and 800 times more dense than air. When tested 
under dynamically similar conditions, the pres-
sure drop between two sections in the model is 
235 kPa. What is the corresponding pressure 
drop in the prototype? [Ans. 189.3 Pa]

 17. Explain what is meant by dynamic similarity 
between a flow system and its model.

  If the dynamic behaviour of the flow system for 
an overflow spillway is governed by the Froude 
law of similarity, what would be the discharge 
Qr, when the (model) scale ratio is Lr? Show that 
the same result would be obtained if the weir 
formula is used instead and it is assumed that 
the prototype and the model spillways have the 
same co-efficient of discharge.

   [UPSC Civil Services (IAS) Exam.]
 18. A model of rectangular pier 1.2 m wide and 4 

m long in the river is built to a scale of 1:20. 
The average depth of water in the river is 3 m.  
The model was tested in a laboratory, where 
the velocity of flow was maintained constant 
at 0.6 m/s. It was observed that the force acting 
on the model was 4 N and the height of  the 
standing wave was 35 mm. Make calculations 
of speed, force, height of standing wave and the 
co-efficient of drag resistance for the prototype.

  Assume that the flow in the model and prototype 
are insensitive to changes in Reynolds number.

   [Ans. 2.68 m/s, 32 kN, 700 mm, 2.428]
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8.1. INTRODUCTION 

 An orifice is an opening in the wall or base of a 
vessel through which the fluid flows. The top edge of 
the orifice is always below the free surface (If the free 
surface is below the top edge of the orifice, becomes a 
weir)
 A mouthpiece is an attachmnent in the form of a 
small tube or pipe fixed to the orifice (the length of pipe 
extension is usually 2 to 3 times the orifice diameter) and 
is used to increase the amount of dischrge.
	  Orifices as well as mouthpieces are used to measure 

the discharge. 

8.2. CLASSIFICATION OF ORIFICES 

 The orifices are classified as follows
 1. According to size:
 (i) Small orifice (ii) Large orifice. 
 An orifice is termed small when its dimensions are 
small compared to the head causing flow. The velocity 
does not vary appreciably from top to the bottom edge of 
the orifice  and is assumed to  be uniform.
 The orifice is large if the dimensions are comparable 
with the head causing flow. The variation in the velocity 
from the top to the bottom edge is considerable.
 2. According to shape
 (i) Circular orifice (ii) Rectangular orifice
 (iii) Square orifice (iv) Triangular orifice.
 3.  Shape of upstream edge
 (i) Sharp-edged orifice 
 (ii) Bell-mouthed orifice.
 4. According to discharge conditions
 (i) Free discharge orifices

Chapter
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 8.8. Discharge through partially 
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 (ii) Drowned or submerged orifices
 (a) Fully submereged
 (b) Partially submerged.
 Note.  An orifice or a mouthpiece is said to be discharging free when it discharges into atmosphere. It is said 

to be submerged when it discharges into another liquid.

8.3.  FLOW THROUGH AN ORIFICE 

 Fig. 8.1 shows a small circular orifice with sharp edge in the side wall of a tank discharging free 
into the atmosphere. Let the orifice be at a depth H below the free surface. As the fluid flows through 
the orifice, it contracts and attains a parallel form (i.e., 

stream lines bocome parallel) at a distance 
2
d from the 

plane of the orifice. The point at which the stream lines 
first become parallel is termed as vena-contracta (the 
cross-sectional area of the jet at the vena contracta is less 
than that of orifice). Beyond this section, the jet diverges 
and is attracted in the downward direction by gravity.
 Considering points 1 and 2 as shown in Fig. 8.1 and 
applying Bernoulli’s theorem, we have: 

  
2

1 1
12

p V z
w g

+ +  = 
2

2 2
22

p V z
w g

+ +

 But, p1 = p2 = pa (pa = atmospheric pressure)
  z1 = z2 + H
 Further, if the cross-sectional area of the tank is very large, the liquid at point 1 is practically 
standstill and hence V1 = 0

 Thus, 
2

2

2
V

g
 = H

 or, V2 = 2gH  ... (8.1)

 Equation (8.1) is know as Torricelli’s theorem.

 Note.   In the problems of orifices it is covenient to work in terms of gauge pressures.

8.4. HYDRAULIC CO-EFFICIENTS 

 The hydraulic co-efficients (or orifice co-efficients) are enumerated and discussed below :
 1. Co-efficient of contraction, Cc
 2. Co-efficient of velocity, Cν

 3. Co-efficient of discharge, Cd
 4. Co-efficient of resistance, Cr.

8.4.1. Co-efficient of Contraction (Cc) 
 The ratio of the area of the jet at vena-contracta to the area of the orifice is known as  
Co-efficient of contraction. It is denoted by Cc.
 Let, ac = Area of jet at vena contracta, and
  a = Area of orifice.

1

H

d

d/2
C

C

Tank

Jet

Vena-
contracta

2

Fig. 8.1. Orifice discharging free.
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 Then, Cc = ca
a

 ... (8.2)

 The value of Cc varies slightly with the available head of the liquid, size and shape of the 
orifice; in practice it varies from 0.613 to 0.69 but the average value is taken as 0.64.

8.4.2. Co-efficient of Velocity (Cv)
 The ratio of actual velocity (V) of the jet at vena-contracta to the theoretical velocity (Vth) is 
known as Co-efficient of velocity. It is denoted by Cν and mathematically, Cν is given as:

  Cv = Actual velocity of jet at vena contracta ( )
Theoretical velocity ( )th

V
V

 i.e., Cv = 
2
V
gH

 ... (8.3)

 
where,  = Actual velocity, and

 = Head under which the fluid flows out of the orifice
V
H

 
 
 

 The value of Cv varies from 0.95 to 0.99,depending upon the shape of orifice and the head of 
liquid under which the flow takes place. For sharp-edged orifices the value of Cν is taken as 0.98.

8.4.3. Co-efficient of Discharge
 The ratio of actual discharge (Q) through an arifice to the theorerical discharge,(Qth) is known 
as Co-efficient of discharge. It is dinoted by Cd. 

 Mathematically, Cd = 
.

Actual discharge ( )
Theoretical discharge ( )th

Q
Q

   = Actual area × actual velocity
Theoretical area × theoretical velocity

   = Actual area actual velocity
Theoretical area theoretical velocity

×

	 ∴	 Cd = Cc × Cν	 ...	(8.4)
 The value of Cd varies from 0.62 to 0.65 depending upon size and the shape of the orifice and 
the head of liquid under which the flow takes place.

8.4.4. Co-efficient of Resistance (Cr) 
 The ratio of loss of head (or loss of kinetic energy) in the orifice to the head of water (actual 
kinetic energy) available at the exit of the orifice is known as Co-efficient of resistance. It is denoted 
by  Cr.

 Mathematically, Cr = 
Loss of head in the orifice

Head of water

 The loss of head in the orifice takes place, because the walls of the orifice offer some resistance 
to the liquid, as it comes out. While solving numerical problems Cr is generally neglected.

 Example 8.1. An orifice 50mm in diameter is discharging water under a head of 10 metres. If 
:d vC 0.6 and C 0.97, find= =

 (i) Actual discharge, and 
 (ii) Actual velocity of the jet at vena contracta.
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 Solution. Diameter of the orifice,  d = 50 mm = 0.05 m

	 ∴   Area of the orifice, a = 2 2 2(0.05) 0.001963 m
4 4

dp p
= × =

 Head,       H = 10m; Cd = 0.6 ; Cv = 0.97
 (i) Actual discharge

    Cd = Actual discharge = 0.6
Theoreticaldischarge

 ...(Given)

    But theoretical discharge = Area of orifice × theoretical velocity

     = 2a gH×

   = 0.001963 2 9.81 10= × × ×

   = 0.02749 m3/s
  ∴  Actual discharge = 0.6 × 0.02749 = 0.01649 m3/s (Ans.)
 (ii) Actual velocity

  We know that , Cv = actual velocity
theoretical velocity

  ∴	 Actual velocity = Cv × theoretical velocity
     = 0.97 × 2gH  = 0.97 × 2 × 9.81 × 10  =13.58m/s (Ans.)

 Example 8.2. The head of water over the centre of an orifice of diameter 30 mm is 1.5m. The 
actual discharge through the orifice is 2.55 litres/sec. Find the co-efficient of discharge.

 Solution. Diameter of the orifice, d = 30 mm = 0.03m

 ∴  Area,  a = 20.03
4
p
×  = 0.0007068 m2 

  Head, H = 1.5 m
 Co-efficient of discharge,Cd
 Actual discharge through the orifice, Q = 2.55 litres/sec.= 0.00255 m3/s
  Theoretical discharge, Qth = Area of orifice × theoretical velocity.
 But theoretical velocity, Vth = 2 = 2×9.81 × 1.5 = 5.425 m/sgH

	 ∴ Qth = a × Vth
   = 0.0007068 × 5.425 = 0.004166m3/s

 Hence, Cd = 0.00255
0.004166th

Q
Q

= = 0.612  (Ans.)

 8.4.  EXPERIMENTAL DETERMINATION OF HYDRAULIC 
          CO-EFFICIENTS 

8.5.1. Determination of Co-efficient of Velocity (Cv).
 Fig. 8.2 shows a tank containing water at a constant level, maintained by a costant supply. Let 
the water flow out of the tank through an orifice, fitted in one side of the tank. Let the section C–C 
represents the point of vena contracta. Consider a particle of water in the jet at P.
 Let, x = Horizontal distance travelled by the particle in time ‘t’,
  y = Vertical distance between C-C and P,
  V = Actual velocity of the jet at vena-contracta, and
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  H = Constant water head.
 Then,  horizontal distance, x = V × t ...(i)

 and,   vertical distance, y = 21
2

gt  ...(ii)

  From eqn. (i), t = x
V

 

 Substituting this value of ‘t’in eqn. (ii),we get:
Water
supply

0 0

C

Measuring
tank

H

y

P

x
C

Fig. 8.2. Experiment for hydraulic co-efficients.

  y = 
2 2

2
1
2 2

x gxg
V V
 × = 
 

 ∴ V2 = 
2 2

or
2 2
gx gxV

y y
=

 But, theoretical velocity,  Vth = 2gH

 ∴	Co-efficient of velocity,

       Cv = 

2

22
42th

gx
yV x

V yHgH
= =

 i.e.       Cv = 
4
x
yH

 ...(8.5)

8.5.2. Determination of Co-efficient of Discharge (Cd)
 The water flowing through the orifice under the constant head H is collected in a measuring 
tank for a known time ‘t’. The rise of water level in the measuring tank is noted down. Then actual 
discharge through the orifice,
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  Q = 
Area of measuring tank × rise of water level in the measuring tank

Time ( )t

 Theoretical discharge, Qth = Area of orifice × 2gH

 Hence, Cd = =
× 2th

Q Q
Q a gH

 ...(8.6)

8.5.3. Determination of Co-efficient of Contraction (Cc)
 The co-efficient of contraction (Cc) can be found from the following relation:
  Cd = Cc × Cv

 ∴ Cc = 
d

v

C
C  ...(8.7)

8.5.4. Loss of head in Orifice Flow
 The loss of head through an orifice can be determined by applying the Bernoulli’s equation 
between points O and C (Fig. 8.2).

  

2
0 0

02
p V

z
w g

+ +  = 
2

losses
2

C C
C

p V
z

w g
+ + +

 Substituting the proper values, we get:

  0 + 0 + H = 0 + 
2

0
2 f
V h

g
+ +

 Where,  V is the actual flow velocity through the orifice.

 ∴ hf = 
2 2

1
2 2
V VH H

g gH
 

− = − 
 

 ...[8.8(a)]

   = H(1 – Cv
2)

 or hf = 
2 2

2 2
2 11 1

2 2 v

V gH V
g gV C
   − = −      

 ...[8.8(b)]

 Example 8.3. A vertical sharp-edged orifice 120 mm in diameter is discharging water at the 
rate of 98.2 litres/sec. under a constant head of 10 metres. A point on the jet, measured from the 
vena contracta of the jet has co-ordinates 4.5metres horizontal and 0.54 metre vertical. Find the 
following for the orifice.
 (i) Co-efficient of velocity,  (ii) Co-efficient of discharge, and 
 (iii) Co-efficient of contraction.

 Solution.  Diameter of orifice, d =  120 mm = 0.12 m

 ∴   Area of orifice, a = 2 20.12 0.01131 m
4
p
× =

  Discharge, Q = 398.298.2 litres/sec. = = 0.0982 m /s
1000

  Head, H = 10 m
 Horizontal distance of a point on the jet from vena contracta, x = 4.5 m
  Vertical distance, y = 0.54 m
  Now theoretical velocity, Vth = 2 = 2 × 9.81 ×10 = 14 m / sgH
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 Theoretical discharge,
  Qth = Area of orifice (a) × Vth
   = 0.01131 × 14 = 0.1583 m3/s
 (i) Co-efficient of velocity, Cv:

    Cv = 
4
x
yH

     = 
4.5 =

4 × 0.54 10×
0.968  (Ans.)

 (ii) Co-efficient of dischrge, Cd: 

    Cd = 
Actual discharge

Theoretical discharge

   = 
0.0982 =
0.1583

0.62  (Ans.)

 (iii) Co-efficient of contraction, Cc:

   = 0.62= =0.968
d
v

C
C 0.64  (Ans.)

 Example 8.4.  A large tank has a sharp edged circular orifice of  930 mm2 area at a depth of 
3 m below constant water level. The jet issues horizontally and in a horizontal distance of 2.4 m, it 
falls by 0.53 m, the measured discharge is 4.3 lit/s. Derermine coefficients of velocity, contraction 
and discharge for the orfice. 

 Solution. Given : Area of the orifice, a = 930 mm2; H = 3 m; x = 2.4 m; y = 0.53 m;
 Q = 4.3 litres/sec. = 0.0043 m3/s
 Cv, Cc and Cd:
  Theoretical volocity, V = 2 2 × 9.81 × 3gH =

   = 7.67 m/s
  Theoretical discharge = a × Vth
   = 930 × 10–6 × 7.67
   = 0.00713 m3/s
 Co-efficient of velocity,

          Cv = 
4
x
yH

 = 2.4
4 × 0.53 × 3

   = 0.952 (Ans.)
 Co-efficient of discharge,

    Cd = 
Actual discharge

Theoretical discharge
=
0 0043
0 00713
.
.

                                            =  0.603 (Ans.)
 Co-efficient of contraction,

  Cc = 
0.603= =
0.952

d

v

C
C

0.633  (Ans.)

Tank

H = 3 m

y = 0.53 m

x = 2.4 m

Fig. 8.3
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 Example 8.5. The head of water over an orifice of diameter 100 mm is 12 m. The water coming 
out from the orifice is collected in a rectangular tank 2 m × 0.9 m. The rise of water level in this tank 
is 1.2 m in 30 seconds. Find the co-efficient of discharge.
 Solution.  Head of water, H  =  12 m
  Diameter of orifice, d = 100 mm = 0.1 m

 ∴  Area, a = 
4
p  × 0.12 = 0.00785 m2

  Area of the measuring tank, A  =  2 × 0.9 = 1.8 m2

 Rise of water level (in t = 30 s), h  = 1.2 m 
 Co-efficient of discharge, Cd

  Theoretical velocity, Vth = 2gH

   = 2 × 9.81 × 12 = 15.34m / s

	 ∴	 Theoretical discharge, Qth = a × Vth
   = 0.00785 × 15.34 = 0.1204 m3/s

  Actual discharge, Q = 31.8 1.2 0.072 m /s
30

A h
t
× ×

= =

	 ∴ Co-efficient of discharge, Cd = 0.072
0.1204th

Q
Q

=  0.6  (Ans.)

 Example 8.6. A tank has two identical orifices in one of its vertical sides, The upper orifice 
is 1.5 m below the water surface and the lower one is 3 m below the water surface as shown in  
Fig. 8.4. Find the point, at which the two jets will intersect, if the co-efficient of velocity is 0.92 for 
both the orifices.

 Solution.  Height of water above the upper orifice, H1 = 1.5 m
  Height of water above the lower orifice, H2  = 3 m
  Co-efficient of velocity, Cv = 0.92
 Let, x = Horizontal co-ordinate of the point of intersection A,
  y1 = Vertical co-ordinate of the point of intersection A from the orifice 1,and 
  y2 = Vertical co-ordinate of the point of intersection A from the orifice 2.

3 m

y2

y1

1

2

x

1.5 m

A

Fig. 8.4
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 Using the relation,

  Cv = 
2

,
4
x
yH

 with usual notations, we have:

  Cv1 = 
2

14 1.5
x

y ×
 ...(i)

 and, Cv2 = 
2

24 3.0
x

y ×
 ...(ii)

 Since the two orifice are identical, therefore equating (i) and (ii), we get:

  
2

14 1.5
x

y ×
 = 

2

24 3.0
x

y ×

 ∴ y1 = 2y2 ...(iii)
 From the geometry of the tank, we know that,
  y1 = y2 + (3 – 1.5) = y2 + 1.5 ...(iv)
 Solving eqns. (iii) and (iv), we get:
  y2 = 1.5 m and y1 = 3 m
 Again, using the relation,

  Cv = 
2

1 1
,

4
x

y H×
 with usual notations, we get:

  0.92 = 
2 2

4 3 1·5 18 18
x x x

= =
× ×

 ∴ x = 0.92 18×  = 3.9 m (Ans.)

 Example 8.7. Explain briefly how the co-efficient of velocity of a jet issuing through an orifice 
can be experimentally determined.
 Find an expression for head loss in an orifice flow in terms of co-efficient of velocity and jet 
velocity.
 The head lost in flow through a 50 mm diameter orifice under a certain head is 160 mm of water 
and the velocity of water in the jet is 7.0 m/s. If the co-efficient of discharge be 0.61, determine:
 (i) Head on the orifice causing flow;
 (ii) The co-efficient of velocity;
 (iii) The diameter of the jet.    [UPSC]
 Solution.  Diameter of the orifice, d = 50 mm = 0.05 m
  Head of water lost in flow, hf  = 160 mm = 0.16 m
  Velocity of water in the jet, V  = 7.0 m/s
  Co-efficient of discharge, Cd  = 0.61
 (i) Head on the orifice causing flow, H:
  Bernoulli’s equation between the reservoir surface and vena-contracta (see Fig. 8.1), yields:

  H = 
2 27 0.16

2 2 9.81f
V h

g
+ = +

×
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   = 2.66 m (Ans.)
 (ii) The Co-efficient of velocity, Cv

    Cv = 7
2 2 9.81 2.66
V
gH

=
× ×

     = 0.97 (Ans.)
 (iii) The Diameter of the jet, dj:
    Cd = Cν × Cc

  ∴ Cc = 0.61 0.63
0.97

d

v

C
C

= =

  But, Cc = 
2 2

2 2

( / 4)

/ 4)
j jd d

d d

p ×
=

(p ×

  ∴ 0.63 = 
2

2(0.05)
jd

 

  or, dj
2 = 0.63 × (0.05)2 = 0.001575

  or, dj = 0.0397 m   or   39.7 mm (Ans.)

 Example 8.8. A 3 m high tank standing on the ground is kept full of water. There is a small 
orifice in its vertical side with its centre at depth h metres below the free surface of liquid in the 
tank. Find the value of h so that the liquid strikes the ground at the maximun distance from the tank. 
Assuming Cν = 0.97, calculate the maximum value of the horizontal distance.

 Solution.  Height of tank/water, H  = 3m
  Co-efficient of velocity, Cν  = 0.97

Tank

Vena-contracta

h

H
=

3
m

x

y

Jet

Fig. 8.5

 Value of h:
 From kinematics of flow,

  x = Vt       ...(i)                y  = 21
2

gt  ...(ii)

 where,  x,  y = Co-ordinates, and 
                     t = The time taken for the liquid particle to travel from the orifice to the ground.
 Eliminating ‘t’ from (i) and (ii), we get:

  y = 
21

2
xg
V
 ×  
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 or, x2 = 
22V y

g

 Substituting, V = 2 and ( ),vC gh y H h= −  we get:

  x2 = 
22 2 ( )vC gh H h

g
× × −

	 ∴ x = 2 ( )vC h H h−  ...(iii)

 Horizontal distance x of the jet trajectory would be maximum when h (H – h) is maximum or 
when,

  [ ]( )d h H h
dh

−  = 0 or 2( ) 0d hH h
dh

− =

 or, H – 2h = 0

 or, h = 3
2 2
H

= = 1.5 m  (Ans.)

 Maximum value of horizontal distance, (x)max:

 Substituting, h = 1.5 m and Cv = 0.97 in (iii), we get:

  (x)max = 2 0.97 1.5 (3 1.5)× −

   = 2.91 m (Ans)
 Example 8.9. A tank containing water is provided with a sharp edged circular orifice of  7.5 
mm diameter. The height of water in the tank is 1.44 m above the orifice. The jet strikes a wall 1.5 
m away and 0.42 m vertically below the centre line of the contracted section of the jet. The actual 
discharge through the orifice is measured to be 35 litres in 4 minutes. Deteremine:
 (i) The orifice co-efficients; (ii) The power loss at the orifice.

 Solution.  Diameter of the orifice, d = 7.5 mm = 0.0075 m

 ∴  Area of the orifice, a = 2 2 20.0075 0.0000442 m
4 4

dp p
× = × =

 Height of water in the tank above the orifice, H = 1.44 m
 Horizontal distance of a point on the jet from vena-contracta, x = 1.5 m
  Vertical distance, y = 0.42 m
 The actual discharge measured in 4 minutes = 35 litres

 i.e., Q = 4 335 1 1.46 10 m /s
1000 4 60

−× = ×
×

 (i)  Orifice co-efficients
    Q = . . 2dC a gH

  or,   1.46 × 10–4 = 0.0000442 2 9.81 1.44dC × × × ×

  ∴   Cd = 
41.46 10

0.0000442 2 9.81 1.44

−×
=

× × ×
0.62  (Ans.)
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  From the measurement of jet co-ordinates,

  Co-efficient of velocity, Cv = 1.5=
4 4 × 0.42 × 1.44
x
yH

= 0.964  (Ans.)

  The co-efficient of contraction follows from the relation,
  Cd = Cc × Cv

  ∴ Cv = 
0.62
0.964

0.64d

v

C
C

= =  (Ans.)

 (ii) The power loss at the orifice:

    Loss of head, hf = H (1 – Cv
2) [Eqn. 8.8 (a)]

      = 1.44(1 – 0.9642) = 0.102 m
  The loss co-efficient or the  co-efficient of resistance prescribes the ratio of loss of head in 

the orifice to the total head available.

     Loss co-efficient   = 0.102 .
1.44

fh
H

= = 0 071  (Ans.)

     Power loss = –4= 9810 × 1.46 × 10 × 0.102 =fwQh 0.146 W (Ans.)

 Example 8.10. A 100 mm diameter orifice discharge 36 litres per second of water under a 
constant head of 2.6 m. A flat plate held normal to the jet just downstream from the orifice requires 
a force of 240 N to resist the impact of the jet. Determine the hydraulic co-efficients.
 Solution. Dia. of the orifice, d = 100 mm = 0.1m
	 ∴ Area of the orifice,

  A = 2 2 20.1 0.00785 m
4 4

dp p
= × =

 Discharge through the orifice,

  Q = 36 litres/s = 336 0.036 m /s
1000

=

 Constant head of water above the orifice,
  H = 2.6 m
 Force required to resist the jet, F = 240 N
 Hydraulic co-efficients:
 From momentum equation, the force (F) required to hold the plate in position is

  F = wQ V
g

 where, w = Sp. weight of water (= 9810 N/m3), and
  V = Velocity at the vena-contracta.
 Substituting  the values in the above equation, we get:

  240 = 9810 0.036
9.81

V×
×

 ∴ V = 240 9.81 6.66 m/s
9810 0.036

×
=

×

 Theoretical velocity, Vth = 2 2 9.81 2.6 7.14 m/sgH = × × =

F

Plate

Jet

H
=

2
.6

m

Fig. 8.6
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	 ∴ Co-efficient of velocity, Cv = 
6.66
7.14

0.932
th

V
V

= =  (Ans.)

 Theoretical discharge, Qth = 2 0.00785 2 9.81 2.6a gH× = × × ×

   = 0.056 m3/s

 ∴Co-efficient of discharge,  Cd  = 
0.036
0.056th

Q
Q

= = 0.643  (Ans.)

 Co-efficient of contraction, Cc = 
0.643
0.932

d

v

C
C

= = 0.69  (Ans.)

 Example 8.11. A tank shown in Fig, 8.7 has a nozzle of exit  deameter D1 at a depth H1 below 

the free surface. At the side opposite to that of nozzle 1, another nozzle is proposed at  a depth 1 .
H
2

 

What should be deameter D2  in terms of D1 so that the net horizontal force on the tank is zero?
(UPTU)

 Solution. Let, V = Velocity, m/s
  m = Mass discharge, kg/s, and
  F = Reactive force due to rate of change of 

momentum of the issuing jet.
 At jet 1:
  V1 = 12gH

  m1 = 2
1 1 1 1. 2

4
A V D gHp

ρ = ρ × ×

 and, F1 = 
2

1 1 1 1 12 2
4

m V D gH gHp
= ρ × ×

   = 2
1 12

4
D gHp

ρ ×  

 At jet 2:

  V2 = 21
1 2 2 2 2 12 ;

2 4
Hg gH m A V D gHp  = = ρ = ρ × × 

 

 and, F2 = 2 2
2 2 2 1 1 2 14 4

m V D gH gH D gHp p
= ρ × × × = ρ × ×

 For the net horizontal force to be zero, F1 should be numerically equal to F2, since both of them 
act in opposite directions.

	 ∴ 2
1 1.2

4
D gHp

ρ  = 2
2 14

D gHp
ρ ×

 or, 2D1
2 = D2

2

 or, D2 = 1 2D = 11.414D   (Ans.)

 Example 8.12. A closed tank, having an orifice of diameter 20 mm at the bottom of the tank, 
is partially filled with water upto a height of 2.5 m. The air  is pumped into the upper part of the 
tank. Determine the pressure required for a discharge of 5 litres per second through the orifice, Take 
discharge co-fficient, Cd = 0.6 for the orifice.

H1

H1

2

D1

D2

1

2

Fig. 8.7
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 Solution. Height of water above orifice, H = 2.5 m
 Dia. of the orifice, d = 20 mm = 0.02 m

	 ∴ Area of the orifice, A = 2 2 2(0.02) 0.000314 m
4 4

dp p
= × =

 Discharge through the orifice, Q = 5 litres/sec.

   = 35 0.005 m /
1000

s=

 Co-efficient of discharge, Cd = 0.6
 Pressure required
 Let p is the intensity of presure required above water surface in 
kN/m2.

 Then, pressure head of air = 0.102
9·81

p p p
w
= =  metres of water.

 If V is the velocity at outlet of orifice, then:

  V = 2 2 9.81 (2.5 0.102 )pg H p
w

 + = × + 
 

	 ∴   Discharge, Q = Cd × a × V
 or 0.005 = 0.6 0.000314 2 9.81 (2.5 0.102 )p× × × +

  2 9.81 (2.5 0.102 )p× +  = 0.005 26.5
0.6 0.000314

=
×

 Squaring both sides, we get:
 or, 2 × 9.81 (2.5 × 0.102p) = (26.5)2 = 702.2

 or, 2.5 + 0.102 p = 702.2 35.79
2 9.81

=
×

	 ∴ p = 
35.79 2.5 /

0.102
−

= 2326.4kN m  (Ans.)

8.6.  DISCHARGE THROUGH A LARGE RECTANGULAR ORIFICE 

 When the available hetad of a liquid is less than 5 times the height of the orifice, the orifice is 
called a large orifice. In case of a small orifice, the velocity is considered to be constant in the entire 
cross- section and the discharge can be calculated by the formula Q = 2 .dC a gH× ×  But in case 

of a large orifice, the velocity of a liquid, flowing through the orifice, varies with the available head 
of the liquid and hence Q cannot be calculated as mentioned above (i.e. Q = 2dC a gH× × ).

 Consider a large rectangular orifice in one side of the tank discharging water freely into the 
atmosphere, as shown in Fig. 8.9.
 Let, H1 = Height of liquid above the top of the orifice,
  H2 = Height of liquid above the bottom of the orifice,
  b = Breadth of the orifice, and
  Cd = Co-efficient of discharge.
 Consider an elementary horizontal strip of depth ‘dh’ at depth of ‘h’ below the water level as 
shown in Fig. 8.9.

H
=

2
.5

m

p

Orifice

Fig. 8.8
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H2

H1

Water level

h dh

b

Fig. 8.9. Large rectangular orifice.

  ∴  Area of the strip = b . dh
 Theoretical velocity of water through the strip = 2gh
	 ∴ Discharge through the strip,
  dQ = Cd × area of strip × velocity
   = 2dC b dh gh× × ×

   = . . 2Cd b dh gh

 Total discharge through the whole orifice may be found out by integrating the above equation 
between the limits H1 and H2 .

	 ∴	 Q = 
2

1

. . 2
H

d
H

C b dh gh∫

   = 2

1
. 2

H
d H

C b g h× ∫

   = 
2

1

3/2
. 2

3 / 2

H

d
H

hC b g
 
 
 

   = 3/2 3/2
2 12 / 3 . 2 ( )dC b g H H−  ...(8.9)

 Example 8.13. Find the discharge through a rectangular orifice 3.0 m wide and 2.0 m deep 
fitted to a water tank. The water level in the tank is 4·0 m above the top edge of the orifice. Take  
Cd= 0.62.
 Solution.  Width of the orifice, b = 3.0 m
  Depth of the orifice, d = 2.0 m
 Height of water above the top of the orifice, H1 = 4.0 m
	 ∴ Height of the water above the bottom of the orifice, H2 = 4 + d = 4 + 2 = 6 m
  Co-efficient of discharge, Cd = 0.62
 Discharge through the orifice, Q:
 Using the relation:

  Q = 3/2 3/2
2 1

2 · 2 ( )
3 dC b g H H−  with usual notations

   = ( )3/2 3/2 32× 0.62 × 3.0 × 2 × 9.81 6 – 4 = 36.78 m /s
3

 i.e. Q = 36.78 m3/s (Ans.)

 Example 8.14. A rectangular orifice 0.6 m wide and 0.8 m deep is discharging water from a 
vessel. The top edge of the orifice is 0.4 m below the water surface in the vessel. Find:
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 (i) The discharge through the orifice if Cd = 0.62;
 (ii) The percentage error if the orifice is treated as a small orifice.

 Solution.  Width of orifice, b = 0.6 m
  Depth of orifice, d = 0.8 m
  H1 = 0.4 m
  H2 = H1 + d = 0.4 + 0.8 = 1.2 m
  Co-efficient of discharge, Cd = 0.62
 (i) Discharge through the orifice, Q: 

  Q = 3/2 3/2
2 1

2 2 ( )
3 dC b g H H× × −

   = 3/2 3/2 32 × 0.62 × 0.6 × 2 × 9.81 1.2 – 0.4 m /s
3

  

   = 1.098 (1.314 – 0.253) = 1.165 m3/s (Ans.)
 (ii) The percentage error if the orifice is treated as a small orifice:
  Discharge for a small orifice,
    Q ′ = 2dC a gh× ×

  where, h = 1
0.80.4 0.8 m,

2 2
dH + = + =

  and, a = b × d = 0.6 × 0.8 = 0.48 m2

  ∴ Q ′ = 30.62 0.48 2 9.81 0.8 1.179 m /s× × × × =

    % error = 
1.179 1.165 0.012

1.165
Q Q

Q
′ − −

= =  or  1.2 % (Ans.)

8.7.  DISCHARGE THROUGH FULLY SUBMEROGED ORIFICE 

 If an orifice has its whole of the outlet side submerged under liquid so that it discharges a jet of  
liquid into the liquid of the same kind then it is known as fully submerged (or drowned) orifice.
 Consider a fully submerged orifice as shown in Fig. 8.10.

H2

H1
H

Fig. 8.10. Fully submerged orifice.

 Let, H1 = Height of water (on the upstream side) above the top of the orifice,
  H2 = Height of water (on the upstream side) above the bottom of the orifice,
  H = Difference between the two water levels on either side of the orifice, 
  b = Width of orifice, and
  Cd = Co-efficent of discharge.
	 ∴ Area of the orifice = b (H2 – H1)
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 We know that theoretical velocity of water through the orifice = 2gH

	 ∴ Actual velocity of water = 2vC gH

 Since in this case co-efficient of contraction is 1, therefore, taking Cd equal to Cv’ we find that 
the actual velocity of water 2dC gH= ×

	 ∴ Discharge through the orifice,
  Q = Area of orifice × actual velocity

   = 2 1( ) 2db H H C gH− ×

   = 2 1· ( ) 2dC b H H gH− ×  ...(8.10)

 Sometimes, depth of submerged orifice (d) is given instead of H1 and H2. In such cases, the 
discharge,

  Q = · · 2dC b d gH  ...(8.11)

 Example 8.15. Find the discharge through a totally drowned orifice 1.5 m wide and 1 m deep, 
if the difference of water levels on both the sides of the orifice be 2.5 m. Take Cd = 0.62.

 Solution.  Width of the orifice, b = 1.5 m
  Difference of water levels, H = 2.5m
  Depth of the orifice, d = 1 m
  Co-efficient of  dicsharge, Cd = 0.62
 Discharge, Q:
 Using the relation,

  Q = . . 2dC b d gH

    = 30.62 1.5 1 2 9.81 2.5 6.513 m / s× × × × × =

 i.e., Q = 6.513 m3/s (Ans.)

8.8.  DISCHARGE THROUGH PARTIALLY SUBMERGED ORIFICE 

 If the outlet side of an orifice is only partly submerged (or drowned) under liquid then it is 
known as partially submerged (or drowned) orifice (Fig. 8.11). The upper portion behaves as an 
orifice discharging free, while the lower portion behaves as a submerged orifice. The total discharge 
is determined by computing separately the discharges through the free and the submerged portions 
and then adding together the two discharges thus computed. 

HH1
H2

Fig. 8.11. Partially submerged orifice.
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 Discharge through the submerged portion,
  Q1 = 2. .( – ) 2dC b H H gH×  ...(As in Art. 8.7)

 and, the discharge through the free portion,

  Q2 = 3/2 3/2
1

2 · · 2 ( )
3 dC b g H H−  ...(As in Art. 8.6)

 Total discharge  Q = Q1 + Q2

   = 3/2 3/2
2 1

2. .( ) 2 . . . 2 ( )
3d dC b H H gH C b g H H− × + −  ...(8.12)

 Example 8.16. A rectangular orifice 1.5 m wide and 1.2 m deep is fitted in one side of a large 
tank. The water level on one side of the orifice is 2 m above the top edge of the orifice, while on the 
other side of the orifice, the water level is 0.4 m below its top edge. Calculate the discharge through 
the the orifice if Cd = 0.62.

 Solution. Width of orifice, b = 1.5 m
 Depth of orifice, d = 1.2 m
 Height of water level above the top of the orifice,  
H1 = 2 m
 Height of water level above the bottom of the orifice, 
H2 = 2 + 1.2 = 3.2 m
 Difference of water levels  on both the sides,  
H = 2.4 m
 Co-efficient of discharge, Cd = 0.62
 Since the orifice is partially submerged, let us treat 
the upper portion as a free orifice and the lower portion as 
a submerged orifice.
 Let, Q1 = Discharge through the submerged portion, and
  Q2 = Discharge through the free portion. 
 Using the relation: 
  Q1 = Cd . b . (H2 – H) × 2gH  ...with usual notations

   = 0.62 × 1.5 (3.2 – 2.4) × 2 × 9.81 × 2.4  = 5.1 m3/s
 Now, using the relation:

  Q2 = 3/2 3/2
1

2 · 2 ( )
3 dC b g H H−  ...with usual notations

   = 3/2 3/22 0.62 1.5 2 9.81 (2.4 2 )
3
× × × × −

   = 2.44 m3/s
 The total discharge, 
  Q = Q1 + Q2 = 5.1 + 2.44 = 7.54 m3/s

 i.e. Q = 7.54 m3/s (Ans.)

8.9.  TIME REQUIRED FOR EMPTYING A TANK THROUGH AN 
          ORIFICE AT ITS BOTTOM 

 Consider a tank, of uniform cross-sectional area, containing some liquid, and having an orifice 
at its bottom as shown in Fig. 8.13.

H
2
=

3
.2

m

H
1

=
2

m

H
=

2
.4

m

0.4 m

1.5 m

1
.2

m

Fig. 8.12
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 Let, A = Cross-sectional area of the tank,
  a = Area of the orifice,
  H1 = Initial height of liquid,
  H2 = Final height of liquid
  T = Time in seconds, required to 

bring the level from H1 to  H2
 Let at some instant the height of the liquid be h 
above the orifice and let the liquid surface fall by an 
amount dh after a small interval for time dt.
Then, volume of the liquid that has passed the tank 
in time dt,
  dq = – A · dh ...(i)
 (– ve sign of dh is taken because the value of h decreases when the discharge increases). Also, 
theoretical velocity through the orifice, v = 2gh

	 ∴ Discharge through the orifice in a small interval of time dt,
 dq =  Co-efficient of discharge × area × theoretical velocity × time.
   = . . 2 .dC a gh dt  ...(ii)

 Equating (i) and (ii), we get:
  – A·dh = . . 2 .dC a gh dt

	 ∴ dt = 
–1/2– . – ( )

. . 2 . 2d d

A dh A h dh
C a gh C a g

=

 Time taken (T) to lower the level from H1 to H2  is calculated by integrating the above equation 
between the limits H1 and H2 .

 i.e. T = 2 2

1 1

1/2
1/2( )

. . 2 . 2
H H

H H
d d

A h dh A h dh
C a g C a g

−
−− −

=∫ ∫

   = [ ]
2

2

1
1

1/2
1/22

1/ 2. . 2 . 2

H
H
H

Hd d

A h A h
C a g C a g

 − −
= 

 

   = 1 2
2 1

2 ( )2
. . 2 . 2d d

A H HA H H
C a g C a g

−−  − − =   ...(8.13)

 If the tank is to be emptied completely, then  H2 = 0

 and, T = 12
. 2d

A H
C a g

 ...(8.14)

 Example 8.17. A circular tank of diameter 3 m contains water upto a height of 4m. The tank is 
provided with an orifice of diameter 0.4 m at the bottom. Find the time taken by water,
 (i) to fall from 4 m to 2 m, and 
 (ii) for completely emptying the tank.
 Take Cd = 0.6

 Solution.  Dia. of the tank, D = 3m
	 ∴  Area, a = (p/4) × 32 = 7.068 m2

  Dia. of the orifice, d = 0.4 m

Orifice

h

dh

H1

H2

Fig. 8.13 Tank with an orifice at its bottom.
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	 ∴  Area, a = (p/4) × 0.42 = 0.1257 m2 
  Initial height of water, H1 = 4 m
  Final height of water, (i)  H2 = 2 m (ii) H2 = 0
 Case I. When H2= 2 m
 Using the relation,

  T = 1 22 ( )
· · 2d

A H H
C a g

−
 ...with usual notations

   = 2 7.068 ( 4 2) 8.28 24.8 s
0.3340.6 0.1257 2 9.81

× −
= =

× × ×

 i.e. T = 24.8 s (Ans.)
 Case II. When H2 = 0.

  T = 12 2 7.068 4 28.27 84.6
0.334. 2 0.6 0.1257 2 9.81d

A H
s

C a g
× ×

= = =
× ×

 i.e. T = 84.6s (Ans.)
 Example 8.18. A swimming pool 12 m long and 7 m wide holds water to a depth of 2 m. If 
the water is discharged through an opening of area 0.2 m2 at the bottom of the pool,  find the time 
required to empty the tank. Take co-efficient of discharge for the opening as 0.6. (UPSC)
 Solution.  Area of the swimming pool, A = 12 × 7 = 84 m2

  Area of the orifice (opening) = 0.2 m2

  Co-efficient of discharge, Cd = 0.6
  Initial height of water, H1 = 2 m
 Time required to empty the tank, T:

 Using the relation: T = 12
. 2d

A H
C a g

 [Eqn. (8.14)]

  Substituting the values, we get: T = 2 84 2
0.6 0.2 2 9.81

× ×
× ×

 = 446.98 s (Ans.)

 Example 8.19. A 1 m diameter circular tank contains water upto a height of 4 m. At the bottom 
of tank an orifice of 40 mm is provided. Find the height of water above the orifice after 1.5 minutes.
Take co-efficient of discharge for the orifice Cd = 0.6.
 Solution.  Dia. of tank, D = 1 m

 ∴  Area, A = 2 2 21 0.785 m
4

Dp p
= × =
4

  Dia. of orifice, d  = 40 mm =0.04 m

 ∴  Area, a = 2 2 20.04 0.001257 m
4 4

dp p
= × =

  Initial height of water, H1 = 4m
  Time, T  =  1.5 min. = 1.5 × 60 = 90 s
 Height of water above the orifice after 1.5 minutes:
 Let H2 be height of water above the orifice after 1.5 minutes.
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 Using the relation: T = 1 22 ( )
. 2d

A H H
C a g

−
 (Eqn.8.13)

 Substituting the values, we get:

  90 = 22 0.785 ( 4 )
0.6 0.001257 2 9.81

H× × −

× × ×

   = 2469.9 (2 )H−

 or, 2H  = 902 1.808
469.9

− =

 ∴ H2 = 3.269m (Ans.)

 Example 8.20. Fig. 8.14 shows a rectangular tank having the compartments 1and 2, 
communicating by on orifice 100 mm square, its centre being 1 m above the bottom of the tank. The 
horizontal cross-sections of the compartments 1 and 2 are 12 m2 and 24m2 respectively. At a certain 
instant the water stands 4 m deep in 1 and 2 m deep in 2. How soon thereafter will surface reach a 
common level ?
 Take the efficient of discharge, Cd = 0.6

 Solution.  Size of the orifice = 100 mm (or 0.1 m ) square

	 ∴  Area, a = 0.1 × 0.1 = 0.01 m2

 Area of compartment 1,  A1 = 12 m2

 Area of compartment  2, A2 = 24 m2

 Discharge co-efficient, Cd = 0.6
 Time taken by the surface to reach a common level, T:
 Let, y = Depth of water in ‘1’ at any instant, and
  dy = Change in depth during any interval of time dT.

Orifice

2
m

2

1 m

Tank

4
m

1

Fig. 8.14

 Then, rise in 2’s level during the same time will be 12
24

× dy and net change in  head will be,

  dh = 12 3 2( ) or
24 2 3

dy dy dy dy dh− − × = =
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 Discharge through orifice in time dT 
   = · . . 2dQ dT C a gh dT=  ...(i)
 Also the dicrease in volume of water in time dT

   = 212 12 8
3

dy dh dh× = × =  ...(ii)
 Equating (i) and (ii), we get: 
  – 8 dh = · · 2 ·dC a gh dT
 (Negative sign is introduced as with the increase in time, the height of water in ‘1’ decreases)

	 ∴ dT = 8 8· · 301
· · 2 0·6 0·01 2 9·81d

dh dh dh
C a g h h h

− −
= = −

× × ×
 Integrating both the sides, we get:

  
0

T

dT∫  = 
0 2

1/2

2 0

301 301dh h dh
h

−− =∫ ∫

  T = 
21/2 1 2

0
0

301 301 2
1/ 2 1
h h
− + 

 = ×   − + 

   = 301 2 2× × = 851.35s (Ans.)

 Example 8.21. A vessel has compartments A  and B communicating by an orifice 150 cm2, its 
centre being 1 m above the botton of the vessel. The cross section of A is 10 m2 and that of  B is 20 
m2 At a certain time the water stands 4 m in A and 2 m in B. How soon thereafter water will attain 
common level ? Assume Cd = 0.62.   (MU)

 Solution. Refer to Fig, 8.15.
 Let, y = Depth of water in compartment A at any instant, 
 and, dy = Change in depth during any interval of time dT.

 Then, the rise in the level of water in compariment B during the time dT  will be 10
20

× dy and 

the net change in head will be, 

  dh = 10 3 2( )
20 2 3

dy dy dy or dy dh − − = = 
 

 Discharge through the orifice in time dT

   = Q.dT  = . . 2 .dC a gh dT  ...(i)
 (where, a = area of orifice)
 Also decrease in volume of water in compartment A in time 
dT
   = 2 2010 10

3 3
dy dh dh× = × =

 Equating (i) and (ii), we get:

  20
3

dh−  = 2dC a gh dT⋅ ⋅ ⋅

 (Negative sign is introduced as with increase in time, the 
height of water in compartment A decreases)

 ∴ dT = 6.667
. . 2d

dh
C a g h
−

×

A

4 m

B

Orifice

1 m

1 m

Fig. 8.15
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   = 4
6.667 161.84

0.62 (150 10 ) 2 9.81
dh dh

h h−
−

× = − ×
× × × ×

 Integrating both sides, we get:

  
0

T
dT∫  = 

0 2 1/2
2 0

161.84 161.84dh h dh
h

−− =∫ ∫

	 ∴	 T =	 [ ]
21 1

2 2
0

0

( )161.84 161.84 2
1 1
2

h h

−
+ 

 
= = 

 − +
 

457.7s (Ans.)

 Example 8.22. A cylindrical tank 3 m in diameter and 6 m high has an  orifice 150 mm in 
diameter at the bottom centre of the tank. A constant discharge of 85 litres of water per second is 
fed into the tank. At the same time water is being discharged through the orifice. Determine the time 
taken to lower the water surface level in the tank from 5 m to 2.5 m above the centre of orifice. Take 
Cd = 0.72. The top of the tank is open to the atmosphere. [UPSC Exams.]
 Solution. Dia. of the tank, D = 3 m

	 ∴			 Area, A = 2 23 7.068 m
4
p
× =

  Dia. of the orifice, d = 150 mm = 0.15 m

	 ∴   Area, a = 2 20.15 0.01767 m
4
p
× =

 Constant discharge of water fed into the tank, q = 85 litres/s = 0.085 m3/s
  Initial height of water, H1 = 5 m
  Final height of water, H2 = 2.5 m
 Time taken to lower the water surface level:
 Let, Q = Outflow i.e.discharge through the orifice, and
  dh = The fall in water surface in the tank in time dT under the conditions of 

simultaneous inflow and outflow.

dh

h

5
m

6
m

Orifice

Cylindrical
tank

Q

Fig. 8.16



480         Fluid Mechanics

 From the principle of continuity, we have:

  – A.dh = ( ) ( . . 2 )dQ q dT C a gh q dT− = −

 or, dT = .
( . . 2 )d

A dh
C a gh q

−
−

 Let, Q = K h

 where, K = . . 2dC a g

 and,  ( )K h q−  = x,

 then, dx = 2
2
Kdh h dxor dh

Kh

 ×
= 

 

 Time taken to lower the water surface from a height , H1 to H2

  T = 
2 2

1 1

. 2 .
( ) ( )

H H

H H

A dh A h dx
K h q K K h q

×
− = −

− −∫ ∫  (substituting the value of dh)

 Multiplying the numerator and denominator by K, we get:

   = 
2

1

2 2
.2 . . 2 ( )
( )

H

H

A h dx K A dxx q
xK K h q K

− = − +
−∫ ∫  ( )K h x q= +

   = 2 2
2 21 [ ln ( )]A q Adx x q x

xK K
 − + = − + 
 ∫  

   = 
2

12
2 ( ) ln ( )

H

H
A K h q q K h q

K
 − − + − 

   = 
1

22
2 ( ) ln ( )

H

H
A K h q q K h q

K
 − + − 

   = 1
1 22

2

( )2 ( ) ln
( )
K H qA K H H q

K K H q

 −
− + 

−  

 Substituting the given data, we get K = . . 2 0.72 0.01767 2 9.81 0.0564dC a g = × × × =

   = 2
2 7.068 (0.0564 5 0.085)0.0564 ( 5 2.5) 0.085 ln
(0.0564) (0.0564 2.5 0.085)

  × − − +  
−    

   = 
0.04114443.94 0.0369 0.085 ln

0.00417
  +     

   = 1028.3 s (Ans.)

 Example 8.23. A swimming pool 30 m long and 10 m wide has vertical sides and bottom at a 
slope. The depths of water at the shallow and deep sides are 2 m and 5 m repectively. Two outlets, 
each of 0.4 m diameter, have been provided at each of the deep and shallow ends. Calculate the time 
taken to empty the pool if both the outlets are kept open. Take Cd = 0.6 for each opening.

 Solution.  Length of swimming pool = 30 m
  Width of the pool = 10 m
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	 ∴  Area of the pool A = 30 × 10 = 300 m2 
  Diameter of each outlet, d = 0.4 m

	 ∴   Area, a = 2 20.4 0.1256 m
4
p
× =

 Discharge co-efficient for each opening, Cd = 0.6
 Time taken to empty the pool, T:
 Let, T1 = Time required to bring the water level from LM to NP, and
  T2 = Time taken to empty the triangular element NPS.
 Then, T = T1 + T2

10 m

2
m

N

S

P

L

5
m

Orifice
(0.4 m dia.)

Orifice
(0.4 m dia.)

M

Fig. 8.17

 (i) Time T1:
 Refer to Fig. 8.17. The section NP corresponds to centre of the top orifice/opening. Let us 
consider an instant when the height of water above the centre of the top orifice is h metres. At that 
instant, the height of water above the bottom orifice equals (h + 3) metres. If during a small time 
interval dT the water level falls by dh, then:
 Volume of water leaving the pool in time dT
 = Discharge through the two orifices in time dT
 i.e., – A.dh = . . 2 ( 3) . . 2 .d dC a g h dT C a gh dT+ +

 or, dT = 
. . 2 ( 3) )d

A dh
C a gh h h

−
+ +

   
1

0

T

dT∫  = 
0

2. . 2 ( 3

h

d h

A dh
C a g h h

=

=

−
+ +∫

  T1 = 
0

2

( 3)
.

. . 2 ( 3) ( 3)

h

d h

h hA dh
C a g h h h h

=

=

 + −−  
  + + + −   

∫

   = 
0

2

( 3)
.

3. . 2

h

d h

h hA dh
C a g

=

=

 + −−  ∫
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   = 
03/2 3/2

2

1 ( 3)
3 3 / 2 3 / 2. . 2d

A h h
C a g

 − +
× − 

 

   = 
03/2 3/2
2

1 2 ( 3)
3 3. . 2d

A h h
C a g

−  × × + − 

 Substituting the values, we get:

   = 3/2 3/2 3/2300 2 (3) { (2 3) 2 }
90.6 0.1256 2 9.81

−  × − + − 
× × ×

   = 2898.73 (5.196 8.352) 630.3 s
9

− × − =  

 (ii) Time T2:
 Within the triangular element NPS, let h be the height of water above the bottom orifice at any 
instant; and let the water falls by dh during a small time interval  dT. At that instant: 

  Width of water surface = 10
3
h
×

  Area of water surface = 10 30 100
3
h h × × = 

 
 Now, Volume of water leaving the pool in time dT
   = Discharge through the bottom orifice in time dT
  – A.dh = . . 2 ·dC a gh dT

 or dT = . 100 .
. . 2 . . 2d d

A dh h dh
C a gh C a gh
− −

=

   = 1/2100 ·
· · 2d

h dh
C a g

−

	 ∴ 
2

0

T

dT∫  = 
0

1/2

3

100 .
. . 2

h

d h

h dh
C a g

=

=

−
∫

 Substituting values, we get:

  T2 = 
0

3/2

3

100 2
30.6 0.1256 2 9.81

h−  ×  × × ×

   = 3/22299.57 (0 3 ) 1037.7
3

s − × − =  
	 ∴  Total time, T = T1 + T2 = 630.3 + 1037.7 = 1668 s (Ans.)

 Example 8.24. Fig 8.18 shows a truncated cone having vertex angle θ = 60°. How long does it 
take to draw the liquid surface from y = 3 m to y = 1 m ? Take Cd = 0.85 [IIT Bombay]

 Solution.  Dia. of the orifice, d = 0.1 m

	 ∴   Area, a = 2 2× 0.1 = 0.007854 m
4
p

  Vertex angle, θ  =  60°
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 Discharge co-efficient, Cd = 0.85
 Time required, T:
 From the geometry of the truncated cone,

  0.5
x

 = tan 30° = 1
3

 or, x = 0.5 3 0.866 m× =

 Let r = Radius of truncated cone at a distance 
(x + y) from the vertex.

 Then, r
x y+

 = tan 30°

 or    r  =  (0.866 + y) tan 30° 

   = (0.866 )
3

y+

 Further, let the liquid surface falls a distance dy in time dT. Then from the continuity principle, 
we have:
  pr2 (– dy) = Q.dT = . . 2 .dC a gy dT

 or, 2 1(0.866 )
2

y dy− p + ×  = 0.85 0.007854 2 9.81 y dT× × × × ×

 or, – 1.047 (0.866 + y2) dy = 0.0296 y dT×

 or, dT = 
2 21.047 (0.866 ) (0.866 )35.37 ·

0.0296
y dy y dy

y y
+ +

= − ×

 The time required to empty the cone from y = 3 m to 1 m ,

  T = 
1 12 2

3 3

(0.866 ) (0.75 1.732 )35.37 . 35.37 .y y ydy dy
y y
+ + +

= −∫ ∫

   = 
3

3/2 1/2

1

0.7535.37 1.732y y dy
y

 + + 
 

∫

   = 
31/2 1 3/2 1 1/2 1

1

35.37 0.75 1.732
1/ 2 1 3 / 2 1 1/ 2 1

y y y− + + + 
× + + × 
− + + + 

   = 
3

1/2 5/2 3/2

1

235.37 1.5 1.732 2 / 3
5

y y y = + + ×  

   = 1/2 5/2 3/2235.37 1.5 (3 1) (3 1) 1.155 (3 1)
5

 − + − + −  
   = 35.37 (1.098 + 5.835 + 4.846) = 416.6 s (Ans.)

8.10.  TIME REQUIRED FOR EMPTYING A HEMISPHERICAL TANK 

 Consider a hemispherical tank containing some liquid and fitted with an orifice at its bottom as 
shown in the Fig. 8.19.
 Let, R = Radius of the tank,

1 m dia.Truncated
cone

�

60°
x

y

0.1 m
dia.

Q

Fig. 8.18
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  a = Area of the orifice,
  H1 = Initial height  of the liquid,
  H2 = Final height of the liquid, and
  T = Time in seconds for the liquid to fall from height H1 to H2.

O

S

H2

R

dh

U

x
H1

Orifice

h

R

Fig. 8.19. Hemispherical tank.

 Let at any instant of time, the height of liquid over the orifice is h and x be the radius of the 
liquid surface. 
  Then, area of liquid surface, A  = px2

  Theoretical velocity of liquid = 2gh

 Let the height of liquid decrease by dh in a small interval of time dT. Then,
	 Volume of liquid leaving the tank in time dT
   = A.dh = px2 × dh ...(i)
 Also, volume of liquid flowing through the orifice in time dT
   = Cd × area of orifice × velocity × dT
   = . . 2dC a gh dT×  ...(ii)

 Equating (i) and (ii), we get: 
  px2 (–dh) = . 2dC a gh dT×

 The negative sign accounts for the decrease in head on the orifice with increase in time interval.

  dT = 
2 ·

· · 2d

x dh
C a gh
− p  ..(iii)

 From Fig. 8.19, we have:
  OU = R and OS = (R – h)

	 ∴ x = 2 2 2 2( )US OU OS R R h= − = − −

   = 2 2 2 22 2R R h Rh Rh h− − + = −

 or x2 = (2RH – h2)
 Substituting this value of x2 in eqn. (iii), we get:

  dT = 
2(2 )

. . 2d

Rh h dh
C a gh

− p −
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   = 2 1/2(2 )
. . 2d

Rh h h dh
C a g

−− p
= −

   = 1/2 3/2(2 )
. . 2d

Rh h dh
C a g

− p
−

 The total time T required to bring the liquid level from H1 to H2 is obtained by integrating the 
above equation between the limits H1 to H2 .

  
0

T

dT∫  = 
2

1

1/2 3/2(2 )
. 2

H

dH

Rh h dh
C a g

− p
−∫

   T = 
2

1

1/2 3/2(2 )
. 2

H

d H

Rh h dh
C a g

− p
−∫

   = 
2

1

1/2 1 3/2 1
2

1 3. 2 1 1
2 2

H

d
H

h hR
C a g

+ + − p
× − 

 + +
 

   = 
2

1

3/2 5/22 22
3 5. 2

H

Hd
R h h

C a g
− p  × −  

   = ( ) ( )3/2 3/2 5/2 5/2
2 1 2 1

4 2
3 5. 2d

R H H H H
C a g

− p  − − −  

 or T = ( ) ( )3/2 3/2 5/2 5/2
1 2 1 2

4 2
3 5. . 2d

R H H H H
C a g

p  − − −  
 ...(8.15)

 For emptying the tank completely, H2 = 0 and hence,

  T = 3/2 5/2
1 1

4 2
3 5. . 2d

RH H
C a g

p  −  
 ...(8.16)

 Example 8.25. A hemispherical tank of 2 m radius is provided with an orifice of 40 mm at its 
bottom. It contains water upto a height of 1.8 m. Find the time required by water
 (i) to fall from 1.8 m to  1.2 m, and 
 (ii) for completely emptying the tank.
  Take Cd = 0.62.

 Solution.  Radius of tank, R  =  2 m
  Diameter of the orifice, d  = 40 mm = 0.04 m

	 ∴  Area, a = 2 3 20.04 1.2566 10 m
4

−p
× = ×

  Initial height of water, H1  =  1.8 m
  Co-efficient of discharge for the orifice, Cd  =  0.62
 (i) Time required by water to fall from 1.8 m to 1.2 m:
  In this case, H1 = 1.8 m and H2 = 1.2 m
  Time T is given by :

  T = ( ) ( )3/2 3/2 5/2 5/2
1 2 1 2

4 2
3 5. . 2d

R H H H H
C a g

p  − − −  
 ...(Eqn. 8.15)
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   = ( ) ( )3/2 3/2 5/2 5/2
3

4 22 1.8 1.2 1.8 1.2
3 50.62 1.2566 10 2 9.81−

p  × − − −  × × × ×

   = 910.36 [2.934 – 1.107] = 1663 seconds
   = 27 min. 43 sec. (Ans.)
 (ii) Time required by water for completely emptying the tank:
  Here H1 = 1.8 m and H2 = 0

  Time T is given by: T = 3/2 5/2
1 1

4 2
3 5. 2d

RH H
C a g

p  − 
 

  ...Eqn. (8.16)

   = 3/2 5/2
3

4 22 1.8 1.8
3 50.62 1.2566 10 2 9.81−

p  × × − × 
 × × × ×

 

   = 910.36 (6.44 – 1.738) = 4280.5 seconds
   = 71 min. 20.5 sec. (Ans.)
 Example 8.26. A tank has an upper cylindrical portion of 1.25 m radius and 3 m height with 
hemispherical base. The tank is provided with an orifice of 150 mm diameter at its bottom. Find the 
time required to empty it if it is initially full of water.
 Take Cd =0.62 for the orifice.
 Solution.  Radius of the tank, R = 1.25 m
	 ∴  Area, A = pR2 = p	× 1.252  = 4.908 m2

  Dia. of orifice, d = 150 mm = 0.15 m

 ∴		 Area, a = 20.15
4
p
×  = 0.01767 m2 

Cylinder

Hemisphere

Orifice
( 150 mm dia. )

1
.2

5
m

3
m

2.5 m

Fig. 8.20

 The tank consists of two portions, cylindrical and hemispherical (Fig. 8.20).
 Let, T1 = Time required to empty the upper cylindrical portion, and
  T2 = Time required to empty the hemispherical portion.
 Then,  total time,  =  T1 + T2.
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 For cylindrical portion :
  H1 = 3 + 1.25 = 4.25 m, H2 =3 m

 Using the relation:  T1 = 
( )1 22

. . 2d

A H H

C a g

−
 ...(Eqn. 8.13)

   = 
2 4.908 ( 4.25 1.25)
0.62 0.01767 2 9.81
× −

× × ×

   = 9.816 (2.061 1.118)
0.0485

−  =190.85 s

 For hemispherical portion: 
  H1 = 1.25 m, H2 = 0
 Using the relation:

  T2 = 3/2 5/2
1 1

4 2
3 5. . 2d

RH H
C a g

p  −  
 ...(Eqn.8.16)

 Substituting the values, we get:

  T2 = 3/2 5/24 21.25 1.25 1.25
3 50.62 0.01767 2 9.81

p  × × − ×  × × ×

   = 64.74 (2.329 – 0.698) = 105.6 s
 ∴ Total time taken to empty the tank,
  T = T1 + T2  = 190.85 + 105.6 = 296.45 s (Ans.)

8.11.  TIME REQUIRED FOR EMPTYING A CIRCULAR 
            HORIZONTAL TANK 

 Consider a circular horizontal tank having an orifice at its bottom and containing some liquid.

L

R
h

dh

O

R

O
x

R

U P

Orifice H2

H1

S

Fig. 8.21

 Let, R = Radius of the tank,
  L = Length of the tank,
  H1 = Initial height of the liquid,
  H2 = Final height of the liquid, and
  T = Time in seconds for the liquid to fall  from height  H1 to H2.
 Let at any time, the height of liquid over the orifice is h and it decreases dh in a small interval 
of time dT. Further, let x be the radius of liquid surface at this instant. Then,
 Volume of liquid leaving the tank in time dT = A.dh ...(i)
   = A.dh = UP × L × dh = 2xL.dh ( UP = 2x)
 (where, A = surface area)
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 Velocity of liquid through the orifice = 2gh

 Volume of liquid flowing through the orifice in time dT
   = 2dC a gh dT× × ×  ...(ii)

 Volume of liquid leaving the tank equals the volume of liquid flowing through the orifice.
 i.e. – 2x L.dh = 2dC a gh dT× × ×

 The negative sign accounts for the decrease in head on the orifice with increase in time interval.

 ∴ dT = 2 ·
· · 2d

x L dh
C a gh
−  ...(iii)

 From Fig. 8.21, we have:
  OU = R and OS = (R – h)

	 ∴ x = US = 2 2 2 2 2( ) 2OU OS R R h Rh h− = − − = −

 Substituting this value of x in eqn. (iii), we get:

  dT = 
22 (2 ) 2 (2 ) .

. . 2 . . 2d d

Rh h L dh L R h dh
C a gh C a g

− − × × − −
=  (Taking h  common)

 The total time T required to bring the liquid level from height H1 to H2 can be found out by 
integrating the above equation within the limits H1 and H2.

	 ∴ 
0

T

dT∫  = 
2

1

2 (2 ) ·
. . 2

H

dH

L R h dh
C a g

− −
∫

 or, T = 
2

1

1/22 (2 )
. . 2

H

d H

L R h dh
C a g

−
−∫

   = 2

1

3/22 2 (2 ) ( 1
3. . 2

H

H
d

L R h
C a g

−  × × − × − 

 or, T = 3/2 3/2
2 1

4 (2 ) (2 )
3 . 2d

L R H R H
C a g

 − − −   ...(8.17)

 For emptying the tank completely, H2 = 0 and hence,

  T = 3/2 3/2
1

4 (2 ) (2 )
3 . . 2d

L R R H
C a g

 − −   ...(8.18)

 Example 8.27. A horizontal boiler drum 6 m long and 3 m in diameter is provided with an 
orifice 100 mm in diameter at its bottom. It contains water upto a height of 2.4 m. Calculate the 
tiime taken to empty the drum. Take discharge co-efficient,Cd = 0.6.
 Solution.  Length of the drum, L = 6 m 
  Diameter of the drum, D  = 3.0 m
	 ∴  Radius, R = 1.5 m
  Dia. of the orifice, d = 100 mm = 0.1 m

	 ∴  Area,  a = 2 3 20.1 7.854 10 m
4

−p
× = ×

  Initial height  of water, H1 = 2.4 m 
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 Final height of water, H2 = 0
 Time taken to empty the drum, T:

 Using the relation: T = 3/2 3/2
1

4 (2 ) (2 )
3 . . 2d

L R R H
C a g

 − −   (Eqn.8.18)

   = 3/2 3/2
3

4 6 (2 1.5) (2 1.5 2.4)
3 0.6 7.854 10 2 9.81−

×  × − × − 
× × × × ×

   = 383.26 (5.196 – 0.464) = 1813.6 s
   = 30 min. 13.6 sec. (Ans.)
 Example 8.28. (Tank with two orifices). A 600 mm diameter cylindrical tank (vertical) 
contains water to a depth of 2.5 m. There are two orifices in the tank, one at the bottom and the 
other in one of the vertical sides at a height of 1.5 m above the bottom. if the area of each orifice is 
12 cm2 and discharge co-efficient 0.6, calculate the time required to empty the tank.
 Solution. Dia, of the tank, D = 600 mm = 0.6 m

 ∴ Area, A = 2 20.6 0.2827m
4
p
× =

 Area of each orifice,
              a = 12 cm2 = 0.0012 m2

 Discharge co-efficient for each orifice, Cd = 0.6.
 Time required to empty the tank, T:
 Let, T1 = Time required to bring the water 

level from LM to NP, and 
  T2 = Time required to empty the portion 

below the section NP.
 Total time, T = T1 + T2
 For time T1:
 Let us consider an instant when the height of water 
above the center of upper orifice is h metres. Then the height of water above the bottom, at that 
instant, equals (h + 1.5) meters. If the water level falls by dh during a small time interval dT, then:
 Volume of the water leaving the tank in time dT = Discharge through the two orifices in time 
dT.
  – A . dh = Cd . a. 2 ( 1·5) ·g h dT+  + Cd . a . 2 ·gh dT

 ∴ dT = .
· 2 ( 1.5)d

A dh
C a g h h

−
 + + 

 ∴ 
1

0

T

dT∫  = 
0

1· 2 ( 1·5)d h

A dh
C a g h h=

−

+ +
∫

  T1 = 
0

1

( 1.5)
·

· 2 ( 1.5) ( 1.5)

h

d h

h hA dh
C a g h h h h

=

=

 + −−  
  + + + −   

∫

  T1 = 
0

1

( 1.5)
.

1.5. . 2

h

d h

h hA dh
C a g

=

=

+ −−
∫

   = 
03/2 3/2

1

1 ( 1.5)
1·5 3 / 2 3 / 2· · 2d

A h h
C a g

 − +
× − 

 

0.6 m

Orifice

U S

P

M

1
.5

m

2
.5

m

L

N

Orifice

Fig. 8.22



490         Fluid Mechanics

 Substituting the values, we get:  

  T1 = 
03/2 3/2
1

0.2827 1 2 ( 1.5)
1.5 30.6 0.0012 2 9.81

h h−  × × + − 
× × ×

   = { }3/2 3/2 3/239·39 (1·5) (2·5) (1) − − − 
   = – 39.39 (1.837 – 3.953 + 1) = 43.96 s
 For time T2:
 Below the section NP, let h be the height of water above the bottom  orifice at any instant, and 
let the water be leaving in a small time interval dT, then:
 Volume of water leaving the tank is time dT
   = Discharge through the bottom orifice in time dT
  – A. dh = Cd . a . 2 ·gh dT

 ∴ dT = .
. . 2d

A dh
C a gh
−

 or, 
2

0

T

dT∫  = 
0

1/2

1·5. . 2d h

A h dh
C a g

−

=

−
∫

 or, T2 = 
01/2

1·51/ 2. . 2d

A h
C a g

 −
 
 

   = [ ]01/2
1.5

2
. . 2d

A h
C a g

−

 Substituting the values, we get:  T2 = 1/22 0.2827 (0 1.5 )
0.6 0.0012 2 9.81

− ×
−

× × ×

   = 177.28 × 1.51/2 = 217.12 s
  Total time, T = T1 + T2 = 43.96 + 217.12 = 261.08 s (Ans.)

8.12.  CLASSIFICATION OF MOUTHPIECES 

 The mouthpieces may be classified as follows :
 1. According to the position of  the mouthpiece :
 (i) Internal mouthpiece. (ii) External mouthpiece.
 2. According to the shape of the mouthpiece:
 (i) Cylindrical mouthpiece. (ii) Convergent mouthpiece.
 (iii) Convergent - divergent mouthpiece.
 3. According to nature of discharge:
 (i) Mouthpiece running full. (ii) Mouthpiece running free.
 Note :  A mouthpiece is said to be running free if the jet of liquid aftter contraction does not touch the sides 

of the mouthpiece. But if the jet after contraction expands and fills the whole mouthpiece it is known 
as running full.

8.13. DISCHARGE THROUGH AN EXTERNAL MOUTHPIECE 

 A mouthpiece is a small tube (two or three times its diameter in length) attached to an orifice. 
An external mouthpiece is attached to the vessel such that it projects outside. Fig.8.23 shows a tank 
to which is attached an external cylindrical mouthpiece.
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 Let, a1 = Area of mouthpiece at outlet,
  v1 = Velocity of liquid at outlet,
  ac = Area of flow at vena-contracta,
  vc = Velocity of liquid at C-C section,
  H = Height of liquid above the centre 

of the mouthpiece, and
  Cc = Co-efficient of contraction.
 Applying continuity equation at C-C and 1-1, 
we get:
  ac vc = a1ν1

  ∴ Vc = 1 1 1 1

/c c c

a v v v
a a a C

= =

 (where  ac / a = Cc = co-efficient of contraction)

 Taking Cc = 0.62, we get:  vc = 1

0.62
v

 

 From section C–C the jet of liquid suddenly enlarges at section 1–1; the loss of head due to 
sudden enlargement is given by:

     hL = 
2

1( )
2
−cv v
g

      = 

2
1

10.62
2

 − 
 

v v

g
 1

0.62
 = 
 
 c

vv

      = 
22

1 1 1
2 0.62
v
g
 − 
 

      = 
2
10.375

2
v

g

 (Please refer to Art. 12.4.1 for loss of head due to sudden enlargement)
 Applying Bernoulli’s equation to point A and 1 -1, we get:

     
2

2
A A

A
P v z
w g

+ +  = 
2

1 1
12 L

p v z h
w g

+ + +

 But zA = 1
1,

pz
w

= atmospheric pressure = 0, and vA is negligible.

 ∴     H + 0 = 0 + 
2 2
1 10.375

2 2
v v
g g
+

 or,    H = 
2
11.375

2
v

g
    or    v1 = 2 0.855 2

1.375
gH gH=

 Theoretical velocity of liquid at outlet, vth = 2gH

	 ∴  Co-efficient of velocity for mouthpiece, 

H

1

1

�
�

�cC

C

A

Fig. 8.23. External cylindrical mouthpiece.
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  Cv = Actual velocity
Theoretical velocity

 = 
0.855 2

0.855
2

gH
gH

=

 For a mouthpiece, since the area of jet of liquid at outlet is equal to the area of mouthpiece at 
outlet, therefore, Cc = 1.
 Hence Cd = Cc × Cv= 1 × 0.855 = 0.855
 Thus the value of Cd  for mouthpiece is more than the value of Cd for orifice, and so discharge 
through mouthpiece will be more.

 Note:   In actual practice Cv = Cd  ≈ 0.82.

 Example 8.29. Find the discharge from a 80 m diameter external mouthpiece, fitted to a side of 
a large vessel, if the head over the mouthpiece is 6 m. 

 Solution.  Dia. of the mouthpiece = 80 mm = 0.08 mm
 ∴  Area, a = 2 20.08 0.005026 m

4
p
× =

  Head over the mouthpiece, H = 6 m
  Cd for the mouthpiece = 0.855
 ∴  Discharge, Q = Cd × area × velocity
   = 2dC a gH× ×

   = 0.855 × 0.005026 × 2 9.81 6× ×  = 0.0466 m3/s (Ans.)

 Example 8.30. An external cylindrical mouthpiece of diameter 120 mm is discharging water 
under a constant head of 6 m. If Cc for vena-contracta = 0.62, Cd = 0.86 and atmospheric pressure 
head = 10·3 m of water, find :
 (i) Discharge through the mouthpiece, and 
 (ii) Absolute pressure head of water at vena-contracta.

 Solution.  Diameter of mouthpiece, d = 120 mm = 0.12 m

 ∴  Area, a = 
4
p  × 0.122 = 0.0113 m2

 Head,       H = 6 m
  Cc for vena-contracta = 0.62
  Discharge co-efficient, Cd = 0.86
  Atmospheric pressure head, Ha = 10.3 m
 (i) Discharge through mouthpiece, Q:
    Discharge, Q = Cd . a . 2gH = 0.86 × 0.0113 × 2 9.81 6× ×

     = 0.1054 m3/s (Ans.)
 (ii) Absolute pressure head at vena-contracta, Hc:
  Refer to Fig. 8·24. Applying Bernoulli’s equation at A and 

C-C, we get:

    
2

2
A A

A
p v z
w g

+ +  = 
2

2
c c

c
p v

z
w g

+ +

  But, Ap
w

 = Ha + H,  vA = 0 and zA = zc

C

C
H

A

1

1

Fig. 8.24
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  ∴ (Ha + H) + 0 = 
2 2

2 2
c c c

c
p v v

H
w g g

+ = +

  ∴ Hc = Ha + H – 
2

2
cv
g

  But, vc = 1

0.62
v

  ∴ Hc = Ha + H – 
2 2

1 1
2

1 1
0.62 2 2 (0.62)a
v vH H

g g
  × = + − × 
 

  But, H = 1.375 
2 2
1 1or 0.7272

2 2 1.375
v v H H
g g

= =

  ∴ Hc = Ha + H – 0.7272 H × 2
1

(0.62)

     =  Ha = H – 1.89 H = Ha – 0.89 H
     = 10.3 – 0.89 × 6 = 4.96 m (absolute) (Ans.)

8.14.  DISCHARGE THROUGH A CONVERGENT-DIVERGENT  
            MOUTHPIECE 

 Fig. 8.25. shows a convergent-divergent mouthpiece (which converges upto vena-contracta and 
then diverges). In this mouthpiece since there is no sudden enlargement of the jet, therefore, the loss 
of energy due to sudden enlargement is eliminated. 
For this mouthpiece.Cd = 1.
 Let,  H = Head of liquid over the mouthpiece,
  Ha = Atmospheric pressure head, and 
  Hc = Absolute pressure head at vena-

contracta.
 Applying Bernoulli’s equation at the free water 
surface and section C-C,we get:

         
2

2
p v z
w g
+ +  = 

2

2
c c

c
p v

z
w g

+ +

 Assuming that datum passes through the centre of 
the mouthpiece, we have:

  p
w

 = Ha, v = 0, , 0c
c

p
H z

w
= =

	 ∴ Ha + 0 + H = Hc + 
2

0
2

cv
g
+  ...(i)

 or, 
2

2
cv
g

 = Ha + H – Hc ...(ii)

 or, vc = 2 ( )a cg H H H+ −

 Now applying Bernoulli’s equation at sections C-C and 1-1, we get:

H

C

C

1

1

ac

�c

�1

Free water surface

a1

Fig. 8.25. Convergent-divergent mouthpiece.
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2

2
c c

c
p v

z
w g

+ +  = 
2

1 1
12

p v z
w g

+ +

 But, zc = z1 and  1
a

p H
w

=

 ∴ Hc + 
2

2
cv
g

 = 
2
1

2a
vH
g

+

 Also from eqn. (i), we have:

  
2

2
c

c
v

H
g

+  = Ha + H

 ∴ 
2
1

2a
vH
g

+  = Ha + H

 ∴ v1 = 2gH

 By continuity equation, we have:      ac vc = a1 v1

 or, 1

c

a
a

 = 
1

2 ( )
1

2
a cc a cg H H Hv H H

v H HgH
+ −

= = + −

 i.e. 1

c

a
a

 = 1 a cH H
H
−

+  ...(8.19)

  The discharge, Q = ac × 2gH  ...(8.20)

 Example 8.31. A convergent-divergent mouthpiece having throat diameter 40 mm is dischrging 
water under a constant head of 4 meters. Determine the maximum outlet diameter to avoid separation 
of the flow, if the maximum vacuum pressure is 8·5 meters of water. Find the discharge also.

 Solution.  Diameter of throat, dc = 40 mm = 0.04 m

 ∴  Area, ac = 
4
p  ×  0.042 = 0.001257 m2

  Constant head, H = 4 m
  Maximum vacuum pressure head, Ha – Hc = 8·5 m
 Maximum deameter at outlet, d1:
 Using the relation:

  1

c

a
a

 = 1 a cH H
H
−

+        with usual notations, we have:

  
2
1

2

4

4 c

d

d

p
×

p
×

 = 8.51 1.767
4

+ =  or   1

c

d
d

 = 1.329

 or, d1 = 1.329 × dc = 1.329 × 40  53 mm (Ans.)
 Discharge, Q:
 Using the relation,
  Q = ac × 2gH      with usual notations, we get:
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  Q = 0.001257 × 2 9.81 4× ×  = 0.01113 m3/s (Ans.)

 Example 8.32. The diametres of the throat and exit of a convergent-divergent mouthpiece are 
40 mm and 80 mm respectively. It is fitted to the vertical side of a tank, containing water. If the 
maximum vacuum pressure is 7.5 m of water find the maximum head of water for steady flow.
Take atmospheric pressure = 10.3 m of water.
 Solution.  Dia. of throat, dc  = 40 mm = 0.04 m
  Dia. of exit, d1 = 80 mm = 0.08 m
  Atmospheric pressure head, Ha  = 10.3 m of water 
 The maximum vacuum pressure will be at throat only, therefore, pressure head at throat = 7.5 m
 or, Hc = Ha – 7.5 (absolute)
   = 10.3 – 7.5 = 2.8 m (absolute)
 Maximum head of water:
 Let the maximum head of water over mouthpiece = H metres of water
 Using the relation:

   1

c

a
a

 = 1 a cH H
H
−

+  ...(Eqn.8.19)

   
2
1

2

4

4 c

d

d

p

p
 = 10.3 2.81

H
−

+  or 
2

2
0.08 7.51
0.04 H

= +

 or, 4 = 7 51 .
H

+   or 16 = 7 51 .
H

+

 or, H = 0.5 m of water (Ans.)

 Example 8.33. A convergent-divergent mouthpiece is fitted to the side of a tank. It is discharging 

5.5 litres/sec. of water under a constant head of 2.0 m. If the head lost in the divergent portion is 1
10

th 

of the kinetic head at outlet and the separation pressure is 2.5 m, find the throat and exit diameters.
Take atmospheric pressure = 10.3 m of water.

 Solution. Diascharge through the mouthpiece, Q = 5.5 litres/sec. = 0.0055 m3/s
  Constant head, H  = 2.0 m
  Head lost in divergent portion  =  0.1 × kinetic head at outlet
  Hc or Hsep  =  2.5 m (abs.)
  Atmospheric pressure head,  =  Ha = 10.3 m. of water
 Diameter at throat; dc:
 Refer to Fig. 8.25. Applying Bernoulli’s equation to the free water surface and throat section, we 
get: 

  
2

2
p v z
w g
+ +  = 

2

2
c c

c
p v

z
w g

+ +

 Assuming that datum passes through the centre of the mouthpiece, we have: 

  Ha + 0 + H = Hc + 
2

2
cv
g
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	 ∴  
2

2
v
g

 = Ha + H – Hc = 10.3 + 2.0 – 2.5 = 9.8 m of water

	 ∴ vc = 2 9.81 9.8× ×  = 13.866 m/s

 Now, Q  = ac × vc 

 or,  0.0055 = 2

4 cdp  × 13.866

 or, dc = 
1/20.0055 4

13.866
× 

 p × 
 = 0.0225 m = 22.5 mm (Ans.)

 Diameter at outlet, d1:
 Refer to Fig. 8.25. Applying Bernoulli’s equation to the free water surface and outlet of 
mouthpiece, we get:

  
2

2
p v z
w g
+ +  = 

2
1 1

12 L
p v z h
w g

+ + +

  Ha + 0 + H = Ha + 
2 2
1 10 0.1

2 2
v v
g g
+ + ×  1

a
p H
w

 = 
 


	 ∴	 H = 
2 2 2
1 1 10.1 1.1

2 2 2
v v v
g g g
+ × =

 or, v1
2 = 2 2 9.81 2

1.1 1.1
gH × ×

=  = 35.673

	 ∴ v1 = 5.97 m/s
 Now, Q = a1 v1

 or, 0.0055 = 2 2
1 1 14 4

d v dp p
× =  × 5.97

	 ∴ d1 = 
1/20.0055 4

5·97
× 

 p × 
 = 0.03425 m = 34.25 mm (Ans.)

8.15. DISCHARGE THROUGH AN INTERNAL MOUTHPIECE  
     (OR RE-ENTRANT OR BORDA’S MOUTHPIECE) 

 An internal mouthpiece is short cylindrical tube attached to an orifice in such a way that it 
(tube) projects inwardly to a tank.  If the length of the tube is equal to diameter, the jet of liquid 
comes out from mouthpiece without touching the 
sides of the tube (Fig. 8.26); the mouthpiece is known 
as running free. But if the length of the tube is about 3 
times its diameter, the jet comes out with its diameter 
equal to the diameter of mouthpiece at the outlet (Fig. 
8.27); the mouthpiece is said to be running full.

8.15.1. Mouthpiece Running Free
 Consider a mouthpiece running free as shown in 
Fig. 8.26.

H
1

1

�c

Fig. 8.26. Mouthpiece running free.
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 Let,  H = Height of the liquid above the mouthpiece,
  a = Area of orifice or mouthpiece,
  ac = Area of contracted jet, and
  vc = Velocity through mouthpiece.
	 ∴  Pressure of the liquid on the mouthpiece, p = wH
 and, force acting on the mouthpiece
   = Pressure × area
   = wH × a ...(i)

 Mass of liquid flowing per second = c cwa v
g

 Momentum of flowing liquid/sec.

   = Mass × velocity = c c cwa
g
ν × ν

 

   = 
2

c cwa v
g

 ...(ii)

 Since the water is initially at rest, therefore initial momentum = 0

	 ∴   Change of momentum = 
2

c cwa v
g

 As per Newton’s second law of motion, the force is equal to the rate of change of momentum. 
Therefore equating (i) and (ii), we get:

  wH × a = 
2

c cwa v
g

  H × a = 
2

c ca v
g

   
2

2
cv

a
g
×  = 

2
c ca v
g

 
2

2
cv

H
g

 
= 

 


 ∴	 a = 2ac or ca
a

 = 1 0.5
2
=

 ∴  Co-efficient of contraction, Cc = 0.5ca
a

=

 Since there is no loss of head, co-efficient of velocity, Cv = 1.0
 ∴  Co-efficient of discharge, Cd  =  Cc × Cv = 0.5 × 1 = 0.5
 ∴  Discharge, Q = 2dC a gH× ×

   = 0.5 2a gH× ×  ...(8.21)

8.15.2 Mouthpiece Running Full
 Consider a mouthpiece running full as shown in Fig. 8.27.
 Let, ac = Area at vena-contracta,
  a = Area of orifice or mouthpiece,
  vc = Velocity of the liquid at C-C (vena-contracta),
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  v1 = Velocity of the liquid at 1-1 (or outlet), and
  H = Height of liquid above the mouthpiece.
 Since the liquid is flowing continuosly, therefore from 
the continuity equation, we have: 
   ac vc = a1v1               (a1= a)

  vc = 1

c

a v
a  ...(i)

 We know that the co-efficient of contraction for an 
internal mouthpiece is 0.5. Substituting this value of 

1

c
c

a
C

a
 = 
 

 = 0.5 in (i), we get: 

  vc = 2v1 ...(ii)
 The jet of liquid after passing through C–C, suddenly enlarges at section 1–1. Therefore, there 
will be loss of head due to sudden enlargement,

  hL = 
2 2

1 1 1( ) (2 )
2 2

cv v v v
g g
− −

=  (vc = 2ν1)

   = 
2
1

2
v
g

 Applying Bernoulli’s equation to free water surface in tank and section 1–1 (or outlet),we get:

  
2

2
p v z
w g
+ +  = 

2
1 1

12 L
p v z h
w g

+ + +

 Assuming datum line passing through the centre line of mouthpiece

  0 + 0 + H = 0 + 
2
1

2
v
g

 + 0 + 
2
1

2
v
g

	 ∴ H = 
2 2 2
1 1 1

1or
2 2
v v v gH
g g g
+ = ν =

 Here v1 is the actual velocity as losses have been taken into account. 
 But throretical velocity,
  vth = 2gH

	 ∴  Co-efficient of velocity,  Cv = 1 1
2 2th

gHv
v gH

= =

 As the area of the jet at outlet is equal to the area of the mouthpiece, hence co-efficient of 
contraction = 1

	 ∴ Cd = Cc × Cv = 1 × 1 1
2 2
=  = 0.707

	 ∴   Discharge, Q = Cd × a × 2gH  = 0.707 × a × 2gH  ...(8.22)

 Example 8.34. An internal mouthpiece of 100 mm diameter is discharging water under a 
constant head of 5 m. Find the discharge through mouthpiece, when :
 (i) The mouthpiece is running free, and
 (ii) The mouthpiece is running full.

H

1

1

C

C

Free water surface

Fig. 8.27. Mouthpiece running full.
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 Solution.  Dia. of mouthpiece, d  = 100 mm = 0·1 m

 ∴	 Area,  a = 2 20.1 0.00785 m
4
p
× =

  Constant head, H  =  5 m
 Discharge, Q:
 (i) When mouthpiece is running free:
  Using the relation:
   Q = 0.5 × a × 2gH  ...[Eqn. (8.21)]

     = 0.5 × 0.00785 × 2 9.81 5× ×

     = 0·0388 m3 /s (Ans.)
 (ii) When mouthpiece is running full:
  Using the relation:
   Q = 0.707 × a × 2gH  ...[Eqn. (8.22)]

   = 0.707 × 0.00785 × 2 9.81 5× ×

   = 0.0549 m3/s (Ans.)

 Example 8.35. An external mouthpiece converges from inlet up to the vena-contracta to the 
shape of the jet and then diverges gradually. The diameter at vena-contracta is 20 mm and the head 
over the centre of the mouthpiece is 1·44 m. The head loss in the contraction may be taken as 1% 
and that in the divergent portion 5% of the total energy head before the inlet. What is the maximun 
discharge that can be drawn through the outlet and what should be the corresponding diameter at 
the outlet ?
 Assume that the pressure in the system may be permitted to fall upto 8 m below atmosphere, the 
liquid conveyed being water.    [UPSC Exam, Fluid Mech.]

 Solution. The dia. of mouthpiece at vena-contracta,
  dc = 20 mm = 0.02 m

 ∴ Area,  ac = 2 4 20.02 3.141 10 m
4

−p
× = ×

 Head over the centre of the mouthpiece,  
H = 1.44 m
 Head loss in the contraction 

   = 1 1 1.44 0.0144 m
100 100

H× = × =

 Head loss in the divergent portion 

   = 5 5
100 100

H =  × 1.44 = 0.072 m

 Head at the vena-contracta, Hc = – 8 m

 Maximum discharge, Q:
 Applying Bernoulli’s equation at the free water surface and section C-C.,we get:

    
2

2
p v z
w g
+ +  = 

2

2
c c

c
p v

z
w g

+ + + head loss in the contraction

 Assuming that datum passes through the centre of the mouthpiece, we have: 

H
=

1.
44

m

1

1

C

C

Free water
surface

�1

�c

Fig. 8.28
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  0 + 0 + 1.44 = – 8.0 + 
2

2
cv
g

 + 0 + 0.0144

 or, 
2

2
cv
g

 = 1.44 + 8 – 0.0144 = 9.426

 ∴ vc = (2 × 9.81 × 9.426)1/2 = 13.6 m/s.
 Maximum discharge, Q = ac · vc
  = 3.141 × 10-4 × 13.6 = 4.272 × 10-3 m3/s   or   4.272 litres/s (Ans.)
 Diameter at the outlet, d1:
 Now applying Bernoulli’s equation at the free water surface and the exit end of the mouthpiece, 
we get:

 
22

1 1
12 2

p vp v z z
w g w g
+ + = + +  +  total head loss in the contraction and divergent portion

 or, 0 + 0 + 1.44 = 0 + 
2
1

2
v
g

 + 0 + (0.0144 + 0.072)

	 ∴ 
2
1

2
v
g

 = 1.44 – (0.0144 + 0.072) = 1.354

 or v1 = (2 × 9.81 × 1.354)1/2 = 5.15 m/s

 Also,  Discharge Q = a1· v1    or    4.27 × 10–3 = 2
1 5.15

4
dp

× ×

 ∴ d1 = 
1/234.272 10 4

5.15

− × ×
  p × 

 = 0.0325 m = 32.5 mm (Ans.)

 Example 8.36. A streamlined nozzle of diameter d is supplied at constant head, the magnitude 
of the head being larger compared to d. The nozzle discharges directly into the atmoshphere and is 
so shaped that the issuing jet is parallel at the nozzle exit. To increase the flow rate a shroud of the 
diameter D is firmly secured to the nozzle as shown in Fig. 8·29 .The jet expands to fill the shroud 
and the shroud is long enough to ensure that the flow leaving is steady and parallel. Determine:
 (i) The diameter of the shroud so that the flow rate is maximised, and 
 (ii) The percentage increase in discharge.
  Neglect shear stresses at the walls of the shroud. [UPSC Fluid Mech. and FluidM/C.]

 Solution. H > d (given).
 (i) Diameter of the shroud, D
 Applying Bernoulli’s equation between section (1) and (2), we get:

  
2

1 1
12

p v z
w g

+ +  = 
2

2 2
22

p v z
w g

+ +  + loss due to sudden expansion

  
2

1 1

2
p v
w g

+  = 
2 2
2 1 2( )

0
2 2
v v v
g g

−
+ +   (	z2 = z2)   ...(i)
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Free water surface

Shroud shown dotted

1 2

d D

H

Fig. 8.29

 Now, applying Bernoulli’s equation between free water surface and section (1), we get:

  
2

2
p v z
w g
+ +  = 

2
1 1

12
p v z
w g

+ +

  0 + 0 + H = 
2

1 1 0
2

p v
w g

+ +

 or, H = 
2

1 1

2
p v
w g

+  ...(ii)

 From continuity equation, we have: 
  Q = a1 v1 = a2 v2 

 or, Q = 2 2
1 24 4

d v D vp p
× × = × ×  ...(iii)

  Eliminating  p1  between eqns. (i) and (ii) and using eqn. (iii), we get:

  H = 
2 2
2 1 2( )

2 2
v v v
g g

−
+

   = 
2

2 2 2
1 4 1 4 4–

2 2
Q Q Q

g gD d D
   +   p p p   

   = 
22

2 4 2 2
8 1 1 1Q

g D d D

  + −  p    

   = 
2

2 4 4 4 2 2
8 1 1 1 2Q

g D d D D d
 + + − p  

   = 
2 2 4 4 2 2

2 4 4 2 2 2 4 4
8 1 1 2 8 2 2Q Q d D D d

g D d D d g D d

 + − + − =   p p   

   = 
2 4 4 4 2 2 2 4 2 2 2

2 4 4 2 4 4
8 2 8 ( )Q d d D D d Q d D d

g D d g D d

   + + − + −
=   

p p   
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 or, Q2 = 
2 4 4

4 2 2 28 ( )
gH D d

d D d

 p
 

+ − 

 ∴	 Q = 
2 2 2

4 2 2 28 ( )

gH D d

d D d

p
×

+ −
 ...(iv)

 For maximum Discharge, 0dQ
dD

=

 or ,                                                                           
2 2 2

4 2 2 28 ( )

d gH D d
dD d D d

 p ×
 + − 

 = 0

 or,  2 2 2 4 2 2 2 3/2 2 2
4 2 2 2

1 1(2 ) { ( ) } 2( )·2
2( )

Dd D d d D d D d D
d D d

− × + − + − −  + −
 = 0

 or,                  
{ }

2 2 2 2 2
3/24 2 2 2 4 2 2 2

1 12 2 ( )
( ) ( )

d D d D d
d D d d D d

 × − × − 
+ − + −  

 = 0

 or,                                                          2 2 2 2 2
4 2 2 2

12 2 ( )
( )

d D d D d
d D d

− − ×
 + − 

 = 0

 or, 2d2[d4 + (D2 – d2)2] – 2D2d2(D2 – d2) = 0
 or, d4 + (D2 – d2)2 – D2(D2 – d2) = 0
 or, d4 + (D2 – d2)2 = D2(D2 – d2)
 or,  d4 + D4 + d4 – 2D2d2 = D4 – D2d2 
 or,  2d4 = D2d2 
 or, D = 2d  (Ans.)
 (ii) Percentage increase in discharge:
  The maximum discharge,

  Q max = 
2 2 2

4 2 2 2

( 2 )
8 (2 )

gH d d

d d d

p
×

+ −
 [Substituting D = 2 d in eqn.(iv)]

   = 
2

2
2 2

d gHp

 ∴ Percentage increase in discharge

   = 

2 2

max
2

2 2
42 2100 100

2
4

d dgH gH
Q Q

Q d gH

p p
−

−
× = ×

p

   = ( )2 – 1 × 100  = 41.42% (Ans.)
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HIGHLIGHTS

 1. An orifice is an opening in the wall or base of a vessel through which the fluid flows. The 
top edge of the orifice is always below the free surface.

 2. A mouthpiece in an attachment in the form of a small tube or pipe fixed to the orifice (the 
length of pipe extension is usually 2 to 3 times the orifice diameter) and is used to increase 
the amount of discharge.

 3. Theoretical velocity of jet of water from orifice is given as: V = 2gH

 4. There are three important hydraulic co-efficients namely

 (i)   Co-efficient of contraction, Cc = 
Area of jet at vena-contracta

Area of orifice

 (ii)   Co-efficient of velocity, Cv = 
Actual velocity at vena-contracta

Theoretical velocity

     = ·
4
x
yH

  (where, x and y are the co-ordinates of any point of jet of water from vena-contracta)

 (iii)   Co-efficient of discharge,  Cd = 
Actual discharge =

Theoretical discharge c vC × C

 5. Discharge through a large rectangular orifice,

    Q = 3/2 3/2
2 1

2 2
3 dC b g H H × × − 

  where, Cd = Discharge co-efficient for the orifice,
    b = Width of orifice,
    H1 = Height of liquid above top adge of orifice, and
    H2 = Height of liquid above bottom edge of orifice.
  (A large orifice is one, where the head of liquid above the centre of orifice is less than 

5 times the depth of orifice)
 6. Discharge through fully submerged orifice, 
   Q = Cd × b × (H2 – H1) 2gH×

  where, Cd = Discharge co-efficient for the orifice,
   b = Width of orifice,
   H2 = Height of liquid above bottom edge of orifice on upstream side
   H1 = Height of liquid above top edge of orifice on upstream side, and
   H = Difference of liquid levels on both sides of the orifice.
 7. Discharge through partially submerged orifice,

    Q = 3/2 3/2
2 1

2. . ( ) 2 . . 2 ( )
3d dC b H H gH C b g H H− + −

  where Cd, b, H, H1, H2 have usual meanings.
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 8. Time of emptying a tank through an orifice at its bottom,

    T = 1 22 ( )
. . 2d

A H H
C a g

−

  where, A = Area of tank,
    a = Area of orifice,
    H1 = Initial height of liquid in tank,
    H2 = Final height of liquid in tank, and
    Cd = Co-efficent of orifice.
  If the tank is to be completely emptied, then:

    T = 2
. . 2d

A H
C a g

 9. Time of emptying a hemispherical tank by an orifice fitted at its bottom,

    T = 3/2 3/2 5/2 5/2
1 2 1 2

4 2( ) ( )
3 5. . 2d

R H H H H
C a g

p  − − −  

  and for completely emptying the tank,

    T = 3/2 5/2
1 1

4 2
3 5. . 2d

R H H
C a g

p  −  

  where, a = Area of orifice,
    R = Radius of the hemispherical tank,
    H1 = Initial height of liquid,
    H2 = Final height of liquid, and 
    Cd = Co-efficient of discharge.
 10. Time of emptying a circular horizontal tank by an orifice at the bottom of the tank,

    T = 3/2 3/2
2 1

4 (2 ) (2 )
3 . . 2d

L R H R H
C a g

 − − − 

  and for completely emptying the tank,

    T = 3/2 3/2
1

4 (2 ) (2 )
3 . . 2d

L R R H
C a g

 − − 

  where,   L = length of horizontal tank.
 11. Co-efficient of discharge Cd
 (i) External mouthpiece = 0.855
 (ii) Internal mouthpiece;   running full, = 0.707
  running free = 0.50
 (iii) Convergent - divergent mouthpiece = 1.0
 12. Absolute pressure head, for an external mouthpiece, at vena-contracta,
    Hc = Ha – 0.89 H
  where, Ha = Atmospheric pressure head = 10.3 m of water, and 
    H = Head of liquid above the mouthpiece.
 13. In case of a convergent-divergent mouthpiece, the ratio of areas at outlet and at vena-contracta 

is given by:
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    1

c

a
a

 = 
–

1 a cH H
H

+

  where, a1 = Area of mouthpiece at outlet,
    ac = Area of mouthpiece at vena-contracta,
    Ha = Atmospheric pressure head,
    Hc = Absolute pressure head at vena-contracta, and
    H = Height of liquid above mouthpiece.

OBJECTIVE TYPE QUESTIONS

Fill in the Blanks/Choose the Correct Answer
 1. An ...... is an opening in the wall or base of a 

vessel through which the fluid flows.
 2. The top edge of the orifice is always below/above 

the free surface.
 3. A mouthpiece is used to decrease /increase the 

amount of discharge.
 4. An orifice is said to be submerged/discharging 

free when it discharges into another liquid.
 5. In orifice it is convenient to work in terms of 

gauge/absolute pressures.
 6. Co-efficient of contraction (Cc ) is equal to 
  (a)  ac/a (b) a/ac

  (c) a × ac (d) / .ca a

 7. For sharp-edged orifices the value of Cv is taken 
as,

  (a) 0.82 (b) 0.84
  (c) 0.9 (d) 0.98.
 8. The value of Cd varies from,
  (a) 0.2 to 0.3 (b) 0.3 to 0.4
  (c) 0.4 to 0.5 (d) 0.6 to 0.65.
 9. The discharge through a large rectangular orifice 

is given by

  (a) 2 1
1 . . 2 ( )
3 dC b g H H−

  (b) 2 1
2 . . 2 ( )
3 dC b g H H−  

  (c) 3/2 3/2
2 1

2 . . 2 ( )
3 dC b g H H−

  (d) 2 1
2 . . 2 ( ).
3 dC b g H H−

 10. The discharge through a fully submerged orifice 
is given by,

  (a) Cd·b·(H2 – H1) × 2gH
  (b) 2 1. .( ) 2dC b H H gH− ×

  (c) 2
2 1. ( ) 2dC b H H gH− ×

  (d) 2 1. . ( ) 2 .dC b H H gH− ×

 11. Time of emptying a tank through an orifice at its 
bottom is given by,

  (a) 1
2

2
. .2d

A H
C a g

 (b) 12
. . 2d

A H
C a g

  (c) 1

. 2d

A H
C a g

 (d) 14
. 2d

A H
C a g

.

 12. Discharge through an internal mouthpiece 
running free is given by

  (a) 0.5 × a × 2gH  

  (b) 0.4 × a2 × 2gH

  (c) 0.707 × a × 2gH  

  (d) 0.3 × a2 × 2 .gH

ANSWERS

 1. Orifice 2. Below 3. Increase 4. Submerged 5. Gauge 6. (a)
 7. (d) 8. (d) 9. (c) 10. (d) 11. (b) 12. (a).
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THEORETICAL QUESTIONS

 1. What is an orifice? How are the orifices classified ?
 2. What is a mouthpiece ?
 3. What is Torricelli’s theorem?
 4. Name and explain briefly the hydraulic co-

efficients.
 5. Derive the expression Cd = Cc × Cv .
 6. How is vena contracta defined ?
 7. How are hydraulic co-efficients determined experi-

mentally ?
 8. What is the difference between a small and a 

large orifice ?
 9. Obtain an expression for discharge through a 

large orifice.
 10. State the difference between a wholly sub-

merged orifice and a  partially submerged orifice.

 11. Derive an expression for discharge through fully 
submerged orifice.

 12. Obtrain an expression for time of emptying a 
tank through an orifice at its bottom.

 13. Derive an expression for time of emptying a 
circular hemispherical tank.

 14. Obtain an expression for time of emptying a 
circular horizontal tank.

 15. How are mouthpieces classified ?
 16. Obtain an expression for absolute pressure head 

at vena contracta for an external mouthpiece.
 17. Derive an experssion for the ratio of diameters 

at outlet and at vena-contracta for a convergent-
divergent mouthpiece in terms of absolute 
pressure head at vena-contracta, head of liquid 
above mouthpiece and atmospheric pressure 
head.

UNSOLVED EXAMPLES

ORIFICES
 1. An orifice 60 mm in diameter is discharging 

water under a head of 9 metres. If Cd = 0.6 and 
Cv = 0.9 find :

  (i) Actual discharge, and
  (ii) Actual velocity of the jet at vena-contracta.
   [Ans. (i) 0.02254 m3/s,  (ii) 11.26 m/s]
 2. The head of water over the centre of an orifice 

of diameter 20 mm is 1 m. The actual discharge 
through the orifice is 0·85 litres/s. Find the co-
efficient of discharge. [Ans. 0.61]

 3. A jet of water issues from a circular orifice of 25 
mm diameter, under a constant head of 1metre. 
It falls 35 mm vertically down and strikes the 
ground at a distance of 350 mm from the center 
of the vena contracta. If the discharge through 
the jet is 1.35 litres/s find:

  (i) Co-efficient of discharge;
  (ii) Co-efficient of velocity;
  (iii) Co-efficient of contraction.
   [Ans. (i) 0.625, (ii) 0.935. (iii) 0.668]
 4. The water is coming out of an orifice of diameter 

100 mm under a head of 10 m. It is collected in a 
circular tank of diameter 1.5 m. The rise of water 
level in this tank is 1.0 m. in 25 seconds. Also 
the co-ordinates of a point on the jet, measured 
from venacontracta are 4.3 m horizontal and 
0.5 m vertical. Find the hydraulic co-efficients 
(i.e.co-efficient of discharge, co-efficient of 
velocity and co-efficient of contraction).

   [Ans. 0.643; 0.96; 0.669]
 5. The head of water over an orifice of diameter 

100 mm is 10 m The water coming out from 
orifice is collected in circular tank of diameter 
1·5 m. The rise of water level in this tank is 
1·0 m in 25 seconds. Find the co-efficient of 
discharge. [Ans. 0·643]

 6. An orifice, 60 mm in diameter, is discharging 
water under a head of 9 metres. Calculate the 
discharge and actual velocity of the jet at vena 
contracta, if Cd = 0·6 and Cv = 0·9.

    [Ans. 0·02254 m3/s; 11·96 m/s]
 7. A tank has two identical orifices in one of its 

vertical sides. The upper orifice is 2 metres below 
the water surface. and the lower one is 4 metres 
below the water surface. If the value of Cv  for 
each orifice is 0·9, find the point of intersection 
of the two jets. [Ans. 5·1m]

 8. A closed tank has water to a height  of 0·9 m, 
above 15 mm diameter sharp-edged orifice priv-
ided at the bottom of the tank. To what pressure 
air must be pumped into the tank above water if 
the discharge is to be 1·5 litres/sec. ?

  Take discharge co-efficient, Cd = 0·62 for the 
orifice. [Ans. 91·25 kN/m2]

 9. A 100 mm diameter orifice discharges 45 litres/
sec. of water under a head of 2.75 metres. A flat 
plate held normal to the jet just downstream from 
the vena contracta requires a force of 310 N to 
resist the impact of jet. Find Cc,Cv,Cd.  
 [Ans. 0.84, 0.927, 0.78]

 10. A rectangular orifice 1.5 m wide and 1.0 m deep 
is discharging water from a tank. If the water 
level in the tank is 3.0 m above the top edge 



Chapter 8 : Flow Through Orifices and Mouthpieces         507

of the orifice, find the discharge through the 
orifice. Take Cd  = 0.6 [Ans. 7.45 m3/s]

 11. A submerged orifice 1 meter wide has height 
of water from the bottom and top of the orifice 
as 2.25 metres respectively. Find the discharge 
through the orifice, if the difference of water levles 
on both the sides of the orifice be 375 mm. Take 
Cd  = 0.62 [Ans. 0.42m3/s]

 12. An orifice, in one side of a large tank, is 
rectangular is shape 2 m broad and 1 m deep.
The water level on one side of the orifice is 4 m 
above its top edge. The water level on the other 
side of the orifice is 0.5 m below its top edge. 
Calculate the discharge through  the orifice per 
second, if Cd  = 0.625 [Ans. 11.58 m3/s]

 13. A circular tank, of diameter 4 m contains water 
upto a height of 5 m. The tank is provided with 
an orifice if diameter 0.5 m at the bottom. Find 
the time taken by water,

  (i) to fall from 5 m to 2 m, and
  (ii) for completely emptying the tank.
   Take Cd  = 0.6. [Ans. (i)39.6 s, (ii) 107.7s]
 14. A 1.25 m diameter circular tank contains water 

upto a height of 5 m . At the bottom of the tank 
an orifice of 50 mm is provided. Find the height  
of water above the orifice after 1.5 minutes. Take  
Cd  = 0.62. [Ans. 4.154 m]

 15. A hemispherical cistern of 6 m radius is full of 
water. It is fitted with a 75 mm diameter sharp 
edged orifice at the bottom. Calculate the time 

required to lower the level in the cistern by 2 
meters. Assume co-efficient of discharge for the 
orifice as 0.6. [Ans. 2 h 18 min 42 s]

 16. A tank has an upper cylindrical portion of 5 m 
diameter and 4 m high with hemispherical base. 
Find the time required to empty it through an 
orifice of 200 mm diameter at its bottom, if the 
tank is intially full of water. Take Cd  = 0.6 for 
the orifice. [Ans. 1078 s]

 17. A horizontal boiler 5 m long and 3 m in diameter 
is half full of water. It is provided with a 100 mm 
diameter orifice at its bottom. Calculate the time 
taken to empty the drum.

  Take Cd  = 0.6 [Ans. 17 min 50 sec.]
 18. A 30 m long and 10 m wide swimming pool has 

vertical sides and bottom at a slope. The depth 
of water at the shallow and deep sides are 2 m 
and 5 m respectively. Two outlets, each 0.3 m 
diameter, have been provided at each of the deep 
and shallow ends. Calculate the time taken to 
empty the pool if both the outlets are kept open. 
Take Cd  = 0.62 for each opening. [Ans. 2871 s]

 19. A 750 mm diameter vertical cylindrical tank 
contains water to a depth of 2.5 m. There are 
two orifices in the tank; one at the bottom and 
the other in one of the vertical sides at a height 
of 1.5 m above the bottom, If the area of each 
orifice is 15cm2 and discharge co-efficient 0.6, 
calculate the time required to empty the tank.  
 [Ans. 326.3 s]

MOUTHPIECES

 20. Find the discharge from a 100 mm diameter 
external mouthpiece, fitted to a side of a vessel, 
if the head over the mouthpiece is 4 m.  
 [Ans. 0.595 m3/s]

 21. An external cylindrical mouthpiece of diameter 
150 mm is discharging water under a constant 
head of 6 m. If Cc for vena-contracta = 0.62,Cd 
= 0.855 and atmospheric pressure head = 10.3 
m of water, find:

  (i) Discharge through the mouthpiece, and
  (ii) Absolute pressure head of water at vena 

contracta. 
 [Ans. (i) 0.1639 m3 /s, (ii) 496 m (abs.)]

 22. A convergent-divergent mouthpiece having 
throat diameter of 40 mm is discharging water 
under a constant head of 2 m. Determine 
the maximum outlet diameter for maximum 
discharge. Find the maximum discharge also. 
Take Ha = 10.3 m of water and Hsep = 2.5 m 
absolute. 

[Ans. 59.5 mm; 0.00787 m3/s] 

 23. An internal mouthpiece of 80 mm diameter is 
discharging under a constant head of 8 m. Find 
the discharge through the mouthpiece, when 
(i) the mouthpiece is running free and (ii) the 
mouthpiece is running full.

   [Ans. (i) 0.02226 m3/s, (ii) 0.03147 m3/s] 
 24. A convergent-divergent mouthpiece is fitted 

into the vertical side of a tank containing wa-
ter. Assumming that there are no losses in the 
convergent part of the mouthpiece, and that the 
losses in the divergent part are equivalent to 
0.2 times the velocity head at exit and that the 
maximum absolute pressure head at the throat 
is 2.44 m of water for a barometric pressure of 
760 mm of mercury, determine the throat and 
exit diameters of the mouthpiece when the 
discharge is 4.25 lit./sec. for a head of 1.52 
metres. [UPSC Exams.]

   [Ans. 20 mm, 33 mm] 
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9.1. DEFINITIONS 

 Notch. A notch may be defined as an opening 
provided in the side of a tank or vessel such that the 
liquid surface in the tank is below the top edge of the 
opening. A notch may be regarded as an orifice with the 
water surface below its upper edge. It is generally made 
of metallic plate. It is used for measuring the rate of flow 
of a liquid through a small channel or a tank.
 Weir. A weir may be defined as any regular 
obstruction in an open stream over which the flow takes 
place. It is made of masonry or concrete. The conditions 
of flow in the case of a weir are practically the same 
as those of a rectangular notch. That is why, a notch is 
sometimes called as a weir and vice versa.
Weirs may be used for measuring the rate of flow of 
water in rivers or streams.
 — Nappe or vein. The sheet of water flowing through a 

notch or over a weir is known as the nappe or vein.
 — Sill or crest. The top of the weir over which the 

water flows is known as the sill or crest.
 Note. The main difference between a notch and a weir is that 

the notch is of small size, but the weir is of a bigger one. 
Moreover a notch is usually made in a plate, whereas a 
weir is usually made of masonry or concrete.

9.2. TYPES/CLASSIFICATION OF  
         NOTCHES AND WEIRS

9·2·1 Types of Notches
 There are several types of notches, depending upon 
their shapes. However, the following are important from 
subject point of view:
 1. Rectangular notch,
 2. Triangular notch,
 3. Trapezoidal notch, and
 4. Stepped notch.
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9·2·2 Types of Weirs
 There are several types of weirs depending upon their shapes, nature of discharge, width of 
crest or nature of crest. However, the following are important from subject point of view:
 1. According to shape:
 (i) Rectangular weir, and
 (ii) Cippoletti weir.
 2. According to nature of discharge:
 (i) Ordinary weir, and
 (ii) Submerged or drowned weir.
 3. According to the width of crest:
 (i) Narrow-crested weir, and 
 (ii) Broad-crested weir.
 4. According to the nature of crest:
 (i) Sharp-crested weir, and
 (ii) Ogee weir.

9.3.  DISCHARGE OVER A RECTANGULAR NOTCH OR WEIR 

 Consider a rectangular notch or weir provided in a channel carrying water as shown in Fig. 9·1.

Sill or crest

Nappe
Water surface

H

(a) Rectangular notch

L

dh

Section at sill

Sill or crest

(b) Rectangular weir

h

Fig. 9.1. Rectangular notch and weir.

 Let, H = Height of water above sill of the notch,
  L = Length of notch or weir, and 
  Cd = Co-efficient of discharge.
 Let us consider a horizontal strip of water of thickness dh at a depth h from the water level as 
shown in Fig. 9·1.
  Area of strip = L × dh
 Theoretical velocity of water flowing through strip
   = 2gh
 The discharge through the strip,
  dQ = Cd × area of strip × theoretical velocity
   = 2dC L dh gh× × ×  ...(i)

 The total discharge, over the whole notch, may be found out by integrating the above equation 
within the limits 0 and H.
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	 ∴ Q = 
0

2
H

dC L gh dh× × ×∫

   = 1/2
0

2 ( )
H

dC L g h dh× × ∫

   = 
1/2 1

0

2 1 1
2

H

d
hC L g

+
 
 

× ×  
 +
 

   = 
3/2

0

2
3 / 2

H

d
hC L g
 

× ×  
 

   = 3/22 / 3 2 ( )dC L g H× × ×

 i.e. Q = 3/22 . 2 ( )
3 dC L g H  ...(9·1)

  Note.   The expression for discharge over a rectangular notch or weir is same.

 Example. 9.1. A rectangular notch 2·0 m wide has a constant head of 500 mm. Find the 
discharge over the notch, if co-efficient of discharge for the notch is 0·62.

 Solution.  Length of the notch, L  =  2·0 m

  Head over notch, H = 500 mm = 0·5 m
  Co-efficient of discharge, Cd = 0·62
 Discharge, Q:
 Using the relation,

  Q = 3/22 . 2 ( )
3 dC L g H

   = 3/22 0 62 2 0 2 9 81 (0 5)
3
× ⋅ × ⋅ × × ⋅ × ⋅

   = 1·294 m3/s (Ans.)
 Example. 9.2. A rectangular notch has a discharge of 0·24 m3/s, when head of water is 800 mm. 
Find the length of the notch. Assume Cd = 0·6.

 Solution.  Discharge, Q = 0·24 m3/s
  Head over notch, H = 800 mm = 0·8 m
  Co-efficient of discharge, Cd  = 0·6
 Length of the notch, L:
 Using the relation :

  Q = 3/22 . 2 ( )
3 dC L g H×

  0 . 24 = 3/22 0 6 2 9 81 (0 8) 1 267
3

L L× ⋅ × × × ⋅ ⋅ = ⋅

	 ∴ L = 0 24 0 189 m or 189 mm
1 267
⋅

= ⋅
⋅

 i.e. L = 189 mm (Ans.)
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9.4.  DISCHARGE OVER A TRIANGULAR NOTCH OR WEIR 

 Refer to Fig. 9·2. A triangular notch is also called a V-notch.
 Let, H = Head of water above the apex of the notch,
  θ = Angle of the notch, and 
  Cd = Co-efficient of discharge.
 Consider a horizontal strip of water of thickness dh, and at a depth h from the water surface as 
shown in Fig. 9·2.

O

dh

h

Water surface

H
L N M

�/2

(a)
Apex of
the notch

O

L N

�/2

(
)

H
-h

�

Fig. 9.2. The triangular notch.

 From Fig. 9·2 (b), we have:

  tan
2
θ  = 

–
LN LN
ON H h

=

	 ∴ LN = ( – ) tan
2

H h θ

  Width of strip = LM = 2LN = 2 (H – h) tan
2
θ

	 ∴   Area of the strip = 2 (H – h) tan
2

dhθ
×

 We know that theoretical velocity of water through the strip
   = 2gh

	 ∴  Discharge through the strip,
  dQ = Cd × area of strip × theoretical velocity

   = 2 ( – ) tan 2
2dC H h dh ghθ

× × ×

 The total discharge, over the whole notch, may be found out by integrating the above equation, 
within the limits 0 and H.

	 ∴ Q = 
0

2( – ) tan 2
2

H
dC H h gh dhθ
× × ⋅∫

   = 
0

2 2 tan ( – )
2

H
dC g H h h dhθ

⋅∫
   = 2 1/2 3/2

0
2 tan –

2
H

dC g Hh h dhθ  
 ∫

   = 
3/2 5/2

0

2 2 tan –
2 3 / 2 5 / 2

H

d
H h hC g
 θ ⋅
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   = 3/2 5/22 22 2 tan –
2 3 5dC g H H Hθ  ⋅  

   = 5/2 5/22 22 2 tan –
2 3 5dC g H Hθ  
  

   = 5/242 2 tan
2 15dC g Hθ  
  

   = 5/28 2 tan
15 2dC g Hθ  ...(9·2)

 For a right angled V-notch, if Cd = 0·6,

   90 , tan 1
2
θ θ = ° ∴ = 

 

 Then, Q = 5/28 0 6 2 9 81 1
15

H× ⋅ × ⋅ × ×

   = 1·417 H5/2 ...(9·3)
Advantages of a triangular notch over a rectangular notch:
 A triangular notch claims the following advantages over a rectangular notch:
 1. For a right angled V-notch or weir the expression for the computation of discharge is very 

simple.
 2. For low discharges a triangular notch gives more accurate results than a rectangular notch.
 3. In a given triangular notch, only one reading i.e., head (H) is required to be taken for the 

measurement of discharge.
 4. Ventilation of a triangular notch is not necessary.
 5. The same triangular notch can measure a wide range of flows accurately.
 Example 9.3. Find the discharge over a triangular notch of angle 60° when the head over the 
triangular notch is 0·2 m. Assume Cd = 0·6.
 Solution.  Angle of notch, θ = 60°
  Depth of water, H = 0·2 m
  Co-efficient of discharge, Cd = 0·6
 Discharge, Q:
 Using the relation :

  Q = 5/28 2 tan
15 2dC g Hθ

×

   = 5/28 600 6 2 9 81 tan (0 2)
15 2

°
× ⋅ × × ⋅ × × ⋅

   = 8 0 6 4 429 0 577 0 01788
15

× ⋅ × ⋅ × ⋅ × ⋅

   = 0·01462 m3/s (Ans.)
 Example 9.4. During an experiment in a laboratory, 0·05 m3 of water flowing over a right-
angled notch was collected in one minute. If the head of the sill is 50 mm calculate the co-efficient 
of discharge of the notch.

 Solution.  Discharge, Q = 0·05 m3/min = 0·000833 m3/s
  Angle of notch, θ  = 90°
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  Head of the sill, H = 50 mm = 0·05 m
 Co-efficient of discharge, Cd:
 Using the relation:

  Q = 5/28 2 tan
15 2dC g Hθ

×

  0 . 000833 = 5/28 902 9 81 tan (0 05)
15 2dC ° × × × ⋅ × × ⋅ 

 

   = 8 4 429 1 0 000559 0 00132
15 d dC C× × ⋅ × × ⋅ = ⋅

	 ∴ Cd = 0 000833
0 00132
⋅

=
⋅

0 63⋅  (Ans.)

 Example 9.5. A rectangular channel 1·5 m wide has a discharge of 0·2 m3/s, which is measured 
by a right-angled V-notch-weir. Find the position of the apex of the notch from the bed of the channel 
if the maximum depth of water is not to exceed 1 m. Assume Cd = 0·62.

 Solution.  Width of the rectangular channel, L = 1·5 m
  Discharge, Q  =  0·2 m3/s
  Depth of water in the channel  =  1·0 m
  Co-efficient of discharge, Cd  =  0·62
  Angle of the notch, θ  =  90°
 Position of the apex of the notch :
 Using the relation :

  Q = 5/28 2 tan
15 2dC g Hθ

×

  0 . 2 = 5/28 900 62 2 9 81 tan
15 2

H° × ⋅ × × ⋅ × × 
 

   = 1·465 H5/2

	 ∴ H = 
2/50 2 0 45 m

1 465
⋅  = ⋅ ⋅ 

 Position of apex of the notch from the bed of channel
   = Depth of water in channel – height of water over V-notch
   = 1 – 0·45 = 0·55 m (Ans.)

9.5.  DISCHARGE OVER A TRAPEZOIDAL NOTCH OR WEIR 

 Fig. 9·3 shows a trapezoidal notch or weir which is a combination of a rectangular and a 
triangular notch or weir. As such the discharge over such a notch or weir will be the sum of the 
discharges over the rectangular  and triangular notches 
or weirs.
 Let, H = Height of water over the notch,
  L = Length of the rectangular portion (or 

crest) of the notch.,
  Cd1 = Co-efficient of discharge for the 

rectangular portion, and
  Cd2 = Co-efficient of discharge for the 

triangular portion. Fig. 9.3 The trapezoidal notch.

H

�
/2

�
/2

L

A D
E F

B C
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 The discharge through the rectangular portion BCFE is given by (Eqn. 9·1),

  Q1 = 3/2
1

2 2
3 dC L g H

 The discharge through two triangular notches ABE and FCD is equal to the discharge through 
a single triangular notch of angle θ and is given by [Eqn. 9.2],

  Q2 = 5/28 2 tan
15 2dC g Hθ

×

	 ∴ Discharge through trapezoidal notch or weir ABCDA,
  Q = Q1 + Q2

   = 3/2 5/2
1 2

2 82 2 tan
3 15 2d dC L g H C g Hθ

+ ×  ...(9·4)

 Example 9.6. Find the discharge through a trapezoidal notch which is 1·2 m wide at the top and 
0·50 m at the bottom and is 0·4 m in height. The head of water on the notch is 0·3 m. Assume Cd  for 
rectangular portion = 0·62, while for triangular portion = 0·60.
 Solution.  Top width = 1·2 m
  Base width, L  =  0·5 m
  Head of water, H  =  0·3 m
  For rectangular portion, Cd1  =  0·62
  For triangular portion, Cd2  =  0·60
 Discharge, Q:
 From ∆ MNB, we have:

  tan
2
θ  = ( – ) / 2MN MS NP

NB NB
=

   = (1 2 – 0 5) / 2
0 4

⋅ ⋅
⋅

   = 0·875
 Discharge through the trapezoidal notch is given by,

  Q = 3/2 5/2
1 2

2 82 2 tan
3 15 2d dC L g H C g Hθ

⋅ + ×

   = 3/22 80 62 0 5 2 9 81 0 3 0 6
3 15
× ⋅ × ⋅ × × ⋅ × ⋅ + × ⋅ × 5/22 9 81 0 875 (0 3)× ⋅ × ⋅ × ⋅

   = 0·1504 + 0·0611 = 0·2115 m3/s (Ans.)

9.6.  DISCHARGE OVER A STEPPED NOTCH 

 A stepped notch is a combination of rectangular notches as shown in Fig. 9·5. The discharge 
through a stepped notch is equal to the sum of the discharges through the different rectangular 
notches.
 Consider a stepped notch as shown in Fig. 9·5.
 Let, H1 = Height of water above sill of notch 1,
  L1 = Length of notch 1,
  H2, L2 = Corresponding values for notch 2,
  H3, L3 = Corresponding values for notch 3, and
  Cd = Co-efficient of discharge for all notches.

�/2
A D
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B C

M S

0
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0.5 m

1.2 m
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Fig. 9.4
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 The discharge over the notch 1,

  Q1 = 3/2
1 1

2 . 2
3 dC L g H

H1
H2

H3

1

2

3

L3

L2

L1

Fig. 9.5. The stepped notch.

 Similarly, discharge over the notch 2,

  Q2 = 3/2 3/2
2 2 1

2 . 2 –
3 dC L g H H 

 

 and, discharge over the notch 3,

  Q3 = 3/2 3/2
3 3 2

2 2 –
3 dC L g H H ⋅  

	 ∴  Total discharge, Q = Q1 + Q2 + Q3

 Example 9.7. Find the discharge over a stepped rectangular notch, as shown in Fig. 9·6. Take 
co-efficient of discharge for all the portions as 0·62.

0.4 m

0.6m

1.0 m

H1
H2

H3

0.4 m

0.2 m

1

2

3 0.1 m

Fig. 9.6

 Solution. Co-efficient of discharge, Cd = 0·62
 Let, Q1 = Discharge over the top portion,
  Q2 = Discharge over the middle portion, and
  Q3 = Discharge over the bottom portion.
 The total discharge over the notch,
  Q = Q1 + Q2 + Q3

                3/2 3/2 3/2 3/2 3/2
1 1 2 2 1 3 3 2

2 2 2. 2 . 2 – . 2 –
3 3 3d d dC L g H C L g H H C L g H H   = + +   
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 3/2 3/2 3/22 20 62 1 0 2 9 81 (0 4) 0 62 0 6 2 9 81 0 6 – 0 4
3 3

 = × ⋅ × ⋅ × × ⋅ × ⋅ + × ⋅ × ⋅ × ⋅ ⋅ ⋅ 

     3/2 3/22 0 62 0 4 2 9 81 0 7 – 0 6
3

 + × ⋅ × ⋅ × × ⋅ ⋅ ⋅ 

  = 0·463 + 0·232 + 0·0885 = 0·783 m3/s (Ans.)

9.7.  EFFECT ON DISCHARGE OVER A NOTCH OR WEIR DUE TO 
          ERROR IN THE MEASUREMENT OF HEAD 

 The discharge over a rectangular notch or weir is proportional to H3/2 and over a triangular 
notch or weir is proportional to H5/2, where H is the height of liquid surface above the sill of the 
notch or weir. As such the accurate measurement of head H is quite essential in order to obtain an 
accurate value of the discharge over the notch or weir. However, if an error is introduced in the 
measurement of the head it will affect the computed discharge. The following cases of error in 
measurement of head will be considered:
 (i) For rectangular notch or weir.
 (ii) For triangular notch or weir.
 (i) Rectangular Notch or Weir :
  The discharge for a rectangular notch or weir is given by (Eqn. 9·1),

    Q = 3/22 . 2
3 dC L g H

     = KH3/2 ...(i)

     2(where . 2 )
3 dK C L g=

  Differentiating the above equation, we get:
    dQ = K × 3/2 × H1/2 dH ...(ii)
  Dividing (ii) by (i), we get:

    dQ
Q

 = 
1/2

3/2
3 / 2 3

2
K H dH dH

HKH
× ×

=  ...(9·5)

  Eqn. (9·5) shows that an error of 1% in measuring H will produce 1·5 % error in discharge 
over a rectangular notch or weir.

 (ii) Triangular Notch or Weir :
  The discharge over a triangular notch or weir is given by (Eqn. 9·2),

    Q = 5/28 2 tan
15 2dC g Hθ

×  ...(iii)

     = K × H5/2

     
8where, 2 tan

15 2dK C g θ = 
 

  Differentiating Eqn. (iii), we get:
    dQ = K × 5/2 × H3/2 dH ...(iv)
  Dividing (iv) by (iii), we get:

  dQ
Q

 = 
3/2

5/2
5 / 2 5

2
K H dH dH

HK H
× ×

=
×

 ...(9·6)

  Eqn. (9·6) shows that an error or 1% in measuring H will produce 2·5% error in discharge over 
a triangular notch or weir.
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 Example 9.8. A rectangular notch 0·5 m long is used for measuring a discharge of 0·04 m3/s. 
An error of 2 mm was made in measuring the head over the notch. Calculate the percentage error 
in the discharge. Take Cd = 0·6.

 Solution.  Length of notch, L = 0·5 m
  Discharge, Q  =  0·04 m3/s
  Error in head, dH  =  2 mm = 0·002 m
 Let,  H = Height of water over rectangular notch.

 Error in discharge, dQ
Q

:

 The discharge through a rectangular notch is given by,

  Q = 3/22 . 2
3 dC L g H

  0 . 04 = 3/22 0 6 0 5 2 9 81
3

H× ⋅ × ⋅ × × ⋅ ×

   = 0·886 H3/2

	 ∴ H = 
2/30 04 0 126 m

0 886
⋅  = ⋅ ⋅ 

 Using the relation:
  dQ

Q
 = 3

2
dH
H

×

   = 3 0 002 0 0238
2 0 126

⋅
× = ⋅

⋅
 or 2·38 % (Ans.)

 Example 9.9. A discharge of 0·06 m3/s was measured over a right-angled notch. While 
measuring the head over the notch, an error of 1·5 mm was made. Determine the percentage error 
in the discharge, if the co-efficient of discharge for the notch is 0·6.

 Solution.  Discharge, Q = 0·06 m3/s
  Angle of notch, θ = 90°
  Error in measurement of head, dH  = 1·5 mm = 0·0015 m.
  Co-efficient of discharge, Cd  =  0·6
 Let,  H = Height of water, above the apex of the notch.
 Error in discharge, dQ

Q
 :

 Using the relation:
  Q = 5/28 2 tan

15 2dC g Hθ

  0 . 06 = 5/28 900 6 2 9 81 tan
15 2

H° × ⋅ × × ⋅ × × 
 

   = 1·417 H5/2

	 ∴ H = 
2/50 06 0 282 m

1 417
⋅  = ⋅ ⋅ 

 Now, using the relation:

  dQ
Q

 = 5 5 0 0015
2 2 0 282

dH
H

⋅
× = ×

⋅

   = 0·0133 or 1·33 % (Ans.)
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9.8.  VELOCITY OF APPROACH 

 The velocity with which the water approaches or reaches the weir or notch before it flows over 
it is known as ‘velocity of approach’. Thus if Va is the velocity of approach, then an additional head 

2

2
a

a
VH

g
 
=  
 

 due to the velocity of approach, is acting on water flowing over the notch or weir. Then 

initial and final height of water over the notch or weir will be (H + Ha) and Ha respectively.
 The velocity of approach (Va) is determined by finding the discharge over the weir or notch 
neglecting velocity of approach,
 Let, Q = Discharge over weir or notch, and
  A = Cross-sectional area of channel on the upstream side of the weir or notch.
 Then the velocity of approach,

  Va = Q
A

 This velocity of approach is used to find an additional head 
2

.
2

a
a

VH
g

 
=  

 
 Again the discharge is 

calculated and above process is repeated for more accurate discharge.
 Discharge over a rectangular weir, with velocity of approach

   = 3/2 3/2
1

2 . 2 ( ) – ( )
3 d a aC L g H H H +   ...(9·7)

 Example 9.10. Find the discharge over a rectangular weir of length 80 m. The head of water 
over the weir is 1·2 m. The velocity of approach is given as 1·5 m/s. Take Cd = 0·6.
 Solution.  Length of weir, L = 80 m
  Head of water, H  = 1·2 m
  Velocity of approach, Va  = 1·5 m/s
  Co-efficient of discharge, Cd  = 0·6
 Discharge, Q:
 The head due to velocity of approach,

  Ha = 
2 21 5 0 1146 m

2 2 9 81
aV
g

⋅
= = ⋅

× ⋅

 Using the relation:
  Q = 3/2 3/22 2 ( ) –

3 d a aC L g H H H ⋅ + 

   = 3/2 3/22 0 6 80 2 9 81 (1 2 0 1146) – (0 1146)
3

 × ⋅ × × × ⋅ ⋅ + ⋅ ⋅ 

   = 141·74 (1·507 – 0·0388) = 208·1 m3/s (Ans.)

9.9.  EMPIRICAL FORMULAE FOR DISCHARGE OVER RECTAN-  
 GULAR WEIR 

 The discharge over a rectangular weir,

  Q = 3/22 . 2
3 dC L g H   ... without velocity of approach ...(i)

   = 3/2 3/22 . 2 ( ) –
3 d a aC L g H H H +    ... with velocity of approach ...(ii)
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L H– 0.2
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H

Fig. 9.7

 The equations (i) and (ii) are applicable to the weir or notch for which the crest/sill length is 
equal to the width of the channel; this type of weir is called Suppressed weir.
When the weir is not suppressed, the effect of end contractions is considered.
 1.  Francis’s Formula:
 On the basis of experimental analysis Francis established 
that:
 — The end contraction decreases the effective 

length of the crest of weir and hence decreases 
the discharge.

 — Each end contraction reduces the crest length 
by 0·1 H, where H is the head over the weir.

 For a rectangular weir there are two end contractions only 
and hence effective length
   = L – 0·1 × 2 × H = L – 0·2 H
 and discharge,
  Q = 3/22 ( – 0 2 ) 2

3 dC L H g H× × ⋅ ×  ...(9·8)

  If there are n end contractions, we may write the empirical formula proposed by Francis as:

  Q = 3/22 ( – 0 1 ) 2
3 dC L nH g H× × ⋅ ×  ... 9·8 (a)

 When Cd = 0·623 and g = 9·81 m/s2, then:

  Q = 3/22 0.623 ( 0.2 ) 2 9.81
3

L H H× × − × ×

   = 1·84 (L – 0·2 H) H3/2 ...(9·9)
 — When end contractions are suppressed, we have:
  Q = 1·84 LH3/2 ...(9·10)
 (When end contractions are suppressed, the value of n is taken as zero.)
 When velocity of approach is considered, we have:

  Q = 3/2 3/21 84 ( ) –a aL H H H ⋅ +   ...(9·11)

 2.  Bazin’s Formula:
 Bazin’s formula for the discharge (Q) over a rectangular weir is given as follows:

   

3/22
2 0 0030 405
3 d

Q m L g H

m C
H

= × × ×

⋅

= × = ⋅ + 

 ...(9·12)

 where, H = Height of water over the weir.
 When velocity of approach is considered, we have:

 
where,

  

3/2
1

1

2 ( )
0 0030 405

( )

a

a

Q m L g H H

m
H H

= × × × +

⋅

= ⋅ + + 

 ...(9·13)

 Example 9.11. The head of water over a rectangular weir is 500 mm. If the length of the crest of 
the weir with end contractions suppressed is 1·4 m, find the discharge using the following formulae:
 (i) Francis’s formula, and 
 (ii) Bazin’s formula.
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 Solution.  Head of water over the weir, H = 500 mm = 0·5 m
  Length of the weir, L  =  1·4 m
 (i) Discharge by Francis’s formula, Q:
   Using Francis’s formula,
    Q = 1·84 LH3/2 = 1·84 × 1·4 × (0·5)3/2

     = 0·91 m3/s. (Ans.)
 (ii) Discharge by Bazin’s formula, Q:
  Using Bazin’s formula,
    Q = 3/22m L g H× ×

  where, m = 0 003 0 0030 405 0 405 0 411
0 50H

⋅ ⋅
⋅ + = ⋅ + = ⋅

⋅

	 	∴ Q = 3/20 411 1 4 2 9 81 (0 5)⋅ × ⋅ × × ⋅ × ⋅

   = 0·901 m3/s (Ans.)
 Example 9.12. A 30 metres long weir is divided into 10 equal bays by vertical posts, each  
0·6 m wide. Using Francis’s formula, calculate the discharge over the weir under an effective head 
of 1 metre.
  Solution.  Length of the weir = 30 m
    Number of bays = 10
	 ∴  Number of vertical posts = 10 – 1 = 9
    Width of each post = 0·6 m
	 ∴	   Effective length, L = 30 – 9 × 0·6 = 24·6 m
   Number of end contractions, n = 2 × 10 = 20
   (one bay has two end contractions)
  Head of water, H = 1 m
 Discharge, Q:
 Using Francis’s formula,
  Q = 1·84 (L – 0·1n H) H3/2

   = 1·84 (24·6 – 0·1 × 20 × 1) × (1)3/2

   = 41·58 m3/s (Ans.)
 Example 9.13. A 40 metres long weir is divided into 12 equal bays by vertical posts, each 0·6 
m wide. Using Francis’s formula, calculate the discharge over the weir if the head over the crest is 
1·20 m and velocity of approach is 2 m/s.

 Solution.  Length of the weir = 40 m
    Number of bays = 12
	 ∴  Number of vertical post = 12 – 1 = 11
    Width of each post = 0·6 m
 ∴   Effective length, L = 40 – 11 × 0·6 = 33·4 m
 Number of end contractions, n = 2 × 12 = 24
    Head on weir, H = 1·2 m
  Velocity of approach, Va = 2 m/s

	 ∴ Head due to Va,  Ha = 
2 22 0 2038 m

2 2 9 81
aV
g
= = ⋅

× ⋅
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 Discharge (Q) by Francis’s formula with end contractions and velocity of approach is given by:
  Q = 1·84 [L – 0·1 n(H + Ha)] [(H + Ha)

3/2 – 3/2
aH ]

   = 1·84 [33·4 – 0·1 × 24 × (1·2 + 0·2038)] [(1·2 + 0·2038)3/2 – (0·2038)3/2]
   = 1·84 [33·4 – 3·369] [1·663 – 0·092]
   = 86·8 m3/s  (Ans.)

9.10.  CIPPOLETTI WEIR OR NOTCH 

 The Cippoletti weir is trapezoidal weir, having side slopes of 1 horizontal to 4 vertical as shown 
in Fig. 9·8. By providing slope on the sides, an increase in discharge through the triangular portions 
(AED and FBC) is obtained; without this slope the weir 
would be a rectangular one, and due to end contraction, 
the discharge would decrease. Thus the advantage of 
this weir is that the factor of end contraction is not 
required (while using Francis’s formula).
 Let us split the trapezoidal weir into the following:
 (i) Rectangular weir, and
 (ii) Triangular notch
 The discharge over a rectangular weir (with two 
end contractions),

  Q1 = 3/22 ( – 0 2 ) 2
3 dC L H g H× × ⋅  ...(i)

 and discharge over the triangular notch,

  Q2 = 5/28 2 tan ( )
15 2dC g Hθ

×  ...(ii)

	 ∴ Total discharge,
  Q = Q1 + Q2

   = 3/2 5/22 8( – 0 2 ) 2 2 tan
3 15 2d dC L H g H C g Hθ

⋅ + ×  ...(9·14)

 To avoid the factor of end contraction, Cippoletti gave the formula for discharge,

  Q = 3/22 2
3 dC L g H×  ...(9·15)

 Equating the eqns. (9·14) and (9·15), we get:

     3/2 3/2 5/22 2 82 ( – 0 2 ) 2 2 tan
3 3 15 2d d dC L g H C L H g H C g Hθ

= ⋅ + ×

 Dividing both sides by 3/22 2
3 dC g H , we have:

  L = 4– 0.2 tan
5 2

L H Hθ
+ ×

 or, 4 tan
5 2

Hθ
×  = 0 . 2H

	 ∴ tan
2
θ  = 

5 10 2
4 4

⋅ × =

 The above relation indicates that in a trapezoidal weir having side slopes 1 horizontal to 4 
vertical the factor of end contraction is not required for discharge, while using Francis’s formula.

H

�/2 �/2

L

A

D

E F B

C
H/4

Fig. 9.8 Cippoletti weir.
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 Example 9.14. Find the discharge over a Cippoletti weir of length 1·8 m when the head over 
the weir is 1·2 m. Take Cd = 0·62
 Solution.  Length of weir, L = 1.8 m
  Head of water, H  = 1.2 m
  Co-efficient of discharge, Cd  = 0.62
 Discharge over the weir, Q:
 Using the relation:

  Q = 3/22 2
3 dC L g H

   = 3/22 0.62 1.8 2 9.81 (1.2)
3
× × × × ×

   = 4.33 m3/s (Ans.)

9.11.  DISCHARGE OVER A BROAD CRESTED WEIR 

 Fig. 9·9 shows a broad-crested weir. Let 1 and 2 be the upstream and downstream ends of the 
weir respectively.
 Let, H = Head of water in the upstream side of the weir,
  h = Head of water on the downstream side of the weir,
  v = Velocity of the water on the downstream side of the weir,
  L = Length of the weir, and
  Cd = Co-efficient of discharge.

H
h

L

1 2

Fig. 9.9. Broad-crested weir.

 Applying Bernoulli’s equation at 1 and 2, we get:

  0 + 0 + H =  
2

0
2
v h
g

+ +

	 ∴ 
2

2
v
g

 = H – h

 or, v = 2 ( – )g H h

	 ∴ The discharge over weir, Q = Cd × area of flow × velocity
   = Cd × L × h × v
   = 2 ( – )dC L h g H h× × ×

   = 2 32 –dC L g Hh h× ×  ...(9·16)
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 The discharge will be maximum, if (Hh2 – h3) is maximum.

 or, 2 3( – )d Hh h
dh

 = 0

 or, 2hH – 3h2 = 0
 or, 2H = 3h

	 ∴ h = 2
3

H

 Substituting the value of h in eqn. (9·16), we get:

  Qmax = 
2 32 22 –

3 3dC L g H H H   × × ×    
   

   = 3 34 92 –
9 27dC L g H H× ×

   = 342
27dC L g H× ×

   = 22
3 3d

HC L g H× × ×

   = 3/22 2
3 3 dC L g H× × ×

   = 3/20 3849 2 9 81dC L H⋅ × × × × ⋅ ×

   = 1·705 × Cd × L × H3/2 ...(9·17)

9.12.  DISCHARGE OVER A NARROW-CRESTED WEIR 

 In case of a narrow-crested weir, 2 L < H. This weir is similar to a rectangular weir or notch and 
hence, Q is given by:

  Q = 3/22 2
3 dC L g H× × × ×  ...(9·18)

9.13.  DISCHARGE OVER AN OGEE WEIR 

 In the Fig. 9·10 is shown an Ogee weir, in which the crest 
of the weir rises upto maximum height of 1·115 H and then 
falls as shown (where, H = height of water above inlet of the 
weir). The discharge over an Ogee weir is the same as that 
of a rectangular weir and is given by:

  Q = 3/22 2
3 dC L g H× × × ×  ...(9·18)

9.14. DISCHARGE OVER SUBMERGED  
           OR DROWNED WEIR 

 A weir is said to be submerged or drowned weir if the water level on its downstream side is 
above its crest. Such a weir is shown in Fig. 9·11. The total discharge over the weir is obtained by 
dividing the weir into two parts. The portion between upstream and downstream water surfaces may 
be treated as free weir and portion between downstream water surface and crest as a drowned weir.

Fig. 9.10. An Ogee weir.

H

Sharp
crest

1.115 H
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( )H – h

H

h

Crest

Fig. 9.11. Submerged weir.

 Let, H = Height of water on the upstream side of the weir, and
  h = Height of water on the downstream side of the weir.
 Then,  Q1  = Discharge over upper portion

   = 3/2
1

2 . . . 2 ( – )
3 dC L g H h

 and, Q2 = Discharge through drowned portion
   = 2dC × area of flow × velocity of flow

   = 2 . . . 2 ( – )dC L h g H h

 where, Cd1 and Cd2are the respective discharge co-efficients.
	 ∴  Total discharge, Q = Q1 + Q2

   = 3/2
1 2

2 . . . 2 ( – ) . . . 2 ( – )
3 d dC L g H h C L h g H h+  ...(9·19)

 Example 9.15. A 45 m long broad-crested weir has 0·5 m of water above its crest. Find the 
maximum discharge over the weir. Take Cd = 0·62. Neglect velocity of approach.

 Solution.  Length of the weir, L = 45 m
  Head of water, H = 0.5 m
  Cd = 0.62
 Maximum discharge, Qmax:
  Qmax =  1.705 Cd × L × H3/2

   = 1.705 × 0.62 × 45 × (0.5)3/2

   = 16.82 m3/s (Ans.)
 Example 9.16. Find the discharge over an narrow-crested weir 6 m long and having a head of 
0·4 m of water. Take Cd = 0.62.

 Solution.  Length of weir, L = 6 m
  Head of water, H = 0·4 m
  Discharge co-efficient, Cd = 0·62
 Discharge, Q:

  Q = 3/22 2
3 dC L g H× × × ×  ...[Eqn. 9·18]

   = 3/22 0 62 6 2 9 81 0 4 /
3
× ⋅ × × × ⋅ × ⋅ = 32 779 m s⋅ (Ans.)   
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 Example 9.17. In a submerged weir of 2·5 m length the heights of water on the upstream and 
downstream sides are 0·2 m and 0·1 m respectively. Find the discharge over the weir if discharge 
co-efficients for free and drowned portions are 0·62 and 0·8 respectively.
 Solution.  Length of weir, L  = 25 m
  Height of water on upstream side, H = 0.2 m
  Height of water on downstream side, h = 0.1 m
  Cd1 = 0.62
  Cd2 = 0.8
 Discharge over the weir, Q:
  Total discharge, Q  = Q1 (discharge through free portion) + Q2
     (discharge through the drowned portion)

   = 3/2
1 2

2 2 ( – ) 2 ( – )
3 d dC L g H h C L h g H h× × + × × ×  ...[Eqn. (9·19)]

   = 3/22 0 62 2 5 2 9 81 (0 2 – 0 1)
3
× ⋅ × ⋅ × × ⋅ ⋅ ⋅

    0 8 2 5 0 1 2 9 81 (0 2 – 0 1)+ ⋅ × ⋅ × ⋅ × × ⋅ ⋅ ⋅

   = 0·1447 + 0·2801 = 0·4248 m3/s (Ans.)
 Example 9.18. Water flows over a rectangular sharp-crested weir 1 m long, the head over the 
sill of the weir being 0·66 m. The approach channel is 1·4 m wide and depth of flow in the channel 
is 1·2 m. Starting from first principles, determine the rate of discharge over the weir. Consider also 
the velocity of approach and the effect of end contractions. Take the co-efficient of discharge for the 
weir as 0·6.    [UPSC Exams.]

 Solution.  Length of weir, L = 1 m
  Head of water, H  =  0·66 m
  Co-efficient of discharge, Cd  = 0·6
 Rate of discharge, Q:
 (i) Neglecting velocity of approach:
  The discharge over a rectangular sharp-crested contracted weir is given by Eqn. (9·8),

        Q = 3/22 ( – 0 1 ) 2
3 dC L nH g H⋅

  (where,  n = no. of end contractions)

         = 3/22 0 6 (1 – 0 1 2 0 66) 2 9 81 (0 66)
3
× ⋅ ⋅ × × ⋅ × × ⋅ × ⋅

         =  0·3472 × 4·429 × 0·536 = 0·824 m3/s (Ans.)
 (ii) Taking velocity of approach into consideration:

   Velocity of approach, Va = 0 824 0 49 m/s
1 4 1 2

Q
A

⋅
= = ⋅

⋅ × ⋅

   Head due to  Va, ha = 
2 20 49 0 0122 m

2 2 9 81
aV
g

⋅
= = ⋅

× ⋅

   H + ha =  0·66 + 0·0122 = 0·6722 m
  Discharge considering the velocity of approach,

   Q = [ ] 3/2 3/22 – 0 1 ( ) 2 ( ) – ( )
3 d a a aC L n H h g H h h ⋅ + × × + 
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    = 3/2 3/22 0 6 (1 – 0 1 2 0 6722) 2 9 81 (0 6722) – (0 0122)
3

 × ⋅ ⋅ × × ⋅ × × ⋅ ⋅ ⋅ 

    = 0·3462 × 4·429 (0·551 – 0·001347)
    = 0·8428 m3/s (Ans.)

9.15. TIME REQUIRED TO EMPTY A RESERVOIR OR A TANK WITH   
 RECTANGULAR AND TRIANGULAR WEIRS OR NOTCHES

 (a) Rectangular weir or notch :
 Consider a reservior or a tank provided with a rectangular weir or notch in one of its sides.
 Let, A = Uniform cross-sectional area of the tank,
  L = Length of crest of the weir or notch,
  H1 = Initial height of liquid above the crest of notch,
  H2 = Final height of liquid above the crest of notch,
  Cd = Co-efficient of discharge, and
  T = Time required in seconds to lower the height of liquid from H1 to H2.
 Further, let h = The height of liquid surface above the crest of weir or notch at any instant, and
  dh = The fall of liquid surface in a small time dT.
 Then, – A.dh = Q × dT

   = 3/22 . . 2 .
3 dC L g h dT

 (Negative sign indicates that as T increases, h decreases.)

 or, dT = 
3/2

–
2 . . 2 .
3 d

A dh

C L g h

 To obtain total time T, the above eqn. is integrated between the limits H1 to H2.

	 ∴ 
0

T

dT∫  = 
2

1
3/2

–
2 . . 2
3

H

H d

Adh

C L g h×
∫

 or, T = 
2

1

– 3/2–
2 . . 2
3

H

Hd

A h dh
C L g

∫

   = 
2

1

– 3/2 1– 3
(– 3/2) 12 . . 2

H

d H

A h
C L g

+ 
 + 

   = 
2

1

– 3 2 1–
12 . . 2

H

Hd

A
C L g h

  
      

   = 
2 1

3 1 1–
. . 2d

A
C L g H H

 
 
  

 ...(9·20)

 (b)  Triangular weir or notch:
 Consider a reservoir or a tank provided with a triangular weir or notch in one of its sides.
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 Let, A = Uniform cross-sectional area of the tank,
  θ = Angle of the notch,
  H1 = Initial height of liquid above the apex of notch,
  H2 = Final height of liquid above the apex of notch, and
  Cd = Co-efficient of discharge.
 Further, let, h = The height of liquid surface above the crest of weir or notch at any instant;
 and,
  dh = The fall of liquid surface in a small time dT.
 Then, – A. dh = Q × dT

   = 5/28 tan 2
15 2dC g h dTθ

× × ×

 or, dT = 
5/2

– .
8 tan 2

15 2d

A dh

C g hθ
× × ×

 To obtain total time T, the above eqn. is integreated between the limits H1 to H2.

	 ∴ 
0

T

dT∫  = 
2

1
5/2

– .
8 tan 2

15 2

H

H d

A dh

C g hθ
× × ×

∫

 or, T = 
2

1

–5/2–
8 tan 2

15 2

H

Hd

A h dh
C gθ

× × ×
∫

   = 
2

1

– 3/2– 15–
– 3 / 28 tan 2

2

H

Hd

A h

C g

 
 θ  × × ×

   = 
2

1

3/2
– 15 1(– 2 / 3)

8 tan 2
2

H

H
d

A
hC g

 
 θ  × × ×

   = 3/2 3/2
2 1

5 1 1–
4 tan 2

2d

A
H HC g

 
 θ  × × ×

 ...(9·21)

 Example 9.19. Find the time required to lower the water level from 3 m to 2 m in a reservoir of 
dimensions 70 m × 70 m, by
 (i) a rectangular notch of length 1·2 m;
 (ii) a right angled V-notch.
  Take Cd = 0·62
 Solution.  Dimensions of the reservoir = 70 m × 70 m
	 ∴ Area, A = 70 × 70 = 4900 m2

  Length of rectangular notch, L  = 1·2 m
  Angle of notch, θ = 90°
  Co-efficient of discharge, Cd = 0·62
  Initial height of water, H1 = 3 m
  Final height of water, H2 = 2 m
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 Time required, T:
 (i) Rectangular notch:
    T = 

2 1

3 1 1–
. . 2d

A
C L g H H

 
 
  

 ...[Eqn. 9·20]

  Substituting the values, we get:

    T = 3 4900 1 1–
0 62 1 2 2 9 81 2 3

×  
 ⋅ × ⋅ × × ⋅  

     = 4460·62 (0·707 – 0·577) = 579·88 s (Ans.)
 (ii) A right angled V-notch:
    T = 3/2 3/2

2 1

5 1 1–
4 tan 2

2d

A
H HC g

 
 θ  × × ×

 ...[Eqn. 9·21]

     = 3/2 3/2
5 4900 1 1–90 2 34 0 62 tan 2 9 81

2

×  
 °  × ⋅ × × × ⋅

     = 2230·3 (0·3535 – 0·1924) = 359.3 s (Ans.)

HIGHLIGHTS

 1. A notch may be defined as an opening provided in the side of a tank or vessel such that the 
liquid surface in the tank is below the top edge of the opening.

 2. A weir may be defined as any regular obstruction is an open stream over which the flow takes 
place.

 3. Discharge through a rectangular notch or weir is given by,

    Q = 3/22 2
3 dC L g H× × ×

  where, Cd = Co-efficient of discharge,
    L = Length of notch or weir, and
    H = Head of water over the notch or weir.
 4. Discharge through a triangular notch or weir is given by,

    Q = 5/28 2 tan
15 2dC g Hθ

× × × ×

  where, θ = angle of the notch.
 5. Discharge through a trapezoidal notch or weir is given by,
    Q = 3/2 5/2

1 2
2 82 2 tan
3 5 2d dC L g H C g Hθ

× × × + × ×

  where, Cd1 = Co-efficient of discharge for rectangular notch,

    Cd2 = Co-efficient of discharge for triangular notch, and

    
2
θ  = Slope of the side of trapezoidal notch.

 6. The error in discharge due to the error in the measurement of head over a rectangular or a 
triangular notch or weir is given by

    dQ
Q

 = 3
2

dH
H

×  ... for a rectangular notch or weir
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     = 5
2

dH
H

×    ... for a triangular notch or weir

  where, Q = Discharge through rectangular or triangular notch or weir, and
    H = Head over the notch or weir.
 7. The velocity with which the water approaches or reaches the weir or notch before it flows 

over it is known as ‘Velocity of approach’. It is denoted by Va and is given by:

    Va = Discharge over the notch or weir
Cross–sectional area of channel

 8. The head due to velocity of approach is given by,

    Ha = 
2

2
aV
g

 9. The discharge over a rectangular weir,

    Q = 3/22 . . 2 .
3 dC L g H  ... without velocity of approach

     = 3/2 3/22 . . 2 [( ) – ( ) ]
3 d a aC L g H H H+   ... with velocity of approach

 10. Francis’s formula for discharge over a rectangular weir is given by:

    Q = 3/22 ( – 0 1 ) 2
3 dC L nH g H× ⋅  ... for n end contractions

     = 1·84 (L – 0·2 H) H3/2    ... for two end contractions
     = 1·84 LH3/2     ... if end contractions are suppressed
     = 1·84 L [(H + Ha)

3/2 – 3/2
aH ]  ... if velocity of approach is considered

     (when Cd = 0·623, g = 9·81 m/s2)
 11. Bazin’s formula for discharge over a rectangular weir,
    Q = 3/22m L g H  ... without velocity of approach

     = 3/22 [( ) ]am L g H H+  ... with velocity of approach

  where m = 2 0 0030 405
3 dC

H
⋅

= = ⋅ +  ... without velocity of approach

     = 0 0030 405 ]
( )aH H

⋅
⋅ +

+
 ... with velocity of approach

 12. The Cippoletti weir is a trapezoidal weir, having side slopes of 1 horizontal to 4 vertical. The 
discharge through the weir is given by,

    Q = 3/22 . . 2
3 dC L g H  ... without velocity of approach

     = 3/2 3/22 . . 2 ( ) –
3 d a aC L g H H H +   ... with velocity of approach.

 13. Discharge over a broad-crested weir is given by,

    Q = 2 3. . 2 –dC L g Hh h

  where, L = Length of the weir,
    H = Height of water, above crest, and
    h = Head of water on the downstream of the weir.
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  The condition for maximum discharge is

    h = 2 ,
3

H  and maximum discharge is given by,

    Qmax = 1·705 Cd. L. H3/2

 14. Discharge over an Ogee weir is given by,

    Q = 3/22 . . 2
3 dC L g H×

 15. Discharge over submerged or drowned weir is given by,
    Q = Discharge over upper portion + discharge through drowned portion

     = 3/2
1 2

2 . . 2 ( – ) . . . 2 ( – )
3 d dC L g H h C L h g H h+

 16. The time required to empty a reservoir or a tank by a rectangular or a triangular notch is given 
by,

    T = 
2 1

3 1 1–
. . 2d

A
C L g H H

 
 
  

           ... by a rectangular notch

     = 3/2 3/2
2 1

5 1 1–
4 tan 2

2d

A
H HC g

 
 θ  × ×

 ... by a triangular notch

  where, A = Cross-sectional area of a tank or a reservoir,
    H1 = Initial height of liquid above the apex of notch, and
    H2 = Final height of liquid above the apex of notch.

OBJECTIVE TYPE QUESTIONS

Choose the Correct Answer:
 1. An opening provided in the side of a tank or 

vessel such that the liquid surface in the tank is 
below the top edge of the opening is known as

  (a) weir (b) notch
  (c)	 orifice	 (d) none of the above.
 2. A notch is generally made of 
  (a) masonary or concrete (b) metallic plate 
  (c) plastic plate (d) any of these.
 3. Any regular obstruction in an open stream over 

which	the	flow	takes	place	is	known	as
  (a) notch (b)	 orifice	
  (c) weir (d) any of these.
 4. Which or the following may be used for measur-

ing	the	rate	of	flow	of	water	in	rivers	or	streams?
  (a) Notches (b)	 Orifices
  (c) Weir (d) Any of these.
 5. Discharge over a rectangular notch or weir is 

given by

  (a) 3/21 . . 2 ( )
2 dC L g H

  (b) 3/23 . . 2 ( )
4 dC L g H

  (c) 5/2. . 2 ( )dC L g H

  (d) 3/22 . . 2 ( ) .
3 dC L g H

  where, Cd	 =	Co-efficient	of	discharge,
   L = Length of notch or weir, and
   H = Height of water above sill of 

the notch.
 6. Discharge, (Q) over a triangular notch or weir is 

given by

  (a) 3/22 . 2 tan .
3 2dC g Hθ

  (b) 5/2. 2 tan .
2dC g Hθ
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  (c) 5/21 . 2 tan
2 dC g Hθ

  (d) 5/28 . 2 tan .
15 2dC g Hθ

   where, θ is the angule of notch.
 7. Discharge over a trapezoidal notch or weir is 

given by

  (a) 3/2 3/2
1 2

8. . 2 . 2 tan .
15 2d dC L g H C g Hθ

+

  (b) 3/2 5/2
1 2

2 . . 2 . 2 tan
3 d dC L g H C g H+ θ

  (c) 3/2 5/2
1 2

2 8. . 2 2 tan .
3 15 2d dC L g H C g Hθ

+

  (d) 3/2
1

1 . . 2
2 dC L g H

 5/2
2

8 . 2 tan .
15 2dC g Hθ

+

  Where 
1dC 	=	Co-efficient	of	discharge	for	

the rectangular portion, and
   

2dC 	=	Co-efficient	of	discharge	for	
the traiangular portion.

 8. An error of 1% in measuring H will produce ... 
error in discharge over a rectangular notch or 
weir.

  (a) 1% (b) 1·5%
  (c) 2% (d) 2·5%.
 9. An error of 1% in measuring H will produce ... 

error in discharge over a triangular notch or weir
   (a) 1% (b) 1·5%
  (c) 2% (d) 2·5%.
 10. The error in discharge due to the error in the 

measurement of head over a rectangular notch 
or weir is given by

  (a) 1
2

dQ dH
Q H

=  (b) 3
2

dQ dH
Q H

=

  (c) 3
4

dQ dH
Q H

=  (d) none of these.

 11. The error in discharge due to the error in the 
measurement of head over a triangular notch or 
weir is given by

  (a) 1
2

dQ dH
Q H

=  (b) dQ dH
Q H

=

  (c) 3
2

dQ dH
Q H

=  (d) 5 .
2

dQ dH
Q H

=

 12. The discharge over a rectangular weir, consider-
ing velocity of approach, is given by

  (a) 3/22 . . 2
3 dQ C L g H=

  (b) 3/2 3/22 . . 2 ( ) – ( )
3 d a aQ C L g H H H = + 

  (c) 1/2 1/22 . . 2 ( ) – ( )
3 d a aQ C L g H H H = + 

  (d) none of these.
   where Ha is the additional head due to 

velocity of approach.
 13. Francis’s formula for a rectangular weir with n 

end contractions is given by

  (a) 3/22 .( – 0 1 ) 2 .
3 dQ C L nH g H= ⋅

  (b) 5/23 .( – 0 1 ) 2 .
2 dQ C L nH g H= ⋅

  (c) 3/2. ( – 0 1 ) 2 .dQ C L nH g H= ⋅

  (d) none of these.
 14. Discharge over a broad-crested weir is given by
  (a) . . 2 –dQ C L g H h=

  (b) 2 . . 2 –
3 dQ C L g H h=

  (c) 3 . . 2 –
4 dQ C L g H h=

  (d) 2 3. . 2 –dQ C L g Hh h=

  where, H = Head of water on the up-
stream side of the weir,

   h = Head of water on the down-
stream side of the weir,

   L = Length of the weir, and
   Cd	=	Co-efficient	of	discharge.

 15. Maximum discharge over a broad-crested weir 
is given by.

  (a) Q = Cd. L. H3/2

  (b) Q = 0·5 Cd. L. H5/2

  (c) Q = 1·705 Cd. L. H3/2

  (d) Q = 1·705 Cd. L. H5/2

 16. The time required to empty a reservoir or a tank 
by a rectangular notch is given by

  (a) 
2 1

1 1–
. . 2d

AT
C L g H H

 
=  

  

  (b) 3/2 3/2
2 1

2 1 1–
. . 2d

AT
H HC L g
 

=  
 

  (c) 
2 1

3 1 1–
. . 2d

AT
C L g H H

 
=  

  

  (d) none of these.
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  17. The time required to empty a reservoir or a 
tank by a triangular notch is given by

   (a) 
2 1

1 1–
4 .tan 2

2d

AT
H HC g

 
=  θ   

   (b) 
2 1

3 1 1–
4 . tan 2d

AT
C g H H

 
=  

θ   

  (c) 3/2 3/2
2 1

5 1 1–
4 . tan 2

2d

AT
H HC g

 
=  θ  

  (d) none of these.

ANSWERS

 1. (b) 2. (b) 3. (c) 4. (c) 5. (d) 6. (d)
 7. (c) 8. (b) 9. (d) 10. (b) 11. (d) 12. (b)
 13. (a) 14. (d) 15. (c) 16. (c) 17. (c).

THEORETICAL QUESTIONS

 1. Define	the	following	terms:
  (i) Notch, (ii) Weir,
  (iii) Nappe or vein (iv) Sill or crest.
 2. What is the main difference between a notch and 

a	weir	?
 3.	 How	are	notches	and	weirs	classified	?
 4. Derive an expression for the discharge over a 

rectangular notch or weir in terms of head of 
water over the crest of the notch or weir.

 5. Find an expression for the discharge over a tri-
angular notch or weir in terms of head of water 
over the crest of the notch or weir.

 6. Prove that the error in discharge due to error in 
the measurement of head over a triangular notch 
or weir is given by

   dQ
Q

 = 5
2

dH
H

  where, Q = Discharge through the trian-
gular notch, and

   H = Head over the triangular 
notch.

 7. What are the advantages of a triangular notch 
over	a	rectangular	notch	?

 8.	 What	is	‘velocity	of	approach’	?
 9. Derive an expression for the discharge over a 

rectangular weir with velocity of approach.
 10. What do you understand by ‘end contraction’ of 

a	weir	?

 11. What is the effect of end contraction on the 
discharge	through	a	weir	?

 12. Find an expression for the discharge over a Cip-
poletti	weir	?

 13. Derive an expression for the maximum discharge 
over a broad-crested weir.

 14. Write short notes on the following:
  (i) Narrow-crested weir
  (ii) Ogee weir.
  (iii) Submerged or drowned weir.
 15. Derive an expression for the time required to  

empty a tank with a rectangular notch.
 16. Prove that the time (T) required to empty a tank 

with a triangular notch is given by

  3/2 3/2
2 1

5 1 1–
4 . tan 2

2d

AT
H HC g

 
=  θ  

  Where, A = Uniform cross-sectional area 
of the tank,

 	 	 θ = Angle of notch,
   H1 = Initial height of liquid above 

the apex of notch,
   H2 = Final height of liquid above 

the apex of notch, and
   Cd	=	Co-efficient of discharge.
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UNSOLVED EXAMPLES

 1.	 Find	the	discharge	of	water	flowing	over	a	rect-
angular notch of 2·5 m length when the constant 
head over the notch is 400 mm. Take Cd = 0·62.

 [Ans. 1·16 m3/s]
 2. The head of water over a rectangular notch is 900 

mm. The discharge is 0·3 m3/s. Find the length 
of the notch when Cd = 0·62. [Ans. 192 mm]

 3. Find the discharge over a triangular notch of 
angle 60° when the head over the V-notch is 0·3 
m. Take Cd = 0·6. [Ans. 0·04 m3/s]

 4. A rectangular channel 2·0 m wide has a discharge 
of 0·25 m3/s, which is measured by a right-
angled V-notch. Find the position of the apex 
of the notch from the bed of the channel if the 
maximum depth of water is not to exceed 1·3 m. 
Assume Cd = 0·62. [Ans. 0·807 m]

 5. Find the discharge through a trapezoidal notch 
which is 1 m wide at the top and 0·4 m at the 
bottom and is 0·3 m in height. The head of water 
on the notch is 0·2 m. Assume Cd for rectangular 
portion = 0·62 while for triangular portion = 
0·6. [Ans. 0·09084 m3/s]

 6. Find the discharge over a stepped rectangular 
notch,	as	shown	in	Fig.	9·12.	Take	co-efficient	
of discharge for all the portions as 0·64.

 [Ans. 0·712 m3/s]

0.15 m

0.9m

0.45 m

0.3 m

0.45 m

0.225 m

Fig. 9.12

 7. A rectangular notch 400 mm long is used for 
measuring a discharge of 0·03 m3/s. An error of 
1·5 mm was made, while measuring the head 
over the notch. Calculate the precentage error 
in the discharge. Assume Cd = 0·6.

 [Ans. 1·85%]

 8. A right angled V-notch is used for measuring a 
discharge of 0·03 m3/s. An error of 1·5 mm was 
made while measuring the head over the notch. 
Calculate the percentage error in the discharge. 
Assume Cd = 0·62. [Ans. 1·77%]

 9. A discharge of 0·15 m3/s was measured over a 
V-notch under a constant head of 1 metre. Deter-
mine the percentage error, in the measurement of 
discharge, if an error of 10 mm has taken place 
while measuring the head of water.

 [Ans. 2·5%]
 10. Find the discharge over a rectangular weir of 

length 100 m. The head of water over the weir 
is 1·5 m. The velocity of approach is given as 
0·5 m/s. Assume Cd = 0·6.

  [Ans. 329·35 m3/s]
 11. The head of water over a rectangular weir is 

400 mm. The length of the crest of the weir with 
end contraction suppressed is 1·5 m. Find the 
discharge using the following formulae:

  (i) Francis’s formula, and
  (ii) Bazin’s formula
    [Ans. (i) 0·6982 m3/s, (ii) 0·6932 m3/s]
 12. A weir 36 metres long is divided into 12 equal 

bays by vertical posts, each 0·6 m wide. Deter-
mine the discharge over the weir if the head over 
the crest is 1·20 m and velocity of approach is 
1·2 m/s. Use Francis’s formula.

 [Ans. 75·246 m3/s]
 13.	 Water	is	flowing	over	a	Cippoletti	weir	4	metres	

long under a head of 1 metre. Calculate the 
discharge,	if	the	co-efficient	of	discharge	for	the	
weir is 0·6. [Ans. 7·086 m3/s]

 14. A 40 m long broad-creasted weir has 0·4 m height 
of water above its crest. Find the maximum 
discharge. Take Cd = 0·6. Neglect velocity of 
approach. [Ans. 10·35 m3/s]

 15. In a submerged weir of 3 m length the heights of 
water on the upstream and downstream sides are 
0·2 m and 0·1 m respectively. Find the discharge 
over	the	weir	if	the	discharge	co-efficients	for	
free and drowned portions are 0·6 and 0·8 re-
spectively. [Ans. 0·504 m3/s]



10.1. INTRODUCTION 

 So far, in the preceding chapters, primarily the flow 
of an ideal fluid has been discussed. In the case of 
Newtonian fluid, the flows can be classified as (i) laminar 
(or viscous), and (ii) turbulent, depending on characteristic 

Reynolds number V lρ
µ

, where l is the characteristic 
length.

Examples of laminar/viscous flow:
 (i) Flow past tiny bodies.
 (ii) Underground flow.
 (iii) Movement of blood in the arteries of a human body.
 (iv) Flow of oil in measuring instruments.
 (v) Rise of water in plants through their roots etc.

Characteristics of laminar flow:
 (i) ‘No slip’ at the boundary.
 (ii) Due to viscosity, there is a shear between fluid 

layers, which is given by du
dy

τ = µ ⋅  for flow in 
X-direction.

 (iii) The flow is rotational.
 (iv) Due to viscous shear, there is continuous dissipa-

tion of energy and for maintaining the flow energy 
must be supplied externally.

 (v) Loss of energy is proportional to first power of 
velocity and first power of viscosity.

 (vi) No mixing between different fluid layers (except 
by molecular motion, which is very small).

 (vii) The flow remains laminar as long as Vlρ
µ

is less 
than critical value of Reynolds number.
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10.2.  REYNOLDS EXPERIMENT 

 Osborne Reynolds in 1883, with the help of a simple experiment (see Fig. 10.1), demonstrated 
the existence of the following two types of flows:

Tank containing dye

Constant head tank

Glass tube

Dye filament

Regulating valveWater

Fig.10.1. Reynolds apparatus.

 1. Laminar flow (Reynolds number, Re < 2000)
 2. Turbulent flow (Reynolds number, Re > 4000)
  (Re between 2000 and 4000 indicates transition from laminar to turbulent flow)
 Reynolds experiment:
 Apparatus:
 Refer to Fig. 10.1. Reynolds experiment apparatus consisted essentially of the following:
 1. A constant head tank filled with water,
 2. A small tank containing dye (sp. weight of dye same as that of water),
 3. A horizontal glass tube provided with a bell mouthed entrance, and
 4. A regulating valve.
 Procedure followed:
 The water was made to flow from the tank through the glass tube into the atmosphere and the 
velocity of flow was varied by adjusting valve. The liquid dye was introduced into the flow at the 
bell mouth through a small tube as shown in Fig. 10.1.
 Observations made:
 1. When the velocity of flow was low, the dye remained in the form of a straight and stable 

filament passing through the glass tube so steadily that it scarecely seemed to be in motion. 
This was a case of laminar flow as shown in Fig. 10.2 (a).

 2. With the increase of velocity a critical state was 
reached at which the dye filament showed irregulari-
ties and began to waver (see Fig. 10.2 b). This shows 
that the flow is no longer a laminar one. This was a 
transitional state.

 3. With further increase in velocity of flow the 
fluctuations in the filament of dye became more 
intense and ultimately the dye diffused over the 
entire cross-section of the tube, due to the inter-
mingling of the particles of the flowing fluid. This 
was the case of a turbulent flow as shown in Fig. 
10.2 (c).

 On the basis of his experiment Reynolds discovered 
that:

Dye filament

( ) Wavy filamenta

( ) Diffused filamentb

( )c

Fig. 10.2. Appearance of dye filament in  
(a) laminar flow, (b) transition,  

and (c) turbulent flow.
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 (i) In case of laminar flow: The loss of pressure head ∝ velocity.
 (ii) In case of turbulent flow: The loss of head is approximately ∝ V2

  [More exactly the loss of head ∝ Vn where n varies from 1.75 to 2.0]
 Fig. 10.3 shows the apparatus used by Reynolds for estimating the loss of head in a pipe by 
measuring the pressure difference over a known length of the pipe.
 (i) The velocity of water in the pipe was determined by measuring the volume of water (Q) col-

lected in the tank over a known period of time  ( ,QV
A

= where A is the area of cross-section 
of the pipe.)

Tank

L

Pipe

hf

Valve

V

Fig. 10.3. Loss of head in a pipe.

 (ii) The velocity of flow (V) was changed and corresponding values of hf (loss of head) were 
obtained.

 (iii) A graph was plotted between V (velocity of flow) and 
hf (loss of head). Such a graph is shown in Fig. 10.4. 
It may be seen from the graph that:

 (a) At low velocities the curve is a straight line, 
indicating that the hf (loss of head) is directly 
proportional to velocity—the flow is laminar 
(or viscous),

 (b) At higher velocities the curve is parabolic; in 
this range hf α Vn, where the value of n lies 
between 1.75 to 2.0 — the flow is turbulent.

 (c) In the intermediate region, there is a transition 
zone. This is shown by dotted line.

 Reynolds number :
 Reynolds from his experiments found that the nature of flow in a closed conduit depends upon 
the following factors:
 (i) Diameter of the pipe (D),
 (ii) Density of the liquid (ρ),
 (iii) Viscosity of the liquid (µ), and
 (iv) Velocity of flow (V).
 By combining the above variables Reynolds determined a non-dimensional quantity equal to 

VDρ
µ

which is known as Reynolds number (Re).

 i.e. Reynolds number Re =  VDρ
µ

Turbulent flow
(High velocities)

Transition
zone

Laminar flow
(Low velocities)

hf

h Vf �
n

h Vf �

V

Fig. 10.4
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 (In general case D is replaced by L, known as characteristic length and we have, Re = VLρ
µ

)
It may also be expressed as:

  Re = VD
v

 where, v = Kinematic viscosity  µ = ρ 
 when, Re < 2000 ... the flow is laminar (or viscous)
  Re > 4000 ... the flow is turbulent.
  Re  between 2000 and 4000 ... the flow is unpredictable.
 Critical Reynolds number :
  All experiments agree that a lower limit of critical value of (Re)cr exists (though there appears 

to be no definite upper limit of the critical value of (Re)cr which characterises full attainment 
of turbulence) and its value is approximately 2000 (for circular pipe). This lower critical 
Reynolds number is of greater engineering importance as it defines the limit below which 
all turbulence, no matter how severe, entering the flow from any source will eventually be 
damped out by viscous action.

  It has been observed that the upper limit of critical Reynolds number (Re)cr depends upon the 
following factors:

 (i) Initial turbulence in the flow (approach),
 (ii) Shape of the pipe entrance, and
 (iii) Roughness of pipe.
 Reynolds found the upper limit of (Re)cr to lie between 12000 < (Re)cr < 14000; these values 
are of little practical interest and we may consider the upper limit of (Re)cr to be defined by 2700 < 
(Re)cr < 4000.
 — For demarcating the regimes of laminar and turbulent flows, the concept of critical Reynolds 

number proves quite useful.
 The lower critical Reynolds number for some important cases are as under:
 (i) (Re)cr = 1  ... for sphere
 (ii) (Re)cr = 50  ... for open channels
 (iii) (Re)cr = 1000  ... for parallel plates.

10.3.  NAVIER-STOKES EQUATIONS OF MOTION 

 Refer to Fig. 10.5.
 Consider an infinitly small mass of fluid enclosed in an elemantary parallelopiped of sides dx, 
dy and dz. The motion of the fluid element is influenced by the following forces :
 (i) Normal forces due to pressure :
  The net pressure force in the X-direction

   = . . – . – . .p pp dy dz p dx dy dz dx dy dz
x x
∂ ∂ + = ∂ ∂ 

 (ii) Gravity or body force :
  Let B be the body force per unit mass of fluid having components Bx, By and Bz in the X, Y 

and Z directions respectively.
  Then, the body force acting on the parallelopiped in the direction of X-coordinate 
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   = Bx . ρ . dx . dy . dz.
 (iii) Inertia forces :
  The inertia force acting on the 

fluid mass, along the X-co-ordinate 
is given by,

 Mass × acceleration 

              =  ρ . dx . dy . dz . du
dt

 (iv) Shear forces:
 Let Sx, Sy, Sz be the components of 
shear force per unit mass set up by viscous 
effects in X, Y and Z direction respectively.
Then, the shear force acting on the 
parallelopied in the direction of X-co-
ordinate is = Sx . ρ . dx . dy . dz
 As per Newton’s second law of motion 
summation of forces acting in the fluid 
element in any direction equals the resulting inertia forces in that direction. Thus along X-direction:

– p
x
∂
∂

 dx . dy . dz + Bx . ρ . dx . dy .  dz + Sx . ρ . dx . dy . dz = ρ . dx . dy . dz du
dt

  Bx – 1 – x
p du S
x dt
∂⋅ =

ρ ∂

 Similarly, By – 1 v – ,y
p d S
y dt
∂⋅ =

ρ ∂

 and, Bz – 1 – z
p dw S
z dt

∂⋅ =
ρ ∂

 ...(10.1)

 Let us now find the values of Sx, Sy and Sz:

 — The resistance (shear) force acting on the face AEHD = – ( . )u dy dz
x
∂µ
∂

 (Resistance force due to viscosity = τ × area)
 The resistance force acting on the face BFGC

   = 
2

2. ( . ) ( . )u u uu dx dy dz dx dy dz
x x x x

 ∂ ∂ ∂ ∂ µ + = µ +   ∂ ∂ ∂  ∂ 
 The resistance forces acting on the opposite faces have opposite signs. Further, both of these 
forces are direced apposite to the respective opposite forces.
 The resultant force along the X-axis
= The algebraic sum of forces acting on the faces AEHD and BFGC

   = 
2

2– ( . ) ( . )u u udy dz dx dy dz
x x x

 ∂ ∂ ∂µ + µ + ∂ ∂ ∂ 

   = 
2

2 . .u dx dy dz
x
∂µ
∂

 ...(i)

 — Similarly the X-component of the resistance force acting on the faces EFGH and ABCD 
respectively are :

D
p

p

C

G
X

p

E F

B

dy

dx

H

p dy+
�p

�y

p dz+
�p

�z

p dx+

P

�p

�x

Y

dz

A

Z

Fig. 10.5
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   – 
2

2( . ) and . ( . )u u udx dy dz dx dy
z z z

 ∂ ∂ ∂µ µ + ∂ ∂ ∂ 
 The resultant force along the X-axis

   = The sum of the above components = 
2

2 . . .u dx dy dz
z
∂µ
∂

...(ii)

 — Similarly, the X-components of the resistance force acting on the faces DHGC and AEFB

   = 
2

2 . .u dx dy dz
y
∂µ
∂

 ...(iii)

 The total viscous force, parallel to X-axis, on all the six faces of the parallelopiped is given by 
the sum of the quantities (i), (ii) and (iii) and is

   = 
22 2

2 2 2· . · · · · · · · · · ·u udx dy dz dx dy dz dx dy dz
x y z

∂ µ∂ ∂µ + µ + µ
∂ ∂ ∂

   = 
2 2 2

2 2 2· · ·u u u dx dy dz
x y z

 ∂ ∂ ∂µ + + ∂ ∂ ∂ 

 The resistance (shear ) per unit mass in obtained by dividing the above quantity by ρ dx . dy . 
dz.

	 ∴	 Sx = 
2 2 2 2 2 2

2 2 2 2 2 2 ,u u u u u uv
x y z x y z

   µ ∂ ∂ ∂ ∂ ∂ ∂+ + = + +   ρ ∂ ∂ ∂ ∂ ∂ ∂   

 Similarly Sy = 
2 2 2

2 2 2
v v v ,v

x y z
 ∂ ∂ ∂+ + ∂ ∂ ∂ 

 and

  Sz = 
2 2 2

2 2 2 .w w wv
x y z

 ∂ ∂ ∂+ + 
∂ ∂ ∂ 

 Putting these values of Sx, Sy and Sz in eqn. (10.1), we get:

  Bx – 1 . p
x
∂

ρ ∂
 = 

2 2 2

2 2 2–du u u uv
dt x y z

 ∂ ∂ ∂+ + ∂ ∂ ∂ 

  1– .y
pB
y
∂

ρ ∂
 = 

2 2 2

2 2 2–dv v v vv
dt x y z

 ∂ ∂ ∂+ + ∂ ∂ ∂ 

  1– .z
pB
z

∂
ρ ∂

 = 
2 2 2

2 2 2–dw w w wv
dt x y z

 ∂ ∂ ∂+ + ∂ ∂ ∂ 
 ... (10.2)

 These equations are called Navier-Stokes equations and are fundamental to general analysis 
of a viscous flow.
  Navier-Stokes equations, in vector form, may be writtern as :

  DV
Dt

 = 1–B
ρ

 grad. p + ν ∇2V

  Where ∇2 denotes the Laplace operator,

  i.e. ∇2 = 
2 2 2

2 2 2x y z
 ∂ ∂ ∂+ + ∂ ∂ ∂ 
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  The number of unknown, for an incompressible flow is four viz. u, v, w and p. The Navier-

Stokes equation plus incompressible continuity equation v 0u w
x y z
∂ ∂ ∂+ + =
∂ ∂ ∂

 are the sufficient 
conditions for the determination of the flow characteristics.

  Since Navier-Stokes equation is a second order non-linear differential equation, therefore, its 
general solution has not been yet found out (the non-linearity arises from the convective terms 

in DV
Dt

). Thus, the solutions are available for flow situations where the fluid characteristics 

such as viscosity and density are constant and boundary configuration is simple.
 Some of the important applications of Navier-Stokes equations are:
 1. Laminar flow in circular pipes.
 2. Laminar flow between concentric rotating cylinders.
 3. Laminar uni-directional flow between stationary parallel plates.
 4. Laminar uni-directional flow between parallel plates having relative motion.

10.4.  RELATIONSHIP BETWEEN SHEAR STRESS AND PRESSURE   
   GRADIENT 

 Let us consider a fluid element having the form of an elementary parallelopiped shown in  
Fig. 10.6 (a). The velocity distribution is shown in Fig. 10.6 (b); the velocity distribution is non-
uniform due to relative motion between different layers of fluid. The motion of the fluid element 
will be resisted by shearing or frictional forces which must be overcome by maintaining a pressure 
gradient in the direction of flow. Let us assume that the pressure is uniformly distributed at both the 
ends of the body.
 Let,   τ = Shear stress on the lower face ABCD of the element, then

  y
y
∂ττ + δ
∂

 = Shear stress on the upper face A′B′C′D′ of the element.

 For two-dimensional steady flow there will be no shear stresses on the vertical faces ABB′A′ 
and CDD′C′. Thus the only forces acting on the element in the direction of flow (X-axis) will be the 
pressure and shear forces.
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Fig. 10.6. Forces on a fluid element in laminar flow.

 Net shearing force on the element
   = –y x z x z

y
 ∂ττ + δ δ ⋅ δ τ ⋅ δ ⋅ δ ∂ 

   = x y z
y
∂τ δ ⋅ δ ⋅ δ
∂

 ...(i)
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 Net pressure force on the element

   = – pp y z p x y z
x
∂ ⋅δ ⋅δ + ⋅ δ δ ⋅ δ ∂ 

   = – p x y z
x
∂ δ ⋅ δ ⋅ δ
∂

 ...(ii)

 For the flow to be steady and uniform, there being no acceleration, the sum of the forces must 
be zero.
 From (i) and (ii), we have:

  – px y z x y z
y x

∂∂τ ⋅ δ ⋅ δ ⋅ δ ⋅ δ ⋅ δ ⋅ δ
∂ ∂

 =  0

 or, 
y
∂τ
∂

 = p
x
∂
∂

 ...(10.3)

 This equation (10.3) indicates that the pressure gradient in the direction of flow is equal to the 
shear gradient in the direction normal to the direction of flow. This equation holds good for all types 
of flow and all types of boundary geometry.

10.5.  FLOW OF VISCOUS FLUID IN CIRCULAR PIPES—HAGEN   
   POISEUILLE LAW 

 Hagen–Poiseuille theory is based on the following assumptions:
 1. The fluid follows Newton’s law of viscosity.
 2. There is no slip of fluid particles at the boundary (i.e. the fluid particles adjacent to the pipe 

will have zero velocity).
 Fig. 10.7 shows a horizontal circular pipe of radius R, having laminar flow of fluid through it. 
Consider a small concentric cylinder (fluid element) of radius r and length dx as a free body.

dr
r

R� �.2 r.dx

Direction
of flow

p1 p2

1 2
Pipe

dx

L

x2

x1

p r��
�

�r
�

P + dx
�p

�x
r

Fig. 10.7. Viscous/laminar flow through a circular pipe.

 If τ is the shear stress, the shear force F is given by:
  F = τ × 2πr × dx
 Let p be the intensity of pressure at left end and the intensity of pressure at the right end be 

pp dx
x
∂ + ⋅ ∂ 

.

 Thus the forces acting on the fluid element are:
 1. The shear force, τ × 2πr × dx on the surface of fluid element.
 2. The pressure force, p × πr2 on the left end.

 3. The pressure force, pp dx
x
∂ + ⋅ ∂ 

 πr2 on the right end.
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 For steady flow, the net force on the cylinder must be zero.

	 ∴ 2 2– – 2pp r p dx r r dx
x

 ∂  × π + ⋅ π τ × π ×  ∂  
 =  0

 or, – p
x
∂
∂

 . dx × πr2 – τ × 2πr × dx =  0

 or, τ = –
2

p r
x
∂ ⋅
∂

 ...(10.4)

 — Eqn. (10.4) shows that flow will occur only if pressure gradient exists in the direction of flow.
  The negative sign shows that pressure decreases in the direction of flow.
 — Eqn. (10.2) indicates that the shear stress varies linearly across the section (see Fig. 10.8). Its 

value is zero at the centre of pipe (r = 0) and maximum at the pipe wall given by:

  τ0 = –
2

p R
x
∂  

 ∂  
 ...[10.4 (a)]

Shear stress
distribution

Velocity
distribution curve

R
r

umax

u

�0

� �= .0 r/R

Fig. 10.8. Shear stress and velocity distribution across a section.

 From Newton’s law of viscosity,

  τ = du
dy

µ ⋅  ...(i)

 In this equation, the distance y is measured from the boundary. The radial distance r is related 
to distance y by the relation:
  y = R – r   or   dy = – dr
 The eqn. (i) becomes

  τ	 = – du
dr

µ  ...(10.5)

 Comparing two values of τ from eqns. 10.2 and 10.3, we have:

  – du
dr

µ  = –
2

p r
x
∂ ⋅
∂

 or, du = 1
2

p r dr
x
∂  ⋅ µ ∂ 

 Integrating the above equation w.r.t. ‘r’, we get:

  u = 21
4

p r C
x
∂⋅ +

µ ∂
 ...(10.6)

 Where C is the constant of integration and its value is obtained from the boundary condition :
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 At, r = R,   u = 0

	 ∴ 0 = 21
4

p R C
x
∂⋅ +

µ ∂
 or C = 21–

4
p R
x
∂⋅ ⋅

µ ∂

 Substituting this value of C in eqn. (10.4), we get:

  u = 2 21 1–
4 4

p pr R
x x
∂ ∂⋅ ⋅

µ ∂ µ ∂

 or, u = 2 21– ( – )
4

p R r
x
∂⋅

µ ∂
 ...(10.7)

 Eqn. (10.7) shows that the velocity distribution curve is a parabola (see Fig. 10.8). The 
maximum velocity occurs at the centre and is given by,

  umax = 21–
4

p R
x
∂⋅ ⋅

µ ∂
 ...(10.8)

 From eqns. (10.7) and (10.8), we have:

  u = 
2

max 1 – ru
R

    
   

 ...(10.9)

 Eqn. (10.9) is the most commonly used equation for the velocity distribution for laminar flow 
through pipes. This equation can be used to calculate the discharge as follows:
 The discharge through an elementary ring of thickness dr at radial distances r is given by:
  dQ = u × 2πr × dr

   = 
2

max 1 – 2ru r dr
R

   π ⋅  
   

  Total discharge, Q = dQ∫
   = 

2

max
0

1 – 2
R

ru r dr
R

   π ⋅  
   

∫

   = 
3

max 2
0

2 –
R

ru r dr
R

 
π  

 ∫

   = 
2 4 2 4

max max2 2
0

2 – 2 –
2 24 4

R
r r R Ru u

R R
   

π = π   
   

   = 2
max2

u Rπ

 Average velocity of flow, u =  
2

max max
2

2
2

u R uQ
A R

π
= =

π
 ...(10.10)

 Eqn. (10.10) shows that the average velocity is one-half the maximum velocity.
 Substituting the value of umax from eqn. (10.8), we have:

  u = 21–
8

p R
x
∂⋅ ⋅

µ ∂

 or, – ∂p = 2
8 u x
R
µ ⋅ ∂
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 The pressure difference between two sections 1 and 2 at distance x1 and x2 (see Fig. 10.7). is 
given by

  
2

1

–
p

p

p∂∫  = 
2

1

2
8

x

x

u x
R
µ ∂∫

 or, (p1 – p2) = 2 12 2
8 8( – )u uLx x
R R
µ µ=

 or, (p1 – p2) = 2
32 u L

D
µ  ...(10.11)

 where, D is the diameter of the pipe, and L is the length.
 Eqn. (10.11) is known as the Hagen-Poiseuille equation.

 Example 10.1. An oil of viscosity 9 poise and specific gravity 0.9 is flowing through a horizontal 
pipe of 60 mm diameter. If the pressure drop in 100 m length of the pipe is 1800 kN/m2, determine:
 (i) The rate of flow of oil;
 (ii) The centre-line velocity;
 (iii) The total frictional drag over 100 m length;
 (iv) The power required to maintain the flow;
 (v) The velocity gradient at the pipe wall;
 (vi) The velocity and shear stress at 8 mm from the wall.

 Solution. Viscosity of the oil, µ = 9 poise =  21 9 0.9 Ns/m
10

× =

  Sp. gr. of the oil = 0.9
  Diameter of the pipe, D = 60 mm = 0.06 m

	 ∴   Area of the pipe, A =  2 20.06 0.002827 m
4
π × =

 Pressure drop in 100 m length of the pipe, ∆p = 1800 kN/m2

 (i) The rate of flow, Q:

  (p1 – p2) = 2
32 u Lp

D
µ∆ =    (where u = average velocity)

  1800 × 103 = 2
32 0 9 100

(0 06)
u× ⋅ × ×

⋅

  or, u = 
3 21800 10 (0 06) 2 25 m/s

32 0 9 100
× × ⋅ = ⋅
× ⋅ ×

    Reynolds number, Re =  0.9 1000 2.25 0.06
0.9

VD × × ×ρ =
µ

 = 135

  As Re is less than 2000, the flow is laminar.
    Rate of flow, Q = A . u = 0.002827 × 2.25
   = 0.00636 m3/s or 6.36 lit./s. (Ans.)
 (ii) The centre-line velocity, umax:

  umax = 2u = 2 × 2.25 = 4.5 m/s (Ans.)
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 (iii) The total frictional drag over 100 m length, FD:
  Wall shear stress,

   τ0 = –
2

p R
x
∂ ⋅
∂

 ...[Eqn. 10.2 (a)]

  Now, – p
x
∂
∂

 = 
3

2 1 1 2

2 1

– – 1800 10–
– 100

p p p p p
x x L L

×∆= = =  = 18000

 	∴ τ0 = 20 06 / 218000 270 N/m
2

⋅× =

 	∴  Frictional drag for 100 m length,
    FD = τ0 × πDL = 270 × π × 0.06 × 100 = 5089 N or 5.089 kN (Ans.)
 (iv) The power required to maintain the flow, P:
  P = FD × u
   = 5.089 × 2.25 = 11.45 kW (Ans.)
  [Alternatively,  P = Q . ∆p = 0.00636 × 1800 = 11.45 kW]

 (v) The velocity gradient at the pipe wall,  
 
  0y

du
dy =

:

  τ0 = 
0y

u
dy =

 ∂µ ⋅  
 

  or, 
0y

u
dy =

 ∂
 
 

 = 0 270
0.9

τ =
µ

 = 300 s–1 (Ans.)

 (vi) The velocity and shear stress at 8 mm from the wall :

  u = 2 21– ( – )
4

p R r
x
∂⋅

µ ∂
 ...[Eqn. (10.5)]

  Here, y = 8 mm = 0.008 m
  But, y = R – r
  ∴ 0.008 = 0.03 – r or r = 0.022 m

  ∴ u(8 mm) = 

3
2 21800 101– (0.03 – 0.022 )

4 0.9 100
××

×

   = 2.08 m/s (Ans.)

  Also, 
r
τ  = 0

R
τ  (Refer to Fig. 10.9)

  ∴ τ(8 mm) = 0 2700.022
0.03

r
R
τ× = ×

   = 198 kN/m2 (Ans.)

 Example 10.2. Oil of absolute viscosity 1.5 poise and density 848.3 kg/m3 flows through a  
30 cm I.D. pipe. If the head loss in 3000 m length of pipe is 20 m, assuming a laminar flow, determine 
(i) the velocity, (ii) Reynolds number and (iii) friction factor (Fanning’s). (UPTU)

 Solution. Given : µ = 1.5 poise = 1.5 × 1
10

 = 0.15 N-s/m2, ρ = 848.3 kg/m3; D = 30 cm  

= 0.3 m; hf = 20 m; L = 3000 m; Flow-laminar.
 (i) The velocity:
  We know that, ∆p =  2

32 u L
D
µ  (where, u = average velocity)
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  or, ∆p = 2
32

f
uLgh

D
µρ =

  or, u = 
2 2848.3 9.81 20 0.3

32 32 0.15 3000
fgh D

L
ρ × × ×=

µ × ×
 = 1.04 m/s (Ans.)

 (ii) Reynolds number; Re :

  Re = 848.3 1.04 0.3
0.15

uD × ×ρ =
µ

 = 1764.5 (Ans.)

 (iii) Friction coefficient, f :

  f = 16 16
1764.5Re

=  = 0.00907 (Ans.) [Eqn. (10.11)]

 Example 10.3. A crude oil of viscosity 0.9 poise and relative density 0.9 is flowing through a 
horizontal circular pipe of diameter 120 mm and length 12 m. Calculate the difference of pressure 
at the two ends of the pipe, if 785 N of the oil is collected in a tank in 25 seconds. 

 Solution.  Viscosity of the crude oil, µ = 0.9 poise = 0.09 Ns/m2

  Relative density = 0.9
	 ∴	  Weight density = 0.9 × 9810 = 8829 N/m3

  Diameter of the pipe, D = 120 mm = 0.12 m
  Length of the pipe, L = 12 m
  Weight of the oil collected in 25 s  = 785 N
 Difference of pressure, (p1 – p2):
 The difference of pressure for viscous or laminar flow is given by

  (p1 – p2) = 2
32 u L

D
µ

 Now, weight of oil collected/sec.  = 785 31.4 N/s
25

w Q= = ×

	 ∴ Q = 31.4
8829

 = 0.00355 m3/s

  Average velocity, u = 2 2
0.00355 0.00355

Area ( / 4) ( / 4) 0.12
Q

D
= =

π π ×
 = 0.314 m/s

  Reynolds number, Re = (0.9 1000) 0.314 0.12
0.09

VD × × ×ρ =
µ

 = 376.8

 Since Re < 2000, therefore, the flow is laminar/viscous.
 Substituting the values in eqn. (i), we get

  (p1 – p2) = 2
32 0.09 0.314 12

(0.12)
× × ×  = 753.6 N/m2 (Ans.)

 Example 10.4. A liquid with a specific gravity 2.8 and a viscosity 0.8 poise flows through a 
smooth pipe of unknown diameter, resulting in a pressure drop of 800 N/m2 in 2 km length of the 
pipe. What is the pipe diameter if the mass flow rate is 2500 kg/h. (NU)

 Solution. Given: Sp. gravity = 2.8, µ = 0.8 × 0.1 = 0.08 Ns/m2; ∆p = 800 N/m2; 

  L = 2 km = 2000 m; m = 2500 kg/h = 2500
3600

 = 0.6944 kg/s
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 Pipe diameter, D :
  m = ρAu or u = m

Aρ

 or, u = 
–4

22

3.158 100.6944

(2.8 1000)
4

DD

×=π× ×

 Assuming flow to be laminar, we have:

  ∆p = 2
32 uL

D
µ   (where, u = average velocity) ...[Eqn. 10.11]

  800 = 
–4

2 2
32 0.08 3.158 10 2000

D D
× × × ×

×

 or, D = 
1/4–432 0.08 3.158 10 2000

800
 × × × ×
 
 

 = 0.212 m (Ans.)

 Check for laminar flow,

 Re = 
–4 –4

2
(2.8 1000) 3.158 10 2800 3.158 10 52,

0.212 0.080.08
DuD

D
× × × × × ×ρ = = =

µ ××
 which confirms that 

flow is laminar (Re < 2000).

 Example 10.5. A fluid of viscosity 8 poise and specific gravity 1.2 is flowing through a circular 
pipe of diameter 100 mm. The maximum shear stress at the pipe wall is 210 N/m2. Find:
 (i) The pressure gradient,
 (ii) The average velocity, and
 (iii) Reynolds number of flow.

 Solution. Viscosity of fluid, µ = 8 poise = 0.8 Ns/m2

  Specific gravity = 1.2
	 ∴  Mass density, ρ = 1.2 × 1000 = 1200 kg/m3

  Diameter of the pipe, D = 100 mm = 0.1 m
  Maximum shear stress, τ0 = 210 N/m2

 (i) The pressure gradient, ∂
∂

p
x :

  We know, τ0 = –
2

p R
x
∂ ⋅
∂

  or, 210 = (0.1/ 2)–
2

p
x
∂ ×
∂

 	∴ p
x
∂
∂

 = 210 4–
0 1
×
⋅

 = – 8400 N/m2 per m (Ans.)

 (ii) The average velocity, u:

  We know, u = max
1
2

u

   = 21 1–
2 4

p R
x
∂ ⋅ ⋅ µ ∂ 

 ...[Eqn. (10.8)]

   = 21 1– (– 8400) (0.1/ 2)
2 4 0.8
 × × × 

   = 3.28 m/s (Ans.)
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 (iii) Reynolds number, Re:

  Re = 1200 3.28 0.1
0.8

VD × ×ρ =
µ

= 492 (Ans.)

 Example 10.6. A fluid of density 1200 kg/m3 and viscosity 0.5 poise is flowing at a rate of 5m3/
min in a circular pipe of cross-section of 1 m2. Is the flow laminar or turbulent? Can you predict the 
maximum velocity of the fluid in the pipe ? 

 Solution. Given: ρ = 1200 kg/m3; µ = 0.5 poise = 0.5 × 1
10

 = 0.05 Ns/m2

  A = 1 m2;   Q = 5 m3/min

  Q = 351 m /s
60

AV = ×

  Vav = 5 / 60 5 m/s
1 60

Qu
A

= = =

  A = 1 = π
4

 D2 or D = 1.128 m

  Reynolds number, Re = 1200 (5 / 60) 1.128
0.05

u Dρ × ×=
µ

 = 2256

 Since Re < 2300, therefore the flow is laminar. (Ans.)
 The velocity profile is parabolic, hence

     umax =   2u = 2 × 5
60

 = 0.1667 m/s (Ans.)

 Example 10.7. A lubricating oil of viscosity 1 poise and specific gravity 0.9 is pumped through 
a 30 mm diameter pipe. If the pressure drop per metre length of pipe is 20 kN/m2, determine:
 (i) The mass flow rate in kg/min,
 (ii) The shear stress at the pipe wall,
 (iii) The Reynolds number of flow, and 
 (iv) The power required per 50 m length of the pipe to maintain the flow.

 Solution.  Viscosity of oil, µ = 1 poise = 0.1 Ns/m2

  Sp. gr. of oil, = 0.9
	 ∴   Weight density, w = 0.9 × 9810 = 8829 N/m3

  Diameter of pipe, D = 30 mm = 0.03 m

  Area, A = 
4
π  × 0.032 = 7.068 × 10–4 m2

 Pressure drop per metre length of pipe, (p1 – p2) = 20 kN/m2

 (i) Mass flow rate:
  Pressure drop for laminar flow through a pipeline is given by,

  (p1 – p2) = 2
32 uL

D
µ

 	∴ 20 × 103 = 2
32 0.01 1

(0.03)
u× × ×

  (where, u = average velocity of flow)

  or, u = 
3 220 10 (0.03)

32 0.1 1
× ×

× ×
 = 5.625 m/s
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     Flow rate, Q = A × u = 7.068 × 10–4 × 5.625 = 0.003975 m3/s
	 		∴  Mass flow rate = (0.9 × 1000) × 0.003975 × 60
     = 214.65 kg/min. (Ans.)
 (ii) Shear stress at the wall, τ0:

  τ0 = 3 (0.03 / 2)– 20 10
2 2

p R
x
∂ ⋅ = × ×
∂

 = 150 N/m2 (Ans.)

 (iii) Reynolds number of flow, Re:

  Re = (0.9 1000) 5.625 0.03
0.1

VD × × ×ρ =
µ

 = 1518.7 (Ans.)

   (where, V = u = 5.625 m/s)
  This is less than 2000 and hence the flow is laminar.
 (iv) Power required, P:

    Loss of head, hf = 
3

1 2– 20 10
8829

p p
w

×=  = 2.265 m of oil

  Power reqd. per metre = w Qhf = 8829 × 0.003975 × 2.265 W = 79.49 W
  For 50 m length, power required,
  P = 79.49 × 50 = 3974.5 W or 3.974 kW (Ans.)
 Example 10.8. In a pipe of 300 mm diameter the maximum velocity of flow is found to be 2 m/s. 
If the flow in the pipe is laminar, find:
 (i) The average velocity and the radius at which it occurs, and
 (ii) The velocity at 50 mm from the wall of the pipe.

 Solution. Diameter of the pipe, D = 300 mm = 0.3 m
  Maximum velocity, umax = 2 m/s
 (i) Average velocity, u:

  We know, u = max
1
2

u

 	∴ u = 2
2

 = 1 m/s (Ans.)

  Radius at which u occurs :
  The velocity, u at any radius r is given by

  u = 2 21– ( – )
4

p R r
x
∂

µ ∂
 ...[Eqn. (10.7)]

   = 
2

2
2

1– 1 –
4

p rR
x R

 ∂
 µ ∂  

  Also, umax = 21–
4

p R
x
∂⋅ ⋅

µ ∂
 ...[Eqn. (10.8)]

  ∴ u = 
2

max 1 – ru
R

    
   

 ...(i)

  Here, u = u = 1 m/s

 	∴ 1 = 2 
2

1 –
0 15

r    ⋅   
 0 3 0 15 m

2
R ⋅ = = ⋅ 
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  or, 1
2

 = 
2

1 –
0 15

r 
 ⋅ 

  or, 
2

0 15
r 

 ⋅ 
 = 0.5

  or, 
0.15

r  = 0.5  = 0.707

 	∴ r = 0.106 m or 106 mm (Ans.)
 (ii) Velocity at 50 mm from the wall :
  r = 150 – 50 = 100 mm = 0.1 m
	 	∴ Velocity at a radius 0.1 m or 50 mm from the pipe wall is given by [eqn. (i)]:

  u = 
2

max 1 – ru
R

    
   

    =
20.12 1 –

0.15
    

   
 = 1.11 m/s (Ans.)

 Example 10.9. An oil of viscosity 0.15 Ns/m2 and specific gravity 0.9 is flowing through a 

circular pipe of diameter 30 mm and of length 3 m at 1
10

th of critical velocity for which Reynolds 
number is 2450. Find:
 (i) The velocity of flow through the pipe,
 (ii) The head in metres of oil across the pipe length required to maintain the flow, and
 (iii) The power required to overcome viscous resistance to flow of oil.
 Solution.  Viscosity of the oil, µ = 0.15 Ns/m2

  Specific gravity = 0.9
	 ∴  Mass density, ρ = 0.9 × 1000 = 900 kg/m3

  Diameter of the pipe, D = 30 mm = 0.03 m
  Length of the pipe, L = 3 m

  Velocity of flow, u = 1
10

 × critical velocity (at Reynolds number 2450)

 (i) Velocity of flow, u:

  We know, (Re)cr = crV Dρ
µ

  (where, Vcr = critical velocity)

  or, 2450 = 900 0.03
0.15

crV× ×

  or, Vcr = 2450 0.15
900 0.03

×
×

 = 13.61 m/s

	 	∴ Velocity of flow through the pipe,

  u = 1 13.61
10

×  = 1.361 m/s (Ans.)

 (ii) Head required to maintain the flow:
  For laminar flow through a pipeline,

  p1 – p2 = 2
32 uL

D
µ

r

50 mmR =
150 mm

Fig. 10.9
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  or,    Loss of head, hf = 1 2
2 2

– 32 32
( )

p p uL uL
w w D g D

µ µ= =
ρ

 	∴ hf = 2
32 0.15 1.361 3
900 9.81 0.03
× × ×
× ×

 = 2.466 m (Ans.)

 (iii) Power required, P:
  The power required to overcome viscous resistance to flow of oil,

  P = w Q hf = (900 × 9.81) × 20.03 1.361 2.466
4
π × × × 

 
   = 20.9 W (Ans.)

 Example 10.10. An oil (µ = 20 cP, ρ = 1200 kg/m3) flows through a 2.5 cm I.D. pipe 250 m long.
 (i) What is the maximum flow in m3/s that will ensure laminar flow ?
 (ii) What would be the pressure drop for this flow? (Bombay University)

 Solution. Given: µ = 20 c.P. = 20 × 10–2 poise = 20 × 10–2 × 1
10

 Ns/m2 = 0.02 Ns/m2;  

ρ = 1200 kg/m3; D1 = 2.5 cm = 0.025 m; L = 250 m.

 Flow will be laminar flow if Reynolds number is less than 2000.

 Now, Re = VDρ
µ

 or, 2000 = 1200 0.025
0.02
V× ×  or V = 2000 0.02 1.33 m/s

1200 0.025
× =
×

 (i) Maximum flow that will ensure laminar flow:

    Discharge  = A × V = 
4
π  × (0.025)2 × 1.33 = 6.528 × 10–4 m3/s (Ans.)

 (ii) Pressure drop :

     Coefficient of friction, f = 16 16 0.008
2000Re

= =

     Head lost due to friction, hf  = 
24

2
fLV

D g×

     = 
24 0.008 250 1.33

0.025 2 9.81
× × ×

× ×
 = 28.85 m

     Pressure drop for the flow = whf = (ρg) × hf 
      = 1200 × 9.81 × 28.85 N/m2

     = 339622.2 N/m2 = 3.396 bar (Ans.) ( 1 bar = 105 N/m2).

 Example 10.11. Crude oil of µ = 1.5 poise and relative density 0.9 flows through a 20 mm 
diameter vertical pipe. The pressure gauges fixed 20 m apart read 600 kN/m2 and 200 kN/m2, as 
shown in Fig. 10.10. Find the direction and rate of flow through the pipe. [PTU]

 Solution.  Dynamic viscosity, µ = 1.5 poise = 0.15 Ns/m2

  Relative density = 0.9
	 ∴  Weight density of oil, w = 0.9 × 9.81 = 8.829 kN/m3

  Diameter of the pipe, D = 20 mm = 0.02 m
  Length, L = 20 m
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   Pressure at A, pA = 600 kN/m2

  Pressure at B, pB = 200 kN/m2

 Direction of flow:
 Since the pipe is of uniform diameter, velocity head 
would be same and as such flow direction will be indicated 
by the values of piezometric head at sections A and B. 
Taking the level at A as datum, we have:
 Piezometric head at A

  =  600 0 67 96 m
8 829

A
A

p z
w

+ = + = ⋅
⋅

 Piezometric head at B

  = 200 20 42 65 m
8 829

B
B

p z
w

+ = + = ⋅
⋅

 Since piezometric head at A is greater than that at B,
 hence, flow takes place from A to B (i.e. upwards)  (Ans.)
 Rate of flow:
 Loss of piezometric head = hf = 67.96 – 42.65 = 25.31 m
 But the loss of pressure head for viscous flow through circular pipe is given by the Hagen-
Poiseuille relation,

  hf = 2
32 u L

wD
µ

 or, 25.31 = 3 2
32 0.15 20

(8.829 10 ) (0.02)
u× × ×

× ×

 or, u = 
3 225.31 (8.829 10 ) (0.02)

32 0.15 20
× × ×

× ×
 = 0.931 m/s

  Reynolds number, Re =  (0.9 1000) 0.931 0.02
0.15

VD × × ×ρ =
µ

 = 111.72 ( V = u)

 As Reynolds number is less than 2000, the flow is laminar.
	 ∴   Flow rate, Q = Average velocity × area
   = u × π/4 × D2 = 0.931 × π/4 × 0.022

   = 2.925 × 10– 4 m3/s    or    0.2925 litres/sec. (Ans.)
 Example 10.12. Oil of specific gravity 0.82 is pumped through a horizontal pipeline 150 mm in 
diameter and 3 km long at the rate of 0.015 m3/s. The pump has an efficiency of 68% and requires 
7.5 kW to pump the oil.
 (i) What is the dynamic viscosity of the oil?
 (ii) Is the flow laminar?    [Panjabi  University]

 Solution.  Sp. gr. of the oil = 0.82
  Diameter of pipe, D = 150 mm = 0.15 m
	 ∴  Area, A =  (π/4) × 0.152 = 0.01767 m2

  Length of pipe, L = 3 km = 3000 m
  Discharge, Q = 0.015 m3/s
  Efficiency of pump, η = 68%
  Power required to pump the oil, P = 7.5 kW

20 mm

A

2
0

m

B

600 kN/m
2

200 kN/m
2

Fig. 10.10
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 (i) Dynamic viscosity of oil, µ:

    Average velocity, u = 0.015
0.01767

Q
A
=  = 0.849 m/s

  If hf represents the loss of head, then:
  w Qhf = η × P

  or, hf = 
30.68 (7.5 10 )

(0.82 9810) 0.015
P

wQ
η × × ×=

× ×
 = 42.26 m

  Again, for viscous/laminar flow through a pipeline,

  (p1 – p2) = 2
32 u L

D
µ

  or,  Loss of head, hf = 1 2
2

– 32p p uL
w wD

µ  = 
 

  or, 42.26 = 2
32 0.849 3000
(0.82 9810) 0.15

× µ × ×
× ×

  or, µ = 
242.26 (0.82 9810) 0.15

32 0.849 3000
× × ×
× ×

 = 0.0938 Nsm/m2 (Ans.)

 (ii) Is the flow laminar?

  Reynolds number,  Re = (0.82 1000) 0.849 0.15
0.0938

VD × × ×ρ =
µ

 ( V = u)

  or, Re = 1113.3
  This is less than 2000 and hence the flow is laminar (Ans.)

 Example 10.13. A pipe 60 mm diameter and 450 m long slopes upwards at 1 in 50. An oil of 
viscosity 0.9 Ns/m2 and specific gravity 0.9 is required to be pumped at the rate of 5 litres/sec.
 (i) Is the flow laminar?
 (ii) What pressure difference is required to attain this condition?
 (iii) What is the power of the pump required assuming an overall efficient of 65%?
 (iv) What is the centre-line velocity and the velocity gradient at pipe wall? (MU)
 Solution.  Diameter of the pipe, D = 60 mm = 0.06 m 
	 ∴ Area of the pipe = 

4
π  × 0.062 = 0.00283 m2

  Length of the pipe, L = 450 m
  Slope = 1 in 50
  Viscosity of oil, µ = 0.9 Ns/m2

  Weight density, w = 0.9 × 9810 = 8829 N/m3

  Discharge, Q = 5 litres/sec.
   = 0.005 m3/s.
  Overall efficiency, η0 = 65%
 (i) Is the flow laminar?
    Average velocity, u = 0.005

0.00283
Q
A
=  = 1.767 m/s

	 ∴   Reynolds number, Re =  (0.9 1000) 1.767 0.06
0.9

VD × × ×ρ =
µ

 = 106

  Since Re < 2000, therefore, flow is laminar. (Ans.)
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 (ii) Pressure difference required:
  Applying Bernoulli’s equation between section (1) and (2), we get:

  
2

1 1
12

p V z
w g

+ +  = 
2

2 2
22 f

p V z h
w g

+ + +

  or, 
2

1 1 0
2

p V
w g

+ +  = 
2

2 2
2

321 450
2 50

p V uL
w g D w

µ+ + × +
×

  or, 1 2–p p
w

 
 
 

 = 2
329 u L
D w
µ+
×

 ( V1 = V2 and z1 = 0)

  or, p1 – p2 = 2
329 uLw

D
µ+

   = 2
32 0.9 1.767 4509 8829

0.06
× × ×× +

   = 79461 + 6.36 × 106 = 6.44 × 106 N/m2 or 6.44 MN/m2 (Ans.)
 (iii) Power of the pump:
  P = Q (p1 – p2) = 0.005 × 6.44 × 103 = 32.2 kW

z
=

9
m

2

z1= 0

Datum

L= 450 m

60 mm1

2

Q

Fig. 10.11

    Power of the pump = 
0

32.2 32.2
0.65

=
η

 = 49.54 kW (Ans.)

 (iv) Centre-line velocity, umax:
    umax = 2u = 2 × 1.767 = 3.534 m/s (Ans.)

  Velocity gradient at the pipe wall:

  τ0 = –
2

p R
x
∂ ⋅
∂

   = 
66.44 10 0.03

450 2
× ×  = 214.67 N/m2

  But, τ0 = 
0y

u
y =

 ∂µ ⋅  ∂ 

  or, 
0y

u
y =

 ∂
 ∂ 

 = 0 214.67
0.9

τ =
µ

= 238.5 s–1 (Ans.)
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 Example 10.14. A total of 12 litres per second of oil is pumped through two pipes in parallel, 
one 12 cm in diameter and the other 10 cm in diameter, both pipes being 1000 metres long. The 
specific gravity of the oil is 0.97 and the kinematic viscosity 9 cm2 per second. Calculate the flow 
rate through each pipe and the power of the pump. [UPSC Exam, Fluid Machines]
 Solution. Total discharge of oil through the two pipes,
  Q = 12 litres/sec.
   = 0.012 m3/s
 Diameter of pipe 1,
  D1 = 12 cm = 0.12 m
 Diameter of pipe 2,
  D2 = 10 cm = 0.1 m
  L1 = L2 = L = 1000 m
 (where, L1 and L2 are the lengths 
of the pipes 1 and 2 respectively)
 Specific gravity of the oil = 0.97
 Kinematic viscosity of the oil,
  v = 9 cm2/s
   = 9 × 10– 4 m2/s.
 Let, Q1 = Discharge in pipe 1, and
  Q2 = Discharge in pipe 2.
 Since the pipes are in parallel, the total discharge Q is distributed in both the pipes. From the 
principle of continuity, we have
  Q = Q1 + Q2
 or, 0.012 = Q1 + Q2 ...(i)
 Flow rate through each pipe, Q1 and Q2:
 Assuming laminar flow in both the pipes, the pressure difference between sections ‘A’ and ‘B’ 
is the same in both the pipes,

  ∆p = 1 2
2 2
1 2

32 32V L V L
D D
µ µ=  ...(ii)

 (where, V1 and V2 are the velocities of flow in the pipes 1 and 2 respectively).
 From the continuity equation, we have:

  V1 = 1 1 1
221 11

4

4

Q Q Q
A DD

= =π π

 and, V2 = 2 2 2
222 22

4

4

Q Q Q
A DD

= =π π
 From eqn. (ii), we have:

  1
2
1

V
D

 = 2
2
2

V
D

	 ∴ 1
4
1

4Q
Dπ

 = 2
4
2

4Q
Dπ

 From which, 1

2

Q
Q

 = 
4

1

2

D
D

 
 
 

 or Q2 = Q1 
4

2

1

D
D

 
 
 

L = 1000 m

Pipe 2

Q2

D = 10 cm2

Pipe 1

Q1

D = 12 cm1

Q

A B

Fig. 10.12
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 Substituting the value of Q2 in eqn. (i), we get:

  0.012 = 
4 4

2 2
1 1 1

1 1
1D DQ Q Q

D D
    + = +    

     

   = 
4

1
0.11

0.12
Q

  +  
   

 = 1.482 Q1

	 ∴ Q1 = 0.008097 m3/s or 8.097 litres/sec. (Ans.)
 and, Q2 = 12 – 8.097 = 3.903 litres/sec. (Ans.)
 Power of the pump, P:

 Velocity of flow in pipe 2, V2 =  2
2 2
2

4 4 0.003903
(0.1)

Q
D

×=
π π ×

 = 0.497 m/s

 Velocity of flow in pipe 1, V1 = 
2 2

2
2

1

0.10.497
0.12

DV
D

   = ×      
 = 0.345 m/s

 Pressure drop in 1000 m length of pipe 2,

  ∆p = 2
2
2

32 V L
D
µ

  Loss of head, hf = 
2

2
2

32 V L
p

w gD

 µ 
 ρ∆  =

   = 
– 4

2
32 9 10 0.497 1000

9 81 (0.1)
× × × ×

⋅ ×
 = 145.9 m of oil

 Power lost in viscous friction,
  P = w Q hf = (0.97 × 9.81) × 0.012 × 145.9 = 16.66 kW
 Assuming the overall efficiency of the pump as 62%, the power of pump

   = 16.66
0.62

 = 26.87 kW (Ans.)

  Reynolds number, Re2 = 2 2
–4

0.497 0.1
9 10

V D
v

×=
×

 = 55.2

  Re1 = 1 1
–4

0.345 0.12
9 10

V D
v

×=
×

 = 46

 Since the Reynolds numbers in both the pipes are less than 2000, the assumption of laminar 
flow in both the pipes is valid.

 Example 10.15. It is required to pump glycerine at the rate of 25 litres/sec. from a sump and 
deliver it freely at a point 120 m away and 8 m above the level of sump through a 150 mm pipe,  
Fig. 10.13.
 (i) What is the power of the pump required assuming an overall efficiency of 65% ?
 (ii) What would be the rate of rise of temperature due to viscous dissipation if the pipe is  

completely insulated ?
  Sp. gr. of glycerine = 1.26; viscosity = 15 poise, specific heat = 248 J/N °C;
  K.E. correction factor, α = 2.
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 Solution.  Rate of flow of glycerine, Q = 25 litres/sec. = 0.025 m3/s
  Diameter of the pipe, D = 150 mm = 0.15 m

	 ∴   Area, A =  
4
π  × 0.152 = 0.01767 m2 

  Overall efficiency, η0 = 65 %
  Specific gravity of glycerine = 1.26
	 ∴  Weight density, w = 1.26 × 9810 = 12361 N/m3

  Viscosity, µ = 15 poise = 1.5 Ns/m2

  Specific heat = 248 J/N °C
  K.E. Correction factor, α = 2.
 (i) Power of the pump required, P:

    Velocity of flow, V = 0.025
0.01767

Q
A
=  = 1.415 m/s

    Reynolds number, Re =  (1.26 1000) 1.415 0.15
1.5

VD × × ×ρ =
µ

 = 178.3

  Since the Reynolds number is less than 2000, the flow is laminar.
  Applying Bernoulli’s equation at sump (1) and free delivery point (2), we get:

L

D

=
12

0
m

,
=

15
0

m
m

Pump Hp

1

Glycerine

2

�
z

=
8

m

Sump

Fig. 10.13

  
2

1 1
12 p

p V z H
w g

+ α + +  = 
2

2 2
22 f

p V z h
w g

+ α + +

  0 + 0 + 0 + Hp = 
2

2
2

321 4150 2 8
2 9 81

V L
wD
µ⋅+ × + +

× ⋅

  or, Hp = 
2

2
2 1.415 32 1.5 1.415 1208
2 9.81 12361 0.15
× × × ×+ +
× ×

 = 37.51 m

  Power of the pump required,

  P = 
0

12361 0.025 37.51
0.65 1000

pwQH × ×=
η ×

 kW = 17.83 kW (Ans.)

 (ii) Rate of rise of temperature:
  Dissipation of energy per N per second
  = (Energy on the discharge side of the pump–energy at the point of delivery) per N per second

   = f
Vh
L

×
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  (since hf is energy lost per unit weight (N) of the fluid in a length L)

   = 2
32 N.m Jor

N.s s.N
VL V

LwD
µ ×

   = 
2

2
32 1.5 1.415 J0.345

s.N12361 0.15
× × =

×

	 	∴ Rate of rise of temperature

   = 0.345
248

 × 60 × 60 = 5°C/h (Ans.)

 Example 10.16. A horizontal circular tube of radius “a” has a fixed co-axial cylindrical core 
of radius b. τa and τb are the shear stresses along the tube and core surfaces when a viscous liquid 
is flowing through the annulus. The flow is laminar and the rate of variation of pressure along the 

length of the passage is – p
l

∂ 
 ∂ 

. Show that :  

	 	 α	τa – b . τb = 2 21 ( – )
2

pa b
l

∂ 
 ∂ 

 [UPSC Exams., Fluid Mech. & Fluid Machines]
 Solution.  Radius of the circular tube = a
  Radius of the co-axial cylindrical core = b
  Shear stress along the tube = τa
  Shear stress along the core surfaces = τb

  Rate of variation of pressure = – p
l

∂
∂

 We know, p
x r r
∂ ∂τ τ+ +
∂ ∂

 = 0 ...Eqn. [10.12 (a)]

 Since p is dependent on x and τ on r, the above equation can be written as:

  1 ( )p r
x r r
∂ ∂+ ⋅ τ ⋅
∂ ∂

 =  0

 Integrating, w.r.t. r, we get:

  
2

2
pr r
x
∂⋅ + τ ⋅
∂

 = C

 (where, C = constant of integration)
 At, r = a, τ = τa
 At, r = b, τ = τb

 Also, p
x
∂
∂

 = – p
l

∂
∂

 Substituting the above values, we get:

  
2

–
2 a

pa a
l

∂  + ⋅ τ ∂ 
 = C ...(i)

 and, 
2

–
2 b

pb b
l

∂  + ⋅ τ ∂ 
 = C ...(ii)

 Subtracting (ii) from (i), we get:

  2 21 ( – ) – –
2 a b

pa b a b
l

∂  + ⋅ τ ⋅ τ ∂ 
 =  0
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 or, a . τa – b . τb  = 2 21 ( – )
2

pa b
l

∂ 
 ∂ 

 ...(Proved)

 Example 10.17. Crude oil is pumped through a 150 mm diameter smooth pipe which is 
subjected to seasonal changes in temperature. At the maximum temperature of 38°C, when the 
kinematic viscosity is 0.28 stokes, a power input of 2.3 kW per 300 m is required to maintain a 
flow of 30 litres/sec. What power input would be required to maintain the same rate of flow at the 
minimum temperature of 0°C if the viscosity of the oil is then 10 times great ?
 Assume a specific gravity of 0.9 at both temperatures. [Roorkee University]

 Solution.  Diameter of the pipe, D = 150 mm = 0.15 m
  Kinematic viscosity of the oil, v = 0.28 stokes = 0.28 × 10– 4 m2/s
  Length of pipe considered, L = 300 m
  Specific gravity = 0.9
  Rate of flow, Q = 30 litres/sec. = 0.03 m3/s
  Specific gravity of the oil  =  0.9
 Power input required, P:

  Reynolds number at 38°C, (Re)38°C = VD
v

 2
0.03where velocity, 1 697 m/s

( / 4) 0.15
QV
A

 
= = = ⋅ 

π × 

 or, (Re)38°C = – 4
1.697 0.15
0.28 10

×
×

 = 9091

	 ∴   Reynolds number at 0°C, (Re)0°C = 1 9091 909.1
10

× =

 It is thus obvious that the flow at 38°C is turbulent, while at 0°C, it is laminar (since Re < 2000).
Pressure drop in laminar flow is given by,

  p1 – p2 = 2 2
32 ( 10)32 u LuL

D D
× ρν ×µ =  [ (µ)0°C = 10 × (µ)38°C]

 Here, u = V = 1.697 m/s, L = 300 m, D = 0.15 m
  ρ = 0.9 × 1000 = 900 kg/m3, and  v = 0.28 × 10– 4

 Substituting the values, we get:

  p1 – p2 = 
– 4

2
32 (800 0.28 10 10) 1.697 300

(0.15)
× × × × × ×  

   = 182461 N/m2 or 182.46 kN/m2

 Power required to maintain flow
   = Q (p1 – p2) = 0.03 × 182.46 = 5.474 kW (Ans.)

 Example 10.18. A pipe of diameter 100 mm and length 1000 m is used to pump oil of viscosity 
0.85 Ns/m2 and specific gravity 0.92 at the rate of 1.2 m3/min. The first 300 m of pipe is laid along 
the ground sloping upwards 10° to the horizontal and the remaining pipe is laid on the ground 
sloping upwards at 15° to the horizontal.
 (i) State whether the flow is laminar or turbulent ?
 (ii) Determine the pressure to be developed by the pump and the power of the driving motor if 

the pump efficiency is 65%.
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  Assume suitable data for friction factor, f, if required
 [UPSC Exams., Fluid Mechanics and Hydraulic Machines]
 Solution.  Diameter of the pipe, D = 100 mm = 0.1 m
  Length of the pipe, L = 1000 m
  Viscosity of the oil, µ = 0.85 Ns/m2

  Specific gravity  = 0.92
  Discharge, Q = 1.2 m3/min.
  Pump efficiency, ηp = 65%
 (i) Flow–laminar or turbulent?
  Reynolds number of flow,

  Re = VDρ
µ

  where, V = 
2 2

(1.2 / 60)

0.1
4 4

Q

D
=π π× ×

 = 2.546 m/s

  ρ = 0.92 × 1000 = 920 kg/m3

  Re = 920 2.546 0.1
0.85

× ×  = 275.6

  Since Re < 2000, therefore, the flow is laminar. (Ans.)
 (ii) Pressure to be developed by the pump, p:
  Height of the end point B of the pipline above the pump centre P
   = 300 sin 10° + 700 sin 15° = 233.26 m.
  The friction factor, for laminar flow, is given by:

  f = 64 64
275.6Re

=  = 0.2322

300 m

10º

700 m

100 mm dia.

B

Pump

P

15º

Fig. 10.14

  Head list in friction in 1000 m length of pipeline,

  hf = 
22 0.2322 1000 2.546

2 0.1 2 9.81
fLV

D g
× ×=

× × ×
= 767.15 m

                    2 2
32 0.85 2.546 100032Alternatively,

0.92 9810 0.1
767.3 m

f
VLh

wD
× × ×µ = = × × 

 = 
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  Assuming pressure in the pipeline at B as atmospheric, taking horizontal through the pump 
centre as the datum and applying Bernoulli’s equation between the pump outlet and the end 
of the pipeline, we get:

  
2

0
2

p V
w g
+ +  = 

2
0

2
V

g
+  + 2.33.26 + hf

   = 
2 2

0 233.26 767.15 1000.41
2 2
V V

g g
+ + + = +

  (where, p = pressure just at the pump outlet)

  or, p
w

 = 1000.41   or   p = 0.92 × 9.81 × 1000.41 = 9028.9 kN/m2 (Ans.)

  Power of the driving motor,

  P = (1.2 / 60) 9028.9
0.65 0.65p p

w Q p Q pwQh
w
× × × ×= = =

η × η

   = 277.8 kW (Ans.)
 Example 10.19. Derive a relation for the torque required to rotate the cone at a constant 
angular velocity ω for the conical thrust bearing shown in Fig. 10.15. For one such bearing,  
120 W gets dissipated when a shaft with maximum cone radius 100 mm turns with 620 r.p.m. over 
a uniform fluid layer of thickness 1.2 mm. If semi-angle for the conical bearing is 30°, find the 
dynamic viscosity of the fluid.    (Anna university)
 Solution. Refer to Fig. 10.15.
 Consider an elementary ring 
of bearing surface of radius r and 
thickness dh at a distance h from 
the cone apex.
 Then,  r = h tan α, and
 bearing surface of the 
elementary ring, dA = 2 πr (dh 
sec α) = 2 π h tan α.dh sec α.
 Shear stress (viscous),

  τ = du V
dy t

µ = µ

 But, V (linear velocity) = ωr 
= ω . h tan α

 ∴ τ	 = tanh
t

µω α

 (where, t is the thickness of 
the oil film)
 Tangential resistance on the 
ring,
  dF = Shear stress × area of the ring

   = tanh
t

µω α  × 2 π h . tan α . dh . sec α

   = 2 π µ tan2 α . sec α . 2h
t
ω . dh

 and,    torque = dF × r = dF.h tan α

r

R

dh

t H

h

Fluid

Elementary
ring

� �

Fig. 10.15. Conical thrust bearing.
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	 ∴ dT = 2 π µ tan3 α . sec α . 3h
t
ω dh

  Torque, T = 2 π µ tan3 α . sec α . 3

0

H

h dh
t
ω ∫

   = 2 π µ tan3 α . sec α . 
4

4
H

t
ω ×

 or, T = 4 3tan sec
2

H
t

πµω α⋅ α  ...(i)

 Given :  Power dissipated, P = 120 W
  Maximum cone radius, R = 100 mm = 0.1 m
  Speed, N = 620 r.p.m.

	 ∴  Angular velocity = 2 6202
60 60

N π ×π =  = 64.93 rad./s

  Thickness of fluid layer, t = 1.2 mm = 0.0012 m
  Semi-angle for conical bearing, α = 30°
 Dynamic viscosity, µ:
  Power, P = T . ω

 where, T = 4 3tan sec
2

H
t

πµω ⋅ α ⋅ α

	 ∴ P = 
2

4 3tan sec
2

Hπµω ⋅ α ⋅ α
τ

  120 = 
2 4 3(64.93) (0.1732) (tan 30 ) sec 30

2 0.0012
π × µ × × × ° × °

×

 0.1where, 0.1732 m
tan tan 30

RH = = = α ° 

 or, µ = 2 4 3
120 2 0.0012

(64.93) (0.1732) (tan 30 ) sec 30
× ×

π × × × ° × °

   = 2 4
0.288

(64.93) (0.1732) 0.1924 1.1547π × × × ×

 or, µ = 0.1087 Ns/m2 (Ans.)

 Example 10.20. The velocity distribution in a pipe is given by,

  
max

u
u

 = 1 –
nr

R
 
 
 

 where, umax is the maximum velocity at the centre of the pipe, u is the velocity at a distance  
r from the centre and R is the pipe radius. Obtain an expression for mean velocity in terms of umax 
and n.    (PTU)

 Solution. The velocity distribution in a pipe is:

  
max

u
u

 = 1 –
nr

R
 
 
 

 ... (given)

 where, u = Velocity at a distance r from the centre,
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  umax = Maximum velocity at the centre of pipe, and
  R = Pipe radius.
 Now discharge Q passing through any cross-section of the circular pipe can be obtained by 
integrating a small discharge passing through an elementary ring of the thickness dr at a distance, r.

  dQ = u × (2πr) dr = max 1 – 2 .
nru r dr

R
   π  

   

 Integrating, we get:

 Q = max
0

1 – 2 .
nR ru r dr

R
   π  

   
∫

 = 
1

max
0

( )2 –
nR

n
ru r dr
R

+ 
π  

 ∫

   = 
22

max
0

( )2 –
2 ( 2)

Rn

n
rru

n R

+ 
π  + 

   = 
22

max
( )2 –

2 ( 2)

n

n
RRu

n R

+ 
π  + 

   = 
2 2

max2 –
2 2

R Ru
n

 
π  + 

   = 2
max 2

nR u
n
 π ×  + 

   = max 2
nA u

n
 ×  + 

 

[where, A (= πR2) is cross-sectional area of the pipe]

	 ∴  Mean velocity, u =  Q
A

 =  
 

max 2
nu

n +
 (Ans.)

 Example 10.21. (a) The radial velocity profile in a pipe is given by u = max 1 –
nru

R
 
 
 

 where 

u is the velocity at a radial distance r, umax is the maximum velocity and R is the radius of the pipe. 
Derive an equation for the average velocity in the pipe.

 (b) For incompressible fluid in laminar flow prove that f = 16 ,
Re

 where f is the Fanning friction 
coefficient and Re is the Reynolds number. (MDU, Haryana)

 Solution. (a)  u = max 1 –
nru

R
 
 
 

  ... Given

  Average velocity, u = 2 20 0

1 22
R R

u r dr ur dr
R R

× π =
π ∫ ∫

   = max2 0

2 1 –
nR ru r dr

RR
 
 
 ∫ ]

   = max
2 0

2 1 –
nRu rr dr

RR
 
 
 ∫

R
r

Q umax

Fig. 10.16

r R

Pipe

Fig. 10.17
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 The integral is evaluated first.

  I = 1 –
nrr dr

R
 
 
 ∫

 Put, 1 –
nr

R
 
 
 

 = Z

  I = ( ) ( )– –drr Z dr Zdr dr r Z dr Zdr dr
dr

=∫ ∫ ∫ ∫ ∫ ∫
 Now, Z dr∫  = 1 –

nr dr
R

 
 
 ∫

 Let, 1 – r
R

 = t,  then –dr
R

 = dt   or   dr = – Rdt

 Hence, Z dr∫  = 
1–(– )

1

n
n RtRt dt

n

+
=

+∫

	 ∴ I = 
1 1– –– (– )

1 1

n nrRt Rt Rdt
n n

+ +  
  + +   
∫

   = 1 1–
1

n nR rt Rt dt
n

+ + +  + ∫

   = 
1 2

– 1 – 1 –
1 2

n nR r R rr
n R n R

+ +    +    + +     

	 ∴ u = 
1 2

max
2

0

2 – 1 – 1 –
1 2

Rn nu R r R rr
n R n RR

+ +      +     + +       

   = max2 (– 1) –
( 1) 2
u R

R n n
 
 + + 

 or, u = max2
( 1) ( 2)

u
n n+ +

 (Ans.)

 (b)  Refer to article 10.10.
 Example 10.22. Show that the momentum correction factor and energy correction factor for 

laminar flow through a circular pipe are 4
3

 and 2 respectively.

 Solution. (i) Momentum correction factor, β:
 In a circular pipe, for laminar flow, the velocity distribution at any radius r is given by  
eqn. (10.7)

dr

r

dA r dr= 2 .�

R

u

Direction of flow

Fig. 10.18
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  u = 2 21 ( )
4

p R r
x
∂− ⋅ −

µ ∂
 ...(i)

 Consider an elementary area dA in the form of a ring (Fig. 10.18) at a radius r and of width dr then
  dA = 2πr . dr
  Discharge through the ring, dQ = u × 2πr.dr
 Momentum of the fluid through the ring per second
   = Mass of fluid × velocity of flow
   =  (ρ . dQ) × u
   =  (ρ × u × 2πr . dr) × u
   = 2π ρ u2 r . dr
 Total actual momentum of the fluid per second across the section

   = 2

0

2
R

u r drπ ρ ⋅∫
 Substituting the value of u from (i), we have:
 Actual momentum of the fluid per second

   = 
2

2 2

0

12 – ( – )
4

R
p R r r dr
x
∂ πρ ⋅ ⋅ µ ∂ ∫

   = 
2

2 2 2

0

12 ( – )
4

R
p R r r dr
x

 ∂ πρ ⋅  µ ∂   ∫

   = 
2

4 4 2 2
2

0

2 ( – 2 )
16

R
p R r R r r dr
x
∂πρ   + ⋅ ∂µ   ∫

   = 
2

4 5 2 3
2

0

( – 2 )
8

R
p R r r R r dr
x
∂πρ   + ∂µ   ∫

   = 
2 4 2 6 2 4

2
0

2–
2 6 48

R
R rp r R r

x
 ∂πρ   +   ∂µ    

   = 
2 6 6 6

2
2–

2 6 48
p R R R
x

 ∂πρ   +   ∂µ    

   = 
2 6 6 6

2
6 2 – 6

128
R R Rp

x
 +∂πρ  

   ∂µ    

   = 
2

6
248

p R
x
∂πρ  

 ∂µ  
 ...(ii)

 Momentum of the fluid per second based on average velocity
   = Mass of fluid/sec. × average velocity
   = ρAu × u = ρAu2

 where, A = Area of cross-section = π R2

  u  = Average velocity max
2

u=
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   = 21 1–
2 4

p R
x

 ∂  
  µ ∂  

 2
max

1–
4

pu R
x

 ∂  = ⋅   µ ∂  


   = 21–
8

p R
x
∂ 

 µ ∂ 
	 	∴ Momentum of the fluid per second based on average velocity

   = 
2

2 21–
8

pR R
x

 ∂  ρ × π ×   µ ∂  

   = 
2

6
2

1
64

p R
x
∂ ρπ ×  ∂µ  

 ...(iii)

	 	∴	 β	= Momentum/sec. based on actual velocity
Momentum/sec. based on average velocity

   = 

2
6

2

2
6

2

48

64

p R
x
p R
x

∂πρ  
 ∂µ   =
∂πρ  

 ∂µ  

4
3

 (Ans.)

 (ii) Energy correction factor, α:
  K.E. of the fluid flowing through the elementary ring of radius r and thickness dr per second

   = 1
2

 × mass × (velocity)2

   = 1
2

 × (ρ.dQ) × u2

   = 1
2

 ρ (u × 2πr × dr) × u2

   = 1
2

 ρ × 2πr u3 dr

   Total actual K.E. of flow per second

   = 3

0

R

ru drρπ∫

   = 
3

2 2

0

1– ( – )
4

R
pr R r dr
x

 ∂  ρπ   µ ∂  ∫

   = 
3

2 2 3

0

1– ( – )
4

R
p R r dr
x

 ∂  ρπ   µ ∂   ∫

   = 
3

6 6 4 2 2 4
3

0

1– ( – – 3 3 )
64

R
p R r R r R r r dr
x
∂ ρπ × + ∂µ   ∫

   = 
3 6 2 8 4 4 2 6

3
0

3 3– – –
2 8 4 664

R
p R r r R r R r
x

 ∂ρπ   +   ∂µ    

   = 
3 8 8 8 8

3
3 3– – –

2 8 4 664
p R R R R
x

 ∂ρπ   +   ∂µ    
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   = 
3

8
3512

p R
x
∂ρπ  

 ∂µ  
 ...(iv)

   K.E. of the flow based on average velocity

   = 1
2

 × mass × (average velocity)2

   = 2 31 1
2 2

Au u Au× ρ × = ρ

   = 
3

2 21 1–
2 8

pR R
x

 ∂  ρ × π × ⋅   µ ∂  

  2 21and –
8

pA R u R
x

 ∂  = π =   µ ∂  


   = 
3

2 6
3

1 1–
2 512

pR R
x
∂ × ρ × π × × ∂µ  

   = 
3

8–
1024

p R
x
∂ρπ  ⋅ × ∂ 

 ...(v)

	 ∴ α = K.E./sec. based on actual velocity
K.E./sec. based on average velociity

   = 

3
8

3

3
8

–
512

–
1024

p R
x

p R
x

∂ρπ   × ∂µ   =
∂ρπ   × ∂ 

2 0⋅  (Ans.)

10.6.  FLOW OF VISCOOUS FLUID THROUGH AN ANNULUS 

 Let us consider an annulus (horizontal) of outer radius R1 and inner radius R2 through which 
steady laminar flow of an incompressible fluid is taking place. A fluid element having a shape of 
small concentric cylindrical sleeve of length dx and thickness dr considered at a radial distance r is 
chosen as a free body. The forces acting on the fluid element as shown in Fig. 10.19, in the direction 
of flow, are:

dx

r

X

R1

R2

p. r.dr2� ( ).2p + p/ x.dx r.dr� � �

( + . ( + )� �dr r dr dx2(�t
�r

� �.2 r.dx

dr

Fig. 10.19. Laminar flow through an annulus.
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 1. Normal pressure forces over the end areas,

   p.2πr.dr,   and,   2pp dx r dr
x
∂ + ⋅ π ⋅ ∂ 

 2. Shear forces over the inner and outer curved surfaces,

 	 	τ . 2πr . dx,   and,  2 ( )dr r dr dx
r
∂τ τ + ⋅ π + ⋅ ∂ 

 Since the flow is steady and uniform, the summation of the forces on the free body in the 
direction of flow must be zero.

	 ∴ 2 – 2 2 – 2 ( ) 0pp r dr p dx r dr r dx dr r dr dx
x r

 ∂   ∂τ    ⋅ π ⋅ + ⋅ π ⋅ + τ⋅ π ⋅ τ+ ⋅ π + =     ∂ ∂     
 Simplifying, we get:

                – 2 – 2 – 2 – 2 0p dx r dr dr dx dr r dx dr dr dx
x r r
∂ ∂τ ∂τ ⋅ π ⋅ π τ⋅ ⋅ π ⋅ ⋅ π ⋅ ⋅ ⋅ = ∂ ∂ ∂ 

 Neglecting the last term which is of higher order, and dividing throughout by the volume of the 
element 2πr.dr.dx, we get:

  – – –p
x r r
∂ τ ∂τ
∂ ∂

 =  0

 or, p
x r r
∂ ∂τ τ+ +
∂ ∂

 = 0 ...[10.12 (a)]

 Since p is dependent on x and τ on r, the above equation may be expressed as:

  1 ( )p r
x r r
∂ ∂+ τ
∂ ∂

 = 0 ...[10.12 (b)]

 Integrating w.r.t. r, we get:

  ( )p dr dr r dr
x dr
∂ ⋅ + τ ⋅
∂ ∫ ∫  = C1

 (where, C1 = constant of integration)

  
2

2
p r r
x
∂  + τ⋅ ∂ 

 = C1

 Since τ =  – u
r

∂ µ⋅ ∂ 
, by substitution, we have:

  
2

–
2

p r u r
x r
∂ ∂  µ⋅ ⋅ ∂ ∂ 

 = C1

 Dividing the expression throughout by r, we get:

  –
2

p r u
x r
∂ ∂  µ ⋅ ∂ ∂ 

 = 1C
r

 Integrating w.r.t. r, we get:

  
2

–
4

p r u
x
∂  µ ∂ 

 = C1 loge r + C2 ...(10.13)

 (where,  C2 = second constant of integration).
 The two constants of integration (i.e. C1 and C2) can be evaluated from the known boundary 
conditions;
 i.e. at r = R1 u = 0, and
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  r = R2 u = 0
 After substituting these conditions and solving for C1 and C2, we obtain the velocity 
distribution as:
  u = 

2 2
2 2 1 2 1
1

1

2

–1– – – ln
4

ln

R R Rp R r
x rR

R

 ∂    ⋅    µ ∂          

 ...(10.14)

 In order to locate the point where maximum velocity occurs we differentiate eqn. (10.14) w.r.t. 
r and equate it to zero. Thus, we have

  u
r

∂
∂

 = 0 = 
2 2
1 2

1

2

( – )1 1– – 2
4

ln

R Rp r
x r R

R

 ∂  +  µ ∂         

	 ∴ r = 
1/22 2

1 2

1

2

–

2 ln

R R
R
R

 
       

 ...(10.15)

 By substituting this value of r in eqn. (10.14), the value of maximum velocity may be obtained.
The discharge through the annulus,

  Q = 
1

2

2
R

R

r dr uπ ⋅ ⋅∫

   = 
2 2 2

4 4 1 2
1 2

1

2

( – )– – –
8

ln

R Rp R R
x R

R

 ∂π  
  µ ∂         

 ...(10.16)

 The average velocity of flow through the annulus is given by,

  u = 2 2
1 2( – )
Q

R Rπ

   = 
2 2

2 2 1 2
1 2

1

2

( – )1– ( ) –
8

ln

R Rp R R
x R

R

 ∂  +  µ ∂         

 ...(10.17)

 The shear stress is given by,
  τ	 = – du

dr
µ ⋅

 From eqn. (10.14), the velocity gradient may be obtained as:

  du
dr

 = 
2 2
1 2

1

2

–1 1– – 2 – –
4

ln

R Rp r
x rR

R

 ∂   
   µ ∂           

   = 
2 2
1 2

1

2

–1 1– – 2 –
4

ln

R Rp r
x r R

R

 ∂  ⋅  µ ∂         	 ∴	 Shear stress distribution is given by:

  τ = – u
r

∂µ⋅
∂

 or,    = 
2 2
1 2

1

2

–1 1– 2 –
4

ln

R Rp r
x r R

R

 ∂  ⋅  ∂         

 ...(10.18)
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 Example 10.23. A uniform circular tube of bore radius R1 has a fixed co-axial cylindrical solid 
core of radius R2. An incompressible viscous fluid flows through the annular passage under a 

pressure gradient – p
x
∂ 

 ∂ 
. Determine the radius at which shear stress in the stream is zero given 

that the flow is laminar under steady state condition. [GATE]
 Solution.  Bore radius of circular tube = R1
  Radius of the solid core = R2

  Pressure gradient = – p
x
∂ 

 ∂ 
 Radius at which shear stress is zero:
 The shear stress distribution is given by,

  τ	 = 
2 2
1 2

1

2

–1 1– 2 –
4

ln

R Rp r
x r R

R

 ∂  ⋅  ∂         

 ...[Eqn. (10.18)]

 For zero shear stress, τ = 0 and we have:

  
2 2
1 2

1

2

–12 –
ln

R Rr
r R

R

⋅
 
 
 

 =  0

 or, 2r2 = 
2 2
1 2

1

2

–

ln

R R
R
R

 
 
 

 or, r = 
1/22 2

1 2

1

2

–1
2

ln

R R
R
R

  
  

         

 (Ans.)

10.7.  FLOW OF VISCOUS FLUID BETWEEN TWO PARALLEL  
            PLATES 

10.7.1. One Plate Moving and Other at Rest—Couette Flow
 Let us consider laminar flow between two parallel flat plates located at a distance b apart such 
that the lower plate is at rest and the upper plate moves uniformly with a constant velocity U as 
shown in Fig. 10.20. A small rectangular element of fluid of length dx, thickness dy and unit width 
is considered as a free body (see Fig. 10.20). The forces acting on the fluid element are:

b
Y

Velocity
distribution

U

dx

�.dx

( )p + p/ x.dx dy� �p.dy

Moving plate

� + · dy dx
��

�y

Stationary plate

U

X

Fig. 10.20. Couette flow.
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 1. The pressure force, p.dy × 1 on the left end,

 2. The pressure force, 1pp dx dy
x
∂ + ⋅ × ∂ 

 on the right end,

 3. The shear force, τ.dx × 1 on the lower surface, and

 4. The shear force, 1dy dx
y

 ∂ττ + ⋅ × ∂ 
 on the upper surface.

 For steady and uniform flow, there is no acceleration and hence the resultant force in the 
direction of flow is zero.

	 ∴   p . dy –  – 0pp dx dy dx dy dx
x y
∂  ∂τ + ⋅ τ + τ + ⋅ =   ∂ ∂   

 or,  – 0p dx dy dy dx
x y
∂ ∂τ⋅ ⋅ + ⋅ ⋅ =
∂ ∂

 Dividing by the volume of the element dx.dy, we get:

  p
x
∂
∂

 = 
y
∂τ
∂

 ...(10.19)

 Eqn. (10.19) shows the interdependence of shear and pressure gradients and is applicable for 
laminar as well as turbulent flow. Accordingly the pressure gradient, in the direction of flow, is 
equal to the shear gradient across the flow.

 According to Newton’s law of viscosity for laminar flow the shear stress, τ = .du
dy

µ ⋅  Substituting 
for τ in eqn. (10.19), we get:

  p
x
∂
∂

 = 
2

2
u

y
∂µ ⋅
∂

 Since p
x
∂
∂

 is independent of y, integrating the above equation twice w.r.t. y gives:

  u = 2
1 2

1
2

p y C y C
x
∂⋅ + +

µ ∂
 ...(10.20)

 where, C1 and C2 are the constants of integration to be evaluated from the known boundary 
conditions. In the present case the boundary conditions are:
 At y = 0, u = 0, and at y = b, u = U

	 ∴ C2 = 0, and C1 =
1–

2
pU b

b x
∂ 

 µ ∂ 
 Hence, substituting the values of C1 and C2 in eqn. (10.20), it yields the following equation for 
the velocity distribution for generalised Couette flow:

  u = 21– ( – )
2

pU y by y
b x

∂⋅
µ ∂

 ...(10.21)

  The eqn. (10.21) indicates that the velocity distribution in Couette flow depends on both 

U and p
x
∂ 

 ∂ 
. However, the pressure gradient p

x
∂ 

 ∂ 
 in this case may be either positive or 

negative. In a particular case when p
x
∂ 

 ∂ 
 equals zero, there is no pressure gradient in the 

direction of flow, then, we have yu U
b

= ⋅  which indicates that the velocity distribution is 

linear. This particular case is known as simple (or plain) Couette flow or simple shear flow.
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 The discharge per unit width (q) may be obtained as follows:

  q = 2

0 0

1– ( – )
2

b b
pUu dy y by y dy

b x
∂ ⋅ = ⋅ µ ∂ ∫ ∫

   = 
3

–
2 12

pb bU
x
∂⋅ ⋅

µ ∂
 ...(10.22)

 The distribution of shear stress across any section may be determined by using Newton’s law 
of viscosity. Thus,

  τ = 1– ( – 2 )
2

pu U b y
y b x

∂ ∂µ⋅ = µ ⋅ ∂ µ ∂ 

   = 1– ( – 2 )
2

pU b y
b x

∂µ ⋅ ⋅
∂

 ...(10.23)

 The type of flow discussed above (i.e. flow of viscous fluid between two plates-one stationary 
and the other moving) is known as generalised Couette flow.

10.7.2. Both Plates at Rest
 In this case the equations for 
velocity, discharge q and the shear 
stress can be obtained from similar 
equations for generalised Couette flow 
by putting U = 0. Thus for flow between 
two stationary parallel plates, shown in  
Fig. 10.21, we have:
 Velocity,

 u = 21– ( – )
2

p by y
x
∂⋅

µ ∂
 ...(10.24)

 [Eqn. (10.24) represents the plane Poiseuille flow] 
 Discharge per unit width,

  q = 
3

–
12

pb
x
∂⋅

µ ∂
 ...(10.25)

  Shear stress, τ = 1– ( – 2 )
2

p b y
x
∂⋅
∂

 ...(10.26)

10.7.3. Both Plates Moving in Opposite Directions
 For flow between parallel plates, the velocity distribution is given by:

  u = 2
1 2

1
2

p y C y C
x
∂⋅ ⋅ + +

µ ∂
 ...Eqn. (10.20)

 In the present case the boundary conditions are:
 At, y = 0, u = – V, and
 At, y = b, u = U
 Substituting these boundary conditions in eqn. (10.20), we get:
  – V = C2   i.e.  C2 = – V

 and, U = 2
1

1 –
2

p b C b V
x
∂⋅ +

µ ∂

u
Y

b

b/2

b/2

X

Shear stress
dustribution

Velocity distribution

Fig. 10.21. Flow between stationary plates.
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 or, U + V = 2
1

1
2

p b C b
u x

∂⋅ +
∂

	 ∴ C1 = 1 1( ) –
2

pU V b
b x

∂+ ⋅
µ ∂

 Hence the eqn. (10.20) becomes:
U

b

Y

V

V

U

U

X

Fig. 10.22. Flow between parallel horizontal plates, both the plates moving in opposite directions.

  u = 21 1 1( ) – –
2 2

p py U V b y V
x b x
∂ ∂ ⋅ ⋅ + + ⋅ ⋅ µ ∂ µ ∂ 

	 ∴ u = 21( ) – ( – ) –
2

y pU V by y V
b x

∂+ ⋅
µ ∂

 ...(10.27)

 The distance y at which the velocity u is zero may be determined as follows:

  21( ) – ( – ) –
2

y pU V by y V
b x

∂+ ⋅
µ ∂

 =  0

 Rearranging the above equation, we have:

  21 1– –
2 2

U Vp py b y V
x b x

+∂ ∂ ⋅ + ⋅ ⋅ µ ∂ µ ∂ 
 =  0

 Solving this quadratic equation, we have:

 y = 

21 1 1– – – 4
2 2 2

12
2

U V U Vp p pb b V
b x b x x

p
x

+ +∂ ∂ ∂   ⋅ ⋅ ± ⋅ ⋅ + ⋅ ⋅ ⋅  µ ∂ µ ∂ µ ∂   
∂× ⋅

µ ∂

 = 

2 2
2

2
( – )1 1– – –

2 4
1

U V U V U Vp p pb b
b x b x x

p
x

+ +∂ ∂ ∂     ⋅ ⋅ ± + ⋅   µ ∂ ∂ µ ∂µ    
∂⋅

µ ∂

 The above equation will yield two values of y, one which is +ve and less than b will be accepted 
and the other one rejected.
 The discharge per unit width of plates is given by,

  q = 
0

b

u dy∫

   = 2

0

1( ) – ( – ) –
2

b
y pU V by y V dy
b x

∂ + µ ∂ ∫
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   = 
2 2 3

0
0

1( ) – – – [ ]
2 2 2 3

b
by p y yU V b V y

b x
   ∂+ ⋅ ⋅   µ ∂   

   = 
3 31( ) – – –

2 2 2 3
pb b bU V Vb
x
 ∂+ ⋅  µ ∂  

   = 31( – ) –
2 12

pbU V b
x
∂

µ ∂
 ...(10.28)

 The distribution of shear stress across any section may be determined by using Newton’s law of 
viscosity. Thus,
  τ = du

dy
µ ⋅

   = 21( ) – ( – ) –
2

y pd U V by y V
dy b x

∂ µ + ⋅ µ ∂ 

   = 1– ( – 2 )
2

U V p b y
b x
+ ∂ µ ⋅ µ ∂ 

   = 1– ( – 2 )
2

U V p b y
b x
+ ∂ µ   ∂ 

   = ( ) – –
2

p bU V y
b x

∂µ  +  ∂  
 ...(10.29)

 The distance y at which the shear stress will be zero is obtained by putting eqn. (10.29) to zero. 
Thus,
  ( ) – –

2
p bU V y

b x
∂µ  +  ∂  

 =  0

 or, –
2

p b y
x
∂  

 ∂  
 = ( )U V

b
µ+

 or,    –
2
b y =  

( )U V
b

p
x

µ+

∂
∂

	 ∴ y =  –
2 /

U Vb
b p x

+ µ
 ∂ ∂ 

 ...(10.30)

 Example 10.24. Determine the direction and amount of flow per metre width between two 
parallel plates when one is moving relative to the other with a velocity of 3 m/s in the negative 

direction, if p
x
∂
∂

 = – 100 × 106 N/m3 and µ = 0.4 poise and distance between the plates is 1 mm.
(MGU, Kerala)

 Solution. Given: U = – 3 m/s; dp
dx

 = – 100 × 106 N/m3, µ = 0.4 poise = 0.4 × 1
10

 = 0.04 Ns/m2; 
b = 1 mm = 0.001 m.
 We know that, q =  

3
· –

2 12
pb bU
x
∂⋅

µ ∂
 [Eqn. (10.22)]

 Substituting the values, we have:
  q = 

3
6 30.001 0.001– 3 – (– 100 10 ) 0.2068 m /s

2 12 0.04
× × × =

×

 Hence, amount of flow per metre width = 0.2068 m3/s. (Ans.)
 Positive direction (i.e. in the direction opposite to that of the moving plate). (Ans.)
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 Example 10.25. Two parallel plates kept 100 mm apart have laminar flow of oil between them 
with a maximum velocity of 1.5 m/s. Calculate:
 (i) The discharge per metre width,
 (ii) The shear stress at the plates,
 (iii) The difference in pressure between two points 20 m apart,
 (iv) The velocity gradient at the plates, and
 (v) The velocity at 20 mm from the plate.
 Assume viscosity of oil to be 24.5 poise.

 Solution.  Distance between the parallel plates, b = 100 mm = 0.1 m
  Maximum velocity of the oil, umax = 1.5 m/s
  Viscosity of the oil, µ  = 24.5 poise = 2.45 Ns/m2

 (i) The discharge per metre width, q:
   In this case the average velocity of flow,

  u = max
2 2
3 3

u =  × 1.5 = 1.0 m/s

	 	∴ q = u × b = 1.0 × 0.1 = 0.1 m3/s per m (Ans.)
 (ii) The shear stress at the plates τ0 :

  We know, q = 
3

–
12

pb
x
∂ 

 µ ∂ 
 ...[Eqn. (10.25)]

  Substituting the values, we have:

  0.1 = 
30.1 –

12 2.45
p
x
∂ 

 × ∂ 

  or, – p
x
∂ 

 ∂ 
 = 3

0.1 12 2.45
0.1

× ×  = 2940 N/m2/m

  The shear stress across any section is given by:

  τ = 1 – ( – 2 )
2

p b y
x
∂ 

 ∂ 
 ...[Eqn. (10.26)]

  The shear stress at the plates is obtained by putting y = 0 in the above equation. Thus,

  τ0 = 1 –
2

p b
x
∂ 

 ∂ 

   = 1
2

 × 2940 × 0.1 = 147 N/m2 (Ans.)

 (iii) Pressure difference between two points 20 m apart:

  We know, – p
x
∂
∂

 = 2940

  or, – ∂p = 2940 ∂x
  Integrating w.r.t. x, we get:

  
2

1

(– )
p

p

p∂∫  = 
2

1

2940 ( )
x

x

x∂∫
  or, p1 – p2 = 2940 (x2 – x1)
     = 2940 × 20 = 58800 N/m2 or 58.8 kN/m2 (Ans.)
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 (iv) The velocity gradient at the plates,  
 
  0=

∂
∂ y

u
y :

  τ0 = 
0y

u
y =

 ∂µ ⋅  ∂ 

  or, 
0y

u
y =

 ∂
 ∂ 

 = 0 147
2.45

τ =
µ

 = 60 s–1 (Ans.)

 (v) The velocity at 20 mm from the plate:

  u = 2–1 ( – )
2

p by y
x
∂ ⋅  µ ∂ 

 ...[Eqn. (10.24)]

   = 1
2 2 45× ⋅

 × 2940 (0.1 × 0.02 – 0.022)

   ( y = 20 mm = 0.02 m)
   = 0.96 m/s (Ans.)

 Example 10.26. A liquid of viscosity of 0.9 poise is filled between two horizontal plates 10 mm 
apart. If the upper plate is moving at 1 m/s with respect to the lower plate which is stationary and 
the pressure difference between two sections 60 m apart is 60 kN/m2, determine:
 (i) The velocity distribution,
 (ii) The discharge per unit width, and
 (iii) The shear stress on the upper plate.

 Solution. Viscosity of the liquid,
	 µ = 0.9 poise = 0.09 Ns/m2

 Distance between the plates,
 b = 10 mm = 0.01 m
 Velocity of the upper plate, U = 1 m/s
 Pressure difference between the sections 60 m 
apart = 60 kN/m2

	 ∴ – p
x
∂ 

 ∂ 
 = 

360 10
60
×  

   = 103 N/m2/m
 (i) The velocity distribution:
  The system corresponds to Couette flow for which the velocity distribution is given as:

  u = 21 – ( – )
2

pU y by y
b x

∂ +  µ ∂ 
 ...[Eqn. (10.21)]

   = 3 21 1 10 (0.01 – )
0.01 2 0.09

y y y+ × ×
×

   = y (100 + 55.55 – 5555.55 y)
   = y (155.55 – 5555.55 y)
  Hence, the velocity distribution is: u = y (155.55 – 5555.55 y) (Ans.)

1 2
Moving plate U = 1 m/s

Stationary plate

60 m

Liquid

( = 0.8 poise)�

b
=

1
0

m
m

Fig. 10.23
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 (ii) Discharge per unit width, q:

  q = 
0

b

u dy∫

   = 
0 01

2

0

(155.55 – 5555.55 )y y dy
⋅

∫

   = 
0 012 3

0

155.55 – 5555.55
2 3
y y

⋅
 

× × 
 

   = 
2 30.01 0.01155.55 – 5555.55

2 3
 

× × 
 

   = (0.007777 – 0.001852) = 0.005925 m3/s (Ans.)
 (iii) The shear stress on the upper plate, τ0 :

    Shear stress, τ = u
y y

 ∂ ∂µ ⋅ = µ ∂ ∂ 
 (155.55 y – 5555.55 y2)

   = 0.09 (155.55 – 11111.1 y)
    For the top plate,  y = 0.01 m
	 	∴ τ0 = 0.09 (155.55 – 11111.1 × 0.01)  4 N/m2 (Ans.)

 Example 10.27. Fluid is in laminar motion between two parallel plates under the action of 
motion of one of the plates and also under the presence of a pressure gradient in such a way that the 
net forward discharge across any section is zero.
 (i) Find out the point where minimum velocity occurs and its magnitude.
 (ii) Draw the velocity distribution graph across any section.

 Solution. In the given case of flow, the velocity distribution is given by:

  u = 21– ( – )
2

pU y by y
b x

∂
µ ∂

 ...[Eqn. (10.21)]

 and, the discharge per unit width,

  q = 
3

–
2 12

pUb b
x
∂⋅

µ ∂
 ...[Eqn. (10.22)]

 Net forward discharge,
  q = 0 ...(Given)

X

Moving plate

Velocity
profile

b

U

Stationary plate

2 /3b
Y

/3b

Fig. 10.24
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	 ∴ 0 = 
3

–
2 12

pUb b
x
∂⋅

µ ∂

 or, p
x
∂
∂

 = 3 2
12 6

2
UUb

b b
µ µ× =

 Minimum velocity occurs where,

  u
y
∂
∂

 =  0

 Thus,  21– ( – ) 0
2

pU y by y
y b x

∂ ∂ ⋅ = ∂ µ ∂ 

 or, 1– ( – 2 )
2

pU b y
b x

∂
µ ∂

 =  0

 or, U
b

 = 1 ( – 2 )
2

p b y
x
∂

µ ∂

 or, (b – 2y) = ( / ) 2
( / )

U b
p x

× µ
∂ ∂

 or, 2y = ( / ) 2–
( / )

U bb
p x

× µ
∂ ∂

 or, y = 2
( / )–

2 36 /
U bb b

U b
× µ =

µ
 2

6p U
x b
∂ µ = ∂ 



 Hence, minimum velocity occurs at a distance 
3
b  from the fixed plate. (Ans.)

 The magnitude of minimum velocity is obtained by putting y = 
3
b  in the equation of velocity 

distribution. Thus,

  u = 21– ( – )
2

pU y by y
b x

∂⋅
µ ∂

 or, umin = 
2

2
61– –

3 2 3 9
UU b b bb

b b
 µ× × × µ  

   = 2– –
3 3
U U =

3
U  (Ans.)

 (ii) Velocity distribution graph:
 The velocity distribution graph may be drawn by substituting arbitrary values of y such as 0.1b, 
0.2b, 0.3b etc. in the equation,

  u = 2
2

3– ( – )U Uy by y
b b

,

 and computing u in terms of U.

 Also, when  u = 0, y = 0 and 2
3

b

 The velocity distribution graph is shown in Fig. 10.24.

 Example 10.28. Show that the discharge per unit width between two parallel plates distance b 
apart, when one plate is moving at velocity U while the other one is held stationary, for the condition 

of zero shear stress at the fixed plate is q = Ub
3
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 Solution. The given case of flow corresponds to Couette flow for which the velocity distribution 
given by:

  u = 21 – ( – )
2

pU y by y
b x

∂ ⋅ +  µ ∂ 
	 ∴ Discharge per unit width,

  q = 2

0 0

1 – ( – )
2

b b
pUu dy y by y dy

b x
 ∂  ⋅ = ⋅ +   µ ∂  ∫ ∫

   = 
2 2 3

0

1 – –
2 2 2 3

b
y p y yU b

b x
  ∂ ⋅ + ⋅    µ ∂    

   = 
2 3 31 – –

2 2 2 3
pU b b b

b x
 ∂ ⋅ +    µ ∂   

   = 
31 –

2 2 6
pUb b
x
∂ +  µ ∂ 

 ...(i)

  Stress, τ = u
y
∂µ ⋅
∂

   = 21 – ( – )
2

Uy pd by y
dy b x

 ∂  µ +   µ ∂  

   = 1 – ( – 2 )
2

pU b y
b x

 ∂  µ +   µ ∂  
 But shear stress at the surface of fixed plate (y = 0) = 0 ... (Given)

	 ∴ 0 = 1 –
2

pU b
b x

 ∂  µ +   µ ∂  

 or, 1 –
2

pU b
b x

∂ +  µ ∂ 
 =  0

 or, 1 –
2

p
x
∂ 

 µ ∂ 
 = 2– U

b
 Making substitution for this expression in (i), we get:

  q = 
3

2–
2 6

Ub U b
b

× =
3

Ub  ...(Proved)

 Example 10.29. Laminar flow of a fluid of viscosity 0.9 Ns/m2 and specific gravity 1.26 occurs 
between a pair of parallel plates of extensive width, inclined at 45° to the horizontal, the plates 
being 10 mm apart. The upper plate moves with a velocity of 2.0 m/s relative to the lower plate and 
in a direction opposite to the fluid flow. Pressure gauges mounted at two points 1 m vertically apart 
on the upper plate record pressures of 250 kN/m2 and 80 kN/m2 respectively. Determine:
 (i) The velocity and shear stress distribution between the plates,
 (ii) The maximum flow velocity, and
 (iii) The shear stress on the upper plate. [MU]

 Solution. Viscosity of the fluid, µ = 0.9 Ns/m2

  Specific gravity of the fluid  = 1.26
  Distance between the plates, b = 10 mm = 0.01 m
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  Velocity of upper (moving) plate, U = – 2.0 m/s
  Pressure, p1  =  250 kN/m2

  Pressure, p2  =  80 kN/m2.
 (i) The velocity and shear stress distribution between the plates:
  Considering sections 1 and 2, we have:

  h1 – h2 = 1 2
1 2–p pz z

w w
   + +   
   

   = 
3 3250 10 80 101 – 0

1.26 9810 1.26 9810
   × ×+ +   × ×   

  or, h1 – h2 = 21.225 – 6.47

   = 14.755 m in 2  m or 1.414 m
  Since h1 > h2, flow will be in downward direction.

10
m

m

1
m

p 2
=

80
kN/m

2

p 1
=

250
kN/m

2

M
ovin

g
plat

e

2.0
m

/s

2

1

Sta
tio

na
ry

pl
at

e

45º

45º

2
m

Y

Fig. 10.25

  h
x
∂
∂

 = 14.755–
1.414

 = – 10.435

  and, p
x
∂
∂

 = hw
x
∂
∂

 = (1.26 × 9810) × (– 10.435)

   = – 128983 N/m2 or – 128.983 kN/m2

  The velocity distribution in this case of flow is given by:

  u = 21– ( – )
2

pU y by y
b x

∂ ⋅ ⋅  µ ∂ 
 [Eqn. (10.21)]

  Substituting the values, we get:

  u = 2.0 1– –
0.01 2 0.9

y
×

 × (– 128.983 × 103) (0.01 y – y2)

   = – 200y + 716.57y – 71657y2

   = 516.57y – 71657y2

  Hence, velocity distribution is given by:
  u = 516.57y – 71657y2 (Ans.)
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  The shear stress distribution is given by:

  τ = 1– ( – 2 )
2

pU b y
b x

∂µ ⋅
∂

 ...[Eqn. (10.21)]

   = – 2 10.9 –
0.01 2

 ×  
 

 × (– 128. 983 × 103) (0.01 – 2y)

   = – 180 + 644.91 – 128982y = 464.91 – 128982y
  Hence, the shear stress distribution is given by:
  τ = 464.91 – 128982 y (Ans.)
 (ii) Maximum flow velocity, umax:

     For maximum velocity, du
dy

 =  0

   or, d
dy

 (516.57y – 71657y2)  =  0

   or, 516.57 – 143314y =  0
   or, y = 3.604 × 10– 3 m
	 	 	∴  Maximum velocity, umax  = 516.57 × 3.604 × 10– 3 – 71657 × (3.604 × 10– 3)2

     = 1.862 – 0.931 = 0.931 m/s (Ans.)
 (iii) The shear stress on the upper plate:
  (τ)0.01 = 464.91 – 128982 × 0.01 = – 824.91 N/m2 (Ans.)

 Example 10.30. A large thin plate is pulled at constant velocity U through a narrow gap of 
height h. On one side of the plate is oil of viscosity µ and on the other side oil of viscosity αµ, where 
α is a constant. Calculate the position of the plate so that the drag force on it will be minimum.

(UPTU)

 Solution. Refer to Fig. 10.26. Let a be the distance of the thin plate from the top surface.
 Shear stress on top portion;

  τ1 = 1
du U
dy a

µ = µ

 Shear stress on the bottom portion;

  τ2 = 
( – )

du U
dy h a

µ = αµ

 Total drag force on the plate,
  F  = A (τ1 + τ2)

   = 
( – )

U UA
a h a

 µ + αµ  

   = 
–

A U
a h a

 µ αµ+ 
 

   = 1
–

A U
a h a

 αµ + 
 

 For F to be minimum:

  dF
da

 = 2 2
1– 0

( – )a h a
α+ =

U

Fluid - 1 (Viscosity )�

Thin plate

Fluid - 2 (Viscosity ���

h
h a–

a

Fig. 10.26
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 or, 2( – )h a
α  = 2

1
a

 or, 
–h a
α  = 1

a

 or, a x  = h – a

 or, (1 )a + α  = h

 or, a = 
1

h
+ α

 which gives the position of the plate for minimum drag (Ans.)

10.8.  LAMINAR FLOW THROUGH POROUS MEDIA 

 It was established by Darcy through experiments that the velocity of a fluid through a porous 
media varies linearly with the loss of head hf , which indicates that the flow through the porous 
media is laminar.
 Consider a circular pipe of length L and diameter D completely filled with porous material of 
grain diameter ds. The flow takes places through the interstices of the porous material. If porosity 
is n, the diameter of the passage through the particles is nds. The loss of head when liquid flows 
through a porous media can be determined by using the general expression for head loss in laminar 
flow.
 The loss of head for laminar/viscous flow through a pipe is given by:

  hf = 2
32 uL

wD
µ

 Similarly, the loss of head for laminar flow through parallel plates is given by:

  hf = 2
12 uL

wb
µ

 Hence, the general expression for laminar flow may be expressed as:

  hf = 2
K uL
wD
µ  ...(10.31)

 where, hf = The loss of head in length L,
  K = A constant, the value of which depends on the shape of the passage,
  µ = Dynamic viscosity of the fluid,
  u = Average velocity of flow,
  w = Weight density of the fluid, and
  D = A characteristic length representing the geometry of the passage.
 Eqn. (10.31) can be used for laminar flow through porous media. The diameter of the passage 
through particles is given by:
  d = n ds
 Substituting this value of d for D in eqn. (10.31), we get:

  hf = 2 2
s

K uL
wn d
µ
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 or, u = 
2 2

fs hwn d
K L

 
 µ  

 or, u = ki ...(10.32)
 where,  k = A constant, called the co-efficient of permeability, and

  i = The hydraulic gradient fh
L

 
= 
 

 Eqn. (10.32) is the well known Darcy’s equation for flow of water through soil.
 — The equation is applicable for the Reynolds number < 1.
 — The equation is normally valid (according to Ehrenberger) for velocities u less than 3 to 

4.5 mm/s.

 Example 10.31. Water at a rate of 0.0006 litre/sec. is flowing through a sandy specimen of 8 cm 
height and 45 cm2 cross-sectional area under a constant head of 7 cm. Determine the co-efficient of 
permeability.

 Solution.  Discharge through sandy specimen, Q = 0.0006 litre/sec.
  Area of cross-section, A = 45 cm2

  Height of specimen, L = 8 cm
  Constant head, hf = 7 cm
 Co-efficient of permeability, k:

  Average velocity, u = 
30.0006 10

45
Q
A

×=  = 0.0133 cm/s

 Using the relation :

  u = fh
ki k

L
 

=  
 

, we get:

  0.0133 = 7
8

k ×

 or k = 0.0133 8
7

×  = 0.0152 cm/s (Ans.)

10.9.  POWER ABSORBED IN BEARINGS 

 In a bearing, a very thin film of lubricating oil is maintained between its stationary surface and 
the surface of the rotating shaft. The lubricating oils are viscous and hence the theory of laminar/
viscous flow can be applied to the theory of lubrication. A very viscous oil leads to greater resistance 
and causes great power loss; a light oil, on the other hand, may not be able to maintain the required 
film between the metal surfaces and wear of the surfaces will take place. The expressions for power 
absorbed due to viscous resistance in different types of bearing are derived as given below.

10.9.1. Journal Bearing
 Fig. 10.27 shows a journal bearing in which a shaft is rotating. A lubricating oil is filled in the 
annular space between the shaft and the bearing.
 Let, D = Diameter of the shaft,
  t = Thickness of oil film,
  L = Length of the bearing, and
  N = Speed of the shaft in r.p.m.
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L

D

t Oil film

Fig. 10.27. Journal bearing.

	 ∴ Angular speed,  
	 	 ω = 2 rad/s

60
Nπ

 Tangential speed of the shaft,
  V = ωR

 or, V = 2 = m/s.
60 2 60

N D DNπ π×

 As the thickness ‘t’ of the oil film is very small, a linear velocity distribution can be presumed.

 Hence, du
dy

 = – 0
60 ×

V V DN
t t t

π= =

	 ∴  Shear stress, τ = 
60 ×

DN
t

πµ ×

 Shear force or viscous resistance,
  F = τ × area of surface of the shaft

   = 
2 2

60 60
DN D NLDL

t t
µπ µπ× π =

	 ∴ Torque required to overcome the viscous resistance of the whole of the bearing,

  T = 
2 2 2 3

2 60 2 120
D NL D NLD DF

t t
µπ µπ× = × =  ...(10.33)

	 ∴  Power absorbed in overcoming the resistance,

  P =  2.
60
NTT πω =  watts ...(10.34)

 
2 3

where
120

D NLT
t

 µπ= 
 

 Example 10.32. A shaft of 100 mm diameter rotates at 60 r.p.m. in a 200 mm long bearing. 
Taking that the two surfaces are uniformly separated by a distance of 0.5 mm and taking linear 
velocity distribution in the lubricating oil having dynamic viscosity 0.04 poise, find the power 
absorbed in bearing.    [PTU]

 Solution.  Diameter of the shaft, D = 100 mm = 0.1 m
  Speed of the shaft, N = 60 r.p.m.
  Length of the bearing, L = 200 mm = 0.2 m
  Thickness of oil film, t = 0.5 mm = 0.0005 m
  Dynamic viscosity, µ = 0.04 poise = 0.004 Ns/m2
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 Power absorbed, P:
 The torque required to overcome viscous resistance in a journal bearing is given by:

  T = 
2 32 3 0.004 0.1 60 0.2

120 120 0.0005
D NL

t
× π × × ×µπ =

×
 = 0.00789 Nm

	 ∴  Power absorbed  = 2 60 0.007892
60 60
NT π × ×π =

   = 0.0496 W (Ans.)

10.9.2. Foot-step Bearing
 Fig. 10.28 shows a foot-step bearing at the end of a vertical shaft. The space between the surface 
of the shaft and bearing is filled with oil of viscosity µ.
 Let, R = Radius of the shaft,
  N = Speed of the shaft, and
  t = Thickness of oil film.
 Consider an elementary circular ring of radius r and thickness dr as shown in the Fig. 10.28.
  Area of the elementary ring  = 2πr.dr

  The shear stress, τ = u V
y t
∂µ ⋅ = µ ⋅
∂

 where, V is the tangential velocity of shaft at radius r and is equal to

  	ωr = 2
60

N rπ ×

	 ∴ Shear force on the elementary ring,
  dF = τ × area of the ring

   = 2 2
60

N r r dr
t

πµ × × × π ⋅

   = 
2 2

15
u Nr dr

t
π× ⋅    

  Torque on the ring, dT  =  dF × r = 2 2
15

Nr dr r
t

µ ⋅ π ⋅ ⋅

	 ∴ Total torque required to overcome viscous resistance,

  T = 2 3 2 3

0 0
15 15

R R

Nr dr N r dr
t t

µ µ⋅π ⋅ = ⋅ π ⋅∫ ∫

   = 
4 4

2 2

0
15 4 15 4

R
r RN N

t t
 µ µ⋅π ⋅ = ⋅ π ⋅ ⋅ 
 

 or, T = 2 4
60

N R
t

µ ⋅ π ⋅  ...(10.35)

	 ∴ Power absorbed by the entire bearing,

  P = 2.
60
NTT πω =  watts

     2 4where,
60

T N R
t

µ = ⋅π ⋅ ⋅ 
 

dr
r

R

Oil

t

Fig. 10.28. Foot-step bearing.
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 Example 10.33. Find the power required to rotate a vertical shaft of diameter 100 mm at 750 
r.p.m. The lower end of the shaft rests in a foot-step bearing. The end of the shaft and surface of the 
bearing are both flat and are separated by an oil film of thickness 0.5 mm. The viscosity of the oil is 
1.5 poise.    [Delhi University]
 Solution.  Diameter of the shaft, D = 100 mm = 0.1 m
  Speed of the shaft, N = 750 r.p.m.
  Thickness of the film, t = 0.5 mm = 0.0005 m
  The viscosity of the oil, µ = 1.5 poise = 0.15 Ns/m2

 Power required, P:
 The torque required to overcome the viscous resistance in a foot-step bearing is given by:

  T = 
4

2 4 20.15 0.1750
60 60 0.0005 2

N R
t

µ  ⋅ π ⋅ ⋅ = × π × ×  ×  
 

   = 0.2313 Nm
	 ∴ Power required to rotate the shaft,

  P = 2 750 0.23132
60 60
NT π × ×π =  = 18.16 W (Ans.)

10.9.3. Collar Bearing
 Fig. 10.29 shows a collar bearing which takes up an axial thrust of shaft. The face of the collar 
is separated from the surface of the bearing with a film of uniform thickness which is maintained by 
a forced lubrication system.
 Let, R1 = Internal radius of the collar,
  R2 = External radius of the collar,
  t = Thickness of oil film, and
  N = Speed of the shaft in r.p.m.
 Consider an elementary ring of bearing surface of radius r and thickness dr as shown in Fig. 10.29.
  Area of elementary ring, dA = 2πr . dr

  Viscous shear stress, τ =  u V
y t
∂µ ⋅ = µ ⋅
∂

dr

r

Shaft

Collar

Bearing surface

R1

R2

Fig. 10.29. Collar bearing.

 where, V =  2
60

Nr rπω = ⋅
 Shear force on the elementary ring,
  dF = Viscous shear stress × area of the ring

   = 22 2
60

Nrr dr r dr
t

πτ × π ⋅ = µ × × π ⋅

   = 
2 2

15
Nr dr
t

µ π ⋅
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  Torque on the elementary ring,  dT = dF × r

   = 2 2
15

Nr dr r
t

µ ⋅ π ⋅ ⋅

	 ∴ Total torque required to overcome the viscous resistance,

  T = 
2 2

1 1

2 3 2 3
15 15

R R

R R

Nr dr N r dr
t t

µ µ⋅ π = π∫ ∫

   = 
2

1

4
2

15 4

R

R

rN
t

 µ π  
 

  T = 2 4 4
2 1( – )

60
N R R

t
µ π  ...(10.36)

	 ∴ Power absorbed by the entire bearing,

  P = 2 watts.
60
NTπ

 Example 10.34. A collar bearing having external and internal diameters 240 mm and 180 mm 
respectively is used to take the thrust of a shaft. An oil film of thickness 0.25 mm and of viscosity 0.8 
poise is maintained between the collar surface and the bearing. Find the power lost in overcoming 
the viscous resistance of oil when the shaft is running at 300 r.p.m.

 Solution.  External radius, R2 = 240
2

 = 120 mm = 0.12 m

  Internal radius, R1 = 180
2

 = 90 mm = 0.09 m

  Thickness of oil film, t = 0.25 mm = 0.00025 m
  Viscosity of the oil, µ = 0.8 poise = 0.08 Ns/m2

  Speed of the shaft, N = 300 r.p.m.
 Power lost in viscous resistance, P:
 Torque required to overcome the viscous resistance,

  T = 2 4 4
2 1( – )

60
N R R

t
µ π  ...[Eqn. (10.36)]

   = 0.08
60 0.00025×

 π2 × 300 (0.124 – 0.094) = 2.238 Nm

	 ∴ Power lost in viscous resistance,

  P = 2 300 2.2382
60 60
NT π × ×π =  = 70.31 W (Ans.)

10.10. LOSS OF HEAD DUE TO FRICTION IN VISCOUS FLOW 

 In a pipe of diameter D in which a viscous fluid of viscosity µ is flowing with a velocity u, the 
loss of pressure head, hf, is given by eqn. (10.11) as:

  hf = 2
32 uL

wD
µ  ...(i)

 where, L = Length of the pipe, and
  w = Weight density of the fluid.
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 The loss of head due to friction is given by:

  hf = 
2 24 4

2 2
fLV fLu

D g D g
=

× ×
 ...(ii)

 where,  f is the co-efficient of friction between pipe and fluid, and V = u.
(Note :  For derivation of this formula, please refer to Art 11.2)

 From eqn. (i) and (ii), we have:

  2
32 uL

wD
µ  = 

24
2

fLu
D g×

 or, f = 2 2
32 2 16

4 . . .
uL D g

u DLu gD
µ × × µ=

ρρ
 ( w = ρ.g)

   = 16 116
VD Re
µ = ×

ρ
 ( u = V)

    where, is the Reynolds numberVDRe  ρ =  µ  

 i.e. f = 16
Re

 ...(10.37)

 Example 10.35. In a pipe of 200 mm diameter in which water is flowing, there is a shear stress 
of 0.12 kN/m2 at a point distant 30 mm from the pipe axis. If the co-efficient of friction between the 
pipe and the fluid is 0.04, calculate the shear stress at the pipe wall. [Nagpur University]
 Solution.  Diameter of the pipe, D = 200 mm = 0.2 m
  Co-efficient of friction,  f = 0.04
  Shear stress at r  =  30 mm, τ = 0.12 kN/m2

 Shear stress at the pipe wall, τ0:

  Co-efficient of friction, f = 16
Re

 ...[Eqn. (10.37)]

 or, Re = 16 16 400
0.04f

= =

 Since Re < 2000, hence the flow is viscous/ laminar.
 The shear stress in case of viscous flow through a pipe is given as:

  τ = –
2

p r
x
∂ ⋅
∂

 ...[Eqn. (10.4)]

 But p
x
∂
∂

 is constant across a section, therefore, τ α r

 Shear stress at the pipe wall (r = 0.1 m) is τ0.

	 ∴ 
r
τ  = 0 00.12or

0.1 0.03 0.1
τ τ=

 or, τ0 = 0.012 0.1
0.03

× = 0.4 kN/m2 (Ans.)

 Example 10.36. A pipe 240 mm in diameter and 10000 m long is laid at a slope of 1 in 180. An 
oil of specific gravity 0.85 and viscosity 1.5 poise is pumped up at the rate of 0.02 m3/s. Find:
 (i) Head lost due to friction, and
 (ii) Power required to pump the oil.
 Solution.  Diameter of the pipe, D = 240 mm = 0.24 m
 ∴  Area, A = (π/4) × 0.242 = 0.04524 m2
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  Length of the pipe, L = 10000 m
  Slope ot the pipe, i = 1 in 180
  Specific gravity of oil, S = 0.85
  Viscosity of oil, µ = 1.5 poise = 0.15 Ns/m2

  Discharge, Q = 0.02 m3/s
 (ii) Head lost due to friction, hf:

  Velocity of flow, u = 0.02
0.04524

Q
A
=  = 0.442 m/s

  Reynolds number, Re = (0.85 1000) 0.442 0.24
0.15

VD × × ×ρ =
µ

 = 601

  As Re < 2000, the flow is viscous/laminar.

  The co-efficient of friction, f =  16
Re

 ...[Eqn. (10.37)]

   = 16
601

 = 0.02662

	 ∴	 Head lost due to friction,

  hf = 
2 24 4 0.02662 10000 0.442

2 0.24 2 9.81
fLu

D g
× × ×=

× × ×
 = 44.17 m

  Height through which oil is to be raised by the pump
   = Slope × length of pipe

   = 1
180

i L× =  × 10000 = 55.55 m

  Total head against which pump is to work,
  H = hf + i × L = 44.17 + 55.55 = 99.72 m
	 	∴ Power required to pump the oil,

  P = (0.85 9810) 0.02 99.72
1000 1000
wQH kW × × ×=  

   = 16.63 kW (Ans.)

10.11. MOVEMENT OF PISTON IN DASHPOT 

 A dashpot is a device employed for damping 
vibrations of machines (Fig. 10.30). It consists of piston 
that moves in a concentric cylinder, the diameter of which 
is only slightly greater than that of the piston. The cylinder 
contains a viscous oil, the quantity of which should be 
sufficient to cover the top of the piston. The piston is 
connected with the machine element whose motion is to be 
restrained. On the downward movement of piston, under 
the load W, the oil is displaced from the underneath and 
it moves to the space above the piston through the small 
annular clearance between the piston and the cylinder. 
Conversely, during the upward movement of the piston the 
oil is displaced downwards. It is due to this aspect that the 
mechanical vibrations of the machine element (connected 
to the piston) are damped.

D

W

t

L

Oil

Piston

Cylinder

Fig. 10.30 Dashpot mechanism.
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 Let, D = Diameter of the piston,
  L = Length of the piston,
  µ = Viscosity of the oil,
  V = Velocity of the piston,
  u = Average velocity of oil in clearance,
  t = Clearance between dashpot and piston, and
  ∆p = Difference of pressure intensities between the two ends of the 
    piston.

   = 22

4

4

W W
DD

=π π
 ...(i)

 The flow of oil through the clearance space is similar to the viscous/laminar flow between 
parallel plates and as such the following relation holds good,

  ∆p = 2
12 uL

t
µ  ...(ii)

 From eqns. (i) and (ii), we have:

  2
4W
Dπ

 = 2
12 uL

t
µ

 or, u = 
2

23
Wt

LDπµ
 ...(iii)

 The rate of oil flow in dash pot

   = 2
4

V Dπ×

 (where, V = velocity of piston or the velocity of oil in dashpot in contact with piston)
 Rate of flow through clearance
   = u × π D . t
 By continuity equation, we have:

  u × ∆ D . t = 2
4

V Dπ×

 or, u = 2 1
4 4

VDV D
D t t

π× × =
π ⋅

 ...(iv)

 From eqns. (iii) and (iv), we have:

  
2

23
Wt

LDπµ
 = 

4
VD

t

 or, µ = 
3

3
4

3
Wt
LD Vπ

 ...(10.38)

 Example 10.37. An oil dashpot consists of a piston moving in a cylinder having oil. This 
arrangement is used to damp out the vibrations. The piston falls with uniform speed and covers 
50 mm in 100 seconds. If an additional weight of 1.334 N is placed on the top of the piston, it falls 
through 50 mm in 86 seconds with unifrom speed. The diameter of the piston is 75 mm and its 
length is 100 mm. The clearance between the piston and the cylinder is 1.2 mm which is uniform 
throughout. Find the viscosity of the oil. [UPTU]
 Solution.  Diameter of the piston, D = 75 mm = 0.075 m
  Length of the piston, L = 100 mm = 0.1 m
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  Clearance, t = 1.2 mm = 0.0012 m
  Additional weight = 1.334 N
 Viscosity of oil, µ:
 Let, W = Weight of the piston,
  V = Velocity of piston without additional weight, and
  V ′ = Velocity of piston with the additional weight.
 Using eqn. (10.38), we have:

  µ = 
33

3 3
4 ( 1.334)4

3 3
W tWt

LD V LD V
+=

′π π

 or, W
V

 = 1.334W
V
+

′

 or, V
V ′

 = 
1.334

W
W +

 ...(i)

 But, V = 50
100

 = 0.50 mm/s }
 and, V′ = 50

86
 = 0.581 mm/s  

Data given

	 ∴ V
V ′

 = 
– 3

– 3
0.5 10

0.581 10
×
×

 = 0.86 ...(ii)

 From eqns. (i) and (ii), we have:

  
1.334

W
W +

 = 0.86

 or, W = 0.86 (W + 1.334) = 0.86 W + 1.147
 or, W = 8.19 N

 Now, µ = 
3

3
4

3
Wt
LD Vπ

 ...[Eqn. (10.38)]

   = 
3

3

4 8.19 (0.0012)
50 13 0.1 (0.075)

1000 100

× ×
 π × × × × 
 

   = 0.2847 Ns/m2 (Ans.)

10.12. MEASUREMENT OF VISCOSITY 

 To determine the co-efficient of viscosity of a liquid the following experimental methods are used:
 1. Rotating cylinder method    2. Falling sphere method
 3. Capillary tube    4. Efflux viscometers.
 The devices used for measurement of viscosity are known as Viscometers.

10.12.1. Rotating Cylinder Method
 In this method Newton’s law of viscosity is used to measure the viscosity of a fluid. Fig. 10.31 
shows a rotating cylinder viscometer. It consists of two concentric cylinders, the annular space 
between them is filled with the liquid whose viscosity is to be determined. The outer cylinder is 
rotated at a constant angular velocity ω with respect to the inner stationary cylinder. The torque 
transmitted by the enclosed liquid to the stationary cylinder is measured by the torsional strain of 
the restraining spring attached to the top of the inner cylinder.
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 According to Newton’s law of viscosity,

  Shear stress (τ) = µ × velocity gradient du
dy

 
 
 

�

t

h

R1

R2

Viscous liquid
(to be tested)

Inner stationary
cylinder

Outer rotating
cylinder

Dial

Torsional spring

Fig. 10.31. Rotating cylinder viscometer.

 Since the annular space t = (R2 – R1) is quite small (where R2 and R1 are the radii of the outer 
and inner cylinders respectively), the velocity gradient,

  du
dy

 = 22
60
R NV

t t
π=

 (where, N = the rotational speed of the outer cylinder in r.p.m.)

	 ∴  Shear stress (τ) = 22
60
R N

t
πµ ×

  Viscous drag  =  Shear stress × area

   = 2
1

2 2
60
R N R h

t
πµ × × π

 (where, h = height of liquid)
  Viscous torque = Viscous drag × radius

   = 
2 2

2 1 2
1 1

2 2
60 15
R N R R hNR h R

t t
π µπ µ × × π × = 

 
 Viscous torque must equal the torque T exerted by the torquemeter.

	 ∴ T = 
2 2

1 2
15

R R hN
t

µπ ⋅

 or, µ = 2 2
1 2

15 T t
R R hNπ

 ...(10.37)

 Thus a rotational type viscometer can be calibrated to directly give µ for given speed of rotation N.
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 Example 10.38. In a rotating cylinder viscometer, the radii of the cylinder are 32 mm and 30 
mm, and the outer cylinder is rotated steadily at 200 r.p.m. For a certain liquid filled in the annular 
space to a depth 80 mm, the torque produced on the inner cylinder is 0.9 × 10–4 Nm. Calculate the 
viscosity of the liquid.
 Assume the velocity distribution to be linear.
 Solution.  Radius of the outer rotating cylinder, R2 = 32 mm = 0.032 m
  Radius of the inner stationary cylinder, R1 = 30 mm = 0.03 m
  Height of liquid, h  = 80 mm = 0.08 m
  Speed of the outer cylinder, N  =  200 r.p.m.
  Torque produced on the inner cylinder T  =  0.9 × 10–4 Nm
 Viscosity of the liquid, µ:

  The tangential velocity, V =  22 2 0.032 200 0.67 m/s
60 60
R Nπ π × ×= =

 Since the velocity distribution is linear, therefore,

  du
dy

 = – 1

2 1

0.67 0.67 335 s
( – ) (0.032 – 0.03)

V
t R R
= = =

  Viscous shear stress, τ = 335V
t

µ = µ

  Viscous force/drag = 335 µ × 2πR1 h
   = 335 µ × 2π × 0.03 × 0.08 = 5.05 µ
  Viscous torque = 5.05 µ × R1
   = 5.05 µ × 0.03 = 0.1515 µ
 But,  Viscous torque  = Torque (T) measured by the torquemeter
	 ∴ 0.1515 µ = 0.9 × 10– 4

 or, µ = 
– 40.9 10

0.1515
×  = 5.94 × 10– 4 Ns/m2 (Ans.)

 Example 10.39. In a torsion viscometer, the outer cylinder of 150.5 mm diameter is rotated 
by turning the shaft at a constant speed of 100 r.p.m. Owing to its viscosity, the liquid under test 
transmits a torque of 540 Nm to the inner cylinder of 150 mm diameter, which is suspended by 
torsion wire fixed at its upper end. If the liquid is 130 mm deep, find its viscosity. 

(MGU, Kerala)
 Solution. Refer to Fig. 10.31.

 Given : R2 =
150.5

2
 = 75.25 mm = 0.07525 m; R1 = 150

2
 = 75 mm = 0.075 m; N = 100 r.p.m; T 

= 540 Nm; h + t = 130 mm = 0.13 m
 Viscosity of the liquid, µ:
 Let us assume that the clearance at the bottom of the two cylinder is 0.25 mm, i.e. the difference 
between radii of two cylinders, then,
  t = 0.25 mm = 0.00025 m
	 ∴ h = 0.13 – 0.00025 = 0.12975 m

 We know that, µ = 2 2
1 2

15Tt
R R hNπ

 ...[Eqn. (10.39)]

 Substituting the values, we get:
  µ = 2 2

15 540 0.00025
0.075 0.07525 0.12975 100

× ×
π × × × ×

 = 37.36 Ns/m2 (Ans.)
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10.12.2. Falling Sphere Method
 Falling sphere method of measuring viscosity of a liquid is based on ‘Stokes’ law.
 Fig. 10.32 shows a falling sphere viscometer. A small spherical ball is released into the liquid 
to be tested and it accelerates under the gravitational force until it reaches a maximum/terminal 
velocity V when the buoyant and viscous drag forces balance the gravity force.
 Let, d = Diameter of the spherical ball,
  l = Distance travelled by the sphere in viscous liquid,
  t = Time taken by the sphere to cover distance l,
  ρs = Density of sphere,
  ρf = Density of fluid/liquid,
  W = Weight of sphere,
  FB = Buoyant force, acting on the sphere
  FD = Drag force, and
  µ = Dynamic viscosity of the liquid under test.
 The forces acting on the sphere are:
 1. Weight, W ...... acting vertically downwards
 2. Buoyant force, FB ...... acting vertically upwards
 3. Drag force, FD ...... acting vertically upwards
  W = Volume × density of sphere × g

   = 3
6 sd gπ × ρ ×  3Volume of sphere

6
dπ = 

 


  FB = Weight of liquid displaced
   = Volume of liquid displaced × density of liquid × g

   = 3
6 fd gπ × ρ ×  

( Volume of liquid displaced = volume of sphere)
  FD =  3π µ VD ... (Stokes law)

Liquid under
test

Sphere

Constant temperature
bath

Distance marks

W

F

F

(weight)

(buoyant force)

(drag force)

B

D

l

d

V

V

Fig. 10.32. Falling sphere viscometer.
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 For equilibrium,
  FD + FB = W
 or, FD = W – FB

  3 π µVD = 3 3–
6 6s fd g d gπ π× ρ × × ρ ×  (substituting the values)

   = 3 ( – )
6 s fd gπ × ρ ρ

 or,µ µ = 
3 2( – )

( – )
6 3 18

s f
s f

d g gd
Vd V

× ρ ρπ ⋅ = ρ ρ
π

 ...(10.40)

 From the above equation the value of dynamic viscosity µ can be determined.
  Note. Stokes’ law is essentially valid for Reynolds number below 0.1 where the wall has no effect on the  

terminal fall velocity V.

 Example 10.40. In a falling sphere viscometer, a lubricating oil of density 900 kg/m3 was 
placed in a 80 mm inside diameter tube. A 10 mm diameter steel ball of density 8000 kg/m3 was 
found to travel a distance of 950 mm in 19 seconds. Determine the viscosity of the oil.

 Solution.  Density of lubricating oil, ρf = 900 kg/m3

  Diameter of the sphere, d = 10 mm = 0.01 m
  Density of steel ball, ρs = 8000 kg/m3

  Distance travelled in 19 seconds = 950 mm = 0.95 m
 Viscosity of the oil, µ:

  Weight of the ball, W =  3 30.01 8000 9.81 0.0411 N
6 6sd gπ π× ρ × = × × × =

  Buoyant force, FB = 3 30.01 900 9.81 0.00462 N
6 6fd gπ π× ρ × = × × × =

  Drag force, FD =  3πµVd = 3π × µ × 0.95
19

 
 
 

 × 0.01 = 0.00471 µ N

 For equilibrium:
  FD + FB = W
 or, FD = W – FB
 or, 0.00471 µ = 0.0411 – 0.00462 = 0.0365

 or, µ = 0.0365
0.00471

 = 7.75 Ns/m2 (Ans.)

 Let us check the Reynolds number, Re.

  Re = 900 (0.95 /19) 0.01
7.75

Vd × ×ρ =
µ

 = 0.058 < 0.1

10.12.3. Capillary Tube Method
 This method makes use of Hagen-Poiseuille equation for laminar flow through circular tubes.
Fig. 10.33 shows a capillary tube viscometer. It consists of a tank in which the liquid whose viscosity 
is to be determined is filled. A capillary tube of diameter D and length L is attached horizontally very 
close to the bottom of tank. The tube is allowed to discharge freely into the atmosphere. The liquid 
is collected in a measuring tank for a given time. Then the rate of liquid collected in the tank per 
second is determined. The pressure head is measured at a point far away from the tank.
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Tank

Viscous
liquid

( , )w �

h

Glass piezometer

Capillary tube of dia. D

Measuring tank
L

Fig. 10.33. Capillary tube viscometer.

 Let, h = Difference of pressure head for length L,
  µ = Co-efficient of viscosity, and
  w = Weight density of the liquid.
 According to Hagen-Poiseuilli’s equation, we have:

  h = 2
32 uL
wD
µ

 But, u = 
2

4

Q

Dπ

  (where,  Q = discharge of liquid through the tube)

	 ∴ h = 
2

2 4

32
( /4) 128

Q L
D QL

wD wD

µ × ×
π × µ=

π

 or, µ = 
4

128
wh D

QL
π  ...(10.41)

 Example 10.41. The viscosity of an oil of specific gravity 0.8 is measured by a capillary tube of 
diameter 40 mm. The difference of pressure head between two points 1.2 m apart is 0.3 m of water. 
The weight of oil collected in a measuring tank is 400 N in 100 seconds. Find the viscosity of oil.
 Solution.  Sp. gr. of oil = 0.8
	 ∴  Weight density of oil = 0.8 × 9810 = 7848 N/m3

  Dia. of the capillary tube, D = 40 mm = 0.04 m
  Length of the tube, L = 1.2 m
  Difference of pressure head, h = 0.3 m of water
  Weight of oil collected, W = 400 N
  Time, t = 100 s.
 Viscosity of the oil, µ :

  Discharge, Q = Weight of oil collected/sec (400 /100)
Weight density 7848

=  = 0.000509 m3/s

 We know, µ = 
4

128
whD

QL
π

   = 
47848 0.3 (0.04)

128 0.000509 1.2
π × × ×

× ×
 = 0.242 Ns/m2 (Ans.)
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10.12.4. Efflux Viscometers
 In Efflux viscometers the viscosity is determined by noting the time of efflux, under specific 
conditions, for a fixed volume of fluid through a specific capillary or aperture (standardized nozzle 
or orifice). The operation of Saybolt, Redwood and Engler is based on this principle.
 Fig. 10.34 shows a Saybolt viscometer. It consists of a tank in the bottom of which is a short 
capillary tube. The tank is filled with the 
liquid whose viscosity is to be determined; 
a constant temperature both surrounds this 
tank to ensure that the liquid remains at 
uniform constant temperature during the 
test run. The viscosity is determined by 
measuring the time required for 60 cm3 
of liquid at a known temperature to flow 
out of the reservoir through the tube. The 
initial level of the liquid in the reservoir is 
previously adjusted to a standard height. 
From the time measurement, the kinematic 
viscosity of the liquid can be determined 
by the use of empirical formula or the 
calibration chart.
 These viscometers (laboratory instruments) are widely employed in petroleum and allied industries.

HIGHLIGHTS

 1. Reynolds number, Re < 2000 ...Laminar flow
  Reynolds number, Re > 4000 ...Turbulent flow
 2. In case of laminar flow : The loss of head ∝ V, where V is the velocity of flow.
  In case of turbulent flow : The loss of head ∝ V 2 (approx).
 		∝ V n (more exactly), where n varies from 1.75 to 2.0.
 3. Relationship between shear stress and pressure gradient:

  
y
∂τ
∂

 = p
x
∂
∂

  This equation indicates that the pressure gradient in the direction of flow is equal to the shear 
gradient in the direction normal to the direction of flow.

 4. In case of viscous flow through circular pipes, we have:

 (i)   Shear stress, τ = –
2

p r
x
∂ ⋅
∂

 (ii)   Velocity, u = 2 21– ( – )
4

p R r
x
∂⋅

µ ∂

  Max. velocity, umax = 21–
4

p R
x
∂⋅

µ ∂

  Average velocity, u = max
2

u

    Again, u = 
2

max 1 – ru
R

    
   

Liquid

( )�

Measuring
cylinder

Constant
temperature

bath

Capillary tube

Fig. 10.34. Saybolt viscometer.
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 (iii) Loss of pressure head, hf = 2
32 uL
w D
µ
⋅

 	 where, r = Radius at any point,
    R = Radius of the pipe,
    D = Diameter of the pipe,
   	 µ = Co-efficient of viscosity,
    w = Weight density (ρ.g), and

    u = Average velocity 2 .Q
R

=
π

 5. For a circular pipe:
    K.E. correction factor, α = 2.0, and

    Momentum correction factor, β = 4 .
3

 6. For flow of viscous fluid through an annulus:
 (i) The velocity distribution is given by:

  u = 
2 2

2 2 1 2 1
1

1

2

–1– – – ln
4

ln

R R Rp R r
x rR

R

 ∂    ⋅    µ ∂          
  Velocity will be maximum, when

  r = 
1/22 2

1 2

1

2

–

2 ln

R R
R
R

 
       

  The discharge through annulus,

  Q = 
2 2 2

4 4 1 2
1 2

1

2

( – )– – –
8

ln

R Rp R R
x R

R

 ∂π  
  µ ∂         

  The average velocity of flow through the annulus is given by,

  u = 
2 2

2 2 1 2
1 2

1

2

( – )1– –
8

ln

R Rp R R
x R

R

 ∂  +  µ ∂         
 (iii) The shear stress distribution is given by:

  τ = 
2 2
1 2

1

2

–1 1– 2 –
4

ln

R Rp r
x r R

R

 ∂  ⋅  ∂         
  (where, R1 and R2 are the outer and inner radii of the annulus respectively)
 7. For the viscous flow between two parallel plates:
  Case I.  One plate moving and the other at rest - Couette flow:

   Velocity distribution:  u = 21– ( – )
2

pU y by y
b x

∂⋅
µ ∂

   The Discharge per unit width,  q =
3

–
2 12

U b pb
x

⋅ ∂⋅
µ ∂
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   Shear stress distribution:  τ = 1– ( – 2 )
2

pU b y
b x

∂µ ⋅ ⋅
∂

  Case II.  Both plates at rest:

  u =  21– ( – )
2

p by y
x
∂⋅

µ ∂

  q = 
3

– ,
12

pb
x
∂⋅

µ ∂
 and

  t =  1– ( – 2 )
2

p b y
x
∂⋅
∂

  Case III. Both plates moving in opposite directions:

  u = 21( ) – ( – ) –
2

y pU V by y V
b x

∂+ ⋅
µ ∂

  q = 31( – ) –
2 12

pbU V b
x
∂⋅ ⋅

µ ∂

  τ	 = ( ) – –
2

p bU V y
b x

∂µ  +  ∂  
  The shear stress (τ) will be zero at,

  y = –
2 ( / )

U Vb
b p x

+ µ
 ∂ ∂ 

  where, U and V = The velocities (in opposite directions) of the upper and lower plates respec-
tively.

  b = Distance between the parallel plates, and
  µ = Co-efficient of viscosity of the fluid.
 8. Laminar flow through porous media:

    Loss of head, hf = 2 2
s

K uL
wn d
µ

  where,  k = A constant, the value of which depends on the shape of the passage,
  µ = Co-efficient of viscosity,
  u = Average velocity,
  L = Length,
  w = Weight density of the fluid,
  n = Porosity, and
  ds = Grain diameter-porosity material.
  (nds = diameter of the passage through the particles)
  From the above eqn. we have, u = ki ... known as Darcy’s equation.
  where, k = a constant, called the co-efficient of permeability, and

    i = the hydraulic gradient fh
L

 
 
  9. Power absorbed in bearings (P) is given by:

    P = 2
60
NTT π⋅ ω =  watts, where T is in Nm.

  where, T = Torque required to overcome the viscous resistance of the whole 
    of bearing,
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  ω = Angular speed of the shaft 2
60

Nπ = 
 

, and

  N = Speed of the shaft in r.p.m.
  For various bearings, the values of T are given by:

  T = 
2 3

120
D NL

t
µπ  ...Journal bearing

  T = 2 4
60

NR
t

µ π  ...Foot-step bearing

  T = 2 4 4
2 1( – )

60
N R Rµ π  ...Collar bearing

  where, t =  thickness of oil film.
 10. For the viscous flow the co-efficient of friction is given by:

  f = 16
Re

  where, Re =  Reynolds number =  VD VDρ =
µ ν

 11. In a dashpot arragngement, the co-efficient of viscosity is given by:

  µ = 
3

3
4

3
Wt
LD Vπ

  where, W = Weight of piston/force on piston,
    t = Clearance between dashpot and piston,
    L = Length of the piston,
    D = Diameter of the piston, and
    V = Velocity of the piston.
 12. The co-efficient of viscosity may be determined by the following methods:

 (i) Rotating cylinder method:  µ = 2 2
1 2

15Tt
R R hNπ

  where, T = Torque,
    t = Annular space,
    R1 = Radius of inner stationary cylinder,
    R2 = Radius of the outer rotating cylinder,
    h = Height of liquid, and
    N = Speed of the rotating cylinder in r.p.m.

 (ii) Falling sphere method:  µ =
2

( – )
18 s f
gd

V
ρ ρ

  where, d = Diameter of the sphere,
    V = Velocity of sphere,
    ρs = Density of sphere, and
    ρf = Density of fluid/liquid.

 (iii) Capillary tube method: µ = 
4

128
whD

QL
π
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 where,   w = Weight density of the liquid,
    h = Difference of pressure head for length L,
    D = Diameter of the capillary tube, and
    Q = Discharge of liquid through the capillary tube.

OBJECTIVE TYPE QUESTIONS

Choose the Correct Answer:
 1. The laminar/viscous flow is characterised by 

Reynolds number which is
  (a) less than the critical value
  (b) equal to critical value
  (c) more than critical value
  (d) none of the above.
 2. The laminar flow is characterised by
  (a) existence of eddies
  (b) irregular motion of fluid particles
  (c) fluid particles moving in layers parallel to the 

boundary surface
  (d) none of the above.
 3. Which of the following is an example of laminar 

flow?
  (a) Underground flow
  (a) Flow past tiny bodies
  (c) Flow of oil in measureing instruments
  (a) All of the above
  (e) None of the above.
 4. In case of laminar flow, the loss of pressure head 

is proportional to
  (a) velocity, (b) velocity2

  (c) velocity3 (d) none of the above.
 5. The pressure gradient in the direction of flow is 

equal to the shear gradient in the direction
  (a) parallel to the direction of flow
  (a) normal to the direction of flow
  (a) either of the above
  (a) none of the above.
 6. ... studied the laminar flow through a circular 

tube experimentally
  (a) Prandtl
  (b) Pascal
  (c) Hagen and Poiseuille
  (d) None of the above.
 7. ... is the most commonly used equation for the 

velocity distribution for laminar flow through 
pipes.

  (a) u = umax 1 – r
R

 
  

  (b) u = umax 

2
1 – r

R
    

   

  (c) u = umax 

3
1 – r

R
    

   

  (d) u = u2
max 

2
1 – .r

R
    

   

 8. In laminar flow the pressure drop per unit length 
of pipe (∆p/L) is given as

  (a) 2
32 u
D
µ  (b) 2

2 u
D
µ

  (c) 3
32 u

D
µ  (d) none of above.

 9. The K.E. correction factor a for a circular pipe 
is equal to

  (a) 2  (b) 3
  (c) 4  (d) 6.
 10. The momentum correction factor b for a circular 

pipe is to equal to

  (a) 1
3

  (b) 2
3

  (c) 4
3

  (d) 5.
3

 11. The flow through a porous media is governed by 
well known Darcy’s law which relates the veloc-
ity with the head loss and is usually expressed 
as

  (a) fkh
u

L
=  (b) 

f

kLu
h

=

  (c) 
2

fh
u k

L
 

= ⋅  
 

 (d) 
3

.
f

Lu k
h

 
=   

 
 12. The shear stress distribution in pipe flow is given 

as

  (a) –
2

p r
x
∂ τ =  ∂ 

 (b) pr
x
∂ τ = ⋅  ∂ 

  (c) – 2 pr
x
∂ τ =  ∂ 

 (d) none of the above.
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 13. For viscous flow the co-efficient of friction is 
given by

  (a) 8f
Re

=  (b) 16f
Re

=

  (c) 32f
Re

=  (d) 60 .f
Re

=

 14. In case of viscous flow through circular pipes

  (a) u = 2 umax (b) max
3
2

u u=

  (c) max
2

uu =  (d) none of the above.

 15. The maximum velocity in a circular pipe when 
flow is laminar occurs at

  (a) the top of the pipe
  (b) the bottom of the pipe
  (c) the centre of the pipe
  (d) not necessarily at the centre.

ANSWERS

 1. (a) 2. (c) 3. (d) 4. (a) 5. (b) 6. (c)
 7. (b) 8. (a) 9. (a) 10. (c) 11. (a) 12. (a)
 13. (b) 14. (b) 15. (c)

THEORETICAL QUESTIONS

 1. What is the difference between a laminar flow 
and a turbulent flow?

 2. What are the characteristics of a laminar flow?
 3. Enumerate examples of laminar flow.
 4. Draw a neat sketch of the Reynolds apparatus, 

and explain how the laminar flow can be dem-
onstrated with the help of the apparatus.

 5. Derive a relationship between shear stress and 
pressure gradient.

 6. Derive an expression for the velocity distribution 
for viscous flow through a circular pipe. Also 
sketch the distribution of velocity and shear 
stress across a section of the pipe.

 7. For a steady laminar flow through a circular pipe 
prove that the velocity distribution across the 
section is parabolic and the average velocity is 
half of the maximum local velocity.

 8. What factors account for the loss of energy in 
laminar flow? How does the energy loss vary 
with velocity of flow?

 9. Derive Hagen-Poiseuille equation and state the 
assumptions made.

 10. For flow of viscous fluid through an annulus 
derive expressions for the following:

  (i) Discharge through the annulus,
  (ii) Average velocity of flow, and
  (iii) Shear stress distribution.
 11. What is a Couette flow?
 12. For a viscous flow through a circular pipe prove 

that the kinetic energy correction factor is equal 
to 2.

 13. Find an expression for the power absorbed in 
overcoming viscous resistance in case of a collar 
bearing.

 14. Show that the value of co-efficient of friction for 
viscous flow through a circular pipe is given by, 

16f
Re

= , where Re = Reynolds number.

 15. Derive an expression for the co-efficient of 
viscosity in case of a dashpot arrangment.

 16. Describe briefly any two methods of determining 
the co-efficient of viscosity of a liquid.

UNSOLVED EXAMPLES
 1. An oil of 8 poise and specific gravity 0.9 is flow-

ing through a horizontal pipe of 50 mm diameter. 
If the pressure drop in 100 m length of the pipe 
is 2000 kN/m2, determine: (i) Rate of flow of oil 
(ii) Centre-line velocity; (iii) Total frictional drag 
over 100 m length of pipe; (iv) Power required 
to maintain the flow; (v) Velocity gradient at the 
pipe wall; (vi) Velocity and shear stress at 10 mm 
from the wall.

  [Ans. (a) 3.83 lit./s; (ii) 3.9 m/s; (iii) 3.93 kN; 
(iv) 7.65 kW (v) 312 s–1; (vi) 2.5 m/s; 150 N/m2]

 2. An oil of viscosity 1 poise and relative density 
0.9 is flowing through a circular pipe of diameter 
50 mm and of length 300 m. The rate of flow of 
liquid is 0.0035 m3/s. Find the pressure drop in 
a length of 300 m and shear stress at the wall.

[Ans. 684.3 kN/m2, 28·5 N/m2]
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 3. In a circular pipe of diameter 100 mm a fluid of 
viscosity 7 poise and sp. gr. 1.3 is flowing. If the 
maximum shear stress at the wall of the pipe is 
196.2 N/m2, find:

  (i) The pressure gradient,
  (ii) The average velocity, and
  (iii) Reynolds number of flow.
 [Ans. (i) 7848 N/m2 per m; (ii) 3.5 m/s; (iii) 650]
 4. An oil of viscosity 0.02 poise and sp. gr. 0.8 is 

flowing through 50 mm diameter pipe of length 
500 m at the rate of 0.19 lit./sec. Determine:

  (i) Reynolds number of flow,
  (ii) Centre-line velocity,
  (iii) Pressure gradient,
  (iv) Wall shear stress, and
  (v) Power required to maintain the flow.
 [Ans. (i) 1936.3; (ii) 0.1936 m/s;  (iii) 2.478 N/m2; 

(iv) 0.031 N/m2; (v) 0.2354 W] 
 5. What power is required per km of a line to 

overcome the viscous resistance to the flow of 
glycerine through a horizontal pipe of diameter 
100 mm at the rate of 10 lit./s? Take µ = 8 poise 
and kinematic visosity (ν) = 6.0 stokes. 

   [Delhi University]
[Ans. 32.5 kW]

 6. In a pipe of 200 mm diameter the maximum 
velocity of flow is found to be 1.5 m/s. If flow 
in the pipe is laminar, find:

  (i) The average velocity and the radius at which 
it occurs, and

  (ii) The velocity at 40 mm from the wall of the 
pipe.

 [Ans. (i) 0.75 m/s; 70.7 mm; (ii) 0.96 m/s]
 7. An oil of viscosity 0.143 Ns/m2 and specific 

gravity 0.9 is flowing through a circular pipe of 

diameter 25 mm and of length 3 m at 1
10

 th of 
critical velocity for which Reynolds number is 
2500. Find:

  (i) The velocity of flow through the pipe,
  (ii) The head in metres of oil across the pipe 

length required to maintain the flow, and
  (iii) The power required to overcome viscous 

resistance to flow of oil.
 [Ans. (i) 1.589 m/s, (ii) 3.593 m, (iii) 24.73 W]
 8. In a laboratory a horizontal pipe of 500 mm 

diameter was used to measure the viscosity of 
a crude oil having specific weight of 9 kN/m3. 
During the test a pressure difference of 18 kN/m2 
was recorded from two pressure gauges located 
6 m apart on the pipe. The oil was allowed to 

discharge into a weighing tank and 5 kN of oil 
was collected in 3 minutes. Find the dynamic 
viscosity of the oil. [Ans. 1.49 poise]

 9. The fixed parallel plates kept at 80 mm apart 
have laminar flow of oil between them with a 
maximum velocity 1.5 m/s. Taking dynamic 
viscosity of oil to be m = 19.62 poise, calculate;

  (i) The discharge per metre width,
  (ii) The shear stress at the plates,
  (iii) The pressure difference between two points 

25 m apart,
  (iv) The velocity at 20 mm from the plate, and
  (v) The velocity gradient at the plates end.
   [Ans. (i) 0.08 m3/s; (ii) 147 N/m2; (iii) 91.97 

kN/m2; (iv) 1.125 m/s; (v) 75s– 1]
 10. A liquid of viscosity 0.1 Ns/m2 and sp. gr. 0.9 

is filled between two horizontal plates 10 mm 
apart. If the upper plate is moving at 2 m/s and 
the pressure difference between two sections 10 
m apart is 9.81 kN/m2, determine the shear stress 
on the plate. [Ans.15 N/m2]

 11. Water at a rate of 0.0008 litre/sec. is flowing 
through a sandy specimen of 10 cm height and 50 
cm2 cross-sectional area under constant head of 
8 cm. Calculate the co-efficient of permeability.

 [Ans. 0.02 cm/s]
 12. Find the torque and power absorbed to rotate a 

shaft of diameter 50 mm, at 1200 r.p.m. concen-
trically within a sleeve 50.17 mm in diameter and 
90 mm long, flooded with oil for which m = 0.8 
poise. [Ans.1.045 Nm, 0.1313 kW]

  
Thickness of oil film,

50 17 – 50 0 085 mm
2

t

 
 ⋅ = = ⋅
 

Hint.

 13. Find the power required to rotate a circular disc 
of diameter 200 mm at 100 r.p.m. The circular 
disc has a clearance of 0.4 mm from the bottom 
flat plate and clearance contain oil of viscosity 
0.11 Ns/m2 [Ans. 473.48 W]

 14. A collar bearing having external and internal 
diameters 150 mm and 100 mm respectively is 
used to take the thrust of a shaft. An oil film of 
thickness 0.25 mm and of viscosity 0.8 poise is 
maintained between the collar surface and the 
bearing. Find the power lost in overcoming the 
viscous resistance of oil when the shaft is run-
ning at 300 r.p.m. [Ans. 12.54 W]

 15. Water is flowing through a 240 mm diameter 
pipe with co-efficient of friction f = 0.042. The 
shear stress at a point 48 mm from the pipe axis 
is 0.1 kN/m2. Calculate the shear stress at the 
pipe wall. [Ans. 0.25 kN/m2]
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 16. A pipe 200 mm in diameter and 10000 m long 
is laid at a slope of 1 in 200. An oil of specific 
gravity 0.9 and viscosity 0.15 Ns/m2 is pumped 
up at the rate of 0.02 m2/s. Find:

  (i) Head lost due to friction, and
  (ii) Power required to pump the oil.
 [Ans. (i) 86.5 m; (ii) 24.09 kW]
 17. In a rotating cylinder viscometer, the radii of 

the cylinders are 32 mm and 30 mm, and the 
outer cylinder is rotated steadily at 180 r.p.m. 
For a certain liquid filled in the annular space 
to a depth 75 mm, the torque produced on the 
inner cylinder is 1.2 × 10–4 Nm. Calculate the 
viscosity of the liquid. [Ans. 9.39 × 10–4 Ns/m2]

 18. In order to determine the viscosity of a lubricat-
ing oil by falling-sphere method, a steel spherical 
ball of specific gravity 7.7 and diameter 2 mm 
is allowed to fall freely under gravity through a 
distance of 140 mm in 215 seconds. The sp. gr. 
of the oil is 0.8. Determine the viscosity of the 
oil. [Ans. 2.31 Ns/m2]

 19. A fluid of sp.gr. 1.02 was made to pass through 
an accurate tube, length 35 cm and bore 0.1 cm 
under a head of 18 cm. A discharge equilvalent to 
40 cm3 was collected in a period of 400 seconds. 
Find the dynamic viscosity of the fluid.

 [Ans. 1.266 × 10–3 Ns/m2]
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11.1.  INTRODUCTION 

 In a pipe, a laminar flow occurs when Reynolds 
number (Re) is less than 2000 and a turbulent flow 
occurs when Re > 4000. In a turbulent flow, the fluid 
motion is irregular and chaotic and there is complete 
mixing of fluid due to collision of fluid masses with 
one another. The fluid masses are interchanged between 
adjacent layers. As the fluid masses in adjacent layers 
have different velocities, interchange of fluid masses 
between the adjacent layers is accompanied by a transfer 
of momentum which causes additional shear stresses 
of high magnitude between adjacent layers. The shear 
in turbulent flow is mainly due to momentum transfer. 
The contribution of fluid viscosity to total shear is small 
and is usually neglected. In case of laminar flow, because 
of definite functional relationship ‘between shear stress 
due to viscosity and velocity’ it has been possible to 
derive a mathematical relationship for evaluation of 
energy dissipation or frictional head but such a simple 
relationship does not exist for turbulent flow. However to 
solve some of the practical problems, efforts have been 
made to evolve semi-empirical theories of turbulence.
Following points are worth noting about turbulent flow:
 (i) The velocity distribution in turbulent flow is more 

uniform than in laminar flow.
Turbulent
(logarithmic)

Laminar
(parabolic)

 Fig. 11.1. Shows the velocity distribution
 curves for laminar and turbulent
 flows in a pipe.

 (ii) In turbulent flow the velocity gradients near the 
boundary shall be quite large resulting in more 
shear.

 (iii) In turbulent flow the flatness of velocity distri-
bution curve in the core region away from the 
wall is because of the mixing of fluid layers and 
exchange of momentum between them.

 (iv) The velocity distribution which is paraboloid in laminar flow, tends to follow power law and 
logarithmic law in turbulent flow.

Chapter

TURBULENT FLOW IN PIPES

11

11.1. Introduction
 11.2. Loss of head due to 

friction in pipe flow—
Darcy equation

 11.3. Characteristics of turbulent 
flow

 11.4. Shear stresses in turbulent 
flow

 11.5. Universal velocity distribu-
tion equation

 11.6. Hydrodynamically smooth 
and rough boundaries—
velocity distribution for 
turbulent flow in smooth 
pipes—velocity distribution for 
turbulent flow in rough pipes

 11.7. Velocity distribution for both 
smooth and rough pipes

 11.8. Velocity distribution for 
turbulent flow in smooth 
pipes by power law

 11.9. Resistance to flow of fluid in 
smooth and rough pipes

  Highlights
  Objective Type Questions
  Theoretical Questions
  Unsolved Examples
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 (v) Random orientation of fluid particles in a turbulent flow gives rise to additional stresses, called 
the Reynolds stresses.

 (vi) Formation of eddies, mixing and curving of path lines in a turbulent flow results in much 
greater frictional losses for the same rate of discharge, viscosity and pipe size.

 The turbulent motion can be classified as follows:
 1. Wall turbulence. It occurs in immediate vicinity of solid surfaces and in the boundary layer 

flows where the fluid has a negligible mean acceleration.
 2. Free turbulence. It occurs in jets, wakes, mixing layers etc.
 3. Convective turbulence. It takes place where there is conversion of P.E into K.E. by the pro-

cess of mixing (e.g. the turbulent flow in the annular space between the concentric rotating 
cylinder, conventional flow between parallel horizontal plates etc.).

11.2.  LOSS OF HEAD DUE TO FRICTION IN PIPE FLOW–DARCY 
EQUATION 

 In case of turbulent flow through pipes it has been observed through experiments that the 
viscous friction effects associated with fluid are proportional to:
 (i) The length of the pipe, L,
 (ii) The wetted perimeter, P, and
 (iii) V n, where V is the average velocity of flow and n is an index varying from 1·5 to 2 

(depending on the material and nature of the pipe surface); for commercial pipes  2 
(with turbulent flow).

 Fig. 11·2. shows a horizontal pipe having steady flow. Consider control volume enclosed 
between sections 1 and 2 of the pipe.

p1

L

D

Pipe1 2

p2

Fig. 11.2. Forces on a control volume in a pipe flow. 

 Let, p1 = Intensity of pressure at section 1,
  p2 = Intensity of pressure at section 2,
  L = Length of the pipe, between sections 1 and 2,
  D = Diameter of the pipe,
  f ’ = Non-dimensional factor (whose value depends upon the material and nature of 

the pipe surface), and
  hf = Loss of head due to friction.
 Propelling force on the flowing fluid between the two sections is
   = (p1 – p2) A
   (where, A = area of cross-section of the pipe)
 Frictional resistance force = f  ′ PLV2

 where, P = Wetted perimeter, and
  V = Average flow velocity.
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 Under equilibrium conditions:
  Propelling force = Frictional resistance force
 i.e. (p1 – p2) A = f  ′ PLV2

 Dividing both sides by weight density w, we have:

  1 2–p p A
w

 
 
 

 = 2f PLV
w
′

 or, hf = 2f P LV
w A
′  
 
 

 or, hf = 
2 22 2

2 2
gf P LV gf L V
w A g w m g
′ ′  = × × 
 

 ...(11·1)

 The ratio A
P

 is called the hydraulic mean depth or hydraulic radius, denoted by m (or R).

 The term 
2

2
L V
m g

 
×  

 
 has dimensions of hf and thus the term 2gf

w
′
 is a non-dimensional quantity 

and let us replace it by another constant f.

	 ∴ hf = 
2

2
L Vf
m g

× ×  ...[11.1(a)]

 In case of a circular pipe,

  Hydraulic mean depth, m = 
2

4
4

DA D
P D

π
×

= =
π

 Substituting this value in eqn. (11·1 (a)), we get:

  hf = 
2 24

/ 4 2 2
L V fLVf

D g D g
× × =

×
 ...(11·2)

  (The factor f is known as Darcy coefficient of friction.)
 Eqn. (11·2) is known as Darcy-Weisbach equation and it holds good for all types of flows 
provided a proper value of f is chosen.
 Sometimes eqn. (11·2) is written as:

  hf = 
2

1
2

f LV
D g×

 where,  f1 is known as friction factor (f1 = 4f)
 Expression for co-efficient of friction in terms of shear stress:
 Refer to Fig. 11.2,
  (p1 – p2) A = Force due to shear stress, τ0
  (where, τ0 = shear stress at the pipe wall)
   = Shear stress (τ0) × surface area
   = τ0 × πDL
 or, 2

1 2( – )
4

p p Dπ  = τ0 × πDL

 or, 1 2( – )
4
Dp p  = τ0L

 or, (p1 – p2) = 04 L
D

τ ×  ...(11·3)
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 Eqn. (11·2) can be written as:

  hf = 
2

1 2– 4
2

p p fLV
w D g

=
×

 or, (p1 – p2) = 
24

2
fLV w

D g
×

×
 ...(11·4)

 Equating eqns. (11·3) and (11·4), we get:

  04 L
D
τ  = 

24
2

fLV w
D g

×
×

 or, τ0 = 
2 2 2

2 2 2
fV w fV g f V

g g
× × ρ ρ

= =  ...[11·5 (a)]

 or, f = 0
2

2
V
τ

ρ
 ...[11·5 (b)]

11.3. CHARACTERISTICS OF TURBULENT FLOW 

 The turbulent flow is characterised by random, irregular and haphazard movement of fluid 
particles. It has been observed during experimentation that at any fixed point in turbulent field, the 
velocity and consequently the pressure fluctuates with time about a mean value.

u

u–

t

–u'

u'

Fig. 11.3. Variation of u with time t at a point in turbulent flow.

 Fig. 11·3 shows random velocity fluctuations at a point in turbulent flow.
 The instantaneous velocity i.e. velocity at any time at the given point can be expressed as:
  u = u u′+  ...(11·6)
 where, u = Instantaneous velocity,
  u  = Time average or temporal mean velocity, and
  u’ = Velocity fluctuation (fluctuating component).
 Similarly, v = ,v v′+
  w = ,w w′+
 and, p = p p′+  ...(11·7)
 From the definition of average-velocities, we have:

   0 0

0 0

1 1; ;

1 1;

T T

T T

udt u vdt v
T T

wdt w pdt p
T T

 
 = =
  
 
 

= = 
  

∫ ∫

∫ ∫
 ...(11·8)
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 and,  0 0

0 0

1 1' 0; v ' v ' 0;

1 10; 0

T T

T T

u dt u dt
T T

w dt w p dt p
T T

 
 ′ = = = =
  
 
 

′ ′ ′ ′= = = = 
  

∫ ∫

∫ ∫
 ...(11·9)

 where, T = Large interval of time.
 Magnitude of turbulence = Arithmetic mean of root-mean square value of turbulent fluctuations 
in the three directions

   = 
2 2 2

3
u v w ′ ′ ′+ +

  
 

 ...(11·10)

 Intensity of turbulence

   = 

2 2 2

3
u v w

V

′ ′ ′+ +

 ...(11·11)

 where, V  = Line average resultant velocity at the point.
 For describing the turbulence fully, besides the intensity of turbulence, the average size of the 
eddy is also necessary which can be obtained from the curve of velocity variation with time (as 
shown in Fig. 11·3) by multiplying the average time interval at which the curve crosses the mean 
value, with the average velocity of flow.

11.4. SHEAR STRESSES IN TURBULENT FLOW 

 In turbulent flow, as stated earlier, velocity fluctuations cause momentum transport which 
results in developing additional shear stresses of high magnitude between adjacent layers of the 
fluid. In order to determine the magnitude of the turbulent shear stress a number of semi-empirical 
theories have been developed some of which are discussed below.

11·4·1 Boussinesq’s Theory
 According to this theory (1877), the expression for the shear stress, τt for the turbulent flow can 
be written as :
  τt = du

dy
η ⋅  ...(11·12)

 where η (eta) is called “eddy” viscosity, and u  is the temporal mean velocity in the direction of 
flow at a point at distance y from the solid boundary.

 Similar to kinematic viscosity ,v µ
=
ρ

 the “eddy” kinematic viscosity ∈ (Greek ‘epsilon’) is 

also obtained by dividing eddy viscosity η, by the mass density of the fluid ρ, thus,

  ∈ = η
ρ

 When viscous action is also included, the total shear stress may be expressed as :
  τ = τυ + τt
  (where τυ = shear stress due to viscosity)

 or, τ = du du
dy dy

µ + η  ...(11·13)

 The magnitude of η may vary from zero (if the flow is laminar) to several thousand times that 
of µ. As the values of η and ∈ cannot be predicted, the Boussinesq’s equation has a limited use.
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11·4·2 Reynolds Theory
 According to this theory (1886), the turbulent shear stress between two layers of a fluid at a 
small distance apart is given as:
  τ = ρu’ υ’ ...(11·14)
 where u’ and υ’ are the fluctuating components of velocity in the directions of x and y due to 
turbulence.
 Since both u’ and υ’ vary and subsequently τ also varies, therefore, to find the shear stress, the 
time average is taken and eqn. (11·14) becomes:

  τ  = u′ ′ρ υ  ...(11·15)

11·4·3 Prandtl’s Mixing Length Theory
 According to Prandtl (1925), the mixing length (l) is defined as the average lateral distance 
through which a small mass of fluid particles would move from one layer to the other adjacent layers 
before acquiring the velocity of the new layer. He assumed that components u’ and υ’ are of the 
same order and the velocity fluctuation in X-direction is related to the mixing length as:

  u′ = dul
dy

	 ∴ u′ ′× υ  = 
2

2du du duu l l l
dy dy dy

     ′ ′υ = × =     
     

 dul
dy

 ′υ = 
 


 Substituting the value of u′ ′υ  in eqn. (11·15), we get:

  τ  = 
2

2 dul
dy

 ρ  
 

 ...(11·16)

 When the viscous action is also included the total shear stress may be expressed as :

  τ  = 
2

2du dul
dy dy

 µ + ρ  
 

 ...(11·17)

 Eqn. (11·17) is used for most of the turbulent flow problems for determining the shear stress 
(viscous shear stress is negligible except near the boundary).

11.5. UNIVERSAL VELOCITY DISTRIBUTION EQUATION 

 Assuming the viscous shear stress to be negligible near the boundary the shear stress in turbulent 
flow is given by the eqn. (11·16).
 i.e. τ  = 

2
2 dul

dy
 ρ  
 

 From this equation, we can obtain velocity distribution if the relation between l, the mixing 
length, and y is known.
 Also l α y (from the pipe wall)   ...Prandtl’s hypothesis
 or, l = λy
 where, 	λ = a constant of proportionality, known as ‘Karman universal constant’ (= 0·4).
 Substituting the values of l in eqn. (11·16), we get:

  orτ τ  = 
2 2

2 2 2( ) du duy y
dy dy

   ρ × λ × = ρλ   
   

 ...(i)

 Assuming that the turbulent shear stress remains constant in the vicinity of wall, we have
  τ = τ0  (τ0 = the boundary shear stress)
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 The eqn. (i) becomes:

  τ0 = 
2

2 2 duy
dy

 ρ λ  
 

 or, du
dy

 = 01 1
fu

y y
τ  =  λ ρ λ 

 ...(ii)

          0where, orfu shear friction velocity
 τ

= = ρ  
shear velocity

 or, du = 1
fu dy

y
 
 λ 

 ...(iii)

     (uf  is constant for a given case of turbulent flow)
 Integrating the other equation, we get:

  u = ln ( )fu
y C+

λ
 ...(11·18)

 (where, C = constant of integration)
 Eqn. (11·18) shows that velocity distribution in turbulent flow is logarithmic in nature.
 The constant of integration C is determined by the boundary condition.
 At    y = R (radius of the pipe), u = umax
 By substituting the above values in eqn. (11·18), we have:

  umax = ln ( )fu
R C+

λ

 or C = max – ln ( )fu
u R

λ
 Substituting this value of C in eqn. (11·18), we get:

  u = maxln ( ) – ln ( )f fu u
y u R+

λ λ

   = max [ln ( ) – ln ( )]fu
u y R+

λ

 or, u = max lnfu yu
R

 +  λ  
 Taking λ = 0·4, we get:

  u = max 2 5 lnf
yu u
R

 + ⋅  
 

 ...(11·19)

 Eqn. (11·19) is called Prandtl’s universal distribution equation. This equation is applicable 
to smooth as well as rough boundaries.
 This equation (11·19) may be written in non-dimensional form:

  max –
f

u u
u

 = 2 5 ln R
y

 ⋅  
 

   = 105 75 log R
y

 ⋅  
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 i.e. max –
f

u u
u

 = 105 75 log R
y

 ⋅  
 

 ...(11·20)

 The difference (umax – u) is known as the velocity defect.
 Example 11·1.  In a pipe of 360 mm diameter having turbulent flow, the centre-line velocity is 
7 m/s and that at 60 mm from the pipe wall is 6 m/s. Calculate the shear friction velocity.

 Solution.   Radius of the pipe = 
360 180 mm 0 18 m

2
= = ⋅

  Centre-line velocity, umax = 7 m/s
  Velocity at 60 mm (i.e. distance y), u = 6 m/s
 Shear velocity, uf :

 We know, max –
f

u u
u

 = 105 75 log R
y

 ⋅  
 

 ...[Eqn. (11·20)]

	 ∴ 7 – 6
fu

 = 10
0 185 75 log 2 743
0 06
⋅ ⋅ = ⋅ ⋅ 

	 ∴ uf = 0·36 m/s (Ans.)

 Example 11·2.  A pipe of 100 mm diameter is carrying water. If the velocities at the pipe 
centre and 30 mm from the pipe centre are 2.0 m/s and 1.5 m/s respectively and flow in the pipe is 
turbulent, calculate the wall shearing stress. (Anna University)

 Solution. Given :   100
2

R =  = 50 mm = 0.05 m; umax = 2.0 m/s;

 Velocity at r = 30 mm or y = R – r = 50 – 30 = 20 mm, u = 1.5 m/s.
 Wall shearing stress, τ0:

  max –
f

u u
u

 = 105.75 log R
y

 
 
 

 ...[Eqn. (11·20)]

 (where, uf = shear velocity) 

 Substituting the values, we get:      10
2.0 – 1.5 0.055.75 log 2.288

0.02fu
 = = 
 

  uf = (2.0 – 1.5) 0.218 m/s
2.288

=

 Using the relation: uf = 0τ
ρ

 or, 0.218 = 0
1000
τ  ( ρ for water = 1000 kg/m3)

 or, τ0 = 47.524 N/m2 (Ans.)

11.6. HYDRODYNAMICALLY SMOOTH AND ROUGH BOUNDARIES 

 Refer to Fig. 11·4. If k is the average height of the irregularities of the surface of a boundary, then 
in general, the boundary is said to be rough if value of k is high and smooth if k is low. However, 
for proper classification of smooth and rough boundaries, besides the boundary characteristics, the 
flow and fluid characteristics need to be considered.
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�
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k

Laminar sublayer

(a) Smooth boundary

Turbulent boundary layer

�

�'

Laminar sublayer

Turbulent boundary layer

(b) Rough boundary

k

Fig. 11.4. Smooth and rough boundaries

 As shown in Fig. 11·4 when the average height k of the irregularities (projecting from its surface) 
is much less than the thickness of the laminars sublayer δ’ the flow outside the laminar sublayer is 
turbulent; the eddies of various sizes present, try to penetrate the laminar sublayer. These eddies 
cannot reach the surface irregularities/projections due to greater thickness of the laminar sublayer 
and so the boundary acts as a smooth boundary. As the Reynolds number (Re) increases the 
thickness of the sublayer decreases (can even become much less than k), the irregularities will then 
project through the laminar sublayer and eventually the laminar sublayer is destroyed completely. 
Subsequently, the eddies will come in contact with the surface irregularities and there will be a large 
amount of energy loss. This type of boundary is known as hydrodynamically rough boundary.
 Through experiments Nikuradse found that the boundary behaves as:

 (i) Hydrodynamically smooth boundary ...when 0 25,k  < ⋅ ′δ 

 (ii) Hydrodynamically rough boundary ...when 6 0,k  > ⋅ ′δ 
 and

 (iii) Boundary in transition ...when 0 25 6 0.k ⋅ < < ⋅ ′δ 
 In terms of roughness Reynolds number fu k

v
:

  (i) For smooth boundary ... 4,fu k
v

<

 (ii) For rough boundary ... 100,fu k
v

> and

 (iii) For boundary in transition stage ... fu k
v

 lies between 4 and 100.

 Note :  It may be noted that the thickness of laminar sublayer δ’ is not a fixed quantity. It depends upon the 
Reynolds number; it is just possible that a pipe may behave as smooth at low Reynolds number and 
rough at high Reynolds number. The height of roughness projection, however, remains constant.

11·6·1. Velocity Distribution for Turbulent Flow in Smooth Pipes
 The velocity distribution for turbulent flow in pipes in given by Eqn. 11·18 as :
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  u = ln ( )fu
y C+

λ
 The peculiarity for this velocity distribution is that at the boundary, that is for y = 0, it gives 
velocity u equal to – ∞ (minus infinity). Thus it is only at a certain finite distance above the boundary 
say y = y′, that the velocity will be zero, hence the above equation becomes:

  0 = ln ( )fu
y C′ +

λ

 or, C = – ln ( )fu
y′

λ
 Substituting the value of C in the above equation, we get:

  u = ln ( ) – ln ( ) lnf f fu u u yy y
y

 ′ =  ′λ λ λ  
 Substituting the value of λ = 0·4, we have:

  u = ln 2 5 ln
0 4

f
f

u y yu
y y

   = ⋅   ′ ′⋅    

 or, 
f

u
u

 = 102 5 2 3 log y
y

 ⋅ × ⋅  ′ 

 or, 
f

u
u

 = 105 75 log y
y

 ⋅  ′ 
 ...(11·21)

 It has been observed from Nikuradse’s experimental studies of turbulent flow in smooth pipes 

that for turbulent flow in smooth pipes of any size the value of the parameter fu y
v

 
 
 

 for y = δ′ is 
approximately 11·6 and for y = y′ it is approximately 0·108.

 i.e. fu
v
′δ

 = 11 611 6 or
f

v
u
⋅′⋅ δ =  ...(11·22)

 and, fu y
v
′

 = 0.108

 or, y′ = 0 108
107f

v
u

′⋅ δ = 
 

 ...(11·23)

 Substituting the value of 0 108
f

y
u

 ⋅ ν′ =  
 

 in eqn. 11·21, we get:

  
f

u
u

 = 105 75 log 0.108
f

y
v

u

 ⋅  
  
 

   = 10 105 75log 5 75log
0 108

f fu y u y
v v

⋅ ⋅   
⋅ = ⋅   ⋅   

 = 5.75 log10 (0.108)

 or, 
f

u
u  = 10

·
5 75 log 5 5fu y 
⋅ + ⋅  ν 

 ...(11·24)

 The eqn. (11·24) is known as Karman-Prandtl equation for the velocity distribution near 
hydrodynamically smooth boundaries.
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11·6·2 Velocity Distribution for Turbulent Flow in Rough Pipes
 As shown in Fig. 11·4 (b), the thickness of laminar sublayer is very small, the surface 
irregularities are above the laminar sublayer and hence the laminar sublayer is completely destroyed. 
From the experiments conducted by Nikuradse and others, using pipes artificially roughened by 
cemented coatings of sand grains (irregularities/projections) of diameter k, it has been found that y’ 

is directly found proportional to k and 
30
ky′ = .

 Substituting this value of y’ in eqn. (11·24), we get:

  
f

u
u

 = 10 105 75 log 5 75 [log ( / ) 30]
/ 30
y y k

k
 ⋅ = ⋅ × 
 

   = 5·75 log10 (y/k) + 5·75 log10 30
 or, 

f

u
u  = 5·75 log10 (y/k) + 8·5 ...(11·25)

 The eqn. (11·25) is known as Karman-Prandtl equation for the velocity distribution near 
hydrodynamically rough boundaries.
 Example 11·3.  The velocity of flow in a badly corroded 7·5 cm pipe is found to increase 20 
percent as a pitot tube is moved from a point 1 cm from the wall to a point 2 cm from the wall. 
Estimate the height of roughness elements. [Roorkee University]
 Solution. The velocity distribution near the rough boundaries is given by:

  
f

u
u

 = 105.75 log 8.5y
k

  + 
 

 ...[Eqn. (11·25)]

 where, k = Average height of roughness elements, and
  uf = Shear friction velocity.
 Let, u = The velocity at a distance (y) of 1 cm from the pipe wall, and 1·2u = the velocity at a 
distance of 2 cm from the pipe wall (given),
 then, 

f

u
u

 = 10
15.75 log 8.5
k

  + 
 

 ...(i)

 and, 1.2
f

u
u

 = 10
25.75 log 8.5
k

  + 
 

 ...(ii)

 Dividing (i) by (ii), we get:

  1
1.2

 = 
10

10

15.75 log 8.5

25.75 log 8.5

k

k

  + 
 
  + 
 

 or, 10
25.75 log 8.5
k

  + 
 

 = 10
11.2 5.75 log 8.5
k

   +    

  10
25.75 log 8.5
k

  + 
 

 = 10
16.9 log 10.2
k

  + 
 

  5·75 log10 (2) – 5·75 log10 k + 8·5 = 6·9 log10 1 – 6·9 log10 k + 10·2
  1·73 – 5·75 log10 k + 8·5 = 0 – 6·9 log10 k + 10·2
  1·15 log10 k = – 0·03

 or, log10 k = 0.03– – 0.0261
1.15

=

 ∴ k = 0·942 cm (Ans.)
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 Example 11.4.  A pipeline carrying water has surface protrusions of average height of 0·10 
mm. If the shear stress developed is 8·2 N/m2 determine whether the pipe surface acts as smooth, 
rough or in transition. For water take ρ = 1000 kg/m3 and kinematic viscosity v = 0·0093 stokes.
 [Bangalore University]
 Solution. Average height of surface protrusions, 
  k  = 0·10 mm = 0·1 × 10– 3 m
  Shear stress developed, τ0 = 8·2 N/m2

  Density of water,	ρ = 1000 kg/m3

  Kinematic viscosity, v = 0·0093 stokes = 0·0093 × 10– 4 m2/s
 Shear velocity is given by,
  uf = 0τ

ρ

	 ∴ uf = 8 2 0 0906 m/s
1000
⋅

= ⋅

 Roughness Reynolds number is
   = 

– 3

– 4
0.0906 (0.1 10 ) 9.74

0.0093 10
fu k × ×

= =
ν ×

 Since fu k
v

 lies between 4 and 100 the pipe surface behaves as in transition. (Ans.)

 Example 11.5.  In a pipe of diameter 100 mm, carrying water, the velocities at the pipe centre 
and 30 mm from the pipe centre are found to be 2·5 m/s and 2.2 m/s respectively. Find the wall 
shearing stress.

 Solution.       Radius of the pipe, 100 50 mm 0.05 m
2

R = = =

  Velocity at the centre, umax = 2·5 m/s
  Velocity at 30 mm from the centre = 2.2 m/s.
 Wall shearing stress, τ0:
 Using the equation:

  max –
f

u u
u

 = 105.75 log R
y

 
 
 

  (where, uf = shear friction velocity)
 where,    u = 2.2 m/s at y = (R – 30) mm = (50 – 30) mm = 0·02 m

	 ∴ 2.5 – 2.2
fu

 = 10
0.055.75 log 2.288
0.02

  = 
 

 or, 0.3
fu

 = 2.88 or  uf = 0·1311

 Now using the relation:

  uf = 0 ,τ
ρ

 we have:

  0.1311 = 0
1000
τ  or 20 (0.1311) 0.01719

1000
τ

= =

	 ∴ τ0 = 17·19 N/m2 (Ans.)
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 Example 11.6.  A smooth pipe of 80 mm diameter and 1000 m long is carrying water at the rate 
of 8 litres/sec. If the kinematic viscosity of water is 0·015 stokes and the value of co-efficient of 

friction ‘f’ is given by the relation /( )1 4
0 0791f
Re
⋅

= , where Re is Reynolds number, calculate:

 (i) Loss of head,
 (ii) Wall shearing stress,
 (iii) Centre-line velocity,
 (iv) Velocity and shear stress at 20 mm from the pipe wall, and
 (v) Thickness of laminar sublayer.
 Solution.  Diameter of the pipe, D = 80 mm = 0.08 m
  Length of the pipe, L = 1000 m
  Discharge, Q = 8 litres/sec. = 0.008 m3/s
  Kinematic viscosity of water, v  = 0·015 stokes
   = 0.015 × 10– 4 m2/s

  Mean velocity, V = 
2

0.008 1.59 m/s
(0.08)

4

Q
A
= =
π
×

	 ∴  Reynolds number, Re = – 4
1.59 0.08 84800

0.015 10
VD
v

×
= =

×

  Co-efficient of friction, f = 1/4 1/4
0.0791 0.0791 0.004635
( ) (84800)Re

= =

 (i) Loss of head, hf  :
    hf = 

2 24 4 0.004635 1000 1.59
2 0.08 2 9.81

f LV
D g

× × ×
= =

× × ×
29 98 m.  (Ans.)

 (ii) Wall shearing stress, τ0:

    τ0 = 
2

2
fV ρ  [Eqn. 11·5 (a)]

     = 
20.004635 1.59 1000 /

2
25 86 N m.

× ×
=  (Ans.)

 (iii) Centre-line velocity, umax:

    
f

u
u

 = 105.75 log 5.5fu y 
+ ν 

   ...(i)   [Eqn. (11·24)]

  where, uf = shear friction velocity

     = 0 5 86 0 0765 m/s
1000

τ ⋅
= = ⋅

ρ

  The velocity will be maximum where 0.08 0.04 m
2 2
Dy = = =

  Hence, at y = 0·04 m  u = umax; substituting these values in (i), we get:

  max
0.0765
u  = 10 – 4

0.0765 0.045.75 log 5.5 24.53
0.015 10

 ×
+ = 

× 
  ∴ umax = 0.0765 × 24.53 = 1.876 m/s (Ans.)
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 (iv) Velocity and shear stress at 20 mm from the pipe wall:
  The shear stress (τ) at any point is given by:

    τ = –
2

p r
x
∂

×
∂

 ...(ii)

  where, r = distance from the centre of the pipe.
	 	∴ Shear stress at pipe wall (where r = R),

    τ0 = –
2

p R
x
∂

×
∂

 ...(iii)

  Dividing (ii) by (iii), we get:

    
0

τ
τ

 = r
R

	 	∴  Shear stress, τ	= 0
r
R

τ ×

  where, r = 40 – 20 = 20 mm = 0.02 m

  ∴ τ = 
0.025.86 /
0.04

22 93 N m.× =  (Ans.)

  Again, 
f

u
u

 = 10
.

5.75 log 5.5fu y 
+ ν 

  where, uf = 0.0765 m/s   and   y = 0.2 m from the pipe wall

 	∴ 
0.0765

u  = 10 – 4
0.0765 0.025.75 log 5.5 22.80
0.015 10

 ×
+ = 

× 
  or u = 1.744 m/s (Ans.)
 (v) Thickness of laminar sublayer, δ′ :
  Thickness of laminar sublayer is given by,

    δ′	=	
11.6

f

v
u

 [Eqn. (11·22)]

     = 
– 4

311.6 0.015 10 10 mm
0.765

× ×
× = 0 227 mm.  (Ans.)

11.7.  COMMON EQUATION FOR VELOCITY DISTRIBUTION FOR   
 BOTH SMOOTH AND ROUGH PIPES 

 Refer Fig. 11·5. Consider an elementary circular ring of radius r and thickness dr as shown in 
Fig. 11·5. The distance of the ring from the pipe wall,

Flow

r

y

R

Pipe

r

dr

R

Fig. 11.5. Average velocity for turbulent flow.

  y = R – r
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  (where, R = radius of the pipe).
 The discharge through the ring is given by:
  dQ = Area of the ring × velocity
   = 2πr·dr × u

	 ∴  Total discharge, Q = 
0

2
R

dQ u r dr= × π ⋅∫ ∫
 (i) For smooth pipes:
  In the case of smooth pipes the velocity distribution is given by [Eqn. (11·24)] as:

    
f

u
u

 = 10
.

5.75 log 5.5fu y 
+ ν 

    M = 10
( – )

5.75 log 5.5f
f

u R r
u

 
+ × ν 

  Substituting the value of u in eqn. (11·26), we get:

    Q = 10
0

( – )
5.75 log 5.5 2 .

R
f

f
u R r

u r dr
 

+ × π ν ∫

	 	∴  Average velocity, U  = 2
Q Q
A R
=
π

    U  = 102
0

( – )1 5.75 log 5.5 2 .
R

f
f

u R r
u r dr

R
 

+ × π νπ  ∫
  After integration and simplification, we have:

    
f

U
u

 = 105.75 log 1.75fu R
+

ν
 ...(11·27)

 (ii) For rough pipes:
  In case of rough pipes, the velocity at any point in the turbulent flow is given by eqn. (11·25) as:

    
f

u
u

 = 10 10
–5.75log ( / ) 8.5 5.75log 8.5R ry k
k

 + = + 
 

   ( y = R – r)

  or, u = 10
–5.75 log 8.5f

R ru
k

  +    
  Substituting the value of u in eqn. (11·26), we get:

  Q = 10
0

–5.75 log 8. 2
R

f
R ru r dr

k
   + π ⋅    ∫

	 ∴  Average velocity, U  = 102 2
0

1 –5.75 log 8.5 2
R

f
Q R ru r dr

kR R
  = + π ⋅  π π   ∫

 After integration and simplication, we have:

  
f

U
u

 = 10575 log 4.75R
k

  + 
 

 ...(11.28)

 From eqns. (11·24) and (11·27) by subtraction, we have:

  –
f f

u U
u u

 = 10 105.75 log 5.5 – 5.75 log 1.75f fu y u R
v v

 ⋅    
+ +    
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  or, –
f

u U
u

 = 103.75 – 5.75 log f

f

u R v
v u y

 
×  

 

     = 103 75 – 5 75 log R
y

 ⋅ ⋅  
 

  or, –
f

u U
u

 = 105.75 log 3.75y
R

  + 
 

 ...(i)

  Similarly, from eqns. (11·25) and (11·28), we get:

    –
f f

u U
u u

 = 10 105.75 log 8.5 – 5.75 log 4.75y R
k k

      + +            

    –
f

u U
u

 = 105.75 log 3.75y
R

  + 
 

 ...(ii)

  As eqns. (i) and (ii) are identical, the velocity distribution in both types of pipes is the same.

	 	∴ –
f

u U
u

 = 105.75 log 3.75y
R

  + 
 

 ...(11·29)

  The common equation holds good for both types of pipes due to the reason that the velocity 
distribution for the turbulent core is identical in both cases.

 Example 11.7.  Find the distance from the pipe wall at which the local velocity is equal to the 
average velocity for turbulent flow in pipes.
 Solution.  Local velocity at a point = Average velocity ...(Given)
 i.e. u = U
 Using the relation:
  –

f

u U
u

 = 105.75 log 3.75y
R

  + 
 

 [Eqn. (11·29)]

 or, 105.75 log 3.75y
R

  + 
 

 = 0 ( u U= )

 or, 105.75 log y
R

 
 
 

 = –3.75

 or, 10log y
R

 
 
 

 = 3.75– – 0.652
5.75

=

 or, y
R

 = 0.223 or y = 0·223 R (Ans.)

11.8.  VELOCITY DISTRIBUTION FOR TURBULENT FLOW IN 
SMOOTH PIPES BY POWER LAW 

 The eqns. (11·20), (11·24) and (11·25) of velocity distribution for turbulent flow are inconvenient 
to use, being logarithmic in nature. Nikuradse, through experiments, established the following 
velocity distribution law (exponential form) for smooth pipes:

  
max

u
u

 = 
1
ny

R
 
 
 

 ...(11·30)

 where, exponent 1
n

 depends on Reynolds number (Re) and it decreases with the increasing Re.
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 For: Re = 400, 1 1
6n

=

  Re = 5 1 11.1 10 ,
7n

× =

                                            6 12 10 ,Re
n

≥ ×  = 1
10

 Therefore, for 1 1
7n

= , the velocity distribution law becomes:

  
max

u
u

 = 
1/7y

R
 
 
 

 ...(11·31)

 Eqn. (11·31) is known as 
1
7

 th power law of velocity distribution for smooth pipes.

11.9. RESISTANCE TO FLOW OF FLUID IN SMOOTH AND ROUGH PIPES 

 When a fluid flows through a pipe frictional resistance is offered to the motion of the fluid and 

the loss of head due to friction is expressed by Darcy-Weisbach equation, 
24

2f
fLVh

D g
=

×
. But the loss 

of head can be predicted correctly only if the friction co-efficient can be evaluated accurately. It can 
be shown by dimensional analysis that the friction co-efficient f  depends upon the Reynolds number 

VDρ 
 µ 

 and the ratio k/D.

 Thus, f = ,VD k
D

 ρ φ   µ  
 ...(11·32)

 where, D = Diameter of the pipe,
  ρ = Density of the fluid,
  µ = Dynamic viscosity of the fluid, and
  k = Average height of pipe wall roughness protrusions.

 (The term k
D

 is commonly known as relative roughness).

 The eqn. (11·32) is a general equation which is applicable to laminar as well as turbulent flows 
in pipes.
 (a) Variation of friction co-efficient ‘f’ for “laminar flow”:
 As derived in previous chapter the co-efficient of friction ‘f’ for laminar flow in pipes is given by:

  f = 16
Re

 ...(11·33)

 The eqn. (11·33) shows that for laminar flow the friction coefficient f varies inversely with Re 

and it is independent of k
D

 
 
 

 ratio.

 (b) Variation of ‘f’ for “turbulent flow”:
  For the fully developed turbulent flow the friction coefficient ‘f’ is a function of Re or k/D 

ratio or both, depending on whether the boundary is hydrodynamically smooth or rough or it 
is in transition.

 (i) Variation of friction co-efficient ‘f’ “for smooth pipes”:
  The coefficient of friction ‘f’ for turbulent flow in smooth pipes is a function of Reynolds number 

(Re) only, and is independent of relative roughness k/D. The value of ‘f’ for smooth pipes for Re 
varying from 4000 to 1 × 105 is given by the following empirical relation (developed by Blasius):
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    f = 1/4
0.0791
( )Re

 ...(11·34)

  The value of ‘f’ for Re > 105 is obtained from eqn. (11·27),

    
f

U
u

 = 105.75 log 1.75fu R
v

+  ...(Eqn. 11·27)

  Also, f = 0
2

2
V
τ

ρ
 ...[Eqn. 11·5 (b)]

  (where, V = average velocity)

	 	∴ f = 20
2 2

2 2
fu

U U
τ

= ×
ρ

   0
fu

 τ
= ρ  



  or, 2
fu  = 

2

2
f U

  or, uf = 
2
fU

  Substituting the value of uf in eqn. (11·27), we get:

    

2

U
fU

 = 105.75 log 1.75
2

U f R
 

+  ν 

  or, 1
/ 2f

 = 105.75 log / 2 1.75U R f
v

 
+ 

 

  Substituting R = D/2 and simplifying, we get:

    1
4 f

 = 102.03 log 4 – 0.91UD f
v

 
 
 

  But, UD
ν

 = Re

    1
4 f

 = 102.03 log ( 4 ) – 0.91Re f  ...(11·35)

  Eqn. (11·35) is valid upto Re = 4 × 106

  Karman-Prandtl resistance equation for turbulent flow in smooth pipes is given by:

    1
4 f

 = 102.0 log ( 4 ) – 0.8eR f  ...(11·36)

  From Nikuradse’s experimental measurements eqn. (11·36) has been found to be valid from 
Re = 5 × 104 to Re as high as 4 × 107. The eqn. (11·36) can be solved by hit and trial method. 
However the following empirical relationship given by Nikuradse for ‘f’ can be used directly:

    f = 0.237
0.055250.0008
( )Re

+  ...(11·37)

 (ii) Variation of friction co-efficient ‘f’ for “rough pipes”:
  For turbulent flow in rough pipes the friction co-efficient ‘f’ depends only on relative roughness 

(k/D) and is independent of Reynolds number (Re). An expression for ‘f’ is obtained as follows:
  For turbulent flow in rough pipes the mean velocity U  of flow has been expressed by the 

eqn. 11·28,
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f

U
u

 = 105.75 log 4.75R
k

  + 
 

 ...(Eqn. 11·28)

  But, uf = 
2
fU

 	∴ 
/ 2

U
U f

 = 105.75 log ( / ) 4.75R k +

  On simplification, we get:

    1
4 f

 = 102.03 log ( / ) 1.68R k +  ...(11·38)

  The experimental results obtained by Nikuradse follow closely the trend of the following 
equation, (instead of eqn. 11·38):

    1
4 f

 = 102.0 log ( / ) 1.74R k +  ...(11·39)

 (iii) Value of friction factor for “commercial pipes”:
  Colebrook and White developed an empirical equation of the following form to predict the 

friction factor for commercial pipes,

    10
1

1 – 2.0 log R
kf

 
 
 

 = 10
1

( / )1.74 – 2.0 log 1 18.7 R k
Re f

 
+ 

  
 ...(11·40)

  where, f1 (friction factor) = 4f (friction coefficient).

 Example 11·8.  In a rough pipe of diameter 0·6 m and length 4500 m water is flowing at the 
rate of 0·6 m3/s. If the average height of roughness is 0·48 mm find the power required to maintain 
this flow.
 Solution.  Diameter of the pipe, D = 0·6 m

	 ∴  Radius, R = 
0.6 0.3 m
2

=

  Length of the pipe, L  = 4500 m
  Discharge, Q  =  0·6 m3/s
  Average height of roughness, k  =  0·48 mm = 0·48 × 10– 3 m
 Power required to maintain the flow, P:
  Power required, P = wQhf ...(i)

 where, hf = 
24

2
fLV

D g×

 where, f = Co-efficient of friction,
  V = Average velocity of flow, and
  w = Weight density of water (= 9·81 kN/m3).
 Let us first calculate the value of ‘f’.
 For a rough pipe, the value of ‘f’ is given by:

  1
4 f

 = 102.0 log 1.74R
k

  + 
 

 ...[Eqn. (11·39)]

   = 10 – 3
0.32.0 log 1.74 7.331

0.48 10
 

+ = 
× 



624        Fluid Mechanics

 or, 4 f  = 1 0.1364
7.331

=

 or, f = 0·00465

 Also,  average velocity, V = 
2 2

0.6 2.122 m/s
( ) 0.6
4 4

Q

D
= =

π π
× ×

	 ∴ Head lost in friction, hf = 
2 24 4 0.00465 4500 (2.122) 32 m

2 0.6 2 9.81
fLV

D g
× × ×

= =
× × ×

 Substituting the values in eqn. (i), we get:
  P = 9·81 × 0·6 × 32 = 188·35 kW (Ans.)
 Example 11.9. The friction for turbulent flow through rough pipes can be determined by 
Kaman-Prandtl equation
  1

f
 = ( / ) .10 02 log R k 1 74+

 where, f = friction factor, R0 = pipe radius and k = average roughness.
 Two reservoirs with a surface level difference of 20 metres are to be connected by 1 metre 
diameter pipe 6 km long.
 (i) What will be the discharge when a cast-iron pipe of roughness k = 0·3 mm is used ?
 (ii) What will be the percentage increase in discharge if the cast-iron pipe is replaced by a steel 

pipe of roughness k = 0·1 mm ?
  Neglect all local losses.    [Delhi University]
 Solution.  Difference in levels, h = 20 m
  Diameter of the pipe, D = 1 m
	 ∴  Radius, R0 = ·5 m 
  Length of the pipe, L = 6 km = 6 × 1000 = 6000 m
  Roughness of C.I. pipe, k = 0·3 mm = 0 ·3 × 10– 3 m
  Roughness of steel pipe, k = 0·1 mm = 0·1 × 10– 3 m
 (i) Discharge with C.I. pipe, QC.I.:

    1
f

 = 10 02 log ( / ) 1.74R k +  ...(Given) ...(i)

     = 2 log10 [0.5/(0.3 × 10– 3)] + 1.74 = 8.1837

    f = 
21 0.0149

8.1837
  = 
 

  Head loss due to friction,
    hf = 

2

2
fLV

D g×

  [where,  f = friction factor (= 4 × friction coefficient)]

    20 = 
20.0149 6000

1 2 9.81
V× ×

× ×
 (neglecting all local losses)

  or, V = 2·095 m/s
	 	∴  Discharge through C.I. pipe,
  QC.I  = (π/4) × 12 × 2·095 = 1·645 m3/s (Ans.)
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 (ii) Percentage increase in discharge :
  For steel pipe : k = 0·1 × 10– 3 m, R0 = 0·5 m
  Substituting the values is eqn. (i), we get:

     1
f

 = 2 log10 [0·5/(0·1 × 10– 3)] + 1·74 = 9·1379   or   f = 0·0119 

  Head lost due to friction,

    20 = 
2

2
fLV

D g×

  or, 20 =  
20.0119 6000

1 2 9.81
V× ×

× ×

  or,  V = 2·344 m/s
 	∴ Discharge through steel pipe, 
    QS = (π/4) × 12 × 2·344 = 1·841 m3/s
	 	∴ % age increase is discharge

     = . .

. .

– 1.841 – 1.645100 100
1.645

S C I

C I

Q Q
Q

× = × = 11 91%.  (Ans.)

 Example 11.10.  A smooth pipeline of 100 mm diameter carries 2.27 m3 per minute of water at 
20°C with kinematic viscosity of 0.009 stokes, calculate:
 (i) Friction factor:    (ii) Maximum velocity;
 (iii) Shear stress at the boundary.  (UPTU)

 Solution. Given: 100
2

R =  = 50 mm = 0.05 m; 2.27
60

Q =  = 0.0378 m3/s;

 v  =   0.0098 stokes = 0.0098 cm2/s = 0.0098 × 10– 4 m2/s

           Average velocity, 2 2
0.0378 0.0378 4.81 m/s

Area 0.05
QU

R
= = = =

π π ×

	 ∴   Reynolds number, 5
–4

4.81 0.1 4.91 10
0.0098 10

UDRe ×
= = = ×

ν ×

 The flow is turbulent as Re > 105. Hence for smooth pipe, the coefficient of friction ‘f’ is 
obtained from the equation,
  1

4 f
 = 102.0 log ( 4 ) – 0.8Re f  ... [Eqn. (11·36)]

 or, 1
4 f

 = 5
102.0 log (4.9 10 4 ) – 0.8f× ×

   = 5
10 102.0 log (4.91 10 ) log 4 – 0.8f × + 

   = 102.0 [5.6911 log 4 ] – 0.8f+

   = 102 5.6911 2 log 4 – 0.8f× +

   = 11.382 + log10 
2( 4 )f  – 0.8 = 10.582 + log10 (4f)

 or, 10
1 – log (4 )
4

f
f

 = 10.582 ...(i)



626        Fluid Mechanics

 (i) Friction factor, f1:
    Friction factor  f1 = 4 × coefficient of friction = 4f
  Substituting the value of ‘4f’ in (i), we get:

    10 1
1

1 – log ( )f
f

 = 10.582 ...(ii)

  Solving by hit and trial method, we get f1 = 0.013 (Ans.)
 (ii) Maximum velocity, umax:

    f = 1 0.013 0.00325
4 4
f
= =

  Also, uf = 0.003254.81 0.194 m/s
2 2
f

U = × =

  For smooth pipe, the velocity at any point is given by:

    u = 105.75 log 5.5f
f

u y
u

 ×  
+  ν   

 ...[Eqn. (11·24)]

  The velocity will be maximum at the centre of the pipe where y = R = 0.05 m i.e. radius of 
the pipe. Hence, the above equation becomes:

    umax = 105.75 log 5.5f
f

u R
u

 ×  
+  ν   

     = 10 –4
0.194 0.050.194 5.75 log 5.5 /

0.0098 10

  ×
+ =   ×   

5.524 m s  (Ans.)

 (iii) Shear stress at the boundary, τ0:

    uf = 0 2 0or ( )fu
τ τ

=
ρ ρ

    τ0 = ρ (uf)
2 = 1000 × (0.194)2 = 37.64 N/m2 (Ans.)

 Example 11.11.  In a pipe of diameter 300 mm the centre-line velocity and the velocity at a 
point 100 mm from the centre, as measured by pitot tube, are 2·4 m/s and 2·0 m/s respectively. 
Assuming the flow in the pipe to be turbulent, find:
 (i) Discharge through the pipe,    (ii)  Co-efficient of friction, and
 (iii) Height of roughness projections.
 Solution.  Diameter of the pipe, D = 300 mm = 0·3 m

	 ∴  Radius, R = 
0.3 0.15 m
2

=

  Centre-line velocity, umax  = 2·4 m/s
  Velocity at r  =  100 mm   or   y = 150 – 100 = 50 mm, u = 2·0 m/s
 (i) Discharge through the pipe, Q:

  max –
f

u u
u

 = 105.75 log R
y

 
 
 

 ...[Eqn. (11·20)]

  (where uf is shear velocity)
  Substituting the values, we get:

    2.4 – 2.0
fu

 = 10
0.155.75 log 2.743
0.05

  = 
 

  or, uf = 0·146 m/s
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  Using the equation :

    –
f

u U
u

 = 105.75 log 3.75,y
R

  + 
 

 we have: ...[Eqn. (11·29)]

  At, y = R, u = umax

 	∴ max –
f

u U
u

 = 105.75 log 3.75 5.75 0 3.75 3.75R
R

  + = × + = 
 

  But, umax = 2·4 m/s   and   uf = 0·146 m/s

 	∴ 2.4 –
0.146

U  = 3.75

  or, U  = 2·4 – 0·146 × 3·75 = 1·85 m/s
	 	∴  Discharge, Q = Area × average velocity
     = (π/4) × 0·32 × 1·85 = 0·1307 m3/s (Ans.)
 (ii) Co-efficient of friction, ‘f’:

  We have, uf = 
2
fU

  or, 0.146 = 1 85
2
f

⋅

  or, 
2
f  = 0.146 0.0789

1.85
=

 	∴ f = 0·0124 (Ans.)
 (iii) Height of roughness projections, k:

  We know that 1
4 f

 = 102.0 log ( / ) 1.74R k +  ...[Eqn. (11·39)]

    1
4 0.0124×

 = 10
0.152.0 log 1.74

k
  + 
 

    4.49 = 10
0.152.0 log 1.74

k
  + 
 

  or, 10
0.15log

k
 
 
 

 = 4.49 – 1.74 1.375
2

=

  or, 0.15
k

 = 23.71

  or, k = 0·00633 m or 6·33 mm (Ans.)
 Example 11·12. A rough plastic pipe 500 mm in diameter and 300 m in length carrying 
water with a velocity of 3 m/s, has an absolute roughness of 0·25 mm and a kinematic viscosity of  
0·9 centistokes,
 (i) Is the flow turbulent or laminar? (ii)  What is the head lost in friction?

 For laminar flow, f = 64
Re

 For turbulent flow, 1
f

 = .10
R2 log 1 74
k
+  [UPSC Civil Services (IAS) Exams.]

 (f = friction factor)
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 Solution.  Diameter of the pipe, D  = 500 mm = 0·5 m
  Length of the pipe, L = 300 m
  Velocity of water, V = 3 m/s
  Absolute roughness, k = 0·25 mm = 0·25 × 10– 3 m
  Kinematic viscosity, v = 0·9 centistokes = 0·9 × 10–6 m2/s.
 (i) Is the flow turbulent or laminar?

  Reynolds number of flow, 6
–6

3 0.5 1.667 10
0.9 10

VDRe ×
= = = ×

ν ×

  Since Re > 2000, therefore, the flow is turbulent. (Ans.)
 (ii) Head lost in friction:
  Friction factor (f) for turbulent flow in rough pipes is given by :

    1
f

 = 102 log 1.74R
k
+  ...(Given)

     = 10 –3
0.252 log 1.74 7.74

0.25 10
+ =

×

	 	∴ f = 
21 0.0167

7.74
  = 
 

  Head lost in friction,
    hf = 

2 20 0167 300 3
2 0 5 2 9 81

fLV
D g

⋅ × ×
= =

× ⋅ × × ⋅
4 59 m⋅  (Ans.)

 Example. 11.13. In a smooth pipe of diameter 0·5 m and length 1000 m water is flowing at the 
rate of 0·05 m3/s. Assuming the kinematic viscosity of water as 0·02 stokes, find:
 (i) Head lost due to friction,
 (ii) Wall shear stress,
 (iii) Centre-line velocity, and
 (iv) Thickness of laminar sublayer.
 Solution.  Diameter of smooth pipe, D = 0·5 m

	 ∴   Radius, R = 0.5 0.25 m
2

=

  Length of the pipe, L = 1000 m
  Discharge through the pipe, Q = 0.05 m3/s
  Kinematic viscosity of water, v = 0·02 × 10–4 m2/s

  Average velocity, U  = 
2

0.05 0.2546 m/s
Area (0.5)

4

Q
= =
π
×

	 ∴  Reynolds number, Re = 4
–4

0.2546 0.5 6.365 10
0.02 10

V D U D
v v
× × ×

= = = ×
×

 Since Re > 4000, the flow is turbulent.

 We know that, f = 1/4
0.0791
( )Re

 ...[Eqn. (11·34)]

   = 4 1/4
0.0791 0.00498

(6.365 10 )
=

×
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 (i) Head lost due to friction, hf:

    hf = 
2 2 24 4 4 0.00498 1000 (0.2546)

2 2 0.5 2 9.81
fLV fLU

D g D g
× × ×

= =
× × × ×

     = 0.1316 m (Ans.)
 (ii) Wall shear stress, τ0:

  We know that, τ0 = 
22

2 2
f V f Uρ ρ

=            ...[Eqn. 11·5 (a)]

     = 
20.00498 1000 (10.2546) /

2
20 1614 N m.

× ×
=  (Ans.)

 (iii) Centre-line velocity, umax:

  We know that, 
f

u
u

 = 105.75 log 5.5fu y
v

 
+ 

 
         ...[Eqn. (11·24)]

  At, y = R,  u = umax

  ∴ max

f

u
u

 = 10
.

5.75 log 5.5fu R
v

 
+ 

 

  where, uf = 0 0.1614 0.0127 m/s
1000

τ
= =

ρ

  Substituting the values in the above eqn., we get:

    max
0.0127
u  = 10 –4

0.0127 0.255.75 log 5.5 23.9
0.02 10

 ×
+ = 

× 
  or, umax = 0·303 m/s (Ans.)
 (iv) Thickness of laminar sublayer, δ′:

  We know that, δ′ = 11.6
f

v
u
×                ...[Eqn (11·22)]

   = 
–411.6 0.02 10 0.001826 m

0.0127
× ×

= = 1·826 mm (Ans.)

 Example 11.14. Water is flowing in a rough pipe of 0·5 m diameter and 800 m length at the 
rate of 0·5 m3/s. Assuming the average height of roughness as 0·15 mm, determine:
 (i) Co-efficient of friction,
 (ii) Wall shear stress, and
 (iii) Centre-line velocity and velocity at a distance of 200 mm from the pipe wall.
 Solution.  Diameter of the pipe, D = 0·5 m

  Radius, R = 0.5 0.25 m
2

=

  Length of the pipe, L = 800 m
  Discharge, Q = 0·5 m3/s
  Average height of roughlness, k = 0·015 mm = 0·015 × 10–3 m
 (i) Co-efficient of friction, f:
  Using the equation:
    1

4 f
 = 102.0 log 1.74R

k
  + 
 

 ...[Eqn. (11·39)]
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  or,   1
4 f

 = 10 –3
0.252.0 log 1.74 10.184

0.015 10
 

+ = 
× 

     4 f  = 1 0.0982
10.184

=

    f = 0·00241 (Ans.)
 (ii) Wall shear stress, τ0:

     τ0 = 
2

2
f Vρ  ...[Eqn. 11·5 (a)]

  where, V = 
2

Discharge 0 5 2 546 m/s
Area 0 5

4

⋅
= = ⋅
π
× ⋅

 	∴  τ0 = 
20.00241 1000 (2.546) /

2
27 81 N m.

× ×
=  (Ans.)

 (iii) Centre-line velocity, umax:

  For rough pipe:  
f

u
u

 = 105.75 log 8.5y
k

  + 
 

 ...[Eqn. (11·25)]

  At y = R,  u = umax

  ∴  max

f

u
u

 = 105.75 log 8.5R
k

  + 
 

 ...(i)

  where,  uf = 0 7.81 0.0884 m/s
1000

τ
= =

ρ

  Substituting the values of uf , R and k in eqn. (i), we get:

      
0.0884

u  = 10 –3
0.25.75 log 8.5 32.77

0.015 10

 
+ =  × 

 	∴ umax = 0·0884 × 32·77 = 2·897 m/s (Ans.)
  Velocity at a distance of 200 mm from the pipe wall, u:

  For a rough pipe: 
f

u
u

 = 105.75 log 8.5y
k

  + 
 

  where,  uf = 0·0884 m/s, y = 200 mm = 0·2 m  and  k = 0·015 × 10–3 m

 	∴  
0.0884

u  = 10 –3
0.25.75 log 8.5 32.22

0.015 10
 

+ = 
× 

  or, u = 0·00884 × 32·22 = 2·848 m/s (Ans.)
 Example 11.15.  Hydrodynamically  smooth pipe carries water at the rate of 300 l/s at 20° C 
(ρ = 1000 kg/m3, v = 10–6 m2/s) with a head loss of 3 m in 100 m length of pipe. Determine the pipe 

diameter. Use f = 0.0032 + .
.

( )0 237
0 221
Re

 equation for f, where 
2

f
f L Vh

D 2g
× ×

=
×

 and VDRe ρ
=

µ
.

 (Anna University)

 Solution. Given: Q = 300 l/s = 0.3 m3/s; ρ = 1000 kg/m3; v = 10–6 m2/s; hf = 3 m;

 L = 100 m; Friction factor, f = 0.0032 + 0.237
0.221

( )Re
.
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 Diameter of the pipe, D:
  hf = 

2

2
f LV

D g×

 or, 3 = 
2

2
100 0.5886or
2 9.81

f V Df
D V
× ×

=
× ×

 Now, Q = A × V

 or, 0.3 = 2

4
D Vπ

× ×    or    D2 V = 0.382

	 ∴ V = 2
0.382

D
 Also, f = 0.237

0.2210.0032
( )Re

+  ...(Given)

 or, 2
0.5886D

V
 = 6 0.237

0.2210.0032
( 10 )V D

+
× ×

 or, 2 2
0.5886

(0.382 / )
D

D
 = 0.237

6
2

0.2210.0032
0.382 10D

D

+
 × ×  

 or, 
5

2
0.5886
(0.382)

D  = 0.2376

0.2210.0032
0.382 10

D

+
 ×
  
 

 or, 4.034 D5 = 0.0032 + 0.0105 × D0.237

 or, 4.034 D5 – 0.0105 D0.237 – 0.0032 = 0
 Solving by hit and trial method, we get:
  D  0.308 m (Ans.)
 Example 11.16.  Design the diameter of a steel pipe to carry water having kinematic viscosity 
v = 10–6 m2/s with a mean velocity of 1 m/s. The head loss is to be limited to 5 m per 100 m length 
of pipe. Consider the equivalent sand roughness height of pipe, ks = 45 × 10–4 cm. Assume that the 
Darcy-Weisbach friction co-efficient over the whole range of turbulent flow can be expressed as

  f = 
1/36

3 100.0055 1 20 10 sk
D Re

   + × +     
 where, D = Diameter of pipe and Re = Reynolds number. (Delhi University)

 Solution. Given : v = 10–6 m2/s; U = 1 m/s; hf = 5 m in a length 100 m (L);
 k = 45 × 10–4 cm = 45 × 10–6 m

  Friction factor, f = 
1/36

3 100.0055 1 20 10 sk
D Re

   + × +     
 ...(i)

 Diameter of the steel pipe, D:

 Using Darcy-Weisbach equation: 
2

4
2f

fLUh
D g

=
×

, we have:

  f = 2 2

2 5 2 9.81 0.2452
4 100 14

fh D g D D
LU

× × × × ×
= =

× ×
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  Reynolds number, Re = 6
–6

1 10
10

UD UD D D
v

ρ ×
= = =

µ

 Substituting the values in (i), we get:

  0.2452 D = 
1/3–6 6

3
6

45 10 100.0055 1 20 10
10D D

  × + × × +     

 or, 0.2452
0.0055

D  = 
1/30.9 11

D D
  + +  

   

 or, 44.58D = 
1/31.91

D
  +  

   
 or 

1/31.9(44.58 – 1)D
D

 =  
 

 or, (44.58D – 1)3 = 1.9
D

 ...(ii)

 or, D (44·58 D – 1)3 = 1.9
 Solving by hit and trial method, we get  D = 0.0854 m (Ans.)
 Example 11.17. Water flows through a horizontal conical pipe, 2 m long and having a diameter 
of 200 mm at the inlet and 150 mm at the discharge end. A constant discharge of 0·4 m3/s flows 
through the pipe. Starting from first principles determine the loss of head due to pipe friction. Take 
friction factor = 0·04.    [UPSC Exams, Hydraulic and Hydraulic m/cs]

Q

Conical pipe

dx x

d

L l

od2d1

Fig. 11.6

 Solution.  Diameter at the inlet, d1 = 200 mm = 0·2 m
  Diameter at the outlet, d2 = 150 mm = 0·15 m
  Length of the pipe, L  = 2 m
  Discharge through the pipe, Q = 0·04 m3/s
  Friction factor, f1  =  0·04
 Let us first derive the expression for loss of head due to friction in a tapering pipe as follows:
 The Darcy-Weisbach equation in differential form can be written as:

  dhf = 
2

1
2

f dx V
d g
⋅ ⋅
×

 ...(i)

 where, f1 = Friction factor, and
  V = Velocity of flow (at the section considered)
 Refer to Fig. 11·6. From the geometry of the cone we can write,

  1d
L l+

 = 2d d
l x
=
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 (where, d = diameter at a distance x from O)

 or, d = 1 2( – )x d d
L

 The velocity, V = 2 22
1 2

4 4

( – )4

Q Q Q
d xd d d

L

= =
π π  π  

 
 Substituting for d and V in eqn. (i), we get:

  dhf = 
22

1
2 2

1 2 1 2

1 4
( – ) 2 ( – )
f L dx QL

x d d g x d d
 ⋅  ⋅  
π  

   = 
2 5

1
2 5 5

1 2

8
( – )
f Q L dx

g d d x
  
 

π  
 Assuming f1 to be constant, the friction loss in the conical pipe,

  hf = 
( )2 5 2 5

1 1
2 5 5 2 5 4

1 2 1 2

8 1–
( – ) ( – ) 4

L l L l

ll

gf Q L f Q Ld
g d d x g d d x

+ +
 =  π π  ∫

  hf = 
2

1
2 4 4

1 2 2 1

2 1 1–
( – )
f Q L

g d d d d
 
  π  

 Substituting the values, we get:

  hf = 
2

2 4 4
2 0.04 0.04 2 1 1–

9.81 (0.2 – 0.15) 0.15 0.20
× × ×  

 × π  

   = 0·0714 m (Ans.)

HIGHLIGHTS

 1. The flow is turbulent when Reynolds number (Re) is more than 4000. The turbulent flow is 
characterised by random, irregular and haphazard movement of fluid particles.

 2. The shear in turbulent flow is mainly due to momentum transfer.
 3. Loss of head due to friction in pipe flow is given by

    hf = 
24 ,

2
fLV

D g×
 where f is the friction co-efficient

     = 
2

1 ,
2

f LV
D g×

 where f1 (= 4f) is the friction factor.

 4. Co-efficient of friction in terms of shear stress is expressed as f = 0
2

2
V
τ

ρ
  where, τ0 = Shear stress,
    ρ = Mass density of fluid, and
    V = Average/mean velocity of flow.
 5. In turbulent flow the shear stress (τ) is the sum of shear stress due to viscosity (τυ)  and shear 

stress due to turbulence (τt) i.e.,

    τ = t
du d u
dy dyυτ + τ = µ + η
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 6. According to Reynolds theory the shear stress (τ) is given as:
    τ = ρu’υ’
  where u’ and υ’ are the fluctuating components of velocity.
 7. According to Prandtl’s mixing theory the shear stress (τ) is given as:

    τ = 
2

2 dul
dy

 ρ  
 

 8. Prandtl’s universal velocity distribution equation is expressed as:

    u = umax + 2·5 uf  ln y
R

 
 
 

  where, umax = Centre-line velocity,
    y = Distance from the pipe wall,
    R = Radius of the pipe, and

    uf = Shear friction velocity 0τ
ρ

 9. Velocity defect is the difference between the maximum velocity (umax) and local velocity (u) 
at any point and is given by:

    (umax – u) = uf × 5·75 log10 (R/y)
 10. If ‘k’ is the average height of the irregularities of the surface of a boundary, then in general, 

the boundary is said to the rough if the value of ‘k’ compared to the thickness of the laminar 
sublayer δ’ is high and smooth if ‘k’ is low (in comparison with δ′).

  Boundary is smooth ....when 0 25k
< ⋅

′δ

  Boundary is rough ....when 6 0k
> ⋅

′δ

  Boundary is in transition ....when k
′δ
 lies between 0.25 to 6·0.

 11. For turbulent flow, the velocity distribution is given as:

  For smooth pipes: 105.75 log 5.5f

f

u yu
u v

 
= + 

 

  For rough pipes: 105.75 log 8.5
f

u y
u k

 = + 
 

  where, uf = Shear friction velocity 0 ,τ
=

ρ

    v = Kinematic viscosity of the fluid,
    y = Distance from the pipe wall, and
    k = Roughness factor.
 12. For turbulent flow the velocity distribution in terms of average velocity is given as:

  For smooth pipes: 105.75 log 1.75
f

U u R
u v

+ = + 
 

  For rough pipes: 
f

U
u

 = 5·75 log10 (R/k) + 4·75
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 13. The difference of local velocity and average velocity for smooth and rough pipes is given by:

    –
f

u U
u

 = 5.75 log10 (y/R) + 3.75

 14. Velocity distribution for turbulent flow in smooth pipes by power law is given as :
1/

max

nu y
u R

 =  
 

 where exponent 1
n

 depends on Reynolds number (Re) and it decreases with 

the increasing Re.
 15. The co-efficient of friction is given by:

   f = 16
Re

 ...for laminar flow

    = 1/4
0.0791
( )Re

 for turbulent flow in smooth pipes

      for Re ≥ 4000 but ≤ 105

    = 0.237
0.055250.0008
( )Re

+  for Re ≥ 105 but ≤ 4 × 107

   1
4 f

 = 2 log10 (R/k) + 1·74 for rough pipes (where, Re = Reynolds number)

OBJECTIVE TYPE QUESTIONS 

Choose the Correct Answers:
 1. The flow is said to be turbulent when Reynolds 

number is
  (a) less than 1000
  (b) equal to 2000
  (c) greater than 4000
  (d) between 1000 to 4000.
 2. The shear in turbulent flow is mainly due to
  (a) heat transfer 
  (b) mass transfer
  (c) momentum transfer
  (d) all of the above.
 3. Which of the following statements is correct? 

Wall turbulence occurs
  (a) in immediate vicinity of solid surfaces and 

in the boundary layer flows where the fluid 
has a negligible mean acceleration

  (b) in jets, wakes, mixing layer etc.
  (c) where there is conversion of potential energy 

into kinetic energy by the process of mixing
  (d) none of the above.
 4. Turbulence in flow is characterised by which of 

the following?
  (a) Fluctuating components of velocities
  (b) High Reynolds number

  (c) Cross currents and eddies with intermixing 
of particles

  (d) Excess energy dissipation with rise in tem-
perature

  (e) All to the above.
 5. The flow in town water supply pipes is generally
  (a) laminar (b) turbulent
  (c) transition (d) any of the above.
 6. The most essential feature of a turbulent flow is
  (a) high velocity
  (b) velocity at a point remains constant with time
  (c) large discharge
  (d) Velocity and pressure at a point exhibit ir-

regular fluctuations of high frequency.
 7. In turbulent flow the velocity distribution is a 

function of the distance y measured from the 
boundary surface and shear friction velocity uf, 
and follows a

  (a) linear law (b) hyperbolic law
  (c) parabolic law (d) logarithmic law.
 8. A turbulent flow is considered steady when
  (a) the algebraic sum of velocity fluctuations is 

zero
  (b) the velocity at a point does not change with 

time
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  (c) temporal mean velocity at a point remains 
constant with time

  (d) the discharge remains constant.
 9. The Darcy-Weisbach friction factor f which is 

a direct measure of resistance to flow in pipes 
depends on which of the following?

  (a) Relative roughness, velocity and viscosity
  (b) Relative roughness, diameter and viscosity
  (c) Roughness height, diameter and velocity
  (d) Roughness height, diameter, velocity and 

kinematic viscosity.
 10. Commercial cast-iron and steel pipes carrying 

fluids under pressure are regarded as hydrauli-
cally smooth when

  (a) the laminar layer is thin as compared to the 
average height of roughness elements

  (b) the height of the roughness projections is low
  (c) the roughness elements are all completely 

covered by the laminar sublayer
  (d) none of the above.
 11. Intensity of turbulence is
  (a) the average K.E. of turbulence
  (b) the violence of turbulent fluctuations and is 

measured by the root mean square value of 
velocity fluctuations

  (c) the mean time interval between the reversals 
in the sign of velocity fluctuation

  (d) none of the above.
 12. Which of the following factors determine the 

friction factor for turbulent flow in a rough pipe?

  (a) Mach number and relative roughness
  (b) Froude’s number and Mach’s number
  (c) Reynolds number and relative roughness
  (d) Froude’s number and relative roughness.
 13. In case of turbulent flow of a fluid through a 

circular tube (as compared to the case of laminar 
flow at the same flow rate) the maximum veloc-
ity is ....., shear stress at the wall is ....., and the 
pressure drop across a given length is ....., the 
correct words for the blanks are, respectively

  (a) lower, higher, lower
  (b) lower, higher, higher
  (c) higher, lower, lower
  (d) higher, higher, higher.
 14. Prandtl’s universal equation is given as:

  (a) u = umax + 2·5 uf loge 
y
R

 
 
 

  (b) u = umax + 3·5 uf loge 
y
R

 
 
 

  (c) u = umax + 4·5 uf loge 
y
R

 
 
 

  (d) u = umax + 5·5 uf loge 
y
R

 
 
 

  where, uf = Shear friction velocity,
   y = Distance from the pipe wall, and
   R = Radius of the pipe.

ANSWERS

 1. (c) 2. (c) 3. (a) 4. (e) 5. (b) 6. (d)
 7. (d) 8. (c) 9. (d) 10. (c) 11. (b) 12. (c)
 13. (b) 14. (a).

THEORETICAL QUESTIONS

 1. Enumerate the factors which influence the stabil-
ity of laminar flow.

 2. What is turbulence ?
 3. How is turbulent motion classified?
 4. What are the characteristics of a turbulent flow?
 5. What do you understand by wall turbulent and 

free turbulence?
 6. Derive an expression for the loss of head due to 

friction in pipes.
 7. Define ‘shear velocity’ for turbulent flow in 

circular pipes.
 8. Obtain an expression for the co-efficient of fric-

tion in terms of shear stress.

 9. Derive an expression for shear stress on the basis 
of ‘Prandtl Mixing Length Theory’.

 10. Obtain an expression for the Prandtl’s universal 
velocity distribution for turbulent flow in pipes. 
Why this velocity distribution is called universal?

 11. In what way does the flow through a rough pipe 
differ from that in smooth pipe?

 12. What is meant by a smooth boundary and a rough 
boundary?

 13. Explain why the hydraulic loss in a pipe is in-
fluenced by the surface roughness only at higher 
Reynolds numbers.
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 14. Derive an expression for the velocity distribution 
for turbulent flow in smooth pipes.

 15. Show that velocity distribution for turbulent flow 
through rough pipes is given as:

    
f

u
u

 = 5·75 log10 (y/k) + 8·5

  where, uf = Shear velocity,
    y = Distance from pipe wall, and
    k = Roughness factor.

 16. Derive expressions for velocity distribution in 
terms of average velocity for (i) smooth pipe 
and, (ii) rough pipe.

 17. Prove that the difference of local velocity (u) 
and average velocity (U ) for turbulent flow 
through rough or smooth pipes is given by:

   –
f

u U
u

 = 5·75 log10 (y/R) + 3·75.

UNSOLVED EXAMPLES
100 mm from the pipe centre are respectively 
3 m/s and 2·5 m/s, determine the wall shearing 
stress. Assume the flow to be turbulent.

 [Ans. 32·96 N/m2]
 7. In a rough pipe of diameter 500 mm and length 

3500 m water is flowing at the rate of 0·5 m3/s. 
If the average height of roughness is 0·40 mm 
find the power required to maintain this flow.

 [Ans. 210·9 kW]
 8. In a pipe of diameter 300 mm the centre-line 

velocity and the velocity at a point 100 mm from 
the centre as measured by pitot-tube are 2·0 m/s 
and 1·6 m/s respectively. Assuming the flow in 
the pipe to be turbulent, find:

  (i) Discharge through the pipe,
  (ii) Co-efficient of friction, and
  (iii) Height of roughness projections.
 [Ans. (i) 0·1027 m3/s; (ii) 0·02; (iii) 18·98 mm] 
 9. In a smooth pipe of diameter 0·4 m and length 

800 m water is flowing at the rate of 0·04 m3/s. 
Assuming the kinematic viscosity of water as 
0·018 stokes, find:

  (i) Head lost due to friction,
  (ii) Wall shear stress,
  (iii) Centre-line velocity, and
  (iv) Thickness of laminar sublayer.
 [Ans. (i) 0·2 m; (ii) 0·245 N/m2; 

(iii) 0·0377 m/s; (iv) 1·338 mm]
 10. Water is flowing in a rough pipe of 400 mm di-

ameter and 1000 m long at the rate of 400 litres/
sec. Assuming the average height of roughness 
as 0·012 mm, determine:

  (i) Co-efficient of friction,
  (ii) Wall shear stress,
  (iii) Centre-line velocity and velocity at a distance 

of 150 mm from the pipe wall.
 [Ans. (i) 0·00241; (ii) 12·2 N/m2; 

(iii) 3·6 m/s; 3·52 m/s]

 1. In a pipe of 300 mm diameter having turbulent 
flow, the centre-line velocity is 6 m/s and that 
at 50 mm from the pipe wall is 5 m/s. Calculate 
the shear friction velocity. [Ans. 0·36 m/s]

 2. A pipeline carrying water has surface protrusions 
of average height of 0·15 mm. If the shear stress 
developed is 4·9 N/m2 determine whether the 
pipe surface acts as smooth, rough or in transi-
tion. The kinematic viscosity of water may be 
taken as 0·01 stokes. [Ans. Transition]

 3. The velocity of flow in a badly corroded 8 cm 
pipe is found to increase 30 percent as a pitot 
tube is moved from a point 1 cm from the wall 
to 3 cm from the wall. Estimate the height of the 
roughness elements. [Ans. 0·773 cm]

 4. Motor having dynamic viscosity of 0·01 poise 
flows in a 75 mm diameter smooth pipe at the 
rate of 0·007 m3/sec. Calculate:

  (i) The shear friction velocity,
  (ii) The velocity at 25 mm from the pipe centre, 

and
  (iii) The thickness of laminar sublayer.
   Take friction factor = 0·018.
  [Ans. (i) 0·0752 m/s; (ii) 1·7 m/s;  

(iii) 0·155 mm]
 5. A smooth pipe 100 mm in diameter and 1000 m 

long carries water at the rate of 0·0075 m3/s. If 
the kinematic viscosity of water is 0·02 stokes, 
calculate:

  (i) Head lost,            (ii)   Wall shearing stress,
  (iii) Centre-line velocity,
  (iv) Shear stress and velocity at 40 mm from the 

centre-line, and
  (v) Thickness of the laminar sublayer.
 [Ans. (i) 9·96 m; (ii) 2·45 N/m2; (iii) 1·15 m/s; 

(iv) 1·96 N/m2; 0·95 m/s; (v) 0·47 mm]
 6. A 300 mm diameter pipe is carrying water. If 

the velocities at the pipe centre and at a point  
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12.1. INTRODUCTION 

 A pipe is a closed conduit (generally of circular 
section) which is used for carrying fluids under pressure. 
The flow in a pipe is termed pipe flow only when the 
fluid completely fills the cross-section and there is no 
free surface of fluid. The pipe running partially full (in 
such a case atmospheric pressure exists inside the pipe) 
behaves like an open channel.

12.2. LOSS OF ENERGY (OR HEAD)   
  IN PIPES 

 When water flows in a pipe, it experiences some 
resistance to its motion, due to which its velocity and 
ultimately the head of water available is reduced. This 
loss of energy (or head) is classified as follows :
 A. Major Energy Losses
 This loss is due to friction.
 B. Minor Energy Losses
 These losses are due to :
 1. Sudden enlargement of pipe,
 2. Sudden contraction of pipe,
 3. Bend of pipe,
 4. An obstruction in pipe,
 5. Pipe fittings, etc.

12.3. MAJOR ENERGY LOSSES 

 These losses which are due to friction are calculated 
by :
 1. Darcy-Weisbach formula
 2. Chezy’s formula.

Chapter

FLOW THROUGH PIPES
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 12.5. Hydraulic and total energy 
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 12.6. Pipes in series or compound 
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 12.9. Syphon
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 12·12. Water hammer in pipes
  Highlights
  Objective Type Questions
  Answers
  Theoretical Questions
  Unsolved Examples



Chapter 12 : Flow Through Pipes         639

12·3·1 Darcy-Weisbach Formula
 The loss of head (or energy) in pipes due to friction is calculated from Darcy-Weisbach formula 
(derived in chapter 11 Art. 11·2) which is given by:

  hf =  
24

2
fLV

D g×
 ...(12·1)

 where, hf = Loss of head due to friction,
  f = Co-efficient of friction, (a function of Reynolds number, Re)

  h = 6
1/4

0.0791 for varying from 4000 to 10
( )

Re
Re

     = 16
Re

 for Re < 2000 (laminar/viscous flow)

  L = Length of the pipe,
  V = Mean velocity of flow, and
  D = Diameter of the pipe.

12·3·2 Chezy’s Formula for Loss of Head due to Friction
 Refer to Fig. 11·2. An equilibrium between the propelling force due to pressure difference and 
the frictional resistance gives :
  (p1 – p2) A = f ′ PLV2

 or 1 2( – ) ·p p
w

 A = 2f PLV
w
′

 [Refer to Art. 11.2]

 or hf = 2f P LV
w A
′

	 ∴  Mean velocity, V = fhw A
f P L

× ×
′

 where, the factor w
f

, is called the Chezy’s constant, C;

 the ratio area of flow
wetted perimeter

A
P
 = 
 

 is called the hydraulic mean depth or hydraulic radius and 

denoted by m (or R);

 the ratio fh
L

 prescribes the loss of head per unit length of pipe and is denoted by i or S (slope).

	 ∴  Mean velocity, V = C m i  ...(12·2)

 Eqn. (12·2) is known as Chezy’s formula. This formula helps to find the head loss due to friction 
if the mean flow velocity through the pipe and also the value of Chezy’s constant C are known.
 Note :  (i) Darcy-Weisbach formula (for loss of head) is generally used for the flow through pipes.
 (ii) Chezy’s formula (for loss of head) is generally used for the flow through open channels.
 (iii) The values of hydraulic mean depth for a circular pipe,

  m = 
2

Area 4
4 Perimeter 4

DD Dm
D

π × 
= = = π 



 Example 12.1.  In a pipe of diameter 350 mm and length 75 m water is flowing at a velocity of 
2·8 m/s. Find the head lost due to friction using :
 (i)  Darcy-Weisbach formula;   (ii)  Chezy’s formula for which C = 55.
 Assume kinematic viscosity of water as 0·012 stoke.
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 Solution.  Diameter of the pipe, D = 350 mm = 0·35 m
  Length of the pipe, L = 75 m
  Velocity of flow, V = 2·8 m/s
  Chezy’s constant, C = 55
  Kinematic viscocity of water, v = 0·012  stoke = 0·012 × 10–4 m2/s.
 Head lost due to friction, hf  :
 (i) Darcy-Weisbach fomula :
  Darcy-Weisbach formula is given by:

    hf = 
24

2
fLV

D g×

  where,  f = coefficient of friction (a function of Reynolds number, Re)

    Re = 5
4

2·8 0·35 8·167 10
0·012 10

V D
v −
× ×

= = ×
×

	 	∴ f = 1/4 5 1/4
0.0791 0.0791 0.00263
( ) (8.167 10 )Re

= =
×

	 	∴  Head lost due to friction,

    hf = 
24 0.00263 75 (2.8) .

0.35 2 9.81
× × ×

=
× ×

0 9 m  (Ans.)

 (ii) Chezy’s formula :
    V = C m i

  where, C = 55, 
2

0.354 0.0875 m
4 4

DA Dm
p D

π
×

= = = = =
π

	 	∴ 2.8 = 55 0.0875 i×

  or, 0.0875 × i = 
22.8 0.00259

55
  = 
 

  or, i = 0.0296

  But, i = 0.0296fh
L

=

	 	∴ 
75

fh
 = 0.0296

  or, hf = 75 × 0·0296 = 2·22 m  (Ans.)

 Example 12.2.  Water flows through a pipe of diameter 300 mm with a velocity of 5 m/s. If the 

co-efficient of friction is given by 0.3
0.08f 0.015 +
Re

=  where Re is the Reynolds number, find the 

head lost due to friction for a length of 10 m. Take kinematic viscosity of water as 0·01 stoke.
 Solution.  Diameter of the pipe, D = 300 mm = 0·3 m
  Velocity of water V  =  5 m/s
  Length of the pipe, L  =  10 m
  Viscosity of water, v = 0·01 stoke  =  0·01 × 10–4 m2/s.    ( 1 stoke = 1 cm2/s = 1 × 10–4 m2/s)
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 Head lost due to friction hf :

  Co-efficient of friction, f = 0.3
0.080.015

( )Re
+  ...(given)

  But, Reynolds number, Re = 6
4

5 0.3 1.5 10
0.01 10

VD VD
v −

ρ ×
= = = ×

µ ×

	 ∴	 f = 6 0.3
0.080.015 0.0161

(1.5 10 )
+ =

×

	 ∴ Head lost due to friction,
  hf = 

2 24 4 0.0161 10 5
2 0.3 2 9.81

fLV
D g

× × ×
=

× × ×

   = 2.735 m  (Ans.)
 Example 12.3.  In a pipe of 300 mm diameter and 800 m length an oil of specific gravity 0·8 is 
flowing at the rate of 0·45 m3/s. Find :
 (i) Head lost due to friction, and
 (ii) Power required to maintain the flow.
 Take kinematic viscosity of oil as 0·3 stoke.
 Solution.  Diameter of the pipe, D  = 300 mm = 0·3 m
  Length of the pipe, L  =  800 m
  Specific gravity of oil  =  0·8
  Kinematic viscosity of oil, ν  =  0·3 stoke = 0·3 × 10–4 m2/s
  Discharge, Q  =  0·45 m3/s.
 (i) Head lost due to friction, hf :

   Velocity, V = 
2

0.45 6.366 m/s
Area 0.3

4

Q
= =
π
×

	 	 ∴  Reynolds number, Re = 4
4

6.366 0.3 6.366 10
0.3 10

V D
v −
× ×

= = ×
×

	 	 ∴ Co-efficient of friction, f = 1/4 4 1/4
0.0791 0.0791 0.00498
( ) (6.366 10 )Re

= =
×

	 	 ∴ hf = 
2 24 4 0.00498 800 (6.366)

2 0.3 2 9.81
fLV

D g
× × ×

=
× × ×

    = 109.72 m (Ans.)
 (ii) Power required, P :
  Power required to maintain the flow, P = wQhf
  where, w = 0·8 × 9·81 = 7·848 kN/m3

   hf = 109·72 m, Q = 0·45 m3/s
	 	 ∴ P = 7·848 × 0·45 × 109·72 = 387·48 kW (Ans.)
 Example 12.4.  Water is to be supplied to the inhabitants of a college campus through a supply 
main. The following data is given :
 Distance of the reservoir from the campus = 3000 m
 Number of inhabitants = 4000
 Consumption of water per day of each inhabitant = 180 litres
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 Loss of head due to friction = 18 m
 Co-efficient of friction for the pipe, f = 0·007
 If the half of the daily supply is pumped in 8 hours, determine the size of the supply main.

 Solution. Distance of the reservoir from the college campus = 3000 m
  Number of inhabitants  =  4000
  Consumption per day per inhabitant = 180 litres = 0·18 m3

	 ∴  Total supply per day  =  4000 × 0·18 = 720 m3

 Since half of this supply is to be pumped in 8 hours, therefore maximum flow for which the pipe 
is to be designed,

  Q = 3720 0.0125 m / s
2 8 3600

=
× ×

  Loss of head due to friction, hf  = 18 m
  Co-efficient of friction, f  =  0·007
 Diameter of the supply line, D :
 Using the relation :

  hf = 
24

2
fLV

D g×

 where, V = 22

0.0125 0.0159

4

Q
A DD
= =
π
×

	 ∴ 18 = 
2 24 0.007 3000 (0.159 / )

2 9.81
D

D
× × ×

× ×

 or, D5 = 
2

54 0.007 3000 0.0159 6.013 10
18 2 9.81

−× × ×
= ×

× ×

	 ∴ D = 0·143 m   or   143 mm  (Ans.)

 Example 12.5. Water flows through a pipeline whose diameter varies from 25 cm to 15 cm in 
a length of 10 m. If the Darcy-Weisbach friction factor is assumed constant at 0·018 for the whole 
pipe, determine the head loss in friction when the pipe is flowing full with a discharge of 0·06 m3/s.
 Solution. Given : D1 = 25 cm = 0·25 m; D2 = 15 cm = 0·15 m, L = 10 m; f = 0·018;  
Q = 0·06 m3/s
 Consider a stretch of length dx at a distance x from the 25 cm diameter end (Fig. 12.1 ).

25 cm

x

X

X

dx
Taper
pipeline

15 cm

1 2

10 m

Q = 0.06 m /s
3

D

Fig. 12.1
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  dhfx = 
2

2
fdxV
D g×

   = 

2
2

2

2
5

4
2

2
4

fdx Q D fQ dx
D g

g D

 π ÷ ×  
   =
× π 

 
 

   = 
2

50.08263 fQ dx
D

×

 where, D = Diameter at the section XX

  D = ( )0.25 0.15 10.25 25 m
10 100

x x −  − = −    

 Hence, dhfx = 2 5
50.08263 0.018 (0.06) (100)

(25 )
dx

x
× × ×

−

   = 553544
(25 – )

dx
x

×

  Total head loss, hf = 
10

0
fxdh∫

   = 
10 10

5
4

00

153544 (25 ) 53544
4 (25 )

x dx
x

−  − =  − ∫

   = 4 4
53544 1 1 .

4 (15) (25)
 − = 
 

0 23 m  (Ans.)

 Example. 12.6. A pipeline 50 cm diameter takes off from a reservoir whose water surface 
elevation is 145 m above datum. The pipe is 4500 m long and is laid completely at the datum level. 
In the last 1000 m of the pipe, water is withdrawn by a series of pipes at a uniform rate of 0·075 
m3/s per 250 m. Find the pressure at the end of the pipeline.
 Assume f (friction factor) = 0·018 and the pipe to have a dead end. (UPSC)
 Solution. Given : Diameter of pipeline, D = 50 cm = 0·5 m; L = 4500 m; L0 = 1000 m; f = 0·018.
 First an expression for loss of head in a pipe 
having a uniform withdrawal of q* m3/s per metre 
length is derived.
 Refer to Fig. 12.2. Consider a section at a distance 
x from the start of the uniform withdrawal at q* per 
metre length.
  Discharge, Qx = Q0 – q*x
 In a small distance dx,

  dhf = 
22

20
02 52

* 1 8 ( * )
2 2

4

Q q xfLV f fdx Q q x dx
D g g D gDD

− = × × × = − π× π 
 

	 ∴ hf = 
0

03
02 5 0

0

8 1 ( * )
*3

L
L

f
fdh Q q x

qgD
−  = × × − π∫

x50 cm
dia.

dx
Pipeline

q*

Q0

L0 = 1000 m

Fig. 12.2
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 or, hf = 3 3
0 0 02 5

8 1 ( * )
*3

f Q Q q L
qgD

 × × − − π

 Here, Q0 = 31000 0.075 0.3 m /s
250

× =

  q* = 30.075 0.0003 m /s
250

=

  L0 = 1000 m
 HL = Total head lost = [Head lost in first (4500 – 1000) m with a discharge Qd = 0·3 m3/s]  
+ [Head lost in 1000 m with a uniform withdrawal of q*]
   = hf 1 + hf 2

  hf  1 = 

22

0.018 3500 0.3 0.5
4 24.3 m

0.5 2 9.81

 π × × ÷ ×  
   =

× ×

  hf  2 = 3 3
0 0 02 5

8 1 ( * )
*3

f Q Q q L
qgD

 × × − − π

   = 3 3
2 5

8 0.018 1 (0.3) (0.3 0.0003 1000)
0.00033 9.81 (0.5)

×  × − − × 
π × ×

   = 1·43 m
 Total head loss = 24·3 + 1·43 = 25·73 m
 Residual head at the dead end = 145 – 25·73 = 119·27 m (Ans.)
 Example 12.7. A pump delivers water from a tank A (water surface elevation = 110 m) to tank 
B (water surface elevation = 170 m). The suction pipe is 45 m long (friction factor, f = 0·024) and 
35 cm in diameter. The delivery pipe is 950 m long (f = 0·022) and 25 cm in diameter. The head 
discharge relationship for the pump is given by Hp = (90 – 8000 Q2), where Hp is in metres and Q 
in m3/s. Calculate :
 (i) The discharge in the pipeline.      (ii)  The power delivered by the pump.

 Solution. Refer to Fig. 12·3.
 Given: D1 = 35 cm = 0·35 m; L1 = 45 m; D2 = 25 cm = 0·25 m; L2 = 950 m; f1 = 0·024; f2= 0·022; 
Hp = 90 – 8000 Q2

 Suction pipe :

  Head loss, = hL1 = 
2

1 1 1

1 2
f L V

D g×

                            = 
2 2

1 10.024 45 3.086
0.35 2 2

V V
g g

×
× =

 Delivery pipe :

 Head loss, hL2 = 
2

2 2 2

2 2
f L V

D g×

 = 
2 2

2 20.022 950 83.6
0.25 2 2

V V
g g

×
× = A

Suction
pipe

D L f1 1 1, ,

EL: 110 m

Pump

P

D L f2 2 2, ,

Delivery
pipe

B

EL: 170 m

Fig. 12.3



Chapter 12 : Flow Through Pipes         645

  Total head loss, HL = 
2 2

1 23.086 83.6
2 2
V V

g g
+

 By continuity equation,
  A1V1 = A2V2

  2
1(0.35)

4
Vπ

× ×  = 2
2(0.25)

4
Vπ

× ×

 or, V1 = 0·51 V2

  
2

1
2
V

g
 = 

2
20.26

2
V

g

	 ∴ HL = 
2 2 2

2 2 23.086 0.26 83.6 84.4
2 2 2
V V V

g g g
× + =

  Static head  =  170 – 110 = 60 m
 HP = Head delivered by the pump = Static head + friction head

   = 
2

260 84·4
2
V

g
+

   = 
2

2

160 84.4
2 9.81(0.25)

4

Q + × × π ×× 
 

   = 60 + 1785·3 Q2

 Also, HP = 90 – 8000 Q2 ...(Given)
	 ∴ 90 – 8000 Q2 = 60 + 1785·3 Q2

 or, Q = 0·05537 m3/s
	 ∴ HP = 60 + 1785·3 × (0·05537)2 = 65·47 m
 Hence, power delivered by the pump,
  P = wQHP = 9·81 × 0·05537 × 65·47 = 35·56 kW  (Ans.)

12.4.  MINOR ENERGY LOSSES 

 Whereas the major loss of energy or head is due to friction, the minor loss of energy (or head)
includes the following cases :
 1. Loss of head due to sudden enlargement,
 2. Loss of head due to sudden contraction,
 3. Loss of head due to an obstruction in the pipe,
 4. Loss of head at the entrance to a pipe,
 5. Loss of head at the exit of a pipe,
 6. Loss of head due to bend in the pipe, and
 7. Loss of head in various pipe fittings.

12·4·1 Loss of Head due to Sudden Enlargement
 Fig. 12·4. shows a liquid flowing through a pipe which has sudden enlargement. Due to 
sudden  enlargement, the flow is decelerated abruptly and eddies are developed resulting in loss of 
energy (or head).
 Consider two sections 1 – 1(before enlargement) and 2 – 2 (after enlargement).
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 Let, A1 = Area of pipe at section 1–1.

   = 2
14

Dπ  (where D1 is the 

diameter of the pipe),
  p1 = Intensity of pressure at section 

1–1,
  V1 = Velocity of flow at section 1–1, 

       2
2 24

A Dπ = 
 

, p2 and V2 = Correspond 

ing values at section 2–2,
  p0 = Intensity of pressure of the liquid  eddies on the area (A2 – A1), and
  he = Loss of head due to sudden enlargement.
 Applying Bernoulli’s equation to sections 1–1 and 2–2, we have:

  
2

1 1
12

p V z
w g

+ +  = 
2

2 2
22

p V z
w g

+ + + Loss of head due to sudden enlargement (he)

 But, z1 = z2      ...pipe being horizontal

	 ∴ 
2

1 1
2

p V
w g

+  = 
2

2 2
2 e

p V h
w g

+ +

 or, he = 
2 2

1 2 1 2
2 2

p p V V
w w g g

  − + −   
   

 ...(i)

 Now, the force acting on liquid in the control volume (between sections 1–1 and 2–2) in the 
flow direction is given by :
  Fx = p1·A1 + p0 (A2 – A1) – p2·A2
 Assuming  p0  p1, we have:
  Fx = p1·A1 + p1 (A2 – A1) – p2·A2
   = p1A2 – p2A2 = (p1 – p2) A2 ...(ii)
 Consider momentum of liquid at the sections 1–1 and 2–2; momentum of liquid /sec at
  section 1–1  = Mass × velocity.
   = 2

1 1 1 1 1A V V pA Vρ × =

 Momentum of liquid/sec. at section 2–2 = 2
2 2 2 2 2A V V A Vρ × = ρ

	 ∴ Change of momentum of liquid/sec.
   = 2 2

2 2 1 1–A V A Vρ ρ

 But from continuity equation, we have:
  A1V1 = A2V2

 or, A1 = 2 2

1

A V
V

	 ∴ Change of momentum/sec.
   = 2 22 2

2 2 1
1

A VA V V
V

ρ − ρ × ×

   = 2
2 2 2 1 2–A V A V Vρ ρ

   = 2
2 2 1 2( )A V V Vρ −  ...(iii)

Fig. 12.4. Loss of head due to sudden enlargement.
Eddies

1 2

A1

(D )1 p . A1 1

V1

p0

V2
A2

( )D2
p . A2 2

1 2
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 Now,  Net force  = Change of momentum

	 ∴ (p1 – p2) A2 = 2
2 2 1 2( – )A V V Vρ

 or, 1 2–p p
ρ

 = 2
2 1 2–V V V

 Dividing both sides by g, we get:

  1 2–p p
gρ

 = 
2

2 1 2–V V V
g

 or, 1 2–p p
w w

 = 
2

2 1 2–V V V
g

 ( ρg = w)

 Substituting the value of 1 2–p p
w w

 
 
 

 in eqn. (i), we get:

  he = 
2 2 2

2 1 2 1 2–
2 2

V V V V V
g g g

+ −

   = 
2 2 2 2 2 2

2 1 2 1 2 1 2 1 2 1 22 2 2 ( )
2 2 2

V V V V V V V V V V V
g g g

− + − + − −
= =

	 ∴ he = 
2

1 2( )
2

V V
g

−  ...(12·2)

 Example 12.8.  At a sudden enlargement of a water main from 240 mm to 480 mm diameter, 
the hydraulic gradient rises by 10 mm. Calculate the rate of flow. [MDU, Haryana]
 Solution.  Diameter of the smaller pipe, D1 = 240 = mm = 0·24 m
  Diameter of larger pipe, D2  =  480 mm = 0·48 m
 Rise of hydraulic gradient, i.e.

    2 1
2 1 10 mm = 0·01 mp pz z

w w
   + − + =   
   

    The term prescribes the hydraulic gradientp z
w

  +    
 Rate of flow, Q:
 Applying Bernoulli’s equation to small and large pipe sections (1–1 and 2–2), we get:

 
2 2

1 1 2 2
1 22 2 e

p V p Vz z h
w g w g

+ + = + + +  (i.e., head lost due to sudden enlargement) ...(i)

 But, he = 
2

1 2( )
2

V V
g

−  ...(ii)

 From continuity equation, we have:
  A1V1 = A2V2

	 ∴ V1 = 
2 222 2 2

2 2
21 1
1

4

4

DA V DV V
A DD

π
×  = × = × π  ×

 or, V1 = 
2

2 2
0.48 4
0.24

V V  × = 
 

 Substituting this value of Vl in eqn. (ii), we get:
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  he = 
2 2

2 2 2(4 ) 9
2 2

V V V
g g
−

=

 Now, substituting the values of he and V1 in eqn. (i), we have:

  
2

1 2
1

(4 )
2

p V z
w g

+ +  = 
2 2

2 2 2
2

9
2 2

p V Vz
w g g

+ + +

 or, 
2 2 2

2 2 216 9
2 2 2
V V V
g g g

− −  = 2 1
2 1

p pz z
w w

   + − +   
   

 or, 
2

26
2
V
g

 = 0.01

 or, V2 = 
1/20.01 2 9.81 0.181 m/s

6
× ×  = 

 

	 ∴  Rate of flow, Q = 2
2 2 0.48 0.181 . /

4
A V π

= × × = 30 03275 m s (Ans.)

 Example 12.9.  A horizontal pipe 150 mm in diameter is joined by sudden enlargement to a  
225 mm diameter pipe. Water is flowing through it at the rate of 0·05 m3/s. Find :
 (i) Loss of head due to abrupt expansion,
 (ii) Pressure difference in the two pipes, and 
 (iii) Change in pressure if the change of section is gradual without any loss.
 Solution. Diameter of the smaller pipe, D1 = 150 mm = 0·15 m

	 ∴  Area,  A1 = 2 20.15 0.01767 m
4
π
× =

 Diameter of the larger pipe, D2 = 225 mm =  0·225 m

	 ∴  Area, A2 = 2 20.225 0.03976 m
4
π
× =

  Discharge, Q  =  0·05 m3/s
 (i) Loss of head due to abrupt expansion, he :

    he = 
2

1 2( )
2

V V
g

−

  where, Vl and V2 are the velocities of flow in the smaller and larger diameter pipes respectively.

    V1 = 
1

0.05 2.83 m/s
0.01767

Q
A

= =

    V2 = 
2

0.05 1.26 m/s
0.03976

Q
A

= =

  Hence, he = 
2(2.83 1.26) .

2 9.81
−

=
×

0 1256 m (Ans.)

 (ii) Pressure difference in the two pipes :
  Applying Bernoulli’s equation at the smaller and the larger pipe sections, we get:

    
2

1 1
12

p V z
w g

+ +  = 
2

2 2
22 e

p V z h
w g

+ + +

  or, 2 1p p
w
− 

 
 

 = 
2 2

1 2
2 e

V V h
g
−

−  [ zl = z2, the pipe being horizontal]
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  or, 2 1p p
w
− 

 
 

 = 
2 22.83 1.26 0.1256 .

2 9.81
−

− =
×

0 202 m of water  (Ans.)

  The positive sign indicates that there is gain in pressure. Thus, although there is an energy 
loss, the pressure increases across a sudden flow of expansion.

 (iii) Change in pressure with gradual change of section :
  If the change of section is gradual without loss, then, gain in pressure,

    2 1p p
w
−  = 

2 2 2 2
1 2 2.83 1.26 .

2 2 9.81
V V

g
− −

= =
×

0 327 m of water (Ans.)

 Example 12.10.  The diameter of a horizontal pipe which is 300 mm is suddenly enlarged to 
600 mm. The rate of flow of water through this pipe is 0·4 m3/s. If the intensity of pressure in the  
smaller pipe is 125 kN/m2, determine.
 (i) Loss of head, due to sudden enlargement,
 (ii) Intensity of pressure in the larger pipe, and
 (iii) Power lost due to enlargement.
 Solution.  Diameter of the smaller pipe, D1 = 300 mm = 0·03 m

  Area, A1 = 2 20.3 0.0707 m
4
π
× =

  Diameter of the longer pipe, D2  = 600 mm = ·06 m

  Area, A2 = 2 20.06 0.2828 m
4
π
× =

  Rate of flow of water, Q = 0·4 m3/s
  Intensity of pressure in the smaller pipe, pl = 125 kN/m2

  Now velocity, V1 = 
1

0.4 5.66 m/s
0.0707

Q
A

= =

  Velocity, V2 = 
2

0·4 1.414 m/s
0·2828

Q
A

= =

 (i) Loss of head due to sudden enlargement, he :
  Loss of head due to sudden enlargement,

    he = 
2

1 2( )
2

V V
g

−

     = 
2(5.66 1.414) .

2 9.81
−

=
×

0 918 m  (Ans.)

 (ii) Intensity of pressure in the large pipe, p2 :
  Applying Bernoulli’s equation before and after sudden enlargement, we get:

  
2

1 1
12

p V z
w g

+ +  = 
2

2 2
22 e

p V z h
w g

+ + +

  But, z1 = z2 ...because pipe is horizontal

	 	∴ 
2

1 1
2

p V
w g

+  = 
2

2 2
2 e

p V h
w g

+ +

  or, 2p
w

 = 
2 2

1 1 2
2 2 e

p V V h
w g g
+ − −
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   = 
2 2125 5.66 1.414 0.918

9.81 2 9.81 2 9.81
+ − −

× ×

   = 12·74 + 1·63 – 0·1 – 0·918 = 13·35 m
	 	∴ p2 = w × 13·35  = 9·81 × 13·35 
   = 130·9 kN/m2   (Ans.)
 (iii) Power lost due to sudden enlargement, Plost :

  Plost = 
1000

ewQh kW

  where, w = 9.81 × 1000 N/m2,
    Q = 0.4 m3/s, and
    he = 0·918 m

	 	∴ Plost = (9.81 1000) 0.4 0.918
1000

× × ×

   = 3.6 kW   (Ans.)
 Example 12.11.  In a 80 mm diameter pipeline an oil of specific gravity 0·8 is flowing at the 
rate of 0·0125 m3/s. A sudden expansion takes place into a second pipeline of such diameter that 
maximum pressure rise is obtained. Find :
 (i) Loss of energy in sudden expansion,
 (ii) Differential gauge length indicated by an oil-mercury manometer connected between the two 

pipes.    [PTU]
 Solution.  Diameter of the smaller pipe, D1 = 80 mm = 0·08 m
  Specific gravity of oil, S  =  0·8
  Discharge, Q  =  0·0125 m3/s.
 (i) Loss of energy in sudden expansion :

    Velocity of flow, V = 
2

0.0125 2.49 m/s
Area 0.08

4

Q
= =
π
×

  The pressure rise will be maximum when:

    1

2

D
D

 = 1
2

 (where, D2 = diameter of the larger pipe)

  [For derivation of the formula, refer to Example 12·12]
  or, D2 = 12 2 0.08 0.1131 mD = × =

	 	∴ V2 = 
2

0.0125 1.244 m/s
(0.1131)

4

=
π
×

  Loss of energy (or head) in sudden expansion,

    h2 = 
2 2

1 2( ) (2.49 1.244) .
2 2 9.81

V V
g

− −
= =

×
0 079 m of oil   (Ans.)

 (iii) Reading of the manometer :
  The energy equation is given as:

    
2

1 1
12

p V z
w g

+ +  = 
2

2 2
22 e

p V z h
w g

+ + +  (zl = z2, the pipe being horizontal)
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    2 1p p
w
− 

 
 

 = 
2 2

1 2
2 2 e
V V h

g g
− −

     = 
2 22.49 1.244– – 0.079 0.158 of oil

2 9.81 2 9.81
=

× ×

  Let, h = Reading of the U-tube oil-mercury manometer where limbs are connected across the 
expanded transition:

  Then, 2 1p p
w
−  = 

0
1mSh

S
 − 
 

    [where, Sm = specific gravity of mercury (= 13·6)]

  or, 0.158 = h 13.6 1 16
0.8

h − = 
 

  or, h = 0.158 0.009875 m
16

=   or    9·875 mm (Ans.)

 Example 12.12.  For sudden expansion in a pipe flow, work out the optimum ratio between the     
diameter of the pipe before expansion and the diameter of pipe after expansion so that pressure rise 
is maximum ? Also find the maximum pressure rise. (UPSC Exams.)
 Solution. Applying Bernoulli’s equation at sections 1 – 1 and 2 – 2, we have:

  
2

1 1
12

p V z
w g

+ +  = 
2

2 2
22 e

p V z h
w g

+ + +

 where, he (energy loss due to sudden expansion) 
2

1 2( )
2

V V
g

−
=

	 ∴ 
2

1 1
2

p V
w g

+  = 
2 2

2 2 1 2( )
2 2

p V V V
w g g

−
+ +  ( zl = z2, the pipe being horizontal)

  Pressure rise, Dp = 
2 2 2

1 2 1 2
2 1

( )( )
2 2 2
V V V Vp p w

g g g
 −

− = − − 
 

 From continuity consideration,
  A1V1 = A2V2

  V2 = 
2

1 1 1
1

2 2

AV D V
A D

 =  
 

	 ∴ Dp = 
24 22

1 1 1

2 2
1 1

2
V D Dw

g D D

       × − − −           

 or Dp = 
2 42

1 1 1

2 2
2 2

2
V D Dw

g D D
    × −         

 There is only one value or ratio 1

2

D
D

 
 
 

 which will provide the maximum pressure rise.

	 ∴ For maximum pressure rise, 
1 2

( ) 0
( / )
d p

d D D
D

=

 or, 
1 2

( )
( / )
d p

d D D
D  = 

3
1 1

2 2
4 8 0D D

D D
    − =         
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 From which 
2

1

2

D
D

 
 
 

 = 1
2

 or 1

2

1
2

D
D

=

	 ∴ Diameter ratio for the maximum pressure rise is:

  1

2

D
D

 = 
1
2

(Ans.)

 Maximum pressure rise is:

  (Dp)max  = 
2 42

1 1 12 2
2 2 2
Vw

g
    × × −    

    

   = 
2

1 .
(1 0.5)

2

2
10 5

2
wV
g

wV
g

− =  (Ans.)

12 ·4·2. Loss of Head due to Sudden Contraction
 Due to sudden contraction, the stream lines converge to a minimum cross-section called the 
vena-contracta and then expand to fill the downstream pipe (Fig. 12·5.)
 Let, Ac = Area of flow at section 

C–C,
  Vc = Velocity of flow at 

section C–C,
  A2 = Area of flow at section 

2–2,
  V2 = Velocity of flow at 

section 2–2, and
  hc = Loss of head due to 

sudden contraction.
 Loss of head due to sudden contraction  
= Loss up to vena-contracta  + loss due to 
sudden enlargement beyond vena-contracta

 or, hc = 
2

2( )
Negligibly small

2
cV V

g
−

+  ... (i)

 From continuity equation, we have:
  AcVc = A2V2

 or, 
2

cV
V

 = 2

2

1 1
( / )c c c

A
A A A C

= =  
2

c
c

AC
A

 = 
 


 or, Vc = 2

c

V
C

 Substituting the value of Vc in eqn. (i), we get:

  hc = 

2
2

22 2
2 1 1

2 2
c

c

V V
C V

g g C

 −     = − 
 

 i.e., hc = 
22

2 1 1
2 c

V
g C
 − 
 

 ...(12·3)

V1

p .A1 1

D1 Vc

Ac

1 C 2

p .A2 2

D2 V2

Vena-contracta

1 C 2

Fig. 12.5
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 In general, hc = 
2

2
2
Vk

g

 where, k = 
21 1

cC
 − 
 

 From experiments : 
3

2

1
0.62 0.38c

AC
A

 = +  
 

 and thus the loss co-efficient k is a function of ratio

   1 2

2 1
orA D

A D

 and, k = 0·375 for Cc = 0·62.
 For gradual contraction (conical reducers) k is a function of cone angle and  0·1.

 Note :  If the value of Cc is not given then loss of head due to contraction may be taken as 
2

20·5
2
V

g

 i.e., he = 
2

20.5
2
V

g
 ...(12·4)

 Example 12.13.  A horizontal pipe carries water at the rate of 0·04 m3/s. Its diameter, which is 
300 mm reduces abruptly to 150 mm. Calculate the pressure loss across the contraction. Take the 
co-efficient of contraction = 0·62.
 Solution.  Diameter of the large pipe, D1  =  300 mm = 0·3 m

	 ∴  Area, A1 = 2 20.3 0.0707 m
4
π
× =

  Diameter of the small pipe, D2 = 150 mm = 0·15 m

	 ∴  Area, A2  = 2 20.15 0.1767 m
4
π
× =

  Discharge, Q  =  0·04 m3/s.
  Co-efficient of contraction, Cc  =  0·62
 Pressure loss across the contraction, (p1 – p2) :
 From continuity equation, we have:
  A1V1 = A2V2 = Q

	 ∴ V1 = 
1

0.04 0.566 m/s
0.0707

Q
A

= =

 and, V2 = 
2

0.04 2.26 m/s
0.01767

Q
A

= =

 Applying Bernoulli’s equation before and after contraction, we get:

  
2

1 1
12

p V z
w g

+ +  = 
2

2 2
22 c

p V z h
w g

+ + +  ...(i)

 But,    z1 = z2  ...because the pipe is horizontal and head loss due to contraction (hc) is given as :

  hc = 
2 22 2

21 1 2.261 1 0.0978
2 0.62 2 9.81c

V
C g
   − = − × =    ×  

 Substituting these values in eqn. (i), we get:
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2

1 0.566
2 9.81

p
w

+
×

 = 
2

2 2.26 0.0978
2 9.81

p
w

+ +
×

	 ∴ 1 2p p
w w

−  = 
2 22.26 0.5660.0978

2 9.81 2 9.81
+ −

× ×

   = 0·26 + 0·0978 – 0·016 = 0·3418
 Hence, p1 – p2 = w × 0·3418 = 9·81 × 0·3418
   = 3·35 kN/m2   (Ans.)
 Example 12.14. A pipe of diameter 225 mm is attached to a 150 mm diameter pipe by means of a 
flange in such a manner that the axes of the two pipes are in a straight line. Water flows through the 
arrangement at the rate of 0·05 m3/s. The pressure loss at the transition as indicated by differential 
gauge length on a water-mercury manometer connected between two pipes equals 35 mm. Calculate :
 (i) The loss of head due to contraction, and
 (ii) The co-efficient of contraction.
 Solution.  Diameter of the large pipe, D1  =  225 mm = 0·225 m

	 ∴   Area, A1 = 2 20.225 0.03976 m
4
π
× =

  Diameter of the small pipe, D2 = 150 mm = 0·15 m

	 ∴   Area, A2 = 2 20.15 0.01767 m
4
π
× =

  Discharge, Q  = 0·05 m3/s
  Reading of the differential gauge, h  =  35 mm = 0·035 m
 (i) Loss of head due to contraction hc :
  When the water-mercury manometer is connected across the contracted transition, then

    1 2p p
w
−  = 1m

w

Sh
S

 − 
 

  where, Sm = Sp. gr. of mercury (= 13·6), and
   Sw = Sp. gr. of water (= 1).
  Substituting the values in the above eqn., we get:

    1 2p p
w
−  = 13.60.035 1 0.441 m

1.0
 − = 
 

  Let Vl and V2 be the velocities of flow in the large diameter and small diameter pipes respec-
tively, then:

    V1 = 
1

0.05 1.26 m/s, and
0.03976

Q
A

= =

    V2 = 
2

0.05 2.83 m/s
0.01767

Q
A

= =

  Invoking Bernoulli’s equation, we have:

    
2

1 1
12

p V z
w g

+ +  = 
2

2 2
22 c

p V z h
w g

+ + +

1 2

where, head loss due to contraction, and
.........the pipe being horizontal

ch
z z

= 
 = 

  or, hc = 
2 2

1 2 1 2
2

p p V V
w g
− −  + 
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     = 
2 2(1.26) (2.83)0.441 .

2 9.81
−

+ =
×

0 114 m of water  (Ans.)

 (ii) The co-efficient of contraction, Cc :
  The loss of head due to contraction is given by:

    hc = 
2 2

21 1
2c

V
C g

 − × 
 

  or, 0.114 = 
2 21 2.831

2 9.81cC
 − ×  × 

  From which, Cc = 0·65 (Ans.)
 Example 12.15. When a sudden contraction is introduced in a horizontal pipeline from  
500 mm diameter to 250 mm diameter, the pressure changes from 105 kN/m2 to 69 kN/m2. If the 
co-efficient of contraction is assumed to be 0·65, calculate the water flow rate.
Following this if there is sudden enlargement from 250 mm to 500 mm and if the pressure at the 250 mm 
section is 69 kN/m2, what is the pressure at the 500 mm enlarged portion ? [Roorkee University]
 Solution.  Diameter of the large pipe, D1  = 500 m = 0·5 m

	 ∴   Area, A1 = 2 30.5 0.1963 m
4
π
× =

  Diameter fo the small pipe, D2  = 250 mm = 0·025 m

	 ∴   Area, A2 = 2 20.25 0.04908 m
4
π
× =

  Pressure inside the large pipe, p1  = 105 kN/m2

  Pressure inside the small pipe, p2  =  69 kN/m2 
  Co-efficient of contraction, Cc  =  0·65

p4 = ?

D3 = 0.25 m

p1 = 105 kN/m
2

D1 = 0.5 m
D2 = 0.25 m

p2 = 69 kN/m
2 p3 = 69 kN/m

2

1 2 3 4

1 2 3 4

D4 = 0.5 m

Fig. 12.6

 (i) Flow rate, Q :
  Head lost due to contraction is given by:

    hc = 
2 22 2

2 21 11.0 1.0
2 0.65 2 0.65
V V

g g
   − = −      

 [Eqn. (12·3)]

     = 
2

20.2899
2
V

g
 ...(i)

  From continuity considerations, we have:
    A1V1 = A2V2

    V1 = 
2

2 2
2 22

1 1

( /4)
( /4)

A DV V
A D

π ×
× = ×

π ×
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  or, V1 = 
2

2
2

0.25
0.50 4

VV  × = 
 

  Applying Bernoulli’s equation at 1-1 and 2-2, we get:

    
2

1 1
12

p V z
w g

+ +  = 
2

2 2
22 c

p V z h
w g

+ + +

  But, z1 = z2 ...the pipe being horizontal.

	 	∴ 
2

1 1
2

p V
w g

+  = 
2

2 2
2 c

p V h
w g

+ +

  Substituting the values, we get:

    
2

2( / 4)105
9.81 2 9.81

V
+

×
 = 

2 2
2 269 0.2899

9.81 2 9.81 2 9.81
V V

+ +
× ×

  or, 
2

2210
16
V

+  = 2 2
2 2138 0.2899V V+ +

  or, 72 = 
2

2 22
2 21.2899 1.2274

16
VV V− =

    V2 = 7·66 m/s
  Hence, rate of flow, Q = A2V2 = 0·04908 × 7·66 = 0·376 m3/s   (Ans.)
 (ii) Pressure at the enlarged section, p4 :
  Applying Bernoulli’s equation at the sections 3-3 and 4-4, we get:

    
2

3 3
32

p V z
w g

+ +  = 
2

4 4
42 e

p V z h
w g

+ + +  (loss of head due to sudden enlargement)

  But, p3 = 69 kN/m2

    V3 = V2 = 7·66 m/s

    V4 = 2
1

7.66 1.915 m/s
4 4

VV = = =

    z3 = z4

  And, he = 
2 2

3 4( ) (7.66 1.915) m 1.68 m
2 2 9.81

V V
g
− −

= =
×

  Substituting the values in the above equation, we get:

    
269 7.66

9.81 2 9.81
+

×
 = 

2
4 (1.915) 1.68

9.81 2 9.81
p

+ +
×

    7.033 + 2.99 = 4 0.187 1.68
9.81
p

+ +

  or, p4 = 80 kN/m2   (Ans.)

12·4·3 Loss of Head due to Obstruction in Pipe
 Refer to Fig. 12·7. The loss of energy due to an obstruction in pipe takes place on account of the 
reduction in the cross-sectional area of the pipe by the presence of obstruction which is followed by 
an abrupt enlargement of the stream beyond the obstruction.
 Head loss due to obstruction (hobs.) is given by the relation :
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  hobs. = 
2 2

( ) 2c

A V
C A a g
 
 − 

 ...(12.5)

 where, A = Area of the pipe,
  a = Maximum area of obstruction, and
  V = Velocity of liquid in pipe.

12·4·4 Loss of Head at the Entrance to Pipe
 Loss of head at the entrance to pipe (hi) is given by the 
relation :
  hi = 

2
0.5

2
V

g
 ...(12.6)

 where, V = Velocity of liquid in pipe.

12·4·5 Loss of Dead at the Exit of a Pipe
 Loss of head at the exit of a pipe is denoted by h0 and is given by the relation:

  h0 = 
2

2
V

g
 ...(12.7)

 where, V = Velocity at outlet of pipe.

12·4·6 Loss of Head due to Bend in the Pipe
 In general the loss of head in bends (hb) provided in pipes may be expressed as :

  h0 = 
2

2
Vk

g
 ...(12.8)

 where, V = Mean velocity of flow of fluid, and
 and, k = Co-efficient of bend; it depends upon angle of bend, radius of curvature of bend and 
diameter of pipe.

12·4·7 Loss of Head in Various Pipe Fittings
 The loss of head in the various pipe fittings (such as valves, couplings, etc.) may also be 
represented as :
  hfittings = 

2

2
Vk

g
 where, V = Mean velocity flow in the pipe, and k = value of the co-efficient; it depends on the 
type of the pipe fitting.

12.5. HYDRAULIC GRADIENT AND TOTAL ENERGY LINES 

 The concept of hydraulic gradient line and total energy line is quite useful in the study of flow 
of fluid in pipes. These lines may be obtained as indicated below.
 Total Energy Line (T.E.L. or E.G.L.):
 It is known that the total head (which is also total energy per unit weight) with respect to any 
arbitrary datum, is the sum of the elevation (potential) head, pressure head and velocity head, i.e.,

  Total head = 
2

2
p Vz
w g
+ +

 When the fluid flows along the pipe, there is loss of head (energy) and the total energy decreases 
in the direction of flow. If the total energy at various points along the axis of the pipe is plotted and 
joined by a line, the line so obtained is called the ‘Energy gradient line’ (E.G.L.).
 In literature, energy gradient line (E.G.L.) is also known as ‘Total energy line’ (T.E.L.).

Fig. 12.7

VV
Area a

Vc

Area, ( )A–a Cc Area A
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 Hydraulic Gradient Line (H.G.L.):
 The sum of potential (or elevation) head and the pressure head p z

w
 + 
 

 at any point is called 

the piezometric head. If a line is drawn joining the piezometric levels at various points, the line so 
obtained is called the ‘Hydraulic gradient line.’
 The following points are worth noting :
 1. Energy gradient line (E.G.L.) always drops in the direction of flow because of loss of head.
 2. Hydraulic gradient line (H.G.L.) may rise or fall depending on the pressure changes.
 3. Hydraulic gradient line (H.G.L.) is always below the energy gradient line (E.G.L.) and the 

vertical intercept between the two is equal to the velocity head 
2

2
V

g
 
 
 

.

 4. For a pipe of uniform cross-section the slope of the hydraulic gradient line is equal to the 
slope of energy gradient line.

 5. There is no relation whatsoever between the slope of energy gradient line and the slope of 
the axis of the pipe.

 Example 12.16.  A horizontal pipe line 40 m long is connected to a water tank at one end and 
discharges freely into the atmosphere at the other end. For the first 25 m of its length from the tank, 
the pipe is 150 mm diameter and its diameter is suddenly enlarged to 300 mm. The height of water 
level in the tank is 8 m above the centre of the pipe. Considering all losses of head which occur,
 (i) Determine the rate of flow.
 (ii) Draw the hydraulic gradient and energy gradient lines. Take f = 0·01 for both sections of the 

pipe.    [M.U.]
 Solution.  Total length of the horizontal pipeline, L  =  40 m.
  Length of first pipe L1 = 25 m
  Diameter of first pipe D1 = 50 mm = 0·15 m
  Length of second pipe, L2 = 40 – 25 = 15 m
  Diameter of second pipe, D2 = 00 mm = 0·3 m
  Height of water, H = 8 m
  Co-efficient of friction, f = 0·01
 (i) Rate of flow, Q :
 Applying Bernoulli’s equation to the free water surface (F.W.S.) in the tank and outlet of the 
pipe as shown in Fig. 12·8., we get:

F.W.S

H = 8 m

Water V1 V2

D1 = 0.15 m
D2 = 0.3 m

L1 = 25 m L2 = 15 m
L = 40 m

Outlet of pipe

1
2

Fig. 12.8

  
2

1 1
12

p V z
w g

+ +  = 
2

2 2
2 all losses

2
p V z
w g

+ + +
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  0 + 0 + 8.0 = 
1 2

2
20 0

2 i f e f
V h h h h

g
+ + + + + +  ...(i)

 where, V2 = Velocity of water at the outlet of pipe,

  hi = Loss of head at entrance = 
2

10.5
2
V

g
,

  
1fh  = Head lost due to friction in pipe 1

2
1 1

1

4
2

fL V
D g

=
×

,

  he = Loss of head due to sudden enlargement 
2

1 2( )
2

V V
g

−
= , and

  
2fh  = Head lost due to friction in pipe 2 

2
2 2

2

4
2

fL V
D g

=
×

 From continuity equation, we have:
  A1V1 = A2V2

	 ∴ V1 = 
2

2 2 2 2
2

1 1

( / 4)
( / 4)

A V D V
A D

π × ×
=

π ×

   = 
2 2

2
2 2 2

1

0·3 4
0·15

D V V V
D

   × = × =     
 Substituting the value of V1 in different head losses, we have:

  h1 = 
2 2 2

1 2 20.5 0.5 (4 ) 8
2 2 2

V V V
g g g

×
= =

  
1fh  = 

2 2 2
1 1 2 2

1

4 4 0.01 25 (4 ) 106.6
2 0.15 2 2

fL V V V
D g g g

× × × ×
= =

× ×

  he = 
2 2 2

1 2 2 2 2( ) (4 ) 9
2 2 2

V V V V V
g g g

− −
= =

  
2fh  = 

2 2 2
2 2 2 2

2

4 4 0.01 15 2
2 0.3 2 2

fL V V V
D g g g

× × ×
= =

× ×

 Substituting the values of these losses in eqn. (i), we get:

F.W.S

H = 8 m
P

H.G.L

V

E.G.L

0.5 m ( )hi

A

=hf1 6.7 m

V1

N B

he = 0.56 m

T

U

hf2
= 0.126 m

L1 = 25 m

D1 = 0.15 m
D2 = 0.3 m

L2 = 15 m

L = 40 m

M
L

V2

S

Q

Fig. 12.9

  8 = 
2 2 2 2 2

2 2 2 2 28 106.6 9 2
2 2 2 2 2
V V V V V

g g g g g
+ + + +

   = 
2 2

2 2(1 8 106.6 9 2) 126.6
2 2
V V

g g
+ + + + =
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	 ∴ V2 = 8 2 8 2 9.81 1.11 m/s
126.6 126.6

g× × ×
= =

 Hence,  Rate of flow, Q = 2
2 2 0.3 1.11 . /

4
A V π

= × × = 30 078 m s  (Ans.)

 (ii) E.G.L. and H.G.L. :
 The various head losses are : (Refer to Fig. 12·9)

  hi = 
2 2

28 8 (1.11) 0.5 m
2 2 9.81
V
g

×
= =

×

  1fh  = 
2 2

2 106.6 (1.11)106.6 6.7 m
2 2 9.81
V

g
×

= =
×

  he = 
2 2

29 9 (1.11) 0.56 m
2 2 9.81
V
g

×
= =

×

  2fh  = 
2 2

22 2 (1.11) 0.126 m
2 2 9.81
V
g

×
= =

×

 To draw E.G.L. and H.G.L. the following procedure is followed.
 E.G.L. (Energy gradient line) :
 The point L lies on F.W.S. (free water surface).
 — Take LM = hi = 0·5 m
 — From M draw a horizontal line. Taking MA equal to the length of the pipe (i.e., L1) draw a 

vertical line downward from the point A. Cut AN = 
1fh  = 6·7 m

 — Join MN
 — From N, draw a line NS vertically downward equal to he (= 0·56 m)
 — From S, draw SB horizontal and from point U (which is lying on the centre of the pipe) draw 

a vertical line in the upward direction, meeting at B. From B take BT = 
2fh = 0·126 m.

 — Join ST
 — The line LMNST represents the energy gradient line (E.G.L.)
 H.G.L. (Hydraulic gradient line) :

 — From M, take 
2 2

1 (4 1.11) 1.0 m
2 2 9.81
VMP

g
×

= = =
×

 ( V1 = 4V2)

 — Draw the line PQ parallel to the line MN
 — From the point U, draw a line UV parallel to the line TS
 — Join QV
 — The line PQVU represents the hydraulic gradient line (H.G.L.).

 Example 12.17.  Two reservoirs are connected by a pipeline consisting of two pipes, one of  
15 cm diameter and length 6 m and the other of diameter 22·5 cm and 16 m length. If the difference 
of water levels in the two reservoirs is 6 m, calculate the discharge and draw the energy gradient 
line. Take f = 0·04.    (Delhi University)
 Solution. Refer to Fig. 12·10. Given : D1 = 15 cm = 0·15 m; L1 = 6 m; D2 = 22·5 cm = 0·225 m;
 L2 = 16 m; total losses = 6 m; f = 0·04.
 From the continuing equation, we have:  A1V1 = A2V2

 or, 2
10.15

4
Vπ

× ×  = 2
20.225

4
Vπ

× ×    ∴ Vl = 2·25 V2 ...(i)
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E.G.L

hf = 1.397 m

L1 = 6 m

D1 = 15 cm D2 = 22.5 cm

L2 = 16 m

F.W.S A

C V1

V2

h0 = 0.122 m

Bhi = 0.31 m
hf1

= 3.97 m
he = 0.19 m

2

Fig. 12.10

 Loss of head at entrance to a pipe, 
2

10.5
2i

Vh
g

=

 Loss of head due to friction in pipe AB,

  
1fh  = 

2 2 2
1 1 1 1

1

4 4 0.04 6 6.4
2 0.15 2 2

fL V V V
D g g g

× × ×
= =

× ×

 Loss of head due to sudden enlargement,

  he = 

2
1

2 21
1 2 1( ) 2.25 0.308

2 2 2

VVV V V
g g g

 − −  = =

 Loss of head due to friction in the pipe, BC,

  
2fh  = 

2
1

2 2
2 1

2

4 0.04 164 2.25 2.25
2 0.225 2 2

V
fL V V

D g g g

 × × ×  
 = =

× ×

 Loss of head due to friction in the pipe BC,

  h0 = 
22 2

2 1 11 0.197
2 2.25 2 2
V V V

g g g
 = × = 
 

 Applying Bernoulli’s equation to free water surface (F.W.S.) in the two tanks , we have:

  
2

2
A A

A
p V z
w g

+ +  = 
2 2

losses
2

B B
B

p V z
w g

+ + +

 i.e., pA = pB = 0,  VA = VB = 0,  zA – zB = 6 m
 Hence,  Total losses  =  6 m
 i.e., 

1 2 0i f e fh h h h h+ + + +  = 6

           
2 2 2 2 2

1 1 1 1 10.5 6.4 0.308 2.25 0.197 6
2 2 2 2 2

V V V V V
g g g g g

+ + + + =

  V1 = 3·49 m

  Discharge, Q = 2
1 1 0.15 3.49 . /

4
AV π

= × × = 30 0617 m s  (Ans.)

 Energy gradient line is shown in the Fig. 12·10.
 Example 12.18.  A pipe ABC connecting two reservoirs is 80 mm in diameter. From A to B the 
pipe is horizontal as shown in Fig. 12·11. and from B to C it falls by 3·5 metres. The lengths AB 
and BC are 25 m and 15 m respectively. If the water surface in the reservoir at A is 4 m above the 
centre-line of the pipe and at C 1 m above the line of the pipe, calculate :
 (i) The rate of flow, and
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 (ii) The pressure head in the pipe at B.
 Neglect the loss at the bend but consider all other losses. Also draw the energy and hydraulic 
gradient lines. Take Darcy friction factor = 0·024 and Kentrance = 0·5. [IIT Delhi]
 Solution.  Diameter of the pipe, D  =  80 mm = 0·08 m
  Area, A = 2 20.08 0.005026 m

4
π
× =

  Friction factor (= 4f  ) = 0·024
  Kentrance = 0·5

C

1m

p

w
+ z

E.G.L

V
2

V
2

2g

2g

A

4 m

1

3.5 m

h =i 0.5V /2g
2

E.G.L

2

hf = 4fLV
2

D � �gB

Fig. 12.11

 (i) The rate of flow, Q :
  Applying Bernoulli’s equation between the water surfaces 1 and 2 in the two reservoirs (con-

sidering horizontal plane through C as datum), we get:

  
2 2 2

1 1 2 2
1 2 loss at entrance + (loss due to friction)

2 2 2f
p V p V Vz z h
w g w g g

+ + = + + + +

    0 + 0 (4 + 3.5 – 1) = 
2 2 20·5 40 0 0

2 2 2
V fLV V
g D g g

+ + + + +
×

    (where, V = velocity of flow in the pipe)

  or, 6.5 = 
2 2 20.5 0.024 (25 15)

2 0.08 2 2
V V V
g g g

× + ×
+ +

×

  or,  = 
2 2

(0.5 12 1) 13.5
2 2
V V

g g
+ + +

  or, V2 = 6.5 2 9.81 9.446
13.5
× ×

=

  or, V = 3·073 m/s  (Ans.)
	 	∴   Flow rate  =  A × V = 0·005026 × 3·073 = 0·01544 m3/s   (Ans.)

 (ii) Pressure head in the pipe at B, Bp
w

 :

  Applying Bernoulli’s equation at A and B, we get:

    
2

1 1
12

p V z
w g

+ +  = 
2 20.5

2 2
B B B

B f
p V Vz h
w g g

+ + + +

    0 + 0 + = 
22 2 40·50

2 2 2
B ABp fL VV V

w g g D g
+ + + +

×

  4 = 
2 2 20.5 0.024 25

2 2 0.08 2
Bp V V V

w g g g
× ×

+ + +
×

 ( VB = V = 3·073 m/s)
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    4 = 
2 2 20.5 7.5

2 2 2
Bp V V V

w g g g
+ + +

     = 
29

2
Bp V

w g
+

  or, Bp
w

 = 
2 29 9 (3.073)4 4

2 2 9.81
V
g

×
− = −

×

     = – 0·33 m of water (below atmosphere) (Ans.)
  Energy gradient and hydraulic gradient lines (E.G.L. and H.G.L.) :
 — For plotting E.G.L. and H.G.L., we require the velocity head, (same throughout)

    
2

2
V

g
 = 

2(3.073) 0.481 m
2 9.81

=
×

 — Total energy at B w.r.t. horizontal datum through C

     = 
2 2(3.073)3.5 3.5 – 0.33

2 2 9.81
Bp V

w g
+ + = +

×
 = 3·65 m

  Energy gradient and hydraulic gradient lines are shown firm and dotted respectively in the 
Fig. 12·11; H.G.L. below the pipeline near B indicates that pressure is negative.

 Example 12.19. Two reservoirs A and C having a difference of level of 15·5 m are connected 
by a pipeline ABC, the elevation of point B being 4·0 m below the level of water in reservoir A. The 
length AB of the pipeline is 250 m, the pipe being made of mild steel having a friction co-efficient 
f1, while the length BC is 450 m, the pipe having made of cast-iron having a friction co-efficient f2. 
Both the lengths AB and BC have a diameter of 200 mm. A partially closed valve is located in the 
length BC at a distance of 150 m from reservoir C.
 If the flow through the pipeline is 3 m3/min, the pressure head at B is 0·5 m and the head loss 
at the valve is 5·0 m.

Reservoir

A

250 m
(LAB)

4 m
200 mm dia.

0.5V
2
/2g

B

E.G.L

5 m

150 m

L
=BC

450 m

Reservoir

Valve

C

V
2
/2g

2

1
5
.5

m

1

Fig. 12.12

 (i) Find the friction coefficients f1 and f2 .
 (ii) Draw the hydraulic grade line of the pipeline and indicate on the diagram head loss values 

at significant points. Take into account head loss at entrance and exit points of the pipeline.
[UPTU]

 Solution. Difference of water level between two reservoirs = 15·5 m 
 Diameter of the pipe ABC, D  = 200 mm = 0·2 m
  Length AB, LAB = 250 m
  Length BC, LBC = 450 m
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  Discharge through the pipe, Q  =  3 m3/min = 0·05 m3/s

  Pressure head at B, hB = 0.5 mBp
w

 = = 
 

  Head loss at the valve = 5·0 m
 (i) Friction co-efficients f1 and f2 :

  Velocity in the pipe ABC, 
2

0.05 1.59 m/s
Area 0.2

4

QV = = =
π
×

  Applying Bernoulli’s equation at ‘1’ and at ’B’, we get:

    
2

1 1
12

p V z
w g

+ +  = 
2 2

2
0.5 ( )

2 2
B B B

f AB
p V Vz h
w g g

+ + + +

    0 + 0 + 4 = 
2 2 2

10.5 40.5 0
2 2 2

B B AB BV V f L V
g g D g

+ + + +
×

    4 = 
22 2

14 2500.50.5
2 2 0.2 2

f VV V
g g g

× ×
+ + +

×
 ( VB = V)

  or, 4 = 
22 2

14 250 (1.59)(1.59) 0.5 (1.59)0.5
2 9.81 2 9.81 0.2 2 9.81

f × ××
+ + +

× × × ×

     = 0·5 + 0·129 + 0·0644 + 644·3 fl
  or, f1 = 0·0051   (Ans.)
  Applying Bernoulli’s equation between ‘1’ and ‘2’ and considering all losses in the pipeline 

ABC including the exit loss, we have:

      
2

1 1
12

p V z
w g
+ +  = 

22 22 2
22 2 1

2
440.5 5.0

2 2 2 2 2
BCAB f L Vp V f L VV Vz

w g g D g D g g
+ + + + + + +

× ×

    0 + 0 + 15.5 = 
2 20.5 (1.59) 4 0.0051 250 (1.59)0 0 0

2 9.81 0.2 2 9.81
× × × ×

+ + + +
× × ×

   
2 2

24 450 (1.59) (1.59)5.0
0.2 2 9.81 2 9.81

f × ×
+ + +

× × ×
  or, 15·5 = 0·0644 + 3·28 + 1159·6 f2 + 5·0 + 0·1288
  or, f2 = 0·00606   (Ans.)
 (ii) H.G.L. (hydraulic gradient line) :
  Fig. 12.9 shows the E.G.L. (energy gradient line), H.G.L. will be 

2

2
V

g
 below the E.G.L.

 Example 12.20. Water is being pumped at the rate of 0·02 m3/s to an overhead tank through 
a 150 mm diameter 300 m long delivery pipe. In the tank, the pipe discharges freely at height of  
15 m above the pump. If the Darcy-Weisbach friction factor = 0·03 for the pipe, determine :
 (i) The pressure developed by the pump on its delivery side, and
 (ii) The power delivered to water by the pump.
 Draw also the hydraulic gradient from the pump to the tank. Assume that the first 285 m of the 
delivery pipe is horizontal and the rest is vertical. [Delhi University]

 Solution.  Rate of flow, Q  = 0·02 m3/s
  Diameter of the pipe, D  =  150 mm = 0·15 m
  Length of the pipe, L  =  300 m
  Darcy-Weisbach friction factor (4f)  =  0·03
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 (i) The pressure developed by the pump on its delivery side :

    Velocity of flow, V = 
2

0.02 1.132 m/s
Area 0.15

4

Q
= =
π
×

  Let,  p = Pressure (gauge) just on the delivery side of the pump.
  Applying Bernoulli’s equation to the section just on the delivery side of the pump and to the 

discharge end of the pipeline where the gauge pressure is zero i.e., sections 1 and 2, we have:

1
Pump

3

2

15 m

Tank

0.196 m

3.918 m
H.G.L.

Fig. 12.13

    
2

1 1
12

p V z
w g

+ +  = 
2

2 2
22 f

p V z h
w g

+ + +  (hf = head loss due to friction)

    
2

1 (1.132) 0
2 9.81

p
w

+ +
×

 = 
2 2(1.132) 0.03 300 (1.132)0 15

2 9.81 0.15 2 9.81
× ×

+ + +
× × ×

   
2

where, 285 15 300 m
2f

fLVh L
D g

 
= = + = × 



    1 0.0653p
w

+  = 0.0653 + 15 + 3.918

  or, 1p
w

 = 18.918 m

  Hence, the pressure developed by the pump on the delivery side
     = 18·918 m of water   (Ans.)
 (ii) The power delivered to water by the pump, P :
    P = wQhf = 9·81 × 0·02 × 3·918 kW
     = 0·768 kW   (Ans.)

 [Note:  The power required to drive the pump = fwQh
η

, where η is the efficiency of the pump.]

  H.G.L. (hydraulic gradient line) :
  Head loss in 15 m vertical length of pipeline

     = 3.91815 15 0.196 m
300 300

fh
× = × =

  Now piezometric head p z
w

 + 
 

at:

  Section 1= 19·114 m  (i.e., 18·918 + 0·196 = 19·114 m)
  Section 2 = 15·196 m  (i.e., 19·114 – 3·198 = 15·196 m)
  Section 3 = 15 m  (i.e., 15·196 – 0·196 = 15 m)
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  The HGL from the pump to the overhead tank is plotted by marking the ordinates of piezo-
metric heads at 1, 2 and 3 (as above) and joining these by straight lines as shown in Fig. 
12·13.

 Example 12.21.  A pipeline ABC 200 m long, is laid on an upward slope of 1 in 40. The length 
of the portion AB is 100 m and its diameter is 100 mm. At B the pipe section suddenly enlarges to 
200 mm diameter and remains so for the remainder of its length BC, 100 m. A flow of 0·02 m3/s. 
is pumped into the pipe at its lower end A and is discharged at the upper end C into a closed tank. 
The pressure at the supply end A is 200  kN/m2.
 (i) What is the pressure at C?
 (ii) Draw the energy gradient and hydraulic gradient lines.
 Assume co-efficient of friction f = 0·008.
 Solution.  Length of pipe, ABC  =  200 m
  Slope of the pipe,  =  1 in 40
  Length of pipe AB, LAB  =  100 m
  Diameter of the pipe AB, DAB  =  100 mm = 0·1 m
  Length of pipe BC, LBC  =  100 m
  Diameter of the pipe BC, DBC  =  200 mm = 0·2 m
  Co-efficient of friction, f  =  0·008
  Discharge, Q  =  0·02 m3/s
 The pressure at the supply end, pA  = 200 kN/m2

C

5 m

M

Closed tank

( ) = 0.323hf BC

R

G

Q
0.1 m dia. B

LAB
= 100 m

LBC
= 100 m

Datum

0.02

he = 0.186
F

E

T
J

0.329

S

I

A

20.72 m

( ) = 10.52hf AB

D

E.G.L.
H.G.L.

K

0.2 m dia.

Fig. 12.14

 (i) Pressure at C, pc :

   Velocity of flow in pipe AB, VAB = 2
0.02 2.54 m/s

( / 4) 0.1
=

π ×

   Velocity of flow in pipe BC,  VBC = 2
0.02 0.63 m/s

( / 4) 0.2
=

π ×

  Invoking Bernoulli’s equation at points A and C, we have:

   
2

2
A A

A
p V z
w g

+ +  = 
2

( ) ( )
2

C C
C f AB e f BC

p V z h h h
w g

+ + + + +  ...(i)
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  where, (hf )AB = 
2 24 4 0.008 100 2.54 10.52 m

2 0.1 2 9.81
AB AB

AB

fL V
D g

× × ×
= =

× × ×

  Loss of head due to sudden enlargement, 

   he = 
2 2( ) (2.54 0.63) 0.186 m

2 2 9.81
AB BCV V

g
− −

= =
×

   (hf )BC = 
2 24 4 0.008 100 0.63 0.323 m

2 0.2 2 9.81
BC BC

BC

fL V
D g

× × ×
= =

× × ×

  Substituting the values in eqn. (i), we get:

   
2200 (2.54) 0

9.81 2 9.81
+ +

×
 = 

20.63 5.0 10.52 0.186 0.323
2 9.81

Cp
w

+ + + + +
×

   20.38 + 0.329 = 0.02 16.03Cp
w

+ +

  or, Cp
w

 = 4.659 m

  or, pC = 9·81 × 4·659 = 45·7 kN/m2 (Ans.)
 (ii) Energy gradient and hydraulic gradient lines :
  Pipe AB : Assuming the datum line passing through A, then total energy at A

    = 
2 2200 (2.54) 0 20.72 m

2 9.81 2 9.81
A A

A
p V z
w g

+ + = + +
×



   Total energy at B  = Total energy at A – (hf)AB

    = 20·72 – 10·52 =10·2 m

  Also, 
2

2
CV
g

 = 
2(0.63) 0.02 m

2 9.81
=

×

 Energy gradient line (E.G.L.)
 — Draw a horizontal line AM as shown in Fig. 12·14.
 — Draw the centreline of the pipe in such a way that slope of the pipe is 1 in 40. Thus, point C 

will be at a height of 1 200 5 m
40

× =  from the line AM.

 — Draw a vertical line AS equal to total energy at A i.e., AS = 20·72 m
 — From point S, draw a horizontal line and from point B, a vertical line, meeting at D.
 — From D, take vertical distance DE = (hf)AB = 10·52 m. Join SE.
 — From E take EF  = he = 0·186 m
 — From F draw a hroizontal line and from C, a vertical line meeting at R. From R take RG = (hf)

BC = 0·323 m. Joint F to G. Then SEFG represents the energy gradient or total energy line.

 Hydraulic gradient line (H.G.L.)

 — Draw the line IJ parallel to the line SE at a distance of 
2 2(2.54) 0.329 m

2 2 9.81
ABV
g

= =
×

in the 
downward direction.

 — Draw the line KT parallel to the line GF at a distance of 
2 2(0.63) 0.02 m

2 2 9.81
CV
g
= =

×
. Join J to T.

 The line IJTK represents the hydraulic gradient line.
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12.6.  PIPES IN SERIES OR COMPOUND PIPES 

 Fig. 12·15 shows a system of pipes in series.
 Let, D1, D2, D3 = Diameters of pipes 1, 2 and 3 respectively,
  L1, L2, L3 = Lengths of pipes 1, 2 and 3 respectively,
  V1, V2, V3 = Velocities of flow through pipes 1, 2 and 3 respectively
  f1, f2, f3 = Co-efficients of friction for pipes 1, 2 and 3 respectively, and
  H = Difference of water level in the two tanks.
 As the rate of flow (Q) of water through each pipe is same, therefore,
  Q = A1V1 = A2V2 = A3V3
 Also,  The difference in liquid surface levels = Sum of the various head losses in the pipes

 i.e., H = 
1 2 3

3
3

2i f c f e f
Vh h h h h h

g
+ + + + + +  ...(i)

 where, hi = Head loss at entrance 
2

10.5
2

V
g

=

  
1fh  = Head loss due to friction in pipe 1 

2
1 1 1

1

4
2

f L V
D g

=
×

  hc = Head loss at contraction 
2

20.5
2

V
g

=

  
2fh  = Head loss due to friction in pipe 2 

2
2 2 2

2

4
2

f L V
D g

=
×

  he = Head loss due to enlargement 
2

2 3( )
2

V V
g
−

=

  
3fh  = Head loss due to friction in pipe 3 

2
3 3 3

3

4
2

f L V
D g

=
×

V
1

3
V

2

V
3

1

2

A

B
H

D L f1
1 1

, ,
D L f2

2 2

, ,
D L f3

3 3

, ,

Fig. 12.15. Pipes in series.

 Substituting the values in (i), we have:

  H = 
1 2 3

2
3

2i f c f e f
Vh h h h h h

g
+ + + + + +

   = 
2 2 22 2 2 2

2 3 3 3 3 31 1 1 1 2 2 2 2

1 2 3

( ) 40.5 4 0.5 4
2 2 2 2 2 2 2

V V f L V VV f L V V f L V
g D g g D g g D g g

−
+ + + + + +

× × ×
 ...(12·9)

 If minor losses are neglected, then above equation becomes:

  H = 
22 2

3 3 31 1 1 2 2 2

1 2 3

44 4
2 2 2

f L Vf L V f L V
D g D g D g

+ +
× × ×

 ...(12·10)

 If, f1 = f2 = f3 = f,  then:
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  H = 
22 2

3 31 1 2 2

1 2 3

44 4
2 2 2

fL VfL V fL V
D g D g D g

+ +
× × ×

   = 
22 2

3 31 1 2 2

1 2 3

4
2

L VL V L Vf
g D D D
 

+ + 
 

 ...(12·11)

 Example 12.22.  Three pipes of diameters 300 mm, 200 mm and 400 mm and lengths 450 m, 
255 m and 315 m respectively are connected in series. The difference in water surface levels in two 
tanks is 18 m. Determine the rate of flow of water if co-efficients of friction are 0·0075, 0·0078 and 
0·0072 respectively considering :
 (i) Minor losses also, and
 (ii) Neglecting minor losses.
 Solution.  Pipe 1 : L1  =  450 m, = D1 = 300 mm = 0·3 m, f1 = 0·0075
  Pipe 2 : L2  =  255 m, D2 = 200 mm = 0·2 m, f2 = 0·0078
  Pipe 3 : L3  =  315 m, D3 = 400 mm = 0·4 m, f3 = 0·0072
  Difference of water level, H  =  18 m.
 (i) Considering minor losses :
  Let V1, V2 and V3 be the velocities in Ist, 2nd, and 3rd pipe respectively.
  From continuity considerations, we have:
    A1V1 = A2V2 = A3V3

	 	∴ V2 = 
22 2

1 1 1 1
1 1 1 12 2

2 2 2

( / 4) 0.3 2.25
0.2( / 4)

AV D DV V V V
A D D

π ×  = × = × = = 
 π ×

  and, V3 = 
22 2

1 1 1 1
1 1 1 12 2

3 3 3

( / 4) 0.3 0.5625
0.4( / 4)

AV D DV V V V
A D D

π ×  = × = × = = 
 π ×

  We know that: H = 
22 2 2 2

2 31 1 1 1 2 2 2 2

1 2

( )0.5 4 0.5 4
2 2 2 2 2

V VV f L V V f L V
g D g g D g g

−
+ + + +

× ×
 

2 2
3 3 3 3

3

4
2 2

f L V V
D g g

+ +
×

  ...[Eqn. (12·9)]

  
2 2 2 2

1 1 1 10·5 4 0.0075 450 0.5 (2.25 ) 4 0.0078 255 (2.25 )18
2 0.3 2 2 0.2 2
V V V V
g g g g

× × × × × × ×
= + + +

× ×

   
2 2 2

1 1 1 1(2.25 0.5625 ) 4 0.0072 315 (0.5625 ) (0.5625 )
2 0.4 2 2

V V V V
g g g

− × × ×
+ + +

×

  
2

118 (0.5 45 2.53 201.4 2.847 7.176 0.316)
2
V

g
= + + + + + +

     = 
2

1259.77
2
V

g

  or, V1 = 18 2 9.81 1.166 m/s
259.77
× ×

=

	 	∴  Rate of flow, Q = A1 × V1 = (π/4) × 0·32 × 1·166 = 0·0824 m3/s   (Ans.)
 (ii) Neglecting minor losses :
  We know that, H = 

22 2
3 3 31 1 1 2 2 2

1 2 3

44 4
2 2 2

f L Vf L V f L V
D g D g D g

+ +
× × ×

 ...[Eqn. (12·10)]
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2 2 2

1 4 0.0075 450 4 0.0078 255 2.25 4 0.0072 315 (0.5625)18
2 0·3 0·2 0·4
V

g
 × × × × × × × ×

= + + 
 

     = 
2 2

1 1(45 201.4 7.176) 253.57
2 2
V V

g g
+ + = ×

  or, V1 = 18 2 9.81 1.18 m
253.57
× ×

=

	 	∴  Discharge, Q = A1V1 = (π/4) × 0·32 × 1·18 = 0·0834 m3/s   (Ans.)
 Example 12.23.  Two reservoirs with a difference in elevation of 15 m are connected by the 
three pipes in series. The pipes are 300 m long of diameter 30 cm, 150 m long of 20 cm diameter, and 
200 m long of 25 cm diameter respectively. The friction factors ( f ) in the relation

  hf = 
2

2
fLV

D g×
for the three pipes are, respectively, 0·018, 0·020 and 0·019, and which account for friction and all 
losses. Further the contractions and expansions are sudden. Determine the flow rate in l/s. The loss 
co-efficient for sudden contraction from dia. 30 cm to 20 cm = 0·24. (PTU)
 Solution. Refer to Fig. 12.16. Given : D1 = 30 cm = 0·3 m; L1 = 300 m; D2 = 20 cm = 0·2 m; L2 
= 150 m; D3 = 25 cm = 0·25 m; L3 = 200 m; f1 = 0·018; f2 = 0·020, f3 = 0·019.
 Loss co-efficient for sudden contraction = 0·24

3

1

2D
L

f
1

1
1

,
,

D
L

f
2

2
2

,
,

D
L

f
3

3
3

,
,

A

B

H = 15

Fig. 12.16

 Flow rate in l/s, Q :
        Various types of losses which occur in the pipelines 1, 2 and 3 are :

 (i)  Head loss at entrance, hi = 
2

21
2

0.5 40.5 5.1
2 2 9.81 0.30
V Q Q

g
 × = × = × π × 

 (ii) Head loss due to friction in pipe 1, 
1

22
1 1 1 1 1

2
1 1 1

4
2 2f

f L V f L Qh
D g D g D

×  = =  × × π 

    = 
2

2
2

0.018 300 4 183.6
0.3 2 9.81 0.3

Q Q×   = × × π × 

 (iii)  Head loss at contraction, hc = 
22

2
2
2

0.24 40.24
2 2
V Q

g g D
 =  π 
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     = 
2

2
2

0.24 4 12.394
2 9.81 0.2

Q Q  = × π × 

 (iv) Head loss due to friction in pipe 2, 
2

22
2 2 2 2 2

2
2 2 2

4
2 2f

f L V f L Qh
D g D g D

×  = =  × × π 

     = 
2

2
2

0.02 150 4 774.267
0.2 2 9.81 0.2

Q Q×   = × × π × 

 (v) Head loss due to sudden enlargement, 
22

2 3
2 2
2 3

( ) 1 4 4
2 2e

V V Q Qh
g g D D
−  = = − π π 

     = 
22

2
2 2 2

16 1 1 6.69
2 9.81 0.2 0.25

Q Q − = × × π  

 (vi) Head loss due to friction in pipe 3, 
3

22
3 3 3 3 3

2
3 3 3

4
2 2f

f L V f L Qh
D g D g D

 = =  × × π 

     = 
2

2
2

0.019 200 4 321.518
0.25 2 9.81 0.25

Q Q×   = × × π × 

 (vii) Head loss at the exit, 
2 22

23
0 2 2

3

1 4 1 4 21.152
2 2 2 9.81 0.25
V Q Qh Q

g g D
   = = = =   ×π π ×  

 

  Applying the Bernoulli’s equation between the water surfaces of the two reservoirs, we get:

    
2

2
A A

A
p V z
w g

+ +  = 
2

all losses.
2

B B
B

p V z
w g

+ + +

  0 + 0 + 15 = 0 + 0 + 0 + (5·1 + 183·6 + 12·394 + 774·267 + 6·69 + 321·518 + 21·152) Q2

  or, Q = 0·1064 m3/s or 106·4 l/s   (Ans.)

12.7. EQUIVALENT PIPE 

 An equivalent pipe is defined as the pipe of uniform diameter having loss of head and discharge 
equal to the loss of head and discharge of a compound pipe consisting of several pipes of different 
lengths and diameters. The uniform diameter of the equivalent pipe is known as the equivalent 
diameter of the series or compound pipe.
 Let, L1, L2, L3, etc. = Lengths of pipes 1, 2, 3, etc.
  D1, D2, D3, etc. = Diameters of pipes 1, 2, 3, etc.,
  H = Total head loss,
  L = Length of the equivalent pipe, and
  D = Diameter of the equivalent pipe.
 Then, neglecting minor losses, total head loss,
  hf = 

1 2 3
...f f fh h h+ + +

 or, H = 
22 2

3 3 31 1 1 2 2 2

1 2 3

44 4 ...
2 2 2

f L Vf L V f L V
D g D g D g

+ + +
× × ×

 ...(12·12)

 (where, f1, f2 and f3, etc. are co-efficients of friction)
 Also, from continuity considerations:
  Q = A1V1 = A2V2 = A3V3
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   = 2 2 2
1 1 2 2 3 34 4 4

D V D V D Vπ π π
× = × = ×

	 ∴ V1 = 2 32 2 2
1 2 3

4 4 4, ,Q Q QV V
D D D

= =
π π π

 Substituting these values in eqn. (12·12), assuming f1 = f2 = f3, etc. = f, we get:

  H = 

22 2

31 2 22 2
31 2

1 2 3

44 4 44 4
...

2 2 2

QQ Q fLfL fL
DD D

D g D g D g

     ×× ×      ππ π     + + +
× × ×

   = 
2

31 2
2 5 5 5

1 2 3

4 16 ...
2

LL LfQ
g D D D

×  + + + π ×  
 ...(12·13)

 Head loss in the equivalent pipe,

  H = 
24

2
fLV

D g×
 (assuming the same value of f as in compound pipe)

 where, V = 22

4

4

Q Q Q
A DD
= =
π π×

	 ∴ H = 

2

22

2 5

44
4 16

2 2

QfL
fQ f LD

D g g D

 
  ×  π  =  × π ×  

 ...(12·14)

 From eqns. (12·13) and (12·14), we have:

    
2 2

31 2
2 5 5 5 2 5

1 2 3

4 16 4 16...
2 2

LL LfQ fQ L
g D D D g D

× ×   + + + =   π × π ×   

 or, 5
L

D
 = 31 2

5 5 5
1 2 3

...LL L
D D D

+ + +  ...(12.15)

 Eqn. 12·15 is known as Dupit’s equation. If the length of the equivalent pipe is equal to the length of 
the compound pipe i.e., L = (L1 + L2 + L3 + ...), the diameter D of the equivalent pipe may be determined 
by using this equation. Sometimes a pipe of a given diameter D which is available may be required to be 
used as equivalent pipe to replace a compound pipe; in this case the length of the equivalent pipe may 
be required to be determined and the same may also be determined by using eqn. (12·15).
 Example 12.24.  A piping system consists of three pipes arranged in series; the lengths of the 
pipes are 1200 m, 750 m and 600 m and diameters 750 mm, 600 mm and 450 mm respectively.
 (i) Transform the system to an equivalent 450 mm diameter pipe, and
 (ii) Determine an equivalent diameter for the pipe, 2550 m long.
 Solution. Pipe 1: L1 = 200 m; D1 = 750 mm = 0·75 m
  Pipe 2: L2 = 750 m; D2 = 600 mm = 0·6 m
  Pipe 3: L3 = 600 m; D3 = 450 mm = 0·45 m
 (i) Equivalent length, L :
  Diameter of the equivalent pipe, D = 450 mm = 0·45 m (Given)
  Using the relation :
    5

L
D

 = 31 2
5 5 5
1 2 3

LL L
D D D

+ +
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     = 5 5 5
1200 750 600 ,

(0.75) (0.6) (0.45)
+ + we have:

    5(0.45)
L  = 5056.8 + 9645 + 32515.4 = 47217.2

  or, L = 47217·2 × (0·45)5 = 871·3 m   (Ans.)
 (ii) Equivalent diameter, D :
  Length of the equivalent pipe, L = 2550 m   (Given)

  Now, 5
L

D
 = 31 2

5 5 5
1 2 3

LL L
D D D

+ +

  or, 5
2550
D

 = 5 5 5
1200 750 600

(0.75) (0.6) (0.45)
+ +

     =  5056.8 + 9645 + 32515.4 = 47217.2

  or, D = 
1/52550 0.5578 m or .

47217.2
  = 
 

557 8 mm (Ans.)

 Example. 12.25.  A compound piping system consists of 1800 m of 50 cm diameter, 1200 m 
of 40 cm diameter and 600 m of 30 cm diameter pipes of the same material connected in series. 
What is the equivalent length of a 40 cm diameter pipe of the same material ? State clearly the 
assumption (s) made.    (PEC)
 Solution. Given : = L1 = 1800 m; D1 = 50 cm = 0·5 m; L2 = 1200 m; D2 = 40 cm = 0·4 m;  
L3 = 600 m; D3 = 30 cm = 0·3 m.
 Equivalent length of a 0·4 m diameter pipe of the same material, L :
 Refer to Fig. 12·17.

1800 m

D1 = 0.5 m

V1 m/s

(L )1

V m/s

( )L2 ( )L3

1200 m 600 m

V2 m/s

D2 = 0.4 m

D3 = 0.3 m

D2 = 0.4 m

V3 m/s

Leq

Fig. 12.17

 Assumptions : 1. f is constant, and is the same for all the pipes.
        2. The head loss due to contraction is ignored.

 Using the relation : 5
L

D
 = 31 2

5 5 5
1 2 3

LL L
D D D

+ +  ..[Eqn. (12·15)]

 or, 5(0.4)
L  = 5 5 5

1800 1200 600
(0.5) (0.4) (0.3)

+ +
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  L = 
5 50.4 0.41800 1200 600

0.5 0.3
   × + +   
   

   = 589·82 + 1200 + 2528·39 = 4318·2 m (Ans.)
 Example 12.26.  A pipe 150 mm in diameter and 15 m long is connected to the bottom of a 
tank,15 metres long by 12 metres wide. The original head over the open end of the pipe is 5 metres. 
Find the time of emptying the tank, assuming the entrance to the pipe is sharp-edged.

 Assume f = 0·01 in 
2

2f
fLVh

D g
=

×
. [GATE]

 Solution.  Diameter of the pipe, D  =  150 mm = 0·15 m
  Length of the pipe, L  =  15 m
  Area of the tank, = 12 × 15  = 180 m2

  Friction factor, f  =  0·01
 Writing the Bernoulli’s equation between the liquid 
surface at height ‘h’ and the lower end of the pipe, 
considering the entrance and the friction losses, we get:

  h + 15  =  0.5 
2 2

2 2 f
V V h

g g
+ +

   = 
2 2 20.01 150.5

2 2 0.15 2
V V V

g g g
× ×

+ +
×

 (where, V = velocity of flow in pipe)

   = 
22.5

2
V
g

 or, V  = 2 ( 15)
2.5

g h +

 Let us assume that the liquid surface falls a distance dh 
in time dt, then:
  12 × 15 × (– dh) = Q·dt
 or, 180 × (–dh) = 2 2 ( 15)( / 4) 0.15 .

2.5
g h dt+

π × ×

   = 0.0495 ( 15)h dt+

 or, 
0

T

dt∫  = 
0

5

180–
0.0495 15

dh
h +∫

 Let, h + 15 = H, then:

  T = [ ]
15

15
20

20

–3636 –3636 2 –3636 2( 15 – 20)dh H
H

= × = ×∫
   = 4357 s or 1·21 hours   (Ans.)

12.8. PIPES IN PARALLEL 

 The pipes are said to be in parallel (Fig. 12·19) when a main line divides into two or more 
parallel pipes which again join together downstream and continues as a main line.
It may be seen from Fig. 12·19 that the rate of discharge in the main line is equal to the pipes.
 Thus, Q = Q1 + Q2 ...(12·16)

dh

h

Tank

5
m

1
5

m

150 mm
diameter

V

Fig. 12.18
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 When the pipes are arranged in parallel, the 
loss of head in each pipe (branch) is same.
	 ∴ Loss of head in pipe 1 = Loss of head in  
pipe 2.

 or, hf = 
2 2

1 1 1 2 2 2

1 2

4 4
2 2

f L V f L V
D g D g

=
× ×

 ...(12·17)
 When, f1 = f2, then:

  
2

1 1

1 2
L V

D g×
 = 

2
2 2

2 2
L V

D g×
 ...(12·18)

 Example 12.27.  The main pipe divides into two parallel pipes which again forms one pipe as 
shown in Fig. 12·19. The data is as follows :
 First parallel pipe : Length = 1000 m, diameter = 0·8 m
 Second parallel pipe : Length = 1000 m, diameter = 0·6 m
 Co-efficient of friction for each parallel pipe = 0·005
 If the total rate of flow in the main is 2m3/s find the rate of flow in each parallel pipe.

 Solution.  Length of pipe 1, L1 = 1000 m
  Diameter of pipe 1, D1 = 0·8 m
  Length of pipe 2, L2 = 1000 m
  Diameter of pipe 2, D2 = 0·6 m
  Total rate of flow, Q = 2 m3/s
  Co-efficients of friction, f1 = f2 = 0·005
 Rate of flow in each pipe :
 Let, Q1 = Rate of flow in pipe 1,
  Q2 = Rate of flow in pipe 2, and
  Q = Total rate of flow (in main line).
 Then, Q  = Q1 + Q2  (Eqn. 12·16)

 Also, hf = 
2 2

1 1 1 2 2 2

1 2

4 4
2 2

f L V f L V
D g D g

=
× ×

 ...[Eqn. 12·17]

  f1 = f2 (= 0·005)  and  L1 = L2 (= 1000 m)
 The above equation reduces to :

  
2

1

1

V
D

 = 
2

2

2

V
D

  or  
2 2

1 2
0.8 0.6
V V

=

 or, V1 = 2
2 2

0.8 1.15
0.6

V V× =  ...(ii)

 Now, Q1 = 2
1 14

D Vπ
× ×

   = 2
2 20.8 1.15 0.578

4
V Vπ

× × =

 and, Q2 = 2 2
2 2 2 20.6 0.283

4 4
D V V Vπ π

× × = × × =

 Substituting the values of Q1 and Q2 in eqn. (i), we get:

Q

BA

Pipe 1

Pipe 2

Main line

Q2

D2, , ,L V2 2

Q1

Q

D1, , ,L V1 1

Fig. 12.19
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  2 = 0·578 V2 + 0·283 V2

 or, V2 = 2 2.32 m/s
(0.578 0.283)

=
+

 Substituting the values of V2 in eqn. (ii), we get:
  V1 = 1.15 × 2.32 = 2.67 m/s

 Hence, Q1 = 2
1 1 0.8 2.67 . /

4
AV π

= × × = 31 342 m s (Ans.)

	 ∴ Q2 = Q – Q1 = 2 – 1·342
   = 0·658 m3/s   (Ans.)
 Example 12.28. A pipeline of 600 mm diameter is 1·5 km long. To increase the discharge 
another line of the same diameter is introduced parallel to the first in the second-half of the length. 
If f = 0·01 and head at inlet is 300 mm calculate the increase in discharge.
Neglect minor losses.    [M.U.]
 Solution. Diameter of the pipeline, D = 0·6 m
  Length of the pipeline, L = 1·5 km = 1·5 × 1000 = 1500 m.
  Co-efficient of friction, f = 0·01
  Head at inlet, h = 0·3 m
 Head at outlet (= atmospheric head) = 0
	 ∴  Head lost, hf  =  0·3

 Length of another parallel pipe, 2 1
1500( ) 750 m

2
L L= = =

 Diameter of another parallel pipe, D2 (= D1) = 0·6 m

0.3 m
L = 1500 m

750 m 750 m

A QP B CQ1

Q2 D

L1 = 750 m,

L2 = 750 m,

D1 = 0.6 m

D2 = 0.6 m

Fig. 12.20

 The arrangement of the pipe system is shown in Fig. 12·20.
 Increase in discharge :
 Case. I. Discharge (Q) for a single pipe of length 1500 m and diameter 0·6 m:
 The head lost due to friction in single pipe is given as :

  hf = 
24

2
fLV

D g×
 (where, V = velocity of flow for a single pipe)

	 ∴ 0.3 = 
24 0.01 1500

0.6 2 9.81
V× × ×

× ×

 or, V = 
1
20.3 0.6 2 9.81 0.243 m/s

4 0.01 1500
× × ×  = × × 
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	 ∴ Discharge Q = 2 30.6 0.243 0.0687 m /s
4

A V π
× = × × =  ...(i)

 Case. II. When an additional pipe of length 750 m and diameter 0·6 m is connected in parallel 
with the last half length of the pipe:
 Let, Q1 = Discharge in first parallel pipe,
  Q2 = Discharge in second parallel pipe,
  Qp = Discharge in the main pipe (when pipes are connected in parallel)
 Then, Qp = Q1 + Q2 ...(Fig. 12·20)
 As the pipes in parallel have the same diameter and length,

	 ∴ Q1 = 2 2
pQ

Q =

 Consider the flow through ABC or ABD.
 Head lost (due to friction) in ABC
   = Head lost in AB + head lost in BC ...(ii)
  Head lost in ABC  =  0·3 m (given)

  Now,  Head lost in AB = 
24 0.01 750

0.6 2 9.81
ABV× × ×

× ×

 But, VAB = 2 3.54
Area ( / 4) 0.6

p p
p

Q Q
Q= =

π ×

	 ∴ Head Lost (due to friction) in AB

   = 
2

24 0.01 750 (3.54 )
3.19

0.6 2 9.81
p

p
Q

Q
× × ×

=
× ×

 Head lost due to friction through BC

   = 
2

1

1

4
2
BCfL V

D g×

   = 
24 0.01 750 (1.77 )

0.61 2 9.81
pQ× × ×

× ×

   = 27·98 pQ   2

( /2) ( /2)
1.77

area ( / 4) 0.6
p p

BC p
Q Q

V Q
 

= = = π × 


 Substituting these values in eqn. (ii), we get:
  0.3 = 2 231.9 7.98p pQ Q+

 or, Qp = 
1/2

30.3 0.087 m /s
31.9 7.98
  = + 

	 ∴  Increase in discharge = Qp – Q
   = 0·087 – 0·0687 = 0·0183 m3/s   (Ans.)
 Example 12.29.  Two sharp ended pipes of diameters 50 mm and 100 mm respectively, each of 
length 100 m respectively, are connected in parallel between two reservoirs which have a difference 
of level of 10 m. If the friction factor for each pipe is 0·32, calculate :
 (i) Rate of flow for each pipe, and
 (ii) The diameter of a single pipe 100 m long which would give the same discharge, if it were 

subsitutued for the original two pipes. [Allahabad University]
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 Solution.  Diameter of pipe 1, D1  =  50 mm = 0·05 m
  Diameter of pipe 2, D2 = 100 mm = 0·1 m
  Length of pipe 1, L1 = 100 m
  Length of pipe 2, L2 = 100 m
  Difference in level, h = 10 m
  Friction factor, (4f) = 0·32
 (i) Rate of flow for each pipe :
  Let, V1 = Velocity of flow in pipe 1, and
   V2 = Velocity of flow in pipe 2.
  Since the pipes are connected in parallel, therefore the loss of head will be same in both the 

pipes.
  For the pipe 1, the loss of head,

    10 = 
2 2

21 1 1
1

1

4 0.32 100 32.62
2 0.05 2 9.81f

fL V Vh V
D g

× ×
= = =

× × ×
 ( 4f = 0·32)

  or, 10 = 2
132.62 V

  or, V1 = 
1/210 0.55 m/s

32.62
  = 
 

	 	∴ Rate of flow in pipe 1,
    Q1 = 2

1 1 (0.05) 0.55
4

AV π
= × ×

     = 0·00108 m3/s   (Ans.)
  For the pipe 2 the loss of head is given by:

    10 = 
2 2

22 2 2
2

2

4 0.32 100 16.31
2 0.1 2 9.81

fL V V V
D g

× ×
= =

× × ×

  or, V2 = 
1/210 0.78 m/s

16.31
  = 
 

	 	∴ Rate of flow in pipe 2,

    Q2 = 2
2 2 0.1 0.78 . /

4
A V π

= × × = 30 00613 m s (Ans.)

 (ii) Diameter of the single pipe, D :
  Let, D = Diameter of the single pipe,
   L = Length of the single pipe = 100 m,
   V = Velocity of liquid in the single pipe, and
   Q = Discharge through the single pipe.
  Now, Q = Q1 + Q2
     = 0.00108 + 0.00613 = 0.00721 m3/s

	 	∴ V = 2 2
0.00721 0.00918 m/s

( / 4)
Q
A D D
= =

π ×

  Loss of head through the single pipe,

    10 = 

2

2 2
0.009180.32 100

4
2 2 9.81f

fLV Dh
D g D

 × ×  
 = =

× × ×
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Pipes

D

L

2

2

= 100 mm,
= 100 m

2

D

L

1

1

= 50 mm,
= 100 m

1

10 m

Fig. 12.21

  or, 10 = 
2

5 5
0.32 100 (0.00918) 0.0001375

2 9.81 D D
× ×

=
× ×

  or D = 
1/50.0001375 0.1066 m 106.6 mm

10
  = =  

  i.e., D = 106·6 mm   (Ans.)
 Example 12.30.  A 250 mm diameter, 3 km long straight pipe runs between two reservoirs of 
surface elevations 135 m and 60 m. A 1·5 km long, 300 mm diameter pipe is laid parallel to the 
250 mm diameter pipe from its mid-point to the lower reservoir. Neglecting all minor losses and 
assuming a friction factor of 0·02 for both pipes, find the increase in discharge caused by addition 
of 300 diameter pipe.    (Anna University)
 Solution. Neglecting minor losses, the application of Bernoulli’s equation between the water 

surfaces of the two reservoirs yields:   
2 20.02 3000(135 60)

2 0.25 2 9.81
fLV V

D g
× ×

− = =
× × ×

 or, V = 
1/2(135 60) 0.25 2 9.81 2.476 m/s

0.02 3000
− × × ×  = × 

 The discharge through the pipeline,

  Q = 2 3(0.25) 2.476 0.1215 m /s
4
π
× × =

 In case of altered pipeline (see fig. 12·22) the discharge through pipe section AB is the sum of 
the discharges through sections BC and BD, or
  Q1 = Q2 + Q3

 or, 2
1 14

D Vπ  = 2 2
2 2 3 34 4

D V D Vπ π
+

  2
1 1D V  = 2 2

2 2 3 3D V D V+

   = 2 2
1 2 3 3D V D V+  ...(i)

 Also, as the end points of sections BC and CD are same (they are in parallel.),
  

2fh  = 
3fh

 or, 
2

2

2

( /2)
2

f L V
D g×

 = 
2

3

3

( /2)
2

f L V
D g×
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A

C, DB

A 1 B 2 250 mm � C

V1 V2

3

D

L
2

L
2

300 mm �

250 mm �

V3

Fig. 12.22

 or, 
2

2

2

V
D

 = 
2

3

3

V
D

 or, V3 = 
1/2

2 3
2

2

DV
D

 ×  

   = 
1/2

2
2

300
250

V ×  

   = 2
300
250

V  ...(ii)

 Substituting for V3 in (i), we get:

 or, (250)2 V1 = 2 2
2 2

300(250) (300)
250

V V+ ×

 or, (250)2 (V1 – V2) = 2
2

300(300)
250

V×

 or, V1 – V2 = 1·5774 V2
 or, V1 = 2·5774 V2 or V2 = 0·388 V1
 Again, applying Bernoulli’s equation between the water surfaces of the two reservoirs through 
ABC, we get:

  (135 – 60) = 
2 2

1 2

1 2

( / 2) ( / 2)
2 2

f L V f L V
D g D g

+
× ×

  75 = 2 2
1 2

1

( / 2) ( )
2

f L V V
D g

+
×

   ( D1 = D2)



Chapter 12 : Flow Through Pipes         681

   = { }2 2 2
1 1 1

0.02 1500 (0.388 ) 6.116 1.1505
0.25 2 9.81

V V V×
+ = ×

× ×

 or, V1 = 
1/275 3.26 m/s

6.116 1.1505
  = × 

	 ∴  Discharge  = 2 2 3
1 1 0.25 3.26 0.16 m /s

4 4
D Vπ π

= × × =

 ∴  Increase in discharge = 0·16 – 0·1215 = 0·0385 m3/s   or   31·7 %  (Ans.)
 Example 12.31. A farmer wishes to connect two pipes of different lengths and diameters to a 
common header supplied with 8 × 10–3  m3/s of water from a pump. One pipe is 100 m long and 
5 cm in diameter. The other pipe is 800 m long. Determine the diameter of the second pipe such 
that both pipes have the same flow rate. Assume the pipes to be laid on level ground and friction 
co-efficient for both pipes as  0·02. Also determine the head loss in metres of water in the pipes.

(GATE)
 Solution. Refer to Fig. 12·23. Given : Q = 8 × 10–3 m3/s; D1 = 5 cm = 0·05 m; L1 = 100 m;  
L2 = 800 m; Friction co-efficient, f = 0·02.

D2 = ?

2

L2 = 800 m

Q2

Q1

L1 = 100 m

D1 = 5 cm

Q

1 2

2

1

Fig. 12.23

 Diameter, D2 :
  Q = Q1 + Q2  [where, 

3
3 3

1 2
8 10 4 10 m /s

2
Q Q

−
−×

= = = ×  (Given)]

 For pipe 1, 
1fh  = 

2
1 1

1

4
2

fL V
D g×

 where, V1 = 1 1
2 2
1 1

4
( / 4)

Q Q
D D

=
π × π

	 ∴ 
1fh  = 

2
1

1 2 2
1 1 1

2 5
1 1

44
32

2

QfL
D fL Q

D g D g

 ×  π  =
× π × ×

 Similarly, for pipe 2,         
2

2
2 2

2 5
2

32
f

fL Qh
D g

=
π × ×

 ...(ii)

 Equating (i) and (ii) [since 
1 2f fh h= ], we get:

  
2

1 1
2 5

1

32 fL Q
D gπ × ×

 = 
2

2 2
2 5

2

32 fL Q
D gπ × ×
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 or, 
2
1
2
2

Q
Q

 = 
5

2 1
5

1 2

L D
L D

 But, Q1 = Q2 ...(Given)
	 ∴ 5

2 1L D  = 5
1 2L D

 or, D2 = 
1/5 1/55 5

2 1

1

800 (0.05)
100

L D
L

   ×
=     

   = 0.7578 m = 7.578 cm (Ans.)
 Head loss :
  hf1 (= hf2) = 

2 3 2
1 1

2 5 2 5
1

32 32 0.02 100 (4 10 ) .
(0.05) 9.81

fL Q
D g

−× × × ×
= =

π × × π × ×
33 84m (Ans.)

 Example 12.32.  A pipeline with diameter 0·8 m and length 3000 m connects two open reservoirs 
of water which have their water surfaces of elevations of 100 m and 70 m above a datum. In order 
to increase the rate of flow between the reservoirs by 20 % it is decided to lay an additional 0·8 
m diameter pipeline from the upper reservoir. The second pipeline is to be parallel to the original 
pipeline and is to be connected to the latter at some suitable point. Determine the point of connection, 
assuming that the friction factor  is 0·04 for each pipeline. Neglect minor losses. (PEC)

 Solution. Refer to Fig. 12·24. Given : L = 3000 m; D = 0·8 m; f = 0·04

D = 0.8 m dia.

70 m

100 m

L

L–L�L�

D = 0.8 m

D = 0.8 m

D = 0.8 mSecond pipe

Fig. 12.24

 Point of connection of second pipe, L′:
  Head at inlet of pipe  = 100 – 70 = 30 m
 Case I. Discharge (Q1) for a single pipe length 3000 m and diameter 0·8 m: 
 The head lost due to friction in single pipe is given as :

  hf = 
2

1
2

fLV
D g×

 where, V1 = 1 1 1
221

4

4

Q Q Q
A DD

= =
π π×

 
[where, friction factor
( 4 co-efficient of friction)]

f =
= ×
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	 ∴ hf = 

2
1

2 22
1 1

2 5 5

4
8

2 12

QfL
fLQ fLQD

D g D g D

 ×  π  = =
× π ×

 Substituting the values, we get:

  30 = 
2
1

5
0.04 3000

12 (0.8)
Q× ×

×

 or, Q1 = 
1/25

330 12 (0.8) 0.99 m /s
0.04 3000

 × ×
= × 

 Case II. When another pipeline of length L’ is added :
  Total discharge, Q2 = 1·2 Q1 = 1·2 × 0·99 = 1·188 m3/s

 Discharge through each pipeline = 2
2

Q

 In this case,  Total head loss = Sum of head losses in two pipes

 i.e., hf = 
2 2

1 2( )
2 2

fL V f L L V
D g D g

′ ′−
+

× ×

 or, 30 = 

2
2 2

2
5 5

( )2
12 12

QfL f L L Q
D D

 ′ ×   ′−  +

 or, 30 = 
2 2
2 2

5 5
( )

4 12 12
fL Q f L L Q

D D
′ ′−

+
×

 Substituting the values, we get:

 or, 
5

2
30 12 (0.8)
0.04 (1.188)
× ×
×

 = 3000
4
L L
′

′− +

  2089.6 = 3000
4
L L
′

′− +

 or, 
4
LL
′

′ −  = 3000 – 2089.7 = 910.4

	 ∴ L′ = 1213·87 m   (Ans.)
 Example 12.33.  Two reservoirs have a constant difference of levels of 70 m and are connected 
by a 250 mm diameter pipe which is 4 km long. The pipe is tapped mid-way between the reservoirs 
and water is drawn at the rate of 0·04 m3/s. Assuming friction factor = 0·04, determine the rate at 
which water enters the lower reservoir.
 Solution.  Diameter of the pipe, D  =  250 mm = 0·25 m
  Difference of level, h = 70 m
  Friction factor, 4f = 0·04
 Rate at which water enters the lower reservoir :
 Let,  Q  =  Discharge entering the lower reservoir.
 Then,  Discharge at the inlet  = (Q + 0·04) m3/s.
 Now, from the application of Bernoulli’s equation, we have:
  h = 

1 2f fh h+
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L
1 = 2000 m

70 m

Lower reservoir

Upper reservoir

L
2 = 2000 m

(
+ 0.04)

Q

Q

V1

V2

D = 250 mm,
L = 4000 m

0.04 m /s
3

Fig. 12.25

  70 = 
2 2

1 1 2 24 4
2 2

fL V fL V
D g D g

+
× ×

   = 
2 2

1 20.04 2000 0.04 2000
0.25 2 0.25 2

V V
g g

× × × ×
+

× ×
 ( 4f = 0·04)

 or, 70 = 2 2
1 2

320 ( )
2

V V
g

+

 Substituting :
  V1 = 2

0.04 ( 0.04) 20.37 ( 0.04)
( / 4) 0.25

Q Q Q
A
+ +

= = +
π ×

 and, V2 = 2 20·37
( / 4) 0·25

Q Q Q
A
= =

π ×

 Eqn. (i) becomes :
  70 = { }2 2320 20.37 ( 0.04) (20.37 )

2 9.81
Q Q + + ×

 or, 70 = 
2

2 2320 20.37 ( 0.04)
2 9.81

Q Q×  + + ×

 or, 70 = 6768 (Q2 + 0·0016 + 0·08Q + Q2)
 or, 2Q2 + 0·08Q + 0·0016 = 0·0103
 or, Q2 + 0·04Q – 0·0043 = 0

 or, Q = 
– 0.04 0.0016 0.0172

2
± +

   = 0.04 0.137
2

− ±

   = 30.097 0.0485 m /s
2

=

 Hence, the rate at which water enters the lower reservoir = 0·0485 m3/s   (Ans.)
 Example 12.34. Two pipes of diameters 400 mm and 200 mm are each 300 m long. When the 
pipes are connected in series the discharsge through the pipeline is 0·10 m3/s, find the loss of head 
incurred. What would be the loss of head in the system to pass the same total discharge when the 
pipes are connected in parallel ? Take friction factor = 0·0075 for each pipe. [Nagpur University]
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Q = 0.10 m /s
3

Pipe 1

Pipe 2

D L1 1= 0.4 m, = 300 m

D L1 2= 0.2 m, = 300 m

Fig. 12.26

 Solution.  Diameter of the pipe 1, D1  = 400 mm = 0·4 m
  Length of the pipe 1, L1 = 300 m
  Diameter of the pipe 2, D2 = 200 mm = 0·2 m
  Length of the pipe 2, L2 = 300 m
  Friction factor for each pipe (4f) = 0·0075
  Discharge, Q = 0.1 m3/s
 (i) Pipes connected in series – Loss of head :

   Velocity of flow in pipe 1, V1 = 2
0.1 0.796 m/s

( / 4) 0.4
=

π ×

   Velocity of flow in pipe 2, V2 = 2
0.1 3.183 m/s

( / 4) 0.2
=

π ×

   Head lost due to friction in pipe 1 = 
2 2

1 1 1

1

4 0.0075 300 0.796 0.1816 m
2 0.4 2 9.81

f L V
D g

× ×
= =

× × ×

  Assuming head lost due to contraction,
   hc = 

2
2

2
Vk

g

  or, hc = 
2

2 2

1
0.33 for 0.5, 0.33 ...(from tables)

2
V D k

g D
 = = 
 

    = 
20.33 3.183 0.17 m

2 9.81
×

=
×

   Head lost due to friction in pipe 2 = 
2 2

2 2 2

2

4 0.0075 300 3.183
2 0.2 2 9.81

f L V
D g

× ×
=

× × ×

    = 5·809 m
	 	 ∴  Head lost in the pipeline  = 0·1816 + 0·17 + 5·809 = 6·16 m   (Ans.)
 (ii) Pipes in Parallel–Loss of head :
  From continuity consideration, we have:
   Q = Q1 + Q2
   0.1 = Q1 + Q2 ...(Given)

Pipe 1

Q Q

Q1

Q2

D L1 1= 0.4 m, = 300 m

D L2 2= 0.2 m, = 300 m

Pipe 2

Fig. 12.27
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  or, 0.1 = 2 2
1 20.4 0.2

4 4
V Vπ π

× × + × ×

    = 0·1257 V1 + 0·0314 V2 ...(1)
  Also, head lost will be same, since the pipes are connected in parallel.

	 	 ∴ hf = 
2 2

1 1 1 2 2 2

1 2

4 4
2 2

f L V f L V
D g D g

=
× ×

  But, f1 = f2 and L1 = L2

	 	 ∴ 
2

1

1

V
D

 = 
2

2

2

V
D

  or  
2

1 1
2

22

0.4 2
0.2

V D
DV

= = =

  or, 2
1V  = 2

22V  ...(2)

  Substituting the value of V2 from (1) in (2), we get:

   2
1V  = 

2
2 21

1 1 1
0.1 – 0.12572 2 (3.185 4 ) 20.29 32 50.96

0.0314
V V V V  = − = + −  

  or,     2
1 131 50·96 20·29 0V V− + =

  or, V1 = 
250.96 50.96 4 31 20.29

0.97 m/s,
2 31

± − × ×
=

×
 0·677 m/s

  Using V1 = 0·97 m/s, we have:
   Q1 = (π/4) × 0·42 × 0·97 = 0·1219 m3/s
  Since Q1 > Q, V1 = 0·97 m/s is not realistic.
  Using V1 = 0·677 m/s, we have: 
   Q1 = (π/4) × 0·42 × 0·677 = 0·085 m3/s
   Q2 = 0·1 – 0·085 = 0·015 m3/s

   Head lost  = 
2 2

1 1 1

1

4 0.0075 300 0.677 .
2 0.4 2 9.81

f L V
D g

× ×
= =

× × ×
0 131 m  (Ans.)

 Example 12.35.  The pipes of diameter D and d of equal length L are considered. If the pipes 
are arranged in parallel, the loss of head for either pipe for a flow of Q is h. If the pipes are 
arranged in series and the same quantity Q flows through them, the loss of head is H. If d = 0·5 D, 
find the percentage of total flow through each pipe when placed in parallel and the ratio of H to h 
neglecting minor losses and assuming friction co-efficient to be constant. [UPSC Exams.]
 Solution.  Diameter of pipe 1, D1 = D
  Length of pipe 1, L1 = L
  Diameter of pipe 2, D2 = d
  Length of pipe 2, L2 = L
  Total discharge  = Q

Q Q

L, D

Q1

Q2

Pipe 2
L, d

Pipe 1

Fig. 12.28. Pipes connected in parallel.
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  Head lost when pipes are arranged in parallel  =  h
  Head lost when pipe are arranged in series  = H
  d  =  0·5 D and f is constant.
 Case I. Pipes connected in “parallel” :
 When pipes are connected in parallel,
  Q = Q1 + Q2 ...(i)
  Loss of head in each pipe  =  h

 For pipe 1 : h = 
2

1 14
2

fL V
D g×

 where, V1 = 1 1 1
2 2

1

4
( / 4)

Q Q Q
A D D

= =
π × π

	 ∴ h = 

2
1

22
1

2 5

44
32

2

QfL
fLQD

D g D g

 ×  π  =
× π ×

    ...(ii) ( L1 = L)

 For pipe 2 : h = 
2
2

2 5
32 fLQ

d gπ ×
 ...(iii)

 From eqns. (ii) and (iii), we have:

  
2
1

2 5
32 fLQ

D gπ ×
 = 

2
2

2 5
32 fLQ

d gπ ×

 or, 
2
1
5

Q
D

 = 
2
2
5

Q
d

 or, 
2

1

2

Q
Q

 
 
 

 = 
5 5

32
0.5

D D
d D

   = =   
   

 ( d = 0·5D...Given)

 or, 1

2

Q
Q

 = 5.567 or Q1 = 5·567 Q2

 Substituting the value of Q1 in eqn. (i), we get:
  Q = 5·567Q2 + Q2 = 6·657Q2

	 ∴ Q2 = 0.15
6.657

Q Q=  ...(iv)

 and, Q1 = Q – 0·15 Q = 0·85 Q        ...[From (i)] ...(v)

Q V1

L, D

Pipe 1

Q

Pipe 2

L, d

V2

Fig. 12.29. Pipes connected in series.

 Case II. Pipes connected in “series” :
  In this case,             Total loss  = Sum of head losses in the two pipes

	 ∴ H = 
2 2

1 24 4
2 2

fLV fLV
D g d g

+
× ×
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 where, V1 = 2 2
4

( / 4)
Q Q

D D
=

π × π

  V2 = 2 2
4

( / 4)
Q Q

d d
=

π × π

	 ∴ H = 

2 2

2 2
4 44 4

2 2

Q QfL fL
D d

D g d g

   × ×   π π   +
× ×

 ...(vi)

 or, H = 
2 2

2 5 2 5
32 32fLQ fLQ

D g d g
+

π × π ×

 From eqn. (ii) 2 5
32 fL
D gπ ×

 = 2
1

h
Q

 and, from eqn. (iii) 2 5
32 fL
d gπ ×

 = 2
2

h
Q

 Substituting these values in eqn. (vi), we get:

  H = 
2 2

2 2
2 2 2 2
1 2 1 2

h h Q QQ Q h
Q Q Q Q

 
× + × = +  

 

	 ∴ H
h

 = 
2 2

2 2
1 2

Q Q
Q Q

+

 But from eqns. (iv) and (v),
  Q1 = 0·85 Q and Q2 = 0·15 Q

	 ∴ H
h

 = 
2 2

2 2 .
(0.85 ) (0.15 )

Q Q
Q Q

+ = 45 828 (Ans.)

 Example 12.36.  A pumping plant forces water through a 600 mm diameter main, the friction 
head being 27 m. In order to reduce the power consumption, it is proposed to lay another main of 
appropriate diameter along the side of the existing one, so that the two pipes may work in parallel 
for the entire length and reduce the friction head to 9·6 m only. Find the diameter of the new main if 
with the exception of diameter, it is similar to the existing one in every respect. [Delhi University]
 Solution.  Diameter of single main pipe, D  =  600 mm = 0·6 m
  Friction head, hf  =  27 m
  Friction head for two parallel pipes  =  9·6 m
 Diameter of the new main :
 Case I. Single main :

  hf = 
24

2
fLV

D g×

  27 = 
24

0.6 2 9.81
fLV

× ×

  fLV2 = 27 0.6 2 9.81 79.461
4

× × ×
=

 But, V = Q
A
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Q

Q1

Q2

Pipe 2

Pipe 1

V2

D2 = ?

D1 = 0.6 m

(b) Two pipes in parallel ( = 9.6 m)hf

D = 0.6 m

Q Q

( ) Single main ( = 27 m)a hf

Fig. 12.30

	 ∴ 
2

2
QfL
A

 = 79.461 ...(i)

 Case II. Two pipes in parallel :
  Loss of head, hf = 9·6 m
 For pipe 1 :
  

1fh  = 
2

1 1

1

4 9·6
2

fL V
D g

=
×

 But, L1 = L, 1 1
1

1

Q QV
A A

= =  ( A1 = A)

  D1 = D = 0·6 m

	 ∴ 
2
1
2

4
0.6 2 9.81

QfL
A

×
× ×

 = 9.6

 or, 
2
1
2

QfL
A

 = 9.6 0.6 2 9.81 28.25
4

× × ×
=  ...(ii)

 For pipe 2 :
  

2fh  = 
2

2 2

2

4 9.6
2

fL V
D g

=
×

 where, L2 = L, 2
2

2

QV
A

=

	 ∴ 
2
2

2
2 2

4
2
fLQ

D g A× ×
 = 9.6

 or, 
2
2
2

2 2

fLQ
D A

 = 9.6 2 9.81 47.09
4

× ×
=  ...(iii)

 Dividing (i) by (iii), we get:

  
2

2
1

Q
Q

 = 79.461 2.81
28.25

=

 or, 
1

Q
Q

 = 1.67
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 or, Q1 = 0.59
1.67

Q Q=

 But, Q1 + Q2 = Q
	 ∴ Q2 = Q – Q1 = Q – 0·59Q = 0·41Q
 Dividing (ii) by (iii), we get:

  
2 2
1 2 2

2 2
2

Q D A
Q A
× ×
×

 = 28.25 0.6
47.09

=

 or, 
2 2

1 2 2
22 2

2

( / 4 )

/ 4 (0·6)

Q D D

Q

× × π ×

 × π × 
 = 0.6

  
2 5

2
2

0·59
0·41 (0·36)

DQ
Q

  × 
 

 = 0.6

 or, 5
2D  = 

2
2 0.410.6 (0.36) 0.03755

0.59
 × × = 
 

 or, D2 = 0·518 m = 518 mm  (Ans.)
 Example 12.37.  Two pipes A and B are connected in parallel between two points. Pipe A is 180 m 
long and has a diameter of 12 cm. Pipe B is 120 m long and has a diameter of 10 cm. Both the pipes 
have the same friction factor of 0·017. A partially closed valve in pipe  A causes the discharge in the two 
pipes to be the same (Fig. 12·31.). Neglecting all other minor losses, calculate the value of the valve co-
efficient.
 Solution. Given : LA = 180 m; DA = 12 cm = 0·12 m; LB = 120 m; DB = 10 cm = 0·1 m; Friction 
factor; f = 0·017.
 Value of the valve co-efficient, Kv :
 Since the discharges are same in both the pipes,
  AAVA = ABVB

 or, 2(0.12)
4 AVπ
× ×  = 2(0.1)

4 BVπ
× ×

	 ∴ VB = 1·44 VA

 Let the losses in the valve be 
2

2
A

v
VK

g
.

 Head losses in both the pipes are same.

 Hence, 
22

2 2
v AA A A

A

K Vf L V
D g g

+
×

 = 
2

2
B B B

B

f L V
D g×

  
2 20.017 180

0.12 2 2
A A

v
V VK

g g
×

× +  = 
220.017 120 (1.44)

0.10 2
AV
g

× ×
×

  25.5 + Kv = 42.30
	 ∴ Kv = 16.8   (Ans.)
 Example 12.38.  Two pipes 1 and 2, each of 12 cm diameter branch off from a point A in a 
pipeline and rejoin at B. Pipe 1 is 480 m long and pipe 2 is 720 m long. So total head at A is 36 m. 
A short pipe 10 cm diameter is fitted at B and the flow is discharged into atmosphere through 
it as shown in Fig. 12·32. Assuming f = 0·018 for both the pipes, Calculate :
 (i) Total discharge, and
 (ii) Distribution of discharge in pipes 1 and 2.

Pipe A (180 m, 12 cm dia.)

Pipe B (120 m, 10 cm dia.)

f = 0.017

Fig 12.31
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 Solution. Given : D1 = 12 cm = 0·12 m; L1 = 480 m; D2 = 12 cm = 0 ·12 m, L2 = 720 m;  
D3 = 10 cm = 0·1 m; f = 0·018.
 (i) Total discharge, Q :
  As  10 cm diameter pipe is short, the friction loss in it can be neglected.

    HB (= Head at B) = 
2

3V
g

    HA – HB = 
2

336 –
2
V

g

Pipe-2 (12 cm dia. 720 m long)

Pipe-1 (12 cm dia. 480 m long)

A

HA = 36 m

B

To atmosphere

Pipe-3
(10 cm dia.)

Fig. 12.32

  Consider an equivalent pipe Deq. = 0·1 m and feq· = 0·018 to replace the parallel pipes 1 and 
2. Then,

    

1
5 2

.

. .

eq

eq eq

D
f L

 
  
 

 = 

1 1
5 52 2
1 2

1 1 2 2

D D
f L f L

   
+   

   

  Since, feq = f1 = f2 and D1 = D2 = 0·12 m

	 	∴ 
5/2

1/2
.

(0.10)
( )eqL

 = 5/2 1 1(0.12)
480 720

 +  

     = 0·004988 (0·04564 + 0·03727) = 0·0004136

	 	∴ Leq. = 
25/2(0.10) 58.46 m

0.0004136
 

=  

  As Deq. = 0·1 m, velocity in this pipe = V3 = Veq.

	 	∴   Head loss = HA – HB = 
22

. . .3

.
36

2 2
eq eq eq

eq

f L VV
g D g

− =
×

     = 
2 2

3 30.018 58.46 10.52
0.1 2 2

V V
g g

×
× =

	 	∴	
2

3
2
V

g
 = (10.52 + 1) = 36

    V3 = 
1/236 2 9.81 7.83 m/s

11.52
 × × = 
 

    Total discharge, Q = 2× (0.10) × 7.83 . /
4
π 3= 0 06149 m s  (Ans.)

 (ii) Division of discharge in pipes 1 and 2; Q1, Q2:

  HA – HB = 
1 2

2(7.83)36 – 32.875 m =
2 9.81 f fh h= =
×
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	 	∴ 
2

1 1 1

1 2
f L V

D g×
 = 

2
10.018 480 32.875

0.12 2
V

g
×

× =

	 	∴ V1 = 
1/232.875 2 9.81 0.12 2.993 m/s

0.018 480
× × ×  = × 

	 	∴ Q1 = 2(0.12) 2.993 . /
4
π
× × = 30 03385 m s (Ans.)

  Again, 
2

2 2 2

2 2
f L V
D g

×  = 
2

20.018 720 32.875
0.12 2

V
g

×
× =

  or, V2 = 
1/232.875 2 9.81 0.12 2.444 m/s

0.018 720
× × ×  = × 

	 	∴ Q2 = 2(0.12) 2.444 . /
4
π
× × = 30 02764 m s (Ans.)

   [Check : Q1 + Q2 = 0·03385 + 0·02764 = 0·06149 m3/s]
 Example 12.39.  Two reservoirs A and B are connected through a piping system consisting of 
50 cm diameter pipe, 450 m long branching two pipes of 35 cm diameter and 25 cm diameter, each 
650 m long. A pump situated at reservoir A pumps 0·35 m3/s of water through this pipe system to 
reservoir B whose water surface elevation is 50 m above that of A. Assuming pump efficiency as 60 
percent and f = 0·018, determine the input power for the pump.
 Solution. Refer to Fig. 12·33. Given : D1 = 50 cm = 0·5 m, L1 = 450 m; D2 = 35 cm = 0·35 m, 
L2 = 650 m; D3 = 25 cm = 0·25 m, L3 = 650 m, Q = 0·35 m3/s; ηpump = 60 %; f = 0·018.
 Consider equivalent pipe of diameter 0·5 m to replace the two parallel pipes. The equivalent 
pipe (Deq., Leq., feq.) to replace a set of parallel pipes (D2, L2, f2) and (D3, L3, f3) is given by:

  
1/25

.

. .

eq

eq eq

D
f L

 
  
 

 = 
1/21/2 55

32

2 2 3 3

DD
f L f L

  
+   

   

 Here, feq. = fl = f2

Resevoir
A

Resevoir
B

Pump
Pipe -1

(50 cm dia.)

Pipe -2 (35 cm dia.)

450 m

Q = 0.35m /s
3

J

650 m

650 m

Pipe - 3 (25 cm dia.)

Fig. 12.33

  Substituting the various values in the above eqn., we get:

  
1/25

.

(0.5)
eqL

 
 
  

 = 
1/2 1/25 5(0.35) (0.25)

650 650
   

+      

 or, 1/2
.

0.1768
( )eqL

 = 0.002843 0.001226+

 or,    Leq. = 1888 m = Equivalent length of  0·5 m diameter pipe to replace the parallel pipes.
 The total equivalent length of 0·5 m pipe is now
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   = 450 + 1888 = 2338 m

  V = 
2

0.35 1.78 m/s
(0.5)

4

Q
A
= =
π
×

  hf = 
2 2

. . 0.018 2338 (1.78) 13.59 m
2 0.5 2 9.81

eq eqf L V
D g

× ×
= =

× × ×

  ht = Total pumping head  = 50 + 13·59 = 63·59 m
 Power input for the pump,
  P = 

9·81 0·35 63·59
0·6

f

pump

wQh × ×
= =

η
363·9 kW (Ans.)

 Note :  This question could also be solved without considering the equivalent pipe. First the discharge through 
the each pipe is determined and then the total frictional loss is calculated. However, the calculations 
are definitely less with the equivalent pipe method.

 Example 12.40. (Flow through branched pipes). The water levels in the two reservoirs A and 
B are 104·5 m and 100 m respectively above the daum. A pipe joins each to a common point D,  
where pressure is 98·1 kN/m2 gauge and height is 83·5 m above datum. Another pipe connects D to 
another tank C. What will be the height of water level in C assuming the same value of ‘f’ for all 
pipes. Take friction co-efficient = 0·0075. The diameters of the pipes AD, BD and CD are 300 mm, 
450 mm, 600 mm respectively and their lengths are 240 m, 270 m, 300 m respectively. [IIT Delhi]
 Solution.  For pipe AD : DAD = 300 mm = 0·3 m
  LAD = 240 m
  For pipe BD : DBD = 450 mm = 0·45 m
  LBD = 270 m
  For pipe CD : DCD = 600 mm = 0·6 m
  LCD = 300 m
  Friction co-efficient for each pipe, f  = 0·0075
  Pressure at D, p0 = 98·1 kN/m2

 Height of water level in tank C :

  The pressure head at D = 98.1 10 m of water
9.81

Dp
w

= =

A

Datum

104.5 m
83.5 m

?

100 m

B10 m

VAD

VBD

V
CD

D
AD = 0.3 m, L

AD = 240 m D

D

L

C
D

C
D

=
0.6

m
,

=
300

m

L = 270 m
BD

D = 0.45 m,
BD

C

Fig. 12.34
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	 ∴ The piezometric head at D = 83·5 + 10 = 93·5 m
  Head loss between A and D = 104·5 – 93·5 = 11·0 m
  Head loss between B and D = 100 – 93·5 = 6·5 m
 Using Darcy-Weisbach equation, we get:

 For pipe AD : 11 = 
2 24 4 0.0075 240

2 0.3 2 9.81
AD AD AD

AD

fL V V
D g

× × ×
=

× × ×

 or, 2
ADV  = 11 0.3 2 9.81 8.99

4 0.0075 240
× × ×

=
× ×

 or, VAD = 3 m/s

 For pipe BD : 6.5 = 
2 24 4 0.0075 270

2 0.45 2 9.81
BD BD BD

BD

fL V V
D g

× × ×
=

× × ×

 or, 2
BDV  = 6.5 0.45 2 9.81 7.085

4 0.0075 270
× × ×

=
× ×

 or, VBD = 2·66 m/s
 From continuity considerations, we have:
  QAD + QBD = QCD

 or, QCD = 2 2( / 4) ( / 4)AD AD BD BDD V D Vπ × × + π × ×

   = (π/4) × (0.3)2 × 3 + (π/4) × (0.45)2 × 2.66 = 0.635 m3/s
	 ∴ Velocity of flow in pipe CD, 

  VCD = 2 2
0.635 2.24 m/s

( / 4) ( / 4) 0.6
CD

CD

Q
D

= =
π × π ×

  Head loss in pipe CD = 
2 24 4 0.0075 300 2.24 3.84 m

2 0.6 2 9.81
CD CD

CD

fL V
D g

× × ×
= =

× × ×

	 ∴  Water level in tank C = 93·5 – 3·84 = 89·66 m  (Ans.)
 Example 12.41. (Flow through branched pipes). Fig. 12·35 shows three reservoirs connected 
by pipes. Each pipe is 300 mm in diameter and 1500 m long. Assuming co-efficient of friction for 
each pipe, f = 0·01 find the discharge in each pipe.
 Solution.  Diameter of each pipe, D1  =  D2 = D3 = 300 mm = 0·3 m
  Length of each pipe, L1  =  L2 = L3 = 1500 m
  Co-efficient of friction for each pipe, f  = 0·1
 Discharge in each pipe :
 To find out the direction of flow in pipe 2, let us assume that no flow occurs in pipe 2. That is, 
the piezometric level is 30 m.

	 ∴ Head loss in pipe 1,  
1fh  = 70 – 30 40 m=

 Also, 
1fh  = 

2
1 1

1

4
2

fL V
D g×

	 ∴ 40 = 
2

14 0.01 1500
0.3 2 9.81

V× ×
× ×

 or, 2
1V  = 40 0.3 2 9.81 3.924

4 0.01 1500
× × ×

=
× ×
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A

30 m

70 m B

Datum
15 m

D D D1 2 3= = = 300 mm

L L L1 2 3= = = 1500 mm

D L1
1

,

J

1

23 D L2 2
,D

L3
3

,

C

Fig. 12.35

 or, V1 = 1·981 m/s
	 ∴ Discharge through the pipe 1,

  Q1 = A1V1 = 
π
4

 × 0·32 × 1·981 = 0·14 m3/s

 Again, head loss in pipe 3, 
3

30 15 15 mfh = − =

 But, 
3fh  = 

2
3 3

3

4
2

fL V
D g×

	 ∴ 15 = 
2

34 0.01 1500
0.3 2 9.81

V× × ×
× ×

 or, 2
3V  = 15 0.3 2 9.81 1.471

4 0.01 1500
× × ×

=
× ×

 or, V3 = 1·213 m/s
	 ∴ Discharge through the pipe 3,

  Q3 = A3V3 = 
π
4

 × 0·32 × 1·213 = 0·0857 m3/s

 Since Q1 > Q3, the direction of flow is from J to B.
 Considering the flow from reservoir A and B, we have:
 (70 – 30) = Head loss in pipe 1 + head loss in pipe 2

 or, 40 = 
1 2

2 2
1 1 2 2

1 2

4 4
2 2f f

fL V fL Vh h
D g D g

+ = +
× ×

  40 = 
2 2

1 24 0.01 1500 4 0.01 1500
0.3 2 9.81 0.3 2 9.81

V V× × × × × ×
+

× × × ×

 or, 40 = 2 2
1 210.2 ( )V V+

 or, 2 2
1 2V V+  = 40 3.92

10.2
=

 or, V2 = 2
13.92 V−  ...(i)

 Similarly, considering the flow from reservoir A to C, we have:
  70 – 15  = 

1 3f fh h+

  
2 22 2

3 3 31 1 1

1 3

4 4 0.01 15004 4 0.01 1500
2 2 0.3 2 9.81 0.3 2 9.81

fL V VfL V V
D g D g

× × ×× × ×
= + = +

× × × × × ×

 or, 55 = 2 2
1 310.2 ( )V V+
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 or, 2 2
1 3V V+  = 55 5.39

10.2
=

 or, V3 = 2
15.39 – V  ...(ii)

 From continuity considerations, we have:
  Q1 = Q2 + Q3
  A1V1 = A2V2 + A3V3
 But, A1 = A2 = A3 ( D1 = D2 = D3)
	 ∴ V1 = V2 + V3 ...(iii)
 From eqns. (i), (ii) and (iii), we have:

  V1 = 2 2
1 13.92 – 5.39 –V V+  ...(iv)

 By trial and error, we get,  Vl  1·9 m/s

 From eqn. (i) : V2 = 23.92 – 1.9 0.56 m/s=

 From (ii) : V3 = 25.39 – 1.9 1.34 m/s=

 Thus, Q1 = (π/4) × 0·32 × 1·9 = 0·134 m3/s   (Ans.)
  Q2 = (π/4) × 0·32 × 0·56 = 0·0396 m3/s   (Ans.)
  Q3 = (π/4) × 0·32 × 1·34 = 0·0947 m3/s   (Ans.)
 Example 12.42.  Fig. 12·36 shows a pump supplying water from a sump at elevation 20 m to a 
reservoir at elevation 30 m through a pipeline of 0·5 m diameter and length 1000 m, f = 0·005. At 
mid-length a branch pipe 0·3 diameter, 500 m long, f = 0·005, discharges free at elevation 25 m at 
the rate of 0·25 m3/s. Determine :
 (i) The discharge into the reservoir,
 (ii) The pressure to be maintained by the pump, and 
 (iii) The power of the pump assuming an overall efficiency of 70 per cent.
 Solution. Refer to Fig. 12·36.
 Given : D1 = 0·5 m, L1 = 500 m
  D2 = 0·5 m, L2 = 500 m
  D3 = 0·3 m, L3 = 500 m

Q3 = 0.25 m /s
3

H.G.L.

Ele. = 25.0

3

D

L
3

3

= 0.3 m,
= 500 m

B

D

L

2

2

= 0.5 m,
= 500 m

A30.0 m

Reservoir

J

2

1Pump
(+H )p D

= 0.5
m,

1

L
= 500 m,

1

20.0 S

Sump

Q 1
Q 2

H.G
.L.

Fig. 12.36
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  Co-efficient of friction, f1  =  f2 = f3 = f = 0·005
 Discharge through pipe 3, Q3 = 0·25 m3/s
  Overall efficiency, η0 = 70%.
 (i) The discharge into the reservoir, Q2 :
  Energy at the joint J,
    EJ = EB (energy at B) + (hf)JB

     = 
2

3 ( )
2

B
B f JB

Vp z h
w g

 
+ + + 

 

     = 
2 2

3 3 3 3

3

4
2 2

B
B

V f L Vp z
w g D g

+ + +
×

     = 
2

3 3 3

3

40 1 25
2
V f L

g D
 + + + 
 

     = 
2

2
0.25 1 4 0.005 5001 25

2 9.81 0.3( /4) 0.3
× ×   × + +   ×  π × 

     = 0·637 (1 + 33·33) + 25 = 46·87 m
    Head loss, 

2fh  = 46.87 – 30 = 16.87 m

  i.e. 16.87 = 
2 2

2 2 2 2

2

4 4 0.005 500
2 0.5 2 9.81

f L V V
D g

× × ×
=

× × ×

  or, V2 = 
1/216.87 0.5 2 9.81 4.07 m/s

4 0.005 500
× × ×  = × × 

	 	∴ Q2 = (π/4) × 0·52 × 4·07 = 0·8 m3/s   (Ans.)
    Q1 = Q2 + Q3 = 0·8 + 0·25 = 1·05 m3/s

    Head loss, 
1fh  = 

2 2
1 1 1

1

4 4 0.005 500 (5.35) 29.17 m
2 0.5 2 9.81

f L V
D g

× × ×
= =

× × ×

           1
1 2

1

1.05 5.35 m/s
( / 4) 0.5

QV
A

 = = = π × 


  Applying energy equation between the sump (S) and the junction (J), we have:
    ES + Hp = 

1fh

     0 + 0 + 20 +  Hp = 46.87 + 29.17 = 76.04 m
    Hp = 56.04 m
 (i) The pressure to be maintained by the pump, p :
    p = wHp = 9·81 × 56·04 = 549 ·7 kN/m2   (Ans.)
 (ii) The power of pump, P :

    P = 1

0

9.81 1.05 56.04 .
0.7

pwQ H × ×
= =

η
824 6 kW  (Ans.)

 Example 12.43. (Pipe networks). Fig. 12·37 shows a network in which Q and hf refer to 
discharges and pressure drops respectively. Subscripts 1, 2, 3, 4 and 5 designate respective values 
in pipe lengths AC, BC, CD, DA and AC. Subscripts A, B, C and D designate discharges entering 
or leaving the junction points A, B, C and D respectively.
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 By sticking to the values given in the figure find the following discharges QB , Q2 , Q4 and Q5; 
and pressure drops 

4fh  and 
5fh and give these computed values at their respective places on a neat 

sketch of the network along with flow directions. [GATE]

B

C

A

QA = 20
Q1 = 30, hf1 = 60

Q3 = 40, hf3
= 120

QD = 100

QB = ?

QC = 30

D

Q4 = ?

hf4 = ?

Q2 = ?

hf2 = 40

Q
5 = ?, h

f5 = ?

Fig. 12.37

 Solution. At junctions, ΣQ = 0
 i.e., Discharge entering the junction = Discharge leaving the junction
 At junction D : QD = Q3 + Q4
 or, 100 = 40 + Q4
 or, Q4 = 100 – 40 = 60 ...leaving the junction
 At junction A : Q4 = QA + Q1 + Q5
  60 = 20 + 30 + Q5
	 ∴ Q5 = 60 – 20 – 30 = 10 ...leaving the junction
 At junction C : Q3 + Q5 + Q2  = Qc 
     40 + 10 + Q2 = 30
	 ∴ Q2 = 30 – 40 – 10 = – 20 ...leaving the junction C
 At junction B : Q1 + Q2  =  QB
        30 + 20  =  QB
 i.e., QB = 50 ...leaving the junction B
 For each elementary circuit, Σhf  =  0
 Circuit ABC :

hf1
A B

CD

QA = 20

Q1 = 30, = 60

Q3 = 40, hf3
= 120

Q
4

=
6
0
,
h

f 4
=

1
0
0

Q
2

=
2
0
,
h

f 2
=

4
0

QD = 100

QB = 50

QC = 30

Q

h

5

5

= 10,
= 20

f

Fig. 12.38
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1 2 5f f fh h h− −  = 0

  
5

60 – 40 – fh  = 0

	 ∴ 
5fh  = 20

 Circuit ACD :
  

5 3 4f f fh h h− +  = 0

  
4

20 120 fh− +  = 0
	 ∴ 

4fh  = 100

 The calculated vlaues and the flow directions are shown in Fig. 12·38.

12.9. SYPHON 

 A  syphon is a long bent pipe employed for carrying water from a reservoir at a higher elevation 
to another reservoir at a lower elevation when the two reservoirs are separated by a hill or high 
level ground in between as shown in Fig. 12·39.

Reservoir

Reservoir

B

A

Syphon

O
utlet- leg

Summit

S

h

In
le

t - le
g

Fig. 12.39. Syphon.

 The highest point (S) of the syphon is called the summit. The pressure at the point S is less 
than atmospheric pressure (since S lies above the free water surface in the tank A). The pressure at 
S can be reduced theoretically to – 10·3 m of water but in actual practice this pressure is only – 7·6 
m of water (or 10·3 – 7·6 = 2·7 m of water absolute). When the pressure at S becomes less than 2·7 
m of water absolute, the dissolved air and other gases would come out from water and collect at the 
summit. Therefore syphon should be so laid that no section of the pipe will be more than 7·6 m above 
the hydraulic gradient at that section. Moreover, in order to limit the reduction of the pressure at the 
summit the length of the inlet-leg (rising portion of the syphon) of the syphon is also required to be 
limited (this is so because, if the inlet leg is very long a considerable loss of head due to friction is 
caused, resulting in further reduction of the pressure at the summit).
 Example 12.44.  Two reservoirs, having a difference in elevation of 15 m, are connected by a 
200 mm diameter syphon. The length of the syphon is 400 m and the summit is 3 m above the water 
level in the upper reservoir. The length of the pipe from upper reservoir to the summit is 120 m. If 
the co-efficient of friction is 0·005, determine :
 (i) Discharge through the syphon, and
 (ii) Pressure at the summit.
 Neglect minor losses.
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 Solution.  Diameter of the syphon, D  = 200 mm = 0·2 m
  Length of the syphon, L  =  400 m
  Difference in level of the two reservoirs, H  = 15 m
  Height of the summit from upper reservoir, h  =  3 m
  Co-efficient of friction, f  =  0·005
 (i) Discharge through the syphon, Q :
  Applying Bernoulli’s equation to points A and B, we get:

    
2

2
A A

A
p V z
w g

+ +  = 
2

loss of head due to friction from to
2

B B
B

p V z A B
w g

+ + +

  or, 0 + 0 + zA = 0 + 0 + zB + hf
    [ pA = pB = atmospheric pressure, and VA = VB = 0]
  or, zA – zB = hf = 15

  But, hf = 
24

2
fLV

D g×
 (where, V = velocity of water in the pipe)

Reservoir

Reservoir

B

A

S

h = 3 m

15 m

12
0

m

Fig. 12.40

	 	∴ 15 = 
24 0.005 400

0.2 2 9.81
V× × ×

× ×

  or, V2 = 15 0.2 2 9.81
4 0.005 400
× × ×
× ×

  or, V = 2·7 m/s
	 	∴  Discharge, Q = Area × velocity

     = 20.2 2.7 . /
4
π
× × = 30 0848 m s  (Ans.)

 (ii) Pressure at summit :
  Applying Bernoulli’s equation to points A and S, we get:

    
2

2
A A

A
p V z
w g

+ +  = 
2

2
S S

S
p V z
w g

+ +

     + loss of head due to friction between A and S
    (... assuming datum line passing through A)
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  0 + 0 + 0 = 
2 22.7 4 0.005 120 (2.7)3

2 9.81 0.2 2 9.81
Sp

w
× × ×

+ + +
× × ×

  0 = 0.37 3 4.46 7.83S Sp p
w w

+ + + = +

  Sp
w

 = 7.83 m of water (Ans.)

 Example 12.45.   A 200 mm diameter pipe, 4000 m long connects two reservoirs whose surface 
levels differ by 40 m. At a distance of 400 m from the upper reservoir, the pipe crosses a ridge the 
summit of which is 9 m above the level of water in the upper reservoir. Determine :
 (i) The minimum depth of the pipe below the summit of the ridge, if the absolute pressure head 

at the summit of syphon is not to fall below 3·0 m of the water (absolute).
 (ii) The discharge through the pipe.
 Take co-efficient of friction f = 0·006 and atmospheric head = 10·3 m of water. Neglect minor 
losses.
 Solution.  Diameter of the pipe, D  =  200 mm = 0·2 m
  Total length of the pipe, L  =  4000 m
  Length of syphon from upper reservoir to the summit, L1  =  400 m
  Difference in levels of two reservoirs  =  40 m

B

A

C

40
0

m

40 m

Syphon
(0.2 m dia.)

Ridge

9 m

y

Fig. 12.41

  Friction co-efficient, f  =  0·006
  Atmospheric pressure head  = 10·3 m of water

  Pressure head at C, Sp
w

 = 3.0 m of water (absolute)

 (i) Minimum depth of pipe below the summit, y :
  Let,   y = Depth of the pipe below the summit of the ridge.
  Then, height of syphon from the water surface in the upper reservoir = (9 – y)
  Applying Bernoulli’s equation at A and B (taking datum line passing through B), we have:

  
2

2
A A

A
p V z
w g

+ +  = 
2

( )
2

B B
B f A B

p V z h
w g −+ + +

  0  + 0 + 40 = 
240 0 0

2
fLV

D g
+ + +

×
 ( VA = VB = 0)

  or, 40 = 
24 0.006 4000

0.2 2 9.81
V× × ×

× ×
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	 	∴ V = 
1/240 0.2 2 9.81 1.278 m/s

40 0.006 4000
× × ×  = × × 

  Now applying Bernoulli’s equation at A and C (assuming datum line passing through A), we 
have:

    
2

2
A A

A
p V z
w g

+ +  = 
2

–( )
2

C C
C f A C

p V z h
w g

+ + +

    10.3 + 0 + 0 = 
22

143.0 (9 )
2 2

fL VV y
g D g

+ + − +
×

  or, 10.3 = 
2 2(1.278) 4 0.006 400 (1.278)3 (9 )

2 9.81 0.2 2 9.81
y × × ×

+ + − +
× × ×

     = 3 + 0.0832 + (9 – y) + 3.99
  or, y = 5.77 m  (Ans.)
 (ii) The discharge through the pipe, Q:

    Q = 20·2 1·278
4

A V π
× = × ×

     = 0·04 m3/s (Ans.)
 Example 12.46.  Water from a main canal is syphoned to a branch canal over an embankment 
by means of wrought iron pipes of 90 mm diameter. The length of pipeline up to the summit is 25 m 
and the total length is 65 m. Entry loss may be assumed as one-half of the velocity head in the pipe. 
Assume friction factor, f = 0·03. Water surface elevation in the branch canal is 10 m below that of 
the main canal.
 (i) If the total quantity of water required to be coneyed is 0·06m3/s, how many pipelines are 

needed ?
 (ii) What is the maximum permissible height of the summit above the water level in the main canal 

so that the water pressure at summit may not fall below 20 kN/m2 absolute, the barometric 
reading being 10 m of water ?  (UPSC Exams.)

 Solution.  Diameter of the pipe, D  =  90 mm = 0·9 m
  Total length of the pipeline, L  =  65 m
  The length of the pipeline up to the summit, L1  = 25 m

  Entry loss = 
2

0·5
2
V

g
  Friction Factor, f  =  0·03

B

10 m

2

D
=

90 m
m

40 m

Syphon

S
h

25 m

1

A

Main canal

Branch canal

Fig. 12.42
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  Total discharge Q  = 0·06 m3/s
  Pressure at the summit, pS  = 20 kN/m2   absolute
  Atmospheric pressure head  = 10 m of water.
 (i) Number of pipelines needed :
  Applying Bernoulli’s equation between water surfaces (1 and 2) of two canals, we have:

    
2

1 1
12

p V z
w g

+ +  = 
2 2 2 2

2 2
2 0.5

2 2 2 2
p V V fLV Vz
w g g D g g

+ + + + +
×

    0 + 0 + 10 = 
2 20.03 650 0 0 1.5

2 0.09 2
V V

g g
× ×

+ + + +
×

  or, 10 = 
223.17

2
V

g
 ( V1 = V2 = 0 )

  or, V = 
1/210 2 9.81 2.91 m/s

23.17
× ×  = 

 
    (where,V = velocity of flow through the pipe)
  Discharge through a 90 mm diameter pipe,

     = π
4

 × 0·092 × 2·91 = 0·0185 m3/s

  Number of 90 mm diameter pipes required to convey 0·06 m3/s

     = 
0.06 3.24, say
0.185

= 4 (Ans.)
 (ii) Height of the summit, h :
  Invoking Bernoulli’s equation between water surface1 and the summit point S, we have:

    
2

1 1
12

p V z
w g

+ +  = 
2 22

10.5
2 2 2

S S
S

p V fL VVz
w g g D g

+ + + +
×

    10 + 0 + 0 = 
2 2 220 0.5 0.03 25

9.81 2 2 0.09 2
V V Vh

g g g
× ×

+ + + +
×

  or, 10 = 
2 21.5 2.91 0.03 25 (2.91)2.038

2 9.81 0.09 2 9.81
h× × ×

+ + +
× × ×

  or, 10 = 2.038 + 0.647 + h + 3.596
  or, h = 3.72 m   (Ans.)

12.10. POWER TRANSMISSION THROUGH PIPES 

 The transmission of power through pipes carrying water or other liquids is commonly used 
for working of several hydraulic machines. The hydruaulic power transmitted by a pipe however 
depends on (i) the discharge passing through the pipe and (ii) the total head of water (or liquid).
Consider a pipe AB connected to a high level storage tank as shown in Fig. 12·43.
 Let, H = Head of water available at the inlet of pipe, m,
  L = Length of the pipe, m,
  D = Diameter of the pipe, m,
  V = Velocity of water in the pipe m/s,
  f = Co-efficient of friction, and
  hf = Loss of head in the pipe AB, due to friction, m.
 Weight of water flowing through the pipe per second
   = wQ = wAV     ...(i)

L

V

PipeA B

H

Tank

Fig. 12.43
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 (where, Q = discharge of water through the pipe, m3/s)
 and, net head of water available at B (neglecting minor losses)

   = 
24

2f
fLVH h H

D g
− = −

×

 Also, The efficiency of transmission,

  η = fH h
H
−

 And,  Power, P = 

Weight of water flowing/sec.
× head of water

kW
1000

 
 
 

   = wQ (H – hf) kW
                 (where, w = 9·81 kN/m3 for water)

   = 
24 kW

2
fLVwAV H

D g
 

− × 

   = 
34 kW

2
fLVwA HV

D g
 

− × 
 ...(iii)

 It is evident from eqn. (iii) that power transmitted depends upon the velocity of water (V), as the 
other things are constant.
	 ∴ Power transmitted will be maximum, when:

  ( )d P
dV

 = 0 

 or, 
34

2
d fLVwA HV

dV D g
  

−  ×  
 = 0

 or, 
24 3

2
fLVwA H

D g
 ×

− × 
 = 0

 or, 
243

2
fLVH

D g
− ×

×
 = 0

 or, H – 3hf = 0 
24

2f
fLVh

D g
 

= × 


 or, H = 3hf

 or, hf = 3
H

 It means that power transmitted through the pipe is maximum, when head lost due to friction in 

the pipe is equal to 1
3

 of the total supply head.

 The maximum efficiency would correspond to the maximum power transmitted and hence 
maximum efficiency,

  η  = 

2
23 3
3

HH H

H H

−
= =    or   66·7%
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 Example 12.47.  A 2500 m long pipeline is used for transmission of power. 120 kW power is to 
be transmitted through the pipe in which water having a pressure of 4000 kN/m2 at inlet is flowing. 
If the pressure drop over the length of pipe is 800 kN/m2 and f = 0·006, find :
 (i) Diameter of the pipe, and
 (ii) Efficiency of transmission.
 Solution.  Length of the pipeline, L = 2500 m
  Power transmitted, P = 120 kW
  Pressure at inlet, p = 4000 kN/m2

  H = 4000 407.7 m
9.81

p
w
= =

  Pressure drop = 800 kN/m2

	 ∴  Loss of head, hf = 800 81.5 m
9.81

=

	 ∴  Co-efficient of friction, f = 0·006.
 (i) Diameter of the pipe, D :
    Head available at the end of the pipe, H – hf  = 407·7 – 81·5 = 326·2 m
    Now, power transmitted is given by : P  =  wQ (H – hf) kW
    120  =  9·81 × Q × 326·2
  where, Q = Discharge through the pipe in m3/s, and
  and,     w = Specific weight of water = 9·81 kN/m3

	 	∴ Q = 3120 0.0375 m /s
9.81 326.2

=
×

  But, Q = 2

4
D Vπ

×

	 	∴ 0.0375 = 2

4
D Vπ

×

  or, V = 2 2
0.0375 4 0.0477

D D
×

=
π

 ...(i)

  The head lost due to friction, 
24

2f
fLVh

D g
=

×

  But, hf = 81·5 m (calculated above)

	 	∴	 81.5	= 
2 24 0.006 2500 (0.0477/ )

2 9.81
D

D
× × ×

× ×

  or, 81.5 = 
2

5
4 0.006 2500 (0.0477)

2 9.81D
× × ×

× ×

  or, D5 = 
24 0.006 2500 (0.0477)

81.5 2 9.81
× × ×

× ×

  or, D = 0·1535 m   or   153·5 mm   (Ans.)
 (ii) Efficiency of transmission, η :

	 			 η = 407.7 81.5 0.8
407.7

fH h
H
− −

= =   or  80%    (Ans.)
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12.11. FLOW THROUGH NOZZLE AT THE END OF A PIPE 

 Refer to Fig. 12·44. A nozzle is a tapering mouthpiece, which is fitted to the outlet end of a 
pipe. The total energy at the end of the pipe consists of pressure energy and kinetic energy. By fitting 
the nozzle at the end of a pipe, the total energy is converted into kinetic energy. A high velocity is 
required in the fields of power development, fire fighting, mining, etc.
 Fig. 12·44 shows a nozzle fitted at the end of a pipe connected to a reservoir.

Nozzle

d
Jet

�D

Pipe

V1

Fig. 12.44

 Let, D = Diameter of the pipe,
  L = Length of the pipe,
  d = Diameter of the nozzle,
  V = Velocity of flow in pipe,
	 	 v = Velocity of flow at the outlet of the nozzle,
  f = Co-efficient of friction for the pipe, and
  H = Height of water level in the reservoir above the centre-line of the nozzle.
 Head lost due to friction in pipe,
  hf = 

24
2

fLV
D g×

	 ∴ Head available at the base of the nozzle
   = 

24–
2f

fLVH h H
D g

− =
×

 Assuming the minor losses and losses in the nozzle to be negligible, we have:

  Total head at the nozzle outlet = 
2

2g
ν

	 ∴ H = 
2 2 24

2 2 2f
fLVh

g D g g
ν ν

+ = +
×

 ...(i)

 From continuity consideration, we have:
  AV = aν
 (where A and a are the areas of the pipe and area of the nozzle at outlet respectively)

 or, V = a
A
ν

 Substituting the value of V in eqn. (i), we get:

  H = 
2 2 2

2
4

22
fLa

gD g A
ν ν

+
× ×

   = 
2 2

2
1 4

2
fLa

g D A
 ν +
  × 

	 ∴ v = 2

2

2
41

gH
fL a

D A
+ ×

 ...(12.20)

	 ∴  Discharge through the nozzle  = a × ν
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12·11·1 Power Transmitted through the Nozzle
 Mass of liquid flowing per second at the outlet ofthe nozzle, m = ρav
 The K.E. of the jet at outlet of the nozzle

   = 2 2 31 1 1
2 2 2

m a aν = × ρ ν × ν = ρ ν

	 ∴  Power available at the outlet of  nozzle = 31
2

avρ watts

  Also, power available at the inlet of pipe = wQH
	 ∴ Efficiency of power transmission through the nozzle,

  η = 
31

Power available at the outlet of nozzle 2
Power available at the inlet of pipe

a

wQH

ρ ν
=

 But, w = ρg    and    Q = av

	 ∴ η  = 
3

2

2

2

1
12

2 41

av

g a H gH fL a
D A

ρ ν  = =  ρ × ν ×
 + ×
  

 ...(12·21)

 2

2

2 ...eqn. (12·20)
41

gH
fL a

D A

 
ν = 

 + ×  



12·11·2 Condition for Transmission of Maximum Power Through Nozzle

 We know that, H = 
2 2 24

2 2 2f
fLVh

g D g g
ν ν

+ = +
×

 or, 
2

2g
ν  = 

24
2

fLVH
D g

−
×

 But power transmitted through the nozzle,

  P = 3 21 1
2 2

a aρ ν = ρ ν × ν

   = 
21 42

2 2
fLVa g H

D g
  

ρ ν −  ×  

   = 
24

2
fLVwa H

D g
 

ν − × 
 ...(12·22)

 From continuity consideration, we have:

  AV = aν		or		 aV ν
=
Α

 Substituting the value of V in eqn. (12·22), we get:

 Power transmitted through nozzle, 
2 2

2
4

2
fL aP wa H

D g A
 × ν

= ν −  × × 
 ...[12·22(a)]

 Power transmitted will be maximum, when 0dP
d

=
ν
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2 2

2
4 0

2
d fL awa H

d D g A

  ν
ν − × =  ν ×  

 or,            
2 3

2
4 0

2
d fL awa H

d D g A

  ν
ν − × =  ν ×  

 or,                               243 0
2

fLH V
D g

− × × =
×

     
2 2

2
2

a V
A

 ν
= 

 


 or, H – 3hf = 0            
24

2f
fLVh

D g
 

= × 


 or, hf = 3
H

 ...(12·23)

 The eqn. (12·23) indicates that the power transmitted by a nozzle is maximum when the head 
lost due to friction in pipe is equal to one-third the total head supplied at the inlet of pipe.

12·11·3 Diameter of the Nozzle for Transmitting Maximum Power

 We know that, H = 
2

2fh
g
ν

+

 But, H = 3hf [From eqn. (12·22)]

	 ∴ 3hf = 
2

2fh
g
ν

+  or 
2

2
2fh

g
ν

=

  
22 4

2
fLV

D g
×
×

 = 
2

2g
ν  

 For continuity considerations, we have:

  AV = aν or  aV
A
ν

=

	 ∴ 
2 2

2
2 4

2
fL a

D g A
× × ν
× ×

 = 
2

2g
ν

 or, 
2

2
A
a

 = 8 fL
D

 or  
8A fL

a D
=  ...(12·24)

 Eqn. (12·24) gives the ratio between the areas of the supply pipe and the nozzle for maximum 
power transmission.
 Substituting the values of A and a in eqn. (12·24) and squaring both sides, we have:

  

2
2

2

4

4

D

d

π × 
 π ×
 

 = 8 fL
D

 or, 
4

4
D
d

 = 8 fL
D

 or D5 = 8fLd4

	 ∴ d = 
1/45

8
D
fL

 
 
 

 ...(12·25)
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 Example 12.48.  A nozzle is fitted to a pipe120 mm in diameter and 250 m long, with co-
efficient of friction as 0·01. If  the available head at the nozzle is 100 m find the diameter of the 
nozzle and the maximum power transmitted by a jet of water discharging freely out of a nozzle.
 Solution.  Diameter of the pipe, D  = 120 mm = 0·12 m
  Length of the pipe, L  =  250 m
  Co-efficient of friction, f  =  0·01
  Head of water, H  =  100 m.
 (i) Diameter of the nozzle for maximum power, d :
  Using the relation :

    d = 
1/45

8
D
fL

 
 
 

 ...[Eqn. (12.25)]

     = 
1/450.12 0.0334 m

8 0.01 250
 

= × × 
 or  33·4 mm

  i.e., d = 33·4 mm   (Ans.)
 (ii) Maximum power transmitted by the jet, P :

  We know that for the maximum transmission of power, the head lost due to friction 
3
H

=

	 	∴  Available head, h = 100 200100 66.67 m
3 3

− = =

	 	∴ Velocity of water through the nozzle,
    v = 2 2 9.81 66.67 36.2 m/sgh = × × =

  Now using the relation, P = wQH, we have: ( Q = a.ν)
    P = waνH

     = 29.81 0.0334 36.2 66.67 20.74 kW
4
π

× × × × =

  i.e., P = 20·74 kW   (Ans.)
 Example 12.49.  Find the maximum power transmitted by a jet of water discharging freely out 
of nozzle fitted to a pipe 300 m long and 100 mm diameter with co-efficient of friction as 00·01. The 
available head at the nozzzle is 90 m.  [Delhi University]
 Solution. Length of the pipe, L = 300 m
  Diameter of the pipe, D = 100 mm = 0·1 m

  Area of the pipe, A =  
π
4

 × 0·12 = 0·007854 m2

  Co-efficient of friction, f = 0·01
  Head available at the nozzle, h = 90 m
 Maximum power transmitted, P :
 Let, a = Area of the nozzle.

 Also, A
a

 = 8 fL
D

	 ∴ 0.007854
a

 = 8 0.01 300 15.492
0.1

× ×
=
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 or, a = 20.007854 0.0005069 m
15.492

=

 Also, h = 
2

2g
ν

	 ∴ 90 = 
2

2g
ν  or 90 2 9.81 42.02 m/sν = × × =

  Discharge through the nozzle, Q = aν = 0·0005069 × 42·02 = 0·0213 m3/s
	 ∴ Maximum power transmitted,
  P = wQh = 9·81 × 0·0213 × 90 kW = 18·8 kW   (Ans.)
            ( w = 9·81 kN/m3)
 Example 12.50.  A fire engine supplies water to a hosepipe, 75 m long and 0·075 m in diameter, 
at a pressure of 294 kN/m2 (gauge). The discharge end of the hosepipe has a nozzle of diameter 
d fixed to it. Taking friction factor as 0·032, determine the diameter d of the nozzle, so that the 
momentum of the issuing jet may be a maximum. (UPSC Exams.)
 Solution. Diameter of the hosepipe, D = 0·75 m
  Length of the hosepipe,  L = 75 m
  Pressure of water, p = 294 kN/m2 (gauge)
  Friction factor (= 4f) = 0·032
 Diameter of the nozzle, d :
  Head lost in the hosepipe, hf = 

2 2 24 0.032 75 32
2 0.075 2 2

fLV V V
D g g g

× ×
= =

× ×

 Applying the continuity equation to the pipe and the jet, we get:
  Q = AV = aν

 or, v = 
2 2

2

0.00754

4

D VAV V
a dd

π
× ×  = =  π  ×

 where, d = Diameter of the nozzle,
  a = Area of the jet, and
  A = Area of the hosepipe.
 Applying Bernoulli’s equation to the hosepipe at the fire engine and to the nozzle jet, considering 
the hosepipe and the nozzle to be in the horizontal plane, we have:

  
2294 0

9·81 2
V

g
+ +  = 

2
0 0

2 fh
g
ν

+ + +  (head lost in the hosepipe)

 (Neglecting the energy loss in the nozzle, being very small)

 or, 
2

30
2
V

g
+  = 

4 2 20.075 32
2 2
V V

d g g
  + 
 

 or, 30 = 
42 0.07532 1

2
V

g d
  + −  

  

 or, V = 4
30 2 9.81

0.07531
d

× ×

 +  
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 Momentum of issuing jet,

  M = 
2 2

2
2

0.0751000 (0.075) 0.0248
4

VQ V V
d d

 π    ρ ν= × × × =       
 Substituting for V, we get:
  M = 2 4 2 4

0.0248 30 2 9.81 14.6
31 (0.075 / ) [31 (0.075 / ) ]d d d d

× ×  = + + 

 For momentum to be  maximum, 0dM
dd

=

  
4

2 0.07531d d
dd d

     +  
   

 = 0

 or, 
4

2
2

0.07531d d
dd d

 
+ 

 
 = 0

 or, 
4

3
2 0.07562d

d
×

−  = 0

 or, 62d4 – 6·328 × 10–5 = 0

 or, d = 
1/456.328 10 0.03178 m

62

− ×
= 

 
  or 31·78 mm   (Ans.)

12.12. WATER HAMMER IN PIPES 

 In a long pipe, when the flowing water is suddenly brought to rest by closing the valve or by any 
similar cause, there will be a sudden rise in pressure due to the momentum of water being destroyed. 
A pressure wave is transmitted along the pipe. A sudden rise in pressure has the effect of hammering 
action on the walls of the pipe. This phenomenon of sudden rise in presssure is known as water 
hammer or hammer blow. The magnitude of pressure rise depends on :
 (i) The speed at which valve is closed,
 (ii) The velocity of flow,
 (iii) The length of pipe, and
 (iv) The elastic properties of the pipe material as well as that of the flowing fluid.
 The rise in pressure in some cases may be so large that the pipe may even burst and therefore it 
is essential to take into account this pressure rise in the design of the pipes.

12·12·1 Gradual Closure of Valve
 Consider a long pipe carrying liquid (Fig. (12·45)) and provided with a valve which is closed 
gradually.

L

V

Pipe
Valve

Fig. 12.45. Water hammer.

 Let, A = Area of cross-section of the pipe,
  L = Length of the pipe,
  V = Velocity of flow of water in the pipe,
  t = Time required to close the valve (in seconds), and
  p = Intensity of pressure wave produced.
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 The mass of liquid contained in the pipe is  = ρAL
 Assuming that the rate of closure of the valve is so adjusted that the liquid column in the pipe is 
brought to rest with a uniform retardation; from an intial velocity V to zero in time t seconds, we have:

  Retardation of water  0V V
t t
−

= =

	 ∴ The axial force available for producing retardation
   = Mass × retardation

   = VAL
t

ρ ×  ...(i)

 Also, force due to pressure wave is  = p.A ...(ii)
 Equating the two forces given by eqns. (i) and (ii), we have:

  VAL
t

ρ ×  = p × A

 or, p = LV
t

ρ  ...(12·26)

	 ∴  Head of pressure, H = 
· ·

p LV LV LV
w w t g t gt

ρ ρ
= = =

× ρ

 i.e., H = LV
gt

 ...(12·27)

 (i) The closure of valve is said to be gradual when 
2Lt
C

>  ...(12·28)

 (ii) The closure of valve  is said to be instantaneous when 
2Lt
C

<  ...(12·29)
 where, C = velocity of the pressure wave.

12·12·2 Instantaneous Closure of Valve in Rigid Pipes
 Eqn. (11·26) indicates that when the valve is closed instantaneously (i.e., t = 0), the inertia head 
should rise to infinity. However, in practice, it is not possible to close the valve instantaneously, 
as it always takes some time. Thus, even for a very rapid closure of the valve, as observed during 
experimentation, the pressure rise is quite finite and measurable. Moreover, eqn. (12·26) has been 
derived on the assumption that the liquid is incompressible. This assumption is incorrect, because at 
very high pressures even liquids get compressed to some extent and behave like cmpressible fluids.
 Consider a pipe of length L and area of cross-section A (Fig. 12·45) carrying water which is 
flowing through  it at a velocity  V. When the valve is closed instantaneously the K.E. of the flowing 
water is converted into strain energy of water (neglecting effect of friction and assuming the pipe 
wall to be perfectly rigid).
                             Loss of 2 21 1. .

2 2
K E mV AL V= = ρ ×  ( m = ρ × A × L )

  Gain of strain energy = 
2 21 1volume

2 2
p p AL
K K

 
× = × 

 

   
where, Bulk modulus of elasticity of water, and

Intensity of pressure wave produced. 
k
p
= 

 = 
 Equating the loss of K.E. to the gain of strain energy, we get:

  21
2

AL Vρ ×  = 
21

2
p AL
K

×

 or, p2 = 2 21 2
2

KALV KV
AL

ρ × = ρ
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	 ∴ p = 
2

2 KKV V K V ρ
ρ = ρ =

ρ

 or, p = VρC ...(12·30)

                 where, , being the .KC C velocity of pressure wave
 

= ρ 
12·12·3 Instantaneous Closure of Valve in Elastic Pipes
 As shown in Fig. 12·45, consider a pipe of length L, diameter D, thickness t (small compared to 
diameter).
 Let, p = Increase of pressure due to water hammer,
  E = Modulus of elasticity of pipe material, and

  1
m

 = Poisson’s ratio for pipe material.

 When the valve is closed intantaneously, rise of pressure takes place due to which circumferential 
and longitudinal stresses are produced in the pipe wall; these stresses are given as (from knowledge 
of strength of materials):
  sc = 

2
pD

t
 and 

4l
pD

t
s =

 where, sc = Circumferential stress, and
	 	 sl = Longitudinal stress.
 Also, strain energy stored in the pipe material per unit volume is

   = 2 2 21
2

c l
c lE m

s s s + s − 
 

   = 
2 2 21 2 4

2 2 4

pD pD
pD pD t t

E t t m

 × ×    + −        

   = 
2 2 2 2 2 2

2 2 2
1

2 4 16 4
p D p D p D

E t t mt
 

+ − 
 

 Assuming, 1
m

 = 1/4, we have:

 Strain energy per unit volume  = 
2 22 2 2 2 2 2

2 2 2 2
1

2 4 16 16 8
p D p D p D p D

E t t t Et

 
 + − =
 

 Total strain energy stored in pipe material

   = 
2 2

2 total volume of pipe material
8
p D

Et
×

   = 
2 2 2 3

2 88
p D p D LDt L

EtEt
×

× π × =

   = 
2 2 2

8 2
p D DL p ADL

Et Et
×π ×

=  [ A (area of the pipe) = 
π
4

× D2]

  Loss of K.E. of water = 2 21 1
2 2

mV AL V= ρ ×

 Gain of strain energy in water = 
2 21 1volume =

2 2
p p AL
K K

 
× × 
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 Also, The loss of K.E. of water = Gain of strain energy in water + strain energy stored in 
material.
	 ∴ 21

2
AL Vρ ×  = 

2 21
2 2

p p ADLAL
K Et

× +

 Dividing both sides by 
2

AL , we get:

  2Vρ  = 
2 2

2 1p p D Dp
K Et K Et

 + = + 
 

	 ∴ p2 = 
2

1
V

D
K Et

ρ
 + 
 

 or, p = 
2

1 1
V V

D D
K Et K Et

ρ ρ
= ×

   + +   
   

 ...(12·31)

12·12·4 Time required by Pressure Wave to travel from the Valve to the Tank  
   and from Tank to Valve

  Time taken, t = Distance travelled from valve to tank and back
Velocity of pressure wave

   = 2L L L
C C
+

=   i.e.,  2Lt
C

=  ...(12·32)

 where, L = Length of the pipe, and
  C = Velocity of pressure wave.
 Example 12.51.  In a pipe 600 mm diameter and 3000 m length, provided with a valve at its 
end, water is flowing with a velocity of 2 m/s. Assuming velocity of pressure wave C = 1500 m/s, 
find :
 (i) The rise in pressure if the valve is closed in 20 seconds, and
 (ii) The rise in pressure if the valve is closed in 2·5 seconds. Assume the pipe to be rigid one and 

take bulk modulus of water as 2 GN/m2.
 Solution.  Diameter of the pipe, D = 600 mm = 0·6 m
  Length of the pipe, L = 300 m
  Velocity of water, V = 2 m/s
  Velocity of pressure wave, C = 1500 m/s.
 (i) Rise in pressure, p :
  Time taken to close the valve, t = 20 s

  Now,  The ratio, 2L
C

 = 2 3000 4
1500
×

=

  The close of valve is said to be gradual if,

    t > 2L
C

 ...[Eqn. (12·28)]

  Hence, the valve is closed gradually.
  The rise in pressure (p), for gradual closure of valve, is given by:

    p = LV
t

ρ  ...[Eqn. (12·26)]

     = 3 21000 3000 2 300 10 N/m
20

× ×
= ×  or  300 kN/m2  (Ans.)
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 (ii) Rise in pressure, p :
  Time taken to close the valve, t = 2·5 s
  Bulk modulus of water, K = 2 GN/m2

  Velocity of pressure wave is given by,

    C = 
92 10 1414.2 m/s

1000
K ×

= =
ρ

    The ratio, 2L
C

 = 2 3000 4.24 s
1414.2
×

=

	 	∴ t < 2L
C

  Thus, the valve is closed intantaneously [From eqn. (12·29)]
  When pipe is rigid, the rise in pressure due to instantaneous closure of the valve is given by 

(eqn. 12·30),
    p = VρC = 2 × 1000 × 1414·2 N/m2  or  2828·4 kN/m2 (Ans.)
 Example 12.52.  Water is flowing in a pipe of 150 mm diameter with a velocity of 2·5 m/s when 
it is suddenly brought to rest by closing the valve. Find the pressure rise assuming pipe is elastic,  
E = 206 GN/m2, Poisson’s ratio = 0·25 and K for water = 2·06 GN/m2. Pipe wall is 5 mm thick.
 Solution.  Diameter of the pipe, D = 150 mm = 0·15 m
  Thickness of the pipe, t = 5 mm = 0·005 m
  Velocity of water, V = 2·5 m/s
  Modulus of elasticity, E = 206 GN/m2

  Bulk modulus of water, K = 2·06 GN/m2

  Poisson’s ratio, 1
m

 = 1/4

 Pressure rise, p :
 Using the relation :
  p = 

1
V

D
K Et

ρ
 + 
 

 ...[Eqn. (12·31)]

   = 
12

9 9

1000 102.5 2.5
1 0·15 0.485 0.1456

2.06 10 2.06 10 0.005

=
+ + × × × 

   = 3148 kN/m2   (Ans.)
 Example 12.53.  In a pressure penstock 4500 m long water is flowing at 4 m/s. If the velocity of 
the pressure wave travelling in the pipe due to sudden complete closure of a valve at the downstream 
end is given as 1500 m/s, find :
 (i) The maximum pressure rise, and
 (ii) The period of oscillation.
 Show how the pressure changes with time at the middle point of the penstock length. All friction 
losses may be neglected.    (UPSC Exams.)
 Solution.  Length of the penstock, L = 4500 m
  Velocity of water, V  =  4 m/s
  Velocity of the pressure wave, C  =  1500 m/s
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 (i) The maximum pressure rise :
  Maximum pressure is given by:
    p = VρC ...[Eqn. (12·39)]
     = 4 × 1000 × 1500 N/m2  or  6 MN/m2   (Ans.)
 (ii) The period of oscillation :

    The period of oscillation = 
2 2 4500

1500
L

C
×

= = 6 seconds (Ans.)

 Pressure changes with time at the middle point of the penstock length :

 The pressure wave reaches at the middle point of the penstock length in 45001.5 s 1.5 s
2 1500

 = × 
; 

at this instant the pressure at the middle point rises by 6 MN/m2 and remains unchanged until the 
pressure wave returns as a wave of rarefaction of negative pressure. This happens at 4·5 s after the 
closure of the valve when the pressure in the penstock at the middle point is reduced by an equal 
amount. Fig. 12·46 shows the pressure changes at the middle point with respect to time.

2250 m

L = 4500 m

Normal H.G.L

Penstock

p = 6MN/m
2

Transient H.G.L

C = 1500 m/s

Reservoir

p w/

Valve

1 2 3 4 5 6 7 8 9 10

6 MN/m
2

6 MN/m
2

t s( )

+ p/w

– p/w

0

+

–

Fig. 12.46. Pressure changes at the middle point of the penstock length.

HIGHLIGHTS

 1. A pipe is a closed conduit (generally of circular section) which is used for carrying fluids 
under pressure.

 2. On the basis of experiments Reynolds discovered that :
 (i) In case of laminar flow : The loss of pressure head  ∝	velocity (V)
 (ii) In case of turbulent flow : the loss of pressure head ∝ V 2 (approximately)
 3. Energy (or head) losses :
  A. Major energy losses.......due to frictrion.
  B. Minor energy loses.
  These losses are due to:
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 (i) Sudden enlargement of pipe
 (ii) Sudden contraction  of pipe,
 (iii) Bend in pipe,
 (iv) An obstruction in pipe, and
 (v) Pipe fittings, etc.
 4. Major energy losses (due to friction), Important formulae :
 (i) Darcy-Weisbach formula (for loss of head due to friction)

    hf = 
22

14
2 2

f LVfLV
D g D g

=
× ×

  where, f = co-efficient of friction, f1 = friction factor (= 4f)
 (ii) Chezy’s formula (for loss of head due to friction)

    V = where, fh
C mi i

L
 

= 
 

  [∴ hf = i × L, where i is obtained from Chezy’s formula.]
 5. Minor energy losses; Important formulae :
 (i) Loss of head due to sudden enlargement

  he = 
2

1 2( )
2

V V
g

−

 (ii) Loss of head due to sudden contraction.

  hc = 
22

2 1 1
2 c

V
g C
 −  

 (iii) Loss of head due to obstruction in pipe,

  hobs. = 
2 2

1
( ) 2c

A V
C A a g
 − − 

  where,      a   =   Maximum area of obstruction, and
  A = Area of the pipe.
 (iv) Loss of head at the entrance to pipe,

  hi = 
2

0.5
2
V

g
 where, V = velocity of liquid in pipe.

 (v) Loss of head at the exit of pipe,

  h0 = 
2

2
V

g
 where, V = velocity at outlet of pipe.

 (vi) Loss of head due to bend in the pipe,

  hb = 
2

2
Vk

g
 where, k = co-efficient of bend.

 (vii) Loss of head in various pipe fittings,

  hfittings = 
2

2
Vk

g

  where, k = value of co-efficient; it depends on the type of pipe fittings.
 6. Energy gradient line (E.G.L.). If the total energy at various points along the axis of the pipe 

is plotted and joined by a line, the line so obtained is called the ‘Eenergy gradient line’.
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 7. Hydraulic gradient line (H.G.L.). If a line is drawn joining  the piezometric levels at various 
points, the line so obtained is called the ‘Hydraulic gradient line’.

 8. Equivalent pipe. It is defined as the pipe of uniform diameter having loss of head and dis-
charge equal to the loss of head and discharge of a compound pipe constisting of several 
pipes of different lengths and diameters. To determine the size of the equivalent pipe Dupit’s 
equation, given below, is used :

    5
L

D
 = 31 2

5 5 5
1 2 3

...LL L
D D D

+ + +

 9. In case of parallel pipes :
 (i) Rate of discharge in the main line = Sum of the discharges in each of the parallel pipes.
  i.e., Q = Q1 + Q2 + ...
 (ii) The loss of head in each pipe is same.
 10. A syphon is a long bent pipe employed for carrying water from a reservoir at a higher eleva-

tion to another reservoir at lower elevation when the two reservoirs are separated by a hill or 
high level ground in between.

 11. Power transmission through pipes :

    Efficiency, η = fH h
H
−

    Power, P = wQ (H – hf) kW  (where, w = 9·81 kN/m3 for water)

  Power transmitted will be maximum when, 
3f
Hh =

  Then, ηmax = / 3 66.7%H H
H
−

=

 12. Flow through nozzles; Important formulae :

 (i) Velocity, 2

2

2
41 ·

gh
fL a

D A

ν =
+

 (ii) Power, 
2 2

2
4 kW

2
fL aP wa H

D g A

  ν
= ν −  ×   

 (where, w = 9·81 kN/m3 for water)

 (iii) Condition for maximum power transmission : 
3f
Hh =

 (iv) Diameter of nozzle for maximum power transmission,

    d = 
1/45

8
D
fL

 
 
 

 13. Water hammer in pipes. The phenomenon of sudden rise in pressure in a pipe when water 
flowing in it is suddenly brought to rest by closing the valve is known as water hammer or 
hammer blow.

 14. Valve closure is gradual when 2Lt
C

>

  Valve closure is sudden when 2Lt
C

<

  where, ,KC =
ρ

 C being the velocity of of pressure wave produced due to water hammer.
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 15. The intensity of pressure rise due to water hammer is given by, LVp
t

ρ
= ... when valve is 

closed gradually (where, t = time required to close the valve),
  p V K= ρ ...when the valve is closed suddenly and pipe is assumed rigid, and

  
1

p V
D

K Et

ρ
= ×

 + 
 

...when valve is closed suddenly and the pipe is elastic.

  (where, t = Thickness of pipewall)
  where, L = Length of pipe,
    V = Velocity of flow,
    K = Bulk modulus of water, and
    E = Modulus of elasticity for pipe material.

OBJECTIVE TYPE QUESTIONS

Choose the Correct Answer :
 1. The pipe running partially/completely full be-

haves like an open channel.
 2.  In a laminar flow, Reynold’s number is
  (a) less than 2000
  (b) more than 2000
  (c) more than 2000 but less than 4000
  (d) none of the above.
 3. In a turbulent flow, Reynold’s number is
  (a) less than 4000
  (b) more than 4000
  (c) between 2000 and 4000
  (d) none of the above.
 4. In case of a laminar flow, the loss of pressure 

head is
  (a) proportional to (velocity)2

  (b) proportional to velocity
  (c) proportional to (velocity)1/2

  (d) none of the above.
 5. In case of a turbulent flow, the loss of head is 

approximately proportional to
  (a) velocity (b) (velocity)1/2

  (c) (velocity)3/4 (d) (velocity)2

 6. Darcy-Weisbach equation is used to find loss of 
head due to :

  (a) sudden enlargement
  (b) sudden contraction
  (c) friction
  (d) none of the above.

 7. Chezy’s formula is given as

  (a) 2V C m i=  (b) 2 2V C mi=

  (c) V C mi=  (d) 2 3V C m i=

 8. Loss of head due to sudden enlargement is given 
as

  (a) 
3

1 2( )
2

V V
g
−  (b) 

2
1 2( )

2
V V

g
−

  (c) 
2 2

1 2

2
V V

g
−  (c) 1 2

2
V V

g
−

 9. Loss of head due to sudden contraction is given 
as

  (a) 
22 1 1

c

V
g C

 − 
 

 (b) 
22

2 1 1
2 c

V
g C
 − 
 

  (c) 
2

2
2

1 1
c

V
Cg

 − 
 

 (d) 
2

2 1 1
2 c

V
g C
 − 
 

.

   10.   Loss of head due to an obstruction is given as

  (a) 
2 2

1
2

A V
A a g

 − − 

  (b) 
2

1
( ) 2c

A V
C A a g
 − − 

  (c) 
2 2

1
2c

A V
C a g
 −  

  (d) 
22 2

1
2

A V
A a g

 
− − 

.
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 11. Loss of head at entrance to a pipe is given as

  (a) 
2

2
V

g
 (b) V

g

  (c) 
2

0·5
2
V

g
 (d) 

3

2
V

g

 12. Loss of head at exit of a pipe is given as

  (a) 
2

2
V

g
 (b) 

2V
g

  (c) 
3V

g
 (d) 

3

2
V

g

 13. There is specific relation/no relation between the 
slope of the energy gradient line and the slope 
of the axis of the pipe.

 14. The pipes are said to be in series/parallel when a 
main pipe line divides into two or more parallel 
pipes which again join together downstream and 
continue as a mainline.

 15. The power transmitted through the pipe is maxi-
mum when head lost due to friction in the pipe 
is equal to

  (a) 1 rd
3

 of the total supply head

  (b) 1 th
4

of the total supply head

  (c) 1 th
5

 of the total supply head

  (d) 1 th
8

 of the total supply head.

 16.  Diameter of nozzle (d) for maximum transmis-
sion of power is equal to

  (a) 
1/45

4
D
fL

 
 
 

 (b) 
1/45

8
D
fL

 
 
 

  (c) 
1/44

8
D
fL

 
 
 

 (d) 
1/43

8
D
fL

 
 
 

 17. The energy loss in a pipeline is due to
  (a) surface roughness only
  (b) viscous action only
  (c) friction offered by pipe wall as well as by 

viscous function
  (d) none of the above.
 18. In a pipe flow the minor losses are those
  (a) which depend on the length of the pipeline
  (b) caused by friction and are thus also called 

friction losses.
  (c) which have a small magnitude
  (d) which are caused on account of total distur-

bance produced by such fittings as valves, 
bends, etc.

 19. In flow through pipe bends the pressures on inner 
and out radii

  (a) stand at the same level increasing gradually 
towards the pipe centre.

  (b) vary, it being more on the inner core.
  (c) are different, pressure increases with increse in 

radius and is, therfore, more at the outer radius.
  (d) do not vary and are the same as at the centre 

of the pipe.
 20. The condition for maximum transmission of 

power through a pipeline is that one-third of the 
available head must be consumed in friction. The 
corresponding efficiency of the pipeline is

  (a) 33·3% (b) 66·67%
  (c) 90% (d) 100%.
 21. For achieving continuous flow through a system, 

no position of the pipe should be higher than
  (a) 20  (b) 6 m
  (c) 7·6 m (d) 10 m.
  measured above the hydraulic gradient line.
 22. For turbulent flow in smooth pipes, the entrance 

length is taken as
  (a) 20  (b) 50
  (c) 80  (d) 115.
 23. The entrace length or length of establishment of 

flow is
  (a) the length in which the boundry layer remains 

uniform
  (b) the pipe length inside the reservoir
  (c) the length of pipe from its entrance in 

which  the flow may be assumed irrotational
  (d) the initial length in which the flow develops 

fully such that the velocity profile does not 
change downstream.

 24. Due to which of the following phenomena water 
hammer is caused ?

  (a) Incompressibility of fluid
  (b) Sudden opening of a valve in a pipeline
  (c) The material of the pipe being elastic
  (d) Sudden closure (partial or complete) of a 

valve in pipe flow.
 25. Under which of the following conditions the 

closure of valve is considered rapid ?
  (a) the duration of valve  closure is greater  

than 2L
C

  (b) the duration of valve closure is less than L
C

  (c) the duration of valve closure is less  

than 2L
C

  (d) none of the above.
  (where L = length of pipe, C = velocity of pres-

sure wave produced due to water hammer.)
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ANSWERS

 1. Partially 2. (a) 3. (b) 4. (b) 5. (d) 6. (c)
 7. (c) 8. (b) 9. (b) 10. (b) 11. (c) 12. (a)
 13. No relation 14. Parallel 15. (a) 16. (b) 17. (c) 18. (d)
 19. (d) 20. (b) 21. (c) 22. (b) 23. (d) 24. (d)
 25. (c).

THEORETICAL QUESTIONS

UNSOLVED EXAMPLES

 1. Differentiate between a laminar flow and a 
turbulent flow.

 2. Define the terms : Major energy losses and minor 
energy losses in pipe.

 3. Derive Darcy-Weisbach formula for calculating 
loss of head due to fricton in a pipe.

 4. Derive Chezy’s formulae for loss of head due to 
friction in a pipe

 5. Derive formulae for calculating loss of head due to
  (i) Sudden enlargement, and
  (ii) Sudden contraction.
 6. Explain briefly the following :
  (i) Hydraulic gradient line (H.G.L.)
  (ii) Energy gradient line (E.G.L.)
 7. What is an equivalent pipe ?
 8. What is syphon ? Where is it used ?
 9. Derive an expression for the power transmis-

sion through the pipes. Find also the condition 

for maximum transmission of power and cor-
responding efficiency of transmission.

 10. Find an expression for the ratio of the outlet area 
of the nozzle to the area of the pipe for maximum 
transmission of power.

 11. Show that the diameter of  the nozzle for maxi-
mum transmission of power is given by

    d = 
1/45

8
D
fL

 
 
 

  where, D = Diameter of the pipe
    L = Length of the pipe, and
    f = Friction co-efficient.
 12. What is meant by water hammer ? Derive an 

expression for the rise of pressure when the flow-
ing water in a pipe is brought to rest by closing 
the valve gradually.

 13. Obtain a formula for rise in pressure in a thin 
plastic pipe of circular section in which the flow 
of water is stopped by sudden closure of a valve.

 1. Find the head lost due to friction in a pipe of 
diameter 200 mm and length 60 m, through 
which water is flowing at a velocity of 2·5 m/s 
using :

  (i) Darcy-Weisbach formula (assuming  
f = 0·005), and

  (ii) Chezy’s formula for which C = 55.
  [Ans. (i) 1·91 m; (ii) 2·48 m]
 2. Water is flowing through a pipe of diameter 200 

mm with a velocity of 3 m/s. If the co-efficient 

of friction is given by 0.3
0.090.002

( )
f

Re
= + , 

where Re is Reynolds number, find the head lost 
due to friction for a length of 5 m. Take kine-
matic viscosity of water = 0·01 stoke.

 [Ans. (0·99 m)]

 3. In a pipe of diameter 200 mm and length 500 m, 
an oil of specific gravity 0·9 and viscosity 0·06 
poise is flowing at the rate of 0·06 m3/s. Find :

  (i) The head lost due to friction, and
  (ii) Power required to maintain the flow.
  [Ans. (i) 9·48 m of waterl; (ii) 5·016 kW]
 4. A horizontal pipe of 100 mm diameter is joined 

by sudden enlargement to a 150 mm diameter 
pipe. Water is flowing though  it at the rate of 
2 m3/min. Find :

  (i) Loss of head due to abrupt expansion,
  (ii) Pressure difference in two pipes, and
  (iii) Change in pressure if the change of section 

is gradual, without any loss.
[Ans. (i) 0·286 m of water; 

(ii) 0·455 m of water;  (iii) 0·74 m of water]
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 5. The discharge of water through a horizontal 
pipe is 0·25 m3/s. Its diameter, which is 200 mm, 
suddenly enlarges to 400 mm. If the intensity 
of pressure of water in the smaller pipe is 120 
kN/m2, determine : 

  (i) Loss of head due to sudden enlargement,
  (ii) Intensity of pressure in the large pipe, and
  (iii) Power lost due to enlargement.
   [Ans. (i) 1·816 m; (ii) 132 kN/m2; 
   (iii) 4·45 kW]
 6. A horizontal pipe carries water at a rate of 0·03 

m3/s. Its diameter reduces abruptly from 150 mm 
to 100 mm. If the co-efficient of friction is 0·6 
find the pressure loss across the contraction.  
 [Ans. 9·3 kN/m2]

 7. A pipe of 150 mm diameter is attached to a 100 
mm diameter pipe by means of a flange in such a  
manner that axes of the two pipes are in a straight 
line. Water flows through the arrangement at a rate 
of 2 m3/min. The pressure loss at the transition 
as indicated by differential gauge length on a 
water-mercury manometer connected between 
the two pipes equals 80 mm. Calculate :

  (i) The loss of head due to contraction, and
  (ii) The co-efficient of contraction.
   [Ans. (i) 0·268 m of water; (ii) 0·65]
 8. Three pipes of diameters 300 mm, 200 mm and 

400 mm and lengths 300 m, 170 m and 210 m 
respectively are connected in series. The differ-
ence in water surface levels in two tanks is 12 
m. Determine the rate of flow if co-efficients of 
frictions are 0·005, 0·0052 and 0·0048 respec-
tively, considering :

  (i) Minor losses also, and
  (ii) Neglecting minor losses.
   [Ans. (i) 0·9945m3/s, (ii) 0·1021 m3/s]
 9. A pipeline ABC 180 m long is laid on an upward 

slope of 1 in 60. The length of the portion AB is 
90m and its diameter is 150 mm. At B the pipe 
section suddenly enlarges to 300 mm diameter 
and remains so for the remainder of its length 
BC, 90 m. A flow of 0·05 m3/s is pumped into 
the pipe at its lower end A and is discharged at 
the upper end C into a closed tank. The pressure 
at the supply end A is 140 kN/m2.

  (i) Find the pressure at the discharge end C;
  (ii) Draw energy gradient line and hydraulic 

gradient line.  [Ans. 61 kN/m2]

 10. Two reservoirs are connected by two pipes of the 
same length laid in parallel . The diameters of 
the pipes are 100 mm and 300 mm respectively. 
If the discharge through 100 mm diameter pipe 
is 0·01 m3/s, what will be the discharge through 
300 mm pipe ? Assume that f is same for both 
pipes. [Ans. 0·156 m3/s]

 11. A main pipe divides into two parallel pipes which 
again forms one pipe. The length and diameter 
for the first parallel pipe are 2000 m and 1·0 m 
respectively, while the length and diameter of the 
second pipe are 2000 m and 0·8 m respectively. 
If the total flow in the main is 3 m3/s and the 
co-efficient of friction for each paralell pipe is 
same and equal to 0·005, find the rate of flow in 
each parallel pipe.  
 [Ans. (i) 1·906 m3/s; 1·094 m3/s]

 12. Two reservoirs are connected by a pipeline 
consisting of two pipes, one of 150 mm diameter 
and length 6 m and the other of diameter 225 
mm and 16 m length. If the difference of levels 
in the reservoir  is 6 m, calculate the discharge 
and draw the energy gradient line. Take friction 
factor = 0·04. [Ans. 0·018 m3/s]

 13. Two reservoirs have difference of water levels of 
6 m. They are connected  by a pipe system which 
consists of a single pipe of 600 mm diameter for 
the first 3000 m and then two pipes in parallel, 
each of 300 mm diameter and 3000 m in length. 
Calculate the rate of flow. Assume friction factor 
= 0·04. [Ans. 0·0725m3/s]

 14. A compound pipeline 1650 m long made up of 
pipes 450 mm diameter for 900 m, 375 mm for 
450 m and 300 mm for 300 m, is required to be 
replaced by a pipe of uniform diameter. Find the 
diameter of the new pipe, assuming the length 
to remain the same. [Ans. 372 mm]

 15. A pipeline of 600 mm diameter and 4 km length 
connects two reservoirs. The difference of water 
levels in the reservoirs is 20 m. At a distance 
of 1 km from the upper reservoir, a small pipe 
is connected to the pipeline. The water can be 
taken from the small pipe. Find the discharge to 
the lower reservoir if (i) No water is taken from 
the small pipe, and (ii) 0·1 m3/s of water is taken 
from small pipe. Take co-efficient of friction  
= 0·005 and neglect minor losses.

    [Ans. (i) 0·485 m3/s; (ii) 0·458 m3/s]
 16. An existing 300 mm diameter pipeline of 3200 

length connects two reservoirs with 13 m differ-
ence in their water levels. Calculate the discharge 
Q1. If a parallel pipe 300 mm diameter is attached 
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to last 1600 m length of the existing pipeline, find 
the new discharge Q2. Take only wall frictoin 
into account. Assume friction factor = 0·04 in 
Darcy-Weiabach formula.  
 [Ans. 0.547 m3/s;  0.698 m3/s]

[IIT Madras]
 17. A pipeline of 0·6 diameter is 1·5 km long. To 

augment the discharge, another pipeline of the 
same diameter is introduced parallel to the first 
in the second half of its length. Find the increase 
in discharge if the friction factor is 0·04 and head 
at the inlet is 30 m. (Ans. 0·1808 m3/s) 
 [UPSC Exams.]

 18. A pipe of 400 mm diameter and 2 km long is 
connected to a reservoir at one end. The other end 
of the pipe is connected to junction from which 
two pipes each of length 1 km and diameter 
300 mm run in parallel. These parallel pipes are 
connected to another reservoir, which is having 
level of water 10 m below the water level of the 
above reservoir. Determine the total discharge 
if the friction factor = 0·06.

  Neglect minor losses. [Ans. 0·0822 m3/s]
 19. The rate of flow of water pumped into a pipe ABC, 

which is 180 m long, is 0·05 m3/s. The pipe is laid 
on an upward slope of 1 in 60. The length of the 
portion AB is 90 m and its diameter is 150 mm, 
while the length of the portion BC is also 90 m but 
its diameter is 300 mm. The change of diameter 
at B is sudden. The flow is taking place from A 
to C where the pressure at A is 137·34 kN/m2 and 
end C is connected to a closed end tank. Find the 
pressure at the discharge end C and sketch the 
total energy and the hydraulic gradient lines.

   [Ans. 59 ·84 kN/m2]
 20. A pipeline of 500 mm diameter and 4·5 km length 

connects two reservoirs whose constant differ-
ence of water level is 12 m. A branch pipe 1·25 
km long and taken from a point distance 1·5 km 
from reservoir A, leads to the reservoir C whose 
water level is 15 m below that of reservoir A. 
Find the diameter of the branch pipe, so that the 
flow into both the reservoirs is same.

  Assume co-efficient of friction for each pipe, 
f = 0·0075. [Ans. 375 mm]

 21. A 200 mm diameter pipe, 8000 m long connects 
two reservoirs whose surface levels differ by 40 m. 
At a distance of 500 m from the upper reservoir, the 
pipe crosses a ridge the summit of which is 8 m 
above the level of water in the upper reservoir. 
Determine :

  (i) The minimum depth of the pipe below the 
summit of the ridge, if the absolute pressure 

head at the summit of system is not to fall 
below 3·0 m of water, and

  (ii) The discharge through the pipe.
   Take friction co-efficient, f = 0 ·006 and at-

mospheric head = 10·3 m of water, Neglect 
minor losses.

   [Ans. (i) 3·24 m, (ii) 0·02883 m3/s]
 22. A pipe of 1 m diameter connects two reservoirs 

having a difference of levels of  6 m. The total 
length of the pipe is 800 m and rises to a maxi-
mum height of 3 m above the level of water in 
the higher reservoir at a distance of 200 m from 
the entrance. Find :

  (i) Discharge in the pipe, and
  (ii) Pressure at the highest point.
   Take friction factor = 0·04, and neglect minor 

losses.
[Ans. – 4·69 m of water]

 23. A syphon of diameter 200 mm connects two 
reservoirs having a difference in elevation of 
15 m. The total length of the syphon is 600 m 
and the summit is 4 m above the water level in 
the upper reservoir. If the sepration takes place 
at 2·8 m of water absolute, find the maximum 
length  of the syphon from the upper reservoir 
to the summit.

  Take friction factor = 0·016 and atmospheric 
pressure head = 10·3 m of water.

   [Ans. 128·6 m]
 24. A pipeline 2000 m long is used for power trans-

mission. 110 kW is to be transmitted through the 
pipe in which water having a pressure of 5000 
kN/m2 at inlet is flowing. If the pressure drop 
over the length of the pipe is 1000 kN/m2 and 
co-efficient of friction is 0·0065, find :

  (i) The diameter of the pipe, and
  (ii) Efficiency of transmission.
   [Ans. (i) 128 mm (ii) 80%]
 25. Calculate the diameter of the nozzle and the 

maximum power transmitted by a jet of water 
discharging freely out of a nozzle, fitted to a 
pipe 300 m long and 100 mm diameter with co-
efficient of friction as 0·01. The available head 
at the nozzle is 90 m.

   [Ans. (i) 25·4 mm; (ii) 10·29 kW]
 26. A horizontal pipe of 150 mm diameter and 200 m 

length conveys water from a reservoir to a nozzle 
50 mm in diameter. What would be the power 
of the jet if thelevel of water in the reservoir is 
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15 m above the axis of the pipe ? Take friction 
co-efficient  = 0·01.

  Neglect losses in the nozzle. [Ans. 2·31 kW]
 27. In a pipe of 500 mm diameter and 2500 m length, 

provided with a valve at its end, water is flowing 
with a velocity of 1·5 m/s. Assuming velocity of 
pressure wave = 1460 m/s, find :

  (i) The rise in pressure if the valve is closed in 
25 seconds, and

  (ii) The rise in pressure if the valve is closed in 2 
seconds. Assume the pipe to be rigid one and 

take bulk modulus of water as 1·962 GN/m2.
    [Ans. (i) 150 kN/m2; (ii) 2101 kN/m2]
 28. Water is flowing through a cast-iron pipe of 

diameter 150 mm and thickness 10 mm which 
is provided with a valve at its end. Water is 
suddenly stopped by closing the valve. Find  
the maximum velocity of water, when the rise 
of pressure due to sudden closure of valve is 
1·962 MN/m2.

  Take K for water = 1·962 GN/m2 and E for cast-
iron pipe = 117·7 GN/m2.

   [Ans. 1·57 m/s]
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13.1. INTRODUCTION 

 The concept of boundary layer was first introduced 
by L. Prandtl in 1904 and since then it has been applied 
to several fluid flow problems.
 When a real fluid (viscous fluid) flows past a 
stationary solid boundary, a layer of fluid which comes 
in contact with the boundary surface, adheres to it (on 
account of viscosity) and condition of no slip occurs 
(The no-slip condition implies that the velocity of fluid at 
a solid boundary must be same as that of boundary itself). 
Thus the layer of fluid which cannot slip away from the 
boundary surface undergoes retardation; this retarded 
layer further causes retardation for the adjacent layers of 
the fluid, thereby developing a small region in the 
immediate vicinity of the boundary surface in which the 
velocity of the flowing fluid increases rapidly from zero 
at the boundary surface and approaches the velocity of 
main stream. The layer adjacent to the boundary is 
known as boundary layer. Boundary layer is formed 
whenever there is relative motion between the boundary 

and the fluid. Since 0
0y

u
y =

 ∂
τ = µ  ∂ 

, the fluid exerts a 

shear stress on the boundary and boundary exerts an 
equal and opposite force on fluid known as the shear 
resistance.
According to boundary layer theory the extensive fluid 
medium around bodies moving in fluids can be divided 
into following two regions:
 (i) A thin layer adjoining the boundary is called the 

boundary layer where the viscous shear takes 
place.

 (ii) A region outside the boundary layer where the flow 
behaviour is quite like that of an ideal fluid and 
the potential flow theory is applicable.

Chapter

BOUNDARY LAYER THEORY

13

 13.1. Introduction
 13.2. Boundary layer definitions 

and characteristics-
boundary layer thickness 
(δ)—displacement thickness 
(δ*)—momentum thickness 
(q)— energy thickness (δe). 

 13.3. Momentum equation 
for boundary layer by 
Vonkarman.

 13.4. Laminar boundary layer. 
 13.5. Turbulent boundary layer. 
 13.6. Total drag due to laminar 

and turbulent layers. 
 13.7. Boundary layer separation 

and its control
 Highlights
 Objective Type Questions
 Theoretical Questions
 Unsolved Examples.
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13.2. BOUNDARY LAYER DEFINITIONS AND CHARACTERISTICS 

 Consider the boundary layer formed on a flat plate kept parallel to flow of fluid of velocity 
U (Fig. 13.1) (Though the growth of a boundary layer depends upon the body shape, flow over 
a flat plate aligned in the direction of flow is considered, since most of the flow surfaces can be 
approximated to a flat plate and for simplicity).
 — The edge facing the direction of flow is called leading edge.
 — The rear edge is called the trailing edge.
 — Near the leading edge of a flat plate, the boundary layer is wholly laminar. For a laminar 

boundary layer, the velocity distribution is parabolic.
 — The thickness of the boundary layer (δ) increases with distance from the leading edge x, as 

more and more fluid is slowed down by the viscous boundary, becomes unstable and breaks 
into turbulent boundary layer over a transition region.

Leading edge

x
Smooth flat plate

Laminar
boundary layer

Transi-
tion

Turbulent boundary layer

U
0.99 U

�

U

0.99 U

�0

Y

�

u ~ log y

u ~ y
Laminar sublayer

Trailing edge
O

X
Parabolic

U

Fig. 13.1. Boundary layer on a flat plate.

 For a turbulent boundary layer, if the boundary is smooth, the roughness projections are covered 
by a very thin layer which remains laminar, called laminar sublayer. The velocity distribution in the 
turbulent boundary layer is given by Log law or Prandtl’s one-seventh power law.
The characteristics of a boundary layer may be summarised as follows:
 (i) δ (thickness of boundary layer) increases as distance from leading edge x increases.
 (ii) δ decreases as U increases.
 (iii) δ increases as kinematic viscosity (ν) increases.

 (iv) 0
U τ ≈ µ  δ 

; hence τ0 decreases as x increases. However, when boundary layer becomes 

turbulent, it shows a sudden increase and then decreases with increasing x.
 (v) When U increases in the downward direction, boundary layer growth is reduced.
 (vi) When U decreases in the downward direction, flow near the boundary is further retarded, 

boundary layer growth is faster and is susceptible to separation.
 (vii) The various characteristics of the boundary layer on flat plate (e.g variation of δ, τ0 or force 

F) are governed by inertial and viscous forces; hence they are functions of either Ux
ν

 or  UL
ν

.

 (viii) If 55 10Ux
v

< ×  ... boundary layer is laminar (velocity distribution is parabolic).

  If 55 10Ux
v

> ×  ... boundary layer is turbulent on that portion (velocity distribution follows 

Log law or a power law).
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 (ix) Critical value of Ux
v

 at which boundary layer changes from laminar to turbulent depends on:

 — turbulence in ambient flow,
 — surface roughness,
 — pressure gradient,
 — plate curvature, and
 — temperature difference between fluid and boundary.
 (x) Though the velocity distribution would be a parabolic curve in the laminar sub-layer zone, 

but in view of the very small thickness we can reasonably assume that velocity distribution 
is linear and so the velocity gradient can be considered constant.

13.2.1. Boundary Layer Thickness (δ)

 The velocity within the boundary layer increases from zero at the boundary surface to the 
velocity of the main stream asymptotically. Therefore the thickness of the boundary layer is 
arbitrarily defined as that distance from the boundary in which the velocity reaches 99 per cent of the 
velocity of the free stream (u = 0.99U). It is denoted by the symbol δ. This definition however gives 
an approximate value of the boundary layer thickness and hence δ is generally termed as nominal 
thickness of the boundary layer.
 The boundary layer thickness for greater accuracy is defined in terms of certain mathematical 
expressions which are the measure of the boundary layer on the flow. The commonly adopted 
definitions of the boundary layer thickness are:
 1. Displacement thickness (δ*)
 2. Momentum thickness (q)
 3. Energy thickness (δe).

13.2.2. Displacement Thickness (δ*)
 The displacement thickness can be defined as follows:
 “It is the distance, measured perpendicular to the boundary, by which the main/free stream is 
displaced on account of formation of boundary layer.”

Or
 “It is an additional “wall thickness” that would have to be added to compensate for the reduction 
in flow rate on account of boundary layer formation”.
 The displacement thickness is denoted by δ*.
 Let fluid of density ρ flow past a stationary plate with velocity U as shown in the Fig. 13.2. 
Consider an elementary strip of thickness dy at a distance y from the plate.

Velocity
distribution

U

u = U0.99
dy

y

�

Boundary layer

U

Stationary plate

Fig. 13.2. Displacement thickness.
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 Assuming unit width, the mass flow per second through the elementary strip
   = ρudy
 Mass flow per second through the elementary strip (unit width) if the plate were not there
   = ρ U·dy ...(ii)
 Reduction of mass flow rate through the elementary strip
   = ρ (U – u) dy
 [The difference (U – u) is called velocity of defect].
 Total reduction of mass flow rate due to introduction of plate

   = 
0

( – )U u dy
δ

ρ∫  ...(iii)

 (if the fluid is incompressible)
 Let the plate is displaced by a distance δ* and velocity of flow for the distance δ* is equal to 
the main/free stream velocity (i.e. U). Then, loss of the mass of the fluid/sec. flowing through the 
distance δ*

   = ρUδ* ...(iv)
 Equating eqns. (iii) and (iv), we get:

  ρUδ* = 
0

( – )U u dy
δ

ρ∫

 or, δ* = 
0

1 – u dy
U

δ  
 
 ∫  ...(13.1)

13.2.3. Momentum Thickness (q)

 Momentum thickness is defined as the distance through which the total loss of momentum per 
second be equal to if it were passing a stationary plate. It is denoted by q.
 It may also be defined as the distance, measured perpendicular to the boundary of the solid 
body, by which the boundary should be displaced to compensate for reduction in momentum of the 
flowing fluid on account of boundary layer formation.
 Refer to fig. 13.2. Mass of flow per second through the elementary strip = ρudy
 Momentum/sec. of this fluid inside the boundary layer = pudy × u = ρu2dy
 Momentum/sec. of the same mass of fluid before entering boundary layer = ρuUdy
  Loss of momentum/sec. = ρuUdy – ρu2dy = ρu (U – u) dy
	 ∴	 Total loss of momentum/sec.

   = 
0

( – )u U u dy
δ

ρ∫  ...(i)

 Let, q = Distance by which plate is displaced when the fluid is flowing with a constant velocity U.
 Then loss of momentum/sec. of fluid flowing through distance q with a velocity U
   = ρqU2 ...(ii)
 Equating eqns. (i) and (ii), we have:

  ρqU2 = 
0

( – )u U u dy
δ

ρ∫
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 or, q = 
0

1 –u u dy
U U

δ  
 
 ∫  ...(13.2)

 The momentum thickness is useful in kinetics.

13.2.4. Energy Thickness (δe)
 Energy thickness is defined as the distance, measured perpendicular to the boundary of the 
solid body, by which the boundary should be displaced to compensate for the reduction in K.E. of 
the flowing fluid on account of boundary layer formation. It is denoted by δe.
 Refer to Fig. 13.2. Mass of flow per second through the elementary strip = ρudy
 K.E. of this fluid inside the boundary layer

   = 2 21 1 ( )
2 2

mu udy u= ρ

 K.E. of the same mass of fluid before entering the boundary layer

   = 21 ( )
2

udy Uρ

 Loss of K.E. through elementary strip

   = 2 2 2 21 1 1( ) – ( ) ( – )
2 2 2

udy U udy u u U u dyρ ρ = ρ  ...(i)

	 ∴ Total loss of K.E. of fluid   = 2 2

0

1 ( – )
2

u U u dy
δ

ρ∫

 Let,  δe = Distance by which the plate is displaced to compensate for the reduction in K.E.
 Then, loss of K.E. through δe of fluid flowing with velocity U

   = 21 ( )
2 eU Uρ δ  ...(ii)

 Equating eqns. (i) and (ii), we have:

  21 ( )
2 eU Uρ δ  = 2 2

0

1 ( – )
2

u U u dy
δ

ρ∫

 or, δe = 2 2
3

0

1 ( – )u U u dy
U

δ

∫

 ∴ δe = 
2

2
0

1 –u u dy
U U

δ  
  
 

∫  ...(13.3)

 Example 13.1.  The velocity distribution in the boundary layer is given by: u y
U

=
δ

, where u 

is the velocity at a distance y from the plate and u = U at y = δ, δ being boundary layer thickness. Find :
 (i) The displacement thickness, (ii) The momentum thickness,

 (iii) The energy thickness, and (iv) The value of 
*δ
q

.

 Solution. Velocity distribution: u y
U

=
δ

 ...(Given)
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 (i) The displacement thickness, δ*

   δ* = 
0

1 – u dy
U

δ  
 
 ∫  ...[Eqn. (13.1)]

    = 
0

1 – y dy
δ  
 δ ∫  u y

U
 = δ 


    = 
2

0

–
2
yy

δ
 
 

δ 

   δ* = 
2

– –
2 2

 δ δ
δ = δ =  δ  2

δ  (Ans.)

 (ii) The momentum thickness, q

   q = 
0

1 –u u dy
U U

δ  
 
 ∫  ...[Eqn. (13.2)]

    = 
2

2
0 0

1 – –y y y ydy dy
δ δ    =     δ δ δ δ   
∫ ∫

 or,   q = 
2 3 2 3

2 2
0

– – –
2 2 2 33 3
y y

δ
  δ δ δ δ

= = = 
δ δδ δ  6

δ  (Ans.)

 (iii) The energy thickness, δe

   δe = 
2

2
0

1 –u u dy
U U

δ  
  
 

∫  ...[Eqn. (13.3)]

    = 
2 3

2 3
0 0

1 – –y y y ydy dy
δ δ   

=      δ δδ δ   
∫ ∫

     = 
2 4 2 4

3 3
0

– – –
2 2 2 4 44 4
y y

δ
  δ δ δ δ δ

= = = 
δ δδ δ 

 i.e.   δe = 
4
δ  (Ans.)

 (iv) The value of 
∗δ
q

:

    
*δ
q

 = / 2 .
/ 6

δ
=

δ
3 0  (Ans.)

 Example 13.2.  The velocity distribution in the boundary layer is given by 
2

2–u 3 y 1 y
U 2 2

=
δ δ

, 

δ being boundary layer thickness.
 Calculate the following:

 (i) The ratio of displacement thickness to boundary layer thickness 
* δ

  δ 
,
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 (ii) The ratio of momentum thickness to boundary layer thickness q 
 δ 

.

 Solution. Velocity distribution : 
2

2
3 1–
2 2

u y y
U

=
δ δ

 ...(Given)

 (i) δ*/δ:
  δ* = 

2

2
0 0

3 11 – 1 –
2 2

u y ydy dy
U

δ δ    = +    δ δ   
∫ ∫

   = 
2 3

2
0

3 1
2 2 2 3

y yy
δ

 
− × + × 

δ δ 

   = 
2 3

2
3 1 3 5.
4 2 4 6 123

 δ δ δ δ − + × = δ − δ + = δ   δ δ   

   ∴ 
*δ
δ

 = 5
12

 (Ans.)

 (ii) q/δ:

  q = 
0

1 –u u dy
U U

δ  
 
 ∫  

   = 
2 2

2 2
0

3 1 3 1– 1 –
2 2 2 2

y y y y dy
δ    

+      δ δδ δ   
∫

   = 
2 3 2 3 4

2 3 2 3 4
0

3 9 3 1 3 1– – –
2 4 4 2 4 4

y y y y y y dy
δ  

+ ⋅ +  δ δ δ δ δ δ 
∫

   = 
2 2 3 3 4

2 2 3 3 4
0

3 9 1 3 3 1– –
2 4 2 4 4 4

y y y y y y dy
δ     

+ + + ⋅       δ δ δ δ δ δ     
∫

   = 
2 3 4

2 3 4
0

3 11 3 1– –
2 4 2 4

y y y y dy
δ  

+ 
δ δ δ δ 

∫

   = 
2 3 4 5

2 3 4
0

3 11 3 1– –
2 2 4 2 43 4 5

y y y y
δ

 
× × + × × 

δ δ δ δ 

   = 
2 3 4 5

2 3 4
0

3 11 3 1– –
2 2 4 2 43 4 5

δ
 δ δ δ δ

× × + × × 
δ δ δ δ 

   = 3 11 3 1 19– –
4 12 8 20 120

 δ δ + δ δ = δ 
 

 or, q
δ

 = 19
120

 (Ans.)

 Example 13.3.  The velocity distribution in the boundary layer is given by

  u
U

 = –
2y y2    

   δ δ   
, δ being boundary layer thickness.
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 Calculate the following:
 (i) Displacement thickness,
 (ii) Momentum thickness, and
 (iii) Energy thickness.

 Solution.  (i) Displacement thickness, δ* 

  δ* = 
0

1 – u dy
U

δ  
 
 ∫

   = 
2

0

1 – 2 –y y dy
δ            δ δ       
∫

   = 
2

0

1 – 2 y y dy
δ     +    δ δ     
∫

   = 
2 3 2 3

2 2
0

2– –
2 3 3

y yy
δ

   δ δ
× + = δ +   

δ δδ δ   

   = –
3
δ

δ δ + =
3
δ  (Ans.)

 (ii) Momentum thickness, q

  q = 
0

1 –u u dy
U U

δ  
 
 ∫

   = 
2 2

2 2
0

2 2– 1 – –y y y y dy
δ     

       δ δδ δ     
∫

   = 
2 2

2 2
0

2 2– 1 –y y y y dy
δ    

+    δ δδ δ   
∫

   = 
2 3 2 3 4

2 3 2 3 4
0

2 4 2 2– – –y y y y y y dy
δ  

+ + 
δ δ δ δ δ δ 

∫

   = 
2 3 4

2 3 4
0

2 5 4– –y y y y dy
δ  

+ 
δ δ δ δ 

∫

   = 
2 3 4 5

2 3 4
0

2 5 4 1– –
2 3 4 5

y y y y
δ

 
× × + × × 

δ δ δ δ 

   = 5 1– –
3 5

 δ δ + δ δ =  

2
15

δ  (Ans.)

 (iii) Energy thickness, δe
  δe = 

2

2
0

1 –u u dy
U U

δ  
  
 

∫

   = 
22 2

2 2
0

2 2– 1 – –y y y y dy
δ             δ δδ δ    
∫
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   = 
2 2 4 3

2 2 4 3
0

2 4 4– 1 – –y y y y y dy
δ     

+       δ δ δ δ δ     
∫

   = 
2 2 4 3

2 2 4 3
0

2 4 4– 1 – –y y y y y dy
δ    

+    δ δ δ δ δ   
∫

   = 
3 5 4 2 4 6 5

3 5 4 2 4 6 5
0

2 8 2 8 4 4– – – –y y y y y y y y dy
δ  

+ + + 
δ δ δ δ δ δ δ δ 

∫

   = 
2 3 4 5 6

2 3 4 5 6
0

2 8– – 12 – 6y y y y y y dy
δ  

+ × × + 
δ δ δ δ δ δ 

∫

   = 
2 3 4 5 6

2 3 4 5 6
0

2 8– – 12 – 6y y y y y y dy
δ  

+ × × + 
δ δ δ δ δ δ 

∫

   = 
2 3 4 5 6 7

2 3 4 5 6
0 0

2 1 8 12 6 1– – –
2 3 4 5 6 7

y y y y y y
δδ  

× × × + × × + × 
δ δ δ δ δ δ 

∫

   = 12– – 2 –
3 5 7
δ δ δ δ δ + δ + = 

 

22
105
δ  (Ans.)

 Example 13.4.  If velocity distribution in laminar boundary layer over a flat plate is assumed 
to be given by second order polynomial u = a + by + cy2, determine its form using the necessary 
boundary conditions.
 Solution. Velocity distribution: u = a + by + cy2

 The following boundary conditions must be satisfied:
 (i) At y = 0, u = 0
	 	 ∴ u = a + by + cy2

   0 = a + 0 + 0 	 	 ∴ a = 0
 (ii) At  y = δ, u = U
 ∴  U = bδ + cδ2 ...(i)

 (iii) At y = δ, du
dy

 = 0

 ∴   
y

du
dy = δ

 
 
 

 =  2( ) 2 2 0d a by cy b cy b c
dy

+ + = + = + δ =  ...(ii)

 Substituting the value of b (= – 2cδ) from (ii) in (i), we get:
  U = (– 2cδ)δ + cδ2 = – 2cδ2 + cδ2 = – cδ2

 or, c = 2– U
δ

	 ∴ b = 2
2– 2 – 2 – U Uc  δ = × δ =  δδ 

 Hence, form of the velocity distribution is:

  u = 2
2

2 –U Uy y
δ δ
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 or, 
u
U

 = 
2

2 y y   −   δ δ   
 (Ans.)

 Example 13.5.  The velocity distribution in the boundary layer is given by

  u
U

 = 
1/7y 

 δ 
 Calculate the following
 (i) Displacement thickness,
 (ii) Momentum thickness,
 (iii) Shape factor,
 (iv) Energy thickness, and
 (v) Energy loss due to boundary layer if at a particular section, the boundary layer thickness is 

25 mm and the free stream velocity is 15 m/s. If the discharge through the boundary layer 
region is 6 m3/s per metre width, express this energy loss in terms of metres of head. Take  
ρ = 1·2 kg/m3.

 Solution. Velocity distribution:  
1/7u y

U
 =  δ 

 ...(Given)

 (i) Displacement thickness, δ*:

    δ* = 
0

1 – u dy
U

δ  
 
 ∫

     = 
1/7 8/7 8/7

1/7 1/7
0 0

7 71 – – –
8 8

y ydy y
δδ      δ  = = δ ×      δ δ δ       

∫

     = 
8
δ  (Ans.)

 (ii) Momentum thickness, q:

    q = 
0

1 –u u dy
U U

δ  
 
 ∫

     = 
1/7 1/7 1/7 2/7

0 0

1 – –y y y ydy dy
δ δ          =          δ δ δ δ             
∫ ∫  

     = 
8/7 9/7 8/7 9/7

1/7 2/7 1/7 2/7
0

7 7 7 7– –
8 9 8 9

y y
δ

   δ δ
⋅ =   

δ δ δ δ   

     = 7 7–
8 9

 δ δ = 
 

7
72

δ  (Ans.)

 (iii) Shape factor:

    Shape factor :  = 
* / 8 72

7 / 72 8 7
δ δ δ

= = × =
q δ δ

1 286.  (Ans.)

 (iv) Energy thickness, δe:

    δe = 
2

2
0

1 –u u dy
U U

δ   
      

∫
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   = 
1/7 2/7 1/7 3/7

0 0

1 – –y y y ydy dy
δ δ          =          δ δ δ δ             
∫ ∫

   = 
8/7 10/7

1/7 3/7
0

7 7 7 7– –
8 10 8 10

y y
δ

   × × = δ δ =   δ δ   

7
40

δ  (Ans.)

 (v) Energy loss
 Given:  Boundary layer thickness, δ* = 25 mm
  Free stream velocity, U = 15 m/s
  Discharge per metre width, q = 6 m3/s
  Density of fluid, ρ = 1.2 kg/m3

  Now, energy thickness, δe = 7 7 25 4.375 mm
40 40

δ = × =

 Energy loss per unit width, due to boundary layer

   = 2 31 1 4.375( ) 1.2 15
2 2 1000e U U  ρδ × = × × × = 

 
8 859 Nm / s.  (Ans.)

 Let,  h1 = Energy loss (per unit width) in terms of metres of head.
 Then, ρqh1 = 8.859

 or, h1 = 8.859 8.859
1.2 6q

= =
ρ ×

1 23 m.   (Ans.)

 Example 13.6.  Explain what you understand by boundary layer thickness and displacement 
thickness. Determine the relationship between the two for a boundary layer which is (i) laminar 
throughout, and (ii) turbulent throughout. Assume (1) in the laminar boundary layer the flow obeys 
the law, shear stress du

dy
τ = µ , where µ is the viscosity, which leads  to the velocity profile (U – u) 

= k (δ – y)2 where U is the free stream velocity, u is the velocity at a distance y above the plate and 

k is a constant; (2) the velocity distribution in the turbulent boundary layer is given by 
1/7u y

U
 =  δ 

.

 (UPSC)
 Solution. (a) Boundary layer thickness. It is defined as the distance from the boundary of 
solid body measured in Y-direction to the point, where the velocity of fluid is approximately equal to 
0.99 times the free stream (U) velocity of floud.
 Displacement thickness. It is defined as the distance, measured perpendicular to the boundary 
of the solid body by which the boundary should be displaced to compensate for the reduction in flow 
rate on account of boundary layer formation.
 (i) When the flow is laminar throughout:
 Velocity profile:  (U – u) = k (δ – y)2 ...(1)

  τ = du
dy

µ

 where, U = Free stream velocity,
  u = Veloctiy at a distance y above plate, and
  k = Constant.
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 Let, δ* = Displacement thickness, and
  δ = Boundary layer thickness.

  δ* = 
0

1 – u dy
U

δ  
 
 ∫

 Dividing eqn. (1) by U, we get:

  1 – u
U

 = 2( – )k y
U

δ

	 ∴ δ* = 
03 3 3

2

0 0

( – ) ( – )( – ) –
3 3 3

k k y k y ky dy
U U U U

δδ

δ

   δ δ δ
δ = × = =   

   
∫  ...(2)

 When y = 0, u = 0 i.e. on the surface of the plate.
 Substituting these parameters in eqn. (1), we get U = kδ2 ...(3)
 Substituting the value of U from (3) in (2), we get:

  δ* = 
3

23
k
k
δ

=
δ 3

δ  (Ans.)

 (ii) When the flow is turbulent throughout

 Velocity profile:                  
1/7u y

U
 =  δ 

  δ* = 
1/7

0 0

1 – 1 –u ydy dy
U

δ δ     =     δ     
∫ ∫

  
8/7

1/7
0

7–
8

yy
δ

 
 

δ 
 = 1

8
δ  (Ans.)

 Example 13.7.  In the boundary layer over the face of a high spillway, the velocity distribution 
was observed to have the following form :

  u
U

 = 
0.22y 

 δ 
 The free stream velocity U at a certain section was observed to be 30 m/s and a boundary 
layer thickness of 60 mm was estimated from the velocity distribution measured at the section. The 
discharge passing over the spillway was 6 m3/s per metre length of spillway. Calculate :
 (i) The displacement thickness,
 (ii) The energy thickness, and
 (iii) The loss of energy upto the section under consideration.

 Solution. Velocity distribution: 
0.22u y

U
 =  δ 

 The free stream velocity at a certain section, U = 30 m/s
 Thickness of the boundary layer, δ = 60 mm
 The discharge passing over the spillway, q = 6 m3/s per metre length of the spillway.
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 (i) The displacement thickness, δ*

  δ* = 
0 22

0 0

1 – 1 –u ydy dy
U

⋅δ δ     =     δ     
∫ ∫

   = 
1.22 1.22

0.22 0.22
0

1– – 1 –
1.221.22 1.22

yy
δ

   δ  = δ = δ     × δ × δ     

   = 0.18δ = 0.18 × 60 mm = 10.8 mm (Ans.)
 (ii) The energy thickness, δe

  δe = 
2

2
0

1 –u u dy
U U

δ  
  
 

∫

   = 
0.22 0.44

0

1 –y y dy
δ         δ δ     
∫

   = 
0.22 0.66

0

–y y dy
δ         δ δ     
∫

   = 
1.22 1.66 1.22 1.66

0.22 0.66 0.22 0.66
0

– –
1.22 1.66 1.22 1.66

y
δ

   δ δ δ
=   

× δ δ × δ × δ   

   = – 0.217 0.217 60
1.22 1.66
δ δ  = δ = × =  

13 02 mm.  (Ans.)

 (iii) The loss of energy:
 The energy loss per metre length of spillway is,

  EL = 2 3 31 1 1 13.02( ) 1000 (30)
2 2 2 1000e eU U U× ρ × δ × × = ρ ⋅ δ = × × ×

   = 175.77 kNm/s (Ans.)
 Energy loss (per metre length) in terms of metres of head

   = 175.77
9.81 6

LE
wq

= =
×

2 986 m.  (Ans.)

 Example 13.8.  The velocity distribution in the boundary layer over the face of a spillway was 
observed to be:
  u

U
 = 

0.22y 
 δ 

 The free stream velocity U is 20 m/s and boundary layer thickness 5 cm at a certain section. 
The discharge is 5 m3/s per meter length of spillway. Calculate displacement thickness, energy 
thickness and loss of energy up to section under consideration. (Delhi University)

 Solution. Given : Velocity distribution: 
022u y

U
 =  δ 

 U = 20 m/s; δ = 5 cm; Q = 5 m3/s per metre length of spillway,
 δ*, δe, EL
 The displacement thickness is given by the equation:
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  δ* = 
0.22 0.22 1

0.22
0 0 0

1 ( )1 – 1 – –
1.22( )

u y ydy dy y
U

δ+δ δ        = = ×      δ δ       
∫ ∫

   = 0.22 0.22– 5
1.22 1.22 1.22
δ

δ = δ = × = 0.9016 cm  (Ans.)

 The energy thickness is given by the equation:

  δe = 
2 3 0.22 0.66

0 0 0

1 – – –u u u u y ydy dy
U U U U

δ δ δ                 = =            δ δ                 
∫ ∫ ∫

   = 
0.22 1 0.66 1

0.22 0.66
0 0

1 ( ) 1 ( )–
1.22 1.66( ) ( )

y y
δ+ +δ  

× × 
δ δ 

∫

   = 8 1 1 1.66 – 1.22– – 5
1.22 1.66 1.22 1.66 1.22 1.66

 δ  = δ = =   ×   
1.086 cm (Ans.)

 The energy loss per m length of spillway is,

  EL = 2 31 1( )
2 2e eU U Uρ × δ × × = ρδ

	 ∴ EL = 3 –31 1.0861000 (20) 10 kNm/s 43.44 kNm/s
2 100

 × × × × = 
 

 Energy loss in terms of m of head

   = 43.44 1000
1000 5 9.81

LE
Qg

×
= =

ρ × ×
0.8856 m  (Ans.)

 Example 13.9.  For steady Poiseuille flow in a pipe of radius R, obtain an expression for ratio 
of the displacement thickness (δ*) to momentum thickness (q). [Roorkee University]

 Solution. Radius of the pipe = R

   
*

:δ
q

�
�*

R

Velocity profiledy

y

Pipe

U

u

Fig. 13.3

 For steady Poiseuille flow in a circular pipe, the velocity distribution is given by,

  u = 2 21– ( – )
4

p R y
x
∂

⋅
µ ∂

 ...(i)

 where y being measured from the centre of the pipe.
 At,         y = 0,  u = U (maximum velocity)
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	 ∴ U = 21–
4

p R
x
∂

⋅
µ ∂

 ...(ii)

 From the definition of displacement thickness, we have:

  [pR2 – p(R – δ*)2]U = 
0

2 ( – )
R

y U u dyp∫

 or, 2pRδ*U = 
0

2 ( – )
R

y U u dyp∫

 [neglecting the term containing (δ*)2, since δ* is very small.]

 or, δ* = 
2

2
0 0

1 11 –
4

R Ru y Rydy ydy
R U R R

  = = 
 ∫ ∫

 
2 2 2 2

2 2 2
–Dividing ( ) by ( ), we have: 1 – or 1 –u R y y u yi ii

U UR R R

  = = =  
  

 From the definition of momentum thickness, we have:

  [ρ	{pR2 – p(R – q)2}]U = 
0

2 . . ( – )
R

y dy u U uρ p∫

 On simplification, we get:

  2pRqU2 = 
0

2 ( – )
R

yu U u dyp∫

  q = 
0

1 1 –
R u u ydy

R U U
 
 
 ∫

   = 
2 2 3 5

2 2 2 4
0 0

1 11 – –
R Ry y y yydy dy

R RR R R R

   
=      

   
∫ ∫

   = 
4 6 4 6 2 2

2 4 2 4
0

1 1 1– – –
4 6 124 6 4 6

R
y y R R R R R

R R RR R R R

     
= = =     

     

	 ∴ 
*δ
q

 = / 4
/12

R
R

= 3  (Ans.)

13.3. MOMENTUM EQUATION FOR BOUNDARY LAYER BY VON   
  KARMAN 

 Von Karman suggested a method based on the momentum equation by the use of which the 
growth of a boundary layer along a flat plate, the wall shear stress and the drag force could be 
determined (when the velocity distribution in the boundary layer is known). Starting from the 
beginning of the plate, the method can be used for both laminar and turbulent boundary layers.
 Fig. 13.4. shows a fluid flowing over a thin plate (placed at zero incidence) with a free stream 
velocity equal to U. Consider a small length dx of the plate at a distance x from the leading edge as 
shown in Fig. 13.4 (a); the enlarged view of the small length of the plate is shown in Fig. 13.4 (b). 
Consider unit width of plate perpendicular to the direction of flow.
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Boundary
layer

U

Thin smooth
flat plate

dx

A B

D C

x

( )a

dy

y

dx

D
C

A B

u

( )b

�

�
�

Fig. 13.4. Momentum equation for boundary layer by Von Karman.

 Let ABCD be a small element of a boundary layer (the edge DC represents the outer edge of the 
boundary layer).
 Mass rate of fluid entering through AD

   = 
0

udy
δ

ρ∫

 Mass rate of fluid leaving through BC

   = 
0 0

dudy udy dx
dx

δ δ 
ρ + ρ 

  
∫ ∫

	 ∴	 Mass rate of fluid entering the control volume through the surface DC
 = Mass rate of fluid through BC – mass rate of fluid through AD

   = 
0 0 0 0

–d dudy udy dx udy udy dx
dx dx

δ δ δ δ   
ρ + ρ ρ = ρ   

      
∫ ∫ ∫ ∫

 The fluid is entering through DC with a uniform velocity U.
 Momentum rate of fluid entering the control volume in X-direction through AD

   = 2

0

u dy
δ

ρ∫
 Momentum rate of fluid leaving the control volume in X-direction through BC

   = 2 2

0 0

du dy u dy dx
dx

δ δ 
ρ + ρ 

  
∫ ∫

 Momentum rate of fluid entering the control volume through DC in X-direction

   = 
0

d udy dx U
dx

δ 
ρ × 

  
∫  ( Velocity = U)

   = 
0

d uUdy dx
dx

δ 
ρ 

  
∫

	 ∴ Rate of change of momentum of control volume
   = Momentum rate of fluid through BC – momentum rate of fluid through AD
   – momentum rate of fluid through DC

   = 2 2 2

0 0 0 0

– –d du dy u dy dx u dy uUdy dx
dx dx

δ δ δ δ   
ρ + ρ ρ ρ   

      
∫ ∫ ∫ ∫
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   = 2

0 0

–d u dy u U dy dx
dx

δ δ 
ρ ρ 

  
∫ ∫

   = 2

0

( – )d u dy u U dy dx
dx

δ 
ρ ρ 

  
∫

   = 2

0

( – )d u uU dy dx
dx

δ 
ρ 
  
∫

    (ρ is constant for incompressible fluid)

   = 2

0

( – )d u uU dy dx
dx

δ 
ρ  

  
∫  ...(13.4)

 As per momentum principle the rate of change of momentum on the control volume ABCD 
must be equal to the total force on the control volume in the same direction. The only external force 
acting on the control volume is the shear force acting on the side AB in the direction B to A (Fig. 13.4 b). 
The value of this force (drag force) is given by,
  ∆FD = τ0 × dx
 Thus the total external force in the direction of rate of change of momentum
   = – τ0 × dx ...(13.5)
 Equating the eqns. (13.4) and (13.5), we have:

  –τ0 × dx = 2

0

( – )d u uU dy dx
dx

δ 
ρ  

  
∫

 or, τ0 = 2

0

– ( – )d u uU dy
dx

δ 
ρ  

  
∫

 or,  = 2

0

( – )d uU u dy
dx

δ 
ρ  

  
∫

   = 
2

2
2

0

–d u uU dy
dx U U

δ  
ρ       

∫

   = 2

0

1 –d u uU dy
dx U U

δ  ρ   
   

∫

 or, 0
2U

τ

ρ
 = 

0

1 –d u u dy
dx U U

δ  
  

   
∫  ...(13.6)

 But,   
0

1 –u u dy
U U

δ  
 
 ∫  = momentum thickness (q)

	 ∴ 0
2U

τ

ρ
 = d

dx
q  ...(13.7)

 Eqn. (13.7) is known as Von Karman momentum equation for boundary layer flow, and is 
used to find out the frictional drag on smooth flat plate for both laminar and turbulent boundary 
layers.
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 The following boundary conditions must be satisfied for any assumed velocity distribution:

 (i) At the surface of the plate:  0, 0, duy u
dy

= =  = finite value

 (ii) At the outer edge of boundary layer: y = δ,  u = U 

  y = , 0du
dy

δ =

 The shear stress, τ0 for a given velocity profile in laminar, transition or turbulent zone is obtained 
from eqn. (13·6) or (13·7). Then drag force on a small distance dx of a plate is given by,
  ∆FD = Shear stress × area
   = τ0 × (B × dx) = τ0 × B × dx [assuming width of plate as unity]
    (where, B = width of the plate)
	 ∴	 Total drag on the plate of length L one side,

      FD = 0
0

L

DF B dx∆ = τ × ×∫ ∫  ...(13.8)

 — The ratio of the shear stress τ0 to the quantity 21
2

Uρ  is known as the “Local co-efficient of 

drag” (or co-efficient of skin friction) and is denoted by C*
D

 i.e.  C*
D = 0

21
2

U

τ

ρ
 ...(13.9)

 — The ratio of the total drag force to the quantity 21
2

AUρ  is called ‘Average co-efficient of 

drag’ and is denoted by CD
 

i.e. CD = 
21

2

DF

AUρ
 ...(13.10)

 where, ρ = Mass density of fluid,
  A = Area of surface/plate, and
  U = Free stream velocity.

13.4.  LAMINAR BOUNDARY LAYER 

 Let us find out boundary layer thickness (δ), shear stress (τ0), local co-efficient of drag (C*
D) and 

co-efficient of drag (CD) for the following velocity distribution in the laminar boundary layer:

 1.    u
U

 = 
2

2 –y y   
   δ δ   

 2. u
U

 = 
33 1–

2 2
y y   

   δ δ   
     ...Prandtl’s velocity distribution.

 3. u
U

 = 
3 4

2 – 2y y y     +     δ δ δ     

 4.   u
U

 = sin
2

yp 
 δ 
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  Case 1. Velocity distribution: u
U

 = 
2

2 –y y   
   δ δ   

 ...(i)

 (i) Boundary layer thickness

 We know,  0
2U

τ

ρ
 = 

0

1 –d u u dy
dx U U

δ  
  

   
∫  [Eqn. (13.6)]

 Substituting the value of u
U

, we get:

  0
2U

τ

ρ
 = 

2 2

2 2
0

2 2– 1 – –d y y y y dy
dx

δ              δ δδ δ         
∫

   = 
2 2

2 2
0

2 2– 1 –d y y y y dy
dx

δ       +    
δ δδ δ        

∫

   = 
2 3 2 3 4

2 3 2 3 4
0

2 4 2 2– – –d y y y y y y dy
dx

δ   + +  
δ δ δ δ δ δ    

∫

   = 
2 3 4

2 3 4
0

2 5 4– –d y y y y dy
dx

δ   +  
δ δ δ δ    

∫

   = 
2 3 4 5

2 3 4
0

2 5 4 1– –
2 3 4 5

d y y y y
dx

δ
 

+ 
δ δ δ δ 

   = 5 1 2– –
3 5 15

d d
dx dx

   δ δ + δ δ = δ     

	 ∴ τ0 = 2 22 2
15 15

d dU U
dx dx

δ ρ × δ = ρ 
 

 ...(13.11)

 Also, according to Newton’s law of viscosity,

  τ0 = 
0y

du
dy =

 
µ  
 

 ...(ii)

 But, u = 
2

2
2 –y yU

 
  δ δ 

 ...[From eqn. (i)]

 and,  du
dy

 = 2
2 2– ,yU  

 δ δ 
U being constant

	 ∴ 
0y

du
dy =

 
 
 

 = 2 2– 0 UU   = δ δ 

 Substituting this value in (ii), we get:

  τ0 = 2 Uµ
δ

 ...(13.12)

 Equating the values of τ0 given by eqns. (13.11) and (13.12), we get:
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  22
15

dU
dx
δ

ρ  = 2 Uµ
δ

 or, d
dx
δ

δ ⋅  = 2
15 15U

UU
µ µ

=
ρρ

 or, δ·dδ = 15 dx
U
µ

ρ

 Integrating both sides, we get:

  2

2
δ  = 15 x C

U
µ

+
ρ

 (where, C = constant of integration)

 At, x = 0, δ = 0                 ∴ C = 0

	 ∴ 
2

2
δ  = 15 x

U
µ

ρ

 or, δ = 2 15 5 48x x
U U

× µ µ
= ⋅

ρ ρ

   = 
2

5.48 5.48
x

x x x
U x Re
µ ×

=
ρ ×

    where, x
UxRe ρ

= µ 

 or, δ = 5.48
x

x
Re

 ...(13.13)

 (ii) Shear stress τ0
 From eqn. (13.12), we have:

  τ0 = 2 Uµ
δ

 But, δ = 5.48
x

x
Re

 [Eqn. (13.12)]

	 ∴
 τ0 = 

22
5.485.48

x

x

uU ReU
x x
Re

µ
= 0.365 x

U Re
x
µ

=  ...(13.14)

 (iii) Local co-efficient of drag, C*
D

  τ0 = 0.365 x
U Re
x
µ  ...[Eqn. (13.14)]

 Also, τ0 = 
2

*

2D
UC ρ  ...[Eqn. (13.9)]

  (where, C*
D = local co-efficient of drag)

 Equating the two values of τ0, given by eqns. (13.14) and (13.9), we get:
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  C*
D = 0.365 x

U Re
x
µ      or    C*

D = 0.730.365 2 x

x

Re
Ux Re

× × =
ρ
µ

 Hence, C*
D = 

0.73

xRe
 ...(13.15)

 (iv) Co-efficient of drag, CD:

 We know that,  CD = 
21

2

DF

AUρ
 

...[Eqn. (13.10)]

 where, FD = 0
0

L
B dxτ × ×∫  ...[Eqn. (13·8)]

   = 
0 0

0.365
L L

x
U U UxRe B dx B dx
x x
µ µ ρ

× × = × ×∫ ∫
µ

 x
UxRe ρ

= µ 


   = – 1/2

0 0

10.365 0.365
L LU UU B dx U B x dx

x
ρ ρ

µ × × × = µ × ×∫ ∫
µ µ

   = 
1/2

0

0.365 0.365 2
1/ 2

L
U x UU B U B L

 ρ ρ
µ × = × µ × 

µ µ 

 or, FD = 0.73 ULUB ρ
µ

µ
 ...(13.16)

	 ∴ CD = 
2

0.73

1
2

ULUB

AU

ρ
µ

µ

ρ

 (where, A = area of plate = L × B, L and B being length and width of the plate respectively)

	 ∴ CD = 
2

0.73
1.46

1
2

ULUB
UL

LUL B U

ρ
µ

µ µ ρ
=
ρ µρ × × ×

   = 
1.46

1.46 1.46

LReULUL
µ µ
= =

ρρ
 ...(13.17)

 Case 2.  Velocity distribution: 
33 1–

2 2
u y y
U

   =    δ δ   
 (i) Boundary layer thickness, δ:

  0
2U

τ

ρ
 = 

0
1 –d u u dy

dx U U

δ  
∫     

 [Eqn. (13.6)]

 Substituting the value of u
U

, we get:
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  0
2U

τ

ρ
 = 

3 3

3 3
0

3 1 3 1– 1 –
2 2 2 2

d y y y y dy
dx

δ     +  ∫   δ δδ δ      

   = 
2 4 3 4 6

2 4 3 4 6
0

3 9 3 1 3 1– – –
2 4 4 2 4 4

y y y y y y dy
δ  

+ +  ∫  δ δ δ δ δ δ   

   = 
2 3 5 4 5 7

2 4 3 4 6
0

3 1 9 1 3 1 1 1 3 1 1 1– – –
2 2 4 3 4 5 2 4 4 5 4 7

d y y y y y y
dx

δ
 

× × + × × + × × 
δ δ δ δ δ δ 

   = 3 3 3 3 1 1 39– – –
4 4 20 20 8 28 280

d d
dx dx

δ δ δ + δ + δ δ δ =  

 or, τ0 = 2 239 39
280 280

d dU U
dx dx
δ δ

ρ × = ρ  ...(13.18)

 Also, τ0 = 
0y

du
dy =

 
µ  
 

 But, u = 
33 1–

2 2
y yU

        δ δ     

 and, du
dy

 = 
2

3
3 3–
2 2

yU
 
  δ δ 

 ∴ τ0 = 
0

3 3– 0
2 2y

du UU
dy =

  µ µ = µ =   δ δ  
 ...(13.19)

 Equating the two values of τ0 given by eqns. (13.18) and (13.19), we get:

  23
280

dU
dx

ρ δ
ρ  = 3

2
Uµ
δ

	 ∴ δ·dδ = 2
3 280 420
2 39 39

dxU dx
UU
µ

µ × × =
ρρ

 Integrating both sides, we get:

  δ2 = 420
39

x C
U
µ

+
ρ

  (where, C = constant of integration)
 When, x = 0, δ = 0 ∴ C = 0

	 ∴ 
2

2
δ  = 420

39
x

U
µ

ρ

 or, δ = 420 2 4.64
39

xx
U U

× µ µ
⋅ =
ρ ρ

   = 4.64 4.64 4.64

x

x
Re

x x x
U x Ux
µ µ

× = ⋅ =
ρ ρ

 ...(13.20)



Chapter 13 : Boundary Layer Theory         747

 (ii) Shear stress, τ0

  τ0 = 3
2

Uµ
δ

 But, δ = 4.64

x

x
Re

 [Eqn. (13.19)]

	 ∴ τ0 = 
3 3

4.64 9.282
0.323 x

U Re
x
µx

x

U ReU
x x

Re

µµ
= =

×
 ...(13.21)

 (iii) Local co-efficient of drag, C*
D

  τ0 = 0.323 x
U Rex

µ

  Also, τ0 = 
2

*

2D
UC ρ

	 	∴ 
2

*

2D
UC ρ  = 0.323 or 0.646*

D
x

C =
Rex

U Re
x
µ

 ...(13.22)

 (iv) Co-efficient of drag (CD):

  CD =  
21

2

DF

AUρ
 [Eqn. (13.10)]

 where, FD = 0
0

L

B dxτ × ×∫  [Eqn. (13.8)]

   = 
0 0

0.0323
L L

x
U U UxRe B dx B dx
x x
µ µ ρ× × = × ×

µ∫ ∫

   = 
1/2

– 1/2

0 0

0.323 0.323
1/ 2

LLU U xU B x dx U B
 ρ ρ

µ × = µ ×  
µ µ  

∫

   = 0.323 2 UU B Lρ
× µ × ×

µ

 or, FD = 0.646 ULU Bρ
µ ×

µ
 ...(13.23)

	 ∴ CD = 
2

0.646

1
2

ULUB

AU

ρ
µ

µ

ρ
 (where, A = L × B)

   = 
2

0.646
12920.646 2

1
2

ULUB
UL

ULULL B U

ρ
µ µ µ ρ

= × × × =
ρρ µρ × × ×
µ
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 or, CD = 
1.292

LRe
 ...(13.24)

    where, L
ULRe

 ρ =
 µ 

 Case 3. Velocity distribution: 0
2

0

1 –d u u dy
U dx U U

δ τ  
=   

ρ    
∫

 (i) Boundary layer thickness, δ

  0
2U

τ

ρ
 = 

0

1 –d u u dy
dx U U

δ  
  

   
∫  [Eqn. (13.6)]

 Substituting the value of u
U

, we get:

  τ0 = 
3 4 3 4

3 4 3 4
0

2 2 2 2– 1 – –d y y y y y y dy
dx

δ    
+ +       δ δδ δ δ δ     

∫

       = 
2 4 5 3 4 6 7 4 5 7 8

2 4 5 3 4 6 7 4 5 7 8
0

2 4 4 2 2 4 4 2 2 2– – – – – –d y y y y y y y y y y y y dy
dx

δ  
+ + + + +   δ δ δ δ δ δ δ δ δ δ δ δ   

∫

 = 
2 3 5 6 4 5 7 8 5 6 8 9

2 4 5 3 4 6 7 4 5 7 8
0

2 4 4 2 2 4 4 2 1 2 2 1– – – – – –
2 3 5 6 4 5 7 8 5 6 8 9

d y y y y y y y y y y y y
dx

δ
 

× + × + + + + 
δ δ δ δ δ δ δ δ δ δ δ δ 

   = 4 4 1 1 4 4 1 1 1 1 1– – – – – –
3 5 3 2 5 7 4 5 3 4 9

d
dx

 δ δ + δ δ δ + δ δ + δ + δ δ + δ δ  

   = 4 4 1 1 4 4 1 1 1 1 11 – – – – – –
3 5 3 2 5 7 4 5 3 4 9

d
dx
δ  + + + + +  

   = 4 1 1 4 4 1 1 1 1 4 11 – – –
3 3 3 5 5 5 4 4 2 7 9

d
dx
δ         + + + + + + + +                

   = 9 43 9 431 – 2 0 – – 1 –
5 63 5 63

d d
dx dx
δ δ   + + = +   
   

   = – 315 567 – 215 37
315 315

d d
dx dx
δ + δ  = 
 

	 ∴ τ0 = 237
315

dU
dx
δ

ρ  ...(13.25)

 Also, τ0 = 
0y

du
dy =

 
µ  
 

 But, u = 
3 4

3 4
2 2–y y yU
 

+ 
δ δ δ 

 and, du
dy

 = 
2 3

3 4
2 6 4– y yU

 
+  δ δ δ 
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	 ∴ τ0 = 
0

2 2

y

du UU
dy =

  µ µ = µ =   δ δ  
 ...(13.26)

 Equating the two values of τ0 given by eqns. (13.25) and (13.26), we get:

  237
315

dU
dx
δ

ρ  = 2 Uµ
δ

 or,  δ·dδ = 2
315 2 630
37 37

U dx dx
UU

µ µ
× =

ρρ
 Integrating both sides, we get:

  
2

2
δ  = 630

37
x C

U
µ

+
ρ

 (where,  C = constant of integration)
 At, x = 0, δ = 0 ∴ C = 0

	 ∴ 
2

2
δ  = 630

37
x

U
µ
ρ

	 ∴ δ = 630 2 5.84 5.84
37

x x xx
U U U x

× µ µ µ
= = ×

ρ ρ ρ

 or, δ = 5.84 5.84

x

x
Re

x
Ux
µ

× =
ρ

 ...(13.27)

 (ii) Shear stress, τ0:

  τ0 = 2 Uµ
δ

 But,  = 5.84

x

x
Re

 ...[Eqn. (13.27)]

	 ∴ τ0 = 
2 2
5.84 5.84

0.343 x
U Re
x
µ

x

x

U U Re
x x

Re

µ µ
= =  ...(13.28)

 (iii) Local co-efficient of drag, C*
D:

  τ0 = 0.343 x
U Re
x
µ

 Also, τ0 = 
2

*

2D
UC ρ

	 ∴ 
2

*

2D
UC ρ  = 0.343 x

U Re
x
µ

 or, C*
D = 

0.686

xRe
 ...(13.29)

 (iv) Co-efficient of drag (CD):

  CD = 
21

2

DF

AUρ
 [Eqn. (13.10)]
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 where, FD = 0
0

L
B dxτ × ×∫  [Eqn. (13.8)]

   = 
0 0

0.343 0.343
L L

x
U U UxRe B dx B dx
x x
µ µ ρ

× × = × ×
µ∫ ∫

   = 
1/2

– 1/2

0 0

0.343 0.343
1/ 2

LLU U xU B x dx U B
 ρ ρ

µ × = µ ×  
µ µ  

∫

   = 0.343 2 UU B Lρ
× µ ×

µ

 or, FD = 0.686 ULUB ρ
µ

µ
 ...(13.30)

	 ∴ CD = 
2 2

0.686 0.686

1 1
2 2

UL ULUB UB

AU L B U

ρ ρ
µ µ

µ µ
=

ρ ρ × × ×

 (where, A = L × B)

   = 10.686 2 1.372UL
UL UL
µ ρ

× × × =
ρ µ ρ

µ

 or, CD = 
1.372

LRe
 ...(13.31)

 Case 4. Velocity distribution : sin
2

u y
U

p =  δ 
 (i) Boundary layer thickness, δ:

  0
2U

τ

ρ
 = 

0

1 –d u u dy
dx U U

δ  
  

   
∫  [Eqn. (13.6)]

 Substituting the value of u
U

, we get:

  0
2U

τ

ρ
 = 

0

sin 1 – sin
2 2

d y y dy
dx

δ p  p    
     δ δ      
∫

   = 2

0

sin – sin
2 2

d y y dy
dx

δ  p p    
     δ δ      
∫

   = 
0

1 – cos
sin –

2 2

y
d y dy
dx

δ
  p  
   p δ      δ    
∫

    2 1 – cos 2sin
2

q q = 
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   = 

0

– cos sin2
–

2
2

y y
d y
dx

δ
  p p 
    δ δ    +
 p p
 δ δ  

   = 
– cos cos 0 sin sin 0

2 2 – –
2

2 2

d
dx

  pδ p   p p        × × δ ×           δδ δ δ δ           + +   p p p p    
 δ δ δ δ       

   = 1 2 4 –0 – 0 –
2 2 2

2

d d d
dx dx dx

  
   δ δ δ p δ   + + = =      p p p       δ  

	 ∴   τ0 = 24 –
2

dU
dx

p δ  ρ p 
 ...(13.32)

 Also,  τ0 = 
0y

du
dy =

 
µ  
 

 But, u = sin
2

yU  p  
  δ  

  

 and, du
dy

 = cos
2 2

yU  p  p  ×  δ δ  

 ∴ τ0 = 
0

0cos
2 2 2y

du UU
dy =

   p  p µ p µ = µ × × =    δ δ δ   
 ...(13.33)

 Equating the two values of τ0 given by eqns. (13.32) and (13.33), we get:

  24 –
2

dU
dx

p δ  ρ p 
 = 

2
Uµ p
δ

 or, δ·dδ = 
2

2 2
2 1

2 4 – (4 – )
U Udx dx

U U
 µ p p p µ

× × × = ⋅ ⋅ p pρ ρ 

 or, δ·dδ = 11.4975 dx
U
µ
ρ

 Integrating both sides, we get:

  
2

2
δ  = 11.4975 x C

U
µ

+
ρ

 (where, C = constant of integration)
 At, x = 0, δ = 0              ∴ C = 0

	 ∴ 
2

2
δ  = 11.4975 x

U
µ
ρ
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	 ∴ δ = 2 11.4975 4.795 4.795x x x
U U Ux
µ µ µ

× × = = ×
ρ ρ ρ

   = 
4.795

x

x
Re

 ...(13.34)

 (ii) Shear stress, τ0:

  τ0 = 
2
Uµ p
δ

 But, δ = 4.795

x

x
Re

 [Eqn. (13.31)]

	 ∴ τ0 = 4.795 2 4.7952
0.327 x

U Re
x
µx

x

U ReU
x x

Re

µ pµ p
= =

××
 ...(13.35)

 (iii) Local co-efficient of drag, CD:

  τ0 = 0.327 x
U Re
x
µ

 Also, τ0 = 
2

*

2D
UC ρ

⋅

	 ∴ 
2

*

2D
UC ρ  = 0.327 x

U Re
x
µ

 or, C*
D = 

0.654

xRe
 ...(13.36)

 (iv) Co-efficient of drag, CD:

  CD = 
21

2

DF

AUρ
 [Eqn. (13.10)]

 where, FD = 0
0

L
B dxτ × ×∫  [Eqn. (13.8)]

   = 
0 0

0.327 0.327
L L

x
U U UxRe B dx B dx
x x
µ µ ρ

× × = × ×
µ∫ ∫

   = 
1/2

– ½

0 0

0.327 0.327
1/ 2

LLU U xU B x dx U B
 ρ ρ

µ × = µ ×  
µ µ  

∫

   = 0.327 2 UU B Lρ
× µ × ×

µ

 or, FD = 0.654 ULUB ρ
µ

µ
 ...(13.37)
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	 ∴ CD = 
2 2

0.654 0.654
1.31

1 1
2 2

UL ULUB UB
UL

LUAU L B U

ρ ρ
µ µ

µ µ µ ρ
= =

ρ µρ ρ × × ×

    (where,  A = L × B)

 or, CD = 
11.31 1.31

LReUL
× =

ρ
µ

 ...(13.38)

 Table 13.1 shows the values of δ (boundary layer thickness), C*
D (local co-efficient of drag), 

CD (average co-efficient of drag) in terms of Reynolds number (Re) for various velocity profiles/
distributions.

Table 13.1. Values of δ, C*
D and CD in terms of Re

S. No. δ C*
D CD

1. 2
2 –u y y

U
   =    δ δ   

5.48

x

x
Re

0.73

xRe
1.46

LRe

2. 33 1–
2 2

u y y
U

   =    δ δ   

4.64

x

x
Re

0.646

xRe
1.292

LRe

3. 3 4
2 – 2u y y y

U
     = +     δ δ δ     

5.84

e

x
Re

0.686

xRe
1.372

LRe

4.
sin

2
u y
U

p =  δ 

4.795

x

x
Re

0.654

xRe
1.31

L

x
Re

5. Blasius results (Re < 3.2 × 105) 5

x

x
Re

0.664

xRe
1.328

LRe

 Example 13.10.  The boundary layer thickness at a distance of 1 m from the leading edge of a 
flat plate kept over zero angle of incidence to the flow direction is 1 mm. The velocity outside the 
boundary layer is 25 m/s. The boundary layer thickness at a distance of 4 m is (i) 4 mm, (ii) 2 mm, 
(iii) 1 mm
 Select the correct answer. Assume that the boundary layer is entirely laminar
 [UPTU]

 Solution. Free stream velocity, U = 25 m/s
 The boundary layer thickness at x1 = 1 m,	δ1 = 1 mm
 The boundary layer thickness at a distance of 4 m, δ2:
 Thickness of boundary layer is given by,

  δ = 5 5 5
x

x x x
URe Ux
ν

= =

ν

	 ∴ δ1 = 15
x

U
ν
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 and, δ2 = 25
x

U
ν

 or, 1

2

δ
δ

 = 1

2
,

x
x

 or, 
2

1
δ

 = 1/ 4  or δ2 = 2 mm (Ans.)

 Example 13.11.  A smooth plate 2 m wide and 2.5 m long is towed in oil (sp. gr. = 0.8) at a velocity 
of 1.5 m/s along its length. Find the thickness of boundary layer and shear stress at the trailing 
edge of the plate. voil = 10–4 m2/s. 

 Solution. Given : B = 2 m; L = 2.5 m; Sp. gravity = 0.8; U = 1.5 m/s, voil = 10–4 m2/s.
 Thickness of boundary layer, δL:

  ReL = –4
1.5 2.5 37500

10
UL
v

×
= =

 Since ReL is less than 5 × 105, so the boundary layer at the trailing edge is laminar, and Blasius 
equation gives,
  δx = 5

x

x
Re

 At the trailing edge x = L,

	 ∴ δL = 5 2.5 0.0645 m
37500
×

=  = 64.55 mm (Ans.)

 Shear stress at the trailing edge, τL:
 According to Blasius average co-efficient of drag (C*

D) is given by:

  C*
D = 0.664 0.664 0.664

37500x LRe Re
= =

	 ∴ τL = * 21
2DC U× ρ

   = 0.664 1
237500

×  × (0.8 × 1000) × 1.52 = 3.086 N/m2 (Ans.)

 Example 13.12.  For the velocity profile in laminar boundary layer as,

    u
U

 = –
33 y 1 y

2 2
   
   δ δ   

 find the thickness of the boundary layer and the shear stress 1.5 m from the leading edge of a 
plate. The plate is 2 m long and 1.4 m wide and is placed in water which is moving with a velocity 
of 200 mm per second. Find the total drag force on the plate if µ for water = .01 poise.
 (Delhi University)

 Solution. Given :       x = 1.5 m; L = 2 m; B = 1.4 m; U = 200 mm/s = 0.2 m/s;

	 	 µ = 0.01 poise = 0.01
10

 = 0.001 Ns/m2.

 Velocity profile: u
U

 = 
33 1

2 2
y y   −   δ δ   
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 For the given profile, δ = 4.64

x

x
Re

 ...[Eqn. (13.20)]

                                     51000 0.2 1.5Here, 3 10
0.001x

UxRe ρ × ×
= = = × µ 

    δ = 
5

4.64 1.5 0.0127 m
3 10

×
=

×
 = 12.7 mm (Ans.)

 Shear stress (τ0) is given by,

  τ0 = 0.323 ex
U R
x
µ  ...[Eqn. (3.21)]

 or τ0   = 50.001 0.20.323 3 10
1.5
×

× × ×  = 0.0236 N/m2 (Ans.)

 Drag force (F0) on one side of the plate is given as:

  FD = 0.646 ULU Bρ
µ ×

µ
 ...[Eqn. (13.23)]

     = 1000 0.2 20.646 0.001 0.2 1.4 0.114 N
0.001
× ×

× × × =

	 ∴	 Total Drag force = Drag force on both sides of the plate = 2 × 0.114 = 0.228 N (Ans.)
 Example 13.13.  A plate 450 mm × 150 mm has been placed longitudinally in a stream of 
crude oil (specific gravity 0.925 and kinematic viscosity of 0.9 stoke) which flows with velocity of 
6 m/s. Calculate:
 (i) The friction drag on the plate,
 (ii) Thickness of the boundary layer at the trailing edge, and
 (iii) Shear stress at the trailing edge. [PTU]
 Solution. Length of the plate,  L = 450 mm = 0.45 m
  Width of the plate, B = 150 mm = 0.15 m
  Specific gravity of oil, S = 0.925
  Kinematic viscosity of oil, ν = 0.9 stoke = 0.9 × 10–4 m2/s
  Velocity of oil, U = 6 m/s
 (i) The friction drag on the plate, FD:
 Reynolds number at the end of plate,

  ReL
 = – 4

6 0.45 30000
0.9 10

UL ×
= =

ν ×
 Since ReL < 5 × 105, the flow over the plate is entirely laminar.
	 ∴  Average co-efficient of drag,

  CD = 1.328 1.328 0.007667
30000LRe

= =

 Drag on the one side of the plate,

  FD = CD × 1
2
ρAU2 = 0·007667 × 1

2
 × (0.925 × 1000) × (0.45 × 0·15) × 62

    (where,  A = area of the plate)
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   = 8.62 N (Ans.)
 (ii) The thickness of boundary layer at the trailing edge, δ:
 The thickness of boundary in the laminar range is given by,

  δ = 5

x

x
Re

	 ∴	 Thickness at the trailing edge (x = 0.45 m),

  δ = 5 0.45 0.013 m
30000
×

= = 13 mm  (Ans.)

 (iii) Shear stress at the trailing edge, τ0: 

 Local co-efficient of drag,  C*
D = 0.664 0.664 0.00383

30000xRe
= =

 By definition, C*
D = 0

21
2

U

τ

ρ

	 ∴ τ0 = * 2 21 10.00383 (0.925 1000) 6
2 2DC U× ρ = × × × ×

   = 63.77 N/m2 (Ans.)
 Example 13.14.  The velocity profile for laminar boundary is in the form given below:

  u
U

 = –
2y y2    

   δ δ   
 Find the thickness of boundary layer at the end of the plate and the drag force on one side of a 
plate 1.5 m long and 1 m wide when placed in water flowing with a velocity of 0.12 m/s. Calculate 
the value of co-efficient of drag also.
 Take µ for water = 0.001 Ns/m2

 Solution.  Velocity distribution 
2

2 –u y y
U

   =    δ δ   
 ...(i) (Given)

  The length of the plate, L = 1.5 m
  The width of the plate, B = 1 m
  Free stream velocity, U = 0.12 m/s.
  µ for water = 0.001 Ns/m2

 Thickness of the boundary layer, δ:
 Reynolds number at the end of the plate (i.e. at a distance of 1.5 m from the leading edge) is 
given by,
              ReL

 = 1000 0.12 1.5 180000
0.001

ULρ × ×
= =

µ

 Since ReL < 5 × 105, therefore, this is the case of laminar boundary layer. Thickness of boundary 
layer at a distance of 1.5 m is given by:

            δ = 5.48

x

x
Re

 ...[Eqn. (13.13)]

             = 5.48 1.5 0.01937 m
180000

×
=    or   19.37 mm (Ans.)
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 Drag force on one side of the plate, FD:

  FD = 0.73 ULUB ρ
µ

µ
 ...[Eqn. (13.16)]

            = 1000 0.12 1.50.73 0.001 0.12 1
0.001
× ×

× × × × = 0 0372 N.  (Ans.)

 Co-efficient of drag, CD:

   = 1.46 1.46
180000eLR

= = 0 00344.  (Ans.) ...[Eqn. (13.17)]

 Example 13.15.  Air is flowing over a smooth flat plate with a velocity of 12 m/s. The velocity 
profile is in the form:

   u
U

 = –
2y y2    

   δ δ   
 The length of the plate is 1.1 m and width 0.9 m. If laminar boundary layer exists upto a value 
of Re = 2 × 105 and kinematic viscosity of air is 0.15 stoke, find:
 (i) The maximum distance from the leading edge upto which laminar boundary layer exists, and
 (ii) The maximum thickness of boundary layer.

 Solution. Velocity distribution: 
2

2 –u y y
U

   =    δ δ   
  Velocity of air, U = 12 m/s
  Length of plate,  L = 1.1 m
  Width of plate, B = 0.9 m
 Reynolds number upto which laminar boundary exists, Re = 2 × 105

  Kinematic viscosity of air, ν = 0.15 stokes = 0.15 × 10–4 m2/s
 (i) The maximum distance from the leading edge upto which laminar boundary layer  

exists, x:

    Rex
 = 5

– 4
12or 2 10

0.15 10
Ux x×

× =
ν ×

 or,          x = 
5 – 42 10 0.15 10

12
× × ×

= 0 25 m.  (Ans.)

 (ii) The maximum thickness of boundary layer, δ
 For the given velocity profile, the maximum thickness of boundary layer is given by:

  δ = 5.48

x

x
Re

 ...[Eqn. (13.13)]

                  = 
5

5.48 0.25 0.00306 m
2 10

×
=

×
  or  3.06 mm (Ans.)

 Example 13.16.  Atmospheric air at 20°C is flowing parallel to a flat plate at a velocity of  
2.8 m/s. Assuming cubic velocity profile and using exact Blasius solution estimate the boundary 
layer thickness and the local co-efficient of drag (or skin friction) at x = 1.2 m from the leading 
edge of the plate. Also find the deviation of the approximate solution from the exact solution.
 Take the kinematic viscosity of air at 20°C = 15.4 × 10–6 m2/s.
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 Solution.  Velocity of air, U = 2.8 m/s
 Distance from the leading edge of the plate, x = 1.2 m

  Reynolds number, Rex
 = 5

– 6
2.8 1.2 2.18 10

15.4 10
Ux ×

= = ×
ν ×

 Blasius solution:

 Boundary layer thickness, δ = 
5

5 5 1.2 0.01285 m
2.18 10ex

x
R

×
= =

×
 = 12.85 mm (Ans.)

 Local co-efficient of drag, C*
D = 

5

0.664 0.664 0.001422
2.18 10exR

= =
×

 Approximate solution (with assumption of cubic velocity profile):

   δ = 
5

4.64 4.64 1.2 0.0119 m 11.92 mm
2.18 10ex

x
R

×
= = =

×

  C*
D = 

5

0.646 0.646 0.001383
2.18 10exR

= =
×

 The approximate solution deviates from the exact solution by:

 Deviation for δ: 12.85 – 11.92 100
12.85

×  = 7.24% (Ans.)

  Deviation for C*
D = 0.001422 – 0.001383 100

0.001422
× = 2 74%.  (Ans.)

 Example 13.17.  Air is flowing over a flat plate 5 m long and 2.5 m wide with a velocity of  
4 m/s at 15°C. If ρ = 1.208 kg/m3 and ν = 1.47 × 10– 5 m2/s, calculate:
 (i) Length of plate over which the boundary layer is laminar, and thickness of the boundary layer 

(laminar),
 (ii) Shear stress at the location where boundary layer ceases to be laminar, and
 (iii) Total drag force on both sides on that portion of plate where boundary layer is laminar.

 Solution.  Length of the plate, L = 5 m
  Width of the plate, B  =  2.5 m
  Velocity of air, U  =  4 m/s
  Density of air, ρ  =  1.208 kg/m3

  Kinematic viscosity of air, ν  =  1.47 × 10–5 m2/s
 (i) Length of plate over which the boundary layer is laminar:

  Reynolds number, ReL
 = 6

–5
4 5 1.361 10

1.47 10
UL ×

= = ×
ν ×

 Hence on the front portion, boundary layer is laminar and on the rear, it is turbulent.

  Rex
 = 55 10Ux

= ×
ν

	 ∴ –5
4

1.47 10
x×

×
 = 5 × 105
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 or x = 
5 –55 10 1.47 10 1.837 m

4
× × ×

=

 Hence the boundary layer is laminar on 1.837 m length of the plate. (Ans.)
 Thickness of the boundary layer (laminar), δ

  δ = 
5

5 5 1.837 0.01299 m
5 10x

x
Re

×
= =

×
 or 12.99 mm (Ans.)

 (ii) Shear stress at the location where boundary layer ceases to be laminar, τo:

 Local co-efficient of drag,  C*
d = 

5

0.664 0.000939
5 10

=
×

	 ∴   = * 2 21 10.000939 1.208 4
2 2DC U× ρ = × × ×  = 0.00907 N/m2 (Ans.)

 (iii) Total drag force on both sides of plate, FD:

  FD = 212
2DC AU× × × ρ

 where,  CD = Average co-efficient of drag = –3
5

1.328 1.878 10
5 10

= ×
×

 and, A = Area of the plate = 1.837 × 2.5 = 4.59 m2

	 ∴ FD = 2 × 1.878 × 10– 3 × 1
2

 × 1.208 × 4.59 × 42 = 0.167 N (Ans.)

 Example 13.18.  Air flows over a plate 0·5 m long and 0·6 m wide with a velocity of 4 m/s. The 
velocity profile is in the form.

  u
U

 = sin y
2
p 

 δ 
 If ρ = 1.24 kg/m3 and ν = 0.15 × 10– 4 m2/s, calculate:
 (i) Boundary layer thickness at the end of the plate,
 (ii) Shear stress at 250 mm from the leading edge, and
 (iii)  Drag force on one side of the plate. [Delhi University]
 Solution.  Length of plate, L = 0.5 m
  Width of plate, B = 0.6 m
  Velocity of air, U = 4 m/s
  Density of air, ρ = 1.24 kg/m3

  Kinematic viscosity of air, ν = 0.15 × 10–4 m2/s

 Velocity profile : u
U

 = sin
2

yp 
 δ 

 (i) Boundary layer thickness at the end of the plate, δ:

  Reynolds number, Rex = 5
– 4

4 0.5 1.33 10
0.15 10

Ux ×
= = ×

ν ×
 Since Rex < 5 × 105, therefore, the boundary layer is laminar over the entire length of the plate.

 We know, δ = 
5

4.795 4.795 4.795 0.5

1.33 10x x

x L
Re Re

×
= =

×
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   = 0.00657 m = 6.57 mm (Ans.)
 (ii) Shear stress at 250 mm from the leading edge, τ0:

    τ0 = 
2

*

2D
UC ρ

×  ...[Eqn. (13.9)]

 But, C*
D = 

– 4

0.654 0.654 0.654 0.002533
4 0.25

0.15 10
xRe Ux
= = =

×
ν ×

	 ∴ (τ0)x = 0.25 m = 
21.24 40.002533

2
×

× = 20 025 N / m.  (Ans.)

 (iii) Drag force on one side of the plate, FD:

            FD = 21
2DC AU× ρ

 where, CD = 
5

1.31 1.31 0.003592
1.33 10eLR

= =
×

 and, A = area of the plate = L × B = 0.5 × 0.6 = 0.3 m2

	 ∴           FD = 0.003592 × 1
2

 × 1.24 × 0.3 × 42 = 0.01069 N (Ans.)

 Example 13.19.  Find the ratio of friction drag on the front half and rear half of the flat plate 
kept at zero incidence in a stream of uniform velocity, if the boundary layer is laminar over the 
whole plate.
 Solution. Let,         L = Length of the plate,
                U = Velocity of the fluid, and
 									 	 	 	 	 	 ν = Kinematic viscosity of the fluid.

 Ratio of friction drag on the front half and rear half, 1

2

D

D

F
F

:

 Reynolds number of whole plate = UL
ν

  

 Reynolds number for the front half = 
2
UL
ν

  Average co-efficient of drag for total plate, CD = 1.328
UL
ν

	 ∴ CD1
 for front half  = 1.328 1.328 2 1.878

2
UL UL UL

×
= =

ν ν ν

  Friction drag on total plate,  FD = 2 21 1
2 2D DC AU C LBU× ρ = × ρ ×

   = 2 21.328 1 0.664
2

LBU LBU
UL UL

× ρ = × ρ

ν ν



Chapter 13 : Boundary Layer Theory         761

  Friction drag on front half, FD1
 = 

1 1

2 21 1
2 2 2D D

LC AU C BU× ρ = × ρ ×

   = 2 21.878 1 0.4695
4

LBU LBU
UL UL

× × = × ρ

ν ν
	 ∴	 Friction drag on rear half, FD2

 = FD – FD1
 

   = 2 20.664 0.4695–LBU LBU
UL UL

× ρ × ρ

ν ν

   = 20.1945 LBU
UL

× ρ

ν

	 ∴  Ratio, 1

2

D

D

F
F

 = 

2

2

0.4695
/

0.1945
/

LBU
UL

LBU
UL

× ρ
ν =
× ρ

ν

2 414.  (Ans.)

 Example 13.20.  Air at standard conditions is flowing over a flat plate which is 1 m long and 
0.3 m wide. The flow is uniform at the leading edge of the plate. The velocity profile in the boundary 

layer is assumed to be –
2u y y2

U
   =    δ δ   

 as the free stream velocity is U = 30 m/s. Assume that 

the flow conditions are independent of Z. Using control volume abcd, shown by dashed line, 
calculate the mass flow rate across the surface ab. [Density of air may be taken as 1.23 kg/m3, refer 
to Fig. 13.5]    (GATE)

Y

Z

X

U

a b

d c

U

� = 3.8 mm

Fig. 13.5

 Solution. By continuity equation for a volume abcd, 
 {Mass rate of flow across ‘ad’ – mass rate of flow across ‘bc’} = mass rate of flow across ‘ab’.

   = 
2

–3

0

3.8 10 0.3 – 0.3 2 –y yU U dy
∞      ρ × × × ρ × ×     δ δ     
∫  

   = 
2 3

–3
2

0

23.8 10 0.3 – 0.3 . –
2 3
y yU U

δ
 

ρ × × × ρ ×  
δ δ 

                      = 
–33.8 10

–3

0
3.8 10 0.3 – 0.3 –

3
U U

×δ ρ × × × ρ × δ  

                      = –3 23.8 10 0.3 1 –
3

U  ρ × × ×  
 

   = 1.23 × 30 × 3.8 × 10–3 × 0.3 × 0.3333 = 0.014 kg/s (Ans.)
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 Example 13.21.  Air at 20°C and 1 bar flows over a flat plate at 1.5 m/s. The velocity profile 
for the laminar boundary layer is in the form

                      u
U

 = –
33 y 1 y

2 2
   
   δ δ   

 If the kinematic viscosity of air at 20°C = 15.5 × 10–6 m2/s, calculate:
 (i) The boundary layer thickness at distances of 200 mm and 350 mm, and
 (ii) The mass entrainment between the above two sections.

 Solution.  Temperature of air, T = 20 + 273 = 293 K
  Pressure of air,  p = 1 bar = 1 × 105 N/m2

  Velocity of air, U = 1.5 m/s
  Kinematic viscosity of air, ν = 15.5 × 10–6 m2/s
 We know that, pV = mRT

 or, p = m RT RT
V

= ρ

	 ∴ ρ = 
5

31 10 1.189 kg/m
287 293

p
RT

×
= =

×

     (The characteristic gas constant, R = 287 J/kg K)
 (i) The boundary layer thickness (at x = 200 mm and x = 350 mm) δ1, δ2:

 The Reynolds number, Rex = Ux
ν

	 ∴ Rex1
 = –6

1.5 (200 /1000) 19355
15.5 10
×

=
×

    (where,  x1 = 200 mm)

  Rex2
 = –6

1.5 (350 /1000) 33871
15.5 10
×

=
×

    (where,  x2 = 350 mm)
 For the given velocity profile, the boundary layer thickness is given by:

  δ = 4.64

x

x
Re

	 ∴ δ1 = 
1

4.64 200 4.64 200
19355xRe

× ×
= = 6 67 mm.  (Ans.)

 and, δ2 = 
2

4.64 300 4.64 300
33871xRe

× ×
= = 8 824 mm.  (Ans.)

 (ii) The mass entrainment between the two sections:
 The mass flow in the boundary layer, at any position, is given by the integral

  mx = 
0

udy
δ

ρ∫  ...(i)

 Also, u = 
33 1–

2 2
y yU

        δ δ     
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 (From the given velocity profile)
 Substituting the value of u in eqn. (i) and integrating, we get:

  mx = 
3 2 4

3 3
0 0

3 1 3 1– –
2 2 2 2 2 4

y y y yU dy U
δδ    ρ = ρ × ×   

δ δδ δ    
∫

   = 
2 4

3
3 1 3 1 5– –
4 8 4 8 8

U U U
 δ δ  ρ × × = ρ δ δ = ρ δ   δ δ   

	 ∴	 The mass entrainment between the two sections

   = –3 –3
2 1

5 5( – ) 1.189 1.5 (8.824 10 – 6.67 10 )
8 8

Uρ δ δ = × × × ×

   = 0.0024 kg/s or 8.64 kg/h (Ans.)
 Example 13.22.  (a) Water flows over a flat plate at a free stream velocity of 0.15 m/s. There is 
no pressure gradient and laminar boundary layer at a location is 6 mm thick. Assume a sinusoidal 
velocity profile given by

  u
U

 = sin
2

yp  
 δ 

 where, δ is the boundary layer thickness, U is the free stream velocity, and u is the velocity at 
a distance y from the wall. Calculate the local shear stress and the skin friction co-efficient on the 
plate if
  µ = 1.02 × 10–3 Ns/m2

  ρ = 1000 kg/m3.
 (b) During flow over a flat plate, the laminar boundary layer undergoes a transition to turbulent 
boundary layer as the flow proceeds in the downstream. If the 1/7th power law turbulent velocity 
profile at a section is given by

  u
U

 = 
1/7

1/7( )y  = η δ 
 find out the momentum flux within the turbulent boundary layer. The width of the boundary 
layer is a. The boundary layer thickness is δ. (Delhi University)

 Solution. (a) Given : U = 0.15 m/s; δ = 6 mm = 0.006 m; µ = 1.02 × 10–3; ρ = 1000 kg/m3

 Velocity profile:  u
U

 = sin
2

yp  
  δ  

 Local shear stress, τ0:
 From the given profile, we have:

  u = sin
2

yU p  
  δ  

 Differenting the above equation w.r.t y, we have:

  du
dy

 = cos
2 2

yU p  p  ×  δ δ  

 Local shear stress,   τ0 = 
0y

du
dy =

µ
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 or, τ0 = 
–3(1.02 10 ) 0.15

2 2 0.006
U p × × × p

µ = =
δ ×

20.04 N / m  (Ans.)

 Skin friction co-efficient, C*
D

  C*
D = 0

21
2

U

τ

ρ
 ...[Eqn. (13.9)]

   = 
2

0.04
1 1000 (0.15)
2
× ×

= 0.00356  (Ans.)

O

u u y( )

u'

dy

Velocity
profile

Fig. 13.6

 (b) Given: Velocity profile: 
1/7u y

U
 =  δ 

; width of boundary layer = a; thickness of boundary 

layer = δ.
 Momentum flux within the turbulent boundary layer:

  The momentum flux = 
0

δ

∫  (Mass flow through the strip dy) × u

   = 
21/7

2

0 0 0

( . ) . ya dy u u a u dy a U dy
δ δ δ  ρ = ρ = ρ   δ   
∫ ∫ ∫

   = 

2 12/7 2 7
2

2/7
0

0

( )
2( ) 1
7

y U ya U dy a

δ
+δ

 
  ρ = ρ   δ  δ   +    

∫

   = 
2 2/7 1

2/7
( )

9( )
7

a U +ρ δ
× =

 δ
 
 

27
9

a Uρ δ  (Ans.)

 Example 13.23.  A plate 25 m long × 1.25 m wide is moving under water in the direction of its 
length. The drag force on the two sides of the plate is estimated to be 8500 N. Calculate:
 (i) The velocity of the plate,
 (ii) The boundary layer thickness at the trailing edge of the plate, and
 (iii) The distance xc at which the laminar boundary layer existing at the leading edge transforms 

into turbulent boundary layer. Take for water: ρ = 1000 kg/m3; ν = 1 × 10–6 m2/s.
 Solution.  Length of the plate, L = 25 m
  Width of the plate, B  = 1.25 m
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  Drag force on the two sides of the plate, FD = 8500 N
  Density of water, ρ  =  1000 kg/m3

  Kinematic viscosity of water, ν  = 1 × 10–6 m2/s
 (i) Velocity of the plate, U:
 Since U is not known, ReL cannot be computed. Hence assume any reasonable value of CD 
between 0.005 and 0.001. Let us assume CD = 0.002.

  Drag force (both sides), FD  = 2 21 1 (2 )
2 2D DC AU C L B U× ρ = × ρ × ×

  8500 = 21 1000 (2 25 1.25)
2DC U× × × × ×

 or, U2 = 0.272 0.272 136
0.002DC

= =

	 ∴ U = 11.66 m/s

 Reynolds number,     ReL = 6
– 6

11.66 25 291.5 10
1 10

UL ×
= = ×

ν ×
 (turbulent range assumed)

  CD = 6 2 58
10

0.455 0.00184
[log (291.5 10 )] ⋅

=
×

 Thus recalculation gives: U2 = 0.272 147.82 or 12.16 m/s
0.00184

U= =

 By another trial, we get:

  ReL = 6
–6

12.16 25 304 10
1 10

×
= ×

×

  CD = 6 2.58
10

0.455 0.001829
[log (304 10 )]

=
×

  U2 = 0.272 148.715 or 12.19 m/s
0.001829

U= =

 i.e., U = 12.19 m/s which is within reasonable accuracy.
 (ii) The boundary layer thickness, δ:
 The thickness of boundary layer for turbulent flow is given by eqn. (13.43),

  δ = 1/5 6 1/5
0.371 0.371 25
( ) (304 10 )eL

L
R

×
= =

×
0 1865 m.  (Ans.)

 (iii) The distance, xc:
 Transition from laminar to turbulent boundary may be assumed to occur at
  (Re)xc = 5 × 105

  (Re)xc = 55 10cUx
= ×

ν

	 ∴ xc = 
5 5 – 65 10 5 10 1 10 0.041 m

12.19U
× × ν × × ×

= = or 41 mm (Ans.)
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13.5.  TURBULENT BOUNDARY LAYER 

 As compared to laminar boundary layers, the turbulent boundary layers are thicker. Further in a 
turbulent boundary layer the velocity distribution is much more uniform, than in a laminar boundary 
layer, due to intermingling of fluid particles between different layers of the fluid. The velocity 
distribution in a turbulent boundary layer follows a logarithmic law i.e. u ~ log y, which can also be 
represented by a power law of the type,

  u
U

 = 
ny 

 δ 
 ...(13.39)

 where, n = 1
7

 (approx.) for Re < 107 but > 5 × 105

	 ∴ u
U

 = 
1/7y 

 δ 
 ...(13.40)

 This is known as one-seventh power law.
 The eqn. (13·40), however, cannot be applied at the boundary itself because at y = 

–1/7 –6/710,
7

u U y
y

 δ
= δ = ∝ δ 

. This difficulty is circumvented by considering the velocity in the 

viscous laminar sublayer to be linear and tangential to the seventh-root profile at the point, where 
the laminar sublayer merges with the turbulent part of the boundary layer.
 Blasius suggested the following relation for viscous shear stress:

  τ0 = 
1/4

20.0226 U
U

 µ
ρ  ρ δ 

 ...(13·41)

 (for Re ranging from 5 × 105 to 107)
 Let us now find the values of δ, τ0, C

*
D FD and Cd for the velocity distribution

 given by eqn. (13.40) 
1/7

. . u yi e
U

  =  δ  
 (i) Boundary layer thickness, δ:

 Substituting the value of u
U

 in Von Karman integral eqn. (13.6), we have:

  0
2U

τ

ρ
 = 

0

1 –d u u dy
dx U U

δ  
  

   
∫

   = 
1/7 1/7

0

1 –d y y dy
dx

δ             δ δ         
∫

   = 
1/7 2/7

0

d y y dy
dx

δ           δ δ       
∫

   = 
8/7 9/7

1/7 2/7
0

7 7 7 7 7– –
8 9 8 9 72

d y y d d
dx dx dx

δ
  δ = δ δ =   δ δ   

 [In the expression above, the limits have been taken from 0 to δ instead of δ′ to δ since the 
laminar sublayer (δ′) is very thin]
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	 ∴         τ0 = 27
72

dU
dx
δ

ρ  ...(13.42)

 Also,         τ0 = 
1/4

20.0225 U
U

 µ
ρ  ρ δ 

 ...[Eqn. (13.27)]

 Now equating the eqns. (13.42) and (13.41), we have:

        27
72

dU
dx
δ

ρ  = 
1/4

20.0225 U
U

 µ
ρ  ρ δ 

 or,         7
72

d
dx
δ  = 

1/4

1/4
10.0225

( )U
 µ

× ρ δ 
 (cancelling ρU2 on both sides)

 or,        δ1/4 dδ = 
1/4720.0225

7
dx

U
 µ

× ×  ρ 

 or,         δ1/4 dδ = 
1/4

0.2314 dx
U

 µ
 ρ 

 Integrating both sides, we have:

  5/44
5
δ  = 

1/4

0.2314 x C
U

 µ
+ ρ 

 (where, C = constant of integration)

 Let boundary layer be assumed to be turbulent over the entire length of plate.
 Hence,  at   x = 0, δ = 0                          ∴ C = 0

	 ∴ 5/44
5
δ  = 

1/4

0.2314 x
U

 µ
× ρ 

 or,        δ5/4 = 
1/4

(5/4 0.2314) x
U

 µ
× × ρ 

 or,         δ = [ ]
1/5

4/5 4/55 / 4 0.02314 x
U

 µ
× × ρ 

               = 
( )

1/51/5
1/5 4/5

1/5
1 0.710.371 0.0371

x x

xx x x
Ux Re Re

  µ
× = × =  ρ   

 i.e.           δ = 
( )1/5
0.371

x

x

Re
 ...(13.43)

 (ii) Shear stress, τ0:

    τ0 = 
1/4

20.0225 U
U

 µ
ρ  ρ δ 

 [Eqn. (13.41)]

 Substituting the value of δ from eqn. (13.43), we get:

                     τ0 = 
1/4

2

1/5

0.0225
0 371
( )x

U
xU

Re

µ ρ  ⋅
ρ ×  
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                      = 
1/41/4 1/5

2 1/5 2
1/4

( )0.0225 ( ) 0.0288
(0.371)

x
x

x

Re
U Re U

Ux Re
  µ

ρ × = ρ   ρ     

         xRe
Ux

 µ
= ρ 



 or, τ0 = 
2

1/5
0.0576

2 ( )x

U
Re

ρ
×  ...(13.44)

 (iii) Local co-efficient of drag, C*
D:

 We know τ0 = 
2

1/5
0.0576

2 ( )x

U
Re

ρ
×  [Eqn. (13.44)]

 Also,         τ0 = * 21
2DC U× ρ  [Eqn. (13.9)]

 Now equating the eqns. (13.44) and (13.9), we have:

    * 21
2DC U× ρ  = 

2

1/5
0.0576

2 ( )x

U
Re

ρ
×

 or, C*
D = 1/5

0.0576
( )xRe

 ...(13.45)

 (iv) Drag force, FD:
 The total drag force (FD) on one side of the plate of width B and length L is given by,

   FD = 0
0

L
B dxτ × ×∫  ...[Eqn. (13.8)]

   = 
2 2

1/5 1/5
0 0

0.0576 0.0576
2 2( )

L L

x

U UB dx B dx
Re Ux

ρ ρ
× × × = × ×

 ρ
 µ 

∫ ∫

   = 
2 2

–1/5 4/5
1/5 1/5

00

0.0576 0.0576 5
2 2 4

LLU UB x dx B x
U U

ρ ρ  × = × ×     ρ ρ
   µ µ   

∫

   = 
2 2

4/5
1/5 1/5

0.0576 5 0.072( )
2 4 2
U UB L B L

U UL

ρ ρ
× × × = × × ×
   ρ ρ
   µ µ   

 or, FD = 
2

1/5
0.072

2 ( )L

U B L
Re

ρ
× × ×  ...(13.46)

 (v) Co-efficient of drag, CD:

 We know, FD = 21
2DC AV× ρ  ...[Eqn. (13.10)]

 Now equating eqns. (13.10) and (13.46), we have:
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  21
2DC B L U× ρ × × ×  = 

2

1/5
0.072

2 ( )L

U B L
Re

ρ
× × ×  ( Area of the plate, A = B × L)

 or, CD = 1/5
0.072

( )LRe
 ...(13.42)

 This is valid for 5 × 105 < ReL < 107.
 For Reynolds number between 107 and 109 the following relationship suggested by Prandtl and 
Schlichting holds good,

  CD = 2.58
10

0.455
(log )LRe

 ...(13.48)

13.6.  TOTAL DRAG DUE TO LAMINAR AND TURBULENT LAYERS 

 When the leading edge is not very rough, the turbulent boundary layer does not begin at the 
leading edge, it is usually preceded by the laminar boundary layer. The point of transition from 
laminar to turbulent layer depends upon the intensity of turbulence. The distance xc (Fig. 13.7) of 
the transition from the leading edge can be obtained from critical Reynolds number which normally 
ranges from 3 × 105 to 3 × 106.

Transition

Laminar layer

xc

L

Turbulent layer
Leading edge

U

Fig. 13.7. Drag due to laminar and turbulent boundary layers.

 Drag force (FD = F) for the turbulent boundary layer can be estimated from the following 
relation:
  Fturb. = (Fturb)total – (Fturb.)xc

 
 where, (Fturb.)total = The drag which would occur if a turbulent boundary extends 

along the entire length of the plate, and
  (Fturb.)x

c
 = The drag due to fictitious turbulent boundary layer from the 

leading edge to a distance xc.
 Let us assume that the plate is long enough so that Reynolds number is greater than 107 , then 
the turbulent drag is given by,

  Fturb = 
2 2

2.58 1/5
10

0.455 0.072–
2 2(log ) ( ) c

L c

U UL B x B
Re Re

ρ ρ
× × × × × ×  ...(i)

 where, L = Length of the plate,
  B = Width of the plate, and
  U = Free stream velocity.
 The laminar boundary layer prevails within the length xc and its contribution to drag force is 
given by:
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  Flaminar = 
2 21.3281.328

2 2
c

c
c c

xU Ux B B
Re Re

ρ ρ
× × × = × ×  ...(ii)

	 ∴ Ftotal = Flaminar + Fturb.

  Ftotal = 
2 2 2

2.58 1/5
10

1.328 0.0720.455 –
2 2 2(log ) ( )

c c

c L c

x xU L U UB B B
Re Re Re

 ρ ρ ρ
× × + × × × × 

  
.

   = 
2

2.58 1/5
10

1.328 0.0720.455 –
2(log ) ( )

c c

c L c

x xL B U
Re Re Re

  ρ
+ 

  
 ...(iii)

 Also, c

L

Re
Re

 = 
( / )
( / )

c cUx x
UL L

ρ µ
=

ρ µ

 or, xc = c

L

Re L
Re

 Substituting the value of xc in eqn (iii), we have:

  Ftotal = 
0 8 2

2.58
10

1.328 0.0720.455 –
2(log )

c c

L LL

Re Re LB U
Re ReRe

⋅  ρ
+ 

  

  Assuming that transition occurs at Rec = 5 × 105,

  Ftotal = 
2

2.58
10

0.455 1700–
2(log ) LL

LB U
ReRe

  ρ
 
  

 ...(13.49)

 Also, Ftotal = 
2

21
2 2D D

LB UC AU C ρ
× ρ = ×  ...[Eqn. (13.10)]

 (where, CD = average co-efficient of drag.)
 Equating the above two equations, we have:

  CD = 2.58
10

0.455 1700–
(log ) LL ReRe

 ...(13.50)

 Example 13.24. A submarine can be assumed to have cylindrical shape with rounded 
nose. Assuming its length to be 50 m and diameter 5·0 m, determine the total power required to  
overcome boundary friction if it cruises at 8 m/s velocity in sea water at 20°C (ρ = 1030 kg/m3), 
ν = 1 × 10–6 m2/s.

 Solution.  Length of submarine, L = 50 m
  Diameter of submarine, D = 5.0 m
  Velocity of submarine, U = 8 m/s
  Density of sea water, ρ = 1030 kg/m3

  Kinematic viscosity of sea water, ν = 1 × 10–6 m2/s
 Total power required to overcome boundary friction, P:

  Reynolds number, ReL = 8
– 6

8 50 4 10
1 10

UL ×
= = ×

ν ×
 The length over which boundary layer will be laminar is given by,

  Ux
ν

 = 
5

5 5 105 10 or x
U

× × ν
× =
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 or, x = 
5 –65 10 1 10 0.0625 m

8
× × ×

=

 This being very small, contribution to total drag from laminar boundary layer is negligible; 
hence CD is given by,

  CD = 2.58 2.58810 10

0.455 0.455 0.001765
(log ) log (4 10 )LRe

= =
 × 

  Area, A = pDL = p × 5 × 50 = 785.4 m2

	 ∴  Drag force, FD = CD × 1
2
ρAU2 = 0.001765 × 1

2
 × 1030 × 785.4 × 82 = 45690.2 N

 Hence, total power required to overcome boundary friction,

  P = 45690.2 8kW
1000 1000

DF U ×
= = 365 52 kW.  (Ans.)

 Example 13.25.  12000 kW power is required to cruise a passenger ship of 300 m length and 
12.0 m draft at 40 km/h. If ρ = 1030 kg/m3 and ν = 1 × 10–6 m2/s, determine the combined form 
and wave resistance of the ship.
 Solution.  Power required to cruise the ship, P = 12000 kW
  Length of the ship  =  300 m
  Draft of the ship  =  12 m

  Speed of the ship, U = 40 km/h = 40 1000 11.11 m/s
3600
×

=

  Density of water, ρ  =  1030 kg/m3

  Kinematic viscosity of water, ν  =  1 × 10–6 m2/s
 Combined form and wave resistance:

  Reynolds number, ReL = 9
–6

11.11 300 3.333 10
1 10

UL ×
= = ×

ν ×

 At this Reynolds number, the boundary layer will be turbulent on almost the whole length; 
hence, CD is given by:

  CD = 2.58 9 2.58
10 10

0.455 0.455 0.001358
(log ) [log (3.333 10 )]LRe

= =
×

  Ffriction = 2 × CD × 1
2
ρAU2 = 2 × 0.001358 × 1

2
 × 1030 × 300 × 12 × (11.11)2

   = 621538 N   or   621.54 kN
  Total power required, P  = FU

	 ∴  Total force, F = 12000 1080 kN
11.11

P
U

= =

 Also, F = Ffriction + (Fform + Fwave)
	 ∴  (Fform + Fwave) = 1080 – Ffriction = 1080 – 621.54 = 458.46 kN (Ans.)

 Example 13.26.  Find the ratio of friction drag on the front half and rear half of the flat plate 
kept at zero incidence in a stream of uniform velocity, if the boundary layer is turbulent over the 
whole plate.
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 Solution. The average co-efficient of drag (CD) for turbulent boundary layer is given by:

  CD = 1/5
0.072

( )LRe
 ...[Eqn. (13.47)]

  For the entire plate, ReL = UL
ν

 For the first half of the plate,  Rex = 
2

Ux UL
=

ν ν
 Drag force per unit width for the entire plate is,

  FD = 
2

2D
UC ρ

×  × area per unit width

   = 
2

1/5
0.072

2
U L

UL
ρ

× ×
 
 ν 

 Similarly the drag force per unit width for the front half portion of the plate is,

  F1 = 
2 2

1/5
1/5 1/5

0.072 0.072 (2)
2 2 2 2

2

U L U L
ULUL

ρ ρ
× × = × ×

   
   ν ν 

	 ∴	 Drag force for the rear half portion of the plate is,

  F2 = 
2

1/5
1 1/2

0.072 1– 1 – (2)
2 2

L UF F
UL

ρ  = ×    
 ν 

 Hence, 1

2

F
F

 = 
1/5

1/5

1 (2) 0.5742
1 1 – 0.5741 – (2)
2

×
= = 1 347.  (Ans.)

 Example 13.27.  A streamlined train is 200 m long with a typical cross-section having a 
perimeter of 9 m above the wheels. If the kinematic viscosity of air at the prevailing temperature is 
1.5 × 10–5 m2/s and density 1.24 kg/m3, determine the approximate surface drag (friction drag) of 
the train when running at 90 km/h.
 Make allowance for the fact that boundary layer changes from laminar to turbulent on the train 
surface.
 Solution. Length of the train, L = 200 m
 Perimeter of cross-section of the train above wheels, P = 9 m
	 ∴  Surface area, A = L × P = 200 × 9 = 1800 m2

  Kinematic viscosity of air, ν = 1.5 × 10–5 m2/s
  Density of air, ρ = 1.24 kg/m3

  Free stream velocity, U = 90 100090 km/h 25 m/s
3600
×

= =

 Approximate friction drag, FD

 The Reynolds number with length of the train as the characteristic length,
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  ReL = 8
–5

25 200 3.333 10
1.5 10

UL ×
= = ×

ν ×

 Obviously the boundary layer is turbulent.
 Assuming that the abrupt transition from laminar to turbulent flow occurs at a Reynolds number 
of 5 × 105, the average co-efficient of drag,

  CD = 2.58
10

0.455 1700–
(log ) LL ReRe

 [Eqn. (13.50)]

   = 8 2.58 8
10

0.455 1700–
[log (3.333 10 )] 3.333 10× ×

   = 0.001807 – 5.1 × 10–6 = 0.0018
 The approximate friction drag over the train surface,

  FD = CD × 1
2

 ρAU2 = 0.0018 × 1
2

 × 1.24 × 1800 × 252 = 1255.5 N (Ans.)

 Example 13.28.  A barge with a rectangular bottom surface 30 m long × 10 m wide is travelling 
down a river with a velocity of 0.6 m/s. A laminar boundary layer exists upto a Reynolds number 
equivalent to 5 × 105 and subsequently abrupt transition occurs to turbulent boundary layer. 
Calculate:
 (i) The maximum distance from the leading edge upto which laminar boundary layer persists 

and the maximum boundary layer thickness at that point.
 (ii) The total drag force on the flat bottom surface of the barge, and
 (iii) The power required to push the bottom surface through water at the given velocity.
  For water  ρ = 998 kg/m3 and ν = 1 × 10–6 m2/s.
 Solution.  Length of the bottom surface, L = 30 m
  Width of the bottom surface, B  =  10 m
	 ∴	 Area, A = L × B = 30 × 10 = 300 m2

  Velocity, U = 0.6 m/s
  Density of water, ρ = 998 kg/m3

  kinematic viscosity, ν = 1 × 10–6 m2/s
 (i) The maximum distance up to which laminar boundary layer persists, xc:

  (Re)xc
 = 55 10cUx

= ×
ν

	 ∴ xc = 
5 5 –65 10 5 10 1 10

0.6U
× × ν × × ×

= = 0 833 m.  (Ans.)

 Maximum boundary layer (laminar) thickness, δ:

  δ = –3
5

5 5 0.833 5.89 10 m
( ) 5 10

c

c

e x

x
R

×
= = ×

×
 or 5.89 mm (Ans.)

 (ii) The total drag force FD:

  ReL = 7
–6

0.6 30 1.8 10
1 10

UL ×
= = ×

ν ×
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 The average co-efficient of drag,

  CD = 2.58
10

0.455 1700–
(log ) eLeL RR

 ...[Eqn. (13.50)]

    = 7 2.58 7
10

0.455 1700– 0.002644
[log (1.8 10 )] 1.8 10

=
× ×

	 ∴  Drag force on the bottom surface of the barge,

   FD = CD × 1
2

 ρAU2 = 0·002644 × 1
2

 × 998 × 300 × (0.6)2

   = 142.49 N (Ans.)

 (iii) The power required, P:

 The power required to push the bottom surface through water at the given velocity,

  P = FD × U = 142.49 × 0.6 = 85.49 W (Ans.)

13.7.  BOUNDARY LAYER SEPARATION AND ITS CONTROL 

 In a flowing fluid when a solid body is immersed, a thin layer of fluid called the boundary layer 
is formed adjacent to the solid body. The forces acting on the fluid in the boundary layer are:
 (i) Inertia forces, (ii)  Viscous forces,   and (iii) Pressure forces.

 — When the pressure gradient in the direction of flow is negative 0dp
dx

 < 
 

 i.e. when the pres-

sure decreases in the direction of flow, the flow is accelerated. In this case, the pressure force 
and inertia force add together and jointly tend to reduce the effect of viscous forces in the 
boundary layer. This results in a decrease in the thickness of boundary layer in the direction 
of flow, as a consequence of which there are low losses and high efficiencies in accelerating 
flows.

 — When the pressure increases in the direction of flow 0dp
dx

 > 
 

, the pressure forces act op-

posite to the direction of flow and further increase the retarding effect of the viscous forces. 
Subsequently the thickness of the boundary layer increases rapidly in the direction of flow. 
If these forces act over a long stretch, the boundary layer gets separated from the surface and 
moves into the main stream. This phenomenon is called separation. The point of the body at 
which the boundary layer is on the verge of separation from the surface is called “point of 
separation”.

  Consider a flow of fluid over a curved surface as shown in Fig. 13·8.
 — As the fluid flows round the surface (the area of flow decreases) it is accelerated over the left 

hand section until at point B the velocity just outside the boundary is maximum and the pres-
sure is minimum (as shown by the graph below the surface). Thus from A and B the pressure 

gradient is negative. As long as 0dp
dx

< , the entire boundary layer moves forward.
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dp

dx
< 0

dp

dx
> 0pmin

Separation
point

Separation
region

Sepration
stream line

du

dy y = 0

= 0 < 0
du

dy y = 0

A
B

C

D

E

U

y

U
U

U

U

du

dy y = 0

>0

y

y

y

Edge of the
boundary layer

�

Fig. 13.8. Separation of boundary layer.

 — Beyond B (i.e. along the region BCDE), the area of flow increases and hence velocity of flow 
decreases; due to decrease of velocity the pressure increases (in the direction of flow) and 

hence the pressure gradient dp
dx

 is positive i.e. 0dp
dx

> . The value of the velocity gradient 

du
dy

 
 
 

 at the boundary is zero at the point C, this point is known as a separation point (the 

boundary layer starts separating from the surface because further retardation of flow near the 
surface is physically impossible). Large turbulent eddies are formed downstream of the point 
of separation. The disturbed region in which the eddies are formed is called turbulent wake.

 The flow separation depends upon factors such as:
 (i) The curvature of the surface;
 (ii) The Reynolds number of flow;
 (iii) The roughness of the surface.
 The velocity gradient, for a given velocity profile, exhibits the following characteristics for the 
flow to remain attached, get detached or be on the verge of separation:

 1. 
0y

u
y =

 ∂
 ∂ 

 is + ve ...Attached flow (The flow will not separate)

 2. 
0y

u
y =

 ∂
 ∂ 

 is zero ...The flow is on the verge of separation

 3. 
0y

u
y =

 ∂
 ∂ 

 is – ve ...Separated flow.

 — Boundary layer separation is unstable, inefficient process and entails large losses due to 
appreciable eddying region.

      Separation occurs in the following cases:
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 (i) Diffusers,
 (ii) Open channel transitions,
 (iii) Pumps,
 (iv) Fans,
 (v) Aerofoils,
 (vi) Turbine blades etc.
 Methods of preventing the separation of boundary layer:
 Following are some of the methods generally adopted to retard or arrest the flow separation:
 1. Streamlining the body shape.
 2. Tripping the boundary layer from laminar to turbulent by provision of surface roughness.
 3. Sucking the retarded flow.
 4. Injecting high velocity fluid in the boundary layer.
 5. Providing slots near the leading edge.
 6. Guidance of flow in a confined passage.
 7. Providing a rotating cylinder near the leading edge.
 8. Energising the flow by introducing optimum amount of swirl in the incoming flow.
 Note:   Refer to Example 13.29 also.

 Example 13.29.  Explain what is meant by separation of boundary layer. Describe with 
sketches the methods to control separation. (PEC)
 Solution. When a solid body is immersed in a flowing fluid, a thin layer of fluid called boundary 
layer is formed, adjacent to the solid body. In this thin layer of fluid, the velocity varies from zero to 
free stream velocity in the direction normal to the solid body. Along the length of the solid body, the 
thickness of the boundary layer increases. The fluid layer adjacent to the solid surface has to do work 
against surface friction at the expense of kinetic energy. This loss of kinetic energy is recovered from 
the immediate fluid layer in contact with the layer adjacent to the solid surface through momentum 
exchange process. Thus the velocity of the layer goes on decreasing. Along the length of solid body, 
at a certain point a stage may come when the boundary layer may not be able to keep sticking to the 
solid body, if it cannot provide kinetic energy to overcome the resistance offered by the solid body. 
In other words, the boundary layer will be separated from the surface. This phenomenon is called 
the boundary layer separation. The point on the body at which the boundary layer is on the verge 
of separation from the surface is called point of separation.
 Methods to control separation
 1. Motion of solid boundary:
 By rotating a circular cylinder lying in a stream of fluid, so that 
the upper side of cylinder where the fluid as well as the cylinder move 
in the same direction, the boundary layer does not form. However on 
the lower side of cylinder where the fluid motion is opposite to that of 
cylinder separation would occur (Fig. 13.9).
 2. Acceleration of fluid in the boundary layer:
 This method of controlling separation consists of supplying additional energy to particles of 
fluid which are being retarded in the boundary layer. This may be achieved either by injecting the 
fluid into the region of boundary layer from the interior of the body with the help of some available 
device as shown in Fig. 13.10 or by diverting a portion of fluid of the main stream from the region of 
high pressure to the retarded region of boundary layer through a slot provided in the body (Fig. 13.11)

Fig. 13.9
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 Fig. 13.10. Injecting fluid into boundary layer. Fig. 13.11. Slotting wing.

 3. Suction of fluid from the boundary layer:
 In this method, the slow moving fluid in the boundary layer 
is removed by suction through slots or through a porous surface 
as shown in the Fig. 13.12.
 4. Streamlining of body shapes:
 By the use of suitably shaped  bodies, the point of transition 
of the boundary layer from laminar to turbulent can be moved 
downstream which results in the reduction of the skin friction 
drag. Further more by streamlining of body shapes, the separation may be eliminated.
 Example 13.30.  For the following velocity profiles determine whether flow is attached or 
detached or on the verge of separation:

 (i) 
2

2 –u y y
U

   =    δ δ   

 (ii) 
3 4

– 2 2u y y y
U

     = + +     δ δ δ     

 (iii) 
2 3 4

2 – 2u y y y
U

     = +     δ δ δ     
 [Nagpur University]

 Solution. (i) 
2 2

2 – or 2 –u y y y yu U U
U

       = =       δ δ δ δ       
  

 Differentiating w.r.t. y the above equation, we get:

  du
dy

 = 1 12 – 2 yU U    ×   δ δ δ   

 At, y = 
0

20,
y

u U
y =

 ∂
= δ δ 

 As 
0y

u
y =

 ∂
 δ 

 is + ve, the given flow is attached (Ans.)

 (ii)   u
U

 = 
3 4

– 2 2y y y     + +     δ δ δ     

 or, u = 
3 4

– 2 2y y yU U U     + +     δ δ δ     

	 ∴ u
y
∂
∂

 = 
2 31 1 1– 2 3 8y yU U U     + × + ×     δ δ δ δ δ     

Fig. 13.12
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 At, y = 
0

20, –
y

u U
y =

 ∂
= ∂ δ 

 As 
0y

u
y =

 ∂
 ∂ 

 is – ve, the given flow is detached (i.e. the flow has separated). (Ans.)

 (iii)   u
U

 = 
2 3 4

– 2y y y     +     δ δ δ     

 or, u = 
2 3 4

2 – 2y y yU U U     +     δ δ δ     

	 ∴ u
y
∂
∂

 = 
2 31 1 14 3 – 8y y yU U U     × + × ×     δ δ δ δ δ δ     

 At, y = 
0

0, 0
y

u
y =

 ∂
= ∂ 

 As 
0y

u
y =

 ∂
 ∂ 

 = 0, the given flow is on the verge of separation. (Ans.)

HIGHLIGHTS

 1. When a viscous fluid flows past an immersed body, a thin boundary layer is formed in the 

immediate neighbourhood of solid surface. In the boundary layer, the velocity gradient u
y

 ∂
 ∂ 

 
is very high.

 2. The resistance due to viscosity is confined only in the boundary layer. The fluid outside the 
boundary layer may be considered as ideal.

 3. Near the leading edge of a flat plate, the boundary layer is wholly laminar. For a boundary 
layer, the velocity distribution is parabolic. The thickness of the boundary layer (δ) increases 
with distance from the leading edge, as more and more fluid is slowed down by the viscous 
boundary, becomes unstable and breaks into turbulent boundary layer over a transition region.

 4. For a turbulent boundary layer, if the boundary is smooth, the roughness projections are 
covered by a very thin layer which remains laminar, called laminar sublayer. The velocity 
distribution in the turbulent boundary layer is given by Log law or Prandtl’s one-seventh 
power law.

 5. For a flow, when Re = 55 10Ux
< ×

ν
 ... boundary layer is laminar, and

  when, Re = 55 10Ux
> ×

ν
 ... boundary layer is called turbulent.

  where, U = Free stream velocity,
    x = Distance from the leading edge, and
    ν = Kinematic viscosity of fluid.
 6. The thickness of the boundary layer is arbitrarily defined as that distance from the boundary 

in which the velocity reaches 99 percent of the velocity of the free stream. It is denoted by 
the symbol δ.
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 7. Displacement thickness, δ* = 
0

1 – u dy
U

δ  
 
 ∫  

 8. Momentum thickness, δ = 
0

1 –u u dy
U U

δ  
 
 ∫

 9. Energy thickness, δe = 
2

2
0

1 –u u dy
U U

δ  
  
 

∫

 10. Von Karman momentum integral equation is given as:

    0
2U

τ

ρ
 = d

dx
q

  where, q = 
0

1 – , andu u dy
U U

δ  
 
 ∫

    τ0 = Shear stress at surface.
  This equation is applicable to laminar, transition and turbulent boundary layer flows.
 11. As per Blasius results:

  The thickness of laminar boundary layer, δ	= 5

x

x
Re

 (where, Rex = Reynolds number)

   Average co-efficient of drag, CD = 1.328

xRe
  

 12. For turbulent boundary layer, the velocity profile is given as :

   u
U

 = 
1/7y 

 δ 
  This equation is not valid very near the boundary where laminar sublayer exists.
 13. For turbulent boundary layer over a flat plate, the shear stress at the boundary is given as

    τ0 = 
1/4

20.0225 U
U

 µ
ρ  ρ δ 

 14. In case of a turbulent boundary layer:
  For 5 × 105 < Re < 107:

    δ = 1/5
0.371 ,

( )x

x
Re

 and CD = 1/5
0.072

( )LRe

  For 107 < Re < 109 :

                                         2.58
10

0.455
(log )D

L
C

Re
= ... Prandtl-Schlichting empirical equation

 15. Total drag on a flat plate due to laminar and turbulent layers:

    Ftotal = 
2

2.58
10

0.455 1700–
2(log ) xL

LB U
ReRe

  ρ
 
  

  Average co-efficient of drag, CD = 2.58
10

0.455 1700–
(log ) LL ReRe
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 16. The velocity gradient, for a given velocity profile, exhibits the following characteristic for 
the flow to remain attached, get detached or be on the verge of separation.

 (i) 
0y

u
y =

 ∂
 ∂ 

 is + ve ... Attached flow (The flow will not separate)

 (ii) 
0y

u
y =

 ∂
 ∂ 

 is zero ... The flow is on the verge of separation

 (iii) 
0y

u
y =

 ∂
 ∂ 

 is – ve ... Separated flow.

OBJECTIVE TYPE QUESTIONS

 1.	 In	turbulent	flow	the	velocity
  (a) varies with time and space
  (b) varies with time only, the patterns of   

fluctuation,	with	respect	to	time,	being	same	
at all points

  (c) is constant at every point
  (d) none of the above.
 2.	 In	a	turbulent	flow	the	shear	stress	is	mainly	due	

to the
  (a)	 density	of	the	fluid
  (b)	 dynamic	viscosity	of	the	fluid
  (c)	 kinematic	viscosity	of	the	fluid
  (d)	 eddy	viscosity	of	the	fluid
  (e) all of the above.
 3. For which of the following flows Blasius 

equation is used?
  (a)	 Laminar	flow
  (b)	 Turbulent	flow	in	rough	pipes
  (c)	 Turbulent	flow	in	smooth	pipes	for	any		 	

Reynolds number
  (d)	 Turbulent	flow	in	smooth	pipes	for	Re < 105

  (e) none of the above.
 4.	 In	turbulent	flow,	which	of	the	following	gives	

the exact velocity distribution?
  (a) Logarithmic distribution
  (b) Blasius equation
  (c) Power law with index varying
  (d) Prandtl’s one-seventh power.
 5. The boundary layer exists in which of the fol-

lowing?
  (a)	 Flow	of	real	fluids
  (b)	 Flow	of	ideal	fluids
  (c)	 Flow	over	flat	surfaces	only
  (d)	 Pipe-flow	only.

 6. On account of which of the following boundary 
layer exists?

  (a) Surface tension
  (b) Gravitational effect
  (c)	 Viscosity	of	fluid
  (d) None of the above.
 7. On account of which of the following L. 

Prandtl	is	regarded	as	the	father	of	modern	fluid	
mechanics?

  (a) His pioneering research on flow of 
low-	viscosity	fluids	bringing	forward	a	new	
concept of boundary layer

  (b)	 His	new	interpretations	on	fluid	resistance
  (c) His fundamental research in the field of 

aircraft-engineering
  (d) None of the above.
 8. The displacement thickness is
  (a) the layer in which the loss of energy is mini-

mum
  (b) the layer which represents reduction in   

 momentum caused by the boundary layer
  (c) the thickness upto which the velocity 

approaches 99% of the free-stream velocity
  (d) the distance measured perpendicular to 

the boundary by which the free-stream 
is displaced on account of formation of 
boundary layer.

 9.	 Over	a	long	flat	plate,	the	laminar	boundary-layer	
becomes	unstable	and	changes	flow	character-
istics from laminar to turbulent when the plate 
Reynolds number approaches a value between

  (a) 3 × 104 to 5 × 104 
  (b) 3 × 105 to 6 × 105

  (c) 2 × 106 to 5 × 106 
  (d) 5 × 106 to 8 × 106.
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 10.	 When	the	fluid	flows	along	the	solid	boundary,	
more	and	more	fluid	gets	retarded	in	the	vicinity	
of the boundary; this deceleration is due to

  (a)	 high	velocity	of	the	fluid
  (b)	 high	velocity	flow	outside	the	boundary	layer
  (c) high velocity gradients which exist at and 

near the boundary
  (d) none of the above.
 11. Momentum thickness is given by which of the 

following relations?

  (a) 
0

1 – u dy
U

δ  
 
 ∫  (b) 

0

1 –u u dy
U U

δ  
 
 ∫

  (c) 
2

2
0

1 –u u dy
U U

δ  
  
 

∫  (d) none of the above.

 12. The boundary layer separation occurs when

  (a) 0dp
dx

<  (b) 
0y

u
y =

 ∂
 ∂ 

 = 0

  (c) 
0

0
y

u
y =

 δ
> δ 

 (d) none of the above.

 13. Which of the following is the condition for 
detached	flow?

  (a) 
0y

u
y =

 ∂
 ∂ 

 = 0 (b) 
0

0
y

u
y =

 ∂
> ∂ 

  (c) 
0

0
y

u
y =

 ∂
< ∂ 

 (d) none of the above.

 14. Von Karman momentum integral equation 

0
2 xU

 τ ∂q
= ∂ρ 

 is applicable to

  (a)	 laminar	boundary	layer	flow	only
  (b)	 turbulent	boundary	layer	flow	only
  (c)	 transition	boundary	layer	flow	only
  (d) laminar, transition and turbulent boundary 

layer	flows.
 15. If the Reynolds number is more than 5 × 105, the 

boundary layer is called

  (a) laminar boundary layer
  (b) turbulent boundary layer
  (c) either of the above
  (d) none of the above.
 16. The separation of boundary can be prevented by
  (a) providing small divergence in a diffuser
  (b) providing a trip-wire ring in the laminar  

region	for	the	flow	over	a	sphere
  (c) providing a bypass in the slotted wing
  (d)	 suction	of	the	slow	moving	fluid	by	a	suction	

slot
  (e) all of the above.
 17. The ratio of mean velocity to the maximum 

velocity in a pipe depends on which of the 
following factors?

  (a)	 Reynolds	number	of	flow
  (b) The pressure drop in the pipe
  (c) The friction factor
  (d)	 The	density	of	the	fluid
  (e) The relative roughness of pipe
  (f) All of the above.
 18. The critical value of Reynolds number at 

which boundary layer changes from laminar to 
turbulent depends on which of the following?

  (a)	 Turbulence	in	ambient	flow
  (b) Surface roughness
  (c) Pressure gradient
  (d) Plate curvature
  (e) All of the above.
 19. ...... thickness is the distance through which the 

total loss of momentum per second be equal to 
if it were passing a stationary plate.

  (a) Displacement (b) Momentum
  (c) Energy (d) None of above.
 20. Ageing of pipes implies which of the following?
  (a) A decrease in the value of friction factor
  (b) Increase in absolute roughness linearly 

with  time and hence friction factor
  (c) Pipe becoming smoother with time
  (d) None of the above.

ANSWERS

 1. (b) 2. (d) 3. (d) 4. (a) 5. (a) 6. (c)  
 7. (a) 8. (d) 9. (b) 10. (c) 11. (b) 12. (b)  
 13. (c) 14. (d) 15. (b) 16. (e) 17. (f) 18. (e)  
 19. (b) 20. (b).
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THEORETICAL QUESTIONS

 1.	 Explain	briefly	the	term	boundary	layer.
 2. Give four examples in everyday life where for-

mation of boundary layer is important.
 3. What is the ‘slip condition’ at the boundary?
 4.	 What	boundary	condition	must	be	satisfied	by	

the velocity distribution in laminar boundary 
layer over a plate?

 5.	 Why	is	the	flow	in	the	boundary	layer	analysed	
on	the	principles	of	viscous	flow	theory?

 6.	 What	is	the	physical	significance	of	displacement	
thickness of boundary layer?

 7.	 Define	momentum	thickness	and	energy	thick-
ness.

 8.	 Define	boundary	 layer	and	explain	 the	 funda-
mental causes of its existence.

 9. Explain the characteristics of laminar and turbu-
lent boundary layers.

 10.	 Will	the	laminar	boundary	layer	on	a	flat	plate	
held at zero incidence always turn into turbulent 
boundary layer at Rex = 5 × 105? Explain.

 11. Why is it necessary to control the growth of 
boundary layer on most of the bodies? What 
methods are used for such a control?

 12.	 Is	the	flow	within	the	boundary	layer	rotational	
or irrotational?

 13. It is stated that the pressure distribution within 
the boundary layer is determined by the outside 
flow	which	can	be	treated	as	inviscid.	Explain.

 14. How are the thickness of boundary layer, 
shear	 stress	 and	 the	 drag	 force	 along	 the	flat	
plate determined by Von Karman momentum 
equation?

 15. Obtain an expression for the boundary shear 
stress in terms of momentum thickness.

 16.	 How	will	you	find	the	drag	on	a	flat	plate	due	to	
laminar and turbulent boundary layers?

 17. How will you determine whether a boundary 
layer	flow	is	attached	flow,	detached	flow	or	on	
the verge of separation?

 18. What is a boundary layer? Why does it increase 
with distance from the upstream edge?

 19. Obtain Von Karman momentum integral 
equation.

 20. Prove that the momentum thickness and energy 
thickness	for	boundary	layer	flows	are	given	by

           
0

1 –u u dy
U U

δ  q =  
 ∫

  and, 
2

2
0

1 –e
u u dy
U U

δ  
δ =   

 
∫

 21.	 Define	the	following	terms:
  (i) Laminar boundary layer
  (ii) Turbulent boundary layer
  (iii) Laminar sublayer
  (iv) Boundary layer thickness.
 22. What is Blasius one-seventh power law of veloc-

ity distribution?
 23. What is mean by average drag co-efficient  

CD ? How does it differ from the local drag co-
efficient,	C*

D?
 24. What is laminar sublayer? How is the concept 

of laminar sublayer useful?

UNSOLVED EXAMPLES

 1. Show that for velocity distribution,

   
2

2 – ,u y y
U

   =    δ δ   
  the ratio of δ/δ* = 3
 2. The velocity distribution in the boundary layer 

over a high spillway face was found to have the 
following form:

   
0.22u y

U
 =  δ 

  Prove that the displacement thickness, the mo-
mentum thickness and the energy thickness in 
terms of δ, the boundary layer thickness, can be 
expressed as

   
*

0.18; 0.125; 0.127eδδ q
= = =

δ δ δ
   (Ravi Shanker University)
 3. Find the ratio of displacement thickness to 

momentum thickness and momentum thick ness 
to energy thickness for the velocity distribution 
in the boundary layer given by

   u
U

 = 2 (y/δ) – (y/δ)2 [Ans. 2.5, 7/11]

 4.	 For	the	velocity	profile	in	laminar	layer	given	as

   
2

2 –u y y
U

   =    δ δ   



Chapter 13 : Boundary Layer Theory         783

	 	 find	the	thickness	of	boundary	layer	at	the	end	
of the plate and the drag force on the side of 
the plate 1 m long and 0.8 m wide when placed 
in	water	flowing	with	 a	 velocity	 of	 0.15	m/s.	
Calculate	the	value	of	co-efficient	of	drag	also.	
Take µ for water = 0.·001 Ns/m2

   [Ans. 14.15 mm, 0.0338 N, 0.00376]
 5.	 Air	flows	over	a	smooth	flat	flate	with	a	velocity	

of	10	m/s.	The	velocity	profile	is	in	the	form

  
2

2 –u y y
U

   =    δ δ   
  The length of the plate is 1.2 m and width 0.9 

m. If laminar boundary layer exists upto a value 
of Re = 2 × 105 and kinematic viscosity of air = 
0.15	stokes,	find:	(i) The maximum distance from 
the leading edge upto which laminar boundary 
layer exists, and (ii) The maximum thickness of 
boundary layer.

   [Ans. (i) 0.3 m;  (ii) 3.67 mm]
 6. A plate of length 500 mm and width 250 mm has 

been placed longitudinally in a stream of crude 
oil	which	flows	with	a	velocity	of	6	m/s.	If	the	
oil	has	a	specific	gravity	of	0.9	and	kinematic	
viscosity of 1 stoke, calculate:

  (i) Boundary layer thickness at the middle of  
plate,

  (ii) Shear stress at the middle of plate, and
  (iii) Friction drag on one side of the plate.
  [Ans. (i) 10.5 mm, (ii) 87.8 N/m2, (iii) 12.36 N]
 7.	 Atmospheric	air	at	20°C	is	flowing	parallel	to	

a	 flat	 plate	 at	 a	 velocity	 of	 3	m/s.	Assuming	
cubic	velocity	profile	and	using	exact	Blasius	
solution estimate the boundary layer thickness 
and	 the	 local	 co-efficient	 of	 drag	 at	x = 1 m 
from	the	leading	edge	of	the	plate.	Also	find	the	
deviation of the approximate solution from the 
exact solution.

  [Ans. 11.376 mm; 1.511 × 10–3; 7.2%, 2.78%]
 8.	 Air	 is	flowing	over	a	plate	4	m	×	2	m	with	a	

velocity of 5 m/s at 15°C. If ρ = 1.208 kg/m3 
and  ν = 1.47 × 10–5 m2/s, calculate:

  (i) Length of plate over which the boundary   
layer is laminar and thickness of the laminar 
boundary layer,

  (ii) Shear stress at the location where boundary  
layer ceases to be laminar, and

  (iii) Total force on both sides on that portion of 
plate where boundary layer is laminar.

  [Ans. (i) 1.47 m; 10.39 mm; 
(ii) 0.01418 N/m2; (iii) 0.1662 N]

 9. A submarine can be assumed to have cylindrical 
shape with rounded nose. Assuming its length to 

be 55 m and diameter, 6·0 m, determine the total 
power required to overcome boundary friction 
if it cruises at 8·0 m/s velocity in water at 20°C

  Take ρ = 1030 kg/m3; ν = 1 × 10–6 m2/s
   [Ans. 476.5 kW]
 10. A 2 m wide and 5.0 m long plate when towed 

through water at 20°C experiences a drag 
of 30.38 N on both the sides. Determine the 
velocity of the plate and the length over which 
the boundary layer is laminar.

   [Ans. 1.0 m/s; 0.5 m]
 11. If the velocity distribution in laminar boundary 

layer is given by u y
U

=
δ

, obtain values/

expressions for 
*

, ,
x

q δ δ
δ q

   
3.640.333, , 2.998Ans.

xRe

 
 
  

 12. Assume velocity distribution in laminar 
boundary	layer	over	a	flat	plate	to	follow	the	law:

   sin
2

u y
U

p =  δ 

  Obtain expressions for 
*δ
q

 and 
x
δ .

   
2( – 2) 4.80,
(4 – )

Ans.
xRe

 p
 

p  

 13. A plate 300 mm × 100 mm is immersed in a 
liquid of density 998 kg/m3 and kinematic vis-
cosity 1 × 10–6 m2/s. The water is moving with 
a velocity of 15.0 m/s parallel to it. Calculate:

  (i) Drag force on that portion of the plate over 
which the boundary layer is laminar,

  (ii) Total drag force on both sides of plate.
   [Ans. (i) 1.39 N; (ii) 20.73 N]
 14. A passenger ship of 300 m length and 12 m draft 

is travelling at 45 km/h. Assuming the ship’s 
surface	to	act	as	flat	plate,	determine:

  (i) The total friction drag, and
  (ii) The power required to overcome this 

resistance.
   Take ρ = 1000 kg/m3 and ν = 1 × 10–6 m2/s.
   [Ans. (i) 751.68 kN, (ii) 9396 kW]
 15.		 The	average	drag	co-efficient	for	turbulent	layer	

flow	past	a	thin	plate	is	given	by:

     CD = 2.58
10

0.455
(log )LRe
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   where ReL is the Reynolds number based on 
plate length. A plate 500 mm wide and 5 m 
long	is	kept	parallel	to	the	flow	of	water	with	
free stream velocity 3 m/s. Calculate the drag 
force on both sides of the plate. Total ν = 0.01 
stoke. [Ans. 63.37 N]

  16. A streamlined train is 250 m long with a typi-
cal cross-section having a perimeter of 8 m 
above the wheels. If the kinematic viscosity 
of air at the prevailing temperature is 1.5 × 
10–5 m2/s and density is 1.24 kg/m3 deter-
mine the appropriate surface drag (friction 
drag) of the train when running at 80 km/h.

   Make allowance for the fact that boundary 
layer changes from laminar to turbulent on 
the train surface.  [Ans. 1088.5 N]

 17.  A barge  with  a  rectangular bottom surface 25 m 
long × 8 m wide is travelling down a river with 
a velocity of 0.5 m/s. A laminar boundary layer 
exists upto Reynolds number equivalent to 5 × 
105 and subsequently abrupt transition occurs to 
turbulent boundary layer. Calculate:

   (i) The maximum distance from the leading edge 
upto which laminar boundary layer persists 
and maximum boundary layer thickness at 
that point, 

  (ii)	 The	total	drag	force	on	the	flat	bottom	surface	
of the barge, and 

  (iii) The power required to push the bottom 
surface through water, at the given velocity.

  For water ρ = 998 kg/m3 and ν = 1 × 10– 6 m2/s.
 [Ans. (i) 1 m; 7.07 mm (ii) 69.68 N; (iii) 34.84 W]
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 14.1. Introduction.
 14.2. Force exerted by flowing fluid 

on a body.
 14.3. Expression for drag and lift.
 14.4. Dimensional analysis of drag 

and lift.
 14.5. Streamlined and bluff bodies.
 14.6. Drag on a sphere—terminal 

velocity of a body—
applications of Stoke’s law.

 14.7. Drag of a cylinder.
 14.8. Circulation and lift on a circular 

cylinder—flow patterns and 
development of lift—Position 
of stagnation points—Pressure 
at any point on the cylinder 
surface—expression for lift 
on the cylinder—expression 
for lift co-efficient for rotating 
cylinder—Magnus effect.

 14.9. Lift on an airfoil.
  Highlights
  Objective type Questions
  Theoretical questions
  Unsolved examples.

14.1. INTRODUCTION 
 In various engineering fields we encounter with 
the problems which involve the flow of fluid around 
submerged bodies/objects. In such problems either a 
fluid may be flowing around a stationary submerged 
body or a body may be flowing through a large mass of 
stationary fluid or both the body and the fluid may be in 
motion. Some of the examples are:
 (i) Motion of very small objects/bodies such as  fine 

sand particles in air or water,
 (ii) Very large bodies such as airplanes, submarines, 

automobiles, ships etc. moving through air or 
water, and

 (iii) The structures such as buildings, bridges etc. which 
are submerged in air or water,

 14.2. FORCE EXERTED BY A FLOW-
ING FLUID ON A BODY

 Whenever there is relative motion between  a real 
fluid and a body, the fluid exerts a force on the body. The 
body exerts an equal and opposite  force on the fluid. If 
the body is moving at a constant velocity in a stationary 
fluid, the fluid motion is unsteady, because at a given 
point in space, the velocity changes with time. However 
if the body is stationary and fluid flows at a constant 
velocity, it is steady motion. The magnitude of the force 
is same in both the cases.

Chapter

FLOW AROUND SUBMERGED 
BODIES-DRAG AND LIFT

14

Chord

FD

Airfoil

FL

U

( , )����

F F F= +
2 2

LD

Fig. 14.1. Lift and drag on an airfoil.
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 A body wholly immersed in a real fluid may be subjected to fllowing two kinds of forces due to 
relative motion between the body and the fluid (Fig. 14.1); these are:
 (i) Drag force. The component of force in the direction of flow (free stream) on a submerged 

body is called the drag force, FD ;
 (ii) Lift force.  The component of force at right angles to the direction of flow is called the lift 

force, FL.
 When a free stream approaches the body along the axis of symmetry, the force acting on the 
body is only the drag force, in the direction of flow and there is no lift force. The production of lift 
force requires asymmetry of flow, while drag force exists always. It is possible to create drag without 
lift but impossbile to create lift without drag.
The fluid viscosity affects the flow around the body in three ways to cause the force on the body:
 (i) At low Reynolds number (Re) the fluid is deformed in very wide zone around the body causing 

pressure force and frictional force.
 (ii) As Renolds number increases,viscous effects are confined to the boundary layers causing 

predominantly only friction force on the boundary.
 (iii) For certain body shapes, the boundary layer can separate causing additional pressure.

14.3.  EXPRESSIONS FOR DRAG AND LIFT 

 Fig. 14.2 shows a body held stationary in a stream of real fluid moving at a uniform velocity,U.

U

( , )����

�

p.dA

dA

�0.dA

FD

FL F

�

�

� �0. cosdA

� �0. sindAdA

�0.dAp dA.

p.dA sin �

p.dA cos �

Fig. 14.2. Pressure and frictional forces on an elementary surface of an immersed body.

 On an element of area dA on the surface of the body, let P and τ represent the static pressure and 
shear stress, and let θ be the inclination of the tangent to the element with the direction of flow. The 
component of the force, due to p and τ, along the direction of motion is known as Drag force FD , 
while the component prependicular to the direction of motion is known as Lift force FL. Considering 
the Fig. 14.2 (b), we can write:

  FD = 0. sin . cosp dA dAθ + τ θ∫ ∫  (14.1)

  FL = 0. sin . cos
A A

A A

dA p dAτ θ − θ∫ ∫  (14.2)

 where the symbol 
A
∫  repersents the integration over the entire body surface.

 — The term cos
A

pdA θ∫ is called pressure drag.

 —  The term 0. sin
A

dAτ θ∫ is called friction drag or skin drag or shear drag.
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 The contribution of shear  stresses to the lift may be neglected since shear stresses are small 
as compared to the pressure and act in direction roughly perpendicular to FL. For a body moving 
through a fluid of mass density r, at a uniform velocity U, the mathematical expression for the 
calculation of the drag and the lift may also be written as follows:

  FD = 
2

2D
UC A r  (14.3)

  FL = 
2

2L
UC A r  (14.4)

 where, CD = Co-efficient of drag (dimensionless),
  CL = Co-efficient of lift (dimensionless),
  r = Density of fluid,
  U = Relative velocity of fluid w.r.t. the body
  A = Some characteristic area.
 — For calculating the drag force (FD), usually the area A is taken as the area projected on the 

plane perpendicular to the relative motion of the fluid.
 — For calculating the lift force (F1), the area A is taken as the projected area of the body on a 

plane at right angles to the direction of lift force.
 — In the case of airfoil, the projection is conventionally taken on the plane of the chord, i.e.the 

area of the wing itself, independent of its inclination to the direction of flow.
  Area, (A) = Span (l) × mean chord (c) (14.5)
 Examples of immersed bodies having drag and/or lift forces:
 (i) A tall chimney exposed to wind;
 (ii) Flow of water past a bridge pier;
 (iii) Flow of fluids past blades in fans, blowers, compressors, turbines etc.;
 (iv) Motion of aeroplanes, submarines, torpedoes etc.
 Examples of bodies where both drag and lift forces are produced:
 (i) Propeller blades; (ii) Aerofoils;
 (iii) Hydrofiles; (iv) Rotating cylindrical bodies;
 (v) Kites etc.
 Following  points are worth noting:
 1. In contrast to drag,  the lift forces may exist even in ideal fluids by the presence of circulation.
 2. Real fluids also require vortices or circulation around the body for producing lift.
 3. In motion of arifoils with finite spans, there is another kind of drag force associated with the 

lift force, called the “induced drag”.

 Pressure drag and friction drag:

 The relative contribution of pressure drag ( ). cosp dA θ∫  and  friction drag ( )0. sindAτ θ∫ to 
the total drag depends on the following:
 (i) Characteristics of fluid,
 (ii) Shape of body, and 
 (iii) Orientation of the body immersed in the fluid.
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  When a thin plate is placed parallel to the 
direction of flow (Fig. 14.3), the pressure 
drag will be zero (θ = 90°) and the total drag 
is entirely due to shear stresses (and thus 
equal to friction drag or shear drag).

  When the same plate is held with its axis 
normal to flow direction (Fig. 14.4), the 
friction drag will be zero (θ = 0) and the flow 
separates at the edge forming a turbulent 
wake behind the plate. In this case the total drag will be due to the pressure force only.

  When the plate is held at an angle with the direction of flow, the total drag will be equal to 
the sum of pressure drag and friction drag.

U
Separation point

Plate

Wake

�0

Fig. 14.4. Thin plate placed perpendicular to flow.

14.4.  DIMENSIONAL ANALYSIS OF DRAG AND LIFT 

 For any given body shape, it is not possible to calculate the magnitude of the force, F, or 
its components FD and FL, theoretically. As such in almost all the cases the general practice is to 
evaluate forces experimentally. In order to plan the experiments properly and to analyse the results 
correctly, dimensional analysis of the problem is carried out  as given below.
Let us consider an object of characteristic length L be placed in a fluid stream of velocity U, of 
density r, of viscosity m and modulus of elasticity E.Then the force F exerted on the body could be 
written as :
  F = f (L, r, m,E, U, g) (14.6)
 By adopting any of the methods of dimensional analysis eqn. (14.6) may be transformed to the 
following dimensionless form:

  2 2
F

L Ur
 = , ,

/
UL U Uf

E gL
r 

 m r 

 But, ULr
m

 = Re, Reynolds number of flow

  
/

U
E r

 = M, Mach’s number

  U
gL

 = Fr, Froude’s number

 ∴ 2 2
F

L Ur
 = f (Re, M, Fr) (14.7)

�0

Boundary
layer

U

Fig. 14.3. Thin plate parallel to flow.
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 — At low speeds (M ≤ 0.3) the change in density is insignificant and so the effect of Mach’s  
number is negligible.

 — When the body is submerged fully in surrounding fluid the Froude’s number has no effect.
 Under the above circumstances the eqn. (14.7) can be rewritten as:

  2 2
F

L Ur
 = f (Re) (14.8)

 The parameter L2 represents area of the body, and parameter 
2

2
Ur  represents the dynamic 

pressure of the undisturbed flow stream.
 Further, eqn. (14.8) applies equally to both lift and drag which can thus be expressed in 
dimensionless  terms by the definition of drag and lift co-efficients as :

  Co-efficient of drag, CD = 
21

2

DF

U Ar ×
 (14.9)

  Co-efficient of lift, CL = 
21

2

LF

U Ar ×
 (14.10)

 The co-efficients CD and CL are of paramount importance and are invariably used for correlating 
aerodynamic lift forces.
 Example 14.1.  A truck having a projected area of 6.5 m2 travelling at 70 km/h has a total 
resistance of 2000 N. Of this 20 percent is due to rolling friction and 10 percent due to surface 
friction. The rest is due to form drag. Make calculations for the co-efficients  of form drag. Take r 
= 1.22 kg/m3 for air.    [PTU]
 Solution.  Projected area, A = 6.5 m2

  Speed of the truck, U = 70 100070 km / h 19.44 m/s
60 60

×
= =

×

  Density of air, r = 1.22 kg/m3

  Total resistance  = 2000 N

 Resistance due to rolling friction = 20 2000 400N
100

× =

 Resistance due to surface friction = 10 2000 200N
100

× =

 Resistance due to form drag = 2000 – 400 – 200 = 1400 N
 Co-efficient of form drag, CD:

  Now, form drag = 
2

2D
UC Ar

× ×

  1400 = 
21.22 (19.44) 6.5

2DC ×
× ×

 ∴ CD = 2
1400 2

1.22 (19.44) 6.5
×

=
× ×

0.934  (Ans.) 

 Example 14.2. On a flat plate of 2 m (length) × 1 m (width), experiments were conducted in a 
wind tunnel with a wind speed of 50 km/h. The plate is kept at such an angle that the co-efficients 
of drag and lift ate 0.18 and 0.9 respectively.
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 Determine:
 (i) Drag force,
 (ii) Lift force,
 (iii) Resultant force, and
 (iv) Power exerted by the air stream on the plate.
  Take density of air = 1.15 kg/m3   

 Solution. Area of the plate, A = 2 × 1 = 2 m2

  Speed of wind, U = 50 km/h = 50 1000 13.89m/s
60 60

×
=

×

  Density of air, r = 1.15 kg/m3

  Co-efficient of drag, CD = 0.18
  Co-efficient of lift, CL = 0.9.
 (i) Drag force, FD:

  FD = 
2

2D
UC Ar

× ×

   = 
21.15 13.890.18 2

2
×

× × = 39.94 N (Ans.)

 (ii) Lift force, FL:
  FL = 

2

2L
UC Ar

× ×

   = 
21.15 13.890.9 2

2
×

× ×  = 199.7 N (Ans.)

 (iii) Resultant force, F: F = 2 2 2 2(39.94) (199.7)D LF F+ = +  = 203.65 N (Ans.)

 Inclination with the velocity of air, θ = 1 1 199.7tan tan
39.94

L

D

F
F

− −= = o78.69  (Ans.)

 (iv) Power extered by the air stream on the plate, P:
  P = FD × U
   = 39.94 × 13.89 = 554.7 W (Ans.)
 Example 14.3.  Assuming the cross-sectional area of a passenger car to be 2.7 m2 with a drag 
co-efficient of 0.6, estimate the energy requirment at a speed of 60 km/h. Assume the weight of car 
to be 30 kN and co-efficient of friction 0.012. Assume r to be 1.208 kg/m3.
 Solution. Cross-sectional area of passenger car, A = 2.7m2

       Co-efficient of drag, CD = 0.6

 Speed of the passenger car, U = 60 km/h 60 1000 16.67
60 60

×
=

×
m/s

  Weight of the car, W = 30 kN
  Co-efficient of friction, m′ = 0.012
 Energy requirement, P:
 Total resisting force, (F) = Aerodynamic drag on the car + friction at the road surface

 ∴ F = 
2

2D
UC A Wr

× + m′
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   = 
21.208 16.670.6 2.7 0.012 (30 1000)

2
×

× × + × ×

   = 217.9 + 360 = 631.9 N
 Now, P = F ×U
   = 631.9 × 16.67 = 10553 W or 10.53 kW (Ans.)
 (This is the power required at the wheels)
 Example 14.4.  The vertical component of the landing speed of a parachute is 6 m/s. Treat the 
parachute as an open hemisphere (Fig. 14.5) and determine its diameter if the total weight to be 
carried is 1200 N. Take r = 1.208 kg/m3 and CD = 1.33.
 Solution. Speed of parachute, U = 6 m/s
  Weight to be carried, W = 1200 N
  Density of air, r = 1.208 kg/m3

  Co-efficient of drag, CD = 1.33
 Diameter of parachute, D:
 Projected area of the hemispherical parachute,

  A = 2

4
Dπ

  Drag force, FD = W = 1200 N
 Using the equation:

  FD = 
2

2D
UC Ar

× × ,  we get:

  1200 = 
2

21.208 61.33
2 4

D× π
× ×

 or, D2 = 1200 2 4 52.83
1.33 1.208 36

× ×
=

× × π ×

 or, D = 7.72 m/s (Ans.)
 Example 14.5.  Experiments were conducted in a wind tunnel at 50 kmph on a flat plate of size 
2 m × 1 m. The specific weight of air is 11.28 N/m3 .The plate is kept at such an angle that the co-
efficients of lift and drag are 0.75 and 0.15, respectively. Determine lift  force, drag force, resulting 
force and power exerted by air stream on the plate. (Delhi University)

 Solution. Given : U = 50 kmph = 50 100
60 60

×
×

 = 13.89 m/s; A = 2 × 1 = 2m2; 

  w = 11.28 N/m3 ; CL = 0.75; CD = 0.15
 FD, FL, FR, P :

  r = 311.28 1.15 kg/m
9.8

w
g

= =

  Lift  force, FL = 
2

2L
UC Ar

× ×  [Eqn. (14.3)]

   = 
21.15 (13.89)0.75 2

2
×

× × = 166.4 N (Ans.)

  Drag force, FD = 
2 21.15 (13.89)0.15

2 2D
UC Ar ×

× × = × × 2 = 33.28 N (Ans.)

D

W = 1200N

Fig. 14.5. Parachute.
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  Resultant force, FR = 2 2 2 2(166.4) (33.28)L DF F+ = + = 169.69 N (Ans.)

 Inclination with the main stream, θ = 1 166.4tan
33.28

−   = 
 

o78.69 (Ans.)

 Power exerted by the air stream on the plate,
  P = FD × U = 33.28 × 13.89 = 462.26 Nm/s = 462.26 W (Ans.)
 Example 14.6.  A kite weighing 9.8 N and having an area 1 m2 makes an angle of 7° to 
horizontal when flying in a wind of 36 km/h. If pull on the string attached to the kite is 49 N and 
it is inclined to the horizontal at 45°, calculate the lift and drag co-efficients. Take r for air =  
1.2 kg/m3.     [Anna University]
 Solution.   Weight of the kite = 9.8 N
  Projected area of the kite, A = 1 m2 
  Angle made by the kite with the horizontal = 7°
  Angle made by the string with the horizontal = 45° 
  Pull on the string, P = 49 N.

U = 36 km/h

Y

Lift

Drag

W = 9.8 N

X

String

P sin 45º

P cos 45º

P = 49 N

45º

Kite

7°
45º

Fig. 14.6. Forces on a flying kite.

  Speed of the wind, U = 36 km/h = 36 1000 10 m/s
60 60

×
=

×
 

  Density of air, r = 1.0 kg/m3

 The forces acting on the kite taken as free body are shown in Fig 14.6.
  Drag forces, FD = Force exerted by wind on the kite in the direction of motion, 

i.e. in the X-direction
   = Components of pull along X- direction
   = P cos 45° = 49 cos 45° = 34.65 N
 Drag co-efficient, CD :

  FD = 
2

2D
UC Ar

× ×

  34.65 = CD 

21.2 10 1 60
2 DC×

× × =

 or CD = 0.577 (Ans.)
 Lift co-efficient, CL:
  Lift force, FL = Force exerted by wind on the kite perpendicular to the 

direction of motion i.e.,along Y-direction
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   = Component of P in vertically downward direction + weight of  
kite 

   = P sin 45° + 9.8 = 49 sin 45° + 9.8 = 44.45 N

 Also, FL = 
2

2L
UC Ar

× ×

 ∴ 44.45 = 
21.2 10 1 60

2L LC C×
× × =

 or, CL = 
44.45

60
= 0.741  (Ans.)

 Example 14.7.  A kite of dimensions 0.8 m × 0.8 m and weighing 6 N is maintained in air 
at an angle of 10° to the horizontal. The string attached to the kite makes an angle at 45° to 
the horizontal and at this position, the drag and lift co-efficients are estimated to be 0.6 and 0.8 
respectively. Determine;
 (i) Wind speed, and  (ii)  Tension in the string.
 Take r for air = 1.2 kg/m3

P cos 45º

P sin 45º
W N= 6

Lift

Drag

X

Kite

10º

45º

U

Y

P

Fig. 14.7

 Solution.  Projected area of the kite, A = 0.8 × 0.8 = 0.64 m2,
  Weight of kite, W = 6 N,
  Angle made by kite with horizontal = 10°,
  Angle made by the string with horizontal = 45°,
  Co-efficient of drag, CD = 0.6,
  Co-efficient of lift, CL = 0.8.
 (i) Wind speed, U:
  Drag force, FD = Component of string force P in the X-direction
   = P cos 45°

 Also, FD = CD × 
2

2
U Ar

×
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 ∴ P cos 45° = 0.6 × 
21.2 0.64

2
U

×

 or, P cos 45° = 0.2304 U2 (i)
 Lift force, FL = Component of string force P vertically downwards + weight 

of kite
   = P sin 45° + 6

 Also, FL = CL × 
2

2
Ur  × A

 or, P sin 45° + 6 = 0.8 × 
21.2

2
U×  × 0.64 = 0.3071 U2

 or, P sin 45° = 0.3071 U2 – 6 (ii)
 But, P sin 45° = P cos 45° ( sin 45° = cos 45°)
 ∴ 0.2304 U2 = 0.3072 U2 – 6 [equating eqns. (i) and (ii)]

 or, U2 (0.3072 – 0.2304) = 6   or   U2 = 6 78.125
0.3072 0.2304

=
−

 ∴ U = 8.84 m/s  or  8.84 3600
1000

×  = 31.8 km/h (Ans.)

 (ii) Tension in the string, T ( =  P):
 Here tension in the string, T = P
 Substituting the value of U in eqn (i), we get:
  P cos 45° = 0.2304 U2 = 0.2304 × 78.125 = 18

  P (= T) = 18
cos 45

 = 25.456 N (Ans.)

 Example 14.8.  A sphere of 4 cm diameter made 
of aluminium (sp.gr. =2.8) is attached to a string and 
suspended from the roof of a wind tunnel test section. 
If an air stream of 30 m/s flows past the sphere, find 
the incliaton of the string and tension in the string.
  ra = 1.2 kg/m3 
  va = 1.5 × 10–5 m2/s
 CD = 0.5, 104 < Re ≤ 3 × 105, = 0.2, Re > 3 × 105

(Neglect drag on string).                               (UPTU)
 Solution. Given: Dia. of sphere,
  D = 4 cm = 0.04 m,  
  sp. gravity = 2.8: U = 30 m/s; ra = 1.2 kg/m3;
  va = 1.5 × 10–5 m2/s;
  CD = 0.5, 104 Re ≤ 3 × 105, = 0.2, Re > 3 × 105

 θ, T:

  Weight = 
3

34 4 0.04 (2.8 1000) 9.81 0.92 N
3 3 2

R g  π × r × = π × × × × = 
 

  Re = 5
5

30 0.04 0.8 10
1.5 10a

UD
v −

×
= = ×

×

� Tension
(

)T

Drag force

Weight ( )W

Wind tunnel

Air stream

Fig. 14.8
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  ∴ CD = 0.5

  Drag force, FD = CD × 
22 21.2 (30) 0.040.5

2 2 2
aU A

 r ×  × = × × π ×  
  

   = 0.339 N (Ans.)

  tan θ = 
Drag force 0.339

Weight 0.92
DF

W
= =

 ∴ θ = 1 0.339tan
0.92

−  
 
 

 = 20.22° (Ans).

  Tension in the string, T = 2 2 2 20.339 0.92DF W+ = +  = 0.98 N (Ans.)

 Example 14.9.  Air blows over a cylinder of diameter 60 mm and finite length with a velocity 
of 0.12 m/s. Find the total drag, shear drag and pressure drag on 1 m length of the cylinder if the 
total drag and shear drag co-efficients are 1.25 and 0.18 respectively. Take r for air = 1.25 kg/m3.

 Solution.  Diameter of cylinder, D = mm = 0.06 m
  Length of cylinder, L = 1 m
  Velocity of air, U = 0.12 m/s
  Total drag co-efficient, CDT = 1.25
  Shear drag co-efficient, CDS = 0.18
  Density of air, r = 1.25 kg/m3

 Total drag, FDT = 
2

2DT
UC Ar

× ×

  (where, A = projected area = 1× 0.06 = 0.06 m2)

 or, FDT = 
21.25 0.121.25 0.06 = .

2
×

× × –46 75 × 10 N  (Ans.)

 Shear drag, FDS = 
2 21.25 0.120.18 0.06

2 2DS
UC Ar ×

× × = × ×

   = 9.72 × 10–5 N (Ans.)
 Also, Total drag = Pressure drag + shear drag
 ∴ Pressure drag = Total drag – shear drag
   = 6.75 × 10–4 – 9.72 × 10–5 = 5.778 × 10–4 N (Ans.)
 Example 14.10.  A 2.5 m long body having a projected area of 2.4 m2 normal to the dirction of 
motion, is moving through water which is having a viscosity of 0.0012 Ns/m2 . Find the drag on the 
body if it has drag co-efficient 0.45 for Reynolds number of 7× 106.
 Solution.  Length of body, L = 25 m
  Projected area of body, A = 2.4 m2

  Viscocity of water, m = 0.0012 Ns/m2

  Drag co-efficient, CD = 0.45
  Reynolds number, Re = 7 × 106

 Drag on the body, FD:
 Let us first find from the given Reynolds number the velocity with which the body is moving in 
water.
 Now, Re = ULr

m
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 or, 7 × 106 = 
61000 2.5 7 10 0.0012or 3.36 m/s

0.0012 1000 2.5
U U× × × ×

= =
×

 Drag on the body (FD ) is given by:

  FD = 
2 21000 3.360.45 2.4

2 2D
UC Ar ×

× × = × ×

   = 6096.4 N (Ans.)
 Example 14.11.  A cup anemometer shown in Fig. 
14.9 rotates freely without air friction. Calculate the 
speed of rotation against a wind speed of 54 km/h. Take 
for hemisphere: For hollow upstream, CD = 1.33; for 
hollow downstream, CD = 0.34.
 Solution. Wind speed,

                    U = 54 54 1000km/h = 15 m/s
60 60

×
=

×

 Speed of rotation, N (r.p.m.):
 If the anemometer revolves at a uniform angular 
velocity ω, for steady rotation, net torque about the axis 
of rotation must be zero.
 Fluid velocity relative to cup 1 = 15 – 0.2 ω
 Fluid velocity relative to cup 2 = 15 + 0.2 ω
 Corresponding drag forces on 1 and 2 are:

  FD = 21.33 (150 0.2 )
2

Ar
× − ω

  FD = 
2

21.34 (15 0.2 )
2 2D D

A A UF C
 r r

× + ω = ×  
  

 Now,  Torque = (FD1
 – FD2

) r = 0
 or, FD1

 = FD2
 ( r ≠ 0)

 or, 21.33 (15 0.2 )
2

Ar
− ω  = 20.34 (15 0.2 )

2
Ar

× + ω

 or, 
215 0.2

15 0.2
− ω 

 + ω 
 = 0.34 15 – 0.2or 0.5056

1.33 15 + 0.2
ω

=
ω

 or, 15 – 0.2 ω = 0.5056 (15 + 0.2 ω) = 7.584 + 0.101ω

 or, 0.301 ω = 7.146,  or  7.416 24.64
0.301

ω = =  rad/s.

 But, ω = 2 24.64
60

Nπ
=

 ∴ N = 24·64 60
2

×
π

 = 235.3 r.p.m. (Ans.)

 Example 14.12.  A.mixer consists of two circular discs each 120 mm in diameter. These discs 
are spaced 1.2 m apart on the two ends of a horizontal rod whose centre has a vertical shaft 
attachement to it. The mixer is used to rotate in a solution having a density r = 930 kg/m3 and 
kinematic viscosity v = 0.8 stoke. Neglecting the resistance of the rod and shaft, find the power 
required by the shaft revolving at 50 r. p.m. For 3000 < Re <5000, take CD = 1.15.

100
mm

FD

0.4 m
Downstream

Hollow hemisphere

Axis of
rotation

�

Hollow hemisphere

2

1
100

mm
FD

U = 15 m/s

Upstream

Fig. 14.9
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 Solution. Diameter of each circular disc, D = 120 m  = 0.12 m 
  Distance between the disc  = 1.2 m 
  Density of solution, r  =  930 kg/ m3

 Kinematic viscosity of the solution, 
  v = 0.8 stoke  =  0.8 × 10–4 m2/s 
  Speed of the shaft, N  =  50 r. p .m.
  Co-effiecient of drag, CD =  1.15
 (for 3000 < Re <5000)
 Power required, P:
 Linear velocity of each disc, 

  U = 1.2 50 3.14 m/s
60 60
DNπ π × ×

= =

  Reynolds number, Re = UD
v

   = 4
3.14 0.12 4710
0.8 10−

×
=

×

 As Re lies between 3000 and 5000, therefore, coefficient of drag, CD = 1.15

  The drag on each disc, FD = 
2

2D
UC Ar

× ×

   = 
2

2930 3.141.15 ( / 4) 0.12 59.63 N
2

×
× × π × =

 ∴ Torque produced by the drag on the two discs
   = 2 FD × R = 2 × 59.63 × 0.6 = 71.55 Nm

  Power required, P = 2 2 50 71.55watts
60 60
NTπ π × ×

=  = 374.6W (Ans.)

 [Alternatively: P = 2 × FD × U = 2 × 59.63 × 3.14 = 374.5 W (Ans.)

 Example 14.13. A ship is propelled 
by two cylindrical rotors each of dia- 
meter 2.5 m and length 7.5 m revolving 
at 150 r. p. m. about their axes which are 
horizontal. Estimate the force exerted upon 
the rotors in the direction of motion when the 
relative wind velocity is 40 km/h at an angle 
of 30° to the horizontal. Assume r for air as  
1.22 kg/m3 .
 Solution. Diameter of each rotor,  
D = 2.5 m
 Length of each rotor, L = 7.5 m
 Speed of each rotor,
  N = 150 r. p. m.
 Relative wind velocity,
 U = 40 km/h

120 mm

1.2 m

R = 0.6 mR = 0.6 m

Shaft
Disc

50 r.p.m

Fig. 14.10

FL

30º

FD

FL cos 30º

FD sin 30º
30º

30º

U

FL

FL
FD

FD

Ship

Cylindrical
rotor

Fig. 14.11. Estimation of force on a ship propelled 
by two rotors.
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    = 40 1000 11.11
600 60

×
=

×
m/s

  Density of air, r = 1.22 kg/m3

 Circumferential velocity of the rotors,

  uc = 2.5 150 19.63 m/s
60 60
DNπ π × ×

= =

 ∴  Ratio, cu
U

 = 19.63 1.77
11.11

=

 From Fig. 14.20, the corresponding values of drag and lift co-efficients are:
 CL  4.4  and  CD  1.5
 Lift force for each rotor,

  FL = 
2 21·22 11·114·4 (18·75) 6211·7 N

2 2L
UC Ar ×

× × = × × =

  (where, A = Projected area = 7.5 m × 2.5 m = 18.75m2)
 Drag force for each rotor,

  FD = 
2 21·22 11·111·5 18·75 2117·6 N

2 2D
UC Ar ×

× × = × × =

 Total force in the direction of motion,
  F = 2 (FL cos 30° – FD sin 30°) 
   = 2 (6211.7 cos 30° – 2117.6 sin 30°) = 8641 N (Ans.)

14.5.  STREAMLINED AND BLUFF BODIES 

 Streamlined body. A body whose surface coincides with the stream lines when placed in a 
flow, is called a streamlined body (Fig. 14.12). In this case flow separation takes place only at the  
trailling edge or rearmost part of the body. The wake formation zone behind a streamlined body is 
very small, as a consequence of which the pressure drag will be very small. In such a body although 
due to greater surface of the body the skin friction increases but the net effect is a significant 
reduction of total drag. A body may be streamlined at low velocites but may not be so at higher 
velocities, also when placed in a particular position in flow but may not be so when placed in 
another position.
 Streamlined shapes are used for the wings of aeroplanes and for the blades of marine propellers 
and rotary axial flow machines.
 Bluff body. A body whose surface does 
not coincide with streamlines when placed in 
a flow, is called a bluff body (Fig. 14.13).
In this case there is extensive boundary layer 
separation accompanied by a wake with large 
scale eddies. Due to large wake formation, 
the resulting pressure drag is very large as 
compared to the drag due to friction on the 
body.

14.6.  DRAG ON A SPHERE 

 It has been observed that in the case of an ideal fluid flowing past a sphere (or any other object) 
there is no drag.

Wake

Fig. 14.12. Streamlined body.
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 Let us consider a case when real fluid flows past 
a sphere. Let D be the diameter  of the sphere, V be 
the velocity of flow of fluid of mass density r and 
viscosity m.
 (i) For Re ≤ 0.2: When the velocity of flow is very 

small or the fluid is very viscous such that the 
Reynolds number is very small, being as low 

as 0.2 0.2UDi.e. Re r = ≤ m 
 or even less then 

the viscous forces are much more predominant than the intertial forces. C.G. Stokes analysed 
theoretically the flow around a sphere under very low velocities, such that Re < 0.2.Stokes 
found that the total drag force is given by:

  FD = 3 π mDU (14.11)
 He further found out that out of the total drag given by eqn. (14.11), two-thirds is contributed 
by skin friction and one-third by the pressure difference. Thus:

  Skin friction drag = 2 2 3 2
3 3DF DU DU= × πm = πm

  Pressure drag = 1 1 3
3 3DF DU DU= × πm = πm

 Also, the total drag is given by:

  FD = 
2

2D
UC Ar

× ×  [Eqn. (14.9)]

  (where, A = projected area of the sphere = 2

4
Dπ )

 From eqns. (14.11) and (14.9), we have:

  3πmDU = 
2

2

2 4D
UC Dr π

× × ×

 ∴ CD = 2
2

3 24 24

2 4

DU
UD ReU D

πm m
= =

rr π
×

 (14.12)

 Eqn. (14.12) is generally called ‘Stokes law’.
 (ii) For Re between 0.2 and 5: Oseen made an improvement to the Stokes’ solution by partly 

taking into account the effect of inertial terms.He found that

   CD = 24 31
16Re Re

 + 
 

 (14.13)

 (iii) For 5 ≤ Re ≤ 1000: The value of CD for Re between 5 to 1000 is equal to 0.4
 (iv) For 1000 ≤ Re ≤ 100000: The value of CD in the range is more or less independent of Reynolds 

number, and may be taken as 0.5.
 (v) For Re > 105: For Reynolds mumber greater than 105 the value of CD is approximately equal 

to 0.2.

14.6.1. Terminal velocity of a body
 The terminal velocity is the maximum velocity attained by a falling body. When a body is 
allowed to fall from rest in the atmosphere its velocity increases due to gravitational acceleration. 

Plate Wake

Fig. 14.13. Bluff body.
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As the velocity increases the drag force (opposing the motion of the body) also increases. When 
the drag force becomes equal to the weight of the body, the acceleration ceases and the net external 
force acting in the body becomes zero and the body will move at constant speed (called terminal 
velocity).
 The terminal velocity of a body falling through a liquid at rest is calculated from the following 
relation:
  W = FD + FB (14.14)
 where, W = Weight of the body, acting downward,
  FD = Drag force, acting vertically upward, and
  FB  = Buoyant force, acting vertically upward.
 The terminal velocity of a sphere falling through a liquid at rest is calculated as follows:
   W = FD + FB 

  3

6 sD wπ
×  = 33

6 fDU D wπ
πm + ×

 where, D = Diameter of the sphere, 
  ws = Specific weight of the material of sphere,
  wf = Specific weight of the fluid,
  D = Diameter of the sphere, and
  U = Terminal velocity.

 or, 3πmDU = 3 ( )
6 s fD w wπ

−

 or, U = 
2

( )
18 s f
D w w−

m
 (14.15)

 
2

or, ( )
18 s f
D w w

U
 

m = − 
 

 [14.15(a)]

14.6.2. Applications of Stokes’ Law
 The following are the applications of Stokes’ low:
 1. To calculate the terminal velocity of a falling sphere and hence the viscosity of the fluid.
 2.  Desilting river flow.
 3. Separating the coolant from metal chips in machining operations.
 4. Sanitary engineering—treatment of raw water and sewerage etc.
 Example 14.14.  A ball of 70 mm diameter is supported in a vertical air 
stream which is flowing at a velocity of 6.5 m/s.Calculate the weight of the 
ball. Take for air: r = 1.25 kg/m3 and v = 1.4 stokes.
 Solution. Diameter of the ball, D = 70 mm = 0.07 m.
  Velocity of air, U = 6.5 m/s
  Density of air, r = 1.25 kg/m3

 Kinematic viscosity of air,
  v = 1.4 stokes = 1.4 × 10–4 m2/s.
 Weight of the ball, W:

  Reynolds number, Re = 4
6.5 0.07 3250
1.4 10

UD
v −

×
= =

×

Air stream

BallFD

W

Fig. 14.14
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 Thus the value of Re lies between 1000 and 10000 and hence CD = 0.5.
 When the ball is just supported in stream, its weight is equal to the drag force (Fig. 14.14), 
neglecting buoyant force being very small.

 But,  Drag force, FD = CD 

2

2
U Ar

× ×

 where, A = Projected area of the ball

   = 2 2 20.07 0.003848 m
4 4

Dπ π
× = × =

 ∴ FD = 
21.25 6.50.5 0.003848 0.0508 N

2
×

× × =

 Hence,  weight  of the ball, W = FD = 0.0508 N (Ans.)

 Example 14.15.  A steel sphere of 4 mm diameter falls in glycerine at a terminal velocity of 
0.04 m/s. Assuming Stokes’ law is applicable, determine:
 (i) Dynamic viscosity of glycerine,
 (ii) Drag force, and 
 (iii) Drag co-efficient for the  sphere.
 Take specific weights of steel and glycerine as 75 kN/m3 and 12.5 kN/m3 respectively.

 Solution.  Diameter of the sphere, D  = 4 mm = 0.004 m
  Terminal velocity, U  =  0.04 m/s
  Specific weight of steel, ws  =  75 kN/m3 
  Specific weight of glycerine, wf  =  12.5 kN/m3 

 (i) Dynamic viscosity of glycerine, µ:

  Weight of sphere, W = 3 3 3(0.004) (75 10 ) 0.0025 13 N
6 6sD wπ π

× = × × × =

 Buoyant force on sphere, FB = 3 2 3(0.004) (12.5 10 ) 0.0004188 N
6 6fD wπ π

× = × × × =

  Drag force on sphere, FD = 3πµDV = 3π × µ × 0.004 × 0.04 = 0.001508 µ N
 But, W = FD + FB
 ∴ 0.002513 = 0.001508µ + 0.0004188

 or, m = 20.002503 0.0004188 1.388 Ns/m
0.001508

−  = 
 

 
312.5 10 0.04 0.004

9.81 1.388
UDRe

 r × × ×
= = m ×

. .0 147; Since < 0 2, therefore, the expression 3 is validDRe F DU


= m= π 


 
2 2

3 20.004Also, ( ) (75 12.5) 10 1.388 Ns/m
18 18 0.04s f
D w w

U
 

m = − = − × = × 

[Eqn. 14.15 (a)]
 (ii) Drag force, FD :
  FD = 3πµDU = 3π × 1.388 × 0.004 × 0.04 = 0.00209 N (Ans.)
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 (ii) Drag co-efficient for sphere, CD :

  CD = 24
Re

 [Eqn. 14.12]

   = 
24

0.147
= 163.26  (Ans.)

 Example 14.16.  Determine the velocity of fall of rain drops of 0.3 mm diameter in atmospheric 
air having density 12 kg/m3 and kinematic viscosity 0.15 stokes. Assume stokes’ law holds good.
 Solution. Diameter of the rain drop, D = 0.3 mm = 0.3 × 10–3 m
  Density of water (rain drops), r = 1.2 kg/m3 

  Kinematic viscosity, v = 0.15 stokes = 0.15 × 10–4 m2/s
 ∴  Dynamic viscosty, µ = rv = 1.2 × 0.15 × 10–4 = 1.8 × 10–5 Ns/m2

 The terminal velocity of a spherical rain drop in laminar motion in air of large extent is given 
by (Stokes’  law),

  U = 
2

( )
18 s f
D w w−

m
 [Eqn. (14.15)]

 where, ws = Specific weight of spherical rain drop (= 9810 N/m3), and
  ws = Specific weight of fluid (air) = (1.2 × 9.81 N/m3)

 ∴ U = 
3 2

5
(0·3 10 ) (9810 1·2 9·81) /

18 1·8 10
2·72 m s

−

−
×

− × =
× ×

 (Ans.)

 Example 14.17.  A 2 mm diameter metallic ball of specific gravity 11 is allowed to fall in a 
fluid of specific gravity 0.9 and viscosity 1.4 Ns/m2. Determine:
 (i) Drag force (exerted by the fluid on the ball),
 (ii) Pressure drag and skin friction drag, and
 (iii) Terminal velocity of ball in fluid.

 Solution.  Diameter of the ball, D = 2 mm = 2 × 10–3 m
  Specific gravity of metallic ball = 11 
 ∴  Specific weight, ws = 11 × 9.81 kN/m3 = 107.91 kN/m3

  Specific gravity of fluid,  = 0.9
 ∴  Specific weight, wf = 0.9 × 9.81 = 8.83 kN/m3

  Dynamic viscosity of fluid, µ = 1.4 Ns/m2.
 (i)  Drag force, FD :

  Weight of the ball, w = 3 3 3 3(2 10 ) (107.91 10 )
6 6sD w −π π

× = × × × ×

   = 4.52 × 10–4 N
  Buoyant force, FB = (π/6) × D3 × wf = (π /6) × (2 × 10–3)3 × (8.83 × 103)
   = 3.69 × 10–5 N
 When the ball attains the terminal velocity, we have:
  W = FD + FB
 or,  FD = W –  FB = 4.52 × 10–4 – 3.69 × 10–5 = 4.151 × 10–4 N (Ans.)
 (ii) Pressure drag, skin friction drag:

    Pressure drag  = 41 1 4·151 10
3 3

41·384 × 10 NDF − −= × × =  (Ans.)
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  Skin friction drag = 42 2 4·151 10 2
3 3DF −= × × = -4·767 × 10 N (Ans.)

 (iii) Terminal velocity of the ball U:
  FD = 3 πµDU [Eqn. (14.11)]
 ∴ 4.151 × 10–4 = 3π × 1.4 × 2 × 10–3 ×U

 or, U = 
4

3
4.151 10

3 1.4 2 10

−

−
×

=
π × × ×

0.0157 m / s (Ans.)

 Now let us check the Reynolds number, Re.

  Re = 
3 3(8.83 10 ) 0.0157 2 10 0.02

9.81 1.4
UD
µ

−r × × × ×
= =

×

 Since Re < 0.2, therefore, the expression FD = 3 πµDU for the calculating the terminal velocity 
is valid,
 Example 14.18.  Stokes derived the drag FD experienced by a sphere of diameter D moving 
at a uniform velocity U through a fluid of visosity µ to be FD = 3 πµDU. State the validity of this 
expression in relation to the particular Reynolds number. Derive the co-efficient of drag CD  from 
Stokes’ law.    [MDU, Haryana]

 Solution. Stokes derived the expression for total drag,
  FD = 3 πµDU (i)
on a sphere immersed in a flowing fluid for which Reynolds number is upto 0.2, so that inertia 
forces may be assumed negligible. In that case the various forces are much more important and 
predominant than inertia forces.
 Drag is also given by the expression:

  FD = 
2

2D
UC A× × r  (ii)

 where, A (= projected area of sphere) = 2

4
Dπ , and  CD = co-efficient of drag.

 From (i) and (ii), we have:
  3πmDU = 

2
2

4 2D
UC Dπ r

× ×

 or, CD = 2
2

3 µ 24

4 2

DU
UDUD

π m
= =

rπ r
×

Re
24

 (Ans.)

 Example 14.19.  Determine the largest diameter and corresponding terminal velocity of a 
polystyrene spherical particle settling in air. It obeys Stokes’ law.
  Density of polystyrene particle = 1047.9 kg/m3

  Density of air = 1.2 kg/m3

  Kinematic viscosity of air = 1.5 × 10–5 m2/s (M.U.)
 Solution. Given: rs =  1047.9 kg/m3; ra = 1.2 kg/m3, va = 1.5 × 10–5 m2/s 

 D, U :
 The Stokes’ law is valid upto Re =1.0. For maximum size particle that obeys Stokes’ law,

  Remax = 1 or a

a

vUD U
v D

= =
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 Stokes’ law would give: U = 
2

( )
18µ s f
D w w−  [Eqn. (14.15)]

 (where, suffices s and f stand for sphere and fluid respectively)

  av
D

 = 
2

( )
18µ s a
D g gr × − r ×

  m = ma = va × ra

   = 1.5 × 10–5 × 1.2
   = 1.8 × 10–5

 Substituting the values, we get:

  
51.5 10

D

−×  = 
2

5 (1047.9 9.81 1.2 9.81)
18 1.8 10

D
− × − ×

× ×

 or, D = 

1
5 5 31.5 10 18 1.8 10

9.81 (1047.9 1.2)

− − × × × ×
 × 

   = 7.793 × 10–5 m = 0.0779 mm (Ans)

 ∴  Terminal Velocity, U = 
5

3
1.5 10

0.0779 10
0.1926 m / sav

D

−

−
×

= =
×

(Ans.)

14.7.  DRAG ON A CYLINDER 

 Consider a real fluid flowing past a cylinder of a diameter D and length L (length being 
perpendicular to the direction of flow), with a uniform velocity U.
 (i) For Re < 1:
 — When Re < 0.2, the inertia force is negligibly small as compared to viscous force and hence 

flow pattern will be symmetrical.

 — Also, when Re < 1, FD ∝ U and CD ∝ 
1
Re

.

 (ii) For Re  = 1 to 2000; CD decreases and attains a minimum value of 0.95 at Re = 2000.
 (iii) For Re = 2000 to 3 × 104 : CD increase and becomes 1.2 at Re = 3 × 104.
 (iv) For Re = 3 × 104 to 3 × 105 : CD decreases and its value bocomes 0.3 at Re = 3 × 105

 (v) For Re = 3 × 106: CD increases and attains a value of 0.7 in the end.

14.8.  CIRCULATION AND LIFT ON A CIRCULAR CYLINDER 

14.8.1. Flow Patterns and Development of Lift
 Case I. Stationary cylinder. Consider an ideal fluid flowing over a stationary cylinder of 
radius R , with a uniform velocity U. In this case flow pattern will be symmetrical (Fig.14.15) and 
the velocity u at any point on the surface of the cylinder is given by,
  uθ = 2 U sin θ (14.16)
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u U
�

= 2 sin �

R
�

Cylinder

               

R

Cylinder

u =c
�

2�R

Fig. 14.15. Flow of ideal fluid over stationary cylinder. Fig. 14.16. Stream lines for free vortex.

�

2�R

u u u

= 2Usin +

= +
� c

�

FL

R
�

Cylinder

Fig. 14.17. Flow pattern over a rotating cylinder and development of lift on cylinder due to circulation.

 where, θ = The angular distance of the point from the forward stagnation point.
 In this case, since the flow pattern is symmetrical about the horizontal axis, the pressure 
distributions on the upper and lower halves of the cylinder are identical, and hence there is no lift 
acting on the cylinder.
 Case II. Constant circulation imparted to the cylinder. When a constant circulation Γ is 
imparted to the same cylinder, the flow pattern around the cylinder consists of stream lines which 
are series of concentric circles (Fig. 14.16). The peripheral velocity on the surface of the cylinder 
due to circulation is given by,
  mc = 

2 R
Γ
π

 (14.17)

 Case III. Composite flow pattern. If the above two flow patterns are superimposed one over 
the other, then a composite flow pattern as shown in Fig. 14.17 will be obtained. The flow pattern 
is now unsymmetrical about the horizontal axis. The velocity at any point on the surface of the 
cylinder is obtained by adding eqns. (14.16) and (14.17) as: 

  u = 2 sin
2cu u U

Rθ
Γ

+ = θ +
π

 (14.18)

 As the circulation Γ has been taken as clockwise, the superimposition causes the velocity around 
the upper half portion of the cylinder to be higher than that around the lower half portion (this is 
so because around the upper half portion of the cylinder the velocity of flow and the velocity due 
to circulation being in the same direction are added together, while around the lower half portion 
of the cylinder both velocities being in opposite direction are subtracted). Hence on the lower half 
portion of the cylinder, where velocity is less, pressure will be more than the pressure on the upper 
half portion of the cylinder. As such a pressure force acts on the upward direction and obviously a 
lift force is exerted on the cylinder, However, since the flow is symmetrical about the vertical axis, 
the cylinder is not subjected to any drag.
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14.8.2. Position of Stagnation Points
 The stagnation points are those points on the surface of the cylinder, where velocity is zero. 
The velocity at any point on the surface of the rotating cylinder is given by eqn. 14.18 as:

  u =  2 sin
2

U
R

Γ
θ +

π
 For stagnation point, u = 0

 ∴ 2 sin
2

U
R

Γ
θ +

π
 = 0

 or, sin θ = 
4 UR

Γ
−

π
 (14.19)

 From this eqn. (14.19), we can find out the location of the stagnation points on the surface of 
the cylinder, as follows: (Fig. 14.18)
 (i) For Γ (circulation) = 0; Refer to Fig. 14.18 (i.) sin θ = 0 and θ = 0°, 180°; S1 and  S2 are the 

stagnation points [Fig. 14.18(i)]
 (ii) For Γ < 4πRU: sin θ <– 1and θ = <–90° and θ> 180°; S1 and  S2 are the stagnation points 

[Fig. 14.18(ii)].
 (iii) For Γ = 4πRU: sin θ = – 1and θ = –90° and θ = 270°; the two stagnation points coincide and 

lie at the bottom of the cylinder, as stagnation point S [Fig. 14.18 (iii)]. 
  By substituting for  Γ from eqn. 14.17 in eqn. (14.19), we have:

  sin θ = 21 2
4 2

c c cRu u uor
UR U U

π
− = − = − =

π
 (iv) For Γ > 4πRU: sin θ > – 1 which is not feasible. In this case stagnation points do not occur 

on the cylinder surface, they detach from the cylinder and lie into the fluid stream below the 
point – 90° and 270° [Fig. 14.18 (iv)]

Cylinder
S1

S2

( ) = 0

( = 0°, 180º)

i �

�

Cylinder

S1
S2

( ) < 4

( = <–90º, >180º)

ii RU� �

� �

Cylinder

S

( ) = 4

( = –90º, 270º)

iii RU� �

�

Cylinder

S

( ) > 4iv RU� �

( = – 90º, 270º; Stagnation point not on the
cylinder surface).

�

Fig. 14.18. Location of stagnation points.
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14.8.3. Pressure at any Point on the Cylinder Surface
 The magnitude of the lift exerted on the cylinder due to the composite flow pattern may be 
determined by integrating over the entire surface of the cylinder, the components of the pressure 
forces on elementary surface areas normal to the direction of uniform flow. The pressure at any point 
on the cylinder is obtained by applying Bernoulli’s equation between any point in the unaffected 
flow (upstream condition) and any point on the surface of the cylinder. Thus,

  2
0

1
2

p U+ r  = 21
2

p u+ r  (14.20)

 where, P0 = Pressure in the uniform flow at some distance ahead of 
cylinder ,

  U = Velocity of uniform flow,
  p = Pressure at any point on the cylinder, and
  u = The velocity at any point on the surface of the cylinder

   = 2 sin .
2

U
R

Γ
θ +

π
 Substituting the value of u in eqn. (14.20), we get:

  2
0

1
2

p U+ r  = 
21 2 sin

2 2
p U

R
Γ + r θ + π 

 or, p = 
2

2
0

1 1 2 sin
2 2

p U
UR

 Γ + r − θ +  
π  

 (14.21)

14.8.4. Expression for Lift on Cylinder (Kutta- Joukowski Theorem)
 Consider a cylinder rotating in a uniform flow field. To determine the lift force on the cylinder, 
consider a small length of the element on the surface of the cylinder as shown in Fig. 14.19.
 Let, R = Radius of the cylinder,
  ds = Length of the element (= Rdθ ),
  dθ = Angle made by the length ds at the centre of the cylinder,
  p = Pressure on the surface of the element on cylinder,
  p0 = Pressure of the fluid (in the uniform flow) at some distance 

ahead of cylinder,
  U = Velocity of uniform flow,
  u = Velocity of fluid on the surface of the cylinder, and 
  L = Length of the cylinder.
 Area of the small element per unit length of the cylinder, dA = Rdθ. L
 ∴ Force acting on the element (directed towards the centre), dF = p.Rdθ. L
 Resolving this force into the horizontal and vertical directions, we get the drag (dFD) and lift 
(dFL) components as follows:
  dFD = p.Rdθ. L. cos θ;  dFL = – p.Rdθ. L sin θ
 By integrating the respective differential forces over the entire surface of the cylinder, we obtain 
the total drag and lift on the cylinder.

 Thus, FL = 
2

0

sin .pRL d
π

− θ θ∫
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 But, p = 
2

2
0

1 1 2sin
2 2

p U
UR

 Γ + r − θ +  
π  

 [Eqn. (14.21)]

�

d�

U FD

Cylinder rotating in
uniform flow

FL

R

Element

( = . )dA R.d L�

p.Rd
.L

�

p
.R

d
.L

�
�

si
n

p.Rd .L� �cos

�

Fig. 14.19. Lift on a rotating cylinder.

 ∴ FL = –RL

2 2 2 2
2 2

0
0 0 0

1 1sin . sin . 2sin sin .
2 2 2

p d U d U d
UR

π π π Γ  θ θ+ r θ θ− r θ+ θ θ π   
∫ ∫ ∫

 = –RL
22 2

2 2 3
0

0 0 0

1 1sin . sin . 4sin .
2 2

p d U d U d
ππ π  θ θ + r θ θ − r θ θ

 
∫ ∫ ∫

2 2 2
2

2 2 2
0 0

2 sin . sin .
4

d d
UR U R

π π Γ Γ + θ θ + θ θπ π 
∫ ∫

 But
2

0

sin . 0n d
π

θ θ =∫ when n is odd, therefore, the above expression reduces to:

  FL = 
2

2 2

0

1 2. sin .
2

R L U d
UR

π
Γ r × θ θ π  ∫

   = 
2

0

1 cos 2
2

LU d
π

r Γ − θ  θ 
π  ∫

   = 
2

0

1 sin
2 2

U ULT
πr Γ θ θ − = r π  

per unit length of cylinder.

 Hence the total lift of a cylinder of length L is given by:
  FL = rLUΓ (14.22)
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 Eqn. (14.22) is known as Kutta-Joukowski equation; it applies not only to circular cylinder 
but also to other bodies of any shape (including an airfoil) as well.
 The resulting flow pattern for a rotating cylinder in a uniform flow field is shown in Fig. 14.17; 
it is symmetrical about the vertical axis of the cylinder. Hence the velocity distribution and pressure 
distribution is symmetrical about the vertical axis and as such there will be no drag on the cylinder

2

0

. . . .cos 0i e p Rd L
π 

 θ θ =
 
 

∫ . The concept of zero drag on bodies immersed in a steady flow of ideal 

fluid is called D’Alembert’s paradox.

14.8.5. Expression for Lift Coefficient for Rotating Cylinder
 The lift coefficient (CL) defined by eqn. (14.4) is given as:

  FL = 
2

L 2
2or C

2
L

L
FUC A

U A
r

× =
r

 Also,  FL = rLUΓ Eqn. (14.22)

 ∴ CL = 2 2
2 2

2
LU LU

URU A U RL
× r Γ r Γ Γ

= =
r r ×

 (14.23)

 (where, A = projected area = 2RL)
 From, eqn. (14.17), we have:

  uc = or 2
2 R cu

R
Γ Γ

= π
π

 Substituting this value of 
R
Γ  in eqn. (14.22),we get:

  CL = 2 cu
U

π  (14.24)

 (where, uc =  peripheral speed of the cylinder due to circulation)
 Thus lift co-efficient depends on the 

ratio cu
U

.

 Fig. 14.20 shows the variation of CL and 

CD with cu
U

 for a rotating circular cylinder in 

a fluid. The following observations are worth 
nothing:
 1. For a circular cylinder rotating in an 

ideal fluid, the theoretical function 

2 c
L

uC
U

= π  is shown as a broken line; 

when 2cu
U

= , the stagnation points 

meet at the cylinder’s bottom (Fig. 
14.18 (iii) and CL = 2π × 2 = 4π = 
12.56 which is the theoretical maxi-
mum of the lift co-efficient.

C
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D
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u c
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Re = 10
5

L
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Fig. 14.20. CL, CD for a rotating cylinder.
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 2. For a circular cylinder rotating in a real fluid it can be seen that:

 (i) CL becomes maximum 0 4u
U

= and CD increases quite rapidly beyond 1.5.cu
U

=

The experimental values of CL differ from the theoretical values due to the following factors:
 (a) Effect of viscosity,
 (b) Circulation around a rotating cylinder not being exactly the same as that due to an 

irrotational vortex, and
 (c) Effect of length.

 (ii) For a short cylinder, 10, L
L CD <  is reduced;

 For 5, L
L C
D

<  is about half of that for a long cylinder, due to flow around ends.

14.8.6. Magnus Effect
 The generation of lift by spinning cylinder in a fluid stream is called Magnus effect. The 
phenomenon of the lift produced by circulation around a cylinder of circular cross-section placed in 
a uniform stream of fluid, was first investigated experimentally by a German Physicist H.G. Magnus 
in 1852 and hence the name is given as Magnus effect.
  This effect has been successfully employed in the propulsion of ships.
  The Magnus effect may also be used with advantage in the games like table tennis, golf, cricket 

etc.
 Example 14.20.  A cylinder 1.8 m in diameter and 12 m long rotates at 240 r.p.m. with its axis 
perpendicular to the stream of water flowing at a velocity of 15 m/s. Assuming no slip between the 
cylinder and the circulating flow, determine:
 (i) The circulation,
 (ii) The theoretical lift,
 (iii) The position of stagnation points, and 
 (iv) The r.p.m. of the cylinder for a single stagnation point.
 Solution. Diameter of cylinder, D = 1.8 m
  Length of  cylinder, L = 12 m
  Speed of rotation of cylinder, N = 240 r.p.m.
  Velocity of water, U = 15 m/s
 (i) The circulation, Γ :
   Velocity at the surface of the cylinder due to circulation alone,

  uc = 1.8 240 22.6 m/s
60 60
DNπ π × ×

= =

    Circulation, Γ = 2πRuc = πDuc = π × 1.8 × 22.6 = 127.8 m2/s
 (ii) The theoretical, lift:
    The theoretical lift, FL = rLU Γ
   = 1000 × 12 × 22.6 × 127.8 = 34.66 × 106 N (Ans.)
 (iii) The position of stagnation points:
  Net velocity on the cylinder surface due to combination of circulation and free stream velocity 

field is,
   u = 2 sin

2
U

R
Γ

θ +
π
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  At stagnation points, u = 0
N = 240 r.p.m

U = 15 m/s
1.8 m

Fig. 14.21

     2 .sin
2

U
R

Γ
θ +

π
 = 0 or 2 sin –

2
U

R
Γ

θ =
π

  or, Γ = – 4πRU sin θ

  or,  sin θ = – 127.8 0.753
4 4 0.9 15RU

Γ
= − = −

π π × ×

   = – sin (48.85°)
   = sin (180° + 48.85°) and sin (360° – 48.85°)
  ∴ θ = (180° + 48.85°)   and   (360° – 48.85°)
     = 228.85° and  311.15° (Ans.)
  The position of stagnation points is shown in Fig. 14.22
 (iv) The r.p. m. of the cylinder for single stagnation point, 

N:
  For a single stagnation point, we have:
   Γ = 4πUR = 4π × 15 × 0.9 = 169.65 m2/s

  Also,  uc = 
2 R

Γ
π

    = 169.65 30m/s
2 0.9

=
π ×

  But, uc = 60 60 30or =
60 1.8

cuDN N
D

π ×
=

π π ×

    = 318.3 r.p.m. (Ans.)
 Example 14.21.  A cylinder whose axis is perpendicular to the stream of air having a velocity  
of 20 m/s rotates at 300 r.p.m. The cylinder is 2 m in diameter and 10 m long. Find:
 (i) The circulation,
 (ii) The theoretical lift force per unit length,
 (iii) The position of stagnation points, and
 (iv) The actual lift, drag and direction of resultant force.

�

S2 S1

228.85º

311.15º

Fig. 14.22
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  Take density of air = 1.24 kg/m3. For actual drag and lift, take CL = 3.4, CD = 0.65 and 

1.57.cu
U

=

 (v)  Find also the speed of rotation of the cylinder, which will give only a single stagnation 
point.    [PTU]

 Solution.  Velocity of air, U = 20 m/s 
  Speed of rotation, N = 300 r.p.m.
  Diameter of cylinder, D = 2 m
  Length of cylinder, L = 10 m
  Density of air, r = 1.24 kg/ m3

 Peripheral velocity due to cylinder rotation,

  uc = 2 300 31.4 m/s
60 60
DNπ π × ×

= =

 (i) The circulation, Γ:
    Circulation = Circumference × peripheral velocity
  or, Γ = 2πRuc [Eqn. (14.17)]

        or, Γ = 
22 31·4 /
2

 π × × = 
 

2197·3 m s (Ans.)

 (ii) Theoretical lift force per unit length:
  Theoretical lift is given by:
   FL = rLUΓ [Eqn. (14.22)]
  ∴ Theoretical lift per unit length

     = LF LUT UL L
r

= = r Γ  = 1.24 × 20 × 197.3

     = 4893 N/m length (Ans.)
 (iii) The position of stagnation points:
 Net velocity on the cylinder surface (u) due to combination of circulation and free stream 
velocity field is given by:

  u = 2 sin
2

U
R

Γ
θ +

π
 At stagnation points, u = 0

 ∴ 0 = 2 sin
2

U
R

Γ
θ +

π

 or, sin θ = 197.3
22 4 20
2

RU
Γ

− = −
π  π × × 

 
   = – 0.785 = – sin (51.72°)
   = sin (180° + 51.72°)    and   sin (360° – 51.72°)
 ∴ θ = 231.72°  and  308.28° (Ans.)
 The position of stagnation points is shown in Fig. 14.23.
 (iv) The actual lift, drag and direction of resultant force:

 For actual lift and drag, 3.4, 0.65 and 1.57c
L D

uC C
U

= = =

�

S2 S1

231.72º

308.28º

Fiig. 14.23
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 The ratio of cu
U

 from theoretical consideration is given as:

  cu
U

 = 31.4 1.57
20

=

 Now actual lift is given by:

  FL = 
2 21.24 203.4 20

2 2L
UC Ar ×

× × = × × = 16864N  (Ans.)

 (where, A = projected area of cylinder = length × diameter = 10 m × 2 m = 20 m2)
 Actual drag force,

  FD = 
2 21.24 200.65 20

2 2
3224 ND

UC Ar ×
× × = × × = (Ans.)

  Resultant force, F = 2 2 2 216864 3224L DF F+ = + = 17169.4 N (Ans.)

 The inclination (α) of the resultant force with the horizontal is given by:

  tan α = 
16864 5.23 or =
3224

L

D

F
F

= = α 79.2°  (Ans.)

 (v) Speed of rotation of the cylinder for single stagnation point, N:
 For a single stagnation point, we have:
  Γ = 4πUR

   = 224 20 251.32 m /s
2

 π × × = 
 

 Also, uc = 251.32 40 m/s
22 2
2

R
Γ

= =
π  π ×  

 

 But, uc = 
60
DNπ

 ∴ 40 = 
2 40 60or =
60 2

N Nπ × × ×
π ×

 382 r.p.m.  (Ans.)

 Example 14.22.  Air having a velocity of 40 m/s is flowing over a cylinder of diameter 1.5 m 
and length 10 m, when the axis of the cylinder is perpendicular to the air stream. Find the speed 
at which the cylinder is to be rotated about its axis so that a lift force of 7 kN/m length of the 
cylinder is devloped. Also determine the location of the stagnation points. Assume density of air as  
1.25 kg/m3.    (UPTU)

 Solution. Given: U = 40 m/s; D = 1.5 m; L = 10 m; FL = 7 kN/m length; r = 1.25 kg/m3.
 Speed N: 
 Using the relation:  FL = rLUΓ [Eqn. (14.22)]

 or,  Circulation, Γ = 2( / ) (7 1000) 140 m /s
1.25 40

LF L
U

×
= =

r ×

  Circulation  =  Circumference × peripheral velocity
 i.e. Γ = 2πR × uc [Eqn, (14.17)]

 or, 140 = 1.52
2 cuπ × ×
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 or, uc = 29.71 m/s = ωR

 ∴ ω = 29.71 239.61 rad/s
(1.5 / 2) 60

cu N
R

π
= = =

 or, N = 
39.61 60

2
×

=
π

378.2r.p.m (Ans.)

 Position of stagnation points :
 The net velocity on the cylinder surface (u) due to combination of circulation and force stream 
velocity field is given by :

  u = 2 sin
2

U
R

Γ
θ +

π
 At stagnation point, u = 0

  0 = 2 sin
2

U
R

Γ
θ +

π

 or, sin θ = 
140 0.3714

4 4 0.75 40RU
Γ

− = − = −
π π × ×

   = – sin (21.8°)
   = sin (180 + 21.8°) and sin (360 – 21.8°)
  θ = 201.8° and 338.2° (Ans.)
 The position of the stagnation points ((S1and S2) is shown in Fig. 14.24.
 Example 14.23.  As an application of the Magnus effect,a ship is built having two vertical 
rotors 10 m high and 3 m in diameter. The rotors are spun at 250 r.p.m. On a day when the air 
temperature is 20°C and the relative motion of the air to the ship results in 54 kmph wind, calculate 
the force emitted by the spinning rotors on the ship. Take r  for air as 1.25 kg/m3. [IIT Madras]

 Solution. Diameter of each rotor, D = 3 m
  Height of each rotor, H (= L ) = 10 m
  Speed of each rotor, N = 250 r.p.m.

  Wind velocity, U = 54 km/h = 54 1000 15 m/s
60 60

×
=

×

 Force emitted by the spinning rotors, FL:
 Circulation (Γ) generated by the rotation of cylinder is given by:
  Γ  =  2πRuc [Eqn. (14.17)]

 where, uc = 3 250 39.27 m/s
60 60
DNπ π × ×

= =

 ∴ Γ = 2π × (3/2) × 39.27 = 370.1 m2/s
 Transverse force (perpendicular to the wind direction) developed by each rotating cylinder is 
given by:
  FL = rLUΓ
 or, FL = 1.25 × 10 × 15 × 370.1
   = 69393.75 N  69.4 kN
 ∴ Total force emitted by the spinning rotors
   = 2 × 69.4 = 138.8 kN (Ans.)

S2 S1

201.8º

338.2º

Fig. 14.24
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14.9. LIFT ON AN AIRFOIL 

 An airfoil or aerofoil is a streamlined body which may be either symmetrical or unsymmetrical, 
as shown in Fig. 14.25.
  Some of the definitions relating 

airfoil are given below:
 1. Chord line. It is the line joining 

the leading and trailing edges of 
the airfoil.The length of the line is 
known as ‘‘chord of airfoil.’’

 2. Profile centreline. It is the line 
joining the midpoints of the profile.

 3. Angle of attack. It is angle between 
the chordline and direction of the 
fluid stream.

 4. Camber. It is the curvature of an 
airfoil.

 5. Stall. An airfoil is said to be in stall 
condition when the angle of attack 
of an airfoil is greater than the angle 
of attack at maximum lift. At stall 
the air separates from the airfoil or wing and eddies are formed, as a consequence of which 
there is a considerable increase in the drag co-efficient.

 6. Aspect ratio (A.R.) The ratio of span of the wing to its mean chord is called the aspect ratio 
of a wing.

 i.e. A.R. = l
c

 (14.25)

 where, l = Span of the wing, and 
  c = Mean chord.
 Normally the wings are not rectangle when viewed from the above ; in this case aspect ratio is 
given by:

  A.R. = 
2

/
l l l
c A l A= =  (14.26)

  (when A = l × c or c = A/l)
 — From the theoretical analysis, the circulation Γ developed on the airfoil so that the stream line 

at the trailing edge of the airfoil is tangential to the airfoil is given as:
  Γ = π cU sin α  (14.26)
 where, c = Chord length,
  α = Angle of attack, and 
  U = Free stream velocity of airfoil.
 Also lift force, FL is given as:
  FL = rLUΓ
 ∴ FL = rLU × π cU sin α = πrcLU 2 sin α    (Γ = π cU sin α )
 The lift force is also given by:

  FL = 
2 2

2 2L L
U UC A C c Lr r

× × = × × ×  (14.27)

Leading edge

Profile centre line
(Chord line)

Trailing
edge�

( ) Symmetricala

Profile centre line

Chord line

�

( ) Unsymmetricalb

Angle of
attack

Fig. 14.25 Airfoil.
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 Equating the two values of lift force given by eqns. (14.26), and (14.27), we get:

  2 sincLUπr α  = 
2

2L
UC c Lr

× × ×

 ∴ CL = 
2

2
sin 2 2 sincLU

U c L
πr α ×

= π α
r × ×

 i.e. CL = 2π sin α (14.28)
 From eqn. (14.28), we observe that co-efficient of lift depends upon the angle of attack. 
The actual lift co-efficient for an airfoil, in normal range of operation, is about 95 per cent of the 
theoretical value computed from the eqn. (14.28).
With real fluids, the airfoil creates its own circulation or vortex field in order to experience lift.
 — When a flying object such as an airplane is in a steady-state, then:

 (i) The weight of the airplane, (W) = The lift force 
2

,
2L
UC A

 r
× ×  

 
 (ii) The thrust developed by the engine = The drag force.
 Example 14.24.  A jet plane weighing 24.5 kN and having a wing area of 16.7 m2 flies at 
a velocity of 950 km/h. When the engine delivers 6125 kW, 65 percent of the power is used to 
overcome the drag resistance of the wing. Calculate the co-efficients of lift and drag for the wing.
Take density of the atmospheric air = 1.208 kg/m3

 Solution.  Weight of the jet plane, W = 24.5 kN
  Wing area, A  = 16.7 m2

  Velocity of the plane, U = 950 km/h = 950 1000 264 m/s.
60 60

×
×



  Power delivered by the engine = 6125 kW
 Percentage of the power used to overcome the drag resistance = 65%
  Density of atmospheric air, r = 1.208 kg/m3

 Co-efficients of lift and drag, CL  and CD:
  Lift force, FL = Weight of the jet plane

 or, 
2

2L
UC Ar

× ×  = 24.5 × 103

 or, 
21.208 264 16.7

2LC ×
× ×  = 24.5 × 103 N

 or, 
3

2
2 24.5 10

1.208 264 16.7LC × ×
×

× ×
 = 0.0348 (Ans.)

 Power required to overcome drag resistance
   = FD × U = 0.65 × (6125 × 103) (Given)

 But, FD (drag force) = 
2

2D
UC Ar

× ×

 ∴ 
2

2D
UC A Ur

× × ×  = 0.65 × (6125 × 103)

 or, 
21.208 264 16.7 264

2DC ×
× × ×  = 0.65 × (6125 × 103)
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 ∴ CD = 
3

2
2 0.65 (6125 10 )

1.208 264 16.7 264
× × ×

=
× × ×

0.0214  (Ans.)

 Example 14.25.  An aeroplane weighing 39.24 kN is flying in a horizontal direction at 360 
km/h. The plane spans 15 m and has a wing surface area of 35 m2 . If drag co-efficient CD = 0.03 
and for air r = 1.22 kg/m3, determine:
 (i) Co-efficient of lift,
 (ii) Power required to drive the plane, and
 (iii) Theoretical value of the boundary layer circulation. [Delhi University]

 Solution.  Weight of the aeroplane, W  = 39.24 kN

  Speed of the aeroplane, U  = 360 km/h = 360 1000 100m/s
60 60

×
=

×

  Span of the aeroplane, L  =  15 m
  Wing surface area, A  =  35 m2

  Co-efficient of drag, CD  =  0.03
  Density of air, r  =  1.22 kg/m3.
 (i) Co-efficient of lift, CL:
 For equilibrium in vertical direction, lift equals the weight of the aeroplane.

 ∴ W = 
2

2L
UC Ar

× ×

 or, 39.24 × 103 = 
21·2 100 352LC ×

× ×

 or, CL = 
3

2
2 39.24 10
1.2 100 35

× ×
=

× ×
0.187 (Ans.)

 (ii) Power required to drive the plane, P:

  Drag force, FD = 
2

2D
UC Ar

× ×

   = 
21.20 1000.03 35 6300 N

2
×

× × =

  Power required, P = FD × U = 6300 × 100 × 10–3 kW = 630 kW (Ans.)
 (iii) Theoretical value of boundary layer circulation, Γ:
 Lift force, FL = rLUΓ

 or, 39.24 × 103 = 1.22 × 15 × 100 × Γ

 or, Γ = 
339.24 10 /

1.22 15 100
×

=
× ×

221.4 m s (Ans.)

 Example 14.26.  A wing of a small aeroplane is 
rectangular in plan having a span of 12 m and chord 
of 1.8 m.. In a horizontal flight at 200 km/h the total 
aerodynamic force acting on the wing is 28 kN. If the 
lift-drag ratio is 10, determine:
 (i) Co-efficients of lift and drag,
 (ii) Total weight the aeroplane can carry, and

P

FL

FD

W

Fig. 14.26
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 (iii) Power required for the flight.
 Take r for air = 1.2 kg/m3

 Solution.  Span, l  =  12 m
  Chord, c  =  1.8 m
 Speed of the aeroplane,

  U = 200 1000200 km/h 55.55 m/s
60 60

×
= =

×

  Aerodynamic force, FL = 28 kN
 (i) Co-efficients of lift and drag:
 For horizontal flight (Fig. 14.26):

  FL↑ = 
2

, ,
2D D
UW F C A A l cr

↓ = = ×

 Now, L

D

F
F  = 10 (Given)

 ∴ L

D

F
F

 = 2
28 100010

1.2 55.55(12 1.8)
2DC

×
=

×
× × ×

 or, CD = 2
28 1000 2

10 (12 1.8) 1.2 55.55
× ×

=
× × × ×

0.07 (Ans.)

 (ii) Total weight the aeroplane can carry, W:
  W = FL = 28 kN (Ans.)
 (iii) Power required for flight, P:

  P = 28 55.55
10 10

L
D

FF U U× = × = ×  10L

D

F
F

 
= 

 


   = 155.54 kN (Ans.)

HIGHLIGHTS

 1. A body wholly immersed in a real fluid may be subjected to the following forces:
  Drag force (FD): It is the force exerted by fluid in the direction of flow (free stream).
  Lift force (FL): It is the force exerted by fluid at right angles to the direction of flow.
 2. The mathematical expressions for FD and FL are:

    FD = 
2 2

and
2 2D L L
U UC A F C Ar r

× × = × ×

  where, CD = Co-efficient of drag,
   CL = Co-efficient of lift,
   U = Free stream velocity of fluid,
   r = Density of fluid, and
   A = Projected area of the body.

    Resultant force, F = 2 2
D LF F+

 3. Total drag on a body = Pressure drag + friction drag
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 4.  A body whose surface coincides with the stream lines when placed in a flow, is called a 
streamlined body. If the surface of the body does not coincide with the streamlines, the body 
in called bluff  body.

 5. Stokes found out that for Re < 0.2 the total drag on a sphere is given by
    FD = 3πmDU; and of the total drag

    Skin Friction drag = 2 3 2
3

Du DU× πm = πm , and

    Pressure drag = 1 3
3

DU DU× πm = πm

 6. For sphere, the values of CD for different Reynolds number are:
  Reynolds number (Re) CD

 (i) Lesss than 0.2 24
Re

 (ii) Between 0.2 and 5.0 24 31
16Re Re

 + 
 

 (iii) Between 5 and 1000 0.4
 (iv) Between 1000 and 105 0.5
 (v) Greater than 105 0.2
 7. The terminal velocity is the maximum velocity attained by a fallling body. The terminal 

velocity of a body falling through a liquid at rest is calculated from the following relation:
    W = FD +FB

  where, FD and FB are the drag force and buoyant force respectively, acting vertically upward.
 8. The velocity of ideal fluid at any point on the surface of the cylinder is given by uθ= 2U sin θ
  where, uθ = Tangential velocity on the surface of the cylinder,
   U = Uniform velocity (or free stream velocity),
   θ = The angular distance of the point from the forward stagnation point.
 9. The peripheral velocity on the surface of the cylinder due to circulation (uc) is given by :

    uc = 2 R
Γ
π

  where,  Γ = circulation, and R = radius of the cylinder.
 10. The resultant velocity in a circular cylinder which is rotated at a constant speed in a uniform 

flow field is given by:
    u = 2 sin

2cu u U
Rθ

Γ
+ = θ +

π
 11. The position of stagnation points is given by:

    sin θ = 
4 R

Γ
π

  For a single stagnation point, the condition is:
    Γ = 4πUR       ...in terms of circulation
    uc = 2U       ...in terms of tangential velocity.
 12. The pressure at any point on the cylinder surface (p) is given by:

    p = 
2

21 1 2 sin2 2op U UR
 Γ + r − θ +  π   

  where,  po = The pressure in the uniform flow at some distance ahead of cylinder.
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 13. When a circular cylinder is rotated in a uniform flow, a lift force (FL) is produced on the 
cylinder, the magnitude of which is given by:

    FL = rLU Γ
  This equation is known as Kutta - Joukowski equation.
 14. The expression for lift co-efficient for a rotating cylinder in a uniform flow is given by:  

 CL = 
UR
Γ       ...in terms of circulation

    CL = 2 cu
U

π       ...in terms of tangential velocity.

 15. The generation of lift by spinning cylinder in a fluid stream is called Magnus effect.
 16. Circulation developed on the airfoil is given by:
    Γ = πc U sin α
  where, c = Chord length,   α = Angle of attack.
 17. The expression for co-efficient of lift for an airfoil is given by:
    C =  2π sin α
 18. When an aeroplane is in steady-state:

 (i) The weight of aeroplane (W) = The lift force 
2

2L
UC A

 r
× ×  

 
 (ii) The thrust developed by the engine = The drag force.

OBJECTIVE TYPE QUESTIONS

Choose the Correct Answer:
 1. The pressure drag depends upon
  (a)	 the	characteristics	of	the	oncoming	flow
  (b) the boundary layer formation
  (c) the separation of boundary layer and the   

size of the wake
  (d) the shear stresses generated on the body   

surface.
 2.	 In	case	of	airfoils,	the	profile	drag	is	one	which	

is caused by
  (a) the compressibilty effects
  (b) the shape and orientation of airfoil
  (c) the circulation induced around the airfoil
  (d) none of the above.
 3. The friction drag is primarily due to
  (a) separation of boundary layer
  (b)	 weight	component	in	the	direction	of	flow
  (c) shear stresses generated due to viscous   

acion
  (d) none of the above.
 4. For a perfectly streamlined body which of the 

following statements is incorrect?
  (a) The pressure drag is very small

  (b) The boundary layer remains thin over the  
entire surface and does not separate

  (c)	 The	flow	 separation	points	 and	 a	wake	 re-	
gion is formed

  (d) The streamline pattern and pressure distri- 
bution are nearly the same as for an irrota- 
tional	flow.

 5. The drag force is given by
  (a) CD rU2 A (b) CD r

2U2 A

  (c) CD rU2 A (d) 
2

2D
UC Ar

 6. The shape of a streamlined body is such as to 
  (a)	 fix	 the	 separation	points	 as	much	 ahead	 as		

possible
  (b) shift the boundary layer separation to the  

rearmost part thereby considerably reducing  
the wake-size

  (c) make the streamline pattern symmetrical
  (d) none of the above.
 7. Which of following  statements is correct for 

bluff bodies?
  (a) The total drag is considerably larger as com-

pared to that for streamlined bodies
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  (b) The friction drag is greater than the pressure 
drag

  (c) The total drag is much less as compared to  
that for streamlined bodies.

  (d) None of the above.
 8. The drag force experienced by an object is 
  (a)	 the	component	of	resultant	fluid	dynamic		 	

force	in	the	flow	direction
  (b) the horizontal force due to pressure variation 

over the surface of object
  (c)	 the	resultant	fluid	dynamics	force	acting		 	

on the object
  (d) none of the above.
 9. The drag and lift forces experienced by an object 

placed	in	a	fluid	stream	are	due	to
  (a) pressure and turbulence
  (b) viscosity and turbulence
  (c) pressure and viscosity
  (d) pressure and gravity.
 10. The lift force that may act on an object is
  (a)	 the	component	force	due	to	the	fluid	displaced	

by the body
  (b)	 the	 component	 of	 resultant	 fluid	 dynamic	

force in a direction normal to the general  
direction	of	flow

  (c) the force due to shear stress that acts on the 
body surface

  (d) none of the above.
 11. Which of the following conditions/requirements 

is necessary to induce lift on an object ?
  (a) The object should be so shaped that there  are 

zones if high and low velocities resulting in 
pressure difference between upperside and 
bottomside of the object.

  (b) The object should be so designed that pres-
sure distribution over its surface is symmetri-
cal

  (c) The shape of the object should be sym- metri-
cal and the axis of the symmetry be aligned 
parallel	to	the	flow	direction

  (d) None of the above.
 12.	 A	strreamlined	body	is	defined	as	a	body	about	

which
  (a) the drag is zero
  (b)	 the	flow	is	laminar
  (c)	 the	flow	is	along	streamlines
  (d)	 the	flow	separation	is	suppressed.
 13. When a circular cylinder is rotated in a uniform 

flow,	 a	 lift	 force	 is	 produced	 on	 the	 cylinder	
which is caused by

  (a) the pressure difference between the two 
halves, the bottom-half being subjected to a 

higher pressure
  (b) the symmetrical streamline patterns
  (c) the shear stresses.due to viscous action
  (d) none of the above.
 14. The location of stagnation points is found from 

the relation

  (a) sin θ = 24 UR
Γ

−
π

  (b) sin θ = 
2

4 UR
Γ

−
π

  (c) sin θ = 
2

4 UR
Γ−
π

  (d) sin θ = .
4 UR

Γ−
π

 15. For a single stagnation point, the condition is
  (a) Γ = 4πU R (b) Γ = 2πU R
  (c) Γ = 4πU2 R (d) Γ = 4πU R2.
 16.	 The	 expression	 for	 co-efficient	 of	 lift	 for	 an	

airfoil is given by
  (a) CL = 2π sin2 α (b) CL = 4π sin α
  (c) CL = 2π sin α (c) none of the above.
 17.	 The	experssion	for	lift	co-efficient	for	a	rotating	

cylinder	in	a	uniform	flow	is	given	by

  (a) 2LC
R U

Γ
=  (b) 2LC

RU
Γ

=

  (c) LC
RU
Γ

=  (d) none of the above.

 18. The	velocity	of	ideal	fluid	at	any	point	on	the	
surface of the cylinder is given by

  (a) U sin θ (b) 2U sin θ
  (b) 3U sin θ (d) 4U sin θ.
 19. The drag on a sphere for Reynolds number less 

than 0.2 is given by
  (a) πm DU (b) 2πmDU
  (c) 3πmDU (d) none of the above.
 20. The mathematical expression for lift force is 

given by
  (a) FL = CLrAU

  (b) 
2

2L L
UF C Ar

=

  (c) FL = CLrAU2A
  (d) none of the obove.
 21.    The lift force on an airfoil is due to
  (a) the circulation of air around it
  (b) the pressure difference of the top and bottom 

surface
  (c) the formation of tip vortices
  (d) the angle of attack.
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 22. the terminal velocity of a small sphere settling 
in	a	viscous	fluid	varies	as

  (a) the Reynolds number
  (b) the square of its diameter
  (c) directly proportional to the viscosity of the 

fluid
  (d) its diameter.
 23. At the stall point for the airfoil
  (a) the boundary layer separates at the leading 

edge
  (b) the lift is maximum and the drag is minimum
  (c) the lift is zero and the drag is maximum
  (d) the lift is maximum and the drag in creases 

sharply beyond it.
 24. The velocity at the top of spinning ball is 
  (a) less than that at bottom
  (b) greater than that at bottom
  (c) equal to that at the bottom
  (d) independent of spinning.

 25. The circulation around an airfoil required for lift 
is produced

  (a)	 when	the	airfoil	is	kept	inclined	to	flow	direc-
tion

  (b) due to tip vortices
  (c) by rotation of airfoil
  (d) because of surface discontinuity formed at 

the trailling edge.
 26. The terminal velocity of a body in a stationary 

mass	of	fluid	corresponds	to	the	situation	when	
the

  (a) body acquires a constant velocity in any 
direction

  (b) net force acting on the body equals zero
  (c) weight of the body equals the buoyancy force 

acting on it
  (d) net force acting on the body acts in vertical 

direction.

ANSWERS

 1. (c) 2. (b) 3. (c) 4. (c) 5. (d) 6. (b)
 7. (a) 8. (a) 9. (c) 10. (b) 11. (a) 12. (d)
 13. (a) 14. (d) 15. (a) 16. (c) 17. (c) 18. (b)
 19. (c) 20. (b) 21. (a) 22. (b) 23. (d) 24. (b)
 25. (b) 26. (b)

THEORETICAL QUESTIONS

 1.	 Define	drag	force	and	lift	force	of	an	object	im-
mersed	in	a	fluid.

 2. Distinguish between teh friction drag and the 
pressure drag.

 3. When are the factors on which the total drag of 
a	body	fully	immersed	in	a	fluid	depend?

 4.	 Define	co-efficient	of	drag	and	lift	and	state	the	
factors	on	which	these	co-efficients	depend.

 5. Differentiate between a streamlined body and 
bluff body.

 6. What is the expression for the drag on a sphere, 
when Reynolds number (Re) is upto 0.2 ? Hence 
prove	that	the	drag	co-efficient	for	sphere	for	this	
renge of Re is given by

    CD = 24
Re

 7. What do you mean by terminal velocity of a body ?
 8. Describe with the help of a sketch, the variation 

of	drag	co-efficeint	for	a	cylinder	over	a	wide	
range of Reynolds number.

 9.	 Why	should	circulation	superimposed	on	flow	
past a body cause a lift ?

 10.	 Draw	and	explain	the	approximate	flow	pattern	
and	the	pressure	distribution	around	a	flat	plate	
placed	perpendicular	in	a	stream	flow.

 11. What is meant by Magnus effect ?
 12. Derive an expression for the lift produced on a 

rotating	cylinder	placed	in	a	uniform	flow	field	
such that the axis of the cylinder is perpendicular 
to	the	direction	of	flow.

 13.	 Obtain	an	expression	for	co-efficient	of	lift	for	
a	rotating	cylinder	placed	in	a	uniform	flow.

 14.	 Define	stagnation	points.
 15. How is the position if the stagnation points for a 

rotating	cylinder	in	a	uniform	flow	determined?
 16.	 Define	the	following	terms	for	an	airfoil.
  (i) Chord line 
  (ii) Angle of attack
  (iii) Camber 
  (iv)	 Profile	centre	line.
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UNSOLVED EXAMPLES

 1. In a wind tunnel experiments were conducted 
with	a	wind	speed	of	50	km/h	on	a	flat	plate	of	
size 2 m long and 1 m wide. The mass density 
of air is 1.15 kg/m3 The plate is kept at such an 
angle	that	co-efficients	of	lift	and	drag	are	0.75	
and 0.15 respectively.Determine: (i) Lift force, 
(ii) Drag force, (iii) Resultant Force, and  (iv) 
Power exerted by the airstream on the plate.

  [Ans. (i) 166.28 N; (ii)33.25 N; (iii)169.6  
N;θ = 78.69°; (iv) 461.89 W]

 2. A passenger car has a weight of 30 kN and the 
co-efficient	of	friction	between	the	road	and	tyers	
is 0.01. Assuming the cross-sectional area of the 
car to be 2.25 m2	with	a	drag	co-efficient	of	0.60	
estimate the energy requirement at a speed of 60 
km/h. [Ans. 8.78 kW]

 3. A man weighing 981 N descends to the ground 
from an aeroplane with the help of a parachute 
against the resistance of air. The shape of 
the parachute is hemispherical of 2 m diam-
eter. Find the velocity of the parachute with 
which  it comes down. Assume CD = 0.5 and 
r  for air = 1.25  kg/m3 and v = 0.015 stoke 
 [Ans. 31.6 m/s]

 4. A kite 0.8 × 0.8 m weighing 3.924 N assumes 
an angle of 12° ot the horizontal .The string at-
tached to the kite makes an angle of 45° to the 
horizontal. The pull on the string is 24.525 N 
when	the	wind	is	flowing	at	a	speed	of	30	km/h.	
Find	the	corresponding	co-efficients	of	drag	and	
lift, Take r for air = 1.25 kg/m3.

   [Ans. CD = 0.624, CL = 0.765]
 5. A kite weighing 7.85 N has an effective area of 

0.8 m2 .It is maintained in air at an angle of 10° 
to the horizontal. The string attached to the kite 
makes an angle of 45° ot the horizontal and at 
this	position	the	values	of	co-efficients	of	drag	
and lift are 0.6 and 0.8 respectively. Determine:

  (i) The speed of wind, and
  (ii) The tension in the string.
         Take r for air = 1.25 kg/m3  

 [Ans. 31.9 km/h; 33.25 N]
 6. A submarine assumed to approximate a cylinder 

4 m in diameter and 20 m long is travelling 
submerged at 1.3 m/s in sea water. Find the drag 
exerted	on	it,	if	the	drag	co-efficient	for	Reynolds	
number greater than 105 may be taken as 0.75 
Take for water, r = 1035 kg/m3 and v = 0.015 
stoke. [Ans. 52.47 kN]

 7. A ball of 80 mm diameter is supported in verti-
cal	air	stream	which	is	flowing	at	a	velocity	of	
7 m/s. If the density and kinematic viscosity of 
air are 1.25 kg/m3 and 1.5 stokes respectively, 
calculate the weight of the ball.  
 [Ans. 0.0769 N]

 8. A steel sphere of 3 mm diameter falls in glycerine 
at	a	terminal	velocity	of	0.035	m/s.	If	specific	
weights of steel and glycerine are 75 kN/m3 and 
12.5 kN /m3 determine: (i) Dynamic viscosity 
of glycerine, (ii) Drag force, and (iii)Drag co-
efficient	for	the	sphere.

   [Ans. (i) 0.893 Ns/m2, (ii)8.837 × 10–4 N,  
(iii) 160.2]

 9. A metallic ball (sp. gr. = 12 ) of 2 mm diameter 
is	allowed	to	fall	in	fluid	of	specific	gravity	0.95	
and kinematic viscosity 1.5 Ns/m2. Determine: 
(i) Drag force, (ii) Pressure drag and skin friction 
drag, and (iii)	terminal	velocity	of	ball	in	fluid.

  [Ans. (i) 4.54 × 10–4 N; (ii) 1.514 × 10–4 N;  
3.026 × 10–4 N; (iii) 0.016 m/s]

 10. A wing of a small aeroplane is rectangular in 
plan having a span of 10 m and chord of 1.6 
m.	 In	 a	horizontal	flight	 at	 2.2	km/h	 the	 total	
aerodynamic force acting of the wing is 25 kN. 
If the lift-drag ratio is 10, determine; (i)The co-
efficient	of	lift	and	drag;	(ii) The total weight the 
aeroplane can carry, and (iii) The power required 
for	the	flight.

   [Ans. (i)0.7, 0.07; (ii) 25 kN; (iii)153 kW]
 11. A cylinder 1.2 m in diameter and 8 m long 

rotates of 90 r.p.m. with its axis perpendicular 
to an air stream with a wind velocity of 30 m/s. 
Assuming no slip condition between the cylinder 
and	 circulatory	flow,	find:	 (i) The magnitude 
of circulation, (ii) the transverse or lift force, 
and (iii)the position of stagnation points. Take 
specific	weight	of	air	as	12.25	N/m3.

   [Ans. (i) 21.3 m2/s; (ii) 6.33 kN;  
(iii)185.4°; 354.6°]

 12. A cylinder 1.2 m diameter and 8 m long rotates 
at 160 r.p.m. with its axis perpendicular to the 
stream	of	water	flowing	at	a	velocity	of	10	m/s.	
Assuming no slip between the cylinder and the 
circulatory	flow,	ditermine:

  (i) The circulation,
  (ii) The theoretical lift,
  (iii) The position of stagnation points, and

www.EasyEngineering.net
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  (iv) The speed of cylinder (in r.p.m.) for a single 
stagnation point:

   [Ans. (i) 38 m2/s; (ii)3.04 × 106N;  
(iii)210.2°; 329.8°; (iv)318 r.p.m.]

 13. A circular cylinder of 1.0 m diameter and 10 m 
length is rotated at 420 r. p.m. about its axis when 
it is kept is air stream with 11.0 m/s velocity 
perpendicular to its axis. Determine:

  (i) Circulation around the cylinder,
  (ii)	 Theoretical	lift	and	lift	co-efficient,
  (iii) Position if stagnation points,
  (iv) Actual drag and lift force on the cylinder, and
  (v) Actual resultant force and its direction.
  Take r = 1.208 kg/m3, and experimental values 

of CD and CL as 1.5 and 5.1 respectively.
  [Ans. (i) 69.1 m2/s; (ii) 9182.67 N; 12.565 (iii) 

– 90°; (iv) 1096.26 N; 3727.28 N; (v)3885.15 
N; 73.61°]

 14. A ship is propelled by two cylindrical rotors 
turming at 250 r. p.m. about their axes which 
are vertical. Each rotor is 6 m long and 2 m in 
diameter. Estimate the force exerted upon the 
rotors in the direction of motion when the rela-
tive wind velocity is 60 km/h at an angle of 60° 
opposing the direction of motion. Assume r for 
air is 1.25 kg/m3.

   [Ans. 10098 N]
 15. A jet plane weighing 29.4 kN and having a wing 

area of 20 m2	flies	at	a	velocity	of	950	km/h.	
When the engine delivers 7350 kW,65 percent of 
the power is used to overcome the drag resistance 
of	the	wing.	Calculate	the	co-efficient	of	lift	and	
drag for the wing. Take density of atmospheric 
air 1.208 kg/m3. 

   [Ans. 0.0349; 0.0215]



15.1. INTRODUCTION 

 A compressible flow is that flow in which the 
density of the fluid changes during flow. All real fluids 
are compressible to some extent and therefore their density 
will change with change in pressure or temperature. If the 
relative change in density ∆ ρ/ρ is small, the fluid can be 
treated as incompressible. A compressible fluid, such as 
air, can be considered as incompressible with constant ρ if 
changes in elevation are small, acceleration is small, and/
or temperature changes are negligible. In other words, 
if Mach’s number U/C, where C is the sonic velocity, is 
small, compressible fluid can be treated as incompressible.
 The gases are treated as compressible fluids and study 
of this type of flow is often referred to as ‘Gas dynamics’.
 Some important problems where compressibility 
effect has to be considered are :
 (i) Flow of gases through nozzles, orifices ;
 (ii) Compressors ;
 (iii) Flight of aeroplanes and projectiles moving at higher 

altitudes;
 (iv) Water hammer and accoustics.
 ‘Compressibility’ affects the drag co-efficients 
of bodies by formation of shock waves, discharge co-
efficients of measuring devies such as orificemeters, 
venturimeters and pitot tubes, stagnation pressure and 
flows in converging-diverging sections.

15.2. BASIC THERMODYNAMIC  
  RELATIONS 

15.2.1. The Characteristics Equation of State
 At temperatures that are considerably in excess 
of critical temperature of a fluid, and also at very low 
pressure, the vapour of fluid tends to obey the equation:
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  pv
T

 = constant = R or p RT = ρ 
 In practice, no gas obeys this law rigidly, but many gases tend towards it. An imaginary ideal  

gas which obeys this law is called a perfect gas, and the equation pv
T

 = R, is called the characteristic 
equation of a state of a perfect gas. The constant R is called the gas constant. Each perfect gas has 
a different gas constant.
 Units of R are Nm/kg K or kJ/kg K
 Usually, the characteristic equation is written as :
  pv = RT ...(15.1)
 or, for m kg, occupying V m3,
  pV = mRT ...(15.2)

 or, p = m RT RT
V

= ρ  ...(15.2 (a))

 Taking log on both sides, we get:
  ln (p) = ln (ρ) + ln (R) + ln (T)
 Upon differentiation, we have:

  dp
p

 = dp dR dT
R T

+ +
ρ

 Since R is constant for a particular gas, its derivative is zero.
 ∴ dp d dT

p T
ρ− −

ρ
 = 0 ...(15.3)

 Eqn. (15.3) is the differential equation of a perfect gas.

15.2.2. Specific Heats
 — The specific heat of a solid or liquid is usually defined as the heat required to raise unit mass 

through one degree temperature rise.
 — For a gas there are an infinite number of ways in which heat may be added between any two 

temperatures, and hence a gas could have an infinite number of specific heats. However, only 
two specific heats for gases are defined.

 (i) Specific heat at constant volume, cv
 (ii) Specific head at constant pressure, cp.
 (In case of real gases, cp and cv vary with temperature, but a suitable average value may be used 
for most practical purposes.)
  cp = cv + R ...(15.4)

  p

v

c
c

 = g (gamma) ...(15.5)

15.2.3. Internal Energy
 It is the heat energy stored in a gas. If a certain amount of heat is supplied to a gas the result is 
that temperature of gas may increase or volume of gas may increase thereby doing some external 
work or both temperature and volume may increase. If during heating of a gas the temperature 
increases its internal energy will also increase.
 Joule’s law of internal energy states that the internal energy of a perfect gas is a function of 
temperature only. In other words, internal energy of a gas is dependent on the temperature change 
only and is not affected by the change in pressure and volume.
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 We do not know how to find the absolute quantity of internal energy in any substance, however, 
what is needed in engineering is the change of internal energy (∆U).

15.2.4. Enthalpy
 One of the fundamental quantities which occurs invariably in thermodynamics is the sum of 
internal energy (u) and pressure volume product (pv). This sum is called Enthalpy (h).
 i.e. h = u + pu
 The total enthalpy of mass, m, of a fluid is given by,
  H = U + pV,  where H = mh

15.2.5. Energy, Work and Heat
 Energy. Energy is a general term embracing energy in transition and stored energy. The stored 
energy of a substance may be in the forms of mechanical energy and internal energy (other forms 
of stored energy may be chemical energy and electrical energy). Part of the stored energy may take 
the form of either potential energy or kinetic energy due to velocity. The balance part of the energy 
is known as internal energy.
 Heat and work. These are the forms of energy in transition and are the only forms in which 
energy can cross the boundaries of a system. Neither heat nor work can exist as stored energy.
 Work. Work is said to be done  when a force moves through a distance. If a part of the 
boundary of a system undergoes a displacement under the action of a pressure, the work done  
W is the product of the force (pressure × area) and the distance it moves in the direction of the force.
 Work is a transient quantity which only appears at the boundary while a change of state is taking 
place within a system. Work is ‘something’ which appears at the boundary when a  system changes 
its state due to the movement of a part of the boundary under the action of a force.
  Work output of the system = + W

  Work input to system = – W
 Heat. Heat (denoted by the symbol Q) may be defined in an analogous way to work as follows:
 “Heat is something which appears at the boundary when a system changes its state due to a 
difference in temperature between the system and its surroundings”.
 Heat, like work, is a transient quantity  which only appears at the boundary while a change is 
taking place within the system.
  Heat received by the system = + Q
 Heat rejected or given up by the system  = – Q

15.3.  BASIC THERMODYNAMIC PROCESSES 

 The basic thermodynamic processes are given below :
 1. Constant volume (isochoric) process (v = constant). A change in the state of system at 

constant volume is called isochoric process. An isochoric process results when the gas system 
is heated or cooled in an enclosed space (e.g. a rigid vessel).

  Formulae (for unit mass) :
    Heat added, Q = cv (T2 – T1) ...(15.7)
    Work done, W = 0 ...(15.8)

    p, v, T relations : 2

1

T
T

 = 2

1

p
p

 ...(15.9)

  where suffix 1 and suffix 2 represent the ‘start’ and ‘finish’ points of the process respectively.
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 2. Constant pressure (isobaric) process (p = constant). In this process a change in the state 
of the gas (working fluid) takes place at constant pressure. For a constant pressure process, 
the boundary must move against an external resistance as heat is supplied; for instance a gas 
in a cylinder behind a piston can be made to undergo a constant pressure process. Since the 
piston is pushed through a certain distance by the force exerted by the gas, then the work  is 
done on its surroundings.

  Formulae (for unit mass) :
    Head added, Q = cp (T2 – T1) ...(15.10)
    Work done, W = p (v2 – v1) ...(15.11)

    p, v, T relations : 2

1

T
T

 = 2

1

v
v

 ...(15.12)

 3. Isothermal process pv or =p constant,
ρ

 T = constant ). A process at a constant tempera-

ture is called an isothermal process. When a working substance in a cylinder behind a piston 
expands from a high pressure there is a tendency for the temperature to fall. In an isothermal 
expansion heat must be added continuously in order to keep the temperature at the initial 
value. Similarly in an  isothermal compression heat must be removed from the working sub-
stance  continuously during the process.

  Formulae (for unit mass) :

  Heat added, Q = 2 1
1 1 1

1 2
ln lnvp v RT

v
ρ   =   ρ   

 ...(15.13)

  Work done, W = 2 1
1 1 1

1 2
ln lnvp v RT

v
ρ   =   ρ   

 ...(15.14)

  p, v, T, relations : p1v1 = 1 2

1 2
or p p = ρ ρ 

 ...(15.15)

 4. Adiabatic process =ppv( or constant)g
gρ

. An adiabatic process is one in which no heat 

is transferred to or from the gas during the process. Such a process can be reversible or ir-
reversible. For an adiabatic process to take place, perfect thermal insulation for the system 
must be available.

  Formulae (for unit mass) :
    Heat added, Q = 0 ...(15.16)

    Work done, W = 1 1 2 2 1 2( )
1 1

p v p v R T T− −=
g − g −

 ...(15.17)

    p, v, T, relations : p1v1
g = p2v2

g  ...(15.18)

    2

1

T
T

 = 
11

1 2

2 1

v p
v p

g −g −
g   =   

   
 ...(15.19)

 If the adiabatic process is reversible (or frictionless), it is known as isentropic process. In case 

the pressure and density are related in such a way that p

v

c
c

g ≠  but is equal to some positive value 

then the process is known as polytropic, according to which n
p

ρ
 = constant (n ≠ g).



Chapter 15 : Compressible Flow         829

15.4.  BASIC EQUATIONS OF COMPRESSIBLE FLUID FLOW 

 The basic equations of compressible fluid flow are : (i) Continuity equation, (ii) Momentum 
equation, (iii) Energy equation, and (iv) Equation of state.
 The only change from incompressible fluid cases is that thermodynamic laws are applied in 
addition to the basic principle of conservation of mass, energy and momentum.

15.4.1. Continuity Equation
 In case of one-dimensional flow, mass per second = ρAV
 (where, ρ = mass density, A = area of cross-section, V = velocity)
 Since the mass or mass per second is constant according to law of conservation of mass, 
therefore,
  ρAV = Constant ...(15.20)
 Differentiating the above equation, we get:
  d (ρAV) = 0 or ρd (AV) + AVdρ = 0
 or, ρ (AdV + VdA) + AVdρ = 0 or ρAdV + ρVdA + AVdρ = 0
 Dividing both sides by ρAV, and rearranging we get:

  d dA dV
A V

ρ + +
ρ

 = 0 ...(15.21)

 Eqn. (15.18) is also known as equation of continuity in differential form.

15.4.2. Momentum Equation
 The momentum equation for compressible fluids is similar to the one for incompressible fluids. 
This is because in momentum equation the change in momentum flux is equated to force required to 
cause this change.
 Momentum flux = Mass flux × velocity  = ρAV × V
 But the mass flux i.e. ρAV = constant ...By continuity equation
 Thus the momentum equation is completely independent  of the compressibility effects and 
hence for compressible fluids too the momentum equation, say X-direction, may be expressed as :
  ΣFx = (ρAVVx)2 – (ρAVVx)1 ...(15.22)

15.4.3. Bernoulli’s or Energy Equation
 In chapter 6 Bernoulli’s equation for an incompressible fluid has been derived and the same 
procedure is followed. As the flow of compressible fluid is steady, the same Euler equation (Eqn. 6.) 
is obtained as :

  dp VdV gdz+ +
ρ

 = 0 ...(15.23)

 Integrating  both sides, we get:

               dp VdV gdz+ +
ρ∫ ∫ ∫  = constant

 or, 
2

2
dp V gz+ +
ρ∫  = constant ...(15.24)

 In compressible flow since ρ is not constant it cannot be taken outside the integration sign. In 
compressible fluids the pressure (p) changes with change of density (ρ), depending on the type of 
process. Let us find out the Bernoulli’s equation for isothermal and adiabatic processes.
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 (a) Bernoulli’s equation for isothermal process :
  In case of an isothermal process

    pv = constant or 1constant = ( )p c say=
ρ

  (where v = specific volume = 1/ρ)

  ∴ ρ = p
c

  Hence,   dp
ρ∫  = 1

1 1
1

ln ( ) ln ( )
/

c dpdp dp pc c p p
p c p p

= = = =
ρ∫ ∫ ∫   1

pc = ρ 
Q

  Substituting the value of dp
ρ∫  in eqn. (15.24), we get

  
2

ln ( )
2

p Vp gz+ +
ρ

 = constant

  Dividing both sides by g, we get

  
2

ln ( )
2

p Vp z
g g

+ +
ρ

 = constant ...(15.25)

  Eqn. (15.25) is the Bernoulli’s equation for compressible flow undergoing isothermal process.
 (b) Bernoulli’s equation for adiabatic process :
  In case of an adiabatic process:

  pvg = constant or p
gρ

 = constant = c2 (say)

  ∴ ρg = 
2

p
c

   or 
1/

2

p
c

g
 ρ =  
 

  Hence,   dp
ρ∫  = 1/ 1/ 1/

2 21/ 1/
2

1( ) ( )
( / )

dp c dp c p dp
p c p

g g − g
g g= =∫ ∫ ∫

   = 

11 1 11/
1/ 1/2

2 2
( ) ( )( ) ( )

1 1 11

c ppc c p

g − 
− +   g − ggg    gg g  

 
  g= =  g − g −   − +    g g    

   = 
11/

( )
1

p p
g − g  g 

g
g   

   g − ρ   
 2

pc g
 = ρ 
Q

   = 
11/

1 ( )
1

p p
g − g  g 

g ×
g

 g 
  g −   ρ 

   = 

11

1 1
p p

g − + g g g g   =   g − ρ g − ρ   
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  Substituting the value of dp
ρ∫  in eqn. (15.24), we get

  
2

1 2
p V gzg  + + g − ρ 

 = constant

  Dividing both sides by g, we get

  
2

1 2
p V z
g g

g  + + g − ρ 
 = constant ...(15.26)

  Eqn. (15.26) is the Bernoulli’s equation for compressible flow undergoing adiabatic process.
 Example 15.1.  A gas is flowing through a horizontal pipe. On a section where cross-section 
area is 50 cm2, the pressure and temperature are found to be 3 bar (gauge)and 20°C respectively. 
At another section where the area of cross-section  is 25 cm2, the pressure is recorded 2 bar 
(gauge). If the mass rate of flow of gas through the pipe is 0.6 kg/s find the velocities of the gas at 
these sections, assuming an isothermal change.
 Take R = 287 J/kg K, and atmospheric pressure = 1 bar.

 Solution.
 Section 1:  Area, A1 =  50 cm2 = 50 × 10–4 m2

  Pressure, p1 = 3 bar (gauge) = 3 + 1 = 4 bar = 4 × 105 N/m2 (abs.)
  Temperature,  T1 = 20 + 273 = 293 K

 Section 2:  Area,  A2 = 25 cm2  = 25 × 10–4 m2

  Pressure,  p2 = 2 bar (gauge) = 2 + 1 = 3 bar = 3 × 105 N/m2 (abs.)
  Mass rate of flow of gas, m = 0.6 kg/s
 Characteristic gas constant, R = 287 J/kg K
  Atmospheric pressure = 1 bar
 Velocities at the sections V1, V2 :
 The characteristic equation is written as :
   p = ρRT ...[Eqn. 15.2 (a)]

 Section 1: p1 = ρ1RT1 or ρ1 =
5

31

1

4 10 4.757 kg/m
287 293

p
RT

×= =
×

 Also, m = ρ1A1V1

 or, V1 = 
m

ρ1A1

0.6
4.757 × 50 × 10–4=  = 25.22 m/s

 Section 2: ρ2 = 
5

2

2

3 10
287 293

p
RT

×=
×

 = 3.567 kg/m3 (Q T1 = T2 = 293 K) 

 Also, m = ρ2A2V2

 ∴ V2 = –4
2 2

0.6
3.567 25 10

m
A

=
ρ × ×

 = 67.28 m/s (Ans.)

 Example 15.2.  Fig. 15.1 shows a horizontal pipe in which gas is flowing at a temperature of 
6ºC. The pressures at the sections 1 and 2 are 4 bar (gauge) and 3 bar (gauge) respectively. If R = 
287 J/kg K and atmospheric pressure is 1 bar find the velocities of the gas at these sections.
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 Solution. Refer to Fig. 15.1.

60 mmV1 30 mm V2

2

p2 = 3 bar (gauge)

Gas

p1 = 4 bar (gauge)

1

Fig. 15.1

 Section 1:  Diameter of pipe, D1 = 60 mm = 0.06 m

  ∴  Area, A1 = π
4

 × 0.062 = 2.827 × 10–3 m2

   Pressure, p1 = 4 bar (gauge) = 4 + 1 = 5 bar (abs.) = 5 × 105 N/m2 (abs.)
   Temperature, T1  = 6 + 273 = 279 K
 Section 2: Diameter of pipe, D2 = 30 mm = 0.03 m

  ∴  Area, A2 = π
4

 × 0.32 = 7.0686 × 10–4 m2

   Pressure, p2 = 3 bar (gauge)
    = 3 + 1 = 4 bar (abs.) = 4 × 105 N/m2 (abs.)
   Gas constant, R = 287 J/kg K
 Velocities of the gas at sections 1 and 2, V1, V2:
 Applying continuity equation at 1 and 2, we get:

       ρ1A1V1 =  ρ2A2V2 or  2

1

V
V

 = 
3

1 1 1 1
4

2 2 22

2·827 10 4
7·0686 10

A
A

−

−
ρ ρ × × ρ= = ×
ρ ρρ × ×

 ...(i)

 For an isothermal process, we have:

           1

1

p
ρ

 = 2

2

p
ρ

       or 1

2

ρ
ρ

 = 
5

1
5

2

5 10 1.25
4 10

p
p

×= =
×

 Substituting the value of  1

2

ρ
ρ

 = 1.25 in eqn. (i), we get:

  2

1

V
V

 = 4 × 1.25 = 5 or V2 = 5V1 ...(ii)

 Applying Bernoulli’s equation at sections 1 and 2 for isothermal process (Eqn. 15.25), we have:

  
2

1 1
1 1

1
ln ( )

2
p Vp z

g g
+ +

ρ
 = 

2
2 2

2 2
2

ln ( )
2

p Vp z
g

+ +
ρ

 But,        zl = z2, since the pipe is horizontal,

 ∴ 
2

1 1
1

1
ln ( )

2
p Vp

g g
+

ρ
 = 

2
2 2

2
2

ln ( )
2

p Vp
g

+
ρ

 or, 1 2
1 2

1 2
ln ( ) ln ( )p pp p

g g
−

ρ ρ  = 
2 2

2 1
2 2
V V

g g
−
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 But,  1

1

p
ρ

 = 2

2

p
ρ

 (for an isothermal process),

 ∴ 1 1
1 2

1 1
ln ( ) ln ( )p pp p

g g
−

ρ ρ
 = 

2 2
2 1

2 2
V V

g g
−

 or, 1 1

1 2
lnp p

g p
 
 ρ  

 = 
2 2 2 2

1 1 1 1(5 ) 24 12
2 2 2
V V V V
g g g g

− = =                    (Q V2 = 5V1)

 or, 
5

1
5

1

5 10ln
4 10

p
g

 ×
 ρ × 

 = 
2

112V
g

 or 0.223 1

1

p
gρ

 = 
2

112V
g

 or, 1

1

p
ρ

 = 
2

112
0.223

V  = 53.8V1
2 ...(iii)

 From equation of state, we have:

  p1 = ρ1RT1     ...Section 1    or     1

1

p
ρ

 = RT1 = 287 × 279 = 80073

 Substituting the valve of 1

1

p
ρ

in eqn. (iii), we get: 

  53.8 V1
2 = 80073 or V1

2 = 80073
53.8

 = 1488.34

 or, V1 = 38.58 m/s   (Ans.)
 From eqn. (ii) we have:  V2 = 5 V1 = 5 × 38.58 = 192.9 m/s   (Ans.)
 Example 15.3. A 120 mm diameter pipe reduces to 60 mm diameter through a sudden 
contraction. When it carries air at 25°C under isothermal condition, the absolute pressures 
observed in the two pipes just before and after the contraction are 480 kN/m2 and 384 kN/m2 
respectively. Determine:
 (i) Densities at the two sections,
 (ii) Velocities at the two sections, and
 (iii) Mass rate of flow through the pipe.
 Take R = 287 J/kg K

 Solution. Section 1: Diameter of the pipe, 
  D1 = 120 mm = 0.12 m

 ∴  Area, A1 = π
4

 × 0.122 

   = 0.01131 m2

  Pressure, p1 = 480 kN/m2

 Temperature, T1 = 25 + 273 = 298 K
 Section 2: Diameter of the pipe,
  D2 = 60 mm = 0.06 m

 ∴  Area, A2 = π
4

 × 0.062 

   = 2.827 × 10–3 m2

  Pressure, p2 = 384 kN/m2

 Temperature, T2 = T1 = 298 K (since the condition is isothermal)

2

1

Air
V1

p1 = 480kN/m
2

D1 = 120 mm

D2 = 60 mm

V2

p2 = 384 kN/m
2

Fig. 15.2
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 (i) Densities, ρ1 and ρ2 :

  For isothermal condition, 1

1

p
ρ

 =  2

2

p
ρ

  [Eqn. (15.15)]

  or, 1

2

p
p

 = 1

2

ρ
ρ

 or 480
384

 = 1

2

ρ
ρ

 = 1.25

  Also  p1 = ρ1RT1 or ρ1 = 
1

p
RT

1

  or, ρ1 = 
3480 10

287 298
×
×

 = 5.61 kg/m3 (Ans.)

  ∴ ρ2 = 1 5.61
1.25 1.25
ρ =  = 4.488 kg/m3 (Ans.)

 (ii) Velocities, V1 and V2 :
  According to continuity equation:
    ρ1A1V1 = ρ2A2V2

  or, 2

1

V
V

 = 1 1
3

2 2

0.011311.25
2.827 10

A
A −

ρ = ×
ρ ×

 = 5.0

  Applying Bernoulli’s equation at sections 1 and 2 for isothermal condition, we get:

    
2

1 1
1 1

1
ln ( )

2
p Vp z

g g
+ +

ρ
 = 

2
2 2

2 2
2

ln ( )
2

p Vp z
g g

+ +
ρ

  Assuming z1 = z2, we have:

    
2

1 1
1

1
ln ( )

2
p Vp

g g
+

ρ
 = 

2
2 2

2
2

ln ( )
2

p Vp
g g

+
ρ

  or,     1 2
1 2

1 2
ln ( ) ln ( )p pp p

g g
−

ρ ρ
 = 

2 2
2 1

2 2
V V

g g
−

  Cancelling ‘g’ on both the sides, we get:

    1 2
1 2

1 2
ln ( ) ln ( )p pp p−

ρ ρ
 = 

2 2
2 1

2 2
V V

g g
−

  or,      1 1
1 2

1 1
ln ( ) ln ( )p pp p−

ρ ρ
 = 

2 2
2 1
2 2

V V−  1 2

1 2

p p = ρ ρ 
Q

  or, 1 1

1 2
lnp p

p
 
 ρ  

 = 
2 2 2 2

22 1 1 1
1

(5 ) 12
2 2 2 2

V V V V V− = − =  (Q V2 = 5V1)

  or,       
3 3

3
480 10 480 10ln

5·61 384 10
 × ×
 

× 
 = 12V 1

2

  or,  85561.5 × 0.223 = 12V1
2 or V1

2 = 1590  or   V1 = 39.87 m/s   (Ans.)

  ∴  V2 = 5V1 = 5 × 39.87 = 199.35 m/s   (Ans.) 

 (iii) Mass rate of flow through the pipe, m :

        m = ρ1A1V1 (= ρ2A2V2)  or  m = 5.61 × 0.01131 × 39.87 = 2.53 kg/s   (Ans.)
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 Example 15.4.   A gas with a velocity of 300 m/s is flowing through a horizontal pipe at a 
section where pressure is 78 kN/m2 absolute and temperature 40° C. The pipe changes in diameter 
and at this section, the pressure is 117 kN/m2 absolute. Find the velocity of the gas at this section if 
the flow of the gas is adiabatic. Take R = 287 J/kg K and g =  1.4. [Delhi University]

 Solution. 

 Section 1: Velocity of the gas, V  =  300 m/s
  Pressure, p1 = 78 kN/m2

  Temperature, T1 = 40 + 273 = 313 K
 Section 2:  Pressure, p2 = 117 kN/m2

  R = 287 J/kg K, g = 1.4
 Velocity of gas at section 2, V2 :
 Applying Bernoulli’s equations at sections 1 and 2 for adiabatic process, we have:

  
2

1 1
1

11 2
p V z
g g

g  + + g − ρ 
 = 

2
2 2

2
21 2
p V z

g g
g  + + g − ρ 

 [Eqn. (15.26)]

 But, z1 =  z2, since the pipe is horizontal.

 ∴ 
2

1 1

11 2
p V
g g

g  + g − ρ 
 = 

2
2 2

21 2
p V

g g
g  + g − ρ 

 Cancelling ‘g’ on both sides, we get:

  1 2

1 21
p pg    −   g − ρ ρ   

 = 
2 2

2 1
2 2

V V−

 or, 1 2 1

1 2 1
1

1
p p

p
ρg    − ×   g − ρ ρ   

 = 
2 2

2 1
2 2

V V−

 ∴ 1 2 1

1 1 2
1

1
p p

p
ρg    − ×   g − ρ ρ   

 = 
2 2

2 1
2 2

V V−  ...(i)

 For an adiabatic flow : 1

1

p
gρ

 = 2

2

p
gρ  or 1

2

p
p

 = 1

2

gρ 
 ρ 

 or 1

2

ρ
ρ

 =  
1

1

2

p
p

g 
 
 

 Substituting the value of 1

2

ρ
ρ

in eqn. (i), we get:

  
1

1 2 1

1 1 2
1

1
p p p

p p
g

  g     − ×   g − ρ      
 = 

2 2
2 1
2 2

V V−

  
11

1 2

1 1
1

1
p p

p

−
g

  g     −   g − ρ      
 = 

2 2
2 1
2 2

V V−

 or, 
1

1 2

1 1
1

1
p p

p

g −
g

  g     −   g − ρ      
 = 

2 2
2 1

2
V V−  ...(ii)

 At section 1 : 1

1

p
ρ

 = RT1 = 287 × 313 = 89831,

  2

1

p
p

 = 117
78

 = 1.5, and V1 = 300 m/s
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 Substituting the values in eqn. (ii), we get:

  { }1.4 1
1.41.4 89831 1 (1.5)

1.4 1

−
  × − − 

 = 
2 2

2 300
2 2

V −

  314408.5 (1 – 1.1228) = 
2

2 45000
2

V −

 or, – 38609.4 = 
2

2 45000
2

V −  

 or, V2
2 = 12781.2 or V2 = 113.05 m/s   (Ans.)

 Example 15.5.  In the case of air flow in a conduit transition, the pressure, velocity and 
temperature at the upstream section are 35 kN/m2, 30 m/s and 150°C respectively. If at the 
downstream section the velocity is 150 m/s, determine the pressure and the temperature if the 
process followed is isentropiic. Take g = 1.4, R = 290 J/kg K.
 Solution. 
 Section 1 (upstream) :  Pressure, p1  =  35 kN/m2,
  Velocity, V1 = 30 m/s
  Temperature, T1 = 150 + 273 = 423 K
  Velocity, V2 = 150 m/s
  R = 290 J/kg K, g = 1.4
 Section 2 (downstream) :
 Pressure, p2 :
 Applying Bernoulli’s equation at sections 1 and 2 for isentropic (reversible adiabatic) process, 
we have:
  

2
1 1

1
11 2
p V z
g g

g  + + g − ρ 
 = 

2
2 2

2
21 2
p V z

g g
g  + + g − ρ 

 Assuming  zl = z2, we have:

  
2

1 1

11 2
p V
g g

g  + g − ρ 
 = 

2
2 2

21 2
p V

g g
g  + g − ρ 

 Cancelling ‘g’ on both the sides, and rearranging we get:

  1 2 1

1 1 2
1

1
p p

p
ρg    − ×   g − ρ ρ   

 = 
2 2

2 1
2 2

V V−  ...(i)

 For an isentropic flow: 1

1

p
gρ

 =  2

2

p
gρ  or  1

2

p
p

 = 1

2

gρ 
 ρ 

 or 1

2

ρ
ρ

 = 
1

1

2

p
p

g 
 
 

 Substituting the value of 1

2

ρ
ρ

 in eqn. (i), we have:

  
1

1 2 1

1 1 2
1

1
p p p

p p
g

  g     − ×   g − ρ      
 = 

2 2
2 1
2 2

V V−

  
11

1 2

1 1
1

1
p p

p

−
g

  g     −   g − ρ      
 = 

2 2
2 1
2 2

V V−

  
1

1 2

1 1
1

1
p p

p

g −
g

  g     −   g − ρ      
 = 

2 2
2 1
2 2

V V−
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 Substituting the values, we get:

 
1.4 1

2 21.42

1

1.4 150 30122670 1 10800
1.4 1 2 2

p
p

−    × − = − = −    

  1
1

1
290 423 122670p RT = = × = ρ 

Q

  
0.2857

2

1
429345 1 p

p
   −     

 = 10800

 or, 
0.2857

2

1

p
p

 
 
 

 = 108001
429345

−  = 0.9748

 or, 2

1

p
p

 = (0.9748)1/02857 = (0.9748)3.5 = 0.9145

 or, p2 = 35 × 0.9145 = 32 kN/m2   (Ans.)
 Temperature, T2:
 For an isentropic process, we have:

  2

1

T
T

 = 
1 1.4 1

2 1.4

1
(0.9145)p

p

g − −
g  = 

 
 = (0.9145)0.2857 = 0.9748

 ∴ T2 = 423 × 0.9748 = 412.3 K or t2 = 412.3 – 273 = 139.3° C (Ans.)

15.5. PROPAGATION OF DISTURBACES IN FLUID AND VELOCITY  
 OF SOUND 

 The solids as well as fluids consist of molecules. Whereas the molecules in solids are close 
together , these are relatively apart in fluids. Consequently whenever there is a minor disturbance, it 
travels instantaneously in case of solids; but in case of fluid the molecules change in position before 
the transmission or propagation of the disturbance depends upon its elastic properties. The velocity 
of disturbance depends upon the changes of pressure and density of the fluid.
 The propagation of disturbance  is similar to the propagation of sound through a media. The speed of 
propagation of sound in a media is known as acoustic or sonic velocity  and depends upon the difference 
of pressure. Incompressible flow, velocity of sound (sonic velocity) is of paramount importance.

15.5.1. Derivation of Sonic Velocity (velocity of sound)
 Consider a one-dimentional flow through long straight rigid pipe of uniform cross-sectional 
area fitted with a frictionless piston at one end as shown in Fig. 15.3. The tube is filled with a 
compressible fluid initially at rest. If the piston is moved suddenly to the right with velocity, a 
pressure wave would be propagated through the fluid with a velocity of sound wave.

dx = Vdt ( )dL – dx

Piston Rigid
pipe

Wave front

V

( )dL = Cdt

C

Fig. 15.3. One dimensional pressure wave propagation.
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 Let, A = Cross-sectional area of the pipe,
  V = Piston velocity,
  p = Fluid pressure in the pipe before the piston movement,
  ρ = Fluid density before the piston movement,
  dt = A small interval of time during which piston moves, and
  C = Velocity of pressure wave or sound wave  
    (travelling in the fluid).
 Before the movement of the poston the length dL has an initial density ρ, and its total mass
   = ρ × dL × A
 When the piston moves through a distance dx, the fluid density within the compressed region of 
length (dL – dx) will be increased and becomes (ρ  + dρ) and subsequently the total mass of fluid in 
the compressed region = (ρ + dρ) (dL – dx) × A
 ∴ ρ × dL × A = (ρ + dρ) (dL – dx) × A ...by principle of continuity.
 But, dL = C dt and dx = Vdt; therefore, the above equation becomes:
  ρCdt = (ρ + dρ) (C – V) dt
 or, ρC = (ρ + dρ) (C – V) or ρC = ρC – ρV + dρ.C – dρ.V
 or, 0 = – ρV + dρ.C – dρ .V
 Neglecting the term dρ.V (V being much smaller than C ), we get:
  dρ.C = ρV or C = V

d
ρ

ρ
 ...(15.27)

 Further in the region of compressed fluid, the fluid particles have attained a velocity which is 
apparently equal to V (velocity of the piston), accompanied by an increase in pressure dp due to 
sudden motion of the piston. Applying inpulse-momentum equation for the fluid in the compressed 
region during dt, we get:
  dp × A × dt = ρ × dL × A (V – 0)
   (Force on the fluid)       (Rate of change of momentum)

 or, dp = dL CdtV V CV
dt dt

ρ = ρ × × = ρ  (Q dL = Cdt)

 or, C = dp
Vρ

 ...(15.28)

 Multiplying eqns. (15.2) and (15.3), we get:

  C2 = dp dpV
dl V d
ρ × =

ρ ρ

 ∴ C = dp
dρ

 ...(15.29)

15.5.2. Sonic Velocity in terms of Bulk Modulus
 The bulk modulus of elasticity of fluid (K) is defined as:

  K = 
dp
dv
v

 − 
 

 ...(i)

 where, dv = decrease in volume, and v = original volume.
 (–ve sign indicates that volume decreases with increase in pressure)
 Also,   volume   v ∝ 1

ρ
, or v ρ = constant

 Differentiating both sides, we get

  v dρ + ρ dv = 0 or dv
v

−  = dρ
ρ
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 Substituting the value of ( )dpdv
v K

− =  from eqn. (i), we get:

  dp
K

 = dρ
ρ

 or dp
dρ

 = K
ρ

 Substituting this value of dp
dρ

in eqn. (15.29), we get

  C = K
ρ

 ...(15.30)

 Eqn. (15.30) is applicable for liquids and gases.

15.5.3. Sonic Velocity for Isothermal Process

 For is tothermal process :  p
ρ

 = constant

 Differentiating both sides, we get:

  2
. – .dp p dρ ρ

ρ
 = 0 or 2

. 0dp p dρ
− =

ρ ρ

 or, dp
ρ

 = 2
.p dρ
ρ

 or dp p RT
d

= =
ρ ρ

 ...(15.31)

  ...equation of statep RT = ρ 

 Substituting the value of dp
dρ

 in eqn. (15.29), we get:

  C = p RT=
ρ

 ...(15.32)

15.5.4 Sonic Velocity for Adiabatic Process

 For isentropic (reversible adiabatic) process: constantp
g =

ρ
 or, p . ρ– g = Constant
 Differentiating both sides, we have p (– g) . ρ – g – 1 dρ + ρ – g dp = 0
 Dividing both sides by ρ – g, we get:  – p g ρ– 1 dρ + dp = 0 or dp = p g ρ– 1 dρ

 or, dp
dρ

 = p RTg = g
ρ

   p RT = ρ 
Q

 Substituting  the value of dp
dρ

 in eqn. (15.29), we get:

  C = RTg  ...(15.33)

 The following points are worth noting :
 (i) The process is assumed to be adiabatic when minor disturbaces are to be propagated through 

air; due to very high velocity of disturbances/pressure waves appreciable heat transfer does 
not take place.

 (ii) For calculation of velocity of the sound/pressure waves, isothermal process is considered 
only when it is mentioned in the numerical problem (that the process is isothermal). When 
no process is mentioned in the problem, calculations are made assuming the process to be 
adiabatic.
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15.6.  MACH NUMBER 

 The Mach number is an important parameter in dealing with the flow of compressible fluids, 
when elastic forces become important and predominant.
 Mach number is defined as the square root of the ratio of the inertia force of a fluid to the 
elastic force.
 ∴ Mach number, 

2Inertia force
Elastic force

AVM
KA

ρ
= =

2

/ /
V V V

K CK
= = =

ρ ρ
 /

...eqn. (15.30)
K C ρ =

 
  

Q

 i.e. M = V
C

 ...(15.34)

 Thus, M = Velocity at a point in a fluid
Velocity of sound at that point at a given instant of time

 Depending on the value of Mach number, the flow can be classified as follows :
 1. Subsonic flow : Mach number is less than 1.0 (or M < 1); in this case V < C.
 2. Sonic flow : Mach number is equal to 1.0 (or M = 1); in this case V = C.
 3. Supersonic flow : Mach number is greater than 1.0 (or M > 1); in this case V > C.
 When the Mach number in flow region is slightly less to sightly greater than 1.0, the flow is 
termed as transonic flow.
 The following points are worth noting :
 (i) Mach number is important in those problems in which the flow velocity is comparable with 

the sonic velocity (velocity of sound). It may happen in case of airplanes travelling at very 
high speed, projectiles, bullets etc.

 (ii) If for any flow system the Mach number is less than about 0.4 the effects of compressibility 
may be neglected (for that flow system).

 Example 15.6.  Find the sonic velocity for the following fluids :
 (i) Crude oil of specific gravity 0.8 and bulk modulus 1.5 GN/m2.
 (ii) Mercury having a bulk modulus of 27 GN/m2. (Delhi University)
 Solution. Crude oil:  Specific gravity = 0.8 
 ∴  Density of oil, ρ = 0.8 × 1000 = 800 kg/m3

  Bulk modulus, K = 1.5 GN/m2

 Mercury :  Bulk modulus, K  =  27 GN/m2

  Density of mercury, ρ  =  13.6 × 1000 = 13600 kg/m3

 Sonic velocity, Coil , CHg :
 Sonic velocity is given by the relation :

  C = K
ρ

 ...[Eqn. (15.30)]     

 ∴ Coil = 
91.5 10 . /

800
×

= 1369 3 m s  (Ans.)

  CHg = 
927 10 /

13600
×

= 1409 m s (Ans.)

 Example 15.7.  An aeroplane is flying at a height of 14 km where temperature is – 45°C. The 
speed of the plane is corresponding to M = 2. Find the speed of the plane if R = 287 J/kg K and  
g = 1.4.
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 Solution.  Temperature (at a height of 14 km), t  =  – 45°C.
  T = – 45 + 273 = 228 K
  Mach number, M = 2
  Gas constant, R = 287 J/kg K
  g = 1.4
 Speed of the plane, V :
 Sonic velocity, (C) is given by:

  C = RTg  (assuming the process to be adiabatic)  ...[Eqn. (15.33)]

   = 1.4 287 228 302.67 m/s× × =

 Also, M = V
C

 ...[Eqn. (15.34)]

 or, 2 = 
302.67

V

 or, V = 2 × 302.67 = 605.34 m/s 
605.34 3600 . /

1000
×

= = 2179 2 km h  (Ans.)

15.7.  PROPAGATION OF DISTURBANCE IN COMPRESSIBLE FLUID 

 When some disturbance is created in a compressible fluid (elastic or pressure waves are also 
generated), it is propagated in all directions with sonic velocity (= C) and its nature of propagation 
depends upon the Mach number (M). Such disturbance may be created when an object moves in a 
relatively stationary compressible fluid or when a compressible fluid flows past a stationary object.
 Consider a tiny projectile moving in a straight line with velocity V through a compressible fluid 
which is stationary. Let the projectile is at A when time t = 0, then in time t it will move through a 
distance AB = Vt. During this time the disturbance which originated  from the projectile when it was 
at A will grow into the surface of sphere of radius Ct as shown in Fig. 15.4, which also shows the 
growth of the other disturbances which will originate from the projectile at every t/4 interval of time 
as the projectile moves from A to B.
 Let us find nature of propagation of the disturbance for different Mach numbers.
 Case I : When M < 1 (i.e. V < C ). In this case since V < C the projectile lags behind the 
disturbance/pressure wave and hence as shown in Fig. 15.4 (a) the projectile at point B lies inside 
the sphere of radius Ct and also inside other spheres formed by the disturbances/waves started at 
intermediate points.

A B

( ) M < 1 (V < C)
Subsonic

a

ZONE

OF

SILENCE

( ) M = 1 (V = C)
Sonic motion
b

ZONE

OF

ACTION

C
t 3

4 C
t

C
t

1
4

1
2 C

t

A
B

C
t

4
3
C
t

C
t

1
4C

t

1
2
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Fig. 15.4. Nature of propagation of disturbances in compressible flow.

 Case II: When M = 1 (i.e. V = C). In this case, the disturbance always travels with the projectile 
as shown in Fig. 15.4 (b). The circle drawn with centre A will pass through B.
 Case III: When M  > 1 (i.e. V  > C). In this case the projectile travels faster than the disturbance. 
Thus the distance AB (which the projectile has travelled) is more than Ct, and hence the projectile 
at point ‘B’ is outside the spheres formed due to formation and growth of disturbance at t = 0 and 
at the intermediate points (Fig. 15.3 (c)). If the tangents are drawn (from the point B) to the circles, 
the spherical pressure waves form a cone with its vertex at B. It is known as Mach cone. The semi-
vertex angle α of the cone is known as Mach angle which is given by:

  sin α = 1Ct C
Vt V M

= =  ...(15.35)

 In such a case (M > 1), the effect of the disturbance is felt only in region inside the Mach cone, 
this region is called zone of action. The region outside the Mach cone is called zone of silence.
It has been observed that when an aeroplane is moving with supersonic speed, its noise is heard only 
after the plane has already passed over us.

 Example 15.8.  Find the velocity of a bullet fired in standard air if its Mach angle is 40° .

 Solution.  Mach angle, α = 40°
  g = 1.4
 For standard air: R = 287 J/kg K, t = 15°C   or   T = 15 + 273 = 288 K
 Velocity of the bullet, V :
  Sonic velocity, C = 1.4 287 288 340.2 m/sRTg = × × =

 Now, sin α = C
V

 or, sin 40° = 340.2
V

 or 
340.2 .

sin 40
V = =

°
529 26 m / s  (Ans.)

 Example 15.9.  A projectile is travelling in air having pressure and temperature as 88.3 kN/m2 
and – 2°C. If the Mach angle is 40°, find the velocity of the projectile. 
Take g = 1.4 and R = 287 J/kg K.    [M.U.]

B
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 Solution.  Pressure, p = 88.3 kN/m2

  Temperature, T = – 2 + 273 = 271 K
  Mach angle, M = 40°
  g = 1.4, R = 287 J/kg K
 Velocity of the projectile, V:
  Sonic velocity, C = 1·4 287 271 330 m/sRTg = × × 

 Now, sin α = C
V

 or 330sin 40
V

° =

 or, V = 
330 .

sin 40
=

°
513 4 m / s (Ans.)

 Example 15.10.  A supersonic aircraft flies at an altitude of 1.8 km where temperature is 4°C. 
Determine the speed of the aircraft if its sound is heard 4 seconds after its passage over the head 
of an observer. Take R = 287 J/kg K and g = 1.4.
 Solution. Altitude of the aircraft = 1.8 km = 1800 m
  Temperature, T = 4 + 273 = 277 K
  Time, t = 4s
 Speed of the aircraft, V :
 Refer to Fig. 15.5. Let O represent the observer and A the 
position of the aircraft just vertically over the observer. After 4 
seconds, the aircraft reaches the position represented by the point 
B. Line AB represents the wave front and α the Mach angle.
 From Fig. 15.5, we have : 

  tan α = 1800 450
4V V

=  ...(i)

 But,  Mach number M = 1
sin

V
C

=
α

 or, V = 
sin

C
α

 ...(ii)

 Substituting the value of V in eqn. (i), we get:

  tan α = 450 450 sin
( / sin )C C

α
=

α

 or, sin
cos

α
α

 = 450 sin
C

α   or cos
450
C

α =  ...(iii)

 But, C = RTg , where C is the sonic velocity

  R = 287 J/kg K  and  g = 1.4 ...(Given)
 ∴ C = 1.4 287 277 333.6 m/s× × =

 Substituting the value of C in eqn. (ii), we get:

  cos α = 333.6 0.7413
450

=

 ∴ sin α = 2 21 cos 1 0.7413 0.6712− α = − =

 Substituting the value of sin α in eqn. (ii), we get:

B
4VA

1
8
0
0

m

AB Vt V= = 4

O

�

Fig. 15.5
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  V = 333.6 497×3600497m/s= .
sin 0.6712 1000

C
= = =

α
1789 2km / h  (Ans.)

15.8.  STAGNATION PROPERTIES 

 The point on the immersed body where the velocity is zero is called stagnation point. At this 
point velocity head is converted into pressure head. The values of pressure (ps), temperature (Ts)  and 
density (ρs) at stagnation point are called stagnation properties.

15.8.1 Expression for Stagnation Pressure (ps ) in Compressible Flow
 Consider the flow of compressible fluid 
past an immersed body where the velocity 
becomes zero. Consider frictionless adiabatic 
(isentropic) condition. Let us consider two 
points, O in the free stream and the stagnation 
point S as shown in the Fig. 15.6.
 Let, p0 = Pressure of compressible fluid 
at point O,
  V0 = Velocity of fluid at O,
  ρ0 = Density of fluid at O,
  T0 = Temperature of fluid at O,
and ps, Vs, ρs and Ts corresponding values of 
pressure, velocity density, and temperature at point S.
 Applying Bernoulli’s equation for adiabatic (frictionless) flow at points O and S, (given by eqn. 
15.26), we get:

  
2

0 0
0

01 2
p V z

g g
g  + + g − ρ 

 = 
2

1 2
s s

s
s

p V z
g g

g  + + g − ρ 

 But z0 = zs; the above equation reduces to:

  
2

0 0

01 2
p V

g g
g  + g − ρ 

 = 
2

1 2
s s

s

p V
g g

g  + g − ρ 

 Cancelling ‘g’ on both the sides, we have:

  
2

0 0

01 2
p Vg  + g − ρ 

 = 
2

1 2
s s

s

p Vg  + g − ρ 

 At point S the velocity is zero, i.e. Vs = 0; the above equation becomes:

  0

01
s

s

p pg    −   g − ρ ρ   
 = 

2
0
2

V
−

 or, 0 0

0 0
1

1
s

s

p p
p
ρg    − ×   g − ρ ρ   

 = 
2

0
2

V
−

 or, 0 0

0 0
1

1
s

s

p p
p

ρg    − ×   g − ρ ρ   
 = 

2
0
2

V
−  ...(i)

 For adiabatic process: 

  0

0

p
gρ

 = s

s

p
gρ

 or 0 0

s s

p
p

g

g
ρ

=
ρ

 

Body

S (stagnation point)

Stream lines

O

Fig. 15.6 Stagnation properties.
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 or, 0

s

ρ
ρ

 = 

1

0

s

p
p

g 
 
 

 ...(ii)

 Substituting the value of 0

S

ρ
ρ

 in eqn. (i), we get:

  

1

0 0

0 0
1

1
s

s

p p p
p p

g
 

g     − ×    g − ρ    
 = 

2
0
2

V
−

 or, 

11
0

0 0
1

1
sp p

p

−
g

 
g     −    g − ρ    

 = 
2

0
2

V
−

 or, 

1

0
1 sp

p

g −
g

 
  −     

 = 
2

0 0

0

1
2

V
p
ρg − −  g 

 or, 
2

0 0

0

11
2

V
p
ρg − +  g 

 = 

1

0

sp
p

g −
g 

 
 

 ...(iii)

 For adiabatic process, the sonic velocity is given by:

  C = pRTg = g
ρ

 p RT = ρ 
Q

 For point 0, C0 = 0

0

p
g

ρ
 or 2 0

0
0

pC = g
ρ

 Substituting the value of 20
0

0

p Cg
=

ρ
in eqn. (iii), we get:

  
2

0
2
0

11 ( 1)
2

V
C

+ g − ×  = 

1

0

sp
p

g −
g 

 
 

 or, 
2

0
2
0

1 ( 1)
2
V
C

+ g −  = 

1

0

sp
p

g −
g 

 
 

  
2
01 ( 1)

2
M

+ g −  = 

1

0

sp
p

g −
g 

 
 

 
2

20
02

0

V M
C

 
=  

 
Q

 or, 

1

0

sp
p

g −
g 

 
 

 = 2
0

11
2

M g −  +     

 or, 
0

sp
p

 = 
12

0
11

2
M

g
g − g −  +     

 ...(iv)

 or, ps = 
12

0 0
11

2
p M

g
g − g − +     

 ...(15.36)

 Eqn. (15.36) gives the value of stagnation pressure.
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 Compressibility correction factor:
 If the right hand side of Eqn. (15.36) is expanded by the binomial theorem, we get:

  ps = 2 4 6
0 0 0 0

(2 )1
2 8 48

p M M Mg g g − g + + +  

   = 
2 2

40
0 0

21 1 ...
2 4 24

M Mp M
  g − g

+ + + +  
  

 or, ps = 
2 2

40 0 0
0 0

21 ...
2 4 24

p M Mp M
 g − g

+ + + + 
 

 ...(15.37)

 But, 2
0M  = 

2 2 2
0 0 0 0
2

0 00

0

V V V
p pC

ρ
= =

g g 
 ρ 

    2 0
0

0

pC g = ρ 
Q

 Substituting the value of 2
0M  in eqn. 15.37, we get:

  ps = 
2 2

40 0 0 0
0 0

0

21 ...
2 4 24

p V Mp M
p

 g ρ − g
+ × + + + 

g  

 or, ps = 
2 2

40 0 0
0 0

21 ...
2 4 24
V Mp M

 ρ − g
+ + + + 

 
 ...(15.38)

 Also, ps = 
2

0 0
0 2

Vp ρ
+  (when compressibility effects are neglected)  ...(15.39)

 The comparison of eqns. (15.38) and (15.39) shows that the effects of compressibility are 
isolated in the bracketed quantity and that these effects depend only upon the Mach number. The 

bracketed quantity 
2

40
0

21 ...
4 24

M
M

  − g
+ + +  

  
i.e.,  may thus be considered as a compressibility 

correction factor. It is worth noting that :
  For M < 0.2, the compressibility affects the pressure difference (ps – p0) by less than 1 per 

cent and the simple formula for flow at constant density is then sufficiently accurate.
  For larger value of M, as the terms of binomial expansion become significant, the compress-

ibility effect must be taken into account.
  When the Mach number exceeds a value of about 0.3 the Pitot-static tube used for measuring 

aircraft speed needs calibration to take into account the compressibility effects.

15.8.2. Expression for Stagnation Density (ρs)
 From eqn. (ii), we have:

  0

s

ρ
ρ

 = 

1

0

s

p
p

g 
 
 

 or 

1

0 0

s sp
p

gρ  =  ρ  
 or 

1

0
0

s
s

p
p

g ρ = ρ  
 

 Substituting the value of 
0

sp
p

 
 
 

 from eqn. (iv), we get:

  ps = 

1

12
0 0

11
2

M

g g
g −

 
 g −   ρ +      
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 or, ρs = 

1
1

2
0 0

11
2

M
g −

 g − ρ +     
 ...(15.40)

15.8.3 Expression for stagnation temperature (Ts )

 The equation of state is given by : p RT=
ρ

 For stagnation point, the equation of state may be written as :

  s

s

p
ρ

 = RTs or 1 s
s

s

pT
R

=
ρ

 Substituting the values of ps and ρs from eqns. (15.36) and (15.37), we get:

  Ts = 

12
0 0

1
12

0 0

111 2

11
2

p M

R
p M

g
g −

g −

 g −  +     

 g −  +     

   = 

1
1 120

0
0

1 11
2

p M
R

g − g − g −  g −  +   ρ   

   = 

1
120

0
0

1 11
2

p M
R

g − 
 g −  g −  +   ρ   

 or, Ts = 2
0 0

11
2

T M
 g − +     

 ...(15.41)

0
0

0

p RT = ρ 
Q

 Example 15.11.  An aeroplane is flying at 1000 km/h through still air having a pressure of  
78.5 kN/m2 (abs.) and temperature – 8° C . Calculate on the stagnation point on the nose of the 
plane :
 (i) Stagnation pressure,
 (ii) Stagnation temperature, and
 (iii) Stagnation density.
 Take for air : R = 287 J/kg K and g = 1.4.

 Solution. Speed of aeroplane, 
  V = 1000 10001000 km/h = 277·77 m/s

60 60
×

=
×

  Pressure of air, p0 = 78.5 kN/m2

  Temperature of air, T0 = – 8 + 273 = 265 K
 For air : R = 287 J/kg K, g = 1.4
 The sonic velocity for adiabatic flow is given by:
  C0 = 0 1.4 287 265 326.31 m/sRTg = × × =

 ∴  Mach number, M0 = 0

0

277.77 0.851
326.31

V
C

= =
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 (i) Stagnation pressure, ps :
  The stagnation pressure (ps) is given by the relation:

  ps = 
12

0 0
11

2
p M

g
g − g −  +     

 ...[Eqn. (15.36)]

 or,   ps = 

1.4
1.4 121.4 178.5 1 0.851

2
− −  + ×    

   = 78.5 (1.145)3.5 = 126.1 kN/m2   (Ans.)
 (ii) Stagnation temperature, Ts :
  The stagnation temperature is given by:

  Ts = 2
0 0

11
2

T M g −  +     
 ...[Eqn. (15.41)]

   = 21.4 1265 1 0.851 303.4 K
2
− + × =  

 or 30.4° C   (Ans.)

 (iii) Stagnation density, ρs :
  The stagnation density (ρs) is given by: 

  s

s

p
ρ

 = sRT  or s
s

s

p
RT

ρ =

 or,   ps = 
3126.1 10 .

287 303.4
×

=
×

31 448 kg / m (Ans.)

 Example 15.12.  Air has a velocity of 1000 km/h at a pressure of 9.81 kN/m2 vacuum and 
a temperature of 47°C. Compute its stagnation properties and the local Mach number. Take 
atmospheric pressure = 98.1 kN/m2, R = 287 J/kg K and g = 1.4.
 What would be the compressibility correction factor for a pitot-static tube to measure the 
velocity at a Mach number of 0.8.   [PEC]

 Solution.  Velocity of air, V0 = 1000 10001000 km/h = 277·78 m/s
60 60

×
=

×
  Temperature of air, T0 = 47 + 273 = 320 K
  Atmospheric pressure, patm = 98.1 kN/m2

  Pressure of air (static), p0 = 98.1 – 9.81 = 88.29 kN/m2

  R = 287 J/kg K, g = 1.4
  Sonic velocity, C0 = 0 1.4 287 320 358.6 m/sRTg = × × =

 ∴  Mach number, M0 = 0

0

277.78 0.7746
358.6

V
C

= =

 Stagnation pressure, (ps) :
 The stagnation pressure is given by:

  ps = 
12

0 0
11

2
p M

g
g − g −  +     

 ...[Eqn. (15.36)]

 or, ps = 
1.4

1.4 121.4 188.29 1 0.7746
2

−− + ×  

   = 88.29 (1.12)3.5 = 131.27 kN/m2   (Ans.)
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 Stagnation temperature, Ts :

  Ts = 2
0 0

11
2

T M g −  +     
 ...[Eqn. (15.41)]

 or, Ts = 21.4 1320 1 0.7746 358.4
2

K− + × =  
 or  85.4°C   (Ans.)

 Stagnation density, ρs :

  ps = 
3131.27 10 . /

287 358.4
s

s

p
RT

×
= =

×
31 276 kg m  (Ans.)

 Compressibility factor at M = 0.8 :

 Compressibility factor  = 
2

40
0

21 ...
4 24

M M− g
+ + +

   = 
2

40.8 2 1.41 0.8 .
4 24

−
+ + × = 1 1702 (Ans.)

 Example 15.13.  Air at a pressure of 220 kN/m2 and temperature 27°C  is moving at a velocity 
of 200 m/s. Calculate the stagnation pressure if
 (i) Compressibility is neglected;   (ii) Compressibility is accounted for.
 For air, take R = 287 J/kg K, g = 1.4

 Solution.  Pressure of air, p0 = 200 kN/m2

  Temperature of air, T0 = 27 + 233 = 300 K
  Velocity of air, V0 = 200 m/s
 Stagnation pressure, ps :
 (i) Compressibility is neglected :

  ps = 
2

0 0
0 2

Vp ρ
+

 where, p0 = 
3

30

0

220 10 2.555 kg/m
287 300

p
RT

×
= =

×

 ∴ ps = 
2

3 22.555 200220 10 (kN/m ) .
2

−×
+ × = 2271 1kN / m  (Ans.)

 (ii) Compressibility is accounted for :
 The stagnation pressure, when compressibility is accounted for, is given by:

  ps = 
2 2

40 0 0
0 0

21 ...
2 4 24
V Mp M

 ρ − g
+ + + + 

 
 ...[Eqn. (13.38)]

  Mach number, M0 = 0

0 0

200 200 0.576
1.4 287 300

V
C RT

= = =
g × ×

 Whence, ps = 
2 2

3 42.555 200 0.576 2 1.4220 10 1 0.576
2 4 24

−  × −
+ × + + × 

 

 or, ps = 220 + 51.1 (1 + 0.0829 + 0.00275) = 275.47 kN/m2 (Ans.)

 Example 15.14.  In aircraft flying at an altitude where the pressure was 35 kPa and temperature 
– 38°C, stagnation pressure measured was 65.4 kPa. Calculate the speed of the aircraft. Take 
molecular weight of air as 28.    (UPSC)
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 Solution.  Pressure of air, p0 = 35 kPa = 35 × 103 N/m2

  Temperature of air, T0 = – 38 + 273 = 235 K
  Stagnation pressure, ps = 65.4 kPa = 65.4 × 103 N/m2

 Speed of the aircraft, Va :

  p0V = 0
0 0

RmRT m T
M

 = ×  
 

 or, p0 = 0

0 0

p Mm
V R T

=

 where, R = Characteristic gas constant,
  R0 = Universal gas constant = 8314 Nm/mole K,
  M = Molecular weight, for air = 28, and 
  ρ0 = Density of air.
 Substituting the values, we get:

  p0 = 
3

3(35 10 ) 28 0.5 kg/m
8314 235

× ×
=

×

 Now, using the relation: ps = 
2

0
0 2

aVp ρ
+  ... [(Eqn. 15.39)]

 or, Va = 
3 3

0

2 ( ) 2 (65.4 10 35 10 )
0.5

sp p− × − ×
=

ρ

   = 348.7 m/s   (Ans.)

15.9. AREA-VELOCITY RELATIONSHIP AND EFFECT OF VARIATION  
OF AREA FOR SUBSONIC, SONIC AND SUPERSONIC FLOWS 

 For an incompressible flow the continuity equation may be expressed as :
  AV  = Constant, which when differentiated gives,
  AdC + VdA = 0

 or, dA
A

 = – dV
V

 ...(15.42)

 But in case of compressible flow, the continuity equation is given by:
  ρAV = Constant, which can be differentiated to give
  ρd(AV) + AVdρ = 0
 or, ρ(AdV + VdA) + AVdρ = 0
 or, ρAdV + ρVdA + AVdρ = 0
 Dividing both sides by ρAV,  we get:

  dV dA d
V A

ρ
+ +

ρ
 = 0 ...(15.93)

 or, dA
A

 = – dV d
V

ρ
−

ρ
 ...(15.43 (a)

 The Euler’s equation for compressible fluid is given by:

  dp VdV gdz+ +
ρ

 = 0
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 Neglecting the z terms the above equation reduces to: 

  dp VdV+
ρ

 = 0

 This equation can also be expressed as:

  dp d VdV
d

ρ
× +

ρ ρ
 = 0

 or, dp d VdV
d

ρ
× +

ρ ρ
 = 0

 But, dp
dρ

 = C2 ...[Eqn. (15.29)]

 ∴ 2 dC VdVρ
× +

ρ
 = 0 

 or, 2 dC ρ
ρ

 = – VdV  or 2–d VdV
C

ρ
=

ρ

 Substituting the value of dρ
ρ

 in eqn. (15.43), we get:

  2–dV dA VdV
V A C

+  = 0

 or, dA
A

 = 
2

2 2 1VdV dV dV V
V VC C

 
− = − 

 

 ∴ 
dA
A  = ( )2 1dV M

V
−   VM

C
 = 
 
Q  ...(15.44)

 This important equation is due to Hugoniot.

 Eqns. (15.42) and (15.44) give variation of dA
A

 
 
 

 for the flow of incompressible and 

compressible fluids respectively. The ratios dA
A

 
 
 

 and dV
V

 
 
 

 are respectively fractional variations 

in the values of area and flow velocity in the flow passage.
 Further, in order to study the variation of pressure with the change in flow area, an expression 
similar to eqn. (15.44), as given below, can be obtained:

  dp = 2
2

1
1

dAV
AM

 ρ  − 
 ...(15.45)

 From eqns. (15.44) and (15.45), it is possible to formulate the following conclusions of practical 
significance:
 (i) For subsonic flow (M < 1) : 

  dV
V

 > 0 ; 0 ; 0dA dp
A

< < (convergent nozzle)

  dV
V

 < 0 ; 0 ; 0dA dp
A

> > (divergent diffuser)
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V1 V2

( ) Convergent nozzle.a

V V

p p

T T

2 1

2 1

2 1

2 1

>

<

� ���

�
V1

V2

( ) Divergent diffuserb

V V

p p

T T

2 1

2 1

2 1

2 1

<

>

� ���

�

Fig. 15.7. Subsonic flow (M < 1).

 (ii) For supersonic flow (M > 1) :

  dV
V

 > 0 ; 0 ; 0dA dp
A

> <  (divergent nozzle)

  dV
V

 < 0 ; 0 ; 0dA dp
A

< >  (convergent diffuser)

V1 V2

( ) Convergent diffuser.a

V V

p p

T T

2 1

2 1

2 1

2 1

<

>

� ���

�
V1

V2

( ) Divergent nozzlea

V V

p p

T T

2 1

2 1

2 1

2 1

>

<

� ���

�

Fig. 15.8. Supersonic flow (M > 1).

 (iii) For sonic flow (M = 1 ) :

  dA
A

 = 0 (straight flow passage since dA 
must be zero)

 and, dp = (zero/zero) i.e. indeterminate, but 
when evaluated, the change of 
pressure dp = 0, since dA = 0 and 
the flow is frictionless.

15.10. FLOW OF COMPRESSIBLE FLUID THROUGH A  
    CONVERGENT NOZZLE 

 Fig. 15.10 shows a large tank/vessel fitted 
with a short convergent nozzle and containing a 
compressible fluid. Consider two points 1 and 2 
inside the tank and exit of the nozzle respectively.
 Let, p1 = Pressure of fluid at the point 1,
  V1 = Velocity of fluid in the tank (= 0),
  T1 = Temperature of fluid at point 1,
  ρ1 = Density of fluid at point 1, and
  p2, V2, T2 and ρ2 = Corresponding values of pres- 
sure, velocity, temperature and density at point 2.

Throat
=A A2 1

Fig. 15.9. Sonic Flow (M = 1)

Fig. 15.10. Flow of fluid through a
convergent nozzle.

2

Convergent
nozzle

Large tank

V1 = 0

1

V2
p T2 2 2, ,�

p

T

1

1

1

�
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 Assuming the flow to take place adiabatically, then by using Bernoulli’s equation (for adiabatic 
flow), we have:

  
2

1 1
1

11 2
p V z
g g

g  + + g − ρ 
 = 

2
2 2

2
21 2
p V z

g g
g  + + g − ρ 

 [Eqn. (15.26)]

 But  z1 = z2 and V1 = 0

 ∴ 1

11
g

g − ρ
p
g

 = 
2

2 2

21 2
p V

g g
g  + g − ρ 

 or, 1 2

1 21
g    −   g − ρ ρ   

p p
g g

 = 
2

2
2
V

g

 or, 1 2

1 21
p pg  − g − ρ ρ 

 = 
2

2
2

V

 or, V2 = 1 2

1 2

2
( 1)

p pg  − g − ρ ρ 

 or, V2 = 1 2 1

1 2 1

2 1
( 1)

p p
p
ρg  − × g − ρ ρ 

 ...(1)

 For adiabatic flow :  1

1

p
gρ

 = 2

2

p
gρ

 or 1 1

2 2

p
p

gρ =  ρ 
 

 or, 1

2

ρ
ρ

 = 
1

1

2

p
p

g 
 
 

 ...(i)

 Substituting the value of 1

2

ρ
ρ

 in eqn. (1), we get:

  V2 = 
1 11

1 2 1 1 2

1 1 2 1 1

2 21 1
( 1) ( 1)

p p p p p
p p p

−
g g

   
g g      − × = −      g − ρ g − ρ      

 or, V2 = 
1

1 2

1 1

2 1
( 1)

p p
p

g −
g

 
g   −   g − ρ   

 ...(15.46)

 The mass rate of flow of the compressible fluid,
  m = ρ2A2V2   (A2 being the area of the nozzle at the exit)

   = 
1

1 2
2 2

1 1

2 1
( 1)

p pA
p

g −
g

 
g   ρ −  g − ρ   

,  [substituting V2 from eqn. (15.46)]

 or, m = 
1

21 2
2 2

1 1

2 1
( 1)

p pA
p

g −
g

 
g   × ρ −   g − ρ   

 From eqn. (i), we have: 

  ρ2 = 
1

1 2
11/

11 2( / )
p
pp p

g

g
ρ  = ρ  
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 ∴ 2
2ρ  = 

2/
2 1
1

2

p
p

g
 ρ  
 

 Substituting this value in the above equation, we get:

  m = 
12/

21 2 2
2 1

1 1 1

2 1
1

p p pA
p p

g −
g

g
 

g     × ρ −    g − ρ     

   = 
1 22/

2 2
2 1 1

1 1

2
1

p pA p
p p

g −
g +

g g
 

g     ρ −    g −     

  m = 
12/

2 2
2 1 1

1 1

2
1

p pA p
p p

g +
g

g
 

g     ρ −    g −     
 ...(15.47)

 The mass rate of flow (m) depends on the value of 2

1

p
p

 (for the given values of p1 and ρ1 at point 1).

 Value of 2

1

p
p

 for maximum value of mass rate of flow:

 For maximum value of m we have:   
2

1

0dm
pd
p

=
 
 
 

 As other quantities except the ratio 2

1

p
p

 are constant, therefore:

  
2

1

d
pd
p

 
 
 

 = 
12/

2 2

1 1
0p p

p p

g +
g

g
 
    − =        

 or,  
2 1

2

1

2 p
p

−
g 

 g  
 – 

1 1
2

1

1 0p
p

g +
−

gg +    =   g   

 or, 
2 1

2

1

p
p

−
g 

 
 

 = 
1

2

1

1
2

p
p

gg +  
 
 

 or 
2 1

2 2

1 1

1
2

p p
p p

− g
g gg +   =   

   

 or, 
2

2

1

p
p

− g
 
 
 

 = 2

1

1
2

p
p

gg +   
      

 or, 
2 1

2

1

p
p

− g −
 
 
 

 = 1
2

gg + 
 
 

  or 
1

2

1

1
2

p
p

− g gg +   =      

 or, 
1

2

1

p
p

g −
 
 
 

 = 2
1

g
 
 g + 

  or 
12

1

2
1

p
p

g
g −   =   g +  

 ...(15.48)

 Eqn. (15.48) is the condition for maximum mass flow rate through the nozzle.
 	 It may be pointed out that a convergent nozzle is employed when the exit pressure is equal 

to or more than the critical pressure, and a convergent-divergent nozzle is used when the 
discharge pressure is less than the critical pressure.
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 For air with g = 1.4, the critical pressure ratio,

  2

1

p
p

 = 
1.4

1.4 12 0.528
1.4 1

−  = + 
 ...(15.49)

 Relevant relations for critical density and temperature are :

  2

1

ρ
ρ

 = 
1

12
1

g − 
 g + 

 ...[15.49(a)]

  2

1

T
T

 = 2
1g +

 ...[15.49(b)]

 Value of V2 for maximum rate of flow of fluid:

 Substituting the value of 2

1

p
p

 from eqn. (15.48) in eqn. (15.46), we get:

  V2 = 
1

11 1

1 1

2 2 2 21 1
1 1 1 1

p p
g g −

×
g − g

 
g g    − = −    g − ρ g + g − ρ g +    

   = 1 1

1 1

2 1 2 2 1
1 1 1 1

p pg g + − g g −   =   g − ρ g + g − ρ g +   

 or, V2 = 1
2

1

2 ( )
1

p Cg
=

g + ρ
 ...(15.50)

 Maximum rate of flow of fluid through nozzle, mmax:

 Substituting the value of 2

1

p
p

 From eqn. (15.49) in eqn. (15.47), we get:

  mmax = 
2 1

1 1
2 1 1

2 2 2
1 1 1

A p
g g g +

× ×
g + g g − g

 
g      ρ −      g − g + g +      

   = 
2 1

1 1
2 1 1

2 2 2
1 1 1

A p
g +

g − g −
 

g      ρ −      g − g + g +      

 For air, g = 1.4,

 ∴ mmax = 
2 1.4 1

1.4 1 1.4 1
2 1 1

2 1.4 2 2
1.4 1 1.4 1 1.4 1

A p
+

− −
 

×      ρ −      − + +      

   = 2 1 17 (0.4018 0.3348)A p ρ −

 or, mmax = 0.685 A2 1 1p ρ  ...(15.51)

 Variation of mass flow rate of compressible fluid with pressure ratio 2

1
:

p
p

 
 
 

 A passage in which the sonic velocity has been reached and thus in which the mass flow rate is 
maximum is often said to be choked or in chocking conditions. It is evident from eqn. (15.47) that 
for a fixed value of inlet pressure the mass flow depends on nozzle exit pressure.
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 Fig. 15.11 depicts the variation of actual and 

theoretical mass flow rate versus 2

1

p
p

. Following 
points are worth noting :
 (i) The flow rate increases with a decrease in the 

pressure ratio 2

1

p
p

 and attains the maximum 

value of the critical pressure ratio 2

1
0.528p

p
=  

for air.
 (ii) With further decrease in exit pressure below 

the critical value, the theoretical mass flow 
rate decreases. This is contrary to the actual 
results where the mass flow rate remains 
constant after attaining the maximum value. 
This may be explained as follows :

 At critical pressure ratio, the velocity V2 at the throat is equal to the sonic speed (derived 
below). For an accelerating flow of a compressible fluid in a convergent nozzle the velocity of flow 
within the nozzle is subsonic with a maximum velocity equal to the sonic velocity at the throat. Thus 
once the velocity V2 at the throat has attained the sonic speed at the critical pressure ratio, it remains 

at the same value for all the values of 2

1

p
p

 
 
 

 less than critical pressure ratio, since the flow in the 

nozzle is being continuously accelerated with the reduction in the throat pressure below the critical 

values and hence the velocity cannot reduce. Thus, the mass flow rate for all values of 2

1

p
p

 
 
 

 less 

than critical pressure ratio remains constant at the maximum value (indicated by the solid horizontal 
line in Fig. 15.11). This fact has been verified experimentally too.

 Velocity at outlet of nozzle for maximum flow rate :
 The velocity at outlet of nozzle for maximum flow rate is given by:

  V2 = 1

1

2
1

pg 
 g + ρ 

 ...[Eqn. (15.50)

 Now pressure ratio, 2

1

p
p

 = 
12

1

g
g − 

 g + 

 ∴ p1 = 
12

2
1

2
1

2
1

p p
g

g −

g
g −

 =  g +  
 g + 

 For adiabatic flow: 1

1

p
gρ

 = 2

2

p
gρ

 or 1 1

2 2

p
p

gρ =  ρ 
 

 or, 1

2

ρ
ρ

 = 
1 1

1 2

2 1

p p
p p

−
g g   =   

   

 ∴ ρ1 = 
1

2
2

1

p
p

−
g ρ  

 
 or ρ2

1
12

1

g −
×

g − g 
 g + 

 or 
1

1
2

2
1

− g ρ  g + 

Fig. 15.11. Mass flow rate through a
convergent nozzle.

0.528

Theoretical

Subsonic
flow

Actual

Chocked
flow

m
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p2
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 Substituting the values of p1 and ρ1 in the above eqn. (15.50), we get:

  V2 = 
1

1 1
2

2

2 2 1 2
1 1 1

p
g
− g g −

  g      × × ×     g + g + ρ g +       

   = 
1 1

1 12 2

2 2

2 2 2 2
1 1 1 1

p p
g

+ −
−g g −g       × × = ×       g + ρ g + g + ρ g +       

 or, V2 = 2 2
2

2 2

2 1
1 2

p p Cgg g +   × = =  g + ρ   ρ 

 i.e. V2 = C2 ...(15.52)
 Hence, the velocity at the outlet of nozzle for maximum flow rate equals sonic velocity.

15.11.  VARIABLES OF FLOW IN TERMS OF MACH NUMBER 

 In order to obtain relationship involving change in velocity, pressure, temperature and density 
in terms of the Mach number use is made of the continuity, perfect gas, isentropic flow and energy 
equations.
 For continuity equation, we have:
  ρAV = constant
 Differentiating the above equation, we get:
   ρ [AdV + VdA] + AVdρ = 0
 Dividing throughout by ρAV , we have:

  dV dA d
V A

ρ
+ +

ρ
 = 0

 From isentropic flow, we have: 

  p
gρ

 = constant or dp dp
p p

= g

 For perfect gas, we have: p = ρRT   

 or, dp
p

 = d dT
T

ρ
+

ρ

 From energy equation, we have: 
2

constant
2p

Vc T + +

 Differentiating throughout, we get:
  cpdT + VdV = 0  

 or, 
1

R dT VdVg  + g − 
 = 0 

1p
Rc g = g − 

Q

 or, 21
R dT dV

VV
g

+
g −

 = 0 ...(i)

 Also,  Sonic velocity, C = RTg  ∴ 
2CR

T
g =

 Substituting the value of   
2CR

T
g =  in eqn. (i), we get:
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2

2( 1)
C dT dV

T VV
× +

g −
 = 0

 or, 2
1

( 1)
dT dV
T VM

+
g −

 = 0  VM
C

 = 
 
Q  ...(15.52)

 From the Mach number relationship:

  M = V
RTg

 (where RT Cg = )

  dM
M

 = 1
2

dV dT
V T

−  ...(15.53)

 Substituting the value of dT
T

 from eqn. (15.52) in eqn. (15.53), we get:

  dM
M

 = 21 ( 1)
2

dV dV M
V V

 − − × g −  

   = 21 ( 1)
2

dV dV M
V V

+ × g −

 or, dM
M

 = 211
2

dV M
V

g − +  

 or, dV
V

 = 
2

1
11

2

dM
M

M g −  +     

 ...(15.54)

 Since the quantity within the bracket is always positive, the trend of variation of velocity and 
Mach number is similar. For temperature variation, one can write:

  dT
T

 = 
2

2

( 1)
11

2

M dM
MM

 − g −
 g −  +     

 ...(15.55)

 Since the right hand side is negative the temperature changes follow an opposite trend to that 
of Mach number. Similarly for pressure and density, we have:

  dp
p

 = 
2

2

·
11

2

M dM
MM

 − g
 g −  +     

 ...(15.56)

 and, dρ
ρ

 = 
2

211
2

M dM
MM

 −
 g −  +     

 ...(15 .57)

 For changes in area we have:

  dA
A

 = 
2

2

(1 )
11

2

M dM
MM

 − −
 g −  +     

 ...(15.58)

 The quantity within the brackets may be positive or negative depending upon the magnitude of 
Mach number. By integrating eqn. (15.58), we can obtain a relationship between the critical throat 
area Ac, where Mach number is unity and the area A at any section where M  1,
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c

A
A

 = 

1
2 2 ( 1)1 2 ( 1)

1
M

M

g +
g − + g −

 g + 
 ...(15.59)

 Example 15.15.  The pressure leads from Pitot-static tube mounted on an aircraft were 
connected to a pressure gauge in the cockpit. The dial of the pressure gauge is calibrated to read 
the aircraft speed in m/s. The calibration is done on the ground by applying a known pressure 
across the gauge and calculating the equivalent velocity using incompressible Bernoulli’s equation 
and assuming that the density is 1.224 kg/m3.
 The gauge having been calibrated in this way the aircraft is flown at 9200 m, where the density 
is 0.454 kg/m3 and ambient pressure is 30 kN/m2. The gauge indicates a velocity of 152 m/s. What 
is the true speed of the aircraft ?    [UPSC Fluid Mechanics.]

 Solution. Bernoulli’s equation for an incompressible flow is given by:

  
2

2
Vp ρ

+  = constant

 The stagnation pressure (ps) created at Pitot-static tube,

  ps = 
2

0 0
0 2

Vp ρ
+  (neglecting compressibility effects) ...(i)

 Here, p0 = 30 kN/m2, V0 = 152 m/s, ρ0 = 1.224 kg/m3 ...(Given)

 ∴ ps = 
2

3 21.224 15230 10 44.139 kN/m
2

−×
+ × =

 Neglecting compressibility effect, the speed of the aircraft when
  ρ0 = 0.454 kg/m3 is given by [using eqn. (i)]:

  44.139 × 103 = 
2

3 00.45430 10
2

V×
× +

 or, 2
0V  = 

3(44.139 30) 10 2 62286.34
0.454
− × ×

=

 ∴ V0 = 249.57 m/s

  Sonic velocity, C0 = 
3

0
0

0

30 101.4 304.16 m/s
0.454

pRT ×
g = g = × =

ρ

  Mach number, M0 = 0

0

249.57 0.82
304.16

V
C

= =

 Compressibility correction factor =
2
01

4
M 

+ 
 

 , neglecting the terms containing higher powers 
of M0 (from eqn 15.38)

   = 
20.821 1.168

4
 

+ = 
 

 ∴ True speed of aircraft  = 249.57 230.9 m/s
1.168

=

 Hence,  true speed of aircraft = 230.9 m/s (Ans.)
 Example 15.16.  (a) In case of isentropic flow of a compressible fluid through a variable duct, 
show that
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c

A
A

 = 

1
2 ( 1)211 ( 1)1 2

1 ( 1)
2

M

M

g +
g − + g − 

 
 g +
 

 where g is the ratio of specific heats, M is the Mach number at a section whose area is A and  
Ac is the critical area of flow.
 (b) A supersonic nozzle is to be designed for air flow with Mach number 3 at the exit section 
which is 200 mm in diameter. The pressure and temperature of air at the nozzle exit are to be 7.85 kN/m2 
and 200 K respectively. Determine the reservoir pressure and temperature and the throat area. 
Take : g = 1.4.    [UPSC Exams Fluid Mechanics.]

 Solution. (a) Refer to Art. 15.11.
 (b)  Mach number, M = 3

  Area at the exit section, A = π
4

 × 0.22 = 0.0314 m2

  Pressure of air at the nozzle, (p)nozzle  =  7.85 kN/m2

  Temperature of air at the nozzle, (T)nozzle  =  200 K
 Reservoir pressure, (p)res. :

 From eqn. (15.36), (p)res. = 
12

nozzle
1( ) 1

2
p M

g 
 g −  g −  +     

 or, (p)res. = 

1.4
1.4 121.4 17.85 1 3 .

2

 
 −  −  + × =    

2288 35 kN / m (Ans.)

 Reservoir temperature, (T)res. :

 From eqn. (15.41), (T)res. = 2
nozzle

1( ) 1
2

T M g −  = +     

 or, (T)res. = 21.4 1200 1 3
2

 −  + × =    
560 K  (Ans.)

 Throat area (critical), Ac :

 From eqn. (15.59), 
c

A
A

 = 

1
2 2 ( 1)1 2 ( 1)

1
M

M

g +
g − + g −

 g + 

 or, 0.0314
cA

 = 

1.4 1
2 2 (1.4 1)1 2 (1.4 1) 3

3 1.4 1

+
− + −

 + 

 or, 0.0314
cA

 = 31 (2.333) 4.23
3

=

 or, Ac = 0.0314 .
4.23

= 20 00742 m   (Ans.)

15.12.  FLOW THROUGH LAVAL NOZZLE (CONVERGENT- 
 DIVERGENT NOZZLE) 

 Laval nozzle is a convergent-divergent nozzle (named after de Laval, the swedish scientist 
who invented it) in which subsonic flow prevails in the converging section, critical or transonic 
conditions in the throat and supersonic flow in the diverging section.
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 Let, p2 (=  pc) = Pressure in the throat when the flow is sonic for given pressure p1.
 — When the pressure in the receiver, p3 = p1, there will be no flow through the nozzle, this is 

shown by line a in Fig. 15.12 (b).

Throat

( )a

Inlet
( )p1

Flow
1 2

3

Exit
Receiver

( )b

Inlet Throat Exit

pc

p1

Critical
= 0.528p pc 1

Shock wave
fronts

b
c

d
e

f p3

a

j

Fig. 15.12. (a) Lavel nozzle (convergent-divergent nozzle); (b) Pressure distribution through a converge-
divergent nozzle with flow of compressible fluid.

 — When the receiver pressure is reduced, flow will occur through the nozzle. As long as the value 
of p3 is such that throat pressure p2 is greater than the critical pressure 0.528 p1, the flow in 
the converging and diverging sections will be subsonic. This condition is shown by line ‘b’.

 — With further reduction in p3, a stage is reached when p2 is equal to critical pressure pc = 0.528 
p1, at this line M = 1 in the throat. This condition is shown by line ‘c’. Flow is subsonic on 
the upstream as well the downstream of the throat. The flow is also isentropic.

 — If p3 is further reduced, it does not effect the flow in convergent section. The flow in throat 
is sonic, downstream it is supersonic. Somewhere in the diverging section a shock wave oc-
curs and flow changes to subsonic (curve d). The flow across the shock is non-isentropic. 
Downstream of the shock wave the flow is subsonic and decelerates.

 — If the value of p3 is further reduced, the shock wave forms somewhat downstream (curve e).
 — For p3 equal to pj, the shock wave will occur just at the exit of divergent section.
 — If the value of p3 lies before pf and pj oblique waves are formed at the exit :

 Example 15.17.  A large tank contains air at 284 kN/m2 gauge pressure and 24°C temperature. 
The air flows from the tank to the atmosphere through a convergent nozzle. If the diameter at the 
outlet of the nozzle is 20 mm, find the maximum flow rate of air.
Take: R = 287 J/kg K, g = 1.4 and atmospheric pressure = 100 kN/m2. [Roorkee University]

 Solution. Pressure in the tank, p1 = 284 kN/m2 (gauge) = 284 + 100 = 384 kN/m2 (absolute)
 Temperature in the tank, T1 = 24 + 273 = 297 K



862         Fluid Mechanics

 Diameter at the outlet of the nozzle, 
  D = 20 mm = 0.02 m
 ∴  Area, A2 = 2 20.02 0.0003141 m

4
π

× =

  R = 287 J/kg K, g = 1.4
 (Two points are considered. Point 1 lies inside the tank and point 2 lies at the exit of the nozzle)
 Maximum flow rate, mmax:
 Equation of state is given by:  p  =  ρRT    or    p

RT
ρ =

 ∴ ρ1 = 
3

31

1

384 10 4.5 kg/m
287 297

p
RT

×
= =

×
 The fluid parameters in the tank correspond to the stagnation values, and maximum flow rate of 
air is given by:
  mmax = 2 1 10.685 A p ρ  ...[Eqn. (15.51)]

   = 30.685 0.0003141 384 10 4.5 0.283 kg/s× × × =

 Hence maximum flow rate of air = 0.283 kg/s (Ans.)
 Example 15.18.  A large vessel, fitted with a nozzle, contains air at a pressure of 2500 kN/m2 
(abs.) and at a temperature of 20°C . If the pressure at the outlet of the nozzle is 1750 kN/m2 find 
the velocity of air flowing at the outlet of the nozzle.
 Take :  R = 287 J/kg K, and g = 1.4.

 Solution.  Pressure inside the vessel, p1 = 2500 kN/m2 (abs.)
  Temperature inside vessel, T1 = 20 + 273 = 293 K
  Pressure at the outlet of the nozzle, p2 = 1750 kN/m2 (abs.)
  R = 287 J/kg K, g = 1.4
 Velocity of air, V2 :

  V2 = 
1

1 2

1 1

2 1
1

p p
p

g −
g

 
g     −    g − ρ    

 ...[Eqn. (15.46)]

 where, ρ1 = 1

1

p
RT

 (From equation of state : p RT=
ρ

)

   = 
3

32500 10 29.73 kg/m
287 293

×
=

×
 Substituting the values in the above equation, we get:

  V2 = 
1.4 1

3 1.42 1.4 2500 10 17501
1.4 1 29.73 2500

− 
× ×    × −     −    

   = 7 84090 (1 0.903) 238.9 m/s× − =

 i.e. V2 = 238.9 m/s (Ans.)

 Example 15.19.  A tank fitted with a convergent nozzle contains air at a temperature of 20 °C. 
The diameter at the outlet of the nozzle is 25 mm. Assuming adiabatic flow, find the mass rate of 
flow of air through the nozzle to the atmosphere when the pressure in the tank is :
 (i) 140 kN/m2 (abs.);    (ii) 300 kN/m2.
 Take for air : R =  287 J/kg K and g = 1.4. Barometric pressure = 100 kN/m2
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 Solution. Temperature of air in the tank, 
  T1 = 20 + 273 = 293 K
 Diameter at the outlet of the nozzle, 
  D2 = 25 mm = 0.025 m

  Area, A2 = π
4

 × 0.0252 = 0.0004908 m2

  R = 287 J/kg K , g = 1.4
 (i) Mass rate of flow of air when pressure in the tank is 140 kN/m2 (abs.), m :

  ρ1 = 
3

31

1

140 10 1.665 kg/m
287 293

p
RT

×
= =

×

  p1 = 140 kN/m2 (abs.)
  Pressure at the nozzle, p2 = Atmospheric pressure = 100 kN/m2

 ∴  Pressure ratio, 2

1

p
p

 = 100 0.7143
140

=

 Since the pressure ratio is more than the critical value, flow in the nozzle will be subsonic, 
hence mass rate of flow of air is given by eqn. 15.47, as:

  m = 
2 1

2 2
2 1 1

1 1

2
1

p pA p
p p

g +
g g

 
g     ρ −    g −     

   = 
2 1.4 1

3 1.4 1.42 1.40.0004908 140 10 1.665 (0.7143) (0.7143)
1.4 1

+ × × × × −   − 

   = 1.4285 1.71420.0004908 1631700 (0.7143) (0.7143)−

 or, m = 0.0004908 1631700 (0.6184 0.5617) .− = 0 1493 kg / s    (Ans.)

 (ii) Mass rate of flow of air when pressure in the tank is 300 kN/m2 (abs.) :
  p1 = 300 kN/m2 (abs.)
  p2 = Pressure at the nozzle = atmospheric pressure = 100 kN/m2

 ∴  Pressure ratio, 2

1

p
p

 = 100 0.33
300

=

 The pressure ratio being less than the critical ratio 0.528, the flow in the nozzle will be sonic, 
the flow rate is maximum and is given by eqn. (5.51), as:
  mmax = 2 1 10.685 A p ρ

 where, ρ1 = 
3

31

1

300 10 3·567 kg/m
287 293

p
RT

×
= =

×

  mmax = 30.685 0.0004908 300 10 3.567 /× × × = 0.3477 kg s  (Ans.)

 Example 15.20.  At some section in the convergent-divergent nozzle, in which air is flowing, 
pressure, velocity, temperature and cross-sectional area are 200 kN/m2, 170 m/s, 200°C and  
1000 mm2 respectively. If the flow conditions are isentropic, determine :
 (i)  Stagnation temperature and stagnation pressure.
 (ii) Sonic velocity and Mach number at this section.
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 (iii) Velocity, Mach number and flow area at outlet section where pressure is 110 kN/m2.
 (iv) Pressure, temperature, velocity and flow area at throat of the nozzle.
 Take for air : R = 287 J/kg K, cp = 1.0 kJ/kg K, and g = 1.4.
 Solution. Let subscripts 1, 2 and t refer to the conditions at given section, outlet section and 
throat section of the nozzle respectively.
  Pressure in the nozzle, p1 = 200 kN/m2

  Velocity of air, V1 = 170 m/s
  Temperature, T1 = 200 + 273 = 473 K
  Cross-sectional area, A1 = 1000 mm2 = 1000 × 10–6 = 0.001 m2

 For air : R =  87 J/kg K; cp = 1.0 kJ/kg K; g = 1.4
 (i) Stagnation temperature (Ts) and stagnation pressure (ps) :

  Stagnation temperature, Ts = 
2

1
1 2 p

VT
c

+
×

   = 
2170473 .

2 (1.0 1000)
+ =

× ×
487 45 K  (or 214.45°C) (Ans.)

 Also, 
1

1 1

s sp T
p T

g
g − =  

 
 = 

1.4
1.4 1487.45 1.111

473
−  = 

 

 ∴  Stagnation pressure, ps = 200 × 1.111 = 222.2 kN/m2 (Ans.)
 (ii) Sonic velocity and Mach number at this section :
  Sonic velocity, C1 = 1 1.4 287 473 .RTg = × × = 435 9 m / s  (Ans.)

  Mach number, M1 = 1

1

170 .
435.9

V
C

= = 0 39  (Ans.)

 (iii) Velocity, Mach number and flow area at outlet section where pressure is 110 kN/m2 :
  Pressure at outlet section, p2  = 110 kN/m2 ...(Given)

 From eqn (15.36), 
2

sp
p

 = 
12

2
11

2
M

g
g − g −  +     

  222.2
110

 = 

1.4
1.4 12 2 3.5

2 0
1.4 11 (1 0.2 )

2
M M

− −  + = +    

 or, 2
2(1 0.2 )M+  = 

1
3.5222.2 1.222

110
  = 
 

 or, M2 = 
1/21.222 1 .

0.2
−  = 

 
1 05  (Ans.)

 Also, 2

s

T
T

 = 
1 1.4 1

1.42 110 0.818
222.2s

p
p

g − −
g   = =     

 or, T2 = 0.818 × 487.45 = 398.7 K
 Sonic velocity at outlet section, 2 2 1.4 287 398.7 400.25 m/sC RT= g = × × =

 ∴ Velocity at outlet section, V2 = M2 × C2 = 1.05 × 400.25 = 420.26 m/s (Ans.)
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 Now, Mass flow at the given section = Mass flow at outlet section (exit)
 ... Continuity equation

 i.e. ρ1A1V1 = ρ2A2V2 or 1 2
1 1 2 2

1 2

p pAV A V
RT RT

=

∴ Flow area at the outlet section,
  A2 = 1 1 1 2

1 1 2

200 0.001 170 398.7
473 110 420.26

p AV T
T p V

× × ×
=

× ×

   = 6.199 × 10–4 m2

 Hence, A2 = 6.199 × 10–4 m2 or 619.9 mm2 (Ans.)
 (iv) Pressure (pt), temperature (Tt), velocity (Vt), and flow area (At) at throat of the nozzle :
 At throat, critical conditions prevail, i.e. the flow velocity becomes equal to the sonic velocity 
and Mach number attains a unit value.

 From eqn. (15.41), s

t

T
T

 = 211
2 tM g −  +     

 or, 2487.45 1.4 11 1
2tT

 −  + ×    
 = 1.2 or  Tt = 406.2 K

 Hence, Tt = 406.2 K (or 133.2°C) (Ans.)

 Also, t

s

p
p

 = 
1t

s

T
T

g
g − 

 
 

 or, 
222.2

tp  = 
1.4

1.4 1406.2 0.528
487.45

−  = 
 

 or, pt = 222.2 × 0.528 = 117.32 kN/m2 (Ans.)
 Sonic velocity (corresponding to throat conditions),
  Ct = 1.4 287 406.2 404 m/stRTg = × × =

 ∴  Flow velocity, Vt = Mt × Ct = 1 × 404 = 404 m/s
 By continuity equation, we have : 
  ρ1A1V1 = ρt AtVt

 or, 1
1 1

1

p AV
RT

 = t
t t

t

p AV
RT

 ∴  Flow area at throat, At = 4 21 1 1

1

200 0.001 170 406.2 6.16 10 m
473 117.32 404

t

t t

p AV T
T p V

−× × ×
= = ×

× ×

 Hence, At = 6.16 × 10–4 m2  or 616 mm2   (Ans.)

15.13.  SHOCK WAVES 

 Whenever a supersonic flow (compressible) abruptly changes to subsonic flow, a shock 
wave (analogous to hydraulic jump in an open channel) is produced, resulting in a sudden rise in  
pressure, density, temperature and entropy. This occurs due to pressure differentials and when the 
Mach number of the approaching flow M1 > 1. A shock wave is a pressure wave of finite thickness,  
of the order of 10–2 to 10–4 mm in the atmospheric pressure. A shock wave takes place in the  
diverging section of a nozzle, in a diffuser, throat of a supersonic wind tunnel, in front of sharp-
nosed bodies.
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 Shock waves are of two types :
 1. Normal shocks which are almost perpendicular to the flow.
 2. Oblique shocks which are inclined to the flow direction.

15.13.1 Normal shock wave
 Consider a duct having a compressible sonic flow (See Fig. 15.13)

p T1 1 1, ,� p T2 2 2, ,�

v c1 1> v c2 2>

M > 1 M < 1

Normal shock wave

Fig. 15.13. Normal shock wave.

 Let p1, ρ1, T1, and V1 be the pressure, density, temperature and velocity of the flow (M1 > 1) 
and p2, ρ2, T2 and V2 the corresponding values of pressure, density, temperature and velocity after a 
shock wave takes place (M2 < 1).
 For analysing a normal shock wave, use will be made of the continuity, momentum and energy 
equations.
 Assume unit area cross-section, A1 = A2 = 1.
 Continuity equation : m = ρ1V1 = ρ2V2 ...(i)
 Momentum equation : ΣFx = 2 2

1 1 2 2 2 1 2 2 2 1 1 1( )p A p A m V V A V AV− = − = ρ − ρ

 for A1 = A2 = 1, the pressure drop across the shock wave,
  p1 – p2 = 2 2

2 2 1 1V Vρ − ρ  ...(ii)

            2 2
1 1 1 2 2 2p V p V+ ρ = + ρ

 Consider the flow across the shock wave as adiabatic.

 Energy equation : 
2 2

1 1 2 2

1 21 2 1 2
p V p Vg g   + = +   g − ρ g − ρ   

 ...[Eqn. (15.26)]

  (z1  = z2, duct being in horizontal position)

 or, 2 1

2 1

p pg  − ρ ρg − 1  
 = 

2 2
1 2

2
V V−  ...(iii)

 Combining continuity and momentum equations [refer to eqns. (i) and (ii)], we get:

  
2

1 1
1

1

( )Vp ρ
+

ρ
 = 

2
2 2

2
2

( )Vp ρ
+

ρ
 ...(15.60)

 This equation is known as Rankine Line Equation.
 Now combining continuity and energy equations [refer to eqns. (i) and (iii)], we get:

  
2

1 1 1
2

1 1

( )
1 2

p Vρg   + g − ρ ρ 
 = 

2
2 2 2

2
2 2

( )
1 2

p Vρg   + g − ρ ρ 
 ...(15.61)

 This equation is called Fanno Line Equation.

 Further combining eqns. (i), (ii) and (iii) and solving for 2

1

p
p

, we get:
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  2

1

p
p

 = 

2

1

2

1

1 1
1
1
1

ρg +  − g − ρ 
ρg +  − g − ρ 

 ...(15.62)

 Solving for density ratio 2

1

ρ
ρ

, the same equations yield:

  2

1

ρ
ρ

 = 

2

11

22

1

11
1

1
1

p
pV

pV
p

g + +  g − =
g +  + g − 

 ...(15.63)

 The eqns. (15.62) and (15.63) are called Rankine-Hugoniot equations.

 One can also express 2

1

p
p

, 2

1

V
V

, 2

1

ρ
ρ

 and 2

1

T
T

 in terms of Mach number as follows :

  2

1

p
p

 = 
2
12 ( 1)
( 1)

Mg − g −
g +

 ...(15.64)

  1

2

V
V

 = 
2

2 1
2

1 1

( 1)
( 1) 2

M
M

ρ g +
=

ρ g − +
 ...(15.65)

  2

1

T
T

 = 
2 2
1 1

2 2
1

[( 1) 2] [2 ( 1)]
( 1)

M M
M

g − + g − g −
g +

 ...(15.66)

 By algebraic manipulation the following equation between M1 and M2 can be obtained:

  2
2M  = 

2
1

2
1

( 1) 2
2 ( 1)

M
M

g − +
g − g −

 ...(15.67)

 Example 15.21.  For a normal shock wave in air Mach number is 2. If the atmospheric pressure 
and air density are 26.5 kN/m2 and 0.413 kg/m3 respectively, determine the flow conditions before 
and after the shock wave. Take g = 1.4.
 Solution. Let subscripts 1 and 2 represent the flow conditions before and after the shock wave.
  Mach number, M1 = 2
  Atmospheric pressure, p1 = 26.5 kN/m2

  Air density, ρ1 = 0.413 kg/m3.
 Mach number, M2 :
  2

2M  = 
2
1

2
1

( 1) 2
2 ( 1)

M
M

g − +
g − g −

 ...[Eqn. 15.67)]

   = 
2

2
(1.4 1) 2 2 3.6 0.333

11.2 0.42 1.4 2 (1.4 1)
− × +

= =
−× × − −

 ∴ M2 = 0.577 (Ans.)
 Pressure, p2 :
  2

1

p
p

 = 
2
12 ( 1)
( 1)

Mg − g −
g +

 ...[Eqn. (15.64)]

   = 
22 1.4 2 (1.4 1) 11.2 0.4 4.5

(1.4 1) 2.4
× × − − −

= =
+

 ∴ p2 = 26.5 × 4.5 = 119.25 kN/m2 (Ans.)
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 Density, ρ2 :

  2

1

ρ
ρ

 = 
2
1

2
1

( 1)
( 1) 2

M
M

g +
g − +

 ...[Eqn. (15.65)]

   = 
2

2
(1.4 1) 2 9.6 2.667

1.6 2(1.4 1) 2 2
+

= =
+− +

 ∴ ρ  = 0.413 × 2.667 = 1.101 kg/m3 (Ans.)
 Temperature, T1:
 Since, p1 = ρ1 RT1, 

 ∴ T1 =  
3

1

1

26.5 10 223.6 K
0.413 287

p
R

×
= =

ρ ×
   or   – 49.4°C (Ans.)

 Temperature, T2 :

  2

1

T
T

 = 
2 2
1 1

2 2
1

[( 1) 2] [2 ( 1)]
( 1)

M M
M

g − + g − g −
g +

   = 
2 2

2 2
[(1.4 1) 2 2] [2 1.4 2 (1.4 1)]

(1.4 1) 2
− + × × − −

+ ×

   = (1.6 2) (11.2 0.4) 1.6875
23.04

+ −
=

 ∴ T2 = 223.6 × 1.6875 = 377.3 K   or   104.3°C (Ans.)
 Velocity, V1 :
  C1 = 1 1.4 287 223.6 299.7 m/sRTg = × × =

 Since 1

1

V
C

 = M1 = 2

 ∴ V1 = 299.7 × 2 = 599.4 m/s (Ans.)
 Velocity, V2 :
  C2 = 2 1.4 287 377.3 389.35 m/sRTg = × × =

 Since, 2

2

V
C

 = M2 = 0.577

 ∴ V2 = 389.35 × 0.577 = 224.6 m/s (Ans.)

15.13.2. Oblique Shock Wave
 As shown in Fig. 15.14, when a supersonic flow 
undergoes a sudden turn through a small angle α (positive), 
an oblique wave is established at the corner. In comparison 
with normal shock waves, the oblique shock waves, being 
weaker, are preferred.
 The shock waves should be avoided or made as weak as 
possible, since during a shock wave conversion of mechanical energy into heat energy takes place.

15.13.3. Shock Strength
 The strength of shock is defined as the ratio of pressure rise across the shock to the upstream 
pressure.

Fig. 15.14. Oblique shock wave.

Shock
Supersonic

flow

Sharp corner

�
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 i.e.  Strength of shock = 2 1 2

1 1
1p p p

p p
−

= −

   = 
2 2
1 12 ( 1) 2 ( 1) (1

1 1
M Mg − g − g − g − − g + 1)

− =
g + g +

   = 
2 2

21 1
1

2 1 2 2 2 ( 1)
1 1

M M Mg − g + − g −1 g − g g
= = −

g + g + g + 1

 Hence, strength of shock  2
1

2 ( 1)
1

Mg
= −

g +
 ...(15.68)

 Example 15.22.  In a duct in which air is flowing, a normal shock wave occurs at a Mach 
number of 1.5 . The static pressure and temperature upstream of the shock wave are 170 kN/m2 and 
23°C respectively. Determine :
 (i) Pressure, temperature and Mach number downstream of the shock, and
 (ii) Strength of shock.
 Take g = 1.4

 Solution. Let subscripts 1 and 2 represent flow conditions upstream and downstream of the 
shock wave respectively.
  Mach number, M1 = 1.5
  Upstream pressure, p1 = 170 kN/m2

  Upstream temperature, T1 = 23 + 273 = 296 K
  g = 1.4
 (i) Pressure, temperature and Mach number downstream of the shock :

  2

1

p
p

 = 
2
12 ( 1)

1
Mg − g −

g +
 ...[Eqn. (15.64)]

   = 
22 1.4 1.5 (1.4 1) 6.3 0.4 2.458

1.4 1 2.4
× × − − −

= =
+

 ∴ p2 = 170 × 2.458 = 417.86 kN/m2 (Ans.)

  2

1

T
T

 = 
2 2
1 1

2 2
1

[( 1) 2] [2 ( 1)]
( 1)

M M
M

g − + g − g −
g +

 ...[Eqn. (15.66)]

   = 
2 2

2 2
[(1.4 1) 1.5 2] [2 1.4 1.5 (1.4 1)] 2.9 5.9 1.32

12.96(1.4 1) 1.5
− × + × × − − ×

= =
+ ×

 ∴ T2 = 296 × 1.32 = 390.72 K   or 117.72°C (Ans.)

  2
2M  = 

2
1

2
1

( 1) 2
2 ( 1)

M
M

g − +
g − g −

 ...[Eqn. (15.67)]

   = 
2

2
(1.4 1) 1.5 2 2.9 0.49

5.92 1.4 1.5 (1.4 1)
− × +

= =
× × − −

 ∴ M2 = 0.7 (Ans.)
 (ii) Strength of shock :

  Strength of shock 1

2
1 2.458 1 .p

p
= − = − = 1 458    (Ans.)
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15.14.  MEASUREMENT OF COMPRESSIBLE FLOW 

 A. Measurement of discharge (flow rate) :
 1. Convergent nozzle.
 2. Orificemeter.
 3. Convergent-divergent nozzle.
 4. Venturimeter—If the pressure drop between the entrance and the throat is small, the flow 

computation may be made considering it as an isothermal process; if pressure drop is ap-
preciable, the flow will be adiabatic with a rapid fall of temperature at the throat :

 B. Measurement of velocity :
 1. Pitot tube....works on the principle of stagnation pressure.
 2. Hot-wire anemometer—works on the principle that the rate of heat loss varies with the flow 

velocity;
 — Particularly used in a supersonic wind tunnel.
 — Constant-current hot-wire anemometer, because of its high sensitivity, is especially 

suitable for flow in which velocity fluctuations are small.
 — Since it responds very rapidly to fluctuations of velocity it is widely used in conjunc-

tion with oscilloscopes and similar electronic instruments for measuring the intensity 
of turbulence.

 C. Measurement of flow direction :
 The instruments which may be used to determine both the magnitudes as well as the direction 
of the velocity are :
 1. Pitot cylinder...suitable for determination of both magnitude and direction of velocity in a 

two-dimensional flow.
 2. Pitot sphere....may be used to determine the magnitude and direction of the velocity in a 

three-dimensional flow.

15.15.  FLOW OF COMPRESSIBLE FLUID THROUGH VENTURIMETER 

 Consider a compressible fluid thowing through a horizontal venturimeter. Let suffices 1 and 2 
denote main and throat diameters of venturimeter respectively. Considering the flow to be adiabatic, 
we have:

  
2

1 1
1

11 2
p V z
g g

g  + + g − ρ 
 = 

2
2 2

2
21 2
p V z

g g
g  + + g − ρ 

 ...[Eqn. (15.26)]

 Taking z1 = z2 (venturimeter being horizontal) and cancelling ‘g’ we get:

  
2

1 1

11 2
p Vg  + g − ρ 

 = 
2

2 2

21 2
p Vg  + g − ρ 

 or, 1 2

1 21
p pg  − g − ρ ρ 

 = 
2 2

2 1
2 2

V V
−

 or, 1 2 1

1 2 1
1

1
p p pg    − ×   g − ρ ρ ρ   

 = 
2 2

2 1
2 2

V V
−  ...(i)

 For adiabatic flow : 1

1

p
gρ

 = 2

2

p
gρ
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 ∴ 1

2

p
p

 = 1

2

gρ 
 ρ 

 or, 1

2

ρ
ρ

 = 
1

1

2

p
p

g 
 
 

 ...(ii)

 Substituting this value of 1

2

ρ
ρ

 in eqn. (i), we get:

 or,    
1

2 2
1 2 2 2 1

1 1 1
1

1 2 2
p p p V V

p p

−
g

 
g     − × = −    g − ρ    

 or,     
11 2 2

1 2 2 1

1 1
1

1 2 2
p p V V

p

−
g

 
g     − = −    g − ρ    

 or,     
1

2 2
1 2 2 1

1 1
1

1 2 2
p p V V

p

g −
g

 
g     − = −    g − ρ    

 ...(iii)

 Also, ρ1A1V1 = ρ2A2V2 ...Continuity equation

 ∴ V1 = 2 2 2

1 1

A V
A

ρ
ρ

 Substituting the value of V1 in eqn. (iii), we get:

 
1 22 2 2 2

1 2 2 2 2 2 2 2 2
2 2

1 1 1 1 1 1

11 1
1 2 2 2

p p V A V V A
p A A

g −
g

   ρ ρg       − = − × = −       g − ρ ρ ρ        
 ...(iv)

 But from eqn. (ii) 
2

2

1

ρ 
 ρ 

 = 
2/

2

1

p
p

g
 
 
 

 Substituting this value in eqn. (iv), we get:

  
1

1 2

1 1
1

1
p p

p

g −
g

 
g     −    g − ρ    

 = 
2

2 2
2 2 2

2
1 1

1
2

V p A
p A

g
 

  − ×    
 ...(iv)

 ∴ 2
2V  = 

1

1 2

1 1
2

2
2 2

2
1 1

2 1
1

1

p p
p

p A
p A

g −
g

g

 
g     −    g − ρ    
 

  − ×    

 ∴ V2 = 

1

1 2

1 1
2

2
2 2

2
1 1

2 1
1

1

p p
p

p A
p A

g −
g

g

 
g     −    g − ρ    

 − × 
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 ∴ Mass rate of flow through venturimeter, 

  m = 

1

1 2

1 1
2 2 2 2 2 2 2

2 2

1 1

2 1
1

1

p p
p

A V A
p A
p A

g −
g

g

 
g     −    g − ρ    ρ = ρ

   − ×   
   

 ...(15.69)

 Example 15.23.  Find the mass rate of flow of air through a venturimeter having inlet diameter 
300 mm and throat diameter 150 mm. The pressure and temperature of air at inlet section of 
the venturimeter are 137 kN/m2 absolute and 15°C respectively, and the pressure at the throat is  
127 kN/m2 absolute. Take R = 287 J/kg K and adiabatic exponent g = 1.4. [Delhi University]
 Solution. Let suffices 1 and 2 represent the conditions at the inlet and throat sections of 
venturimeter.
  Diameter at inlet, D1 = 300 mm = 0.3 m

 ∴  Area, A1 = π
4

 × 0.32 = 0.07068 m2

  Diameter of throat, D2 = 150 mm = 0.15 m

 ∴  Area, A2 = π
4

 × 0.152 = 0.01767 m2

  Pressure, p1 = 137 kN/m2 (abs.)
  Temperature, T1 = 15 + 273 = 288 K
  Pressure, p2 = 127 kN/m2

  R = 287 J/kg K, g = 1.4
 Mass rate of flow, m :

  ρ1 = 
3

31

1

137 10 1.657 kg/m
287 288

p
RT

×
= =

×

  2

1

ρ
ρ

 = 
1

2

1

p
p

g 
 
 

 or, ρ2 = 
1 1

1.4 32
1

1

1271.657 1.57 kg/m
137

p
p

g   ρ × = × =     
 Mass flow rate through a venturimeter is given by:

  m = 

1

1 2

1 1
2 2 2 2

2 2

1 1

2 1
1

1

p p
p

A
p A
p A

g −
g

g

 
g     −    g − ρ    ρ

   − ×   
   

 ...[Eqn. (15.69)]

  m = 

1.4 1
3 1.4

2 2
1.4

2 1.4 137 10 1271
1.4 1 1.657 137

1.57 0.01767
127 0.017671
137 0.07068

− 
× ×    × −    −    ×

   − ×   
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 or, m = 
37 82.68 10 (1 .09786)0.02774 .

1 0.897 0.0625
× × −

=
− ×

3 177 kg / s  (Ans.)

HIGHLIGHTS

 1. A compressible flow is that flow in which the density of the fluid changes during flow.
 2. The characteristic equation of state is given by :

    p
ρ

 = RT

  where, p = Absolute pressure, N/m2,
   ρ = Density of gas, kg/m3,
   R = Characteristic gas constant, J/kg K, and 
   R = Absolute temperature (= t°C + 273).
 3. The pressure and density of a gas are related as :

  For isothermal process p
ρ

 = constant

  For adiabatic process : p
gρ

 = constant

 4. The continuity equation for compressible flow is given as :
    ρAV = constant

    d dA dV
A V

ρ
+ +

ρ
 = 0  ...in differential form.

 5. For compressible fluids Bernoulli’s equation is given as :

    
2

ln ( )
2

p Vp z
g g

+ +
ρ

 = constant ... for isothermal process

    
2

1 2
p V z
g g

g  + + g − ρ 
 = constant ... for adiabatic process

 6. Sonic velocity is given by :

    C = dp K
d

=
ρ ρ

 ... in terms of bulk modulus

    C = p RT=
ρ

 ... for isothermal process

    C = p RTg
= g

ρ
 ... for adiabatic process.

 7. Mach number, M = V
C

 (i) Subsonic flow : M < 1, V < C  ... disturbance always moves ahead of the projectile
 (ii) Sonic flow : M = 1, V = C  ... disturbance moves along the projectile
 (iii) Supersonic flow : M > 1, V > C  ... The projectile always moves ahead of the disturbance.

  Mach angle is given by: 1sin C
V M

α = =
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 8. The pressure, temperature and density at a point where velocity is zero are called stagnation 
pressure (ps ), temperature, (Ts) and stagnation density ρs. Their values are given as :

    ps = 
12

0 0
11

2
p M

g
g − g −  +     

    ρs = 

1
12

0 0
11

2
M

g − g −  ρ +     

    Ts = 2
0 0

11
2

T M g −  +     
  where p0, ρ0 and T0 are the pressure, density and temperature at any point O in the flow.
 9. Area-velocity relationship for compressible fluid is given as :

    dA
A

 = 2( 1)dV M
V

−

 (i) Subsonic flow (M < 1) :   0; 0; 0dV dA dp
V A

> < <  (convergent nozzle)

                 0; 0; 0dV dA dp
V A

< > >  (divergent diffuser)

 (ii) Supersonic flow (M > 1) :   0; 0; 0dV dA dp
V A

> > <  (divergent nozzle)

                0; 0; 0dV dA dp
V A

< < >  (convergent diffuser)

 (iii) Sonic flow (M = 1) :      0dA
A

=  (straight flow passage since dA must be zero)

                zerodp
zero

=  i.e. indeterminate, but when evaluated, the 

change of pressure dp = 0, since dA = 0 and the flow is frictionless.
 10. Flow of compressible fluid through a convergent nozzle :
 (i) Velocity through a nozzle or orifice fitted to a large tank :

    V2 = 
11 2

1 1

2 1
1

p p
p

g
g −

 
g     −    g − ρ    

 (ii) The mass rate of flow is given by :

    m = 
2 1

2 2
2 1 1

1 1

2
1

p pA p
p p

g +
g g

 
g       ρ −      g −      

 (iii) Value of 2

1

p
p

 
 
 

 for maximum value of mass rate of flow is given by :

    2

1

p
p

 
 
 

 = 
12 0.528

1

g
g −  = g + 

 (when g = 1.4)

 (iv) Value of V2 for maximum rate of flow of liquid is given as:

    V2 = 1
2

1

2 ( )
1

p Cg  = g + ρ 
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 (v) Maximum rate of flow of fluid through nozzle,

    mmax = 

2 1
1 1

2 1 1
2 2 2

1 1 1

 

A p
g +

g − g −
 

g      ρ −      g − g + g +      

  For air,  substituting g  = 1.4, we get:
    mmax = 2 1 10.685 A p ρ

  If the pressure ratio is less than 0.528, the mass rate of flow of the fluid is always correspond-
ing to the pressure ratio of 0.528. But if the pressure ratio is more than 0.528, the mass rate 
of flow of fluid is corresponding to the given pressure ratio.

 11. Whenever a supersonic flow (compressible) changes to subsonic flow, a shock wave (analo-
gous to hydraulic jump in an open channel) is produced, resulting in a sudden rise in pressure, 
density, temperature and entropy.

    
2

1 1
1

1

( )Vp ρ
+

ρ
 = 

2
2 2

2
2

( )Vp ρ
+

ρ
 ... Ranking Line Equation

    
2

1 1 1
2

1 1

( )
1 2

p Vρg   + g − ρ ρ 
 = 

2
2 2 2

2
2 2

( )
1 2

p Vρg   + g − ρ ρ 
 ... Fanno Line Equation

        

2

12

21

1

2

12 1

21 2

1

1 1
1
1
1

11
1

1
1

p
p

p
pV

pV
p

ρg +   −  g − ρ  =
ρg +  −  g − ρ  


g +  +   g −ρ  = = g +ρ   + g −   

 ...Ranking-Hugoniot Equations

  One can also express  2 2 2

1 1 1
, , ,p V

p V
ρ
ρ

 and 2

1

T
T

 in terms of Mach number as follows :

    2

1

p
p

 = 
2
12 ( 1)

1
Mg − g −

g +
 ...(i)

    1

2

V
V

 = 
2

2 1
2

1 1

( 1)
( 1) 2

M
M

ρ g +
=

ρ g − +
 ...(ii)

    2

1

T
T

 = 
2 2
1 1

2 2
1

[( 1) 2] [2 ( 1)]
( 1)

M M
M

g − + g − g −
g +

 ...(iii)

  Also, 2
2M  = 

2
1

2
1

( 1) 2
2 ( 1)

M
M

g − +
g − g −

 12. Mass rate of flow through venturimeter,

    m = 

1

1 2

1 1
2 2 2 2

2 2

1 1

2 1
1

1

p p
p

A
p A
p A

g −
g

g

 
g     −    g − ρ    ρ

   − ×   
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OBJECTIVE TYPE QUESTIONS

Choose the Correct Answer :
 1.	 All	real	fluids	are
  (a) incompressible
  (b) compressible to some extent
  (c) compressible to any extent
  (d) none of the above.
 2. A change in the state of a system at constant 

volume is called
  (a) isobaric process
  (b) isochoric process
  (c) isothermal process
  (d) adiabatic process.
 3. A process during which no heat is transferred to 

or from the gas is called an
  (a) isochoric process
  (b) isobaric process
  (c) adiabatic process
  (d) isothermal process.
 4. An adiabatic process is one which follows the 

relation
  (a) constantp

=
ρ

  (b) constantp
g =

ρ

  (c) constant ( )n
p n= ≠ g

ρ

  (d) ν = constant.
 5.	 An	isentropic	flow	is	one	which	is
  (a) isothermal
  (b) adiabatic
  (c) adiabatic and irreversible
  (d) adiabatic and reversible.
 6.	 Indicate	upto	what	Mach	number	can	a	fluid	flow	

be considered incompressible ?
  (a) 0·1 (b) 0·3
  (c) 0·8 (d) 1·0.
 7. Which of the following is the basic equation of 

compressible	fluid	flow	?
  (a) Continuity equation
  (b) Momentum equation
  (c) Energy equation
  (d) Equation of state
  (e) All of the above.
 8.	 The	velocity	of	disturbance	in	case	of	fluids	is	

..... the velocity of the disturbance in solids.
  (a) less than (b) equal to
  (c) more than (d) none of the above.

 9. Sonic velocity (C) for adiabatic process is given 
as

  (a) 3C RT= g  (b) C RT= g

  (c) 2C RT= g  (d) C = gRT.

   where g	=	ratio	of	specific	heats,	R = gas constant, 
T = temperature.

 10.	 The	 flow	 is	 said	 to	 be	 subsonic	when	Mach	
number is

  (a) equal to unity (b) less than unity
  (c) greater than unity (d) none of above.
 11. The region outside the Mach cone is called
  (a) zone of action (b) zone of silence
  (c) control volume (d) none of the above.
 12. A stagnation point is the point on the immersed 

body where the magnitude of velocity is
  (a) small (b) large 
  (c) zero (d) none of the above.
 13. A convergent-divergent nozzle is used when the 

discharge pressure is
  (a) less than the critical pressure
  (b) equal to the critical pressure
  (c) more than the critical pressure
  (d) none of the above.
 14. At critical pressure ratio, the velocity at the throat 

of a nozzle is
  (a) equal to the sonic speed
  (b) less than the sonic speed
  (c) more than the sonic speed
  (d) none of the above.
 15. Laval nozzle is a
  (a) convergent nozzle
  (b) divergent nozzle
  (c) convergent-divergent nozzle
  (d) any of the above.
 16. A shock wave is produced when
  (a)	 a	subsonic	flow	changes	to	sonic	flow
  (b)	 a	sonic	flow	changes	to	supersonic	flow
  (c)	 a	supersonic	flow	changes	to	subsonic	flow
  (d) none of the above.
 17.	 The	sonic	velocity	in	a	fluid	medium	is	directly	

proportional to
  (a) Mach number 
  (b) pressure
  (c) square root of temperature
  (d) none of the above.
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 18. The stagnation pressure (ps) and temperature (Ts) 
are

  (a) less than their ambient counterparts
  (b) more than their ambient counterparts
  (c)	 the	same	as	in	ambient	flow
  (d) none of the above.
 19. Across a normal shock
  (a) the entropy remains constant
  (b) the pressure and the temperature rise
  (c) the velocity and pressure decrease
  (d) the density and temperature decrease.
 20. A normal shock wave
  (a) is reversible
  (b) is irreversible
  (c) is isentropic
  (d) occurs when approaching flow is super- 

sonic.
 21. The sonic speed in an ideal gas varies
  (a) inversely as bulk modulus
  (b) directly as the absolute pressure
  (c) inversely as the absolute temperature
  (d) none of the above.
 22.	 In	a	supersonic	flow,	a	diffuser	is	a	conduit	hav-

ing
  (a) gradually decreasing area
  (b) converging-diverging passage
  (c) constant area throughout its length
  (d) none of the above.
 23.	 Choking	of	 a	 nozzle	fitted	 to	 a	 pressure	 tank	

containing gas implies
  (a) sonic velocity at the throat
  (b)	 increase	of	the	mass	flow	rate
  (c)	 obstruction	of	flow
  (d) all of the above.
 24. A shock	wave	which	occurs	in	a	supersonic	flow	

represents a region in which
  (a) a zone of silence exists
  (b) there is no change in pressure, tempera- ture 

and density
  (c) there is sudden change in pressure, tempera-

ture and density
  (d) velocity is zero.
 25. Which of the following statements regarding a 

normal shock is correct ?
  (a) It occurs when an abrupt change takes place 

from	supersonic	into	subsonic	flow	condition

  (b)	It	 causes	 a	 disruption	 and	 reversal	 of	flow	
pattern

  (c)	 It	may	occur	in	sonic	or	supersonic	flow
  (d) None of the above.
 26.	 For	 compressible	fluid	flow	 the	 area-velocity	

relationship is

  (a) 2(1 )dA dV M
A V

= −

  (b) 2( 1)dA dV C
A V

= −

  (c) 2( 1)dA dV M
A V

= −

  (d) 2(1 )dA dV V
A V

= −

 27. The sonic velocity is largest in which of the fol-
lowing ?

  (a) Water (b) Steel
  (c) Kerosene (d) Air.
 28. Which of the following expressions does not 

represent the speed of sound in a medium ?

  (a) K
ρ

 (b) RTg

  (c) pK
ρ

 (d) dp
dρ

.

 29.	 The	differential	for	energy	in	isentropic	flow	is	
of the form

  (a) 0dV dp dA
V A

+ + =
ρ

  (b) 0dpVdV + =
ρ

  (c) 2 0dpVdV + =
ρ

  (d)  dp + d (ρV2) = 0.

 30. Which of the following statements is incorrect ?
  (a) A shock wave occurs in divergent section of 

a	nozzle	when	the	compressible	flow	changes	
abruptly from supersonic to subsonic state.

  (b) A plane moving at supersonic state is not heard 
by the stationary observer on the ground until 
it passes him because zone of disturbance in 
Mach cone trails behind the plane

  (c) A divergent section is added to a convergent 
nozzle to obtain supersonic velocity at the 
throat.

  (d) none of above.
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ANSWERS

 1. (b) 2. (b) 3. (c) 4. (b) 5. (d) 6. (b)
 7. (e) 8. (a) 9. (b) 10. (b) 11. (b) 12. (c)
 13. (a) 14. (a) 15. (c) 16. (c) 17. (c) 18. (b)
 19. (b) 20. (d) 21. (d) 22. (a) 23. (d) 24. (c)
 25. (a) 26. (c) 27. (b) 28. (c) 29. (b) 30. (c).

THEORETICAL QUESTIONS

 1. Differentiate between compressible and incom-
pressible	flows.

 2. Give the examples when liquid is treated as a 
compressible	fluid.

 3.	 When	is	the	compressibility	of	fluid	important	?
 4. What is the difference between isentropic and 

adiabatic	flows	?
 5. What is the relation between pressure and density 

of	a	compressible	fluid	for	(a) isothermal process 
(b) adiabatic process ?

 6. Obtain an expression in differential form for 
continuity equation for one-dimensional com-
pressible	flow.

 7. Derive an expression for Bernoulli’s equation 
when the process is adiabatic.

 8.	 How	are	the	disturbances	in	compressible	fluid	
propagated ?

 9. What is sonic velocity ? On what factors does it 
depend ?

 10. What is Mach number ? Why is this parameter so 
important	for	the	study	of	flow	of	compressible	
fluids	?

 11. Prove that velocity of sound wave in a compress-
ible	fluid	is	given	by	:	 /C k= ρ  where, k and 

ρ	are	the	bulk	modulus	and	density	of	fluid	re-
spectively.

 12.	 Define	the	following	terms	:
  (i)	 Subsonic	flow	 (ii)	 Sonic	flow	
  (iii)	 Supersonic	flow	 (iv) Mach cone.
 13. What is silence zone during the disturbance 

which propagates when an object moves in still 
air ?

 14. What is stagnation point of an object immersed 
in	fluid	?

 15. What is stagnation pressure ?
 16. What are static and stagnation temperatures ?
 17. Derive an expression for mass flow rate of 

compressible	fluid	through	an	orifice	or	nozzle	
fitted	to	a	large	tank.	What	is	the	condition	for	
maximum	rate	of	flow	?

 18. What is the critical pressure ratio for a compress-
ible	flow	through	a	nozzle?	On	what	factors	does	
it depend ?

 19.	 Describe	compressible	flow	through	a	conver-
gent-divergent nozzle. How and where does the 
shock wave occur in the nozzle ?

 20. What do you mean by compressibility correction 
factor ?

 21. How is a shock wave produced in a compressible 
fluid	?	What	do	you	mean	by	the	term	“Shock	
strength” ?

 22. Derive an expression for mass rate of flow 
through a venturimeter.

UNSOLVED EXAMPLES
 1. A 100 mm diameter pipe reduces to 50 mm 

diameter through a sudden contraction. When it 
carries air at 20·16°C under isothermal conditions, 
the absolute pressures observed in the two pipes 
just before and after the contraction are 400 kN/
m2 and 320 kN/m2 respectively. Determine the 
densities and velocities at the two sections. Take 
R = 290 J/kg K.

   [Ans. 4·7 kg/m3; 3·76 kg/m3; 39·7 m/s; 
   198·5 m/s]

 2.	 A	 gas	with	 a	 velocity	 of	 300	m/s	 is	 flowing	
through a horizontal pipe at a section where 
pressure is 60 kN/m2 (abs.) and temperature 
40°C. The pipe changes in diameter and at this 
section the pressure is 90 kN/m2.	If	the	flow	of	
gas	is	adiabatic	find	the	velocity	of	gas	at	this	
section.

  Take R = 287 J/kgK and g = 1·4.
  [Ans. 113 m/s]
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 3.	 An	aeroplane	is	flying	at	21·5	m/s	at	a	low	alti-
tude where the velocity of sound is 325 m/s. At 
a certain point just outside the boundary layer of 
the wings, the velocity of air relative to the plane 
is	305	m/s.	If	the	flow	is	frictionless	adiabatic	
determine the pressure drop on the wing surface 
near this position.

  Assume g = 1·4 , pressure of ambient air = 102 
kN/m2. [Ans. 28·46 kN/m2]

 4.	 A	jet	propelled	aircraft	is	flying	at	1100	km/h.	at	
sea level. Calculate the Mach number at a point 
on the aircraft where air temperature is 20°C.

  Take : R = 287 J/kg K and g = 1·4.
  [Ans. 0·89]
 5.	 An	 aeroplane	 is	flying	 at	 an	height	 of	 20	km	

where the temperature is – 40°C. The speed of 
the plane is corresponding to M = 1·8. Find the 
speed of the plane.

  Take : R = 287 J/kg K, g = 1·4.
[Ans. 1982·6 km/h]

 6.	 Find	the	velocity	of	bullet	fired	in	standard	air	
if its Mach angle is 30°. [Ans. 680·4 m/s]

 7. Air, thermodynamic state of which is given by 
pressure p = 230 kN/m2 and temperature = 300 
K is moving at a velocity V = 250 m/s. Calculate 
the stagnation pressure if (i) compressibility is 
neglected and (ii) compressibility is accounted 
for.

  Take  g = 1·4, and R = 287 J/kg K.
[Ans. 313 kN/m2, 323 kN/m2]

 8.	 A	large	vessel,	fitted	with	a	nozzle,	contains	air	
at a pressure of 2943 kN/m2 (abs.) and at a tem-
perature of 20°C. If the pressure at the outlet of 
the nozzle is 2060 kN/m2	(abs.)	find	the	velocity	
of	air	flowing	at	the	outlet	of	the	nozzle.

  Take : R = 287 J/kgK, and g = 1·4
[Ans. 239·2 m/s]

 9. Nitrogen gas (g = 1·4) is released through a 10 mm 
orifice	on	the	side	of	a	large	tank	in	which	the	
gas is at a pressure of 10 bar and temperature 
20°C.	Determine	 the	mass	flow	 rate	 if	 (i) the 
gas escapes to atmosphere (1 bar); (ii) the gas 
is released to another tank at (a) 5 bar, (b) 6 bar.

  [Ans. (i) 0·183 kg/s; (ii) 0·183 kg/s; 0·167 kg/s]
 10. Air is released from one tank to another through 

a convergent-divergent nozzle at the rate of 12 
N/s. The supply tank is at a pressure of 400 
kN/m2 and temperature 110°C, and the pressure 
in the receiving tank is 100 kN/m2. Determine: 

(i) The pressure, temperature, and Mach number 
in the constriction, (ii) The required diameter of 
constriction, (iii) The diameter of the nozzle at 
the exit for full expansion, and the Mach number.

   [Ans. (i) 210 kN/m2; 319 K, (ii) 43·5 mm; 
   (iii) 48 mm; 1·56]
 11.	 Oxygen	flows	in	a	conduit	at	an	absolute	pres-

sure of 170 kN/m2. If the absolute pressure and 
temperature at the nose of small object in the 
stream are 200 kN/m2 and 70·16°C respectively, 
determine the velocity in the conduit. Take  
g = 1·4 and R = 281·43 J/kg K.

[Ans. 175·3 m/s]
 12. Air at a velocity of 1400 km/h has a pressure of 

10 kN/m2 vacuum and temperature of 50·16°C. 
Calculate local Mach number and stagnation 
pressure, density and temperature.

  Take g = 1·4, R = 281·43 J/kg K and barometric 
pressure = 101·325 kN/m2

   [Ans. 1·089; 192·358 kN/m2; 
   1·708 kg/m3; 399·8 K]
 13. A normal shock wave occurs in a diverging 

section	when	 air	 is	 flowing	 at	 a	 velocity	 of	
420 m/s, pressure 100 kN/m2, and temperature 
10°C. Determine : (i) The Mach number before 
and after the shock, (ii) The pressure rise, and 
(iii) The velocity and temperature after the 
shock.

   [Ans. (i) 1·25; 0·91; (ii) 66 kN/m2, 
   (iii) 292 m/s; 54°C]
 14.	 A	normal	shock	wave	occurs	in	air	flowing	at	

a Mach number of 1·5. The static pressure and 
temperature of the air upstream of the shock 
wave are 100 kN/m2 and 300 K. Determine the 
Mach number, pressure and temperature down-
stream of the stockwave. Also estimate the shock 
strength.

   [Ans. 0·7; 246 kN/m2; 396·17 K; 1·46]
 15.	 A	25	mm	diameter	venturimeter	is	fixed	in	a	75	

mm	diameter	pipe	to	measure	the	rate	of	flow	
of gas. If the absolute pressure at the inlet and 
the throat of venturimeter are equivalent to 1010 
mm and 910 mm of mercury, determine the 
volumetric	flow	rate	of	gas.	Assume	the	flow	to	
be isentropic, g = 1·4  and ρ1 = 1·6 kg/m3.

  [Ans. 0·0599 m3/s]
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A. UNIFORM FLOW

16.1. INTRODUCTION 

16.1.1 Definition of an Open  
 Channel.

 An open channel may be defined as a 
passage in which liquid flows with its upper 
surface exposed to atmosphere. In open 
channels the flow is due to gravity, thus the 
flow conditions are greatly influenced by the 
slope of the channel.

16.1.2 Comparison between Open 
Channel and Pipe Flow

 The important points of difference 
between the two types of flows are given 
below:

S.No. Aspects Open channel flow Pipe flow
1. Cause of 

flow
Gravity force (provided by 
sloping bottom)

The pipe runs full and the flow, in general, 
takes place at the expense of hydraulic 
pressure; the pressure continously decreases 
in the direction of flow.

2. Geometry 
of cross-
section

Open channels may have 
any shape: triangular, 
rectangular, trapezoidal, 
parabolic, circular etc.

Pipes ...generally round in cross-section
   ... cross-section of flow is fixed, since 

the flowing liquid entirely fills the 
pipe section.

3. Surface  
roughness

Varies between wide limits, 
the hydraulic roughness 
varies with depth of flow.

Roughness co-efficient varies from a low 
value to a very high value, depending upon 
the material of the pipe.
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4. Piezometric
 head

(z + y), where y is the depth 
of flow. H.G.L. coincides 
with the water surface.

pz
w

 + 
 

, where p is the pressure in the pipe. 

H.G.L. does not coincide with water surface.

5. Velocity 
distribution

The maximum velocity 
occurs at a little distance 
below the water surface. 
The shape of the velocity 
profile is dependent on the 
channel roughness.

The velocity distribution is symmetrical 
about the pipe axis, maximum     velocity 
occuring at the pipe centre and the velocity 
at the pipe wall reducing to zero.

16.1.3 Types of Channels

 The various types of channels are:
 1. Natural channel. It is the one which has irregular sections of varying shapes, developed in 

a natural way.
  Examples: Rivers, streams etc.
 2. Artificial channel. It is the one which is built artificially for carrying water for various pur-

poses. They have the cross-sections with regular geometrical shapes (which usually remain 
same throughout the length of the channel).

  Examples: Rectangular channel, trapezoidal channel, parabolic channel etc.
 3. Open channel. A channel without any cover at the top is known as an open channel.
  Examples: Irrigation canals, rivers, streams, flumes and water falls.
 4. Covered or closed channels. The channel having a cover at the top is known as a covered or 

closed channel.
  Examples: Partly filled conduits carrying public water supply such as sewerage lines, under-

ground drains, tunnels etc. not running full of water.
 5. Prismatic channel. A channel with constant bed slope and the same cross-section along its 

length is known as a prismatic channel.
  The prismatic channels can be further subdivided as:
 (i) Exponential channel. It is the one in which area of cross-section of flow is directly 

proportional to any power of depth of flow in channel.
  Examples: Rectangular, triangular and parabolic channels.
 (ii) Non-exponential channel. Trapezoidal and circular channels are non-exponential 

channels.

16.2.  TYPES OF FLOW IN CHANNELS 

 The flow in channels is classified into the following types, depending upon the change in the 
depth of flow with respect to space and time:
 1. Steady flow and unsteady flow
 2. Uniform flow and non-uniform (or varied) flow
 3. Laminar flow and turbulent flow
 4. Subcritical flow, critical flow and supercritical flow.

www.EasyEngineering.net
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16.2.1 Steady Flow and Unsteady Flow
	  When the flow characteristics (such as depth of flow, flow velocity and the flow rate at any 

cross-section) do not change with respect to time, the flow in a channel is said to be steady.

  Mathematically, 0, 0,y V
t t

∂ ∂
= =

∂ ∂
  or  0Q

t
∂

=
∂

  where y, V and Q are depth of flow, velocity and rate of flow respectively.
	  The flow is said to be unsteady flow when these flow parameters vary with time.

  Mathematically, 0; 0y V
t t

∂ ∂
≠ ≠

∂ ∂
  or  0.Q

t
∂

≠
∂

16.2.2 Uniform and Non-uniform (or varied) Flow
	  Flow in a channel is said to be uniform if the depth, slope, cross-section and velocity remain 

constant over a given length of the channel.

  Mathematically, 0, 0y V
l l

∂ ∂
= =

∂ ∂
  Uniform flows are possible only in prismatic channels only. A uniform flow may be either 

steady or unsteady, depending upon whether or not the discharge varies with time; unsteady 
uniform flow is rare in practice.

	  Flow in a channel is said to be non-uniform (or varied) when the channel depth varies con-
tinuously from one section to another.

  Mathematically, 0, 0y V
l l

∂ ∂
≠ ≠

∂ ∂
  Varied flow may be further classified as:
 (i) Rapidly varied flow (R.V.F.). In this type of flow depth of flow changes abruptly over 

a comparatively small length of channel.
  Examples: Hydraulic jump and the hydraulic drop.
 (ii) Gradually varied flow (G.V.F.). In this case the change in depth of flow takes place 

gradually in a long length of the channel.

16.2.3 Laminar Flow and Turbulent Flow
 The flow in the open channel may be characterised as laminar or turbulent depending upon the 
value of Reynolds number, defined as:

  Re = VRρ
µ

 ...(16.1)

 where, V = Average velocity of flow in the channel, and
  R = Hydraulic radius (defined as the ratio of area of flow to wetted perimeter)
 When Re < 500 ...flow is laminar
  Re > 2000 ...flow is turbulent
  500 < Re < 2000 ...flow is transitional.

16.2.4 Subscritical flow, Critical Flow and Supercritical Flow
 Since gravitational force is a predominant force in the case of channel flow, therefore Froude 

number, VFr
gD

=  (where V and D are the mean velocity of flow and hydraulic depth of the 

channel respectively) is an important parameter for analysing open channel flows. Depending upon 
Froude number the channel flow may be characterised as:
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Uniform flow Gradually varied
flow

Uniform
flow

Non - uniform flow

Rapidly varied
flow

Fig. 16.1. Uniform and non-uniform flow.

 (i) When  Fr < 1 (or V < gD ): The flow is described as subcritical (or tranquil or streaming)

 (ii) When Fr = 1: The flow is said to be in a critical state.
 (iii) When Fr > 1: The flow is said to be supercritical (or rapid or shooting or torrential)
Some of the types of channel flow are shown in Fig. 16.1

16.3.  DEFINITIONS 

 1. Depth of flow (y). It is the vertical distance of the lowest point of a channel section (bed of 
the channel) from the free surface.

 2. Depth of flow section. It is the depth of flow normal to the bed of the channel.
  d = y cos θ ...(16.2)
  where, θ = The angle which the channel bed makes with the horizontal.
  Since the slopes of the channels are very small,
    cosθ  1 and d  y.
  The depth of flow and depth of flow section are assumed equal, unless mentioned otherwise.

Cross - section
at XX

�
X

d
y

X

90º

�

A

T

P

y

Fig. 16.2. Terms related to flow through open channel.

 3. Top width (T). It is the width of the channel section at the free surface (i.e. the width of the 
liquid surface exposed to the atmospheric pressure.

 4. Wetted area (A). It is the cross-sectional area of the flow section of the channel.
 5. Wetted perimeter (P). It is the length of the channel boundary in contact with the flowing 

water at any section.
 6. Hydraulic radius (R). It is ratio of the cross-sectional area of flow to wetted perimeter. It is 

also called hydraulic mean depth.

  i.e. R = A
P

 ...(16.3)
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d
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d = 2r

y
2�

( )i

y

b

Fig. 16.3.

  Examples: (i) Rectangular open channel:

  R = 
2

A b y
P b y

×
=

+
 ...(16.4)

 (ii)  Pipe running full:

  R = 
2( / 4)

4
A d d
P d

π ×
= =

π
 ...(16.5)

 (iii)  Pipe not running full:

  R = 

2
(2 – sin 2 )

2
2

r
A
P r

θ θ
=

θ
 ...(16.6)

 7. Hydraulic depth (D). It is the ratio of the wetted area A to the top width T.

  i.e. D = A
T

 ...(16.7)

16.4.  OPEN CHANNEL FORMULAE FOR UNIFORM FLOW 

 For uniform flow in open channels, the following formulae will be discussed:
 1. Chezy’s formula
 2. Manning’s formula.

16.4.1 Chezy’s Formula
 Consider a longitudinal section of an open channel in which the flow is steady and uniform, as 
shown in Fig. 16.4. The forces acting on the free body of water between sections 1-1 and 2-2 in the 
direction of flow are as follows:

W sin �

�

L

1

2

F1

F2
1

2

W

�

Fig. 16.4. Uniform flow in open channel.
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 (i) Pressure forces F1 and F2 acting on the two ends of the body; these forces balance each other 
since the depth of channel remains constant.

 (ii) The component of weight of the water in the direction of flow, which is
   = W sin θ = wAL sin θ
 where, w = Specific weight of water,
  A = Wetted cross-sectional area of channel,
  L = Length of the channel considered, and
	 	 θ = Angle of inclination of channel bottom with the horizontal.
 (iii) Frictional resistance offered by the sides of the channel which is = τ0 PL, where P is the wet-

ted perimeter of the channel and τ0  is the average shear stress at the channel boundary.
 As the flow is steady and uniform, it is neither accelerating nor decelerating; the liquid mass is 
in equilibrium and the frictional resistance to flow equals the weight of liquid mass acting along the 
line of fluid motion. Thus
  wAL sin θ = τ0 PL
 Since frictional resistance τ0 varies with (velocity)2, τ0 may be expressed as fV2 where f is a 
non-dimensional factor whose value depends upon the material and nature of flow surface.
	 ∴ wAL sin θ = fV2 PL

 or, V2 = sinwAL
fPL

θ  or sinw AV
f P

= × θ

 Since A
P

 is the hydraulic radius (or hydraulic mean depth) and θ is the slope of the channel bed 

(S), we may write:
  V = C RS  ...(16.8)

 where wC
f

=  (a variable which depends on the roughness of the channel surface and the 

flow Reynolds number).
 Eqn. (16.8) is known as Chezy’s formula (named after the French engineer Antoine Chezy who 
developed this formula in 1775). The term C is known as Chezy’s constant.
 Discharge through the channel, Q = Area × velocity
   = AC RS

 which can be written as:
  Q = K S  ...(16.9)

 where, K = AC R

 The factor K is called the conveyance of the channel section, and is a measure of the carrying 
capacity of the channel. For a channel of constant slope, the conveyance is directly proportional to 
discharge Q.
 Empirical relations for the Chezy’s constant C:
 Although Chezy’s equation is quite simple, the selection of a correct value of C is rather 
difficult. Some of the important formulae developed for Chezy’s constant C are:
 (a) Bazin’s formula:
 A French hydraulician H. Bazin’s (1897) proposed the following empirical formula for Chezy’s 
constant:
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  C = 157.6

181 K
R

+
 ...(16.10)

 where, R is the hydraulic radius and K is the Bazin’s constant whose value depends on surface 
roughness. Some typical values of K are:

S.No. Surface of channel Bazin’s constant (K)
1. Smooth cement plaster or planed wood 0.11
2. Concrete, brick, or unplaned wood 0.21
3. Smooth rubble masonry or poor brickwork 0.83
4. Earth channels in very good condition 1.54
5. Earth channels in rough condition 3.17
6. Dredged earth channels, average condition 2.36

 (b) Kutter’s formula:
 Two Swiss engineers Ganguillet and Kutter proposed the following empirical formula (1869) 
for the determination of Chezy’s constant C.

  C = 

0.00155 123

0.001551 23

S N
N

S R

+ +

 + + 
 

 ...(16.11)

 where N is the Kutter’s constant whose value depends upon the type of the channel surface. 
Some typical values of N are given below:

S.No. Surface of channel N (Kutter’s/Manning’s constant)

1. Smooth cement plaster or planed wood 0.010
2. Very smooth concrete and planed timber 0.011
3. Smooth concrete 0.012
4. Glazed brickwork 0.013
5. Vitrified clay 0.014
6. Brick surface lined with cement mortar 0.015
7. Earth channels in best condition 0.017
8. Straight unlined earth channels in good condition 0.020
9. Rivers and earth channels in fair condition 0.025
10. Canal and river of rough surface with weeds 0.030

 (c) Manning’s formula:
 Rober Manning (an Irish engineer) gave the following empirical relation for determination of 
Chezy’s constant C (1889), which is simplest of all used for uniform open channel flow:

  C = 1/61 R
N
⋅

 where N is the Manning’s constant (also known as rugosity co-efficient—a term generally used 
by British engineers) whose value depends on the channel surface.
 Example 16.1.  Find the rate of flow and conveyance for a rectangular channel 7.5 m wide 
for uniform flow at a depth of 2.25 m. The channel is having bed slope as 1 in 1000. Take Chezy’s 
constant C = 55.
 Also state whether the flow is tranquil or rapid.



Chapter 16 : Flow in Open Channels         887

 Solution. Width of the rectangular channel, b = 7.5 m
  Depth of flow, y = 2.25 m
	 ∴   Area of flow, A = b × y = 7.5 × 2.25 = 16.875 m2

                         Bed slope,  1
1000

S =

    Chezy’s constant, C = 55
    Wetted perimeter, P = b + 2y = 7.5 + 2 × 2.25 = 12.0 m

	 ∴ Hydraulic radius (or hydraulic mean depth), 16.875 1.406 m
12.0

AR
P

= = =
 Rate of flow, Q:
 Using Chezy’s formula, average velocity,

  V = 155 1.406 2.06 m/s
1000

C RS = × =

	 ∴   Discharge, Q = AV = 16.875 × 2.06 = 34.76 m3/s (Ans.)
 Conveyance, K:
  K = 16.875 55 1.406 .AC R = × × = 1100 5  (Ans.)

 State of flow (tranquil or rapid):

  Froude number, Fr = 2.06 0.438
9.81 2.25

V
gy

= =
×

 Since Fr < 1.0, the flow in the channel is tranquil in nature. (Ans.)
 Example 16.2.  A triangular gutter, whose sides include an angle of 60°, conveys water at a 
uniform depth of 250 mm. If the discharge is 0.04 m3/s, determine the gradient of the trough. Use 
the Chezy’s formula assuming that C = 52. [Delhi University]
 Solution. Depth of flow = 250 mm = 0.25 m.
 Discharge through the gutter, Q = 0.04 m3/s
 Chezy’s constant, C = 52
 Bed slope, S:
 Refer to Fig. 16.5. From ∆ ACO,

   CO
AO

 = cos 30° or 
cos 30

COAO =
°

   = 0.25 0.288 m
cos 30

=
°

 i.e. AO = BO = 0.288 m

 Further AC
CO

 = tan 30°

 or, AC = CO tan 30° = 0.25 × 0.577 = 0.144 m
 or, AB = 2AC = 0.288 m

	 ∴   Area of flow, A = 21 1 0.288 0.25 0.036 m
2 2

AB CO× × = × × =

    Wetted perimeter, P = AO + BO = 0.288 + 0.288 = 0.576 m

    Hydraulic radius, R = 0.036 0.0625 m
0.576

A
P
= =

A
C

B

O

30º
250 m

60º

Fig. 16.5
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  Using Chezy’s formula, we have:
  Q = AV = AC RS  or 0.04 = 0.036 × 52 × 0.0625 S×

 or, 0.0625 S×  = 0.04 0.02137
0.036 52

=
×

 or, S = 
20.02137 1

0.0625 137
=  (Squaring both sides)

 Hence, gradient of the trough (or bed slope) is 1 in 137 (Ans.)

 Example 16 .3.  Find the discharge of water through the channel shown in Fig. 16.6. Take the 
value of Chezy’s constant = 60 and slope of the bed as 1 in 950. [UPTU]

 Solution. Chezy’s constant, C = 60

    Bed slope, S = 1
950

 Discharge, Q:
  Refer to Fig. 16.6.
  Area of flow, A = Area ABCD + area DEC

   = 
2

20.61.2 0.6 1.285 m
2

π ×
× + =

 Wetted perimeter, P = AD + DEC + CB
   = 0.6 + π × 0.6 + 0.6 = 3.085 m
	 ∴ Hydraulic mean radius,

  R = 1.285 0.416 m
3.085

A
P
= =

 Using Chezy’s formula, we have:
  Q = AV AC RS=

   = 11.285 60 0.416 /
950

31 613 m s.× × × =  (Ans.)

 Example 16.4.  A canal of trapezoidal section has bed width of 8 m and bed slope of 1 in 4000. 
If the depth of flow is 2.4 m and side slopes of the channel are 1 horizontal to 3 vertical, determine 
the average flow velocity and the discharge carried by the channel. Also compute the average 
shear stress at the channel boundary.
Take value of Chezy’s constant = 55.

 Solution. Width of the channel bed, b = 8 m

                          Bed slope, 1
4000

S =

    Side slopes  =  1 horizontal to 3 vertical
    Depth of flow, y  =  2.4 m
    Chezy’s constant, C  =  55
    Horizontal distance EA  =  BF = ny
  where,  n  =  side slope (1 vertical to n horizontal)
    Top width CD  =  AB + 2BF = b + 2ny

Fig. 16.6

A B

CD

1.2 m

0.6 m

E

0.6 m

Semicircular
bottom
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                         Slant side 2 2 2AD BC y n y= = +

   = 2 1y n +

A
E

�

B
F

�

b = 8 m

n

1

C

y = 2.4 m

( + 2 )b ny

ny ny

D

y
n 2

+
1 y

n
2

+
1

Fig. 16.7

	 ∴  Wetted perimeter, P = AB + AD + BC

   = 
2

2 18 2 1 8 2 2.4 1 13.06 m
3

y n  + + = + × + = 
 

 ( n = 1/3)

 Area of flow Top width + bottom width ( 2 )height ( )
2 2

b ny b y y b ny+ + = × = × = + 
 

   = 212.4 8 2.4 21.12 m
3

 + × = 
 

  Hydraulic radius, R = 21.12 1.617 m
13.06

A
P
= =

 Average flow velocity:
  Average flow velocity, V = C RS

   = 155 1.617 /
4000

1 106 m s.× =  (Ans.)

 Discharge, Q :
 Discharge through the channel, Q = AV = 21.12 × 1.106 = 23.36 m3/s (Ans.)
 Shear stress at channel boundary, τ0:
 Under equilibrium conditions, the frictional resistance to flow equals the weight of liquid mass 
acting along the line of fluid motion,
 i.e. τ0 LP = wAL sin θ
	 ∴ Shear stress at the channel boundary,

  τ0 = sin sinwAL Aw w R S
LP P

θ
= θ = × ×  ( S = sin θ)

   = 19810 1.617 /
4000

23 96 N m.× × =  (Ans.)

16.5.  MOST ECONOMICAL SECTION OF A CHANNEL 

 The most economical section (also called the best section or most efficient section) is one 
which gives the maximum discharge for a given amount of excavation.
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 From continuity equation it is evident that discharge is 
maximum when velocity is maximum, the area of cross-
section of channel remaining constant. From Chezy’s formula 
and Manning’s formula it can be seen that for a given value of 
slope and surface roughness the velocity of flow will be 

maximum if hydraulic radius AR
P

 = = 
 

 is maximum. 

Further the area being constant hydraulic radius is maximum 
if the wetted perimeter is minimum; this condition is used to 
determine the dimensions of economical sections of different 
forms of channels. The best form of channel which complies 
with this condition is one which has a semi-circular cross-section.

16.5.1 Most Economical Rectangular Channel Section
 Fig. 16.8 shows the cross-section of a rectangular channel. Let b and y be the base width and 
depth of flow respectively.
  Area of flow, A  = b × y, ...(i)
  Wetted perimeter, P  =  b + 2y ...(ii)

 Substituting the value of Ab
y

 = 
 

 from eqn. (i) in eqn. (ii), we get:

  P = 2A y
y
+

 For the section to be most economical/efficient, the wetted perimeter P must be a minimum.

 i.e. dP
dy

 = 0 or 2 0d A y
dy y

 + =  

 or, 2– 2A
y

+  = 0 or A = 2y2   or  b × y = 2y2       [ A = b × y]

 or, b = 2y or y = b/2 ...(16.12)
 Hydraulic radius, R:

  Hydraulic radius, R = 
2

A b y
P b y

×
=

+

   = 
22 2

2 2 4 2
y y y y

y y y
×

= =
+

 ( b = 2y)

 i.e. R = 
2
y  ...(16.13)

 Thus the rectangular channel section will be most economical when:

 (i) The depth of flow is equal to half the base width ,
2
by = 

 
 or

 (ii) Hydraulic radius is equal to half the depth of flow 
2
yR = 

 
.

 Example 16.5.  A rectangular channel is to be dug in the rocky portion of a soil. Find its most 
economical cross-section if it is to convey 12 m3/s of water with an average velocity of 3 m/s. Take 
Chezy’s constant C = 50.

b

y

Fig. 16.8 Rectangular channel.
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 Solution.  Discharge, Q = 12 m3/s
  Average velocity, V = 3 m/s
  Chezy’s constant, C = 50
 The geometric relations for optimum discharge through a rectangular channel are:

  b = 2y and 
2
yR = , then area A = b × y = 2y2

 where b, y and R are base width of the channel, depth of flow and hydraulic radius respectively.
 Now, Q = A × V = 2y2 × V or 12 = 2y2 × 3   or   y = 1.414 m
 i.e. Flow depth, y = 1.414 m
	 ∴ Base width of the channel, b = 2y = 2 × 1.414 = 2.828 m

 Hydraulic radius, 1.414 0.707 m
2 2
yR = = =

 Also,                    V C RS=    ...Chezy’s formula

 or,                        S  =  
2 2

2 2
3 1

19650 0.707
V

C R
= =

×

 (where S = slope bed)

 Hence, b = 2.828 m, y = 1.414 m, 1
196

S =  (Ans.)

 Example 16.6.  Determine the most economical section of a rectangular channel carrying 
water at the rate of 0.5 m3/s; the bed slope of the channels being 1 in 2000. Take Chezy’s constant 
C = 50.
 Solution.  Discharge, Q = 0.5 m3/s

  Bed slope, S = 1
2000

  Chezy’s constant, C = 50
 Most economical section:
 The rectangular channel section will be most economical when:
 (i)   Base width, b  =  2y

 (ii)   Hydraulic radius, R = 
2
y   (where, y = depth of flow)

    Area of flow, A = b × y = 2y × y = 2y2

       Now,  Discharge Q = AC RS  ...Chezy’s formula

    0.5 = 2 12 50
2 2000
yy × ×

     = 5/2 5/21100 1.581
4000

y y× =

	 ∴   y5/2 = 0.5 0.316
1.581

=  or y = (0.316)2/5 = 0.63 m

 and, b = 2y = 2 × 0.63 = 1.26 m
 Hence, b = 1.26 m and y = 0.63 m (Ans.)
 Example 16.7.  A rectangular channel 4 m wide has depth of water 1.5 m. The slope of the 
bed of the channel is 1 in 1000 and value of Chezy’s constant C = 55. It is desired to increase the 
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discharge to a maximum by changing the dimensions of the section for constant area of cross-
section, slope of the bed and roughness of the channel. Find the new dimensions of the channel and 
increase in discharge.    [PTU]
 Solution.  Base width of the channel, b  =  4 m
  Depth of flow, y = 1.5 m

  Bed slope, S = 1
1000

  Chezy’s constant, C = 55
 New dimensions of the channel and increase in discharge:
  Area of flow, A = b × y = 4 × 1.5 = 6 m2

  Wetted perimeter, P = b + 2y = 4 + 2 × 1.5 = 7.0 m

  Hydraulic radius, R = 6 0.857
7

A
P
= =

  Discharge, Q = 316 55 0.857 9.66 m /s
1000

AC RS = × × =

 For determining maximum discharge, for given area of cross-section, slope of the bed and 
roughness of the channel, we follow the procedure given below:
 Let b′ = New base width of the channel, and
  y′ = New depth of flow,
 Then, area A = b′ × y′, where A = 6.0 m2 (= constant)
	 ∴ b′ × y′ = 6
 Also for maximum discharge, b′ = 2y′
	 ∴ 2y′ × y′ = 6 or y′2 = 3 or y′ = 3 = 1.732 m,
 and, b′ = 2y′ = 2 × 1.732 = 3.464 m
 Hence new dimensions of the channel are: b′ = 3.464 m   and   y′ = 1.732 m (Ans.)
 Wetted perimeter, P′ = b′ + 2y′ = 3.464 + 2 × 1.732 = 6.928 m

	 ∴ Hydraulic radius, 6 0.866 m
6.928

AR
P

′ = = =
′

 [Alternatively 1.732 0.866 m
2 2
yR
′

′ = = =  (maximum discharge conditional)]

 Maximum discharge, 316 55 0.866 9.71 m /s
1000

Q AC R S′ ′= = × × × =

	 ∴  Increase in discharge = Q′ – Q = 9.71 – 9.66 = 0.05 m3/s (Ans.)

16.5.2 Most Economical Trapezoidal Channel Section
 Fig 16.9 shows the cross-section of a trapezoidal channel.

A

�

B
E

�

b

n

1

C

y

( + 2 )b ny

ny ny

D

y
n 2

+
1

y
n

2

+
1

Fig. 16.9. Trapezoidal channel.
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 Let b = Base width of the channel,
  y = Depth of flow, and
  θ = Angle made by the sides with horizontal.
 Side slope = 1 vertical to n horizontal.

  Area of flow, A = ( 2 ) ( )
2 2

AB CD b b nyy y b ny y+ + +  × = × = + 
 

 ...(i)

	 ∴ A
y

 = b + ny

 or, b = –A ny
y

 ...(ii)

  Wetted perimeter, P = AD + AB + BC = AB + 2BC    ( AD = BC)

   = 2 22b BE CE+ +

   = 2 2 22b n y y+ +

 or, P = 22 1b y n+ +  ...(iii)

 Substituting the value of b from eqn. (ii) in eqn. (iii), we get:

  P = 2– 2 1A ny y n
y

+ +  ...(iv)

 The section of the channel will be most economical when its wetted perimeter (P) is minimum, 

i.e. 0dP
dy

=

 or, 2– 2 1d A ny y n
dy y

 + +  
 = 0

 or, 2
2– – 2 1A n n

y
+ +  = 0   ( n is constant)

 or, 2
A n
y

+  = 22 1n +

 Substituting the value of A from eqn. (i), in the above equation, we get:

  2
( )b ny y n

y
+

+  = 22 1n +

 or, ( )b ny n
y
+

+  = 22 1n +

 or, b ny ny
y

+ +  + 22 1n +  or 22 2 1b ny n
y

+
= +

 or, 2
2

b ny+  = 2 1y n +  ...(16.14)

 [i.e. Half of top width = One of the sloping sides ... Fig 16.9]
 Hydraulic radius, R:

 Hydraulic radius, AR
P

=
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  A = (b + ny) × y [From eqn. (i)]

  P = 22 1b y n+ +  [From eqn. (iii)]

 But, 22 1y n +  = b + 2ny [From eqn. (16.14)]

	 ∴ P = b + (b + 2ny) = 2 (b + ny)

	 ∴  Hydraulic radius, R = ( )
2 ( ) 2
b ny y y

b ny
+

=
+

 ...(16.15)

 i.e., The hydraulic radius equals half the flow depth.
 Fig. 16.10 shows a trapezoidal channel of most economical section.

b ny

� �

B
E

A

D O C

G

��

F

y

Fig. 16.10. Most economical section of a trapezoidal channel.

 Let, θ = Angle made by the sloping side with the horizontal,
  O = Centre of the top width DC, and
  OF = A perpendicular to the sloping side BC.
 The ∆ OCF is then a right angled triangle with ∠OCF = θ

	 ∴ sin θ = OF
OC

 or OF = OC sin θ ...(v)

 Also, from ∆ BCE, sin θ = 
2 2 2 2 2

1

1 1

CE y y
BC y n y y n n

= = =
+ + +

 Substituting the value of sin θ in eqn. (iv), we have

  OF = 2
2 2

1 11 ,
1 1

OC y n y
n n

× = + × =
+ +

 depth of flow

            22Half of top width 1 ...Eqn. (16·14)
2

b nyOC y n+ = = = +  


 Thus a circle with centre O and radius equal to the depth of flow will be tangential to the three 
sides of a most economical trapezoidal section; this condition stipulates that the most economical 
section of a trapezoidal channel will be a half-hexagon.
 Hence conditions for most economical trapezoidal section are:

 1. 22 1
2

b ny y n+
= +  (i.e. Half of top width = One of the sloping sides)

 2. Hydraulic radius, 
2
yR =

 3. A semicircle drawn from O with radius equal to depth of flow will touch the three sides of 
the trapezoidal channel.
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 Best side slope for most economical trapezoidal section:
 Side slope will be the best when the section is most-economical or when the wetted perimeter 

is minimum. For that 0dP
dn

=

	 ∴ 2– 2 1d A ny y n
dn y

 + +  
 = 0

       2– 2 1 ...From eqn. ( )AP ny y n iv
y

 = + +  


 or, 
1 – 12 21– 2 ( 1) 2

2
y y n n+ × + ×  = 0

  
2

1– 2
1

y ny
n

+ ×
+

 = 0

 Cancelling y and rearranging, we have:

  2n = 2 1n +

 Squaring both sides, we have:
  4n2 = n2 + 1 or 3n2 = 1

 or, n = 1
3

 ...(16.16)

 If the sloping side makes an angle θ with the horizontal, then

  tan θ = 1 3 tan 60
n
= = °

	 ∴ θ = 60° ...(16.17)
 Hence best side slope is at 60° to the horizontal.
 For the most economical section,
  Half of top width  =  Length of the sloping side

  2
2

b ny+  = 2 1y n +

 Substituting the value of side slope 1
3

n =  in the above eqn. we get:

  

12
3

2

b y+ ×
 = 2 2(1/ 3) 1

3
yy + =

 or, 3 2
2 3

b y+
×

 = 2
3
y

 or, 3 2b y+  = 4y or 2
3
yb =  ...(vi)

 Now,  wetted perimeter, P = 22 1b y n+ +

   = 
22 12 1

3 3
y y  + + 

 
 2 1and

3 3
yb n = = 
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   = 2 2 6 22 3 3
3 3 3 3
y y yy b+ × = = × =

 i.e. P = 3b 2
3
yb = 

 


 Thus for a side slope of 60°, the length of sloping side is equal to the base width of the trapezoidal 
section.
 Example 16.8.  A trapezoidal channel has side slopes of 3 horizontal to 4 vertical and the slope 
of its bed is 1 in 2000. Determine the optimum dimensions of the channel if it is to carry water at 
0.5 m3/s. Take Chezy’s constant as 80. [RGPV, Bhopal]

 Solution.  Side slope, n = Horizontal 3
Vertical 4

=

  Bed slope, S = 1
2000

  Discharge, Q = 0.5 m3/s
  Chezy’s constant, C = 80
 Optimum dimensions of the channel:
 For the most economical section, using eqn. (16.14), we have:

  2
2

b ny+  = 2 1y n +

 [where, b = base width of the channel section, and y = depth of flow.]

 or, 

32
4

2

b y× ×
 = 

23 51
4 4

y y  + = 
 

 or, 1.5
2

b y+  = 1.25y or b = 2 × 1.25y – 1.5y = y

 i.e. b = y ...(i)
 Also discharge,  Q = AC RS

 [where, R = hydraulic radius, and S = bed slope]

  0.5 = 180
2 2000
yA × ×  

2
yR = 

 


 But area, A = (b + ny) × y

   = 23 1.75
4

y y y y + × = 
 

 [ b = y ...eqn. (i)]

	 ∴ 0.5 = 2 5/211.75 80 2.2136
2 2000
yy y× × =

	 ∴ y = 
2/50.5

2.2136
  = 
 

0 55 m.  (Ans.)

  b = y = 0.55 m (Ans.)
	 ∴  Optimum dimensions of the channel are:
 Width (b) = Depth of flow (y)  = 0.55 m (Ans.)

b 3
4

y

y

Fig. 16.11
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 Example 16.9.  A trapezoidal channel having the side slope equal to 60° with the horizontal 
and laid on a slope of 1 in 750, carries a discharge of 10 m3/s. Find the width at the base and depth 
of flow for most economical section. Take the value of Chezy’s resitance co-efficient C = 66.
 [AMIE]

 Solution.  Bed slope, S = 1
750

  Discharge, Q =  10 m3/s
  Chezy’s constant, C = 66
 Side slope with the horizontal = 60°
 Dimensions for most economical 
section, b and y:
 For a trapezoidal channel of most 
economical (optimum) cross-section, the 
geometric parameters have the following 
proportions:

 (i) 22 1,
2

b ny y n+
= +

 (ii) 
2
yR =

 (iii) tan θ = tan 60° = 13
n

=  or 1
3

n =

 Thus from (i) and (iii), we have:

 
2

12
1 3 2 2 23 1; or 3 2 4 or

2 3 2 3 3 3

b y
b y yy b y y b y

+ ×
+ = + = + = = 

 

 Area of flow, A = (b + ny) y 21 2 1 3
3 3 3

b y y y y y y   = + = + =   
   

 Also, discharge, Q AC RS=

 (where, R = hydraulic radius)
  10 = 2 5/213 66 2.95

2 750
yy y× × =

	 ∴  Depth of flow, y = 
2/510

2.95
  = 
 

1 63 m.  (Ans.)

  Base width, b = 2 2 1.63 .
3 3

y = × = 1 88 m  (Ans.)

 Example 16.10.  An open channel of 
most economical section, having the form 
of a half hexagon with horizontal bottom 
is required to give a maximum discharge of 
20.2 m3/s of water. The slope of the channel 
bottom is 1 in 2500. Taking Chezy’s 
constant, C = 60 in Chezy’s equation, 
determine the dimensions of the cross-
section.

b

b ny+ 2

ny ny

y1

� = 60º�

n

Fig. 16.12

b

y1

� = 60º�

y

n

Fig. 16.13
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 Solution. Maximum Discharge,
  Q = 20.2 m3/s

  Bed slope, S = 1
2500

  Chezy’s constant C = 60
 Dimensions of the cross-section:
 Since the channel has a form of a half hexagon (Fig. 16.13), therefore, the angle made by the 
sloping side with the horizontal is 60°.

	 ∴ tan θ  =  tan 60° = 13
n

=  or 1
3

n =

 For most economical section the following conditions should be satisfied:

 (i) 22 1,
2

b ny y n+
= +    (ii)  ,

2
yR =   (iii)  1

3
n =

 Now, 2
2

b ny+  = 2 1y n +

 or, 

12
3

2

b y+ ×
 = 

21 3 2 2 21 or or
3 2 3 3 3

b y yy b y+  + = = 
 

  Area of flow, A = (b + ny) y 21 2 1 3
3 3 3

b y y y y y y   = + = + =   
   

 Also,  discharge, Q = AC RS , where R is hydraulic radius;

	 ∴ 20.2 = 2 5/213 60 1.47
2 2500
yy y× × =

 or, y = 
2/520.2

1.47
  = 
 

2 852.  (Ans.)

  b = 2 2 2.852
3 3

y = × = 3 29 m.  (Ans.)

 Example 16.11.  A power canal of trapezoidal section has to be excavated through hard clay 
at least cost. Determine the dimensions of the channel, given, discharge equal to 14 m3/s, bed slope 
1:2500 and Manning’s N = 0.02.    [M.U.]
 Solution.  Discharge, Q = 14 m3/s

  Bed slope, S = 1
2500

  Manning’s N = 0.02.
 The canal can be excavated at least cost if the trapezoidal section is the most economical. The 
value of side slope (which is not given in this case) is given by (for most economical section),

  n = 1
3

 ...[Eqn. (16.16)]

 For most economical section:

  2
2

b ny+  = 2 1y n +  ...[Eqn. (16.14)]

 (where b = base width, and y = depth of flow)
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	 ∴ 

12
3

2

b y+ ×
 = 

21 21
3 3

y y  + = 
 

 1
3

n = 
 


 or, b = 2 2 22 –
3 3 3

y y y× =  ...(i)

   Area of flow, A = (b + ny) y = 22 1 3
3 3

y y y y + = 
 

 Now, discharge, Q is given by:

  Q = ,AC RS    where 1/61C R
N

=

 or, Q = 2 1/6 2 2/3 1/21 13 3y R RS y R S
N N

× = ×

 or, 14.0 = 
2/3

2 1 13
0.02 2 2500

yy  × × × 
 

 or, 14.0 = 2 2/3 8/3
2/3

11.732 1.09
(2)

y y y× × =

 or, y = 
3/814

1.09
  = 
 

2 6 m.  (Ans.)

  b = 2 2 2.6
3 3

y = × = 3 0 m.  (Ans.)

 Example 16.12.  Design an earthen trapezoidal channel for water having a velocity of 0.6 m/s. 
Side slope of the channel is 1:1.5 and quantity of water flowing is 3 m3/s. Assume C in Chezy’s 
formula as 65.    [Delhi University]
 Solution. Velocity of flow, V = 0.6 m/s

 Side slope, Horizontal 1.5 1.5
Vertical 1

n = = =

  Discharge, Q = 3 m3/s
  Chezy’s constant, C  = 65
 For design, the most economical 
trapezoidal section is used, for which the 
following condition may be used:

  Hydraulic radius, R = 
2
y

  Area of flow, A = 23 5 m
0.6

Q
V

= =

  Wetted perimeter, P = 22 1b y n+ +

 Also, R = 
2

5
22 1

A y
P b y n
= =

+ +
              

2
yR = 

 


 or, 10 = 2 22 1.5 1 ( 3.6 ) or 3.6y b y y b y by y + + = + +  

b

y1y

ny ny

n

y
n

2

+
1

Top width = + 2b ny

Fig. 16.14
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 i.e. 10 = by + 3.6y2 ...(i)
 Also,  A = (b + ny) y
 or, S = (b + 1.5y) y     or     by + 1.5y2

 or, by = 5 – 1.5y2 ...(ii)
 Substituting (ii) in (i), we get:
  10 = 5 – 1.5y2 + 3.6y2 = 5 + 2.1y2

 or, y = 
1/25 1.543 m

2.1
  = 
 

 Substituting the value of y (= 1.543 m) in eqn. (i), we get:
  10 = b × 1.543 + 3.6 × (1.543)2 = 1.543b + 8.571

	 ∴  Bottom width, b = 10 – 8.571 0.926 m
1.543

=

  Top width, = b + 2ny = 0.926 + 2 × 1.5 × 1.543 = 5.555 m
  Velocity,  V C RS=  ... Chezy’s formula

  0.6 = 65
2
y S   or 1.5430.6 65 57.09

2
S S= × =

 or, S = 
2

– 40.6 1.104 10
57.09

  = × 
 

 or 1
9054

 Hence specification of the trapezoidal channel would be:

  Depth of flow (y)  = 1.543 m; Slope of the bed (S) = 1
9054

  Bottom width (b)  =  0.926 m; Top width = 5.555 m (Ans.)
 Example 16.13.  For a trapezoidal channel with bottom width 40 m and side slopes 2H : 1V, 
Manning’s N is 0.015 and bottom slope is 0.0002. If it carries 60 m3/s discharge, determine the 
normal depth.    [MDU, Haryana]
 Solution.  Bottom width of the channel, b  =  40 m
  Side slopes  =  2 H : 1 V i.e. n = 2
  Manning’s constant, N  =  0.015
  Bottom/bed slope, S  =  0.0002
  Discharge, Q  =  60 m3/s
 Normal depth, y:
  Now, area A  =  (b + ny) y = (40 + 2y) × y

 and,  Perimeter, P = 2 22 1 40 2 2 1 40 2 5 40 4.472b y n y y y+ + = + + = + = +

	 ∴  Hydraulic radius, R = (40 2 )
40 4.472

A y y
P d

+ ×
=

+

  Discharge, Q = A × V = A × C RS  where, Chezy’s constant, 1/61C R
N

=

	 ∴ Q = 1/6 2/3 1/21 1A R RS A R S
N N

× = × × ×

 or, 60 = 
2/3

1/21 (40 2 )(40 2 ) (0.0002)
0.015 40 4.472

y yy y
y

+ × 
+ × × × + 
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   = 
5/3

2/3
[(40 2 ) ] 0.01414

0.015 (40 4.472)
y y+ ×

×
× +

	 ∴                     
2/3

5/360 0.015 (40 4.472 ) [(40 2 ) ]
0.01414

y y y× × +
= + ×

 or, 63.65 (40 + 4.472 y)2/3  =  [(40 + 2y) × y]5/3

 or, (40y + 2y2)5/3 – 63.65 (40 + 40.472y)2/3 = 0
 By hit and trial method, we get:
  y = 1.31 m (Ans.)
 Example 16.14.  A trapezoidal channel with side slopes of 1:1 has to be designed to convey 10 
m3/s at a velocity of 2 m/s, so that the amount of concrete lining for the bed and sides is minimum.
 (i) Calculate the area of lining required for one metre length of the canal.
 (ii) If the rugosity co-efficient N = 0.015, calculate the bed slope of the canal for uniform flow.
       [UPSC Exams.]
 Solution.  Side slope, n  =  1
  Discharge, Q  =  10 m3/s
  Velocity, V  =  2 m/s
 Rugosity/Manning’s co-efficient, N = 0.015

  Area of flow, Q
V

 = 210 5 m
2
=

 (i) Lining required for one metre length of the canal: 
 For minimum amount of concrete lining, the wetted perimeter must be minimum; for this 
condition we have (for a trapezoidal channel):

 (i) 2
2

b ny+  = y 2 1n +  and (ii) 
2
yR =

  (where b = base width, y = depth of flow, and R = hydraulic radius)

	 ∴ 2 1
2

b y+ × ×  = 1 1y + 2 y=

 or, b + 2y = 2 2y  or 2 ( 2 – 1) 0.828b y y= =

  Area of flow, A = (b + ny) y
 or, 5 = (0.828 y + y) y = 1.828y2

 or, y = 
1/25 1.65 m

1.828
  = 
 

  b = 0.828y = 0.828 × 1.65 = 1.37 m
 Area of lining per metre length
   = 21 ( 2 1) 1P b y n× = + × ×     2( 2 1)P b y n= + +

   = 1.37 + 2 × 1.65 1 1+ = 6.04 m (Ans.)

 (ii) Bed slope of the canal, S:

  Q = ,AC RS  where 1/61C R
N

=

 or, Q = 1/6 2/3 1/21 1A R RS A R S
N N

× = ×
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 or, 10 = 
2/3

1/2 1/21 1.655 293.2
0.015 2

S S × × = 
 

	 ∴ S = 
2

–310 1.163 10
293.2

  = × 
 

 or, 1 in 860  (Ans.)

 Example 16.15.  A trapezoidal channel is required to 
carry 8 m3/s of water at a velocity of 2 m/s. Find the most 
economical cross-section if the channel has side slopes 1 horizontal to 2 vertical. For the same 
discharge what saving in power would result if this trapezoidal section is replaced by a rectangular 
section 1.5 m deep and 4 m wide. Take Chezy’s constant C = 55.
 Solution. For trapezoidal channel:
  Discharge, Q = 8 m3/s
  Velocity of flow, V = 2 m/s
	 ∴  Area of flow, A = Q/V = 8/2 = 4 m2

  Side slope, n = Horizontal 1
Vertical 2

=

  Chezy’s constant C = 55.
 The trapezoidal channel section will be most economical, when:
  Half of top width = Length of one sloping side

 or, 2
2

b ny+  = 2 1y n +

 (where b = base width, y = depth of flow)

 or, 

12
2

2

b y+ ×
 = 

21 51
2 2

y y  + = 
 

 or, b + y = 5 y  or ( 5 – 1) 1.236b y y= =  ...(i)

  Area of flow, A  =  (b + ny) y = 1
2

b y y + 
 

 or, 4 = (1.236y + 0.5y) y = 1.732y2

 or, y = 
1/24

1.736
  = 
 

1 52 m.  (Ans.)

  b = 1.236y = 1.236 × 1.52 = 1.88 m (Ans.)

 Also hydraulic radius, R (for most economical section) = y/2 1.52 0.76 m
2

= =

 Now,  velocity,   V C RS= , where S is the bed slope

	 ∴	 2	 =	 55 0.76 S×  or 
2

– 32 1 1.739 10 1in575
55 0.76

S  = × = × 
 



 For rectangular channel:
  Base width, b = 4 m
  Depth of flow, y = 1.5 m

y
n

2

+
1

y
n 2

+
1

y
1

n

ny nyb

y

Fig. 16.15
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	 ∴  Area of flow, A = b × y = 4 × 1.5 = 6.0 m2

  Wetted perimeter, P = b + 2y = 4 + 2 × 1.5 = 7 m

  Hydraulic radius, R = 6 0.857 m
7

A
P
= =

  Flow velocity, V = 8 1.333 m/s
6

Q
A
= =

  From Chezy’s formula, V = V C RS=

 or, 1.333 = 55 0.857 S×

 or, S = 
2

– 41.333 1 6.854 10 1 in 1459
55 0.857

  × = × 
 



	 ∴  Saving in head per kilometre of channel run
  h = (1.739 × 10– 3 – 6.854 × 10– 4) × 1000 = 1.054 m

 Hence,  saving in power = 9810 8 1.054kW .
1000 1000
wQh × ×

= = 82 7 kW  (Ans.)

 Example 16.16.  A hydraulically efficient trapezoidal channel has side slopes of 1:1. It is 
required to discharge 14 m3/s with a gradient (channel slope) of 1 in 1000. If unlined, the value of 
Chezy’s C is 45. If lined with concrete, the value is 70. If the least cost per m3 of excavation is three 
times the cost m2 of lining, will the lined or the unlined channel be cheaper? [Anna University]

 Solution.  Side slope, n = 1 1
1
=

  Discharge, Q = 14 m3/s

  Bed slope, S = 1
1000

 Chezy’s constant C: Unlined channel = 45,
       Channel lined with concrete = 70.
 Hydraulically efficient trapezoidal channel must 
satisfy the following conditions:

 (i) 22 1,
2

b ny y n+
= +   and (ii) 

2
yR =

 where, b = Base width of channel,
  y = Depth of flow, and
  R = Hydraulic radius

 or, 2
2

b y+  = 1 1 2y y+ =  or 2 2 2b y y+ =

 or, b = 2 ( 2 – 1) 0.828y y=

 Unlined channel:
  Q = ( )

2
yAC RS b ny y C S= + ×

  14 = 5/21(0.828 ) 45 1.839
2 1000
yy y y y+ × × × =    ( n = 1)

 or, y = 
2/514 2.25 m

1.839
  = 
 

y1

1

b

Fig. 16.16
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  b = 0.828 y = 0.828 × 2.25 = 1.863 m
 Let, cost of lining per m2 of the channel surface = K
 Then, cost of excavation per m3 = 3 K ...(Given)
 Consider one metre length of channel.
  Amount of excavation = A × 1  =  (b + ny) y × 1 = (1.863 + 1 × 2.25) × 2.25 × 1 = 9.254 m2

	 ∴ The cost of excavation  =  3 K × 9.254 = 27.76 K
 Lined channel:

  Q = ( )
2
yAC RS b ny y C S= + ×

 or, 14 = 5/21(0.828 ) 70 2.86
2 1000
yy y y y+ × × × =

 or, y = 
2/514 1.88 m

2.86
  = 
 

  b = 0.828y = 0.828 × 1.88 = 1.55 m
 Considering one metre length of channel, cost of excavation
   = A × 1 × 3K = (b + ny) y × 3K = (1.55 + 1 × 1.88 ) × 1.88 × 3K
   = 19.34 K

 Cost of lining = Perimeter (P) × 1 × K = (b + 2y 2 1n + ) × 1 × K

   = (1.55 + 2 × 1.88 1 1+ ) K = 6.86 K

	 ∴ Total cost of lined channel  = 19.34 K + 6.86K = 26.2K
 Since the cost of excavation of unlined channel (27.76K) is greater than the total cost of lined 
channel, hence the lined channel is cheaper. (Ans.)
 Example 16.17.  Design a concrete lined channel to carry a discharge of 500 m3/s at a slope 
of 1 in 4000. The side slopes of channel may be taken as 1:1. The Manning’s roughness co-efficient 
for the lining is 0.014. Assume the permissible velocity in the section as 2.5 m/s. [UPSC Exams.]
 Solution.  Discharge, Q = 500 m3/s

  Bed slope, S = 1
4000

  Side slope, n = 1 1
1
=

 Manning’s roughness co-efficient, N  =  0.0014
  Permissible velocity, V  = 2.5 m/s
 Base width (b) and depth of flow (y):

  Area of flow, A = 2500 200 m
2.5

Q
V

= =

 Also, A = (b + ny)y = (b + y)y ( n = 1)
 or, A = (b + y) y = 200 ...(i)

  Perimeter, P = 22 1 2 1 1 2 2b y n b y b y+ + = + + = +

  Hydraulic radius, R = 200
2 2

A
P b y
=

+
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  Discharge, Q = AC RS , where 1/61C R
N

=

 or, Q = 1/6 2/31 1A R RS A R S
N N

× = ×

 Substituting the values, we get:

  500 = 
2/3

2/3
1 200 1 7724.88200

0.014 40002 2 ( 2 2 )b y b y
 

× × × = 
+ + 

 or, 2 2b y+  = 
3/27724.88 60.73

500
  = 
 

 ...(ii)

 From eqn. (i), (b + y) = 200
y

 or 200 –b y
y

=

 Substituting this value of b in eqn. (ii), we get:

        200
y

– 2 2 60.73y y+ =  or 2 2200 – 2 2 60.73y y y+ =

 or, 2 (2 2 – 1)y  – 60.73y + 200 = 0 or 1.828y2 – 60.73y + 200 = 0

 or, y2 – 33.22y + 109.41 = 0

 or,  
233.22 (33.22) – 4 109.41 33.22 25.8 29.51 m, 3.71 m

2 2
y

± × ±
= = =

     y = 3.71 m (rejecting the first value, being impracticable)

 and,  200 200– – 3.71 50.2 m
3.71

b y
y

= = =

 Hence, width of the channel,  b  = 50.2 m (Ans.)
 and, depth of flow,    y  =  3.71 m (Ans.)
 Example 16.18.  A trapezoidal canal is to carry 45 m3/s with a mean velocity of 0.6 m/s. One 
side of canal is vertical and the other has a slope of 2 horizontal to 1 vertical. Find the minimum 
hydraulic slope, if Manning’s N = 0.013. (PTU)
 Solution. Given: Q = 45 m3/s, Vmean = 0.6 m/s; n = 2, Manning’s N = 0.013
 Minimum hydraulic slope, S:
 Refer to Fig. 16.17.

Area of flow, A = ( )
2 2

AB CD b b nyy y+ + +   × =   
   

   = ( 2 ) ( )
2

b b y y b y y+ +  = +  

 But, A = 2

mean

45 75 m
0.6

Q
V

= =

	 ∴ (b + y) y = 75

 or, b = 75 – y
y

 ...(i)

 Wetted perimeter, P = 2 1b y n y+ + +

D C

y y

A
bny

B

Fig. 16.17
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   = 2{ 1 1}b y n+ + +

 or, P = ( 5 1)b y+ +  ( n = 2)

  Hydraulic radius, R = 75
( 5 1)

A
P b y
=

+ +

   = 75
75 – 5y y y
y

  + + 
 

   = 75
75 5y
y
+

 Now, discharge (Q) is given by:

  Q = AC RS   where, 
1
61 ( )C R

N
=

 or, Q = 
1 1

1/6 2/36 21 1 1( ) ( ) ( )A R RS A R S A R S
N N N

 + 
 × = × = ×

 or, S  = 2/3 2/3
45 0.013

( ) 75 ( )
QN

A R R
×

=  ...(i)

 For S to be minimum, R has to be maximum.

 or,   75
75 5y
y
+

 is to be maximum

 or,   75 5y
y
+  is to be minimum

 or,   75 5 0d y
dy y

 + =  

    2
75– 5 0
y

+ =   or  2 75
5

y =

 or, y = 5.79 m
 Hence, for minimum slope,

  R = 75 75 2.896 m75 755 5.79 5
5.79

y
y

= =
+ +

 The minimum hydraulic slope is obtained by substituting their value of R in (i).

	 ∴	 –3
min 2/3

45 0.013 3.839 10
75 (2.896)

S ×
= = ×

×
 = –3

2/3
45 0.013 3.839 10

75 (2.896)
×

= ×
×

 or, Smin = (3.839 × 10–3)2 = 1.474 × 10–5 (Ans.)

 Example 16.19.  A trapezoidal channel having a cross-sectional area A1, wetted perimeter 
P1, Manning’s co-efficient N, and laid to a slope S carries a discharge Q, at a depth of flow equal 
to y. To increase the discharge, the base width of the channel is widened by x, keeping all other 
parameters same. Prove that
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3 2

2

1 1
1Q x

Q P
   

× +   
   

 = 
5

1
1 xy

A
 

+ 
 

 where, Q2 is the new discharge in the channel. [UPSC Exams.]

 Solution. The Chezy’s constant (C), using Manning’s formula, is given by:

  C = 1/61 ( )R
N

	 ∴  Velocity of flow, V = 
2/3 1/2

1/6 1/21 ( ) R SC RS R RS
N N

= × =

 where, R = Hydraulic radius (or hydraulic mean depth), and
  S = Slope of the channel bed.

  Discharge, Q = 
2/3 1/2R SAV A

N
= ×

   = 
2/3 5/3

2/3
2/3

A AKAR KA K
P P

 = = 
 

  AR
P

 = 
 
  ...(i)

 where, K (a constant) = 
1/2S
N

  (S and N kept constant)

 Area of cross-section of the widened canal A2 = (A1 + xy)
 Wetted perimeter of the original channel, P2 = (P1 + x)
 Where A1 and P1 are the area of cross-section and wetted perimeter respectively of the original 
channel.
 Then from expression (i), we have:

  Q1 = 
5/3
1
2/3

1

AK
P

 and 
5/3
2

2 2/3
2

AQ K
P

=

	 ∴ 2

1

Q
Q

 = 
5/3 2/3

2 1

1 2

A P
A P

   
×   

   
 Substituting the values of A2 and P2 in the above equation, we have:

  2

1

Q
Q

 = 
5/3 2/3

1 1

1 1

A xy P
A P x

   +
×   +   

   = 
5/3 2/3

1

1

11
1

xy
xA
P

   + ×   
  + 

 

 Taking cube on both sides, we get:

  
3

2

1

Q
Q

 
 
 

 = 
5 2

1

1

11
1

xy
xA
P

   + ×   
  + 

 

 or, 
3 2

2

1 1
1Q x

Q P
   

× +   
   

 = 
5

1
1 xy

A
 

+ 
 

 ...Proved
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16.5.3 Most Economical Triangular Channel Section
 Fig. 16.18 shows a triangular channel. The side slopes are n (horizontal) to 1 (vertical)
 Let, y = Depth of flow, and
  θ = Angle made by the sides with the vertical.

 From ∆ODC, CD
DO

 = tan θ or CD
y

 = tan θ

 or, CD = y tan θ

 Also, DO
CO

 = cos θ or y
CO

 = cos θ

 or, CO = y sec θ
 Area of flow,

  A = 1
2

1
2

2× × = × ×BC DO CD DO

   = 1
2

2 2× × =y y ytan tanθ θ

 i.e.   A = y2 tan θ ...(i)
 Perimeter, P = BO + OC = 2OC = 2y sec θ      (  BO = OC) ...(ii)

 Substituting the value of y  =










A
tan θ

 from eqn. (i) in eqn. (ii), we get:

  P = 2 2A A
tan

sec
tan

(sec )
θ

θ
θ

θ=  ...(iii)

 Assuming the area to be constant, eqn. (iii) can be differentiated with respect to θ and equated 
to zero for obtaining the condition for minimum P.

 i.e. dP
dθ

 = d
d

A
θ θ

θ2 0
tan

(sec )











=

   = 2
1
2 0

1 2 2

A
tan sec . tan sec (tan ) sec

tan

/θ θ θ θ θ θ

θ

× − ×














=

−

   = 2
2

0
3

3 2A sec tan
tan

sec
(tan ) /

θ θ
θ

θ
θ

−











=

 or, sec θ (2 tan2 θ – sec2 θ) = 0
 Since sec θ ≠ 0,
	 ∴ 2 tan2 θ – sec2 θ = 0 or 2 tan2 θ = sec2 θ
 or, 2 tan θ  = sec θ

 ∴ θ = 45°;  and  n = 1 ...(16.18)
 Hence, a triangular channel section will be most economical when each of its sloping sides 
makes an angle of 45° with the vertical.

  Hydraulic radius, R =  A
P

y
y

=
2

2
tan
sec

θ
θ

 Substituting the value of θ from eqn. (16.18) in the above eqn., we get:

� �

DB C

n

1 y

O

Fig. 16.18. Triangular channel.
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  R = y
y

y
y

y2 245
2 45 2 2 2 2
tan
sec

°
°
=

×
=  ...(16.19)

 Thus it can be seen that the most economical triangular channel section will be a half square 
described on a diagonal and having equal sloping sides.
 Example 16.20.  Water flows in a channel of the shape of isosceles triangle of bed width ‘a’ 
and sides making an angle of 45° with the bed. Determine the relation between depth of flow ‘d’ 
and the bed width ‘a’ for maximum velocity condition and for maximum discharge condition. Use 
Manning’s formula and note that ‘d’ is less than 0.5 a. [UPSC, CES, Exams.]
 Solution.  Bed width of the channel =  a
  Angle of sides with the bed = 45°
  Depth of flow = d (d < 0.5a)
  Velocity, V = C RS

 But  C = 1 1 6
N
R / , where N is Manning’s constant

	 ∴ V = 1 11 6 2 3 1 2
N
R RS

N
R S/ / /=   ...(i)

 where, R = hydraulic radius, S = bed slope.

 Area of flow, A = GH BC d+





 ×2

 But GH = BC – 2JC = a – 2d

         


HJ
JC
d
JC

JC d

= ° =

= =

















tan 45 1

1or or

 ∴ A  = ( ) ( )a d a d a d d− +




× = −2

2

  Wetted perimeter,  P = BC + BG + HC = BC + 2BG ( BG = HC)

 But BG = 2 2 2d d d+ =

 ∴     P = a + 2 2 d

  Hydraulic radius, R =  ( – )
2 2

a d dA
P a d
=

+

 ∴  V =  
2/3

1/2( – )1
2 2

a d d S
N a d

 
 + 

 For maximum velocity, dV
dd

 = 0

  
2/31/2 ( – )

2 2
a d dd S

dd N a d

    
+   

 = 0

 

1–1/2 3

2
( – ) ( 2 2 ) ( – 2 ) – ( – ) 2 22

3 2 2 ( 2 2 )
a d d a d a d a d dS

N a d a d

 
   + ×    
    + +        

 = 0

F

EG H

D

J45º

d d

a

d

a/2

45º
CB

Fig. 16.19
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 On simplification, we have:
  a2 – 2ad – 2 22 d  = 0

 or, a = 
2 22 4 8 2 2 3.91
2 2

d d d d d± + ±=  = 2.955 d 

(neglecting –ve value)

 or, d
a

 = 1
2.955

 = 0.338 (Ans.)

 For maximum discharge, dQ
dd

 = 0

  Q = A.V = (a – d) d × 
2/3

1/2( – )1
2 2

a d d S
N a d

 
 

+ 

	 ∴	 				 
2/3

1/2( – )1( – ) 0
2 2

a d dd a d d S
dd N a d

   × = 
+   

 or, 
1/2

5/3
2/3

1{( – ) } 0
( 2 2 )

d S a d d
dd N a d

 
× × = + 

 or,  
{ }

2/3 2/3 5/3

– 1/3
1/2

4/3

( 2 2 ) 5 / 3 {( – ) } ( – 2 ) – {( – ) }
2 ( 2 2 ) 2 2
3 0

( 2 2 )

a d a d d a d a d d

a d
S
N a d

 + × ×
 
 × + ×  = + 

 On simplification, we get:
  5a2 – 1.5147 ad – 22.6274 d2 = 0

 or, a = 
21.5147 (1.5147) 4 5 22.6274

10
d d± + × ×

   = 1.5147 21.327
10

d d±  = 2.284 d (neglecting –ve value)

 or, d
a

 = 1
2.284

 = 0.4378  (Ans.)

16.5.4. Most Economical Circular Channel Section
 Circular pipes and culverts which are partly filled are treated as channels. In case of conduits 
the condition of area remaining constant does not hold good since both the wetted perimeter and 
wetted area vary with depth of flow. The most economical section (optimum section) is designed 
both for conditions of maximum mean velocity and maximum flow rate.

  Velocity of flow, V =  AC RS C S
P

=  ...Chezy’s formula

  Discharge, Q =  
3AAV AC RS C S

P
 

= =  
 

 Thus the flow velocity will have a maximum value when hydraulic radius A
P

 
 
 

 is maximum, 

and a maximum discharge is obtained when 
3A

P
 
 
 

 is maximum.
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 Fig. 16.20 shows a circular channel through which water is flowing.
 Let, y = Depth of flow,
  r = Radius of the channel, and
  2θ = Angle subtended by water surface AB at the centre in radians.
 Wetted perimeter, P = Length of arc AD

   = 2 2 2
2

r rπ × θ = θ
π

 i.e. P = 2rθ ... (16.20)
  Wetted area, A = Area ADBA
   = Area of sector OADBO – area of ∆OAB

   = 
2 12 –

2 2
r AB COπ × θ ×
π

   = 2 1– 2
2

r BC COθ × ×     ( AB = 2BC)

   = r2 θ – 1
2

 × 2 × r sin θ × r cos θ

   ( BC  = r sin θ, CO = r cos θ)

   = 2 21– 2 sin cos
2

r rθ × θ θ

 or, A = 2 sin 2–
2

r θ θ 
 

    ...(16.21)

            ( 2 sin θ cos θ  =  sin 2θ)
 (i) Condition for maximum velocity:
  The velocity will be maximum when:

  d A
d P

 
 θ  

 = 0

  (where, A and P both are functions of θ).

  or, 2

–dA dPP A
d d

P

⋅
θ θ  = 0 or –dA dPP A

d d
⋅

θ θ
 = 0 ...(i)

  Now, A = 2 sin 2–
2

r θ θ 
 

 [Eqn. (16.21)]

    dA
dθ

 = 2 cos 21 – 2
2

r θ × 
 

 = r2 (1 – cos 2θ)

  Again, P = 2rθ [Eqn. (16.20)

    dP
dθ

 = 2r

  Substituting the values of A, P, dA
dθ

 and dP
dθ

 in eqn. (i), we get:

  2 2 sin 22 [ (1 – cos 2 )] – –
2

r r r θ θ θ θ 
 

 × 2r = 0

  or,  3 3 sin 22 (1 – cos 2 ) – 2 –
2

r r θ θ θ θ 
 

 = 0

2�
�

CA B

O

r

D

y

Fig. 16.20. Circular channel.
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  or, θ (1 – cos 2θ) = sin 2–
2
θ θ 

 
 = 0 (cancelling 2 r3)

  or, sin 2– .cos 2 –
2
θθ θ θ θ +  = 0

  or, θ. cos 2 θ = sin 2
2
θ

 	∴ tan 2θ = 2 θ
  Solution gives : 2 θ = 257.5° (approximately) ... by hit and trial method, or θ = 128.75°
    Depth of flow, y = OD – OC = r – r cos θ	 (Fig. 16.16)
     = r (1 – cos θ) = r (1 – cos 128.75°)  1.62 r  0.81d
  i.e. y  0.81 d ...(16.22)
  where, d = Diameter of the circular channel.
  Thus, maximum velocity occurs when the depth of flow is 0.81 times the diameter of the  

circular channel.
  Hydraulic radius (or hydraulic mean depth) for maximum velocity,

    R = 

2 sin 2–
2 sin 2–

2 2 2

r
A r
P r

θ θ  θ  = = θ θ θ  
 ...(16.23)

  where, θ = 128.75° = 128.75 × 
180
π  = 2.247 radians

  ∴ R = sin 257.52.247 –
2 2.247 2

r ° 
 ×  

  or, R  0.6086r  0.305d ...(16.24)
  Thus, for maximum mean velocity in a channel of circular section hydraulic radius equals 

0.305  times the channel diameter.
 (ii)  Condition for maximum discharge:
  The discharge will be maximum when:

    
3d A

d P
 
 θ  

 = 0 or 
2 3

2

3 –dA dPP A A
d d
P

×
θ θ  = 0

  or, 2 33 –dA dPPA A
d dθ θ

 = 0 

  Dividing, both sides by A2, we get:

  or, 3 –dA dPP A
d dθ θ

 = 0 ...(i)

    P = 2 r θ (Eqn. 16.20)

  ∴ dP
dθ

 = 2r

    A = 2 sin 2–
2

r θ θ 
 

 (Eqn. 16.21)

  ∴ dA
dθ

 = r2 (1 – cos 2θ)
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 Substituting the values of P, A, dP
dθ

 and dA
dθ

 in eqn. (i), we have:

  3 × 2rθ × r2 (1 – cos 2θ) – r2 sin 2– 2
2

rθ θ × 
 

 = 0

 or, 6r3θ (1 – cos 2θ) – 2r3 sin 2–
2
θ θ 

 
 = 0

 Dividing by 2r3, we get:

 or, 3θ (1 – cos 2θ) – sin 2–
2
θ θ 

 
 = 0

 or, 3θ – 3θ cos 2θ – θ + sin 2
2
θ  = 0

 or, 2θ – 3θ cos 2θ + sin 2
2
θ  = 0

 or, 4θ – 6θ cos 2θ + sin 2θ = 0
 Solution gives: 2θ = 308° ... by hit and trial method

  θ = 308
2

 = 154°

 Depth of flow for maximum discharge,
  y = r (1 – cos θ) [Fig. 16.16]
   = r (1 cos 154°)  1.9r  0.95d
 i.e. y  0.95d (16.25)
 where, d is the diameter of the circular channel.
 Thus for maximum discharge through a circular channel, the depth of flow is equal to 0.95 
times its diameter.
 Hydraulic radius for maximum discharge,

  R = 

2 sin 2–
2 sin 2–

2 2 2

r
A r
P r

θ θ  θ  = = θ θ θ  

 where, θ = 154° = 154 × 
180
π  = 2.687 radians

	 ∴ R = sin 3082.687 –
2 2.687 2

r ° 
 ×  

 or, R  0.573r  0.29d ...(16.26)
 Thus for maximum discharge through a circular channel, the hydraulic radius equals 0.29 
times channel diameter.
 Example 16.21.  A concrete lined circular channel of 3.6 m diameter has a bed slope of 1 in 
600. Determine the velocity and flow rate for the conditions of:
 (i) Maximum velocity, and          (ii) discharge.
 Take Chezy’s constant, C = 50.

 Solution. Diameter of the circular channel, d = 3.6 m
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  Bed slope, S =  1
600

  Chezy’s constant, C  = 50
 Let 2θ = Total angle subtended by the water surface at the centre of the channel.
 Flow velocity, V; flow rate, Q:
 (i) Maximum velocity condition:
  For maximum velocity condition,

  2θ = 257.5° = 257.5 × 
180
π  = 4.49 radians

    Depth of flow, y = 0.81d = 0.81 × 3.6  2.92 m

    Area of flow, A = 
2

2
r  (2θ – sin 2θ)

     = 
21.8

2
 (4.49 – sin 257.5°) = 8.85 m2

    Wetted perimeter, P = 2 rθ = r × 2θ = 1.8 × 4.49 = 8.08 m

    Hydraulic radius, R = 8.85
8.08

A
P
=  = 1.095

  ∴  Flow velocity, V = 150 1.095
600

C RS = × 2 14 m / s .  (Ans.)

    Flow rate, Q = AV = 8.85 × 2.14 = 18.94 m3/s (Ans.)
 (ii) Maximum discharge condition:
  For maximum discharge condition,

    2θ = 308° = 308 × 
180
π  = 5.375 radians

    Depth of flow, y = 0.95d = 0.95 × 3.6 = 3.42 m

    Area of flow, A = 
2

2
r  (2θ – sin 2θ)

   = 
21.8

2
(5.375 – sin 308°) = 6.984 m2

    Wetted perimeter, P = 2rθ = r × 2θ = 1.8 × 5.375 = 9.675 m

    Hydraulic radius, R = 9.984
9.675

A
P
=  = 1.032 m

  ∴  Flow velocity, V = 150 1.032
600

C RS = ×  = 2.07 m/s (Ans.)

    Flow rate, Q = AV = 9.984 × 2.07 = 20.66 m3/s (Ans.)

16.6.  OPEN CHANNEL SECTION FOR CONSTANT VELOCITY AT   
 ALL DEPTHS OF FLOW 

 It has been observed that according to Chezy’s or Manning’s formulae the hydraulic radius is 
the sole shape parameter on which the velocity of flow in a channel laid on a constant bottom slope 
depends. Thus, if the hydraulic radius is constant for any depth of flow the velocity of flow will be 
constant.
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Constant
velocity
section

d

2x

b
Trapezoidal

section

X

Y

dy

2 ( )x + dx

y

Fig. 16.21. Channel section for constant velocity at all depths.

 Consider a profile of channel section (shown in Fig. 16.21) having a constant hydraulic radius 
R for any depth of flow. For constant velocity V, hydraulic radius has to be constant, which means 

that dA
dP

 must remain constant at all depth of flow.

 i.e., dA
dP

 = R

 where,  cross-sectional area, dA = 2xdy 

 and,  wetted perimeter, dP = 2 22 ( ) ( )dx dy+  }
	 ∴ 

2 2
2

2 ( ) ( )
xdy

dx dy+
 = R or x2 (dy)2 = R2 [(dx)2 + (dy)2]

 Dividing both sides by (dx)2, we get:

  
2

2 dyx
dx

 
 
 

 = 
2

2 1 dyR
dx

  +  
   

 or 
2 2

2 2 2dy dyx R R
dx dx

   = +   
   

 or, 
2

2 2( – )dy x R
dx

 
 
 

 = 
2 2

2
2 2–

dy RR
dx x R

  = 
 

 or, dy
dx

 = 
2 2–
R

x R
 or dy = 

2 2–
R dx

x R
⋅

 Integrating both sides, we get the following two forms:

  y = R cos h–1 x C
R

  + 
 

 ...(16.27)

 or, y = R ln 2 2
1( – )x x R C+ +  ...(16.27 (a))

 where,  C and C1 are the constants of integration.
 However, we shall consider the first form.
 The eqn. (16.27) is the equation of curves forming the sides of the section, the channel is 
bottomless. The value of C can be obtained if the width of the section of X-axis is known. Let the 
width be 2R at y = 0 i.e. x = R at y = 0

	 ∴	 0 = R cos h–1 R C
R

  + 
 

 (From eqn. 16.27)

 or, C = 0

For a small portion of the channel 
section considered at a depth of y 
and dy in thickness, as shown in 
Fig. 16·21.
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 Thus eqn. (16.27) becomes:

  y = R cos h–1 x
R

 
 
 

 ...(16.28)

 The channel section, below the X-axis may be of any regular shape (e.g. rectangular, trapezoidal, 
triangular, semicircular etc.). If the section is trapezoidal (as shown in Fig 16.17) for the section 
below the X-axis, then:

  Area, A1 = (b + 2R)
2
d

  Perimeter, P1 = 
2

22 –
2
bb R d + + 

 

 It has been observed in the case of an open channel that the velocity increases with the increase 
in depth of flow, thereby causing damage (scouring of the bed and sides) to the channel section. 
On the contrary if the depth of flow decreases, the velocity decreases which may cause silting of 
the suspended matter in the liquid. Both these defects are removed by having constant velocity 
channels (where in the large fluctuations in the velocity are avoided).
 Channel sections of constant velocity are designed particularly in the case of large sewers in 
which the discharge ranges from a certain minimum value that flows daily to a very large value 
during rainy season. In such sewers, the bottom portion (triangular or trapezoidal) is designed 
for the minimum discharge which flows during lean period, when the discharge increases further, 
the constant-velocity section becomes effective and discharges the increased flow at the constant 
velocity.
 Example 16.22.  It is required to design a channel to give a constant mean velocity of flow of 
1.8 m/s at all depths of flow. The lower portion of the channel to carry the minimum discharge is 
rectangular and has the best proportion, the bottom width being 1.5 m. Determine:
 (i) The channel bed slope;
 (ii) The depth of flow when the width of water surface is 9 m.
 Take Manning’s N = 0.015.
 Solution. Velocity of flow at all depths, V  = 1.8 m/s
  Bottom width,  b = 1.5 m
  Manning’s N = 0.015
  Width of water surface = 9 m
 The bottom portion is rectangular and has the best proportion, thus b = 2d, where b and d are 
the base width and depth of flow respectively.
 or, 1.5 = 2d;   ∴  d = 0.75 m

 Also for the best channel section,  R = 0.75
2 2
d =  = 0.375 m

 (i) The channel bed slope, S:

    Using Manning’s formula, V = 2/3 1/21 R S
N

  (where, R = hydraulic radius)

  or, 1.8 = 1
0.015

 × (0.375)2/3 S1/2

  or, S1/2 = 2/3
1.8 0.015
(0.375)

×  = 0.05192 or S = 0.0027  or  1 in 370

  Hence,  the channel bed slope = 1 in 370 (Ans.)
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 (ii) Depth of flow:

    y = 2 2ln[ – ]R x x R C+ +  [Ean. 16.27 (a)]

  When, x = 1.5
2

 = 0.75 m, y = 0

	 	∴	 C =	 2 2– ln[0.75 0.75 – ]R R+

  Substituting this value of C in the above eqn., we have:

    y = 2 2 2 2ln[ ] – ln[0.75 0.75 – ]R x x R R R+ + +

  or, y = 
2 2

2 2

–
ln

0.75 0.75 –

x x R
R

R

 + 
 + 

  When, x = 9
2

 = 4.5 m (given), R = 0.375 m (calculated earlier), substituting these values, we 
have:

  y = 
2 2

2 2

4.5 4.5 – 0.375 4.5 4.4840.375 ln 0.375 ln 0.697 m
0.75 0.6940.75 0.75 – 0.375

 + +   = = +   + 
	 	∴  Total depth of flow = d + y = 0.75 + 0.697 = 1.447 m (Ans.)

 B. NON-UNIFORM FLOW

16.7.  NON-UNIFORM FLOW THROUGH OPEN CHANNELS 

 Whereas in uniform flow the gravity force on the flowing liquid just balances the frictional 
force between the flowing liquid and that inside surface of the channel which is in contact with this 
liquid, the friction force and gravity force are not in balance in case of a steady non-uniform flow. 
Non-uniform flow may be caused by:
 (i) The change in width, depth, bed slope etc. of a channel;
 (ii) An obstruction, constructed across a channel of uniform width.
	  Waves and surges in open channel produce unsteady non-uniform flow.
 Non-uniform flow is also known as the flow of varying depth or, the varied flow. The varied 
flow may be:
 (i) Gradually varied flow (G.V.F.). In this case of flow the depth of flow increases or decreases 

gradually in the direction of flow; this change from one depth of flow to another occurs 
gradually in a distance of appreciable length.

 (ii) Rapidly varied flow (R.V.F.). In this case a sudden change of depth occurs at a particular point 
of a channel and the change from one depth to another takes place in a distance of very short 
length.

16.8.  SPECIFIC ENERGY AND SPECIFIC ENERGY CURVE 

  The total energy of flow per unit weight of liquid is given by:

  Total energy = z + y +
2

2
V

g
 where, z = Elevation of the channel bottom above the horizontal bottom,
  y = Depth of flow, and
  V = Average velocity of flow.
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Horizontal bottom

Channel bottom

Free surface

Total energy line

y

z

V
2
/ 2g

 Fig. 16.22. Specific energy.

 If the channel bottom itself is taken as the datum (Fig. 16.22), then total energy for unit weight 
of liquid,

  E = 
2

2
Vy

g
+  ...(16.29)

 The energy E given by eqn. (16.29) is known as specific energy. Thus specific energy is defined 
as the energy per unit weight of flowing liquid above the channel bottom. Although the total (or 
Bernoulli’s) energy is reduced by friction, the specific energy can increase or decrease from section 
to section if the bed elevation changes; however, for uniform flow the specific energy remains 
constant along the flow.
 It is evident from eqn. (16.29) that specific energy comprises: 
 (i) Potential energy of flow (Ep), y, and

 (ii) Kinetic energy of flow (Ek), 
2

2
V

g
.

  i.e. E = 
2

2
Vy

g
+

   = Ep + Ek
 For the sake of simplicity let us consider a channel of rectangular section.
 Let, b = Width of channel,
  y = Depth of flow, and
  Q = Discharge through the channel.

 Now,   Velocity of flow, V =  Discharge
Area

Q q
b y y

= =
×

 ...(16.30)

 (where q = discharge per unit width)

	 ∴  Specific energy, E = 
2( / )

2
q yy

g
+

 or, E = 
2

22 p k
qy E E
gy

+ = +  ...(16.31)

 For a given channel section and discharge, eqn. (16.31) can be represented graphically as a 
plot of specific energy E against the depth of flow. Such a plot is called the specific energy curve/
diagram and it consists of a family of similar curves each representing a given unit discharge.
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Fig. 16.23. Specific energy curve.

 The specific energy plot of Fig. 16.23 entails the following information:
 (i) The curve for potential energy (i.e. Ep = y) is a straight line passing through the origin, making 

an angle of 45° with each of the two axes (X and Y),
 (ii) The curve for kinetic energy is a parabola. Plot for specific energy is obtained by adding 

kinetic energy to potential energy.
 (iii) Specific energy is asymptotic to the horizontal axis for small values of y and asymptotic to 

45° line for high values of y.
 (iv) At a certain depth yc, called the critical depth, the specific energy curve has a point of minimum 

specific energy, the corresponding flow velocity is called the critical velocity Vc.
 (v) For every value of specific energy other than minimum there are two possible depths of flow 

(y1 and y2), one greater and other less than critical depth yc; these two depths (for same specific 
energy) are referred to as alternate or conjugate depths.

 Critical depth, yc. It can be seen from the specific energy curve ACB (Fig 16.23) that, there is 
one point C on the curve which has a minimum specific energy, thereby indicating that below this 
value of specific energy the given discharge cannot occur. The depth of flow at which the specific 
energy is minimum is called critical depth yc.
 The mathematical expression for critical depth can be obtained by differentiating the specific 

energy equation, E = y + 
2

22
q
gy

 with respect to y and equating the derivative to zero. Thus:

  dE
dy

 = 
2

22
qd y

dy gy
 

+ 
 

 = 0

 or, 
2

3
21 –

2
q
g y
 

+  
 

 = 0 or 1 = 
2

3
2
2

q
gy

 or, y = 
1/32q

g
 
 
 

 But when the specific energy is minimum the depth of flow is critical, denoted by yc.

	 ∴	 yc = 
1/32q

g
 
 
 

 ...(16.32)
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 Critical velocity, Vc. The velocity of flow at critical depth is known as critical velocity; denoted 
by Vc. Its value is obtained as follows:

  Velocity = Discharge
Area

Q q
b y y

= =
⋅

	 ∴	 Vc = 1/3 1/3
1/32c

q q q g
y q

g

= =
 
 
 

 
1/32

c
qy
g

   =  
   


 or, Vc
3 = qg  where, discharge per unit width Qq

b
 = = 
 

 Also q = Vc × yc
	 ∴  Vc

3 = Vc yc g or Vc
2 = gyc 

 or, Vc = cgy  ...(16.33)

 Minimum specific energy in terms of critical depth. The specific energy is given by:

  E = 
2

22
qy
gy

+  (Eqn. 16.31)

 The specific energy is minimum when depth of flow is critical and hence the above equation 
becomes:

  Emin = 
2

22c
c

qy
gy

+

 But, yc = 
1/32 2

3or c
q qy
g g

 
= 

 
 (Eqn. 16.32)

	 ∴ Emin = 
3

2
3

2 22
c c c

c c
c

y y yy y
y

+ = + =  (Eqn. 16.34)

  min
2or
3cy E = 

 
 Critical flow. Refer to Fig. 16.23. A critical flow is one in which specific energy is minimum. A 
flow corresponding to critical depth is also known as critical flow.
 From eqn. (16.33), we have:

  Vc = cgy  or c

c

V
gy

 = 1

 But, c

c

V
gy

 = Froude number (Fr)

	 ∴ Fr = 1 for critical flow.
 Subcritical flow. The flow is subcritical (or streaming or tranquil) when the depth of flow in a 
channel is greater than the critical depth (yc). In this type of flow, Fr < 1.
 Supercritical flow. The flow is supercritical (or shooting or torrential) when the depth of flow 
in a channel is less than the critical depth (yc). In this case Fr > 1.
 Condition for maximum discharge for a given value of specific energy:
 The specific energy (E) at any section of a channel is given by:
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  E = y +
2

,
2
V

g
 where, V = Q Q

A b y
=

×

	 ∴ E = 
2 2

2 2 2 2
1

2 2
Q Qy y

gb y gb y
+ × = +

 or, Q2 = 2gb2y2 (E – y)

 or, Q = b 2 32 ( – )g Ey y

 For discharge Q to be maximum the expression (Ey2 – y3) should be maximum.

 i.e. 2 3( – )d Ey y
dy

 = 0

 or, 2Ey – 3y2 = 0 ( E is constant) 
 or, 2Ey = 3y2

 or, y = 2
3

E  ...(16.35)

 or, E = 3
2
y  ...[16.35 (a)]

 According to eqn. (16.34) specific energy is 

minimum when it is equal to 3
2

 times the value of 

depth of critical flow. Here according to eqn. [16.35 
(a)] the specific energy is equal to 3

2
 times the 

depth of flow. Thus eqn. [16.35 (a)] represents 
minimum specific energy and y is the critical depth. 
Hence the condition for maximum discharge for 
given value of specific energy is that the depth of 
flow should be critical.
 Fig. 16.24 shows the discharge curve.

 Example 16.23.  A 8 m wide channel conveys 15 m3/s of water at a depth of 1.2 m. Calculate:
 (i) Specific energy of the flowing water;
 (ii) Critical depth, critical velocity and minimum specific energy;
 (iii) Froude number and state whether flow is subcritical or supercritical.

 Solution. Width of the channel, b  =  8 m
  Discharge, Q = 15 m3/s
  Depth of flow, y = 1.2 m

 (i) Specific energy of the flowing water:
  Average flow velocity,

    V = 15
8 1.2

Q
b y

=
× ×

 = 1.5625 m/s

  Discharge per unit width,

    q = 15
8

Q
b
=  = 1.875 m3/s per m

qmax

D
ep

th
,
y

yc =
2
3

E

E = constant

Discharge, q

Subcritical
flow ( < 1)Fr

Supercritical
flow

( > 1)Fr

Critical state ( = 1)Fr

Fig. 16.24. Discharge curve.
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	 	∴  Specific energy,

    E  = 
2 21.56251.2

2 2 9.81
Vy

g
+ = +

×
 = 1.324 m (Ans.)

 (ii) Critical depth (yc), critical velocity (Vc) and Emin.:

  Critical depth, yc =  
1/3 1/32 21.875

9.81
q
g

   
=   
  

= 0.71 m/s (Ans.)

   Critical velocity, Vc =  9.81 0.71cgy = ×  = 2.64 m/s (Ans.)

   Minimum specific energy, Emin = 3 3
2 2cy = × 0.71 = 1.065 m (Ans.)

  
2 2

min
2.64Alternatively: 0.71 1.065 m

2 2 9.81
c

c
VE y

g
 

= + = + = × 
 (iii) Froude number and nature of flow:

  Froude number, Fr =  1.5625
9.81 1.2

V
gy

=
×

 = 0.455

  Since Fr < 1, the flow is subcritical or tranquil state. This is also evident from the fact that 

y > yc i.e., 
c

y
y

 > 1. 

 Example 16.24.  The specific energy for a 3 m wide channel is to be 3 Nm/N. What would be 
the maximum possible discharge?   [PTU]

 Solution.  Width of channel, b = 3 m
  Specific energy, E = 3 Nm/N
 For the given value of specific energy, the discharge will be maximum, when depth of flow is 
critical. From eqn. (16.35), for maximum discharge, we have:

  yc = y = 2 2 3 2 m
3 3

E = × =

	 ∴   Maximum discharge, Qmax = Area × velocity
   = (b × yc) × Vc   

( At critical depth, yc, the velocity will be critical.)
 But, Vc = 9.81 2cgy = ×  = 4.43 m/s

 Substituting the values, we have:
  Qmax = 3 × 2 × 4.43 = 26.58 m3/s (Ans.)

 Example 16.25.  Water flows at a steady and uniform depth of 2 m in an open channel of 
rectangular cross-section having base width equal to 5 m and laid at a slope of 1 in 1000. It is 
desired to obtain critical flow in the channel by providing a hump in the bed. Calculate the height 
of the hump and sketch the flow profile. Consider the value of Manning’s rugosity co-efficient N = 
0.02 for the channel surface.    [UPSC Exams.]

 Solution.  Depth of flow, y = 2 m
  Base width of channel, b = 5 m
  Bed slope, S = 1 in 1000
  Manning’s co-efficient, N = 0.02
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 Height of the hump, h:
 For rectangular channel :  Area, A = b × y, and
  Perimeter,  P = b + 2y

	 ∴  Hydraulic radius, R = 5 2
2 5 2 2

b yA
P b y

× ×= =
+ + ×

 = 1.111 m

  Discharge, Q = A × V = A × C RS

 where,  Chezy’s constant C =  1/61 R
N

	 ∴	 Q = A × 1/6 2/3 1/21 AR RS R S
N N

=

   = 
1/2

2/3(5 2) 1(1.111)
0.02 1000
×  × ×  

 
  (substituting the values)

   = 16.96 m3/s 

  Discharge per unit width, q = 16.95
5

Q
b
=  = 3.392 m3/s

  Critical depth, yc =  
1/3 1/32 23.392

9.81
q
g

   
=   
  

 = 1.055 m

  Minimum specific energy, Emin  = 3
2

 × 1.055 = 1.5825 m

Hump

E
y yc

EminFlow profile

V g
2
/2

Energy line

Vc
2

2g

h

Fig. 16.25.

 Specific energy in normal flow,

  E = 
2 21.6962

2 2 9.81
Vy

g
+ = +

×
 = 2.147 m

 where,               V = 
1/2

2/3 1/2 2/31 1 1(1.111)
0.02 1000

R S
N

 = × ×  
 

 = 1.696 m/s

 Height of hump provided, h  =  E – Emin = 2.147 – 1.5825 = 0.5645 m (Ans.)
 The flow profile has been shown in Fig. 16.25.

16.9.  HYDRAULIC JUMP OR STANDING WAVE 

 In an open channel when rapidly flowing stream abruptly changes to slowly flowing stream, 
a distinct rise or jump in the elevation of liquid surface takes place, this phenomenon is known as 
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hydraulic jump (which is analogous to shock wave in compressible fluids). The hydraulic jump 
converts kinetic energy of stream rapidly flowing into potential energy. Due to this there is a loss 
of kinetic energy. At the place where hydraulic jump occurs rollers of turbulent water (eddying 
turbulences) form, which cause dissipation of energy. A hydraulic jump occurs in practice at the toe 
of spillways or below a sluice gate where the velocity is very high.
 The hydraulic jump is also known as a standing wave because it is, in  essence, a wave which 
is stationary (i.e., at stand-still) at one place. Such a standing wave is shown in Fig. 16.26.

V1

P1

Supercritical
flow

Transition

Lj

Subcritical
flow

H y yj = ( – )2 1

1 2

1

2

y2
V2

P2

yc

45º
E

y

Static
energy
head

Specific
energy
curve

Energy lost
in jump

y1

Fig. 16.26. Hydraulic jump.

Analysis of hydraulic jump:
 The following assumptions are made in the analysis of hydraulic jump:
 1. Loss of head due to friction at the walls and channel bed is negligible.
 2. The flow is uniform and the pressure distribution is hydrostatic before and after the jump.
 3. The channel is horizontal or it has a very small slope. The weight component in the direction 

of flow is neglected.
 4. The momentum correction factor (β) is unity.

Height of hydraulic jump (Hj):
 Refer to Fig. 16.26.
  Discharge per unit width, q = V1 y1 = V2 y2         ...Continuity equation ...(i)

	 ∴ V1 = 
1

q
y

 and V2 = 
2

q
y

 In case of hydrostatic pressure distribution, the pressure force at any section,
  P = wAy
 where, y = Vertical depth of centroid of wetted area from the liquid surface.

	 ∴ P1 = w × (y1 × 1) × 
2

1 1
2 2
y wy=          ...Pressure force at section 1-1

  P2 = w × (y2 × 1) × 
2

2 2
2 2
y wy=          ...Pressure force at section 2-2

 Net force acting on mass of water between 1-1 and 2-2

   = 
2 2

2 22 1
2 1 2 1– – ( – )

2 2 2
wy wy wP P y y= =  ...(ii)

                                      [ P2 > P1  as  y2 > y1]
 Now, change in linear momentum = ρq (V1 – V2) ...(iii)
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 But, according to impulse-momentum equation:
 Net force acting on a mass of fluid = Rate of change of momentum in the same direction

	 ∴ P2 – P1 = ρq (V1 – V2) or 2 2
2 1 1 2( – ) ( – )

2
w y y q V V= ρ

  Substituting, V1 = 
1

q
y

 and V2 = 
2

q
y

, we have:

  2 2
2 1( – )

2
g y yρ  = 2

1 2 1 2

1 1– –q qq q
y y y y

   ρ = ρ   
   

 ( w = ρg)

  2 1 2 1( ) ( – )
2
g y y y y+  = 2 2 2 1

1 2 1 2

–1 1– y yq q
y y y y

   =   
   

 Dividing both sides by (y2 – y1), we get:

  2 1( )
2
g y y+  = 

2

1 2

q
y y

 or (y2 + y1) = 
2

1 2

2q
gy y

 ...(iv)

 Multiplying both sides by y2, we have:

  y2
2 + y1y2 = 

2

1

2q
gy

 or y2
2 + y1y2 – 

2

1

2q
gy

 = 0 ...(v)

 or, y2 = 

2
2

1 1
1

2– 4 1

2

qy y
gy

± + × ×
 = 

2 2
1 1

1

2–
2 4
y y q

gy
± +

 or, y2 = 
2 2

1 1

1

2–
2 4
y y q

gy
+ +  or 

2 2
1 1

1

2– –
2 4
y y q

gy
+

 Neglecting the second root (being impossible, –ve depth), we have:

  y2 = 
2 2

1 1

1

2– +
2 4
y y q

gy
+  ...(16.36)

   = 
2 2

1 1 1 1

1

2 ( )– +
2 4
y y V y

gy
×+     ( q = V1y1)

 or, y2 = 
2 2

1 1 1 12– +
2 4
y y V y

g
+  ...(16.37)

 Expression of y2 in terms of Froude number (Fr):
 Eqn. (16.37) can be written as:

  y2 = 
2 2

1 1 1

1

8– + 1
2 4
y y V

gy
 

+ 
 

 or, y2 = 
2

1 1 1

1

8– + 1
2 2
y y V

gy
+  ...(vi)

 But, Fr1
 = 1

1

V
gy

 or (Fr1
)2 = 

2
1

1

V
gy

	 ∴  Substituting this value in expression (vi), we have:

  y2 = 21 1
1– 1 8 ( )

2 2
y y Fr+ +
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 or, y2 = ( )21
11 8 ( ) – 1

2
y Fr+  ...(16.38)

	 ∴  Height of hydraulic jump, Hj = y2 – y1 ...(16.39)

 Length of hydraulic jump (Lj). Length of hydraulic jump represents that short distance over 
which the jump occurs (Refer Fig. 16.26). For rectangular channels with horizontal floor, length of 
a jump has been found to vary between 5 to 7 times the height of the jump.
 i.e., Lj = 5 to 7 Hj ...(16.40)
 Loss of energy due to hydraulic jump:
 The loss of energy due to hydraulic jump is equal to the difference of specific energies at the 
upstream (1-1) and downstream (2-2) sections.
 i.e. E2 = E1 – E2

   = 
2 2

1 2
1 2–

2 2
V Vy y

g g
   

+ +   
   

 = 
2 2

1 2
2 1– – ( – )

2 2
V V y y

g g
 
 
 

   = 
2 2

2 12 2
1 2

– – ( – )
2 2

q q y y
gy gy

 
 
 

 1 2
1 2

,q qV V
y y

 = = 
 


 or,  = 
2

2 12 2
1 2

1 1– – ( – )
2
q y y
g y y
 
 
 

 ...(vii)

 or, EL = 
2 22
2 1

2 12 2
1 2

– – ( – )
2

y yq y y
g y y
 
 
 

 But, q2 = 2 1
1 2 2

y ygy y + 
 
 

    ...(From expression iv)

	 ∴  Loss of energy, EL = 
2 2

2 1 2 1
1 2 2 12 2

1 2

( – ) – ( – )
2 2

y y y ygy y y y
gy y

+  × 
 

   = 
2 2

2 1 2 1
2 1

1 2

( ) ( – ) – ( – )
4

y y y y y y
y y

+

   = 2 1 2 1 2 1
2 1

1 2

( ) ( ) ( – ) – ( – )
4

y y y y y y y y
y y

+ +

   = 
2

2 1
2 1

1 2

( )( – ) – 1
4

y yy y
y y

 +
 
 

   = 
2 2
2 1 1 2 1 2

2 1
1 2

2 – 4( – )
4

y y y y y yy y
y y

 + +
 
 

   = 
2

1 2
2 1

1 2

( – )( – )
4

y yy y
y y

 
 
 

 or, EL = 
3

2 1

1 2

( )
4

y y
y y
−  ...(16.41)

 Example 16.26.  A sluice gate discharges water into horizontal rectangular channel with a 
velocity of 10 m/s and depth of flow of 1 m. Determine the depth of flow of water after the jump and 
consequent loss in total head    [NU]
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 Solution. Velocity of flow before hydraulic jump, V1 = 10 m/s.
 Depth of flow before hydraulic jump, y1 = 1 m
 Depth of flow after the jump, y2:
 Discharge per unit width, q = V1 × y1 = 10 × 1 = 10 m3/s per m
 The depth of flow after the jump is given by:

  y2 = 
2 2

1 1

1

2–
2 4
y y q

gy
+ +  ...[Eqn. (16.36)]

 or, y2 = 
22 2 101 1–

2 4 9.81 1
×+ +

×
 = 4.043 m (Ans.)

 Loss in total head, EL:
 Loss in total head is given by:

  EL = 
3

2 1

1 2

( – )
4

y y
y y

 ...[Eqn. (16.31)]

 or, EL =  
3(4.043 – 1)

4 1 4.043× ×
 = 1.742 m (Ans.)

 Example 16.27.  A 3.6 m wide rectangular channel conveys 9.0 m3/s of water with a velocity 
of 6 m/s.
 (i) Is there a condition for hydraulic jump to occur? If so, calculate the height, length and strength 

of the jump.
 (ii) What is loss of energy per kg of water?
 Solution.  Width of channel, b  =  3.6 m
  Discharge,  Q = 9.0 m3/s
  Velocity of flow before jump, V1  =  6 m/s
 (i) Is there a condition for hydraulic jump to occur?

   Depth of water before jump, y1 =  
1

9.0
3.6 6

Q
b V

=
× ×

 = 0.4167 m

   Discharge per unit width, q =  9.0
3.6

Q
b
=  = 2.5 m3/s per m

   Critical depth,  yc = 
1/3 1/32 22.5

9.81
q
g

   
=   
  

 = 0.86 m

  Since y1 < yc, a jump would occur. (Ans.)
  Froude number ahead of jump,

   Fr1 = 1

1

6
9.81 0.4167

V
gy

=
×

 = 2.967

  Depth of water downstream the jump,

   y2 = 21
11 8( ) – 1

2
y Fr +  

 ...(Eqn. 16.38)

   y2 = 20.4167 1 8 2.967 – 1
2

 + ×  
 = 1.5525 m

	 	 ∴  Height of jump,  Hj = y2 – y1 = 1.5525 – 0.4167 = 1.1358 m (Ans.)
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    Length of jump, Lj  6(y2 – y1) = 6 × 1.1358 = 6.8148 m (Ans.)

    Strength of jump = 2

1

1.5525
0.4167

y
y

=  = 3.726 (Ans.)

 (ii) Loss of energy per kg of water, EL:
    Velocity before jump, V1 = 6 m/s ...(Given)

    Velocity after jump, V2 =  
2

2.5
1.5525

q
y

=  = 1.61 m/s

    E1 = 
2 2

1
1

60.4167
2 2 9.81
Vy

g
+ = +

×
 = 2.25 m

    E2 = 
2 2

2
2

1.611.5525
2 2 9.81
Vy

g
+ = +

×
 = 1.68 m

	 	∴  Loss of energy in the jump, EL = E1 – E2 = 2.25 – 1.68 = 0.57 m (Ans.)

  
3 3

2 1

1 2

( – ) (1.5525 – 0.4167)Alternatively,
4 4 1.5525 0.4167L

y yE
y y

 
= = = × × 

0 57 m.

 Example 16.28.  In a rectangular channel of 0.5 m width, a hydraulic jump occurs at a point 
where depth of water flow is 0.15 m and Froude number is 2.5. Determine:
 (i) The specific energy;  (ii) The critical and subsequent depths,
 (iii) Loss of head, and;  (iv) Energy dissipated.
 Solution.  Width of the channel, b  =  0.5 m
  Depth of flow, y1 = 0.15 m
  Froude number,  Fr = 2.5

 Now, Fr = 1

1

V
gy

, where V1 is the upstream velocity

	 ∴ 2.5 = 1

9.81 0.15
V
×

 or V1 = 3.03 m/s

  Discharge per unit width, q = V1y1 = 3.03 × 0.15 = 0.4545 m3/s per m
 (i) Specific energy, E:

    E = 
2 2

1
1

3.030.15
2 2 9.81
Vy

g
+ = +

×
 = 0.618 m (Ans.)

 (ii) Critical depth, yc:

  yc = 
1/3 1/32 20.4545

9.81
q
g

   
=   
  

 = 0.276 m (Ans.)

     Subsequent depth, y2 = 21
11 8 ( ) – 1

2
y Fr +  

  or,       y2 = 20.15 1 8 2.5 – 1
2

 + ×  
 = 0.461 m (Ans.)

 (iii) Loss head, EL:

  EL = 
3 3

2 1

1 2

( – ) (0.461 – 0.15)
4 4 0.15 0.461

y y
y y

=
× ×

 = 0.108 m (Ans.)
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 (iv) Power dissipated, P:
   P = wQEL
  where Q = A1V1 = (b × y1) V1 = (0.5 × 0.15) × 3.03 = 0.227 m3/s
  ∴ P = 9810 × 0.227 × 0.108 = 240.5 W (Ans.)
 Example 16.29.  Find in terms of specific energy E, an expression for the critical depth in a 
trapezoidal channel with bottom width b and side slope 1 vertical to n horizontal. 

[MDU, Haryana]
 Solution. The specific energy (E) of a channel is given as:

  E =  
22

22 2
QVy y

g gA
+ = +  ( V = Q/A)

 where,  y = Depth of flow,
  V = Average velocity of flow,
  Q = Discharge, and
  A = Area of cross-section of the channel.
 The condition for minimum specific energy (Fmin) can be obtained by differentiating the specific 
energy equation with respect to y and equating the derivative to zero. Thus:

  dE
dy

 = 
2

22
Qd y

dy g A
 

+ 
 

= 0

   = 
2 2

– 3
31 – 2 1 – 0

2
Q QdA dAA

g dy dygA
 + × × ⋅ = × = 
 

 

( Q = constant)
	 ∴ dA

dy
 = 

33

2 2 ,cgAgA
Q Q

=      for critical condition ...(i)

 In case of a trapezoidal channel,
  A = (b + ny) y = by + ny2

         dA
dy

 = b + 2ny = b + 2nyc,   for critical condition ...(ii)

 From expressions (i) and (ii), we have:

   
3

2
cgA

Q
 = b + 2nyc or 

32

2
c

c

AQ
g b ny

=
+

 ...(iii)

 The specific energy for critical conditions becomes:

  E =  
2

22c
c

Qy
gA

+

 Substituting the value of 
2Q

g
 from expression (iii), we get:

  E = 
3

2 2( 2 )2 ( 2 )
c c

c c
cc c

A Ay y
b nyA b ny

+ = +
++

 or, E = ( )
2 ( 2 )

c c
c

c

b ny yy
b ny
++
+

 ...(iv)

 or, E × 2 (b + 2nyc) = yc × 2 (b + 2nyc) + (b + nyc) yc
 or, 2bE + 4nEyc = 2byc + 4nyc

2 + byc + nyc
2
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 Rearranging the above equation, we have:
  5nyc

2 + (3b – 4nE) yc – 2bE = 0

 or, yc = 
2– (3 – 4 ) (3 – 4 ) – 4 5 (– 2 )

2 5
b nE b nE n bE

n
± × ×

×

 or, yc = 
2(4 – 3 ) (3 – 4 ) 40

10
nE b b nE nbE

n
± +  (Ans.)

 Note :  When n = 0, the expression (iv) becomes:

  E = 3
2 2 2

c c c
c c

b y y yy y
b
⋅

+ = + =   or  yc = 2
3

E

 which is the condition for maximum discharge for a given value of specific energy in a rectangular 
channel.

 Example 16.30.  (Flow in venturiflume) A venturiflume is 1.30 m wide at entrance and  
0.65 m in the throat. Neglecting hydraulic losses in the flume, calculate the flow if the depths at the 
entrance and throat are 0.65 m and 0.60 m respectively. A hump is now installed at the throat, of 
height 200 mm, so that a standing wave (hydraulic jump) is formed beyond the throat. What is the 
increase in the upstream depth when the same flow as before passes through the flume? 
 [Roorkee University]
 Solution. Width of venturiflume at entrance, b1 = 1.3 m
  Width at throat, b2 = 0.65 m
  Depth of flow at section 1, y1 = 0.65 m
  Depth of flow at section 2, y2 = 0.6 m

Entrance Throat

b1 = 1.3 m b2 = 0.65 m

0.65 m
0.6 m

1 2

Fig. 16.27. Flow in venturiflume.

 Using continuity equation, we have:
  Discharge, Q = b1y1V1 = b2y2V2

 or, Q = 1.3 × 0.65 × V1 = 0.65 × 0.6V2, ∴ V2 = 11.3 0.65
0.65 0.6

V×
×

 = 2.17V1

 Neglecting losses,  Specific energy at (1)  = Specific energy at (2)

 i.e. 
2

1
1 2

Vy
g

+  = 
2

2
2 2

Vy
g

+

  
2

10.65
2
V

g
+  = 

2
1(2.17 )0.6

2
V
g

+

 or 
2 2

1 1(2.17 ) –
2 2

V V
g g

 = 0.65 – 0.6 = 0.05
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 or, 
2

21 (2.17 – 1)
2
V

g
 = 0.05

 or, V1
2 = 2 2

0.05 2 0.05 2 9.81
(2.17 – 1) 2.17 – 1

g× × ×=

 or, V1 = 0.514 m/s

  The discharge, Q = b1y1V1 = 1.3 × 0.65 × 0.514 = 0.434 m3/s

 Critical depth in contracted portion,

  yc = 
1/32q

g
 
 
 

 where, q = 
1

0.434
0.65

Q
b

=  = 0.67 m3/s per m

	 ∴ yc = 
1/320.67

9.81
 
 
 

 = 0.357 m

 The new specific energy corresponding to critical flow at the throat when hump of height h is 
installed,

  yc = 
2 3 30.2 0.357 0.735 m

2 2 2
c

c c
Vh y h y

g
+ + = + = + × =

  (where, h = 200 mm = 0.2 m)    ...(Given)
 The upstream surface will rise till the upstream specific energy equals 0.735 m.

  0.735 = 
2

1
1 2

Vy
g

+

   = 
2

1 1
1

[ / ( )]
2

Q b yy
g
×+

 or, 0.735 =  
2 2

1 1 12 2 2
1 1 1

0.435 0.0057
2 (1.3 ) 2 9.81 1.69

Qy y y
g y y y

+ = + = +
× × ×

 i.e. y1
3 0.735 y1

2 + 0.0057 = 0
 Solving by trial and error, y1 = 0.72 m
 The increase in the upstream depth = 0.72 – 0.65 = 0.07 m = 70 mm  (Ans.)
 Example 16.31.  A sluice across a channel 7.2 m wide discharges a stream 1.2 m deep. What 
is the flow rate when the depth upstream of the sluice is 8.4 m ? On the downstream side concrete 
blocks have been placed to create condition for hydraulic jump to occur. Calculate the force on the 
blocks if the downstream depth is 3.6 m.
 Solution. Refer to Fig. 16.28.
 Applying continuity equation at sections (1-1), (2-2) and (3-3), we have:
  Discharge,  Q = (b1 × y1) V1 = (b2 × y2) V2 = (b3 × y3) V3
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1.2 m

1

2

21

V1
8.4 m

FV2

Concrete block

3.6 m

3

V3

3

Fig. 16.28

 But, b1 = b2 = b3 = 7.2 m, y1 = 8.4 m, y2 = 1.2 m, y3 = 3.6 m
	 ∴ Q = (7.2 × 8.4) V1 = (7.2 × 1.2) V2 = (7.2 × 3.6) V3
 From which, V2 = 7V1  and  V3 = 2.333V1
 Neglecting frictional losses between sections (1-1) and (2-2), the specific energies at (1-1) and 
(2-2) are equal.

 or, 
2

1
1 2

Vy
g

+  = 
2

2
2 2

Vy
g

+

 or, 
2

18.4
2
V

g
+  = 

2 2
1 1(7 ) 491.2 1.2

2 2
V V
g g

+ = +   ( V2 = 7V1)

 or, 
2

148
2
V
g

 = 7.2 or V1
2 = 7.2 2 9.81

48
× ×  = 2.943

	 ∴ V1 = 1.715 m/s
 Flow rate, Q:
  Q = (b1y1) V1 = 7.2 × 8.4 × 1.715 = 103.72 m3/s (Ans.)
 Force on the blocks, F:
 Applying momentum equation to sections (2-2) and (3-3), neglecting the boundary friction, we have:

  P2 – F – P3 = 3 2( – )wQ V V
g

  w A2 y2 – F – w A3 y3 = 3 2( – )w Q V V
g

 9810 × (7.2 × 1.2) × 1.2
2

 – F – 9810 × (7.2 × 3.6) × 9810 103.723.6
2 9.81

×=  (2.333 V1 – 7V1)

  50855 – F – 457695 = 103720 (– 4.667 × 1.715)
 or, F = 50855 – 457695 + 103720 (4.667 × 1.715) 
   = 423325 N or 423.325 kN
 Hence, the force on the concrete blocks = 423.325 kN which acts in a direction opposite  
to F (Ans.)
 Example 16.32. Uniform flow occurs at a depth of 1.5 m in a long rectangular channel 3 m 
wide and laid to a slope of 0.0009. If Manning’s N = 0.015 calculate:
 (i) Maximum height of hump on the floor to produce critical depth.
 (ii) Width of contraction which will produce critical depth without increasing the upstream depth 

of flow.    [IIT Madras]
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 Solution.  Depth of flow, y  =  1.5 m
  Width of channel, b  =  3 m
  Bed slope, S  =  0.0009
  Manning’s N  =  0.015
 Height of the hump, h:
 Discharge,  Q = A × V = A × C RS

 where,  C (Chezy’s constant) = 1/61 R
N

	 ∴  Q = 1/61A R RS
N

×  ...(i)

   = 2/3 1/21A R S
N

×

 (where, V = average velocity of flow, and
  R = hydraulic radius)
 Here,  area, A = b × y = 3 × 1.5 = 4.5 m2

  Perimeter,  P = b + 2y = 3 + 2 × 1.5 = 6 m and R = 4.5
6

A
P
=  = 0.75 m

 Substituting the values in expression (i), we get:

  Q = 4.5 × 1
0.015

 × (0.75)2/3 × (0.0009)1/2 = 7.43 m3/s

  Discharge per unit width, q = 7.43
3

Q
b
=  = 2.477 m3/s per m

  Critical depth, yc = 
1/3 1/32 22.477

9.81
q
g

   
=   
  

 = 0.855 m

 Now, equating the specific energies upstream and at the hump, we get:

  
2

1.5
2
V

g
+  = 

2

2
c

c
Vh y

g
+ +  ...(ii)

 Here,  V = 7.43
4.5

Q
A
= = 1.65 m/s, and

  Vc = 
2 2

2or or or
2 2

c c c
c c c c

V V ygy V gy y
g g

= =

 Substituting the values in expression (ii), we have:

  
21.651.5

2 9.81
+

×
 = 0.8550.855

2
h + +  or 1.6387 = h + 1.2825

	 ∴   h = 0.3562 m (Ans.)
 (ii) Width of contraction:
  Let,  bc = Width at the contracted portion to produce critical depth. 
  Now, Upstream specific energy  =  Specific energy at the contracted portion.

  1.6387 = 
2 3

2 2 2
c c

c c c
V yy y y

g
+ = + =

   = 
1/3 1/31/3 22 2

2
( / ) (7.43)3 3 3

2 2 2 9.81
c

c

Q bq
g g b

    
= =    

×     

y = 1.5 m
yc

h

Energy line

Vc
2

2g

V
2

2g

Hump

Fig. 16.29
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 or, 
2

2
(7.43)

9.81cb
 
 × 

 = 1.6387 × 2
3

 = 1.0925

 or, 
2

2
7.43

9.81cb ×
 = (1.0925)3 = 1.304  

 ∴ bc = 

1
2 27.43

1.304 9.81
 
 × 

 = 2.077 m (Ans.)

 Example 16.33.  Water flows at a velocity of 1 m/s and a depth of 2 m in an open channel of 
rectangular cross-section, 3 m wide. At a certain section the width is reduced to 1.8 m and the bed 
is raised by 0.65 m. Will the upstream depth be affected? If so, to what extent?   

[UPSC, CES Exams.]

 Solution. Velocity of flow, V = 1 m/s
  Depth of flow, y = 2 m
  Width of channel, b  =  3 m
 Width of contracted section, bc =  1.8 m
 At section (1): Refer to Fig. 16.30.
 Specific energy at the section,

 E1 = 
2 2

1
1

(1)2 2.051 m
2 2 9.81
Vy

g
+ = + =

×

 Discharge, Q = A.V = (b1 × y1) × V1 
  = (3 × 2) × 1 = 6 m3/s
 Discharge per unit width,

 q1 = 3

1

6 2 m /s per m
3

Q
b

= =

 Critical depth,

 (yc)1 = 
1/3 1/32 2

1 2 0.7415 m
9.81

q
g

   
= =   
  

 Since y1 > yc, the flow in the channel is 
 sub-critical.
 Minimum specific energy at section 1,

 (Emin)1 = 1
3 3( )
2 2cy =  × 0.7415 = 1.1122 m

 At the section (2) (contracted and humped section):

 Discharge per unit width, q2 =  
2

6
1.8

Q
b

=  = 3.333 m3/per m

 Critical depth,
  (yc)2 = 

1/3 1/32 2
2 3.333

9.81
q
g

   
=   
  

 = 1.0423 m 

 Minimum specific energy,

  (Emin)2 = 2
3 3( )
2 2cy =  × 1.0423 = 1.5634 m

hump h = 0.65 m

2
2 m

( ) Elevationa

1
Free water surface

Contracted and
humped section

b2 = 1.8mb1 = 3m

( ) Planb

Fig. 16.30
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 Specific energy w.r.t. channel bed at section (2),
  E2 = (Emin)2 + h = 1.5634 + 0.65 = 2.2134 m
 Since E2 > E1 the upstream depth will be affected. The flow will be possible only when the  
upstream water level is increased such that:

  E1 = E2 or y1 + 
2

1
2
V

g
 = 2.2134 ...(i)

 Also Q = b1y1 × V1 ...Continuity equation
  6 = 3 × y1 × V1 or V1y1 = 2 ...(ii)
 From expressions (i) and (ii), we have:

  
2

1
1

(2 / )
2

yy
g

+  = 2.2134

 or, 1 2
1

4
2

y
g y

+
×

 = 2.2134

 or, 1 2
1

0.204y
y

+  = 2.2134 or y1
3 = 2.2134 y1

2 + 0.204 = 0

  Solving by trial and error, we get y1 = 2.17 m
 Hence the water level on the upstream side will be headed up by,
  (2.17 – 2) = 0.17 m  or  170 mm (Ans.)
 Example 16.34.  A hydraulic jump occurs in a V-shaped channel having sides sloping at 45°. 
Derive an equation relating the two depths and the flow rate.
 If the depths before and after the jump in the above channel are 0.50 m and 1.0 m, determine:
 (i) The flow rate;
 (ii) Froude numbers before and after the jump. [Roorkee University]
 Solution. Let, y1 = Depth of flow before hydraulic jump,
  V1 = Velocity of flow before hydraulic jump, and
  y2, V2 = Depth of flow and velocity of flow respectively after hydraulic jump.
 Refer to Fig. 16.31:
 According to impulse-momentum equation: 
 Net force acting on a mass of fluid = Rate of change of momentum in the same direction

 

V1
y1

y2

P2

V2

P1

45º 45º

V-shaped channel

2y

y

Hydraulic jump

Fig. 16.31. Hydraulic jump – V-shaped channel.

  P1 – P1 = 1 2( – )wQ V V
g

   (where, Q = discharge or flow rate)

  Area, A = 21 2
2

y y y× × =  and y = 1
3

y
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	 ∴ P1 = wA1y1 = w × y1
2 × 3

1 1
1 1
3 3

y wy  = 
 

 and, P2 = wA2y2 = w × y2
2 × 3

2 2
1 1
3 3

y wy  = 
 

 From continuity equation, we have:

  Q = A1V1 = A2V2; V1 = 2
1 1

Q Q
A y

=  and V2 = 2
2 2

Q Q
A y

=

 Substituting these quantities in expression (i), we have:

  3 3
2 1

1 1–
3 3

wy wy  = 2 2
1 2

–wQ Q Q
g y y

 
 
 

 or, 3 3
2 1

1 ( – )
3

y y  = 
2

2 2
1 2

1 1–Q
g y y

 
 
 

 (cancelling w on both sides)

 or, 3 3
2 1

1 ( – )
3

y y  = 
2 22
2 1

2 2
1 2

–y yQ
g y y

 
 
 

 or, Q2 = 
3 3

2 2 2 1
1 2 2 2

2 1

–
3 –

y yg y y
y y

 
×  

 

 or, Q = 
3 3
2 1

1 2 2 2
2 1

–
3 –

y ygy y
y y

 
 
 

 This is the required equation relating the two depths and the flow rate.
 Depths: y1 = 0.5 m, y2 = 1.0 m ...(Given)
 (i) Flow rate, Q:

    Q = 
3 3
2 1

1 2 2 2
2 1

–
3 –

y ygy y
y y

 
 
 

  or   Q = 
3 3

2 2
1 – 0.5 1 – 0.1259.810.5 1.0 0.5 3.27 /

3 1 – 0.251 – 0.5
30 977 m s.

   × = =   
  

 (Ans.)

 (ii) Froude number before and after jump, Fr1, Fr2:

    Froude number, Fr =  V
g D

  where, D = Hydraulic depth = A
T

  (T = top width of the channel, A = area of cross-section of the channel)

  V1 = 2 2
1

0.977
0.5

Q
y

=  = 3.91 m/s

  V2 = 2 2
2

0.977
1

Q
y

=  = 0.977 m/s

  D1 = 
2

1 1 1

1

0.5
2 2 2

A y y
T y

= = =  = 0.25 m
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  D2 = 
2

2 2 2

2

1.0
2 2 2

A y y
T y

= = = = 0.5 m

  Fr1 = 1

1

3.91
9.81 0.25

V
gD

=
×

= 2.5 m/s (Ans.)

  Fr1 = 2

2

0.977
9.81 0.5

V
gD

=
×

 = 0.44 (Ans.)

 Example 16.35.  (Surges in open channels). A horizontal rectangular channel of 3 m width 

and 2 m water depth conveys water at 18 m3/s. If the flow rate is suddenly reduced to 2
3

 of its 
original value, compute the magnitude and speed of the upstream surge.
 Assume that the front of the surge is rectangular and friction in the channel is neglected.
  [ UPSC Exams.]
 Solution.  Width of channel, b = 3 m
  Depth of water, y1 = 2 m
  The flow rate or discharge, Q1  = 18 m3/s

Upstream
surge

C

V1
y1

Gate

y2

y2

Gate

y2

( + )V C1

( + )V C2

( ) Observer stationary.a ( ) Observer moving with the surge.b

Fig. 16.32

 In a channel, when discharge is suddenly reduced by operating a gate, an upstream surge will 
be developed which will move with a constant velocity C (also known as celerity of the wave) 
as shown in Fig. 16.32 (a). An observer standing on the canal bank will notice the surge moving 
upstream. This unsteady flow case can be transformed into a steady one by superimposing flow with 
velocity C in opposite direction as shown in Fig. 16.32 (b)
 Also, by1 (V1 + C) = by2 (V2 + C)       ...Continuity equation
 or, y1 (V1 + C) = y2 (V2 + C)

 Again, 2 2
2 1( – )

2
wb y y  = wb

g
 y1 (V1 + C) (V1 – V2)  Momentum equation

 or, (y2
2 – y1

2) = 1
1 1 2

2 ( ) ( – )y V C V V
g

+  ...(i)

 Now, V1 = 1

1

18 3 m/s
3 2

Q
b y

= =
× ×

 

	 	 Q2 = 1
2
3

Q  ...(Given)

 ∴ Q2 = 32 18 12 m /s
3
× =

  Q2 = (b2 × y2) V2 = b2 × V2 y2

 ∴ V2y2 = 22

2

12 4 m /s per m
3

Q
b

= =
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 Now, V1y1 = V2y2 + C (y2 – y1) ...Continuity equation
  3 × 2 = 4 + C (y2 – 2)

 or, C = 
2

2
– 2y

 Substituting the values in expression (i) we have:

  (y2
2 – 22) = 2

2

2 2 23 (3 – )
9.81 – 2

V
y

 × + 
 

 

  (y2
2 – 4) = 0.41 

2 2

2 43 3 –
– 2y y

   +   
   

 2 2

2 2

4
or 4 /

V y
V y
= 

 = 



 Solving by trial and error, y2 = 2.8 m and 
 Height of the surge = y2 – y1 = 2.8 – 2 = 0.8 m (Ans.)

 Velocity of the upstream surge, C = 
2

2 2
– 2 2.8 – 2y

=  = 2.5 m/s (Ans.)

16.10. GRADUALLY VARIED FLOW 

 Gradually varied flow (G.V.F.) is one in which the depth changes gradually over a long distance. 
In a rapidly varied flow, the change in depth takes place in a short distance.
 Gradually varied flow may be caused due to one or more of the following factors:
 1. The change in the shape and size of the channel cross-section,
 2. The change in slope of the channel,
 3. The presence of obstruction (e.g., weir etc.), and
 4. The change in frictional forces at the boundaries.

16.10.1. Equation of Gradually Varied Flow
 The following assumptions are made for analysing gradually varied flow:
 1. The channel is a prismatic (a channel with constant section and alignment).
 2. The bed slope is small.
 3. The flow is steady and hence discharge is constant.
 4. The pressure distribution over the channel section is hydrostatic i.e. stream lines are practi-

cally straight and parallel.
 5. The energy correction factor (α) is unity.
 6. The roughness co-efficient is constant for the length of the channel and it does not depend on 

the depth of flow.
 7. The Chezy and Manning correlations are equally applicable to gradually varied flow for 

determining the slope of energy line.
 Consider a rectangular channel having gradually varied flow (Fig. 16.33), the depth of flow 
gradually decreasing in the direction of flow.
 Let, b = Width of the channel,
  Q = Discharge through the channel,
  z = Height of bottom of channel above datum,
  y = Depth of flow,
  V = Mean velocity of flow, 
  Sb = tan i  i = slope of the channel bed, and
  Se = tan j  j = slope of energy line.
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 According to Bernoulli’s equation, the energy equation at any section is given by:

  E = z + y + 
2

2
V

g
 …(i)

Horizontal datum

Free surface

Energy line

Bottom of
channel

z

y

X

j
V

2

2 g

Y

i

Fig. 16.33. Gradually varied flow in a channel.

 Taking the bottom of the channel on the X-axis and the vertically upwards direction measured 
from the channel bottom, as the Y-axis, differentiation of eqn. (i), with respect to x yields:

  dE
dx

 = 
2

2
dydz d V

dx dx dx g
 

+ +  
 

 …(ii)

 Now, 
2

2
d V
dx g

 
 
 

 = 
22 { / ( )}( / )

2 2
Q b yQ Ad d

dx g dx g
   ⋅=   

   
   

and

QV
A

A b y

 = 
 = ⋅ 



   = 
2 2

2 2 2 2
1

2 2
Q Qd d

dx dxb y g b g y
   

=   ⋅ × ×   
  

, and
are constant
Q b y 

 
 



   = 
2

2 2
1

2
Q dyd

dy dxb g y
 
 ×  

   = 
22

2 3 2 3
– 22–

2 2
QQ dy dy

dx dxb g y b gy
 

= × × 

 or, 
2

2
d V
dx g

 
 
 

 = 
2 2

2 2
– –Q dy dyV

dx gy dxb y gy
=

⋅ ×
 Q V

b y
 

= ⋅ 


 Substituting the value of 
2

2
d V
dx g

 
 
 

 in expression (ii), we get:

  dE
dx

 = 
2

–dy dydz V
dx dx gy dx

+

 or, dE
dx

 = 
2

1 –dydz V
dx dx gy

 
+  

 
 ...(iii)

 Now, dE
dx

 = Slope of energy line = – Se

 and, dz
dx

 = Slope of bed of the channel = – Sb

 – ve signs with Se and Sb indicate that the values of E and z decrease with the increase of x.
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 Substituting the values of dE
dx

 and dz
dx

 in expression (iii), we get:

  – Se = – Sb + 
2

1 –dy V
dx gy

 
 
 

 or dy
dx

 = 2
( – )

1 –

b eS S
V
gy

 
 
 

 …(16.42)

 or, dy
dx

 = 2
( – )
1 – ( )

b eS S
Fr 

 
        V Fr

gy
 

=  
 
  …(16.43)

 dy
dx

 represents the variation of depth along the bottom of the channel and is also called the slope 

of the free water surface.

 (i) When 0dy
dx

= : y is constant (or depth of water above the bottom of channel is constant); it 

means that free water surface is parallel to the channel bed.

 (ii) When 0dy
dx

>  dyor is ve
dx

 + 
 

: It indicates that the depth of water increases in the direction 

of flow, the profile of water so obtained is called back water curve.

 (iii) When 0 –dy dyor is ve
dx dx

< : It indicates that the depth of water decreases in the direction 

of flow. The profile of water so obtained is known as drop down curve.

16.10.2. Back Water Curve and Afflux
 In an open channel when the flow is uniform, the flow has constant depth at all the sections and 
the surface of the free water lies parallel to bed of the channel. But when an obstruction like a dam, 
weir etc. comes across the channel width the water level rises and it has maximum depth from the 
bed at some section (Fig. 16.34). If y1 is the depth of water at the point, where the water starts rising 
up and y2 is the maximum height of rising water from the bed, then this increase in depth (i.e. y2 – 
y1) is known as ‘afflux’ and the curved surface of the liquid with its concavity upwards, is known as 
‘back water curve’.

Back water curve
y2 – = affluxy1

y2

Dam

y1

Fig. 16.34. Back water curve and afflux.

 Length of back water curve:
 The length of back water curve is the distance along the bed of the channel between the section 
where water starts rising to the section and where water has maximum depth.
 Consider a channel in which a back water curve is formed as shown in Fig. 16.35. Let two 
sections 1-1 and 2-2 are so chosen that distance between them represents the length of backwater 
curve.
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 Let, y1 = Depth of flow at section 1-1,
  V1 = Velocity of flow at section 1-1,
  y2 = Depth of flow at section 2-2,
  V2 = Velocity of flow at section 2-2,
  Sb = Bed slope,
  Se = Energy line slope, and
  l = Length of back water curve.

Energy line

Water surface

Datum line

l

z1

1

2

21

j

Channel bottom/bed

i

hf

y2

y1

V2

2

2g

V1

2

2g

Fig. 16.35. Length of back water curve.

 Applying Bernoulli’s equation at the two sections with channel bed at section 2-2 as the datum 
for potential head, we have:

  
2

1
1 1 2

Vz y
g

+ +  = 
2

2
2 2 f

Vy h
g

+ +   ( z2 = 0) 

 where,   hf = Loss of head due to friction = Se × l,  and  z1 = Sb × l

	 ∴	
2

1
1 2b

VS l y
g

× + +  = 
2

2
2 2 e

Vy S l
g

+ + ×

 or, Sb × l – Se × l = 
2 2

2 1
2 1–

2 2
V Vy y

g g
   

+ +   
   

 or, l (Sb – Se) = E2 – E1 

2 2
2 1

2 2 1 1where ,
2 2
V VE y E y

g g
 

= + = + 
 

	 ∴ l = 2 1–
–b e

E E
S S

 ...(16.43)

where, E1 and E2 represent the specific energies at the beginning and end of the backwater curve. 
The value of Se (slope of energy line) is determined by Manning’s formula or Chezy’s formula 
corresponding to flow conditions at mean/average depth of flow.
 Example 16.36.  In a rectangular channel 12 m wide and 3.6 m deep water is flowing with a 
velocity of 1.2 m/s. The bed slope of the channel is 1 in 4000. If flow of water through the channel 
is regulated in such a way that energy line is having a slope of 0.00004 find the rate of change of 
depth of water in the channel.
 Solution. Width of channel, b = 12 m
  Depth of the channel, y = 3.6 m
  Velocity of flow, V = 1.2 m/s
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 Bed slope, Sb =  1
4000

 = 0.00025

 Slope of the energy line, Se = 0.00004

 Rate of change of depth of water, dy
dx

:

  dy
dx

 = 2
–

1 –

b eS S
V
gy

 
 
 

 ...[Eqn. (16.42)]

 Substituting the values, we get:

  dy
dx

 = 2
0.00025 – 0.00004 0.00021

0.95921.21 –
9.81 3.6

=
 
 × 

= 0.0002189  (Ans.)

 Example 16.37.  In a rectangular channel of width 24 m and depth of flow 6 m, the rate of flow 
of water is 86.4 m3/s. If the bed slope of the channel is 1 in 4000 find the slope of the free water 
surface. Take Chezy’s constant C = 60.
 Solution. Width of the channel, b  =  24 m
  Depth of flow, y = 6 m
  Rate of flow or discharge, Q = 86.4 m3/s

  Bed slope, Sb = 1
4000

 = 0.00025

  Chezy’s constant, C = 60.

 Slope of the free water surface, dy
dx

:

  Discharge, Q = A × V = A × C bRS

 where, A = Area of flow = b × y = 24 × 6 = 144 m2

  Hydraulic radius  = 144 144 4 m
2 24 2 6

A
P b y
= = =

+ + ×

 The slope of the energy line (Se) is determined from Chezy’s formula.
	 ∴ 86.4 = 144 × 60 4 17280e eS S× =       [Art. 16.10, point 7]

 or Se = 
286.4

17280
 
 
 

= 0.000025

 Now, dy
dx

 = 2 2
– 0.00025 – 0.000025

0.61 – 1 –
9.81 6

b eS S
V
gy

=

×

   86.4 0.6 m/s
24 6

QV
b y

 = = = × × 
 Hence, slope of the free water surface = 0.000226 (Ans.)

 Example 16.38.  A wide channel laid to a slope of 1 in 1000 carries a discharge of 3.5 m3/s per 
metre width at a depth of 1.6 m. Find out the value of Chezy’s constant C. Consider the flow to be 
uniform.
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 If the actual depth varies from 1.5 m at an upstream location to 1.7 m at a location 300 m 
downstream or in other words the flow is gradually varied, what will be the value of Chezy’s co-
efficient C.    [Roorkee University]

 Solution. Bed slope of channel, Sb = 1
1000

  Discharge, q = 3.5 m3/s per metre width
  Depth of water, y = 1.6 m

	 ∴  Velocity of flow = 3.5
1.6

q
y
=  = 2.1875 m/s

  Hydraulic radius, R = 
2

b yA
P b y

×=
+

 For a wide channel, the width b of the stream is large in comparison with depth of flow y. 
Therefore,

  R  b y
b
×  = y = 1.6 m

 (i) Uniform flow:
  V = bC RS      …Chezy’s formula

 	∴	 2.1875 = 11.6
1000

C ×  = 0.04 C

	 	∴	 C = 2.1875
0.04

 = 54.68 (Ans.)

 (ii) Gradually varied flow:

  Slope of the free water surface, 1.7 – 1.5
300

dy
dl

=  = 0.000667

    Average flow depth, y = 1 2 1.7 1.5
2 2

y y+ +=  = 1.6 m

  Velocity at average flow depth, V = 3.5
1.6

q
y
=  = 2.1875 m

    Hydraulic radius, R  y = 1.6 m
  The rate of change of depth is given by:

  dy
dl

 = 2
–

1 –

b eS S
V
gy

  or, 0.000667 = 2
0.001 – 0.001 –

0.6952.18751 –
9.81 1.6

e eS S=

×

  or, Se = 0.001 – 0.000667 × 0.695 = 0.000536

  Now, V = eC RS     ...Chezy’s formula

    2.1875 = 1.6 0.000536C ×  = 0.0293 C

  or, C = 2.1875
0.0293

= 74.65 (Ans.)
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 Example 16.39.  The normal depth of flow of water, in a rectangular channel 1.5 m wide, is one 
metre. The bed slope of the channel is 0.0006 and Manning’s rugosity co-efficient N 0.012. Find the 
critical depth.
 At a certain section of the same channel the depth is 0.92 m while at a second section the depth 
is 0.86 m. Find the distance between the two sections. Also find whether the section is located 
downstream or upstream with respect to the first section. [UPSC Exams.]
 Solution.  Width of the channel, b  = 1.5 m
  Normal depth of water, yn = 1 m
	 ∴  Area of flow, A = b × yn = 1.5 × 1 = 1.5 m2

  Perimeter, P = b + 2yn = 1.5 + 2 × 1 = 3.5 m

	 ∴  Hydraulic radius, R =  1.5
3.5

A
P
=  = 0.4286 m

  Manning’s co-efficient, N = 0.012
  Bed slope, Sb = 0.0006
 Critical depth:

  Discharge, Q = A × V = A × C 1/6 2/31 1
b b bRS A R RS A R S

N N
= × = ×

 (where, Chezy’s constant, C = 1/61 R
N

 )

 or, Q = 1.5 × 1
0 012⋅

 × (0.4286)2/3 × (0.0006)1/2 = 1.74 m3/s

  Discharge per unit width, q = 1.74
1.5

Q
b
=  = 1.16 m3/s per m

  The critical depth, yc =  
1/3 1/32 21.16

9.81
q
g

   
=   
  

 = 0.516 m (Ans.)

 Specific energy at 0.92 m depth:

  E1 = 0.92 + 
2

1
2
V

g

 where, V1 = 1.74
0.92 1.5 0.92
Q

b
=

× ×
 = 1.26 m/s

	 ∴	 E1 = 
21.26

2 9.81×
 = 1.0 m

 Specific energy at 0.86 m depth:

  E2 = 0.86 + 
2

2
2
V

g

 where, V2 = 1.74
0.86 1.5 0.86
Q

b
=

× ×
 = 1.35 m/s

	 ∴ E2 = 
21.35

2 9.81×
 = 0.953 m

 Slope of energy line (Se) at the mean section:

  y = 1 2 0.92 0.86
2 2

y y+ +=  = 0.89 m
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 Now, Q = 2/3 1/21 ( )eA R S
N

×  or Q2 = 
4/3

2
2 e

RA S
N

×

	 ∴ Se = 
2 22 2

2 4/3 2 4/3
1.74 0.012

(1.5 0.89) (0.407)
Q N
A R

×=
× ×

 = 8.11 × 10–4 = 0.000811

   1.5 0.89 0.407
1.5 2 0.89

AR
P

 × = = = + × 


 Distance between the two sections,

  ∆x = 2 1– 0.953 – 1.0
– 0.0006 – 0.000811b e

E E
S S

=  = 222.75 m (Ans.)

  Slope of water surface, dy
dx

 = 2
–

1 –

b eS S
V
gy

 Average depth of flow = 0.89 m (calculated above)

    Velocity at mean section, V =  1.74
1.5 0.89 1.5 0.89

Q =
× ×

 = 1.3 m/s

	 ∴           dy
dx

 = 2
0.0006 – 0.000811

1.31 –
9.81 0.89×

 = – 2.616 × 10–4

 Since dy
dx

 is –ve, therefore, the second section is downstream (Ans.)

 Example 16.40.  (Length of backwater curve). Draw the specific energy diagram for various 
constant discharges and show the alternate and critical depths.
 A weir is installed across a rectangular open channel thereby raising the flow depth from 1.5 
m in a normal flow to 2.5 m at the weir. The width of the channel is 10 m and it is laid to a slope of 
1 in 10000. Find an approximate length of the backwater curve considering the average velocity, 
average depth and average slope midway between the two sections. Take the value of Manning’s 
rugosity co-efficient equal to 0.02.   [Delhi University]
 Solution. Upstream section 1-1: 
  Width of the channel, b1 = 10 m
  Depth of flow, y1 = 1.5 m
	 ∴  Area of flow, A1 = b1 × y1 = 10 × 1.5 = 15 m2

  Wetted perimeter, P1 = b1 + 2y1 = 10 + 2 × 1.5 = 13 m

	 ∴  Hydraulic radius,  R1 = 1

1

15
13

A
P

=  = 1.154 m

  Chezy’s constant, C1 = 1/61 1( )
0.02

R
N

=  × (1.154)1/6 = 51.2 

     (where, N = 0.02 ... Given)

  Velocity of flow, V1 = 1
151.2 1.154

10000bC RS = ×  = 0.55 m/s

 (where, slope of the channel bed,  Sb = 1
10000

  ...Given)

  Specific energy, E1 = y1 + 
2 2

1 0.551.5
2 2 9.81
V

g
= +

×
 = 1.515 m
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 Downstream section 2-2:
  Width of the channel, b2 = b1 = 10 m
  Depth of flow, y2 = 2.5 m
  Area of flow, A2 = b2 × y2 = 10 × 2.5 = 25 m2

  Wetted perimeter, P2 = b2 + 2y2 = 10 + 2 × 2.5 = 15 m

	 ∴  Hydraulic radius, R2 = 2

2

25
15

A
P

=  = 1.667 m

 Also,  A1V1 = A2V2  ...Continuity equation

	 ∴ V2 = 1 1

2

15 0.55
25

AV
A

×= = 0.33 m/s

  Specific energy, E2 = y2 + 
2 2

2 0.332.5
2 2 9.81
V

g
= +

×
= 2.505 m

 The value of Se (slope of energy line) is calculated by Chezy’s formula corresponding to flow 
conditions at the average depth of flow.

  Average depth of flow, y = 1 2 1.5 2.5
2 2

y y+ +=  = 2 m

 At the average depth of flow:
  Area of flow, A = b × y = 10 × 2 = 20 m2 ( b1 = b2 = b = 10 m)
  Wetted perimeter, P = b + 2y = 10 + 2 × 2 = 14 m

	 ∴  Hydraulic radius, R = 20
14

A
P
=  = 1.428 m

 Again, AV = A1V1

	 ∴  Velocity of flow, V = 1 1 15 0.55
20

AV
A

×=  = 0.4125 m/s

  Chezy’s constant, C = 1/61 1( )
0.02

R
N

=  × (1.428)1/6 = 53.06 

  Velocity, V = eC R S×

 or, 0.4125 = 53.06 1.428 63.4e eS S× =

 or, Se = 
20.4125

63.4
 
 
 

 = 0.0000423

 Length of back water curve,

  l = 2 1–
–b e

E E
S S

, where Sb is the slope of channel bed

   = 2.505 – 1.515
0.0001 – 0.0000423

 = 17157 or 17.157 km (Ans.)

 Example 16.41.  (Back water curve). A river 45 m  wide has a normal depth of flow of 3 m 
and an average bed slope of 1 in 10000. A weir is built across the river raising the water surface 
level at the weir site to 5 m above the bottom of the river. Assuming that the back water curve is an 
arc of circle, calculate the approximate length of the backwater curve. Consider that the river is 
prismatic. Take the value of N in Manning’s formula as 0.025. [UPSC Exams.]
 Solution.  Width of the bed, b = 45 m
  Depth of flow (normal), yn = 3 m
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  Average bed slope, Sb =  1
10000

 = 0.0001

  Depth of flow at weir site, y = 5 m
  Manning’s co-efficient, N = 0.025
  Afflux, h = y – yn = 5 – 3 = 2 m
 Length of back water curve, l:
 Length of backwater curve, by circular arc method, is given as:

  l = 2
/
h

dy dx
 ...(i)

  Area of flow, A = 45 × 3 = 135 m2

  Perimeter, P = 45 + 2 × 3 = 51 m

  Hydraulic radius, R = 135
51

A
P
=  = 2.65 m

  Discharge, Q = A × V = A × C 1/6 2/3 1/21 1
b b bRS A R RS A R S

N N
= × = ×

 (where, Chezy’s constant, 1/61C R
N

= × )

 or, Q = 135 × 1
0.025

 × (2.65)2/3 × (0.0001)1/2 = 103.4 m3/s

 At the weir site:

  y = 103.45 m,
45 5 45 5

QV = =
× ×

 = 0.46 m/s

  Hydraulic radius,  R = 45 5
45 (2 5)

A
P

×=
+ ×

 = 4.09 m

 Slope of water surface at the weir,

  dy
dx

 = 2
–

1 –

b eS S
V
gy

 where, Se is the slope of the total energy line at the weir, V and y are the velocity and depth of 
flow respectively at the weir.

  Se = 
2 2

2 4/3
Q N
A R

 (Refer to example 16.39)

   = 
2 2 2 2

4/3 4/3
0.46 0.025

(4.09)
V N

R
×=  = 2.02 × 10–5 = 0.0000202 

	  
2V

gy
 = 

20.46
9.81 5×

 = 0.0043

 ∴ dy
dx

 = 0.0001 – 0.0000202
1 – 0.0043

 Substituting the value of dy
dx

 in expression (i), we have:

  l = 2 2
0.00008

×  = 50000 or 50 km (Ans.)
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16.11. MEASUREMENT OF FLOW OF IRREGULAR CHANNELS 

 The term “irregular channels” includes large rivers and small streams. In case of a small stream 
it is possible to obtain the quantity of flow by fitting a notch or weir across the stream; the discharge 
may then be calculated by measuring the head over the notch. However, this method cannot be 
employed for large rivers on account of the expense and the obstruction which may be caused to 
navigation. In order to obtain the discharge through a large river (or irregular channel), we require: 
(i) Area of flow, and (ii) Mean velocity of flow. By knowing this data discharge is calculated as 
follows:

d1
d2 d3 d4

d5

d7d6

l1 l2 l3 l4 l5 l6 l7

A B C D E F G H

Fig. 16.36. Cross-section of river with unequal segments (Segments method).

16.11.1. Area of Flow
 The area of flow may be calculated by the several methods but the following are important ones:
 1. Simple segments method.    2. Simpson’s rule.
 1. Simple segments method :
  In this method, the cross-section of the river is divided into a number of segments AB, BC, 

CD, etc. as shown in Fig. 16.36.
  Let, l1 , l2 , l3 ... =  Lengths of the segments AB, BC, CD ... respectively, and
    d1, d2 , d3 ... = Mean depths of the respective segment.
  Then, Area of flow, A = Area of segment AB + area of segment BC + area of segment CD + ...
      = l1d1 + l2d2 + l3d3 + ...
 2. Simpson’s rule:
  A greater accuracy in the computation of discharge may be obtained by using Simpson’s rule. 

In this method the whole river width is divided into an even number of equal segments so 
that there are odd number of depths taken at the end of each segment as shown in Fig. 16.28. 
Then area of flow,

d1 d2 d3 d4
d5

dlast

l l l l l l

d0

Fig. 16.37. Cross-section of river with equal segments (Simpson’s) rule.

    A = 
3
l  (d0 + dlast) + 2 (d1 + d3 + d5) + 4 (d2 + d4 + d6)

  where, l = Length of each segment, and
    d0, d1, d2 ..... = Depths taken at the end of segments.

16.11.2. Mean Velocity of Flow
 The mean velocity of flow may be measured by the following methods :
 1. Pitot tube    2.   Floats   3.  Current meter.
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 1. Pitot tube. A pitot tube is a simple device used for 
measuring the velocity of flow at the required point in the 
flowing stream. In its simplest form it consists of a glass tube 
(large enough for capillary effects to be negligible) bent at right 
angle. The tube is dipped vertically in the flowing stream with its 
lower open end facing the direction of flow and upper open end 
projecting above the water surface in the stream as shown in the 
Fig. 16.38. The water rises up in the tube, due to pressure exerted 
by the flowing water. By measuring the rise of water in the tube, 
the velocity of water (V) is calculated by using the following 
relation:
  V = 2gh

 where, h = Height of water in the tube above the water surface, and
  g = Acceleration due to gravity.
 2.  Floats. The velocity of flow can be measured in a simple way by means of floats. A float is a 
small object made of wood or other suitable material which is lighter than water and thus capable of 
floating on the surface. The surface velocity at any section may be obtained by using a single float. 
The time taken by the float to traverse a known distance is measured; the velocity is then calculated 
by dividing the distance travelled (by the float) by the time taken to travel that distance. Since the 
mean velocity of flow is equal to 0.8 to 0.95 times the 
surface velocity, the approximate value of the mean 
velocity of flow may then be determined from the 
known value of the surface velocity.
 A better method is to use double floats. A 
double float consists of a surface float on to which 
is attached a hollow metal sphere, heavier than water, 
and suspended from it by a cord of known length 
 (Fig. 16.39). The depth of the lower float may be 
regulated by the length of the cord. The velocity is 
then obtained by noting the time taken by the float 
to traverse a known distance (as explained in the 
previous case of single float)
 The double float method directly gives the value 
of mean velocity of flow.
 The best type of float is the rod float (Fig. 16.40). 
It consists of a vertical wooden rod which is weighted 
at the bottom to keep it vertical. The length of the 
rod is so adjusted that it reaches the bottom of stream 
(without touching the weeds, sand or mud at the bottom 
of the river) and its top should be above the water 
surface. Some types of rod are made telescopic, so that 
length may be adjusted to suit any depth. The rod will 
travel with a velocity equal to the mean velocity of the 
section.

 3.  Current meter. A current meter is an instrument used to measure the velocity of flow at a 
required point in the flowing stream. In general it consists of a wheel or revolving element containing 
blades or cups, and a tail on which flat vanes or fins are fixed. The current meters, according to the 
shape of the revolving element, may be classified as follows:

Fig. 16.38. Pitot tube.

h

Hollow
metal
sphere

Surface
float

Cord

Fig. 16.39. Double float.

Road

Weight

Fig. 16.40. Rod float.



950         Fluid Mechanics

 (i) Cup type (ii)  Screw type or propeller type.
 In a Cup type current meter (Fig. 16.41) the wheel or revolving element has the form of a series 
of conical cups, mounted on a spindle. The spindle is held vertical at right angle to the direction of 
flow.
 In a screw or propeller type current meter (Fig. 16.42) the revolving element consists of a shaft, 
with its axis parallel to the direction of flow, which carries a number of curved vanes (or propeller 
blades) mounted on the periphery of the shaft. This type of meter is more sensitive than cup type 
because it gives higher r.p.m. for the same velocity of flow.

Electric cable

Tail piece

flow

Conical cups

Balancing weight

Fig. 16.41. Cup type current meter.

 In order to measure the velocity of flow, meter is 
submerged under water and motion of water in the stream 
activates it, driving the wheel (or rotatory elements) at 
a speed proportional to the velocity of flow. An electric 
current is passed from the battery to the wheel by means of 
wire. The rotation of wheel makes and breaks the electric 
circuit, which causes an electric bell to ring. Thus by 
counting the ringing of bell, the rotations of the wheel and 
hence the velocity of flowing water is obtained.

Fig. 16.42. Screw of propeller type
current meter.
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HIGHLIGHTS

 1. An open channel may be defined as a passage in which liquid flows with its upper surface 
exposed to atmoshpere.

 2. Flow in a channel is said to be uniform, if the depth, slope, cross-section and velocity remain 
constant over a given length of the channel. Flow in a channel is said to be non-uniform (or 
varied) when the channel depth varies continuously from one section to another.

 3. The flow in the open channel may be characterised as laminar or turbulent depending upon 
the value of Reynolds number:

  When Re < 500 ...flow is laminar; 
  When Re > 2000 ...flow is turbulent.
  When 500 < Re < 2000 ...flow is transitional.
 4. If Froude number (Fr) is less than 1.0, the flow is subcritical or streaming. If Fr is equal to 

1.0, the flow is critical. If Fr is greater than 1.0, the flow is supercritical or shooting.
 5. Velocity by Chezy’s formula is given by
    V = C RS
  where, C = Chezy’s constant,
  R = Hydraulic radius (or hydraulic mean depth)

     (area)
(wetted perimeter)

A
P

= , and

  S = Slope of the bed.
 6. Empirical relations for the Chezy’s constant, C

 (i)   C = 157.6

1.81 K
R

+
    ...Bazin’s formula

  where,  K = Bazin’s constant,
    R = Hydraulic radius (or hydraulic mean depth)

 (ii)   C = 
0.00155 123

0.001551 23
S N

N
S R

+ +

 + 
 

    ...Kutter’s formula

  where, N = Kutter’s constant, and S = bed slope.

 (iii)   C = 1/61 R
N

   ...Manning’s formula

  where, N = Manning’s constant = Kutter’s constant.
 7. The most economical section (also called the best section or most efficient section) is one 

which gives the maximum discharge for a given amount of excavation.
 8. Conditions for maximum discharge through different channel sections:
 (a) Rectangular section:

  (i)  b = 2y;   (ii)  R = 
2
y

 (b) Trapezoidal section:
   (i)  Half top width = Sloping side

   or, 2
2

b ny+  = 2 1y n +
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   (ii) R = 
2
y

 (iii) A semicircle drawn from the mid-point of the top width with radius equal to depth 
of flow will touch the three sides of the channel. Best side slope for most economi-
cal trapezoidal section is

    θ = 60° or n = 1 1
tan3

=
θ

 (c) Triangular section:
  (i) Each sloping side makes an angle of 45° with the vertical.

 (ii)   Hydraulic radius, R =  .
2 2

y

 (d) Circular section:
 (i) Condition for maximum discharge:
  Depth of flow, y = 0.95 diameter of circular channel;
  Hydraulic radius, R = 0.29 times channel diameter.
 (ii) Condition for maximum velocity:
  Depth of flow, y = 0.81 diameter of circular channel;
  Hydraulic radius, R = 0.305 diameter.
 9. For a circular channel:

    Area of flow, A =  2 sin 2–
2

r θ θ 
 

    Wetted perimeter, P = 2r θ
   where, r = Radius of circular channel, and
   	 	θ = Half the angle subtended by the water surface at the centre.
 10. Channel sections of constant velocity are designed particularly in the case of large sewers 

in which the discharge ranges from a certain minimum value that flows daily to a very large 
value during rainy season.

 11. The total energy of flow per unit weight of liquid is given by:

    Total energy = z + y +  
2

2
V

g
 12. Specific energy of a flowing liquid per unit weight,

    E = 
2

2
Vy

g
+

 13. The depth of flow at which specific energy is minimum is called criticial depth, which is 

given by  yc = 
1/32q

g
 
 
 

, where q = discharge per unit width.

 14. The velocity of flow at critical depth is known as critical velocity, which is given by: 
  Vc = cg y×

 15. Minimum specific energy is given by:

  Emin = 3
2 cy , where yc = critical depth.

 16. (i)  A flow corresponding to critical depth (or when Froude number, Fr = 1) is known as 
critical flow.
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  (ii) When the depth of flow in a channel is greater than critical depth (when Fr < 1) the 
flow is said to be sub-critical or streaming flow.

  (iii) The flow is supercritical (or shooting or torrential) when the depth of flow in a channel 
is less than the critical depth (when Fr > 1).

 17. The condition for maximum discharge for given value of specific energy is that the depth of 
flow should be critical.

 18. Hydraulic jump. In an open channel when rapidly flowing stream abruptly changes to slowly 
flowing stream, a distinct rise or jump in the elevation of liquid surface takes place, this phe-
nomenon is known as hydraulic jump. The hydraulic jump is also known as ‘standing wave’.

  The depth of flow after the jump is given by:

  y2 = 
2 2

1 1

1

2–
2 4 2
y y q

gy
+ +  ...(in terms of q)

   = 
2 2

1 1 1 12–
2 4
y y V y

g
+ +  ...(in terms of V1)

   = 21
1( 1 8 – 1)

2
y Fr+  ...(in terms of Fr1)

  (where,  y1 = depth of flow of water before the jump)
  Height of hydraulic jump, Hj = y2 – y1
  Length of hydraulic jump, Lj = 5 to 7 Hj

  Loss of energy due to hydraulic jump, EL =  
3

2 1

1 2

( – )
4

y y
y y

 19. Gradually varied flow (G.V.F.) is one in which the depth changes gradually over a long 
distance. Equation of gradually varied flow is given by:

  dy
dx

 = 2
–

1 –

b eS S
V
gy

 
 
 

 ...(in terms of V)

   = 2
–

(1 – )
b eS S

Fr
 ...(in terms of Fr)

  where,  dy
dx

 = Slope of free water surface,

    Sb = Slope of the channel bed,
    Se = Slope of the energy line, and
    V = Velocity of flow.
 20. Afflux is the increase in water level due to some obstruction across the flowing liquid; the 

curved surface of the liquid with its concavity upwards, is known as back water curve.

  Length of back water curve, l = 2 1–
–b e

E E
S S

  where, 
2

1
1 1 2

VE y
g

 
= + 
 

 and 
2

2
2 2 2

VE y
g

 
= + 
 

 represent the specific energies at the beginning 

and end of back water curve.
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OBJECTIVE TYPE QUESTIONS

Choose the Correct Answer:
 1. Which of the following is the most essential 

condition for a hydraulic jump to form?
  (a)	 The	constancy	of	specific	energy
  (b)	 The	existence	of	subcritical	flow	before	the	

jump
  (c)	 The	existence	of	supercritical	flow	before	the	

jump
  (d) None of the above.
 2. In a hydraulic jump the energy loss is expressed 

as

  (a) 
2

2 1

1 2

( – )
4

y y
y y

 (b) 
3

2 1

1 2

( – )
4

y y
y y

  (c) 2 1

1 2

( – )
4

y y
y y

 (d) 2 1

1 2

( – )
.

4
y y
y y

 3. The water surface slope dy
dx

, in case of uniform 

flow	in	the	channel,	is	equal	to
  (a) 0  (b) 1
  (c) 1000 (d) ∞.
	 4.	 In	open	channels,	gradually	varied	flow	is	caused
  (a) when the channel slope is equal to the normal 

slope
  (b) when the pressure forces and the change of 

momentum are different from each other
  (c)	 when	the	force	causing	the	flow	is	not	equal	

to the resistance force
  (d) when there is an equilibrium between the forces 

causing	the	flow	and	those	opposing	it.
 5.	 In	a	channel,	the	alternate	depths	of	flow	are	the	

depths
  (a)	 which	occur	at	the	same	specific	energy
  (b) at which total energies are same
  (c)	 for	the	same	specific	force
  (d) none of the above.
 6.	 The	critical	depth	is	the	depth	of	flow	at	which
  (a) the Froude number is less than unity
  (b)	 the	specific	energy	is	maximum
  (c)	 the	specific	energy	is	minimum
  (d) the unit discharge is minimum.
 7. In a rectangular channel, the critical depth is 

given by

  (a) 
1/22q

g
 
  
 

 (b) 
1/32q

g
 
  
 

  (c) 
1/42q

g
 
  
 

 (d) 
1/33q

g
 
  
 

.

 8.	 In	open	channels,	the	specific	energy	is
  (a) the total energy per unit discharge
  (b) the total energy measured above a horizontal 

datum
  (c) the total energy measured with respect to the 

channel bottom which is taken as datum
  (d) the kinetic energy plotted above the free-

surface.
 9.	 An	open	channel	flow	is	one	in	which
  (a)	 the	soild	boundaries	confining	the	flow	are	

open at the top
  (b)	 the	liquid	flowing	in	a	closed	conduit	has	a	

free-surface
  (c)	 a	closed	conduit	is	full	of	flowing	liquid
  (d) none of the above.
 10. In case of open channels, uniform flow is 

characterised by
  (a) a constant slope of channel bottom
  (b)	 a	constant	depth	of	flow
  (c)	 a	changing	depth	of	flow
  (d) none of the above.
 11. For flow in open channels, the Manning’s 

equation is expressed as

  (a) 1/41C R
N

=  

  (b) V C RS=

  (c) 2/3 1/21V R S
N

=

  (d) 87/(1 / )C m R= + .

 12. The maximum velocity in open channels occurs
  (a) near the channel bottom
  (b) a little below the free-surface
  (c) at the free surface
  (d) none of the above.
 13. Under which of the following conditions steady 

non-uniform	flow	in	open	channels	occurs?
  (a) When the discharge and depth both vary along 

the channel length
  (b)	When	a	constant	discharge	flows	at	the	con-

stant	depth	of	flow
  (c)	When	a	constant	discharge	flows	in	a	channel	

laid	at	a	fixed	slope
  (d) When for a constant discharge the liquid 

depth in the channel varies along its length.
 14.	 Hydraulically	efficient	channel	cross-section	is	

one
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  (a) which carries maximum discharge under 
given conditions of slope, roughness and 
flow	area

  (b) which has the minimum hydraulic radius
  (c) which has the maximum wetted perimeter
  (d) none of the above.
 15.	 The	 equation	 of	 gradually	 varied	flow	 is	 ex-

pressed by

  (a) 2
–

1 –
b eS Sdy

dx Fr
=  (b) 2

–
1

b eS Sdy
dx Fr

=
+

  (c) 3
–

1 –
b eS Sdy

dx Fr
=  (d) –

1 –
b eS Sdy

dx Fr
= .

 16. A channel without any cover at the top is known 
as

  (a) natural channel (b) open channel
  (c)	 artificial	channel	 (d) none of above.
 17. A channel with constant bed slope and the same 

cross-section along its length is known as
  (a) natural channel 
  (b)	 artificial	channel
  (c) prismatric channel
  (d) open channel.
 18.	 The	flow	in	the	open	channel	may	be	character-

ised as laminar when
  (a) Re < 500 (b) Re > 2000
  (c) 500 < Re < 2000 (d) none of the above.
 19.	 The	channel	flow	is	subcritical	when
  (a) Fr < 1 (b) Fr = 1
  (c) Fr > 1 (d) any of the above.
 20.	 Non-uniform	flow	may	be	caused	by
  (a) the change in width, depth, bed slope etc. of 

a channel
  (b) An obstruction, constructed across a channel 

of uniform width
  (c) both (a) and (b)
  (d) none of the above.
 21. Prismatic channels are those which have
  (a) a constant bed slope downstream
  (b) the same cross-section and bed slope through-

out
  (c) the shape of a prism
  (d) a uniform cross-section throughout.
 22. For the best trapezoidal section
  (a)	 depth	of	flow	=	half	the	bed	width

  (b) side slope is 45° 
  (c) the shape is of a half hexagon
  (d) none of the above.
 23. For the best rectangular section
  (a) y = b/3 (b) y = b

  (c) 
2
by =  (d) 

4
by =

 24. Manning and Chezy formulae are valid for
  (a) steady
  (b)	 steady	uniform	flow
  (c)	 steady	non-uniform	flow
  (d)	 unsteady	uniform	flow.
 25. The hydraulic jump occurs in a channel when
  (a) the bed slope is adverse
  (b) the bed slope changes from steep to mild
  (c)	 flow	changes	from	subcritical	to	super-critical
  (d) none of the above.
 26.	 In	an	open	channel	flow,	shooting	flow	cannot
  (a) occur just after a hydraulic jump
  (b) be gradually varied
  (c)	 follow	tranquil	flow
  (d) none of the above.
 27.	 When	Froude’s	number	is	equal	to	unity,	the	flow	

in an open channel is called
  (a)	 critical	flow	 (b)	 tranquil	flow
  (c)	 streaming	flow	 (d)	 shooting	flow.
 28. The cross-section of a channel is said to be best, 

if the
  (a) hydraulic mean depth is maximum
  (b) section has the least perimeter for a given 

area
  (c)	 roughness	co-efficient	is	maximum
  (d)	 section	gives	maximum	area	for	a	given	flow.
 29. The strength of a jump is governed by the
  (a) upstream velocity
  (b) downstream velocity
  (c) upstream Froude number
  (d) bed slope.
 30. For maximum discharge through a circular chan-

nel,	the	depth	of	flow	should	be	equal	to
  (a) 0.6 times the diameter of the channel
  (b) 0.8 times the diameter of the channel
  (c) 0.95 times the diameter of the channel
  (d) 1.2 times the diameter of the channel.
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ANSWER

 1. (c) 2. (b) 3. (a) 4. (c) 5. (a) 6. (c)  
 7. (b) 8. (c) 9. (b) 10. (b) 11. (c) 12. (b)  
 13. (d) 14. (a) 15. (a) 16. (b) 17. (c) 18. (a)  
 19. (a) 20. (c) 21. (b) 22. (c) 23. (c) 24. (a)  
 25. (b) 26. (a) 27. (a) 28. (b) 29. (c) 30. (c).

THEORETICAL QUESTIONS

 1. What is an open channel ?
 2. What are the different types of channels? Give 

examples in each case.
 3. What is the purpose of providing bed slope in 

open channels?
 4.	 Explain	briefly	the	following:
  (i)	 Uniform	and	non-uniform	flows,
  (ii)	 Laminar	and	turbulent	flows,
  (iii)	 Steady	and	unsteady	flows,	and
  (iv)	 Subcritical	and	supercritical	flows.
 5. State the conditions under which uniform and 

non-uniform	flows	are	produced.
 6.	 Differentiate	 between	 ‘Gradually	 varied	flow’	

and	‘Rapidly	varied	flow’.
 7. What is Chezy’s formula? How is it derived ?

[UPSC]
 8. How does the roughness of channel affect the 

Chezy’s constant? [BHU]
 9. What is Bazin’s formula and how is it used ?
 [UPSC]
 10. State the following formulae for the values of C:
  (i) Bazin’s formula, (ii)   Kutter’s formula, and
  (iii) Manning’s formula.
 11. What do you mean by ‘Most-economical section’ 

of an open channel? How is it deter- mined?
 12. What are the conditions for the rectangular 

channel of best section?
 13. Show that the hydraulic mean depth of a 

trapezoidal channel having the best proportion 
is half of the minimum depth. [IIT Kharagpur]

 14.	 Define	the	following	terms	:
    (i) Hydraulic radius, (ii) Wetted perimeter, and
  (iii) Slope of the bed
 15. For a trapezoidal channel of most economical 

section, prove that:

  (i) Half of top width = Length of one of the 
sloping sides;

  (ii) Hydraulic mean depth  = 1
2
	×	depth	of	flow.

 16. State and prove the condition under which the 
trapezoidal section of an open channel will be 
most economical.

 17. State and prove the conditions of maximum 
discharge and maximum velocity for circular 
channel.

 18.	 What	is	a	specific	energy	curve?
 19. What do you understand by critical depth of an 

open	channel	when	the	flow	in	it	is	not	uniform?
 (IIT Kharagpur)
 20. Derive expressions for critical depth and critical 

velocity?
21. (a) What is mean by ‘Hydraulic jump’ in an 

open channel?
  (b)	 Determine	 from	first	principle	 the	condi-

tions required for the formation of such a 
jump in the case of a rectangular channel 
of constant width and calculate the loss of 
head in terms of depth just before and after 
the jump.   [UPSC]

 22. Derive an expression for loss of energy head for 
a hydraulic jump.

 23.	 Define	the	terms:		(i)		Afflux	and		(ii)  Back water 
curve.

  Prove that the length of the backwater curve is 
given by

 l = 2 1–
–b e

E E
S S

  where, l  = length of backwater curve,  
E2	 =	 specific	 energy	 at	 the	 end	 of	 backwater	
curve, E1	=	specific	energy	at	the	section	where	
water starts rising, Sb = slope of bed, and  
Se = slope of energy gradient.
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UNSOLVED EXAMPLES

 1.	 Find	the	rate	of	flow	and	conveyance	for	a	rect-
angular	channel	5.0	m	wide	for	uniform	flow	at	a	
depth of 1.5 m. The channel is having bed slope 
of 1 in 1000. Take Chezy’s constant C = 50. Also 
state	whether	the	flow	is	tranquil	or	rapid.

  [Ans. 11.48 m3/s; 363.09, tranquil]
 2.	 A	flow	of	water	of	100	litres	per	second	flows	

down	 in	 a	 rectangular	flume	of	width	 60	 cm	
having adjustable bottom slope. If the Chezy’s 
constant C	is	56,	find	the	bottom	slope	necessary	
for	uniform	flow	with	a	depth	of	flow	of	30	cm.	
Also	find	the	conveyance	K	of	the	flume.

31 ; 3.9 m /s
1524

 
  
Ans.

 3. A triangular gutter, whose sides include an angle 
of 60°, conveys water at a uniform depth of 4 m. 
If	the	slope	of	the	bed	is	1	in	1000	find	the	rate	
of	flow	of	water.	Take	Chezy’s	constant	C = 55.

 [Ans. 16.066 m3/s]
 4. Calculate the discharge of water in such a chan-

nel having semicircular bottom of 3 m diameter 
and	two	sides	as	vertical	when	the	depth	of	flow	
is 2.7 m. Take Chezy’s constant equal to 60 and 
slope of the bed as 1 in 2000. [Ans. 9.585 m3/s]

 5. Determine the discharge through a trapezoidal 
channel of width of 8 m and side slopes of 1 
horizontal	 to	 3	 vertical.	The	depth	of	flow	of	
water is 2.4 m and the slope of the bed is 1 in 
4000. Take Chezy’s constant C = 60.

 [Ans. 25.47 m3/s]
 6. Find the most economical cross-section of a 

rectangular channel which is to be dug in the 
rocky portion of a soil. The channel is to con-
vey 8 m3/s of water with an average velocity of  
2 m/s. Take Chezy’s constant C = 65.

 12.828 m; 1.414 m,
746

b y S = = =  
Ans.

 7. Determine the most economical section of a 
rectangular channel carrying water at the rate 
of 0.4 m3/s; The bed slope of the channel being 
1 in 2000. Take Chezy’s constant C = 50.

 [Ans. b = 1.154 m; y = 0.577 m]
 8. A trapezoidal channel carries a discharge of 

2.5 m3/s. Design the section if the slope is 1 in 
1200 and the side slopes are 1 in 1. Use Chezy’s 
formula, C = 55. [Ans. b = 0.9 m; y = 1.085 m]

 9. Determine the dimensions of the most  
economical trapezoidal earth-lined channel 
(Manning’s N = 0.020) to carry 14 m3/s at a slope 
of 1 in 2500. [Ans. b = 2.98 m; y = 2.58 m]

 1Take
3

n =  
Hint.

 10. A trapezoidal channel has side slopes of 1 hori-
zontal to 2 vertical and the slope of the bed is 
1 in 1500. The area of the section is 40 m2. If 
Chezy’s constant C = 60, determine:

  (i) The dimensions of the section if it is most 
economical, and

  (ii) Discharge of the most economical section.
 [Ans. (i) b = 5.93 m; y = 4.8 m (ii) 96 m3/s]
 11. Design a trapezoidal channel for carrying  

30 m3/s of water. The bed slope of the channel is 
1:1800 and side slope of  horizontal to 1 vertical. 
Assume C in Chezy’s formula as 50.

 [Rajputana University]
  [Ans. b = 1.872 m; y = 3.12 m]
 12. A concrete lined circular channel of 3 m diam-

eter has a bed slope of 1 in 500. Determine the 
velocity	and	the	flow	rate	for	the	condition	of	 
(i) maximum velocity, and (ii) maximum  
discharge. Take Chezy’s  constant C = 50.

 [Ans. (i) 2.13 m/s, 13.11 m3/s   
(ii) 2.073 m/s; 14.37 m3/s]

 13. A 3 m wide rectangular channel conveys 12 m3/s 
of water at a depth of 2 m. Calculate:

  (i)	 Specific	energy	of	flowing	fluid;
  (ii) Critical depth, critical velocity and the mini-

mum	specific	energy;
  (iii)	 Froude	 number	 and	 state	whether	 flow	 is	

subcritical or supercritical.
  [Ans. (i) 2.2038 m; (ii) 1.177 m; 3.398 m/s; 

1.765 m; (iii) 0.453; subcritical]
 14. Calculate the specific energy of 12 m3/s of 

water	flowing	with	 a	velocity	of	 1.5	m/s	 in	 a	 
rectangular channel 7.5 m wide. Find the depth 
of	water	in	the	channel	when	the	specific	energy	
would be minimum. What would be the value 
of	critical	velocity	as	well	as	minimum	specific	
energy?

 [Ans. 1.1825 m, 0.639 m; 2.5 m/s; 0.0958 m]
 15. A 3.6 m wide rectangular channel carries water 

to a depth of 1.8 m. In order to measure the 
discharge, the channel width is reduced to  
2.4 m and a hump of 0.30 m height is provided 
at the bottom. Calculate the discharge if wa-
ter surface in the contracted section drops by  
0.15 m. Assume no losses.

[UPSC, CES Exams.]
 [Ans. 6.418 m3/s]
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 16. A control sluice spanning the entry of a 4.0 m 
wide rectangular channel having a mild slope 
admits water at the rate of 16.0 m3/s and at a 
velocity of 3.0 m/s. Find whether a hydraulic 
jump is expected in the channel downstream 
from the sluice. [UPSC Exams.]

 [Ans. Jump not expected.]
 17. Water flows at the rate of 1 m3/s along a  

channel of rectangular section, 1.75 metres in 
width. Calculate the critical depth. If a hydraulic 
jump is formed at a point where the upstream 
depth is 0.25 m, what would be the rise in water 
level and power lost in the jump? [IIT Delhi]

 [Ans. 0.322 m; 0.158 m; 90.15 W]
 18. A hydraulic jump occurs in a rectangular channel 

and	the	depths	of	flow	before	and	after	the	jump	
are 0.5 m and 2.0 m respectively. Calculate the 
critical	depth	of	flow.	 (Roorkee University)

 [Ans. 1.077 m]
 19. In a rectangular channel, 10 m wide and 3 m 

deep,	water	is	flowing	with	a	velocity	of	1	m/s.	
The bed slope of the channel is 1 in 4000. If 
flow	of	water	through	the	channel	is	regulated	
in such a way that energy line is having a slope 

of	0.00004	find	the	rate	of	change	of	depth	of	
water in the channel. [Ans. 0.000217]

 20. In a rectangular channel of width 20 m and depth 
of	flow	5	m,	the	rate	of	flow	of	water	is	50	m3/s. 
If	the	bed	slope	of	the	channel	is	1	in	4000	find	
the slope of the free water surface. Take Chezy’s 
constant C = 60.

 21. A concrete lined rectangular channel 5.5 m wide 
carries water at a rate of 10 m3/s. Calculate 
the critical depth, critical velocity and the 
corresponding	minimum	specific	energy.	Would	
the	flow	be	subcritical	or	supercritical	at	a	point	
where	 the	flow	depth	 is	 0.5	m.	Also	find	 the	
slope of free water surface at this point if the 
channel bed is having a slope of 1 in 2000. Take 
Manning’s constant N = 0.01.

 [Ans. 0.696 m; 2.613 m/s;  
1.044 m; supercritical; 0.00216]

 22. Find the length of the backwater curve caused 
by	an	afflux	of	2.0	m,	in	a	rectangular	channel	
of width 40 m and depth 2.5 m. The slope of 
the bed is given as 1 in 11000. Take Manning’s  
N = 0.03.

  Hint : Afflux	=	y2 – y1 = 2.0 m; y1 = 2.5 m
 [Ans. 33.584 km]
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SECTION-A: SHORT ANSWER QUESTIONS

 Q. 1. What is ‘Continuum’?
 Ans. A continuous and homogeneous medium is called ‘Continuum’. From the continuum view 

point, the overall properties and behaviour of fluids can be studied without regard for its 
atomic and molecular structure.

 Q. 2. What is ‘viscosity’?
 Ans. Viscosity may be defined as the property of a fluid which determines its resistance to shearing 

stresses. Viscosity of fluids is due to cohesion and interaction between particles. An ‘ideal 
fluid’ has no viscosity.

 Q. 3. What is ‘hyrostatic law’?
 Ans. The hydrostatic law states : “The rate of increase of pressure in a vertically downward direc-

tion must be equal to the specific weight of the fluid at that point.”
  This law is used to determine the pressure at any point.
 Q. 4. What is ‘Standard atmospheric pressure’?
 Ans. The atmospheric pressure at sea level (above absolute zero) is called ‘Standard atmospheric 

pressure’.
  It has the following equivalent values:
  101.3 kN/m2 or 101.3 kPa; 10.3 m of water; 760 mm of mercury; 1013 mb (millibar);  

1 bar  100 kPa = 105 N/m2.
 Q. 5. What is ‘gauge pressure’?
 Ans. It is the pressure measured with the help of pressure measuring instrument in which the 

atmospheric pressure is taken as datum. The atmospheric pressure on the scale is marked as 
zero.

 Q. 6. What is a ‘differential manometer’?
 Ans. It is a device used to measure the difference in pressures between two points in a pipe, or 

in two different pipes. In its simplest form a differntial manometer consists of a U-tube, 
containing a heavy liquid, whose two ends are connected to the points, whose difference of 
pressures is required to be found out.

 Q. 7. What is the use of a micromanometer?
 Ans. It is used for measuring small pressure differences. It utilizes two manometer liquids which 

are inmiscible with each other and also with the fluid whose pressure difference is to be 
measured.

Chapter

17
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 Q. 8. How does ‘total pressure’ differ from ‘centre of pressure’?
 Ans. Total pressure is defined as the force exerted by static fluid on a surface (either plane or 

curved) when the fluid comes in contact with the surface. This force is always at right angle 
(or normal) to the surface.

  Centre of pressure is defined as the point of application of the total pressure on the surface.
 Q. 9. List the possibilities of dam failure?
 Ans. The possibilities of dam failure are :
 (i) Failure due to sliding along its base.
 (ii) Failure due to tension or compression.
 (iii) Failure due to shear at the weakest section.
 (iv) Failure due to overturning.
 Q. 10. What is ‘buoyancy’?
 Ans. Whenever a body is immersed wholly or partially in a fluid it is subjected to an upward 

force which tends to lift (or buoy) it up. This tendency for an immersed body to be lifted up 
in the fluid, due to an upward force opposite to action of gravity is known as buoyancy.

 Q. 11. What is ‘centre of buoyancy’?
 Ans. The point of application of the force of buoyancy on the body is known as the centre of 

buoyancy. It is always the centre of gravity of the volume of fluid displaced.
 Q. 12. Define the term ‘metacentre’?
 Ans. Metacentre may be defined as a point of intersection of the axis of the body passing through 

e.g. (G) and original centre of buoyancy (B) and a vertical line passing through the centre 
of buoyancy (B1) of the tilted position of the body (floating). The position of the centre (M) 
remains practically constant for the small angle of tilt θ.

 Q. 13. What do you mean by ‘unstable equilibrium’?
 Ans. If the body does not return to its original prosition from the slightly displaced angular  

position and heels farther away, when given a small angular displacement, such an equilibrium 
is called an unstable equilibrium.

 Q. 14. What is the difference between ‘steady and unsteady flows’?
 Ans. The type of flow in which the fluid characteristics like velocity, pressure, density, etc. at a 

point do not change with time is called steady flow.
  An unsteady flow is that type of flow in which the velocity, pressure or density at a point 

change w.r.t. time.
 Q. 15. What is a ‘non-uniform flow’? Give two examples.
 Ans. A non-uniform flow is that type of flow in which the velocity at any given time changes 

with respect to space.
  Examples: (i) Flow through a non-prismatic conduit;
  (ii) Flow around a uniform pipe-bend or canal bend.
 Q. 16. Name the type of flow in the following cases :
 (i) Ground water flow.
 (ii) Flow in a converging or diverging pipe or channel.
 (iii) Flow over a drain hole of a stationary tank or wash basin.
 (iv) Subsonic aerodynamics
 Ans. (i) Laminar flow;
 (ii) Three dimensional flow;
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 (iii) Irrotational flow;
 (iv) Incompressible flow
 Q. 17. What is the difference between ‘path line and ‘stream line’?
 Ans. A path line is the path followed by a fluid particle in motion, whereas, a stream line is an 

imaginary line within the flow so that the tangent at any point on it indicates the velocity at 
the point.

 Q. 18. What is a ‘stream tube’? Give examples.
 Ans. A stream tube is a fluid mass bounded by a group of stream lines. The contents of a stream 

tube are known as ‘current flament’.
  Examples: Pipes and nozzles.
 Q. 19. What is ‘continuity equation’?
 Ans. A ‘continuity equation’ is based on the principle of conservation of mass. It states as follows:
  “If no fluid is added or removed from the pipe in any length then the mass passing across 

different sections shall be same”.
 Q. 20. What do you mean by the terms ‘circulation’ and ‘vorticity’?
 Ans. Circulation is defined mathematically as the line integral of the tangential velocity about a 

closed path (contour). Circulation around regular curves can be obtained by integration.
  Vorticity is defined as the circulation per unit of enclosed area. If a flow posesses vorticity, 

it is rotational.
 Q. 21. State ‘Bernoulli’s equation’ and list its practical applications?
 Ans. Bernoulli’s equation states: “In an ideal incommpressible fluid when the flow is steady and 

continuous, the sum of pressure energy, kinetic energy and potential (or datum) energy is 
constant along a stream line.”

  Practical applications: (i) Venturimeter; (ii) Orificemeter; (iii) Rotameter and elbow meter; 
(iv) Pilot tube.

 Q. 22. What is a ‘venturimeter’?
 Ans. A venturimeter is a device which is inserted into a pipeline to measure incompressible 

fluid flow rates. It consists of a convergent section which reduces the diameter to between 
one-half to one-fourth of the pipe diameters. This is followed by a divergent section. The 
pressure difference between the position just before the venturi and the throat of the venturi 
is measured by a differential manometer. The working of the venturimeter is based on the 
Bernoulli’s principle, that when the velocity head increases in an accelerated flow, there is 
a corresponding reduction in the piezometric head.

 Q. 23. What are the main points of difference between a veturimeter and orificemeter?
 Ans. Following are the main points of difference :
  (i) The venturimeter can be used for measuring the flow rates of all incompressible 

flows, whereas orifice meters are generally used for measuring the flow rates of liquids; 
(ii) Venturimeter is installed in pipeline only, and the accelerated flow through the apparatus 
is subsequently decelerated to the original velocity at the outlet of the venturimeter. The flow 
continues through the pipeline. In the orificemeter the entire potential energy of the fluid is 
converted to kinetic energy and the jet discharges freely into the open atmosphere; (iii) In 
the venturimeter, the flow velocity is measured by noting the pressure difference between 
the inlet and throat of venturimeter, whereas in the orificemeter the discharge velocity is 
measured by using pitot tube or by trajectory method.

 Q. 24. What assumptions are made while deriving Bernoulli’s equation?
 Ans. The following assumptions are made while deriving Bernoulli’s equation :
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 (i) The liquid is ideal and incompressible;
 (ii) The flow is steady and continuous;
 (iii) The flow is along stream lines, i.e., one dimensional;
 (iv) The velocity is uniform over the section and is equal to the mean velocity;
 (v) The only forces acting on the fluid are the gravity forces and pressure forces.
 Q. 25. What is a Pitot tube? On what principle does it work?
 Ans. Pitot tube is one of the most accurate devices for velocity measurement.
  It works on the principle that if the velocity of flow at a point becomes zero, the pressure 

there is increased due to conversion of kinetic energy into pressure energy.
  It consists of a glass tube in the form of 90° bend of short length open at both its ends. It is 

placed in the flow with its bent leg directed upstream so that a stagnation point is created 
immediately in the front of the opening. The kinetic energy at this point gets converted 
into pressure energy causing the liquid to rise in the vertical limb, to a height equal to the 
stagnation pressure.

 Q. 26. What is ‘Impulse-momentum equation”? What are its applications?
 Ans. Impulse-momemtum equation states: “The momentum of a force F acting on a fluid mass 

‘m’ in a short interval of time dt is equal to the change of momentum d (mv) in the direction 
of force.”

  Applications: This equation is used to the following types of problems:
  1. To determine the resultant force acting on the boundary of flow passage by a stream of 

fluid as the stream changes its direction, magnitude or both. Problems of this type are :
  (i) Pipe bends; (ii) Reducers; (iii) Moving values; (iv) Jet propulsion, etc.
  2. To determine the characteristic of flow when there is an abrupt change of flow section. 

Problems of this type are :
  (i) Sudden enlargement in a pipe; (ii) Hydraulic jump in a channel, etc.
 Q. 27. Define kinetic energy and momentum correction factors (Coriolis coefficients).
 Ans. Kinetic energy correction factor: It is defined as the ratio of the kinetic energy of flow per 

second based on actual velocity across a section to the kinetic energy of flow per second 
based on average velocity across the same section. It is denoted by ‘α’.

  Momentum correction factor: It is defined as the ratio of momentum of the flow per second 
based on actual velocity to the momentum of the flow per second based on average velocity 
across a section. It is denoted by ‘β’.

 Q. 28. What is moment of momentum principle?
 Ans. Moment of momentum principle states: “The resulting torque acting on a rotating fluid is 

equal to the rate of change of moment of momentum.”
  When the moment of momentum of flow leaving a control volume is different from that 

entering it, the result is a torque acting over the control volume.
 Q. 29. What is ‘vortex motion’? How is it characterised?
 Ans. The vortex motion is defined as a motion in which the whole fluid mass rotates about an 

axis.
  A vortex motion is characterised by a flow pattern wherein the stream lines are curved. 

When fluid flows between curved stream lines, centrifigal forces are set up and these are 
counter-balanced by the pressure force acting in the redial direction.

 Q. 30. What is ‘dimensional analysis’?



Chapter 17 : ‘‘Universities’ Questions (Latest) with Solutions’’         963

 Ans. Dimensional analysis is a mathematical technique which makes use of the study of the dimen-
sions for solving several engineering problems. It is based on the ‘principle of dimensional 
homogeneity’ and uses the dimensions of relevant variables affecting the phenomenon.

  It is specially useful in presenting experimental results in a concise form.
 Q. 31. What are the applications of dimensional homogeneity?
 Ans. The applications of dimensional homogeneity are :
 (i) It facilitates to determine the dimensions of a physical quantity;
 (ii) It helps to check whether an equation of any physical phenomenon is dimensionally 

homogeneous or not;
 (iii) It facilitates conversion of units from one form system to another;
 (iv) It provides a step towards dimensional analysis which is fruitfully employed to plan 

experiments and to present the results meaningfully.
 Q. 32. What is the difference between ‘model’ and ‘prototype’?
 Ans. The model is the small scale replica of the actual structure or machine. The actual structure 

of machine is called prototype.
  The models are not always smaller than the prototype, in some cases a model may be even 

larger or of the same size as prototype depending upon the need and purpose (e.g., the work-
ing of a wrist watch or a carburettor can be studied in a large scale model).

 Q. 33. Enumerate the forces which influence hydraulic phenomena.
 Ans. (i) Inertia force; (ii) Viscous force; (iii) Gravity force; (iv) Pressure force; (v) Surface tension 

force; (vi) Elastic force.
 Q. 34. What is Mach number?
 Ans. It is defined as the square root of the ratio of inertia force to the elastic force.
 Q. 35. What is a ‘distorted model’?
 Ans. A distorted model is one which is not geometrically similar to its prototype. In such a model 

different scale ratios for linear dimensions are adopted. For example in case of a wide and 
shallow river it is not possible to obtain the same horizontal and vertical scale ratios, how-
ever, if these ratios are taken to be same then because of the small depth of flow the vertical 
dimensions of the model will become too less in comparison to its horizontal length. Thus 
in distorted models the plan form is geometrically similar to that of prototype but the cross-
section is distorted.

 Q. 36. What do you understand by ‘Scale effect in models’?
 Ans. By model testing it is not possible to predict the exact behaviour of the prototype. The 

behaviour of the prototype as predicted by two models with different scale ratios is gener-
ally not the same. Such a discrepancy or difference in the prediction of behaviour of the 
prototype is termed as scale effect. The magnitude of the scale effect is affected by the type 
of the problem and the scale ratio used for the performance of experiments on models. The 
scale effect can be positive and negative and when applied to the results accordingly, the 
corrected results then hold good for prototype.

  Scale effect can be known by testing a number of models using different scale ratios, and 
the exact behaviour of the prototype can then be predicted.

 Q. 37. What are the limitations of model investigation / hydraulic similitude?
 Ans. ‘Model investigation’, although very important and valuable, may not provide ready solution 

to all problems. It has the following ‘limitations’:
 (i) The model results, in general, are qualitative but not quantitative;
 (ii) As compared to the cost of analytical work, models are usually expensive;
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 (iii) Transferring results to the prototype requires some judgement (the scale effect should 
be allowed for);

 (iv) The selection of size of a model is a matter of experience.
 Q. 38. What is the difference between an ‘orifice’ and a ‘mouthpiece’?
 Ans. An orifice is an opening in the wall or base of a vessel through which the fluid flows. The 

top edge of the orifice is always below the free surface (If the free surface is below the top 
edge of the orifice, becomes a weir).

  A mouthpiece is an attachment in the form of a small tube or pipe fixed to the orifice (the 
length of pipe extension is usually 2 to 3 times the orifice diameter) and is used to increase 
the amount of discharge.

  Orifices as well as mouthpieces are used to measure the discharge.
 Q. 39. What is ‘coefficient of resistance’?
 Ans. The ratio of loss of head (or loss of kinetic energy) in the orifice to the head of water (actual 

kinetic energy) available at the exit of the orifice is known as Coefficient of resistance. It 
is denoted by Cr.

  The loss of head in the orifice takes place, because the walls of the orifice offer some re-
sistance to the liquid, as it comes out. While solving numerical problems Cr is generally 
neglected.

 Q. 40. What is the difference between a ‘notch’ and a ‘weir’?
 Ans. A notch may be defined as an opening provided in the side of a tank or vessel such that 

the liquid surface in the tank is below the top edge of the opening. It is generally made of 
metallic plate and is used for measuring the rate of flow of a liquid through a small channel 
or a tank.

  A weir may be defined as any regular obstruction in an open stream over which the flow 
takes place. It is made of masonry or concrete. The conditions of flow, in the case of a weir 
are practically the same, as those of a rectangular notch. That is why, a notch is sometimes 
called as a weir or vise versa.

 Q. 41. What is the formula for calculating discharge over a triangular notch?
 Ans. The formula for calculating discharge (Q) over a triangular notch is given by :

    Q = 5/28 2g tan
15 2

θ
dC H

   where, H = Head of water above the apex of the notch,
    θ = Angle of notch, and
    Cd = Coefficient of discharge.
 Q. 42. What is velocity of approach?
 Ans. The velocity with which the water approaches or reaches the weir or notch before it flow 

over is known as velocity of approach. Thus if Va is the velocity of approach, then an ad-

ditional head Ha 
2

2g
aV 

=  
 

 due to the velocity of approach is acting on water flowing over 

the notch or weir. Then initial and final heights of water over the notch or weir will be (H 
+ Ha) and Ha respectively.

 Q. 43. Name the type of flow for each of the following Reynolds (Re) numbers :
 (i) Re < 2000; (ii) Re > 4000; (iii) Re between 2000 and 4000.
 Ans. (i) Laminar flow; (ii) Turbulent flow; (iii) Unpredictable flow.
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 Q. 44. What are the important applications of Navier-Stokes equations?
 Ans. The important applications of Navier-stokes equations are :
 (i) Laminar flow in circular pipes;
 (ii) Laminar flow between concentric rotating cylinders;
 (iii) Laminar uni-directional flow between stationary parallel plates;
 (iv) Laminar uni-directional flow between parallel plates having relative motion.
 Q. 45. How is loss of head due to friction in pipe flow expressed?
 Ans. Loss of head (hf) due to friction in pipe flow is given by :

    hf = 
22

14
2g 2g

f LVf LV
D D

=
× ×

  where, f = Friction coefficient; f1 (= 4f) = friction factor,
    L = Length of the pipe between the two sections considered,
    D = Diameter of the pipe, and
    V = Average flow velocity.
 Q. 46. When does a pipe behave like an open channel?
 Ans. A pipe is a closed conduit (generally of circular cross-section) which is used for carrying 

fluids under pressure. The flow in a pipe is termed pipe flow only when the fluid completely 
fills the cross-section and there is no free surface of liquid. The pipe running partially full 
(in such a case atmospheric pressure exists inside the pipe) behaves like an open channel.

 Q. 47. What is the difference between ‘Energy’ and ‘Hydraulic’ gradient lines?
 Ans. ‘Energy gradient line (E.G.L.): If the total energy at various points along the axis of the 

pipe is plotted and joined by a line, the line so obtained is called the ‘Energy gradient line’.
  Hydraulic gradient line: If a line is drawn joining the piezometric levels at various points, 

the line so obtained is called the ‘Hydraulic gradient line’.
 Q. 48. What do you mean by water hammer in pipes?
 Ans. The phenomenon of sudden rise in pressure in a pipe when water flowing in it is suddenly 

brought to rest by closing the valve is known as water hammer or hammer blow.
 Q. 49. What is a boundary layer?
 Ans. The layer adjacent to the boundary is known as boundary layer. Boundary layer is formed 

whenever there is relative motion between the boundary and the fluid.
  According to boundary layer theory the extensive fluid medium around bodies moving in 

the fluids can be divided into following two regions :
 (i) A thin layer adjoining the boundary is called the ‘boundary layer’ where the viscous 

shear takes place.
 (ii) A region outside the boundary layer where the flow behaviour is quite like that of an 

ideal fluid and the potential flow theory is applicable.
 Q. 50. What is boundary layer thickness?
 Ans. The velocity within the boundary layer increases from zero at the boundary surface to the 

velocity of the main stream asymptotically. Therefore the thickness boundary layer is arbi-
trarily defined as that distance from the boundary in which the velocity reaches 99 per cent 
of the velocity of the free stream (u = 0.99U). It is defined by the symbol δ. This definition 
however gives an approximate value of the boundary layer thickness and hence δ is gener-
ally termed as ‘nominal thickness’ of boundary layer.

  The commonly adopted definitions of the boundary layer thickness are : (i) Displacement 
thickness (δ*); (ii) Momentum thickness (θ); (iii) Energy thickness (δe).
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 Q. 51. How does ‘displacement thickness (δ*)’ differ from momentum thickness (θ)?
 Ans. Displacement thickness is the distance measured perpendicular to the boundary, by which 

the main/free stream is displaced on account of formation of boundary layer (δ).
  Momentum thickness is the distance through which the total loss of momentum per second 

be equal to it if it were passing a stationary plate. The momentum thickness is useful in 
kinetics.

 Q. 52. What is ‘Von Karman momentum equation’? What is the use of this equation?
 Ans. Von Karman momentum equation is given by :

    0
2U

τ
ρ

 = d
dx

θ

  where, θ = 
0

1u u
U U

δ
 − 
 ∫  dy, and

    τ0 = Shear stress at the surface,
    ρ = Density of fluid,
    u = Velocity at the section considered,
    U = Free stream velocity, and
    dy = Thickness of the section considered.
  This equation is used to find out the frictional drag on smooth flat plate for both laminar 

and turbulent boundary layers.
 Q. 53. On what factors does the flow separation depends?
 Ans. The flow separation depends on the following factors :
  (i) The curvature of the surface, (ii) The Reynolds number, and (iii) Roughness of surface.
 Q. 54. Name the methods used to control separation.
 Ans. The following methods are used to control separation:
  (i) Motion of boundary layer, (ii) Acceleration of fluid in the boundary layer, (iii) Suction 

of fluid from the boundary layer, and (iv) Streamlining of body shapes.
 Q. 55. Name the forces to which a body wholly immersed in a real fluid may be subjected to?
 Ans. A body wholly immersed in a real fluid may be subjected to the following forces:
 (i) Drag force (FD): It is the force exerted by the fluid in the direction of flow (free stream).
 (ii) Lift force (FL): It is the force exerted by fluid at right angles to the direction of flow.
 Q. 56. What is the difference between a ‘streamlined body’ and a ‘bluff body’?
 Ans. A body whose surface coincides with the stream lines when placed in a flow, is called a 

streamlined body. If the surface of the body does not coincide with the stream lines the body 
is called bluff body.

 Q. 57. What is the ‘terminal velocity’ in relation to the falling body? What is the formula for cal-
culating it for a sphere falling through a liquid at rest.

 Ans. The terminal velocity is the maximum velocity attained by a falling body. The terminal 
velocity (U) of a sphere falling through a liquid at rest is calculated from the following 
relation:

    U = 
2

18
D

µ
 (ws – wf)

  where, D = Diameter of the sphere, µ = Dynamic viscosity of the fluid, ws = Specific weight 
of the material of sphere, and wf = Specific weight of fluid.

 Q. 58. What is D’Alembert’s paradox?
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 Ans. The concept of zero drag on bodies immersed in a steady flow of ideal fluid is called 
D’Alembert’s paradox.

 Q. 59. What is ‘Magnus effect’? What are it uses?
 Ans. The generation of lift by spinning cylinder in a fluid stream is called Magnus effect.
  Uses :
 (i) This effect has been successfully employed in the propulsion of ships;
 (ii) The Magnus effect may also be used with advantage in the games like table tennis, 

golf, cricket etc.
 Q. 60. How is Kutta-Joukowski equation expressed?
 Ans. According to Kutta-Jowkowski equation, the total lift (FL) of a cylinder of length L is given by :
    FL = ρ L U Γ
  where, ρ = Density of fluid,
    L = Length of the cylinder,
    U = Velocity of uniform flow, and
    Γ = Circulation.
 Q. 61. What do you mean by stagnation point and stagnation properties?
 Ans. The point on the immersed body where the velocity is zero is called stagnation point. At this 

point velocity head is converted into pressure head. The values of pressure (ps), temperature 
(Ts) and density (ρs) at stagnation point are called stagnation properties.

 Q. 62. What are shock waves in compressible flow?
 Ans. Whenever a supersonic flow (compressible) abruptly changes to subsonic flow, a shock 

wave (analogous to hydraulic jump in an open channel) is produced resulting in a sudden 
rise in pressure, density, temperature and entropy. This occurs due to pressure differentials 
and when the Mach number of the approaching flow is greater than one (i.e., M > 1).

 Q. 63. What is an open channel?
 Ans. An open channel may be defined as a passage in which liquid flows with its upper surface 

exposed to atmosphere. In open channels the flow is due to gravity, thus the flow conditions 
are greatly influenced by the slope of the channel.

 Q. 64. What is hydraulic radius (R)?
 Ans. Hydraulic radius is the ratio of the cross-sectional area of flow to wetted parameter. It is 

also called ‘hydraulic mean depth’.
 Q. 65. What do you mean by most economical section of a channel?
 Ans. The most economical section (also called the best section or most efficient section) is one 

which gives the maximum discharge for a given amount of excavation.
 Q. 66. What is a ‘hydraulic jump’ or ‘standing wave’?
 Ans. In an open channel when rapidly flowing stream abruptly changes to slowly flowing stream, 

a distinct rise or jump in the elevation of fluid surface takes place, this phenomenon is known 
as hydraulic jump (which is analogous to shock wave in compressible fluids). The hydraulic 
jump converts kinetic energy of stream rapidly flowing into potential energy. Due to this there 
is a loss of kinetic energy. At the place where hydraulic jump occurs rollers of turbulent water 
(eddying turbulences) form, which cause dissipation of energy. A hydraulic jump occurs in 
practice at the toe of spillways or below a sluice gate where the velocity is very high.

  The hydraulic jump is also known as a standing wave because it is, in essence, a wave which 
is stationary (i.e., at stand-still) at one place.

 Q. 67. How does ‘afflux’ differ from’ back water curve’?
 Ans. Afflux is the increase in water level due to some obstruction across the flowing liquid; the 

curved surface of the liquid with its concavity upwards, is known as back water curve.
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SECTION-B: “QUESTIONS WITH SOLUTIONS”

 Q. 1. A circular pipe 100 mm in diameter has a 2.5 m length which is porous. In this porous 
section the velocity of exit is known to be constant (Fig. 1). If the velocities at inlet and outlet of the 
porous section are 1.8 m/s and 1.1 m/s respectively, calculate :
 (i) The discharge emitted out through walls of the porous pipe, and
 (ii) The average velocity of this emitted discharge.

2.5 m

V1
Porous pipe

Ve

V2

Constant
emission
velocity

100 mm

1 2

Ve

Fig. 1

 Solution. Given: Dia. of the pipe, D = 100 mm = 0.1 m; Length, L = 2.5 m; Velocities at inlet 
and outlet of the porous pipe, V1, V2 = 1.8 m/s and 1.1 m/s respectively.

 Area of the pipe cross-section, A = 
4
π  × (0.1)2 = 7.854 × 10–3 m2

 (i) The discharge emitted out through walls of the porous pipe, Qe:
    Inlet discharge, Q1 = AV1 = 7.854 × 10–3 × 1.8 = 0.014137 m3/s
    Outlet discharge, Q2 = AV2 = 7.854 × 10–3 × 1.1 = 0.0086394 m3/s
 ∴  Discharge emitted through walls of the porous pipe,
    Qe = Q1 – Q2 = 0.014137 – 0.0086394 = 0.0054976 m3/s (Ans.)
 (ii) The average velocity of the emitted discharge Ve :
  Surface area of the emission, Ae = πDL
     = π × 0.1 × 2.5 = 0.7854 m2

    Velocity of emission, Ve = 0.0054976
0.7854

e

e

Q
A

=  = 0.007 m/s (Ans)

 Q.2. Fig. 2. shows a standard lined triangular section. The section consists of a triangular 
section of side slope ‘n’ horizontal : 1 vertical with its bottom being rounded off by a circular 
curve of radius equal to the full supply depth. For such a channel calculate fully supply depth 
corresponding to a full supply discharge of 20 m3/s. The side slopes are 2 horizontal : 1 vertical, 
the longitudinal slope is 1 in 2500 and Manning’s N = 0.018.

� �

2 �

y

r =
y

r =
y

�

n

1

n = cot �

Fig. 2. Standard lined triangular canal section.
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 Sultion. Given: Full supply discharge, Q = 20 m3; Side slopes = 2 horizontal : 1 vertical; 
Longitudinal slopes = 1 in 2500; Manning’s N = 0.018.
 Full supply depth, y :
 Let y0 = Normal (or full supply) depth = r
  θ = Inclination of the sides to the horizontal,

  cot θ = n, or, θ = 1 1tan
n

−

  Area, A = 2 21 12 cot 2
2 2

y y θ + ⋅ θ 
 

   = y2 (θ + cot θ) …(i)
   = εy2, where, ε = θ + cot θ = 1 1tan n

n
− + 

 
  Wetted perimeter, P = 2y cot θ + 2y θ
   = 2y (cot θ + θ) = 2εy …(ii)

  Hydraulic radius, R = 
2

2 2
A y y
P y

ε
= =

ε
 ...(iii)

  In the present case, n = 2

 and, 1 1tan
n

−  = 1 1tan
2

−  = 26.565 × 
180

π  = 0.4636 rad

 ∴ ε = θ + cot θ = 1 1tan n
n

− +

   = 0.4636 + 2 = 2.4636
 and, A = εy2 = 2.4636 y2 [from (i)]
  R = 0.5 y [from (iii)]
 By using Manning’s equation, we have :

  Q = A × 1
N

 R2/3 S½

  20 = 2.4636 y2 × 1
0.018

 × (0.5 y)2/3 × 
1 21

2500
 
 
 

  20 = 1.7244 y8/3

 or, y = 
3 820

1.7244
 
 
 

 = 2.507 m (Ans.)

 Q. 3.  In Fig. 3 is shown a standard lined trapezoidal section which has a bottom width of 30 m 
and side slopes of 1.5 horizontal : 1 vertical. The longitudinal slope is 1 in 4500 and the Manning’s 
N can be assumed to be 0.017. Determine the discharge if the full supply depth y is 3.2 m.

� �
�

�1

n

n = cot �

= 1.5

30 m

�

y = 3.2 mr = y r = y

Fig. 3. Standard lined trapezoidal section.
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 Solution. Given: Bottom width, b = 30 m; Side slopes = 1.5 horizontal : 1 vertical (n = 1.5); 

Longitudinal slope; S = 1 ;
4500

 Supply depth, y = 3.2 m; Manning’s N = 0.017.

 Discharge with full supply width, Q:
 Let the side slopes be n horizontal : 1 vertical. If θ is the inclination of side to the horizontal, then:

  cot θ = n, and θ = 1 1tan
n

−

 If, ε = cot θ + θ = 1 11 1tan 1.5 tan 2.088 ,
1.5 80

n
n

− − π + = + × = 
 

 then

  Area, A = by + y2 (cot θ + θ) = (b + εy) y
  Perimeter, P = b + 2y (cot θ + θ) = b + 2yε
 Inserting the values, we get :
  A = (b + εy) y = (32 + 2.088 × 3.2) × 3.2 = 123.78 m2

 and, P = b + 2yε = 32 + 2 × 3.2 × 2.088 = 45.363 m

 and,  hydraulic radius, R = 123.78
45.363

A
P

=  = 2.729 m

 By using Manning’s formula, we get :

  Discharge, Q = A × V = A × 1
N

 R2/3 S1/2

   = 123.78 × 1
0.017

 × (2.729)2/3 × 
1/21

4500
 
 
 

 = 211.96 m3/s (Ans.)

 Q. 4.  Fig. 4, shows a standard lined trapezoidal channel section. For such a channel determine 
the bed width ‘b’ and depth of flow ‘y’ to carry 85 m3/s of discharge on a slope of 1 in 2500. The 
velocity of flow is to be 1.8 m/s and the side slopes are 1.2 horizontal : 1 vertical.
 Manning’s N can be taken as 0.016.
 Also b > y.

b

r = y y r = y�1

n

= 1.2

�
� �

�

n = cot �

Fig. 4

 Solution. Given: Q = 85 m3/s; Longitudinal slope, S = 1 ;
2500

 V = 1.8 m/s; Side slopes = 1.2 
horizontal : 1 vertical (or, n = 1.2); N = 0.016.
 Bed width, b; Depth of flow, y:
 For the standard lined trapezoidal channel section,
 Let, θ = Inclination of sides to the horizontal, and
  Side slope = n horizontal : 1 vertical
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 Then, cot θ = n, or, θ = 1 1tan
n

−

 Further, let cot θ + θ = 1 1tann
n

−+  = ε, then :

  Area, A = by + y2 (cot θ + θ) = by + εy2 = (b + εy)y
  Perimeter, P = b + 2y (cot θ + θ) = b + 2 y ε
 Inserting the values, we get :

  ε = 1.2 + 1 1tan
1.2 180

− π × 
 

 = 1.895

 Area, A = 85
1.8

Q
V

=  = 47.22 m2

 Also, A = by + 1.895 y2 = 47.22 …(1)
 By, Manning’s formula,

  V = 1
N

 R2/3 S1/2

 or, 1.8 = 
1 2

2 3 2 31 1 1.25
0.016 2500

R R × × = 
 

 ∴ R = 
3 21.8

1.25
 
 
 

 = 1.728

 Also, R = 47.22 47.22
2 1.895 3.79

A
P b y b y

= =
+ × +

 = 1.728 (as above)

 or, b + 3.79 y = 47.22
1.728

 = 27.327

 or, b = 27.327 – 3.79 y …(2)
 Substituting for b in (1), we get :
  A = (27.327 – 3.79 y) y + 1.895 y2 = 47.22
   = 27.327y – 3.79 y2 + 1.895 y2 = 47.22
 or, –1.895 y2 + 27.327 y – 47.22 = 0
 or, 1.895 y2 – 27.327 y + 47.22 = 0
 or, y2 – 14.42 y + 24.92 = 0
 Solving for y and noting b > y, we have :

  y = 
( )214.42 14.42 4 24.92 14.42 10.40

2 2
− − × −

=

   = 2.01 m (Ans)
 Now, b = 27.327 – 3.79 × 2.01 = 19.7 m (Ans.)
 Q. 5.  For a triangular channel having a vertex angle of 110°, calculate the critical depth for a 
discharge 2.8 m3/s.
 Solution. Refer to Fig. 5.
 Given: 2θ = 110°; Q = 2.8 m3/s
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2y tanc �

�yc

2� 2 = 110°�

Fig. 5. Triangular channel.

 Critical depth, yc:
  Top width, btop = 2yc tan θ

  Area, Ac = 1
2

 × 2yc tan θ × yc

   = yc
2 tan θ

 At critical depth,

  
2Q

g
 = 

3

top

cA
b

 = 
6 3

5 2tan 1 tan
2 tan 2

c
c

c

y y
y

θ
= θ

θ

 or, yc = 
1 52

2
2 1

tan
Q
g

 
×  θ 

   = ( )
( )

1 52

2
2 2.8 1

9.81 tan 55

 ×
 ×
 ° 

 = 0.952 m (Ans.)

 Q. 6.  An overflow spillway has its crest at elevation 133 m and horizontal apron at an elevation 
103 m on the downstream side. Estimate the tailwater elevation required to form an hydraulic jump 
when  the elevation of the energy line just upstream of the spillway crest is 135 m. Assume Cd = 
0.74 for the spillway. Neglect energy loss due to flow over the spillway.

 Solution. Refer to Fig. 6

EL

V /2g2

2

y2

Energy line

EL. 133 m

EL. 135 m

EL. 103 my1y1

Fig. 6

 Given: Elevation level (EL.) of overflow spillway at the crest = 133 m; EL. of horizontal apron 
= 103 m; EL. of the energy line just upstream of the spillway crest = 135 m; Cd = 0.74.
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 Tailwater elevation required to form an hydraulic jump:

 We know that, Q = 3 22 2g
3 dC H

 Hence, H = 135 – 133 = 2 m

 ∴ Q = 2
3

 × 0.74 × 2 9.81×  × (2)3/2 = 6.18 m3/s

  E1 = 135 – 103 = 32 m

 Also, E1 = 
2 2

1
1 1 2

12g 2g
V Qy y

y
+ = +  

1 1

1
1 1

or,
1

Q A V
Q QV
A y

= × 
 
 = =

×  



   = ( )2

1 2
1

6.18
2 9.81

y
y

+
×

 Hence, 1 2
1

1.947y
y

+  = 32 m  (i.e. 135 – 103)

 By trial and error, y1 = 0.2475 m

 Now, V1 = 
1

6.18
0.2475

Q
y

=  = 24.97 m/s

 and,  Froud number, Fr1 = 1

1

24.97 16.025
9.81 0.2475

V
gy

= =
×

 We know that, y2 = ( )21
11 8 1

2 r
y F + −  

 …[Eq. (16.38)]

 or, y2 = ( )20.2475 1 8 16.025 1
2

 + −  
 = 5.487 m

 Hence, required tailwater elevation = 103 + 5.487 = 108.487 m (Ans.)
 Q. 7.  The space between two square flat parallel plates is filled with oil. Each side of the plate 
is 680 mm. The thickness of the oil film is 12 mm. The upper plate which moves at 2.8 m/s requires 
a force of 105 N to maintain the speed. Determine :
 (i) The dynamic viscosity of the oil; (ii) The kinetic viscosity of oil if the specific gravity of oil 
is 0.92.
 Solution. Given: Each side of a square plate = 680 mm = 0.68 m;
 The thickness of oil, dy = 12 mm = 0.012 m; Velocity of upper plate = 2.8 m/s; Force required 
to maintain the speed = 105 N; Specific gravity of oil = 0.92.

  Now shear stress, τ = Force 105
Area 0.68 0.68

=
×

 = 227.1 N/m2

 (i) Dynamic viscosity µ:

  We know that, τ = ,du
dy

µ ⋅  227.1 = ( )2.8 0
0.012

−
µ ×

 ∴ µ = 227.1 0.012
2.8
×  = 0.097 Ns/m2 (Ans)

 (ii) Kinematic viscosity, ν:
  Weight density of oil, w = 0.92 × 9.81 kN/m3

   = 9.025 kN/m3 or 9025 N/m3
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  Mass density of oil, ρ = 9025 920
9.81

w
g

= 

 Using the relation : ν = 0.97
920

µ
=

ρ
 = 0.00105 m2/s (Ans).

 Q. 8.  Fig. 7 shows a U-tube differential manometer connecting two pressure pipes at A and 
B. The pipe A contains a liquid of specific gravity 1.5 under a pressure of 105 kN/m2. The pipe B 
contains oil of specific gravity 0.78 under a pressure of 190 kN/m2.
 Determine the difference of pressure measured by mercury at fluid filling U-tube.

2.5 m

p , SB 2

Pipe B

Pipe A

p , SA 1

B
1.0 m

h
XX

Mercury

A

Fig. 7

 Solution. Refer to Fig. 7. Given: Specific gravity of liquid at A, S1 = 1.5; Pressure at A, pA = 105 
kN/m2; Specific gravity of liquid at B, S2 = 0.78; Pressure at B, pB = 190 kN/m2.
 Difference of pressure measured by mercury, h:

 Pressure heat at A, hA =  105
9.81

Ap
w

=  = 10.7 m of water

 Pressure heat at B, hB = 190
9.81

Bp
w

=  = 19.37 m of water

 Taking X–X as the datum line :
 Pressure head above X–X in the left limb
   = hA + (2.5 + 1.0) S1 + h × 13.6 m of water.
 Pressure head above X–X in the right limb
   = hB + (1.0 + h) × S2 m of water.
 Equating the above pressure heads we get :
  hA + (2.5 + 1.0) S1 + h × 13.6 = hB + (1.0 + h) × S2

 or, 10.7 + 3.5 × 1.5 + 13.6 h = 19.37 + (1.0 + h) × 0.78
 or, 15.95 + 13.6 h = 20.15 + 0.78 h
 From which, h = 0.327 m, or, 327 mm (Ans.)
 Q. 9.  A trapezoidal 2.5 m wide at the bottom and 1.2 m deep has side slopes 1 : 1. Determine : 
(i) Total pressure; (ii) Centre of pressure on the vertical gate closing the channel when it is full of 
water.
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 Solution. Refer to Fig. 8.

1.2 m2.5 m1.2 m

2.5 mS T

45° 45°

4.9 m

1.2 m

L M

Fig. 8

 (i) Total pressure, P:
 For rectangle :
  Area, A1 = 2.5 × 1.2 = 3.0 m2

  x  = 1.2
2

 = 0.6 m

  P1 = wA x  = 9.81 × 3.0 × 0.6
   = 17.66 kN
 This acts at a depth 1h .

 But, 1h  = 
( )32.5 1.2 12

0.6 0.8 m
3.0 0.6

GI x
Ax

 × + = + =
×

 For triangles:

  Area, A2 = 2 × 1
2

 × 1.2 × 1.2 = 1.44 m2 (For two triangles);

  x  = 1.2
3

 = 0.4 m

  P2 = wA x  = 9.81 × 1.44 × 0.4 = 5.65 kN
 This acts at a depth of 2h .

 But, 2h  = 
( )32.4 1.2 36

0.4 0.6 m
1.44 0.4

GI x
Ax

 × + = + =
×

  Total pressure, P = P1 + P2 = 17.66 + 5.65 = 23.31 kN (Ans.)

 (ii) Centre of pressure, h:
 Taking moments about the top, we get :
  P × h  = P1 × 1h  + P2 × 2h

 or, h  = 1 1 2 2 17.66 0.8 5.651 0.6
23.31

P h P h
P
+ × + ×

=

   = 0.75 m (Ans)

 Q. 10.  A wooden block of specific gravity 0.8 floats in water. If the size of the block is 1.6 m × 
0.8 m × 0.6 m, find its metacentric height.
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 Solution. Refer to Fig. 9.

1
.2

m

0.5 m
h

0.6 m

O

Water

Plan

Wooden block
(sp. gr. = 0.8)

G
B

Fig. 9

 Given: Size/dimensions of the block = 1.6 m × 0.8 m × 0.6 m; Specific gravity of wood, ρ = 0.8.
 Metacentric height:
  Specific weight, w = ρ × g = 0.8 × 9.81 = 7.85 kN/m3

  Weight of wooden block = Specific weight × volume
   = 7.85 × (1.2 × 0.6 × 0.5) = 2.83 kN
  Let depth of immersion = h metre
  Weight of water displaced = Specific weight of water × volume of the wood submerged in water
   = 9.81 × 1.2 × 0.6 × h = 7.06 h
 Now for equilibrium,
  Weight of wooden block = Weight of water displaced
 i.e., 7.06 h = 2.83

 or, h = 2.83
7.06

 = 0.4 m

 Distance of centre of buoyancy from the bottom i.e.,

  OB = 0.4 0.2 m
2 2
h

= =

 and, OG = 0.5
2

 = 0.25 m

 ∴ BG = OG – OB = 0.25 – 0.2 = 0.05 m

 Also, BM = I
V

 Where, I = Moment of inertia of a rectangular section

   = 
31.2 0.6

12
×  = 0.0216 m4

 and, V = Volume of water displaced, or, volume of wood in water
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   = 1.2 × 0.6 × h = 1.2 × 0.6 × 0.4 = 0.288 m3

 ∴ BM = 0.0216
0.288

I
V

=  = 0.075 m

 We know that the metacentric height,
  GM = BM – BG ( G is above B)
   = 0.075 – 0.05 = 0.025 m (Ans)
 Q. 11.  A pipe 240 m long slopes down 1 in 80 and tapers from 500 mm diameter at the higher 
end to 250 mm diameter at the lower end, and carries 80 litres / sec. of oil (sp. gr. 0.75). If the 
pressure gauge at the higher end reads 55 kN/m2, determine:
 (i) Velocities at the two ends; (ii) Pressure at the lower end.
 Neglect all losses.
 Solution. Refer to Fig. 10.
 Given: l = 240 m; D1 = 500 mm = 0.5 m; D2 = 250 mm = 0.25 m; Slope : 1 in 80; p1 = 55 kN/
m2, Rate of oil flow, Q = 80 litres/sec. = 0.08 m3/s; Sp. gr. = 0.75.

D2

= 250 mm

D1

= 500 mm

p = 55 kN/m

1

2

Slope 1 in 80p = ?
2

2

1

Datum line

Fig. 10

 (i) Velocities, V1, V2 :

  Area, A1 = 2 2 2
1 0.5 0.196 m

4 4
Dπ π

× = × =

  Area, A2 = 2 2 2
2 0.25 0.049 m

4 4
Dπ π

× = × =

 Height of the higher end, above datum,

  z1 = 1
80

 × 240 = 3 m

 Height of the lower end, above datum,
  z2 = 0
 Now, Q = A1V1 = A2 V2
 where, V1 and V2 are the velocities at the higher and lower ends respectively.

  V1 = 
1

0.08
0.196

Q
A

=  = 0.408 m/s (Ans)

 and, V2 = 
2

0.08
0.049

Q
A

=  = 1.632 m/s (Ans)

 (ii) Pressure at the lower end, p2:
 Using Bernoulli’s equation for both ends of the pipe, we have :

  
2

1 1
12g

p V z
w

+ +  = 
2

2 2
22g

p V z
w

+ +
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 or, ( )20.40855 3
0.75 9.81 2 9.81

+ +
× ×

 = ( )2
2 1.632

0
0.75 9.81 2 9.81

p
+ +

× ×

 or, 7.475 + 0.00848 + 3 = 2 0.136
7.36
p

+

 or, p2 = 76.16 kN/m2 (Ans.)

 Q. 12.  Resistance R to the motion of a completely submerged body is given by R = ρV2L2 φ 

,VL 
 ν 

 where ρ and ν are density and kinematic viscosity of the fluid while L is the length of the 

body and V is the velocity of flow. If resistance of a one-sixth scale airship model when tested in 
water at 10 m/s is 230 N, what will be the resistance in air of the airship at the corresponding 
speed? Kinematic viscosity of air is 13 times that of water and density of water is 810 times of air.

 Solution. Given: Scale ratio = 1 ;
6

m

p

L
L

=  Velocity of model, Vm = 10 m/s; Resistance of model, 
Rm = 230 N.
 The fluids for model and prototpe are water and air respectively.
 ∴ Kinematic viscosity of air = 13 × kinematic viscosity of water
 or, νp = 13 νm
  Density of water = 810 × density of air
 or, ρm = 810 ρp
 Resistance of the airship, Rp:
 The resistance, R, is given by :
  R = ρ V2L2 φ VL 

 ν 
 From the above equation it is obvious that flow in the model will be dynamically similar if the 
Reynolds numbers are equal in both the systems. Thus, if,

  
m

VL 
 ν 

 = 
p

VL 
 ν 

 …(i)

 Then, 2 2
m

R
V L

 
 

ρ 
 = 2 2

p

R
V L

 
 

ρ 
 …(ii)

 From eqn. (i), we have :

  m m

m

V L
ν

 = p p

p

V L
ν

 or, Vp = 110 13 21.67 m s
6

pm
m

p m

LV
L

ν
× × = × × =

ν

 At this prototype velocity, the resistance of the airship is obtained from eqn. (ii) as follows :

  2 2
m

m m m

R
V Lρ

 = 2 2
p

p p p

R
V Lρ

 or, Rp = 
2 2

2 2
p p p

m
m m m

V L
R

V L
ρ

× × ×
ρ

   = ( )
2

21 21.67230 6
810 10

 × × × 
 

 = 48 N (Ans.)



Chapter 17 : ‘‘Universities’ Questions (Latest) with Solutions’’         979

 Q. 13. A rectangular channel 1.6 m wide has a discharge of 0.24 m3/s, which is measured by a 
right angled V-notch-weir. Find the position of the apex of the notch from the bed of the channel if 
the maximum depth of water is not to exceed 1.1 m. Assume Cd = 0.63.
 Solution. Given: Width of the rectangular channel, L = 1.6 m; Discharge, Q = 0.24 m3/s; Depth 
of water in the channel = 1.1 m; Coefficient of discharge, Cd = 0.63; Angle of notch,  = 90°.
 Position of the apex of the notch:
 Using the following relation for discharge over a triangular notch, we get :

  Q = 5 28 2g tan
15 2dC Hθ

×  …[Eqn. (9.2)]

 where, H is head of water above the apex of the notch.
 Inserting the various values in the above eqn. we have:

  0.24 = 5 28 900.63 2 9.81 tan
15 2

H° × × × × × 
 

   = 1.488 H5/2

 or, H = 
2 50.24

1.488
 
 
 

 = 0.48 m

 Position of the apex of the notch from the bed of channel
   = Depth of water in the channel – height of water over the notch
   = 1.1 – 0.48 = 0.62 m (Ans.)
 Q. 14. It is required to pump glycerine at the rate of 22 litres/sec. from a sump and deliver it 
freely at a point 105 m away and 7 m above the level of sump through a 150 mm pipe (Fig. 11).
 (i) What is the power of the pump required assuming an overall efficiency of 70 percent?
 (ii) What should be the rate of rise of temperature due to viscous dissipation if the pipe 

is completely insulated?
  Sp. gr. of glycerine = 1.26; Viscosity = 15 poise; Specific heat = 250 J/N°C; K.E. 

correction factor, α = 2.
 Solution. Given: Rate of flow of glycerine = 22 litres/sec = 0.022 m3/s; Diameter of the pipe, 
D = 150 mm = 0.15 m; L = 105 m; Overall efficiency η0 = 70%; Sp. gr. of glycerine = 1.26, Viscosity, 
µ = 15 poise = 1.5 Ns/m2; Specific heat = 250 J/N°C, K.E. correction factor, α = 2.
 (i) Power of the pump required, P:

  Velocity of flow, V = 
( )2

0.022

0.15
4

Q
A

=
π

×
 = 1.245 m/s

L
=

10
5

m
, D

=
12

0
m

m

�
z

=
7

m

Pump HP

1

2

Sump

Glycerine

Fig. 11
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  Reynolds number, Re = ( )1.26 1000 1.245 0.15
156.9

1.5
VD × × ×ρ

= =
µ

 Since the Reyolds number is less than 2000, the flow is laminar.
 Applying Bernoulli’s equation at sump (1) and free delivery point (2), we get :

  
2

1 1
12 p

p V z H
w g

+ + +  = 
2

2 2
22 f

p V z h
w g

+ α + +

  0 + 0 + 0 + Hp = ( )2
2
2

1.245 320 2 7
2 9.81

V L
wD
µ

+ × + +
×

 (where, Hp = Head developed by the pump, w = weight density of glycerine = (1.26 × 1000) × 
9.81 = 12361 N/m3, and hf = loss of head due to friction)

 or, Hp = ( )
( )

2

2
1.245 32 1.5 1.245 1052 7
2 9.81 12361 0.15

× × ×
× + +

× ×

   = 0.158 + 7 + 22.561 = 29.72 m
 Power of the pump required,

  P = 
0

12361 0.022 29.72 kW
0.7 1000

pw Q H × ×
=

η ×

   = 11.54 kW (Ans)
 (ii) Rate of rise of temperature:
 Dissipation of energy per N per second
   = (Energy on the discharge side of the pump – energy at the 
point of delivery) per N per second

   = f
Vh
L

×

 (since hf is energy lost per unit weight (N) of the fluid at a length L)

   = 2
32 . or

. .
VL V N m J

L N s s NwD
µ

×

   = ( )
( )

2

2
32 1.5 1.245

0.267
.12361 0.15
J

s N
× ×

=
×

 ∴ Rise of temperature = 0.267 60 60
250

× ×  = 3.8°C/h (Ans.)

 Q. 15.  A pipline carrying water has surface protrusions of average height of 0.11 mm. If the 
shear stress developed is 8.5 N/mm2, determine whether the pipe surface acts as smooth, rough or 
in transition. For water take ρ = 1000 kg/m3 and kinematic viscosity = 0.0091 stokes.
 Solution. Given: Average height of surface protrusions, k = 0.11 mm = 0.11 × 10–3 m; 
Shear stress developed, τ0 = 8.5 N/mm2; Density of water, ρ = 1000 kg/m3; Kinematic viscosity,  
ν = 0.0091 stokes = 0.0091 × 10–4 m2/s
  Shear velocity (uf) is given by :

  uf = 0τ
ρ



Chapter 17 : ‘‘Universities’ Questions (Latest) with Solutions’’         981

 or, uf = 8.5
1000

 = 0.0922 m/s

 Roughness Reynolds number  = 
( )3

4

0.0922 0.11 10
11.14

0.0091 10
fu k −

−

× ×
= =

ν ×

 Since fu k
ν

 lies between 4 and 100 the pipe surface behaves as in transition (Ans).

 Q. 16.  In a 100 mm diameter pipeline an oil of specific gravity 0.75 is flowing at the rate of 
0.0145 m3/s. A sudden expansion takes place into a second pipeline of such diameter that maximum 
pressure rise is obtained. Determine :
 (i) Loss of energy in sudden expansion; (ii) Differential gauge length indicated by an oil-
mercury manometer connected between the two pipes.
 Solution. Given: Diameter of the smaller pipe, D1 = 100 mm = 0.1 m; Specific gravity of oil, 
S0 = 0.75; Discharge, Q = 0.0145 m3/s.
 (i) Loss of energy in sudden expansion, he:

  Velocity of flow, V1 = 
2

0.0145
Area 0.1

4

Q
=

π
×

 = 1.85 m/s

 The pressure will be maximum when,

  1

2

D
D

 = 1
2

 (where, D2 = diameter of the larger pipe)

 (Note: For derivation of the formula, refer to Example 12.12)
 or, D2 = 2  D1 = 2  × 0.1 = 0.1414 m

 ∴ V2 = 
( )2

0.0145

0.1414
4
π

×
 = 0.92 m/s

 Loss of energy (or head) in sudden expansion,

  he = ( ) ( )2 2
1 2 1.85 0.92

2g 2 9.81
V V− −

=
×

 = 0.044 m of oil (Ans)

 (ii) Reading of the manometer:
 The energy equation is given as :

  
2

1 1
12

p V z
w g

+ +  = 
2

2 2
22g e

p V z h
w

+ + +  (z1 = z2, the pipe being horizontal)

 or, 2 1p p
w w

−  = 
2 2

1 2
2g 2g e
V V h− −

   = ( ) ( )2 21.85 0.92
0.044

2 9.81 2 9.81
− −

× ×
 = 0.087 m of oil

 Let, h = Reading of the U-tube oil-mercury manometer where limbs are connected across the 
expanded transition,

 Then, 2 1p p
w
−  = 

0
1mSh

S
 

− 
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 [Where, Sm = specific gravity of mercury (= 13.6)]

 or, 0.087 = 13.6 1 16
0.8

h h − = 
 

 or, h = 0.087
16

 = 0.005437 m or 5.437 mm (Ans.)

 Q. 17.  For the velocity profile in laminar boundary layer as,

  u
U

 = –
33 y 1 y

2 2
   
   
   δ δ

 find the thickness of the boundary layer and the shear stress 1.4 m from the leading edge of a 
plate. The plate is 1.8 m long and 1.2 m wide and is placed in water which is moving with a velocity 
of 180 mm per second.
 Determine the total drag force on the plate if µ for water = 0.01 poise.

 Solution. Given: x = 1.4 m; L = 1.8 m; U = 180 mm/s = 0.18 m/s; µ = 0.01 poise = 0.01
10

  

= 0.001 Ns/m2    211 poise Ns/m
10

 = 
 


 Velocity profile : u
U

 = 
33 1

2 2
y y   −   δ δ   

  For the given profile, δ = 4.64

x

x
Re

 …[Eqn. (13.20)]

 [Here, Rex = 51000 0.18 1.4 2.52 10
0.001

xUρ × ×
= = ×

µ
]

 Thickness of the boundary layer,

  δ = 
5

4.64 1.4

2.52 10

×

×
 = 0.0129 m = 12.9 mm (Ans.)

 Shear stress (τ0) is given by :

  τ0 = 0.323 x
U Re
x

µ  …[Eqn. (13.21)

 or, τ0 = 50.001 0.180.323 2.52 10
1.4

×
× × ×

   = 0.0208 N/m2 (Ans)
 Drag force (FD) on one side of the plate is given as :

  FD = 0.646 µU UL Bρ
×

µ
 …[Eqn. (13.23)]

   = 0.646 × 0.001 × 0.18 1000 0.18 1.8
0.001
× ×  × 1.4 = 0.093 N

 ∴ Total drag force = Drag force on both sides of the plate
   = 2 × 0.093 = 0.186 N (Ans.)
 Q. 18.  Determine the largest diameter and correspnoding terminal velocity of a polystyrene 
spherical particle settling in air. It obeys Stokes’ law.
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 Take : Density of polystyrene spherical particle = 1050 kg/m3;
 Density of air = 1.2 kg/m3; kinematic viscosity of air = 1.48 × 10–5 m2/s

 Solution. Given: ρs = 1050 kg/m3; ρa = 1.2 kg/m3; νa = 1.48 × 10–5 m2/s
 D.U:
 The stoke’s law is valid upto Re = 1.0. For maximum size particle that obeys stoke’s law,

  Remax = 1
a

UD
=

ν
, or, U = a

D
ν

 Stoke’s law is given by :

  U = 
2

18
D

µ
 (ws – wf)            …[Eqn. (14.15)]

 (where, suffices s and f stand for sphere and fluid respectively)

 Now, a
D
ν  = 

2

18
D

µ
 (ρs × g – ρf × g)

 (Here, µ = µa = νa × ρa = 1.48 × 10–5 × 1.2 = 1.78 × 10–5)
 Substituting the values, we get :

  
51.48 10

D

−×  = 
2

518 1.78 10
D

−× ×
 (1050 × 9.81 – 1.2 × 9.81)

 or, D = ( )

1 35 51.48 10 18 1.78 10
9.81 1050 1.2

− − × × × ×
 − 

 = 7.724 × 10–5 m

   = 0.0772 mm (Ans.)
 Q.19.  The temperature of the earth’s atmosphere drops about 5° C for every 1000 m of elevation 
above the earth’s surface. If the air temperature at the ground level is 18°C and the pressure is 
760 mm Hg, at what elevation is the pressure 410 mm Hg? Assume that air behaves as an ideal gas.

 Solution. Given: T0 = 18 + 273 = 291 K; p0 = 760 mm Hg; p = 410 mm Hg;

  dT
dZ

 = 5
1000

C m− °

 Elevation Z :

  Temperature lapse-rate, L = 1dT g
dZ R

γ − = −  γ 

 ∴ L = 5 1
1000

g
R

γ − − = −  γ 

 or, 5
1000

 = 9.81 1
287

γ − 
 γ 

 (where, R = Gas constant = 287 J/kg K for air)

 ∴ 1γ −
γ

 = 5 287 0.1463
1000 9.81

×
=

×

 Using the relation : p = 
1

0
0

11 gzp k
RT

γ
γ − γ −

− γ 
        …[Eqn. (2.18)]
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 or, 410 = 

1
0.14639.81760 1 0.1463

287 291
Z× 

− × × 

 or, 
0.1463410

760
 
 
 

 = 1 – 0.1463 × 9.81
287 291

Z×
×

 = 1 – 1.718 × 10–5 Z

 or, 1.718 × 10–5 Z = 
0.14634101

760
 −  
 

 = 0.0863

 or, Z = 5
0.0863

1.718 10−×
 = 5023 m (Ans.)

 Q. 20.  A tank of 0.8 m length and of cross-section shown in Fig. 12, contains water. The tank 
is made of 3 mm steel plates. Determine :
 (i) The force on the bottom due to water; (ii) The longitudinal tensile stresses in the side walls 
AB if (a) the tank is suspended from the top, and (b) it is supported at the bottom.
 Solution. Refer to Fig. 12.

0.5 m

0.2 m

A

B

A

B

Tank

0.35 m

0.25 m

Water

Fig. 12

 (i) Force on the bottom:
 Force on the bottom due to water,
  Pbottom = wA x
   = 9.81 × (0.5 × 0.8) × (0.2 + 0.35)
   = 2.158 kN (Ans.)
 (ii) Longitudinal tensile stresses:
 Force on the surface AA,
  PAA = 9.81 × (0.25 × 0.8) × 0.35 = 0.687 kN
 (a) When suspended from the top the stress on the side walls,

  σ = 
( )

2.158
30.5 0.5 0.8 0.8

1000
+ + + ×

 = 276.66 kN/m2 (Ans)

 (b) When supported from the bottom the stress on the side walls,



Chapter 17 : ‘‘Universities’ Questions (Latest) with Solutions’’         985

  σ = 
( )

0.687
30.5 0.5 0.8 0.8

100
+ + + ×

 = 80.08 kN/m2 (Ans.)

 Q. 21.  A hollow wooden cylinder of specific gravity 0.58 has an outer diameter of 500 mm and 
inner diameter of 250 mm. It is required to float in oil of specific gravity 0.85. Calculate :
 (i) The maximum length (height) of the cylinder so that it shall be stable when floating with 

its axis vertical;
 (ii) The depth to which it will sink.
 Solution. Refer to Fig. 13.

l

h

Oil surface
M

G

B

Axis

Wooden
cylinder

(S = 0.58)

O

Oil
(S = 0.85)

500 mm

250
mm

Fig. 13

 Given: Outer diameter of the cylinder, D = 500 mm = 0.5 m; Inner diameter of cylinder,  
d = 250 mm = 0.25 m; Specific weight of wood = 0.58 × 9.81 = 5.69 kN/m3; Specific weight of oil 
= 0.85 × 9.81 = 8.34 kN/m3

 (i) Maximum length of cylinder for stability, lmax:
 ∴ Weight of cylinder = Volume of cylinder × specific weight

   = 
4
π  (D2 – d2) × l × 5.69

   = 
4
π  (0.52 – 0.252) × l × 5.69

   = 0.838 l kN
 (where, l = length/height of the cylinder)
 This also represents the weight of oil displaced.
 ∴ Volume of oil displaced,

  V = Weight of oil displaced 0.838 0.1005
Specific weight of oil 8.34

l l= =
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 i.e., Volume of cylinder immersed in oil, V = 0.1005 l

 ∴ Depth of immersion, h = Volume of cylinder under oil
Cross-section area of cylinder

   = 
( )2 2

0.1005 0.682
0.5 0.25

4

l l=
π

−

  Height of centre of buoyancy (B) from O,

 i.e., OB = 0.682 0.341
2 2
h l l= =

 If M is the metacentre, then:

  BM = 
( )4 40.5 0.25 0.028664

0.1005
I
V l l

π
−

= =

  OM = OB + BM = 0.341 l + 0.0286
l

 Distance of centre of gravity (G) from the ponit O,

  OG = 
2
l  = 0.5 l

 For stable equilibrium, M should be at a level greater than G, i.e. OM > OG

 or, 0.02860.341 l
l

 + 
 

 > 0.5 l

 or, 0.0286
l

 > 0.159 l; or, 0.0286 > 0.159 l2

 or, 0.159 l2 < 0.0286 or l < 0.424 m
 ∴ lmax = 0.424 m (Ans.)

 (ii) Depth to which the cylinder will sink h:
  h = 0.682 l = 0.682 × 0.424 = 0.289 m (Ans.)

 Q. 22.  The velocity components in x and y directions are given as u = 
3xy

3
 – x2y and v = xy2 

– 
3yx

3
. Indicate whether the given distribution is a possible field of flow or not a possible field of 

flow.

 Solution. Given: u = 
3

3
xy  – x2y, v = xy2 – 

3

3
yx   …Velocity components

 A possible flow field (two-dimensional) must satisfy the continuity equation :

  u v
x y

∂ ∂
+

∂ ∂
 = 0 …(i)

 Now, u
dx
∂  = 

3
2 ,

3
y xy−  dv

dy
 = 

3
2

3
xxy −

 Substituting these values in eqn. (i), we get :

  
3 3

2 2
3 3
y xxy xy

   
− + −      

   
 = 1

3
 (y3 – x3)
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 Since the continuity equation is not satisfied, the given velocity components, therefore, do not 
represent a possible case of flow. (Ans.)
 Q. 23.  A siphon consisting of a pipe of 100 mm diameter is used to empty kerosene oil  
(sp. qr. = 0.75) from the tank A. The siphon discharges to the atmosphere at an elevation of  
1.4 m. The oil surface in the tank is at an elevation of 4.4 m. The centre line of the siphon pipe at 
its highest point C is at an elevation of 5.8 m. Determine :
 (i) The discharge in the pipe; (ii) The pressure at point C.
 The losses in the pipe may be assumed to be 0.42 m upto summit, 1.24 m from the summit to outlet.
 Solution. Consider points 1 and 2 at the surface of the oil in the tank A and at the outlet as 
shown in Fig. 14. The velocity V1 can be assumed to be zero. Applying Bernoulli’s equation at 
points 1 and 2, we get :

  
2

1 1
12g

p V z
w

+ +  = ( )
( )losses

2
2 2

2 1 22g f
p V z h
w −+ + +  

  0 + 0 + 4.4 = 0 + 
2

2
2g
V  + 1.4 + (0.42 + 1.24)

1.4 m
V2

2

C

4.4 m

1

Tank A
Kerosene oil

(Sp. gr. = 0.75)

5.8 m

Siphon
(d = 100 mm)

Fig. 14

 or, V2 = 5.13 m/s
 (i) The discharge in pipe, Q:

  Q = A2V2 = 
2100 5.13

4 1000
π  × × 

 
 = 0.04 m3/s (Ans.)

 (ii) The pressure at point C:
 Applying Bernoulli’s equation at points 1 and C, we get :

  
2

1 1
12g

p V z
w

+ +  = ( )

2

12g
C C

C t C
p V

z h
w −+ + +

  0 + 0 + 4.4 = 
( )25.13

5.8 0.42
2 9.81

Cp
w

+ + +
×
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 or, Cp
w

 = – 3.16 m

 or, pC = (0.75 × 9.81) × (–3.16) = – 23.25 kN/m2 or – 23.25 kPa (gauge) (Ans.)
 Q. 24.  Fig. 15 shows a tank containing water and liquid (sp. gr. = 0.8) upto a height of 0.3 m 
and 0.6 m respectively. Calculate :
 (i) Total pressure on the side of the tank; (ii) The position of centre of pressure from one side of 
the tank, which is 1.8 m wide.
 Solution. Given: Depth of liquid, h1 = 0.6 m; Depth of water, h2 = 0.3 m; Sp. gr. of liquid, S = 
0.8, Width of the tank = 1.8 m.

P2
P3

P1

L

S

N
M U

T

1.8 m

0.6 m

0.3 m

Liquid
(S = 0.8)

Water

 Fig. 15          Fig. 16. Pressure diagram

 (i) Total pressure on one side of the tank P:
 Total pressure (P) is calculated by drawing perssure diagram, which is shown in Fig. 16.
 Intensity of pressure on top, pL = 0
 Intensity of pressure on T (or TS),
  pT = w1h1 = (0.8 × 9.81) × 0.6 = 4.71 kN/m2

 Intensity of pressure on the base (or MN),
  pM = w1h1 + w2h2 = 4.71 + 9.81 × 0.3 = 7.65 kN/m2

 Now, Force, P1 = Area of ∆ LTS × width of the tank

   = 1
2

 × LT × TS × 1.8 = 1
2

 × 0.6 × 4.71 × 1.8 = 2.54 kN

  Force, P2 = Area of rectangle MTSU × width of the tank
   = MT × TS × 1.8
   = 0.3 × 4.71 × 1.8 = 2.54 kN
  P3 = Area of ∆ SUN × width of the tank

   = 1
2

 × SU × UN × 1.8

   = 1
2

 × 0.3 × (9.81 × 0.3) × 1.8 = 0.79 kN

  ( UN = w2h2 = 9.81 × 0.3)
 Total pressure,
  P = P1 + P2 + P3 = 2.54 + 2.54 + 0.79 = 5.87 kN
 (ii) Centre of pressure, h :
 Taking moments of all the forces about L, we get :
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  P × h  = P1 × 2
3

 LT + P2 × 3
1 2
2 3

LT TM P LT MT   + + × +   
   

  5.87 h  = 2.54 × 2
3

 × 0.6 + 2.54 1 20.6 0.3 0.79 0.6 0.3
2 3

   + × + × + ×   
   

   = 1.016 + 1.905 + 0.632 = 3.553
 or, h  = 0.605 m from the top (Ans.)
 Q.25.  A solid cube of side 600 mm each is made of a material of relative density 0.52. The cube 
floats in a liquid of relative density 0.92 with two of its faces horizontal. Examine its stability.
 Solution. Refer to Fig. 17.
 Given:  Side of the cube = 600 mm = 0.6 m;
  Sp. gr. of cube material = 0.52; Relative density of liquid = 0.92.

  Depth of cube is liquid, h = 0.6 0.52
0.92
×  = 0.339 m

 Distance of centre of buoyance (B) from O,

  OB = 0.339
2 2
h

=  = 0.1695 m

 Distance of centre of gravity (G) from O,

  OG = 0.6
2

 = 0.3 m

  BG = OG – OB = 0.3 – 0.1695 = 0.1305 m
    B lies below G.

  BM = I
V

 where, I = Moment of inertia of the plane of the body about YY = 1
12

 (0.6) (0.6)3 = 0.0108 m4

0.6 m

0.3 mh
—
2

M

G

B

0.6 m

Solid cubePlan
Y

Y

h

0.6 m
Elevation

O

Fig. 17



990         Fluid Mechanics

 and, V = Volume of liquid displaced
   = 0.6 × 0.6 × 0.339 = 0.122 m3

 ∴ BM = 0.0108
0.122

I
V

=  = 0.0885 m

 Metacentric height, GM = BM – BG = 0.0885 – 0.1305 = – 0.042 m
 –ve sign means that the metacentre (M) is below the centre of gravity (G). Thus the cube will 
be unstable. (Ans.)
 Q.26.  The suction pipe of a pump rises at a slope of 2 vertical in 3 along the pipe which is 
100 mm in diameter. The pipe is 6.8 m long; its lower end being just below the water surface in the 
reservoir. For design reasons, it is desirable that pressure at inlet to the pump shall fall to more 
than 70 kPa below atmospheric pressure. Neglecting friction, determine the maximum discharge 
that the pump may deliver. Take atmospheric pressure as 101.32 kPa.
 Solution. Refer to Fig. 18.

6
.8

m

3 2

2

Suction
pipe

F.W.S

Reservoir/Sump

1

6
.8

m

3 2

2

Suction
pipe

F.W.S

Reservoir/Sump

PumpPump

Fig. 18

 Given: d = 100 mm = 0.1 m; l = 6.8 m; patm = 101.32 kPa = 101.32 kN/m2.
 Applying Bernoulli’s equation at point 1 (F.W.S.) and point 2 (suction point to pump), we get:

  
2

1 1
12

p V z
w g

+ +  = 
2

2 2
22

p V z
w g

+ +  …(i)

 Velocity V1 on the free water surface (F.W.S.) = 0 (sump being very large)
  p1 = patm = 101.32 kN/m2;
  p2 = 101.32 – 70 = 31.32 kN/m2

 Taking point 1 as datum head, we have:

  z1 = 0; z2 = 26.8
3

×  = 4.533 m

 Inserting the values in eqn. (i), we have:

  101.32 0 0
9.81

+ +  = 
2

231.32 4.533
9.81 2

V
g

+ +

 or, V2 = 7.15 m/s
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 ∴ The maximum discharge the pump may deliver,

  Q = A2 × V2 = 
4
π  × (0.1)2 × 7.15 = 0.056 m3/s (Ans.)

 Q. 27.  In a falling sphere viscometer, a lubricating oil of density 850 kg/m3 was placed in a  
90 mm inside diameter tube. A 10 mm diameter steel ball of density 8200 kg/m3 was found to travel 
a distance of 920 mm is 18 seconds. Determine the viscosity of the oil.
 Solution. Given: Density of lubricating oil, ρf = 850 kg/m3; Diameter of the sphere = 10 mm = 
0.01 m; Density of steel ball, ρs = 8200 kg/m3; Distance travelled in 18 seconds = 920 mm = 0.92 m.
 Viscosity of the oil µ:

  Weight of the ball, W = 3

6 sd gπ
× ρ ×  = 

6
π  × (0.01)3 × 8200 × 9.81 = 0.042 N

  Buoyancy force, FB = 3

6 fd gπ
× ρ ×  = 

6
π  × (0.01)3 × 850 × 9.81 = 0.00437 N

  Drag force, FD =  3πµVd = 3π × µ × 0.92
18

 
 
 

 × 0.01 = 0.00482 µN

 For equilibrium,
  FD + FB = W
 or, FD = W – FB
 or, 0.00482 µ = 0.042 – 0.00437
 or, µ = 7.8 Ns/m2 (Ans.)
 Let us check the Reynolds number, Re:

  Re = 
850 (0.92/18) 0.01

7.8
Vdρ × ×

=
µ

 = 0.0557 < 0.1

 Q. 28.  The main pipe divides into two parallel pipes which again form one pipe as shown in 
Fig. 19. The data is as follows :
 First parallel pipe; Length = 900 m; diameter = 0.7 m; Second parallel pipe : Length =  
900 m; diameter = 0.5 m; Coefficient of friction for each parallel pipe = 0.0045.
 If the total rate of flow in the main is 1.8 m3/s find the rate of flow in each parallel pipe.

Main line

Pipe 1

D , L , V2 2 2

Q2

Q1

D , L , V1 1 1

Q Q

A B

Pipe 2

Fig. 19

 Solution. Refer to Fig. 19.
 Given: D1 = 0.7 m; L1 = 900 m; D2 = 0.5 m; L2 = 900 m; Total rate of flow, Q = 1.8 m3/s; 
Coefficient’s of friction, f1 = f2 = 0.0045.
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 Rate of flow in each pipe:
 Let Q1 = Rate of flow in pipe 1,
  Q2 = Rate of flow in pipe 2, and
  Q = Total rate of flow (in main line),
 Then, Q = Q1 + Q2 …(i) [Eqn. (12.6)]

 Also, hf = 
2 2

1 1 1 2 2 2

1 2

4 4
2 2

f L V f L V
D g D g

=
× ×

 The above equation reduces to:

  
2

1

1

V
D

 = 
2 2 2

2 1 2

2
or

0.7 0.5
V V V
D

=

 or, V1 = 2
2

0.7
0.5

V×  = 1.18 V2 …(ii)

 Now, Q1 = 2
1 14

D Vπ
× ×  = 

4
π  × (0.7)2 × 1.18 V2 = 0.454 V2

 and, Q2 = 2
2 24

D Vπ
× ×  = 

4
π  × 0.52 × V2 = 0.196 V2

 Substituting the values of Q1 and Q2 in eqn. (i), we get :
  1.8 = 0.454 V2 + 0.196 V2

 or, V2 = 2.77 m/s
 Substituting the value of V2 in eqn. (ii), we have :
  V1 = 1.18 × 2.77 = 3.27 m/s

 Hence, Q1 = A1V1 = 
4
π  × 0.72 × 3.27 = 1.258 m3/s (Ans.)

 and Q2 = Q – Q1 = 1.8 – 1.258 = 0.542 m3/s (Ans.)
 Q. 29.  10000 kW power is required to cruise a passenger ship of 260 m length, 10 m draft at  
45 km/h. If ρ = 1020 kg/m3 and ν = 1 × 10–6 m2/s, determine the combined form and wave resistance 
of the ship.
 Solution. Power required to cruise the ship, P = 10000 kW; Length of the ship = 260 m; Draft 

of the ship = 10 m; Speed of the ship, U = 45 km/h = 45 1000
60 60

×
×

 = 12.5 m/s; Density of water, 

ρ = 1020 kg/m3; Kinematic viscosity of water, ν = 1 × 10–6 m2/s
 Combined form and wave resistance :

  Reynolds number, ReL = –6
125 260
1 10

UL ×
=

ν ×
 = 3.25 × 109

 At this Reynolds number, the boundary layer will be turbulent on almost the whole length; CD 
is given by:
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  CD = 
( ) ( )2.58 2.58910 10

0.455 0.455 0.001362
log log 3.25 10LRe

= =
 × 

  Ffriction = 2 × CD × 1
2

 ρAU2 

   = 2 × 0.001362 × 1
2

 × 1020 × (260 × 10) × (12.5)2

   = 564378 N or 564.38 kN
  Total power required, P = FU

  Total force, F = 10000
12.5

P
U

=  = 800 kN

 Also, F = Ffriction + (Fform + Fwave)
  (Fform + Fwave) = F – Friction
   = 800 – 564.38 = 235.62 kN (Ans.)
 Q. 30.  Air having a velocity of 35 m/s is flowing over a cylinder of diameter 1.2 m and length 
8 m, when the axis of the cylinder is perpendicular to the stream. Find the speed at which  
the cylinder is to be rotated about its axis so that a lift force of 6 kN/m length of the cylinder 
is developed. Also determine the location of the stagnation points. Assume density of air as  
1.24 kg/m3.
 Solution. Given: U = 35 m/s; D = 1.2 m; L = 8 m; FL = 6 kN/m; ρ = 1.24 kg/m3

 Speed N:
 Using the relation: FL = ρLUΓ [Eqn. (14.22)]

 or, Circulation, Γ = ( ) 6 1000
1.24 35

LF L
U

×
=

ρ ×
 = 138 m/s

  Circulation = Circumference × peripheral velocity
  Γ = 2πR × uc [Eqn. (14.17)]

 or, 138 = 1.22
2 cuπ × ×

 or, uc = 36.6 m/s

  Angular velocity, w = 
36.6 261 rad/s

(1.2/2) 60
cu N

R
π

= = =

 or, N = 61 60
2
×
π

 = 582.5 r.p.m. (Ans.)

 Position of stagnation points:
 The net velocity on the cylinder surface (u) due to combination of circulation and force stream 
velocity field in given by :

  u = 2 U sin θ + 
2 R

Γ
π

  At stagnation point, u = 0 ∴ 0 = 2 U sin θ + 
2 R

Γ
π

 or, sin θ = 
138 0.523

4 4 (1.2/.2) 35RU
Γ

− = − = −
π π × ×

 = – sin (31.5°)
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   = sin (180° + 31.5°) and sin (360° – 31.5°)
 or, θ = 211.5° and 328.5° (Ans.)
 The position of stagnation points (S1 and S2) is shown in Fig. 20.

328.5°

211.5°

S1S2

Fig. 20
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Objective Type Test Questions (with Answers)

A. Choose the Correct Answer

B. Match List-I with List-II

C. Competitive Examinations Questions 
 (with Solutions–Comments)
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A. Choose the Correct Answer:
 1. For flow through pipe, the critical Reynolds 

number is
 (a) 500 (b) 1000
 (c) 2000 (d) 5 × 105.
 2. The predominant force involved in the motion 

of a boat is
 (a) viscous force (b) gravity
 (c) surface tension (d) compressibility   

  force.
 3. A floating body is stable only when
 (a) M coincides with G 
 (b) B is above G
 (c) M is below G
 (d) M is above G.
  (M, G, B are metacentre, centre of gravity and 

centre of buoyancy respectively).
 4. The general equation of a rheological substance 

can be τ = A (du/dy)n + B, where A and B and 
n are constants. The substance may behave as a 
non-Newtonian fluid if

 (a) A = 1, n = 1, B = 0
 (b) A ≠ 0, n ≠ 0 or 1, B ≠ 0
 (c) A = B = 0 
 (d) A = 1, n = 0, B = 0.
 5. For turbulent flow through hydraulically smooth 

pipe, the friction factor depends on
 (a) only Reynolds number
 (b) only relative roughness
 (c) both Reynolds number and relative rough-

ness
 (d) None of these.
 6. When a horizontal jet impinges on a surface 

inclined by very small angle to the horizontal 
plane the

 (a) force exerted is maximum
 (b) force tends to lift the surface
 (c) force tends to drag the surface
 (d) force is in the direction of jet.
 7. A dimensionless group formed with the variables 

ρ (density), ω (angular velocity), µ (dynamic 
viscosity), and D (characteristic diameter) is 

 (a)  ρωµ / D2 (b) ρ ωD2/µ 
 (c) µD2ρ ω  (d) ρ ωµ D. 
 8. Circulation is defined as 
 (a) line integral of velocity about any path
 (b) integral of tangential component of velocity 

about a path

 (c) line integral of velocity about a closed path
 (d) line integral of tangential component of 

  velocity about a closed path.
 9. The dimensions of surface tension is
 (a) N/m2 (b) J/m
 (c) J/m2 (d) W/m2.
 10. For stable equilibrium of floating bodies, the 

centre of gravity has to  
 (a) be below the centre of buoyancy
 (b) be above the centre of buoyancy
 (c) be above the metacentre
 (d) be between the centre of buoyancy and   

metacentre.
 11. Streamline, pathline and streamline are identical 

when 
 (a) the flow is uniform  
 (b) the flow is steady
 (c) the flow velocities do not change steadily   

with time
 (d) the flow is neither steady nor uniform.
 12. The Euler’s equation of motion is a
 (a) statement of energy balance
 (b) statement of conservation of momentum for 

a real fluid
 (c) statement of conservation of momentum for 

an incompressible flow
 (d) statement of conservation of momentum for 

the flow of an inviscid fluid.
 13. A boundary is known as hydrodynamically 

smooth if 

 (a) k
δ′

 = 0.3 (b) k
δ′

 > 0.3

 (c) 0.25<
′δ

k  (d) 6.0k =
′δ

  where, k = average height of the irregularities 
from the boundary, and δ′ = thickness of laminar 
sub-layer.

 14. The co-efficient of friction for laminar flow 
through a circular pipe is given by 

 (a) 1/4
0.0791
( )

f
Re

=  (b) 16f
Re

=

 (c) 64f
Re

=  (d) none of the above.

 15. Differential manometers are used for measuring
 (a) velocity at a point in a fluid
 (b) pressure at a point in a fluid

OBJECTIVE TYPE TEST QUESTIONS
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 (c) difference of pressure between two points
 (d) none of the above.
 16. The pressure at a height Z  in a static compress-

ible fluid undergoing isothermal compression is 
given by

 (a) 0

gR
ZTp p e=  (b) 0

gT
RZp p e

−

=  

 (c) 0

RT
gZ

p p e
−

=  (d) 0

gZ
RT

p p e
−

=

  where, p0  = pressure at ground level, R = gas 
constant, T = absolute temperature. 

 17. The shear stress distribution across a section of 
a circular pipe, having viscous flow is given by

 (a) 2p r
x

∂τ=
∂

 (b) 
2

p r
x

∂τ=
∂

 (c) 
2

p r
x

∂τ=−
∂

 (d) 2p r
x

∂τ= ×
∂

.

 18. The velocity distribution across a section of a 
circular pipe having viscous flow is given by

 (a) 
2

max 1 ru U
R

  = −  
   

  

 (b) 2 2
maxu U R r = − 

  (c) 
2

1max
ru U –
R

 =   

 (d) none of the above.
 19. The centre of pressure for a plane vertical surface 

lies at a depth of
 (a) half the height of the immersed surface
 (b) one-third the height of the immersed  

surface
 (c) two-third the height of the immersed  

surface
 (d) none of the above.   
 20. The inlet length of a venturimeter
 (a) is equal to the outlet length
 (b) is more than the outlet length
 (c) is less than the outlet length
 (d) none of the above.
 21. The resultant hydrostatic force acts through a 

point known as 
 (a) centre of gravity
 (b) centre of buoyancy
 (c) centre of pressure
 (d) none of the above.
 22. For a submerged curved surface, the vertical 

component of the hydrostatic force is

 (a) mass of the liquid supported by the curved 
surface

 (b) weight of the liquid supported by the curved 
surface

 (c) the force on the projected area of the 
curved   surface on vertical plane 

 (d) none of the above.
 23. For a floating body, if the metacentre lies below 

the centre of gravity, the equilibrium is called 
 (a) stable (b) unstable
 (c) neutral (d) none of the above.
 24. For a floating body, if the metacentre coincides 

with the centre of gravity, the equilibrium is 
called 

 (a) stable (b) unstable
 (c) neutral (d) none of the above.
 25. The acceleration of a fluid particle in the direc-

tion of x is given by

 (a) x
u v w ua u v w
x y z t

∂ ∂ ∂ ∂= + + +
∂ ∂ ∂ ∂

 (b) x
u u w ua u u u
x y z t

∂ ∂ ∂ ∂= + + +
∂ ∂ ∂ ∂

 (c) x
u u u ua u v w
x y z t

∂ ∂ ∂ ∂= + + +
∂ ∂ ∂ ∂

 (d) none of the above.
 26. The local acceleration in the direction of x is 

given by

 (a) u uu
x t

∂ ∂+
∂ ∂

 (b) u
t

∂
∂

 (c) uu
x

∂
∂

 (d) none of the above.

 27. The pressure drag on a sphere (for Reynolds 
number less than 0.2) is equal to

 (a) one-third of the total drag
 (b) half of the total drag
 (c) two-thirds of the total drag
 (d) none of the above.
 28. Terminal velocity of a falling body is equal to
 (a) a maximum velocity with which body will 

fall
 (b) the maximum constant velocity with which 

body will fall
 (c) half of the maximum velocity
 (d) none of the above.
 29. The difference of pressure head (h) measured 

by a differential manometer containing lighter 
liquid is

 (a) 
0

1 lSh x
S

 = − 
 

 (b) 
0

1lSh x
S

 = − 
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  (c)  h = x [S0 – Sl] (d) none of the above.
 30. Pitot-tube is used to measure
 (a) discharge (b) average velocity
 (c) velocity at a point
 (d) pressure at a point.
 31. For a floating body, the buoyant force passes 

through the 
 (a) centre of gravity of the body
 (b) centre of gravity of the submerged part of  

the body
 (c) metacentre of the body
 (d) centroid of the liquid displaced by the body.
 32. The condition of stable equilibrium for a floating 

body is
 (a) the metacentre M coincides with the centre 

of gravity G
 (b) the metacentre M is below centre of gravity 

G
 (c) the metacentre M is above centre of gravity 

G
 (d) the centre of buoyancy  B is above centre 

of gravity G.
 33. For a soap bubble, the surface tension (σ) and 

difference of pressure (∆p)are related as

 (a) 
4

p
d
σ∆ =  (b) 

2
p

d
σ∆ =

 (c) 4p
d
σ∆ =  (d) 8p

d
σ∆ = .

 34. For a liquid jet, the surface tension (σ) and dif-
ference of pressure (∆p) are related as

 (a) 
4

p
d
σ∆ =  (b) 

2
p

d
σ∆ =

 (c) 4p
d
σ∆ =  (d) 2p

d
σ∆ = .

 35. Compressibility is equal to

 (a) 

dV
V
dp

  
   (b) dp

dV
V

 − 
 

 (c) dp
dρ

 (d) 
dp
dρ

.

 36. Hydrostatic law of pressure is given as 

 (a) p g
z

∂ =ρ
∂

 (b) 0p
z

∂ =
∂

 (c) p z
z

∂ =
∂

 (d) p
z

∂
∂

= constant.

 37. The condition for boundary layer separation is

 (a) 
0

ve
y

u
y =

 ∂ =+ ∂ 

 (b) 
0

ve
y

u
y =

 ∂ =− ∂ 

 (c) 
0

0
y

u
y =

∂  = ∂ 

 (d) none of the above.
 38. The boundary layer flow will be attached to the 

surface if

 (a) 
0

0
y

u
y =

∂  = ∂ 
 (b) 

0
ve

y

u
y =

 ∂ =+ ∂ 

 (c) 
0

ve
y

u
y =

∂  = − ∂ 
 (d) none of the above.

 39. For a submerged body, if the metacentre is below 
the centre of gravity, the equilibrium is called

 (a) stable (b) unstable
 (c) neutral (d) none of the above.
 40. The metacentric height (GM) experimentally is 

given as

 (a) GM = tanW
wx

θ  (b) GM = tanw
W x

θ
×

 (c) GM =  
tan
wx

W θ
 (c) GM =  

tan
Wx

w θ

  where, w = movable weight, W = weight of float-
ing body including w, θ = angle of tilt.

 41. A body is called streamlined body when it is 
placed in a flow and the surface of the body

 (a) coincides with the streamlines 
 (b) does not coincide with the streamlines
 (c) is perpendicular to the streamlines
 (d) none of the above.
 42. A body is called bluff body if the surface of the 

body
 (a) coincides with streamlines
 (b) does not coincide with the streamlines
 (c) is very smooth
 (d) none of the above.
 43. The co-efficient of discharge (Cd) in terms of Cv 

and Cc is

 (a) Cd = v

c

C
C

 (b) Cd = Cv × Cc

 (c) Cd =  c

v

C
C

 (d) none of the above.
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 44. An orifice is known as large orifice when the 
head of liquid from the centre of orifice is

 (a) more than 10 times the depth of orifice
 (b) less than 10 times the depth of orifice
 (c) less than 5 times the depth of orifice
 (d) none of the above.
 45. The pressure at a height Z in a static compressible 

fluid undergoing adiabatic compression is given 
by

 (a) 
10

0
11 RTp p

gZ

γ
γ −γ − = − γ 

 (b) 
10

0 1
1

RTp p
gZ

γ
γ − γ= − γ − 

 (c) 
1

0
0

11 gZp p
RT

γ
γ − γ −= − γ 

 (d) none of the above.
 46. The depth of centre of pressure of an inclined 

immersed surface from free surface of liquid is 
equal to

 (a) GI x
Ax

+  (b) 
2sinGI A x

x
θ

+

 (c) 
2sinGI x

Ax
θ

+  (d) 2sin
GI x x

A
+

θ
.

 47. The depth of centre of pressure of a vertical 
immersed surface from free surface of liquid is 
equal to

 (a) +GI
x

Ax
 (b) GI A

x
x

+

 (c) GI x
x

x
+  (d) .

G

Ax x
I

+

 48. Poise is the unit of
 (a) mass density 
 (b) kinematic viscosity
 (c) viscosity 
 (d) velocity gradient. 
 49. The increase of temperature
 (a) increases the viscosity of liquid
 (b) decreases the viscosity of a liquid
 (c) decreases the viscosity of a gas
 (d) increases the viscosity of a gas.
 50. The necessary condition for the flow to be steady 

is that
 (a) the velocity does not change from place to 

place
 (b) the velocity is constant at a point with  

respect to time

 (c) the velocity changes at a point with respect 
to time

 (d) none of the above.
 51. The necessary condition for the flow to be  

uniform is that
 (a) the velocity is constant at a point with  

respect to time
 (b) the velocity is constant in the flow field   

with respect to space
 (c) the velocity changes at a point with respect 

to time
 (d) none of the above.
 52. The loss of head due to sudden expansion of a 

pipe is given by

 (a) 
2 2

1 2

2L
V V

h
g

−
=  (b) 

2
10.5

2L
V

h
g

=

 (c) 
2

1 2( )
2
−

=L
V Vh

g
 (d) none of the above.

 53. The loss of head due to sudden contraction of a 
pipe is equal to 

 (a) 
2

21 1
2c

V
C g

 
− 

 
 (b) 

2
211

2c

V
C g

 
− 

 

 (c) 
2

21 1
2c

V
C g

 
−  

 
 (d) none of the above.

 54. The hydrostatic pressure on a plane surface is 
equal to

 (a) wAx (b) wAx sin2 θ

 (c) 1
2

wAx  (d) wAx sin θ.

  where, A = area of plane surface, and
        x = depth of centroid of the plane area  

             below the liquid-free surface.
 55. Centre of pressure of a plane surface immersed 

in a liquid is
 (a) above the centre of gravity of the plane  

surface
 (b) at the centre of gravity of the plane surface
 (c) below the centre of gravity of the plane  

surface
 (d) none of the above.
 56. Flow of a fluid in a pipe takes place from
  (a) higher level to lower level
  (b) higher pressure to lower pressure
  (c) higher energy to lower energy
  (d) none of the above.
 57. The point, through which the buoyant force is 

acting, is called
  (a) centre of pressure (b) centre of gravity
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  (c) centre of buoyancy (d) none of the above.
 58. For viscous flow between two parallel plates, the 

pressure drop per unit length is equal to

 (a) 2
12 UL

gD
µ

ρ
 (b) 2

12 UL
D
µ

 (c) 2
32 UL

D
µ  (d) 2

12 .U
D
µ

 59. The velocity distribution in laminar flow through 
a circular pipe follows the

 (a) parabolic law (b) linear law
 (c) logarithmic law (d) none of the above.
 60. The valve closure is said to be gradual if the time 

required to close the valve is

 (a) 2Lt
C

=  (b) 2Lt
C

≤

 (c) 4Lt
C

<  (d) 2Lt
C

>

  where, L = length of pipe, C = velocity of pressure 
wave.

 61. The velocity of pressure wave in terms of bulk 
modulus (K) and density (σ) is given by

 (a) C
K
ρ=  (b) C K= ρ

 (c) KC =
ρ

 (d) none of the above.

 62. The pressure variation along the radial direction 
for vortex flow along a horizontal plane is given 
as

 (a) 
2p V

r r
∂ = − ρ
∂

 (b) 2
p V
r r

∂ =ρ
∂

 (c) 
2p V

r r
∂ =ρ
∂

 (d) none of the above.

 63. For a forced vortex flow, the height of paraboloid 
formed is equal to

 (a) 
2

2
p V
g g

+
ρ

 (b) 
2

2
V

g

 (c) 
2

2 2
V

r g×
 (d) 

2

2
r
g

ω .

 64. The condition for detached flow is 

 (a) 
0

0
y

u
y =

 ∂ = ∂ 
      (b) ve

0y

u
y =

 ∂ = + ∂ 

 (c) ve
0y

u
y =

 ∂ = − ∂ 
 (d) none of the above.

 65. Drag is defined as the force exerted by a flowing 
fluid on a solid body

 (a) in the direction of flow
 (b) perpendicular to the direction of flow
 (c) in the direction which is at an angle of 45° 

to the direction of flow
 (d) none of the above.
 66. The velocity distribution across a section of two 

fixed parallel plates having viscous flow is given 
by

 (a) ( )2 21
2

∂ = − − µ ∂ 
pu b y
x

 (b) ( )21
2

pu by y
x

∂ = − − µ ∂ 

 (c) [ ]1
2

pu y by
x

∂= −
µ ∂

   

 (d) 21
2

pu t b
x

∂  = − − µ ∂

  where, b = distance between two plates and y is 
measured from the lower plate.

 67. The shear stress distribution across a section of 
two fixed parallel plates having viscous flow is 
given by 

 (a) 2 21
2

p b y
x

∂  τ= − − ∂
 

 (b) [ ]1 2
2

p b y
x

∂τ= − −
∂

 (c) [ ]1
2

p b tb
x

∂τ= −
∂

 (d) 1 [ ].
3

p b tb
x

∂τ = −
∂

 68. The critical depth (hc ) is given by

 (a) 
1 22q

g
 
 
 

 (b) 
1 3

q
g

 
 
 

 (c) 
1 32q

g
 
 
 

 (d) 
2 32q

g
 
 
 

 69. For a circular channel, the wetted perimeter is 
given by

 (a) 
2
rθ  (b) 3r θ

 (c) 2r θ (d) r θ
  where, R = radius of circular channel, and 
        θ = half the angle subtended by the water
                          surface at the centre 
 70. A submerged body will be in stable equilibrium 

if 
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 (a) the centre of buoyancy B is below the  
centre of gravity G

 (b) the centre of buoyancy B coincides with G
 (c) the centre of buoyancy B is above the   

metacentre M
 (d) the centre of buoyancy B is above G.
 71. The metacentric height of a floating body is
 (a) the distance between metacentre and centre 

of buoyancy
 (b) the distance between the centre of  

 buoyancy and centre of gravity
 (c) the distance between metacentre and centre 

of gravity
 (d) none of the above.
 72. Stoke is the unit of 
 (a) surface tension (b) viscosity
 (c) kinematic viscosity (d) none of the above.
 73. The dividing factor for converting one poise into 

MKS unit of dynamic viscosity is
 (a) 9.81 (b) 98.1
 (c) 981 (d) 0.981.
 74. Temperature lapse-rate is given by

 (a) 1RL
g

γ − = −  γ 
 (b) 

1
RL
g

 γ= −  γ − 

 (c) 1gL
R

γ − = −  γ 
 (d) none of the above.

 75. When the fluid is at rest, the shear stress is
 (a) maximum (b) zero
 (c) unpredictable (d) none of the above.
 76. The velocity components in x and y directions 

in terms of stream function (ψ ) are

 (a) ,u v
x y

∂ψ ∂ψ= =
∂ ∂

 (b) ,u v
x y

∂ψ ∂ψ= − =
∂ ∂

 (c) ,u v
y x

∂ψ ∂ψ= =
∂ ∂

 (d) ,u v
y x

∂ψ ∂ψ= − =
∂ ∂

 77. The relation between tangential velocity (V) and 
radius (r) is given by

 (a) V × r = Constant for forced vortex
 (b) V / r  = Constant for forced vortex
 (c) V × r = Constant for free vortex
 (d) V / r  = Constant for free vortex
 78. Newton’s law of viscosity states that
 (a) shear stress is directly proportional to the   

velocity
 (b) shear stress is directly proportional to  

velocity gradient
 (c) shear stress is directly proportional to shear 

strain
 (d) shear stress is directly proportional to the   

viscosity.

 79. A Newtonian fluid is defined as the fluid which 
 (a) is incompressible and non-viscous
 (b) obeys Newton’s law of viscosity
 (c) is highly viscous
 (d) is compressible and non-viscous.
 80. Energy thickness (δ**) is equal to

 (a) 
0

1u u
U U

δ
 −  ∫  (b) 

2

2
0

1u u dy
U U

δ
 

− 
 ∫

 (c) 
2

0

1u u
U U

δ
 − 
 ∫  (d) none of the above.

 81. Bernoulli’s equation is derived making assump-
tions that 

 (a) the flow is uniform and incompressible
 (b) the flow is non-viscous, uniform and steady
 (c) the  f low i s  s teady,  non-v iscous ,  

incompress ible and irrotational
 (d) none of the above.
 82. The Bernoulli’s equation can take the form

 (a) 
2 2

1 1 2 2
1 2

1 22 2
p V p V

z Z
g g

+ + = + +
ρ ρ

 (b) 
2 2

1 1 2 2
1 2

1 22 2
p V p V

gz Z
g g

+ + = + +
ρ ρ

 (c) 
2 2

1 1 2 2
1 2

1 22 2
p V p V

gz gz
g g g g

+ + = + +
ρ ρ

 (d) 
2 2

1 1 2 2
1 2

1 22 2
p V p V

z z
g g g g

+ + = + +
ρ ρ

.

 83. The depth of flow after hydraulic  jump is

 (a) ( )21
2 1

1 8 1
2
d

d Fe = + −  

 (b) 21
2 11 8( ) 1

2
d

d Fe = + −  

 (c) ( )
2

1 1
2 1

8
2 4
d d

d Fe= + +

 (d) none of the above.
 84. The depth of flow at which specific energy is 

minimum is called
 (a) normal depth (b) critical depth
 (c) alternate depth (d) none of the above.
 85. Momentum thickness (θ) is given by

 (a) 
0

1u u dy
U U

δ
 θ= − 
 ∫

 (b) 
0

1 u dy
U

δ
 θ= − 
 ∫
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 (c) 
2

2
0

1u u dy
U U

δ
 

θ= − 
 ∫

  (d) none of the above.
 86. The maximum discharge through a circular chan-

nel takes place when depth of flow is equal to 
 (a) 0.95 times the diameter 
 (b) 0.3 times the diameter
 (c) 0.81 times the diameter
 (d) 0.5 times the diameter.
 87. Specific energy of a flowing fluid per unit weight 

is equal to

 (a) 
2

2
p V
w g

+  (b) p h
w

+

 (c) 
2

2
V h

g
+  (d) 

2

2
p V h
w g

+ +

 88. When the pipes are connected in series, the total 
rate of flow

 (a) is equal to the sum of the rate of flow in   
each pipe

 (b) is equal to the reciprocal of the sum of the  
 rate of flow in each pipe

 (c) is the same as flowing through each pipe
 (d) none of the above
 89. Power, transmitted through pipes, will be maxi-

mum when

 (a) head lost due to friction  = 1
2

 total head at 
inlet of the pipe.  

 (b) head lost due to friction = 1
4

  total head at 
inlet of the pipe.

 (c) head lost due to friction = total head at the 
inlet of the pipe.   

 (d) head lost due to friction = 1
3

 total head at  
the inlet of the pipe. 

 90. The loss of pressure head for the laminar flow 
through pipes varies

 (a) as the square of velocity
 (b) directly as the velocity 
 (c) as the inverse of the velocity
 (d) none of the above.
 91. For the laminar flow through a pipe, the shear 

stress over the cross-section
 (a) varies inversely as the distance from  

the centre of the pipe
 (b) varies directly as the distance from the  

surface of the pipe
 (c) varies directly as the distance from the  

centre of the pipe
 (d) remains constant over the cross-section

 92. Gauge pressure at a point is equal to 
 (a) absolute pressure plus atmospheric  

pressure
 (b) absolute pressure minus atmospheric  

pressure 
 (c) vacuum pressure plus absolute pressure
 (d) none of the above.
 93. Atmospheric pressure held in terms of water 

coulmn is
 (a) 7.5 m (b) 8.5 m
 (c) 9.81 m (d) 10.30 m
 94. Lift force (FL) is expressed mathematically, as

 (a) 21
2L LF U C= ρ ×  

 (b) 21
2L LF U C A= ρ × ×  

 (c) FL = 2ρU2 × CL × A
 (d) FL = ρU2 × CL × A 
 95. Total drag on a body is the sum of
 (a) pressure drag and velocity drag
 (b) pressure drag and friction drag
 (c) friction drag and velocity drag
 (d) none of the above.
 96. The flow rate through a circular pipe is measu-
  red by
 (a) Pitot-tube (b) Venturimeter
 (c) Orificemeter 
 (d) none of  the above.
 97. The range for co-efficient of discharge (Cd) for 

a venturimeter is 
 (a) 0.6 to 0.7 (b) 0.7 to 0.8
 (c) 0.8 to 0.9 (d) 0.95 to 0.99
 98. The convective acceleration  in the direction of 

x is given by

 (a) u v wu v w
y y z

∂ ∂ ∂+ +
∂ ∂ ∂

 (b) ∂ ∂ ∂+ +
∂ ∂ ∂
u u uu u u
x y z

 (c) u v wu u u
x y z

∂ ∂ ∂+ +
∂ ∂ ∂

 (d) u u uu v w
x y z

∂ ∂ ∂+ +
∂ ∂ ∂

.

 99. Shear strain rate is given by

 (a) 1
2

u v
x y

∂ ∂ + ∂ ∂ 
 (b) 1

2
u v
x y

∂ ∂+
∂ ∂

 

 (c) 1
2

v u
x y

 ∂ ∂+ ∂ ∂ 
 (d) 1

2
v u
x y

∂ ∂+
∂ ∂

.
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 100. A flow is said to be laminar when
 (a) the fluid particles moves in a zig-zag way
 (b) the Reynold number is high
 (c) the fluid particles move in layers parallel to 

the boundary
 (d) none of the above.
 101. For the laminar flow through a circular pipe
 (a) the maximum velocity = 1.5 times the  

average velocity
 (b) the maximum velocity = 2.0 times the  

average velocity
 (c) the maximum velocity = 2.5 times the  

average velocity
 (d) none of the above.
 102. If the density of a fluid is constant from point  to 

point in a flow region, it is called
 (a) steady flow 
 (b) incompressible flow
 (c) uniform flow
 (d) rotational flow
 103. The discharge through fully sub-merged orifice is
 (a) 3/2

2 1( ) 2dC b H H g H× × − × ×

 (b) 2 1( ) 2dC b H H gH× × − ×

 (c) 3/2 3/2
2 1( ) 2dC b H H gH× × − ×

 (d) none of the above.
 104. Notch is a device used for measuring
 (a) rate of flow through pipes
 (b) rate of flow through a small channel
 (c) velocity through a pipe
 (d) velocity through a small channel.
 105. Boundary layer thickness (δ) is the distance from 

the surface of the solid body in the direction 
perpendicular to flow, where the velocity of fluid 
is equal to

 (a) free-stream velocity  
 (b) 0.9 times the free-stream velocity
 (c) 0.99 times the free-stream velocity 
 (d) none of the above.
 106. Displacement thickness (δ*) is given by

 (a) *

0

U dy
u

δ
 δ = − 
 ∫  

 (b) *

0

1
u u dy
U U

δ
 δ = − 
 ∫

 (c) 
2

*
2

0
1

u u dy
U U

δ  
δ = − 

 ∫
 (d) none of the above.

 107. Study of fluid motion without considering the 
force, causing the flow, is known as

 (a) kinematics of fluid flow 
 (b) dynamics of fluid flow
 (c) statics of fluid flow
 (d) none of the above.
 108. Study of fluid at rest is known as
 (a) kinematics (b) dynamics
 (c) statics (d) none of the above.
 109. The velocity of approach (Va ) is given by

 (a) 
Dischargeover notch

Area of channel
Va =

 (b) 
Dischargeover notch

Area of channel
Va =

 (c) Va = ×
Dischargeover notch

Headover notch Widthof channel

 (d) none of the above. 
 110. Francis’s formula for a rectangular weir with end 

contraction suppressed is given as

 (a) Q = 1.84 L H5/2 (b) 3/22
3

Q L H= ×

 (c) Q = 1.84 L H3/2 (d) 5/22 .
3

Q L H= ×

 111. The hydraulic mean depth is given by 

 (a) P
A

 (b) 
2P

A

 (c) A
P

 (d) A
P

.

  where, a = area, and P = wetted perimeter.
 112. The point, through which the weight is acting, 

is called
 (a) centre of pressure (b) centre of gravity
 (c) centre of buoyancy (d) none of the above.
 113. The point, about which a floating body starts 

oscillating when the body is tilted, is called
 (a) centre of pressure 
 (b) centre of buoyancy   
 (c) centre of gravity (d) metacentre.
 114. The velocity components in x and y directions 

in terms of velocity potential (φ) are

 (a) ,u v
x y

∂φ ∂φ
= − =

∂ ∂
 (b) ,u v

y x
∂φ ∂φ

= =
∂ ∂

 (c) ,u v
x y

∂φ ∂φ
= = −

∂ ∂
 

  (d) , .u v
x y

∂φ ∂φ
= − = −

∂ ∂
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 115. Kinematic viscosity is defined as equal to
 (a) dynamic viscosity × density
 (b) dynamic viscosity/density
 (c) dynamic viscosity × pressure
 (d) pressure × density
 116. Dynamic viscosity (µ) has the dimensions as
 (a) MLT–2 (b) ML–1 T–1

 (c) ML–1 T–2 (d) M–1 L–1 T–1. 
 117. Which mouthpiece is having maximum co-

efficient of discharge?
 (a) External mouthpiece
 (b) Convergent-divergent mouthpiece
 (c) Internal mouthpiece 
 (d) None of the above.
 118. The co-efficient of discharge (Cd)
 (a) for an orifice is more than that for a 

mouthpiece
 (b) for internal mouthpiece is more than that   

for external mouthpiece
 (c) for a mouthpiece is more than that for an   

orifice
  (d) none of the above. 
 119. Kinematic similarity between model and proto-

type means
 (a) the similarity of forces 
 (b) the similarity of shape
 (c) the similarity of motion
 (d) the similarity of discharge.
 120. Dynamic similarity between model and proto-

type means
 (a) the similarity of forces
 (b) the similarity of motion
 (c) the similarity of shape
 (d) none of the above.
 121. For a floating body, if centre of buoyancy is 

above the centre of gravity, the equilibrium is 
called

 (a) stable (b) unstable
 (c) neutral (d) none of the above.
 122. For a submerged body, if the centre of buoyancy 

is above the centre of gravity, the equilibrium is 
called

 (a) stable (b) unstable
 (c) neutral (d) none of the above.
 123. The drag on a sphere (FD) for Reynolds number 

less than 0.2 is given by 

 (a) FD = 5pµDU (b) FD = 3pµDU

 (c) FD = 2pµDU (d) FD = pµDU.
 124. The skin friction drag on a  sphere (for Reynolds 

number less than 0.2) is equal to

 (a) one-third of the total drag
 (b) half of the total drag
 (c) two-thirds of the total drag
 (d) none of the above.
 125. The capillary rise or fall of a liquid is given by

 (a) cos
4

h
gd

σ θ
=

ρ
 (b) 4 cosh

gd
σ θ=
ρ

 

 (c) 8 cosh
gd

σ θ=
ρ

 (d) none of the above.

 126. Manometer is a device used for measuring 
 (a) velocity at a point in a fluid
 (b) pressure at a point in a fluid
 (c) discharge of a fluid
 (d) none of the above.
 127. For a circular channel, the area of flow is given 

by

 (a) 2 sin 22r θ θ − 
2 

 (b) 2 sin 2r θ θ − 
2 

 (c) r2 (θ – sin 2 θ) (d) none of the above.
  where, θ = half the angle subtended by water 

surface at the centre, and r = radius of circular 
channel.

128. When a falling body has attained terminal veloc-
ity, the weight of the body is equal to

 (a) drag force minus buoyant force
 (b) buoyant force minus drag force
 (c) drag force plus the buoyant force
 (d) none of the above. 
 129. The tangential velocity of ideal fluid at any point 

on the surface of the cylinder is given by

 (a)  1 sin
2

u Uθ = θ  (b) uθ = U sin θ

 (c) uθ = 2U sin θ (d) none of the above.
 130. Models are known as undistorted model if
 (a) the prototype and model are having  

different scale ratios
 (b) the prototype and model are having same   

scale ratios
 (c) model and prototype are kinematically  

similar
 (d) none of the above.
 131. Geometric similarity between model and  

prototype means
 (a) the similarity of discharge
 (b) the similarity of linear dimensions
 (c) the similarity of motion
 (d) the similarity of forces.
 132. If the fluid particles move in straight lines and 

all the lines are parallel to the surface, the flow 
is called 
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 (a) steady (b) uniform
 (c) compressible (d) laminar.
 133. If the fluid particles move in a zig-zag way, the 

flow is called
 (a) unsteady (b) non-uniform
 (c) turbulent (d) incompressible.
 134. Surface tension has the units of
 (a) force per unit area 
 (b) force per unit length 
 (c) force per unit volume
 (d) none of the above.
 135. The gases are considered incompressible when 

Mach number
 (a) is equal to 1.0 (b) is equal to 0.50
 (c) is more than 0.3 (d) is less than 0.2.
 136. Bernoulli’s theorem deals with the law of con-

servation of
 (a) mass (b) momentum
 (c) energy (d) none of the above.
 137. Continuity equation deals with the law of con-

servation of
 (a) mass (b) momentum
 (c) energy (d) none of the above.
 138. Reynold number is expressed as

 (a) LRe
V

ρµ=  (b) V LRe µ=
ρ

 (c) VLRe ρ=
µ

 (d) .dRe
V
µ

=

 139. Froude’s number (Fe) is given by

 (a) LFe V
g

=  (b) gFe V
L

=

 (c) VFe
Lg

=  (d) none of the above.

 140. Efficiency of power transmission through pipe 
is given by

 (a) fH h
H
−

 (b) 
f

H
H h+

 

 (c) f

f

H h
H h

−
+

 (d) none of the above.

  where, H = total head at inlet, hf = head lost due 
to friction.

 141. Maximum efficiency of power transmission 
through pipe is 

 (a) 50% (b) 66.67%
 (c) 75% (d) 100%.
 142. Vorticity is given by
 (a) two times the rotation
 (b) 1.5 times the rotation

 (c) three times the rotation
 (d) equal to the rotation.
 143. Study of fluid motion with the forces causing the 

flow is known as 
 (a) kinematics of fluid flow
 (b) dynamics of fluid flow
 (c) statics of fluid flow
 (d) none of the above.
 144. If the velocity in a fluid flow does not change 

with respect to length of direction of flow, it is 
called

 (a) steady flow 
 (b) uniform flow
 (c) incompressible flow
 (d) rotational flow.
 145. If the velocity in a fluid flow changes with respect 

to length of direction of flow, it is called
 (a) unsteady flow (b) compressible flow
 (c) irrotational flow (d) none of the above.
 146. Model analysis of free surface flows is based on
 (a) Reynolds number (b) Froude number
 (c) Mach number (d) Euler number.
 147. Model analysis of aeroplanes and projectiles 

moving at supersonic speed is based on
 (a) Reynolds number (b) Froude number
 (c) Mach number (d) Euler number.
 148. For a submerged body, if the centre of buoyancy 

coincides with the centre of gravity, the equilib-
rium is called

 (a) stable (b) unstable
 (c) neutral (d) none of the above.
 149. For a submerged body, if the centre of buoyancy 

is below the centre of gravity, the equilibrium is 
called 

 (a) stable (b) unstable
 (c) neutral (d) none of the above.
 150. The metacentric height (GM) is given by 

 (a) IGM BG
V

= −  (b) VGM BG
I

= −

 (c) IGM BG
V

= −  (d) none of the above.

 151. For a floating body, if the metacentre is above 
the centre of gravity, the equilibrium is called

 (a) stable (b) unstable
 (c) neutral (d) none of the above.
 152. Mach number (M) is given by

 (a) CM
V

=  (b) M = V × C

 (c) VM
C

=  (d) none of the above.
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 153. Boundary layer on a flat plate is called laminar 
boundary layer if

 (a) Reynolds number is less than 2000
 (b) Reynolds number is less than 4000
 (c) Reynolds number is less than 5 × 105

 (d) none of the above.
 154. The lift force (FL) produced on a rotating circular 

cylinder in a uniform flow is given by

 (a) L
LUF Γ=

ρ
 (b) FL = ρLUΓ

 (c) L
UF
L

ρ Γ
=  (d) L

LUF ρ=
Γ

  where, L = Length of the cylinder, U = free-
stream velocity, Γ = Circulation.

 155. The temperature at a height Z in a static com-
pressible fluid undergoing adiabatic compression 
is given as

 (a) 0
0

11 RTT T
gZ

γ − = − γ 
 

 (b) 0
0

11 gZT T
RT

 γ −= − γ 

 (c) 0
0 1

1
RTT T
gZ

 γ= − γ − 
 (d) none of the above.
 156. The hydrostatic law states that rate of increase 

of pressure in a vertical direction is equal to
 (a) density of the fluid
 (b) specific weight of the fluid
 (c) weight of the fluid
 (d) none of the above.    
 157. Fluid statics deals with
 (a) viscous and pressure forces
 (b) viscous and gravity forces
 (c) gravity and pressure forces
 (d) surface tension and gravity forces.
 158. The term V2/2g is known as
 (a) kinetic energy 
 (b) pressure energy
 (c) kinetic energy per unit weight
 (d) none of the above.
 159. The term p/ρg is known as
 (a) kinetic energy per unit weight
 (b) pressure energy
 (c) pressure energy per unit weight
 (d) none of the above.
 160. The boundary-layer takes place
 (a) for ideal fluids
 (b) for pipe-flow only

 (c) for real fluids
 (d) for flow over flat plate only.
 161. The boundary layer is called turbulent boundary 

layer if
 (a) Reynolds number is more than 2000
 (b) Reynolds number is more than 4000
 (c) Reynolds number is more than 5 × 105

 (d) none of the above.
 162. The difference of pressure head (h) measured by 

mercury-oil differential manometer is given  as 

 (a) 
0

1 gS
h x

S
 

= − 
 

 (b) h = x [Sg – S0 ]

 (c) h = x [S0 – Sg ] (d) 
0

1gS
h x

S
 

= − 
 

  where x = difference of mercury level, Sg = specific 
gravity of mercury and S0 =specific gravity of 
oil.

 163. A most economical section is one which for a 
given cross-sectional area, slope of bed (i) and 
co-efficient of resistance has

 (a) maximum wetted perimeter
 (b) maximum discharge 
 (c) maximum depth of flow
 (d) none of the above.
 164. The error in discharge due to the error in the 

measurement of head over a rectangular notch 
is given by 

 (a) 5
2

dQ dH
Q H

=  (b) 3
2

dQ dH
Q H

=

 (c) 7
2

dQ dH
Q H

=  (d) 1 .
2

dQ dH
Q H

=

 165. The error in discharge due to the error in the 
measurement of head over a triangular notch is 
given by 

 (a) 5
2

dQ dH
Q H

=  (b) 3
2

dQ dH
q H

=

 (c) 7
2

dQ dH
Q H

=  (d) 1
2

dQ dH
q H

=

 166. Laminar sub-layer exists in
 (a) laminar boundary layer region
 (b) turbulent boundary layer region
 (c) transition zone
 (d) none of the above.
 167. The thickness of laminar boundary layer at a 

distance x from the leading edge over a flat plate 
varies as

 (a) x4/5  (b) x1/2

 (c) x1/5 (d) x3/5.
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 168. The velocity with which the water approaches a 
notch is called

 (a) velocity of flow 
 (b) velocity of approach   
 (c) velocity of whirl
 (d) none of the above.
 169. The discharge over a rectangular notch consider-

ing  velocity of approach is given as 

 (a) 3/2 3/22 2 ( )
3 d aQ C L g H h= −

 (b) 3/2 3/22 2 ( )
3 d aQ C L g H h= −

 (c) ( )3/2 3/22 2
3 d a aQ C L g H h h = + −  

 (d) none of the above.
 170. The area velocity relationship for compressible 

fluids is 

 (a) 21dA dV M
A A

 = − 

 (b) 2 1dA dV M
A V

 = − 

 (c) 21dA dV V
A V

 = − 

 (d) 2 1dA dV C
A V

 = −    

 171. The flow in  a  pipe is laminar if the Reynolds 
number is

 (a) less than 2000 (b) equal to 2500
 (c) greater than 4000 (d) none of the above.
 172. Cipolletti weir is a trapezoidal weir having side 

slope of 
 (a) 1 horizontal to 2 vertical
 (b) 4 horizontal to 1 vertical
 (c) 1 horizontal to 4 vertical
 (d) 1 horizontal to 3 vertical.
173. The co-efficient of friction in terms of shear 

stress is given by

 (a) 
2

0

2 Vf ρ=
τ

 (b) 0
2

2f
V
τ

=
ρ

 (c) 
2

0

2 Vf ρ=
τ

 (d) 
2

02
Vf ρ=
τ

.

 174. The value of the momentum correction factor (β) 
for the viscous flow through a circular pipe is 

 (a) 1.33 (b) 1.50
 (c) 2.0 (d) 1.25.
 175. The pressure drop per unit length of a pipe for 

laminar flow is

 (a) equal to 2
12 UL

gD
µ

ρ
 

 (b) equal to  2
12 U

gD
µ

ρ

 (c) equal to  2
32 UL

gD
µ

ρ

 (d) none of the above. 
 176. If the Froude number in open channel flow is 

equal to 1.0, the flow is called
 (a) critical flow (b) streaming flow
 (c) shooting flow (d) none of the above.
177. If the Froude number in open channel flow is 

more than 1.0, the flow is called
 (a) critical flow (b) streaming flow
 (c) shooting flow (d) none of the above.
 178. The life co-efficient (CL) for a rotating cylinder 

in a uniform flow is given by

 (a) L
UC
R

Γ=  (b) L
RC

U
Γ=

 (c) LC
RU
Γ=  (d) .L

RUC =
Γ

 179. Kinematic viscosity (ν) is equal to

 (a) µ × ρ (b) µ
ρ

 (c) ρ
µ

 (d) none of the above.

 180. L1, L2, L3 are the lengths of three pipes, connected 
in series. If d1, d2 and d3 are their diameters, then 
the equivalent size of the pipe is given by

 (a) 31 2
5 5 5 5

1 2 3

LL LL
d d d d

= + +  

 (b) 
55 55
31 2

2 1 3

dd dd
L L L L

= + +

 (c) Ld5 = L1d2
5 + L2d2

5 + L3d3
5

 (d) none of the above.
  where L = L1 + L2 + L3
 181. The power transmitted through pipe is given by

 (a) 
1000

g Q Hρ × ×  (b) 
1000

fg Q hρ × ×

 (c) 
( )

4500
fg Q H hρ × × −

 

 (d) 
( )

1000
fg Q H hρ × × −

  where, H = total head at the inlet of pipe, 
 hf = head lost due to friction in  pipe  and  
Q = discharge per second.
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 182. Francis’s formula for a rectangular weir for two 
end contractions is given by

 (a) Q = 1.84 [L – 0.2 × 2H]H5/2

 (b) Q = 1.84 [L – 0.2H]H3/2

 (c) Q = 1.84 [L – 0.2H]H5/2

 (d) none of the above.
 183. Bazin’s formula for discharge over a rectangular 

weir without velocity of approach is given  by

 (a) 5/22Q mL g H= ×

 (b) 3/22Q mL g H= ×

 (c) 2Q mL gH= ×

 (d) none of the above.

  where, m = 0.405 + 0.003
H

and H = Head over 
weir.

 184. The time period of oscillation of a floating  body 
is given by

 (a) 22 GM gT
k

×= p  (b) 
2

2 kT
GM g

= p
×

 (c) 22 GMT
gk

= p  (d) 
2

2 gkT
GM

= p  

where, k = radius of gyration, GM = meta-
centric height, and T = time period. 

 185. The difference in pressure head, measured by a 
mercury-oil differential manometer for a 20 cm 
difference of mercury level will be (sp. gravity 
of oil = 0.8)

 (a) 2.72 m of oil (b) 2.52 m of oil
 (c) 3.20 m of oil (d) 2.0 m of oil.
 186. The rate of flow through a venturimeter varies 

as
 (a) H (b) H
 (c) H3/2 (d) H5/2.
 187. Reynolds number is defined as the
 (a) ratio of inertia force to gravity force
 (b) ratio of viscous force to gravity force
 (c) ratio of viscous force to elastic force
 (d) ratio of inertia force to viscous force.
 188. Froude’s number is defined as the ratio of
 (a) inertia force to viscous force
 (b) inertia force to gravity force
 (c) inertia force to elastic force
 (d) inertia force to pressure force.
 189. The flow in open channel is turbulent if the 

Reynolds number is 
 (a) 2000 (b) more than 2000
 (c) more than 4000 (d) 4000.

 190. If the Froude number in open channel flow is 
less than 1.0, the flow is called

  (a) critical flow (b) super-critical flow
  (c) sub-critical flow (d) none of the above.
 191. For a submerged curved surface, the horizontal 

component of force due to static liquid is equal 
to 

 (a) weight of liquid supported by the curved   
surface

 (b) force on a projection of the curved sur-
face   on a vertical plane

 (c) area of curved surface × pressure at the   
centroid of the submerged area

 (d) none of the above.
 192. For a submerged curved surface, the vertical 

component of force due to static liquid is equal 
to 

 (a) weight of the liquid supported by curved   
surface

 (b) force on a projection of the curved surface 
on a vertical plane

 (c) area of curved surface × pressure at the   
centroid of the submerged area

 (d) none of the above.
 193. Venturimeter is used to measure
 (a) discharge (b) average velocity
 (c) velocity at a point   
 (d) pressure at a point.
 194. Orificemeter is used to measure
 (a) discharge (b) average velocity
 (c) velocity at a point    (d) pressure  a t  a 

point.
 195. An oil of specific gravity 0.7 and pressure 0.14 
  kgf/cm2 will have the height of oil as 
 (a) 70 cm of oil (b) 2 m of oil
 (c) 20 cm of oil (d) 80 cm of oil.
 196. The difference in pressure head, measured by 

a mercury water differential manometer for a 
20 cm difference of mercury level will be

 (a) 2.72 m (b) 2.52 m
 (c) 2.0 m (d) 0.2 m. 
 197. The ratio of actual velocity of a jet of water 

at vena-contracta to the theoretical velocity is 
known as 

 (a) co-efficient of discharge  
 (b) co-efficient of velocity
 (c) co-efficient of contraction
 (d) co-efficient of viscosity .
 198. The ratio of actual discharge of a jet of water to 

its theoretical discharge is known as
 (a) co-efficient of discharge
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 (b) co-efficient of velocity    
   (c) co-efficient of contraction
 (d) co-efficient of viscosity.
 199. The ratio of inertia force to viscous force is 

known as
 (a) Reynolds number (b) Froude number
 (c) Mach number (d) Euler number.
 200. The velocity profile for turbulent boundary layer 

is 

 (a) sin
2

yu
U

p =  δ 
 (b) 

4/7yu
U

 =  δ 

 (c) 
2

2 y yu
U

   = −   δ δ   
   (d) 

33 1
2 2

y yu
U

   = −   δ δ   

 201. The relation between surface tension (σ ) and 
difference of pressure (∆p) between the inside 
and outside of a liquid droplet is given as

 (a) 
4

p
d
σ∆ =  (b) 

2
p

d
σ∆ =

 (c) 4p
d
σ∆ =  (d) p

d
σ∆ = .

 202. The discharge through a rectangular notch is 
given by 

 (a) 5/22
3 dQ C L H= × ×  

 (b) 3/22
3 dQ C L H= × ×

 (c) 5/28
15 dQ C L H= × ×

 (d) 3/28 8
15 15 dQ C L H= × × .

 203. The discharge through a triangular notch is given 
by

 (a) 2 tan 2
3 2dQ C gHθ

= × ×

 (b) 3/22 tan 2
3 2dQ C g Hθ= × × ×

 (c) 5/22 tan 2
15 2dQ C gHθ= × ×

 (d) none of the above.
  where, θ = total angle of triangular notch, H = 

head over notch .
 204. The drag force exerted by a fluid on a body im-

mersed in the fluid is due to 
 (a) pressure and viscous forces
 (b) pressure and gravity forces
 (c) pressure and turbulence forces
 (d) none of the above.

 205. For supersonic flow, if the area of flow increases 
then

 (a) velocity decreases 
 (b) velocity increases
 (c) velocity is constant 
 (d) none of the above.
 206. The term Z is known as 
 (a) potential energy
 (b) pressure energy
 (c) potential energy per unit weight
 (d) none of the above 
 207. The discharge through a venturimeter is given 

as

 (a) 
2 2
1 2
2 2
1 2

2A AQ gh
A A

= ×
−

 

 (b) 1 2
2 2
1 2

2
2

A A
Q gh

A A
= ×

−
 

 (c) 1 2
2 2
1 2

2
A A

Q gh
A A

= ×
−

 (d) none of the above.
 208. For a two-dimensional fluid element in x-y plane, 

the rotational component is given as 

 (a) 1
2z

v u
x y

 ∂ ∂ω = + ∂ ∂ 
   (b) 1

2z
u v
x y

 ∂ ∂ω = − ∂ ∂ 

 (c) 1
2z

u v
x y

 ∂ ∂ω = + ∂ ∂ 
 

 (d) 1
2z

v u
x y

∂ ∂ −ω =  ∂ ∂ 

 209. Continuity equation can take the form
 (a) A1V1 = A2V2 (b) ρ1A1 = ρ2A2
 (c) ρ1A1V1= ρ2A2V2 (d) ρ1A2V1 = ρ2A1V2 

 210. Pitot tube is used for measurement of
 (a) pressure (b) flow
 (c) velocity at a point  (d) discharge.
 211. Mach number is defined as the ratio of
 (a) inertia force to viscous force
 (b) viscous force to surface tension force
 (c) viscous force to elastic force
 (d) inertia force to elastic force.
 212. Euler’s number is the ratio of 
 (a) inertia force to pressure force
 (b) inertia force to elastic force
 (c) inertia force to gravity force
 (d) none of the above.   
213. The ratio of the area of the jet of water at vena-

contracta to the area of orifice, is known as
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 (a) co-efficient of discharge
 (b) co-efficient of velocity
 (c) co-efficient of contraction
 (d) co-efficient of viscosity  .
 214. The discharge through a large rectangular orifice 

is 

 (a) ( )2 1
2 2
3 dC b g H H× × −

 (b) ( )3/2 3/2
12

8 2
15 dC b g H H× × −

 (c) ( )3/2 3/2
2 1

2 2
3 dC b g H H× × −

 (d) none of the above.
  where, b = width of orifice, H1 = height of liquid 

above top edge of the orifice, H2 = height of 
liquid above bottom edge of orifice.

 215. The discharge through a trapezoidal notch is 
given as 

 (a) 
1

3/22
3 dQ C L H= × × +

   
2

3/28 tan 2 2
15 dC g H× θ × ×  

 (b) 
1

5/22
3 dQ C L H= × × +

   
2

3/28 tan 2 2
15 dC gH× × θ ×

 (c) 
1

3/22
3 dQ C L H= × × +

   
2

5/28 tan 2 2
15 dC gH× × θ ×

  (d) none of the above
  where, θ/2 = slope of the side of the trapezoidal 

notch.
 216. Von-Karman momentum integral equation is 

given as

 (a) 0
21

2
xU

τ ∂θ=
∂ρ

 (b) 0
2 xU

τ ∂θ=
∂ρ

 (c) 0
22 xU

τ ∂θ=
∂ρ

 (d) none of the above.

 217. The boundary layer separation takes place if
 (a) pressure gradient is zero 
 (b) pressure gradient is positive
 (c) pressure gradient is negative
 (d) none of the above.
 218. Maximum efficiency of power transmission 

through pipe is
 (a) 55% (b) 60%
 (c) 66.67% (d) 80%.

219. The flow in a pipe is turbulent when the  Reynold 
number is

 (a) 1000 (b) 2000
 (c) 3000 (d) greater than 4000
 220. Orifices are used to measure
 (a) velocity (b) pressure
 (c) rate of flow (d) none of the above.
 221. Mouthpieces are used to measure
 (a) velocity (b) pressure
 (c) viscosity (d) rate of flow.
 222. When the pipes are connected in parallel, the 

total loss of head
 (a) is equal to the sum of the loss of head in   

each pipe
 (b) is same as in each pipe
 (c) is equal to the reciprocal of the sum of loss 

of head in each pipe
 (d) none of the above.
 223. The flow in a pipe is laminar if
 (a) Reynolds number is equal to 2500
 (b) Reynolds number is equal to 4000
 (c) Reynolds number is more than 2500
 (d) none of the above.
 224. A streamline is a line
 (a) which is along the path of a particle
 (b) which is always parallel to the main  

direction of flow
 (c) across which there is no flow
 (d) on which tangent drawn at any point gives 

the direction of velocity.
225. Lift force is defined as the force exerted by a 

flowing fluid on a solid body
 (a) in the direction of flow
 (b) perpendicular to the direction of flow
 (c) at an angle of 45° to the direction of flow
 (d) none of the above. 
 226. Drag force is expressed mathematically, as

 (a) 21
2D DF U C A= ρ × ×

 (b) FD = ρU2 × CD × A

 (c) FD = 2ρU2 × CD × A
 (d) none of the above.
 227. The discharge through a trapezoidal channel is 

maximum when
 (a) half of top width = sloping side
 (b) top width = half of sloping side
 (c) top width = 1.5 × sloping side
 (d) none of the above.
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 228. The maximum velocity through a circular chan-
nel takes place when depth of flow is equal to

 (a) 0.95 times the diameter
 (b) 0.5 times the diameter
 (c) 0.81 times the diameter
 (d) 0.3 times the diameter.  
 229. The thickness of turbulent boundary layer at a 

distance x from the leading edge over a flat plate 
varies as

 (a) x4/5 (b) x1/2

 (c) x1/5 (d) x3/5.

 230. The separation of boundary layer takes place in 
case of

 (a) negative pressure gradient 
 (b) positive pressure gradient
 (c) zero pressure gradient 
 (d) none of the above. 
 231. The square root of the ratio of inertia force to 

pressure force is known as
 (a) Reynolds number (b) Froude number
 (c) Mach number (d) Euler number.
 232. Model analysis of pipes flow is based on 
 (a) Reynolds number (b) Froude number
 (c) Mach number (d) Euler number.
 233. If the velocity, pressure, density etc., do not 

change at a point with respect to time, flow is 
called

 (a) uniform  (b) incompressible
 (c) non-uniform (d) steady.
 234. If the velocity, pressure, density, etc., change at 

a point with respect to time, the flow is called
 (a) uniform (b) compressible
 (c) unsteady (d) incompressible.
 235. Hydraulic gradient line (H.G.L.) represents the 

sum of 
 (a) pressure head and kinetic head
 (b) kinetic head and datum head
 (c) pressure head, kinetic head and datum head
 (d) pressure head and datum head.
 236. Total energy line (T.E.L.)  represents the sum of
 (a) pressure head and kinetic head
 (b) kinetic head and datum head
 (c) pressure head and datum head.
 (d) pressure head, kinetic head and datum head.
 237. An ideal fluid is defined as the fluid which
 (a) is compressible 
 (b) is incompressible
 (c)  is incompressible and non-viscous  

(inviscid).
 (d) has negligible surface tension.

 238. The square root of the ratio of inertia force to 
gravity force is called

 (a) Reynolds number (b) Froude number
 (c) Mach number (d) Euler number.
239. The square root of the ratio of inertia force to 

force due to compressibility is known as
 (a) Reynold number (b) Froude number
 (c) Mach number (d) Euler number.
240. The value of the kinetic energy correction factor 

(α) for the viscous flow through a circular pipe 
is

 (a) 1.33 (b) 1.50
 (c) 2.0 (d) 1.25.
 241. Pascal’s law states that pressure at a point is equal 

in all directions
 (a) in a liquid at rest (b) in a fluid at rest
 (c) in a laminar flow 
 (d) in a turbulent flow.
242. The co-efficient of velocity (Cv) for an orifice is

 (a) 
24

v
xC

yH
=  (b) 2

4v
xC
yH

=

 (c) 
2

4v
xC
yH

=  (d) none of the above.

 243. The rate of flow through a V-notch varies as
 (a) H (b) H  
 (c) H3/2 (d) H5/2.
 244. The increase in temperature:
 (a) increase the viscosity of fluids
 (b) decreases the viscosity of fluids
 (c) increase the viscosity of liquids and  

 decreases the viscosity of gases 
 (d) decreases the viscosity of liquids and  

 increases the viscosity of gases.
 245. The rate of increase of pressure in vertical direc-

tion is equal to
 (a) density of fluid   
 (b) specific weight of fluid
 (c) weight of fluid  
 (d) none of the above.
 246. For a floating body, the buoyant force passes 

through the
 (a) centre of gravity of body
 (b) centre of gravity of submerged part
 (c) meta-centre of body
 (d) centroid of the liquid displaced.
 247. Irrotational flow means
 (a) fluid does not rotate while moving
 (b) fluid moves in straight lines
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 (c) net rotation of fluid particles about their   
mass centres is zero

 (d) none of the above.
 248. Hydraulic gradient line represent
 (a) pressure head and kinetic head
 (b) kinetic head and datum head
 (c) pressure head, kinetic head and datum head
 (d) pressure head and datum head.

B. MATCH LIST I WITH LIST II
Match List I with List II and select the correct 
answer from the codes given below :
 249.  List I List II
  A. In a fluid at rest, 1. inversely   

 only .......stress   proportional
   exist
  B. A ...... consists of  2. piezometric head  

 group of stream 
   lines.
  C. Spacing between 3. stream tube
   streamlines is....
   to velocity.

  D. The term p z
w

 + 
 

 is 4. normal

   called......
 Codes: A B C D
  (a) 1 2 3 4
  (b) 4 3 1 2
  (c) 3 4 2 1
  (d) 2 3 4 1
 250.  List I List II
  A. Euler’s equation of 1. laminar
   motion is a state-
   ment expressing 
   conservation of... 
  B. The concept of  2. energy
   streamline, path
   line and streakline
   is valid for ....flow
   only. 
  C. The linear momen- 3. Laplace equation
   tum equation is ba-
   sed on ..... law.
  D. For an irrotational 4. Newton’s second
   flow, the equation

   
2 2

2 2 0
x y

∂ φ ∂ φ+ =
∂ ∂

.....

 Codes : A B C D
  (a) 3 4 1 2
  (b) 4 2 3 1
  (c) 2 1 4 3
  (d) 1 2 3 4

 251.  List I List II
  A. Naviers-stokes eq- 1. momentum
   uation is useful in 
   the analysis of....
   flow.
  B. The shear stress in  2. hydraulic gradient
   turbulent flow is  line
   mainly due to.....
   of the flowing fluid.
  C. The pressure gradi- 3. eddy viscosity
   ent for developed
   flow in a closed co-
   nduit is linear since 
   it satisfies the equ-
   ation of .....
  D. The vapour lock in 4. viscous
   a water pipeline 
   may occur if.......
   goes below the conduit.
Codes: A B C D
  (a) 2 3 4 1
  (b) 1 2 3 4
  (c) 3 1 2 4
  (d) 4 3 1 2 
252.  List I  List II
  A. The ......always 1. velocity gradient
   occurs after a sep- 
   aration point.
  B. The displacement 2. flow streamlines
   thickness for a 
   boundary layer
   represents .... in a
   flow.
  C. The shear stress at  3. wake
   a point on a wall is
   directly related to 
   the .....
  D. Bluff body surface  4. mass deficit
   does not coincide
   with
Codes: A B C D
  (a) 1 3 4 2
  (b) 3 4 1 2
  (c) 2 3 4 1
  (d) 4 2 3 1 
253.  List I  List II
  A. The discharge in a 1. hemispherical
   reciprocating pump,  bucket vanes
   without air vessel 
   is.........................
  B. The efficiency of 2. pulsating
   an impulse turbine 
   may approach  100
   % for ...............
  C. Draft tubes in react- 3. screw pumps
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   ion turbines are akin
   to ........in centrifugal
   machines.
  D. ......are used for pum- 4. diffusers 
   ping highly viscous 
   liquids
 Codes: A B C D 
  (a) 4 3 2 1
  (b) 3 4 1 2
  (c) 1 2 3 4
  (d) 2 1 4 3
 254.  List I  List II 
  A. Large head favours  1.  Kaplan
   the use of a .......... 
   pump.
  B. A bulb turbine is a  2. multistage
   ............turbine.
  C. A foot valve is  3. low head
   provided on.......
   pumps.
  D. A ..... turbine can  4. centrifugal
   adjust both guide
   vanes and blade
   angles according 
   to rate of discharge.
 Codes: A B C D
  (a) 1 2 3 4
  (b) 3 4 2 1
  (c) 2 3 4 1
  (d) 4 2 3 1 

C. COMPETITIVE EXAMINATION 
QUESTIONS

(With Solutions-Comments)

 255. The vertical component of force on a curved 
surface submerged in a static liquid is equal to 
the

 (a) mass of the liquid above the curved surface
 (b) weight of the liquid above the curved  

surface
 (c) product of pressure at C.G. multiplied by   

the area of the curved surface.
 (d) product of pressure at C.G. multiplied  by  

 the projected area of the curved surface  
   (ESE-1993) 

 256. Flow  takes place at Reynolds Number of 1500 
in two different pipes with relative roughness of 
0.001 and 0.002. The friction factor

 (a) will be higher in the case of pipe with  
 relative roughness of 0.001

 (b) will be higher in the case of pipe having   
relative roughness of  0.002

 (c) will be the same in  both the pipes

 (d) in the two pipes cannot be compared on 
the  basis of data given   

 257. For a real fluid moving with uniform velocity, 
the pressure

 (a) depends upon depth and orientation
 (b) is independent of depth but depends upon   

orientation
 (c) is independent of orientation but depends   

upon depth
 (d) is  independent of both depth and   

orientation.   
 258. Consider the following assumptions:
 1. Steady flow 
 2. Inviscid flow
 3. Flow along a streamline
 4. Conservative force field 
  For  Bernoulli’s equation to be valid between any 

two points in a flow field, besides incompress-
ible flow and irrotational flow, the assumptions 
required would include

 (a) 1 and 2 (b) 1, 2 and 4
 (c) 2, 3 and 4 (d) 1, 3 and 4. 
259. In the case of Pelton turbine installed in the 

hydraulic power plant, the gross head available 
is the vertical distance between

 (a) forebay and tail race
 (b) reservoir level and turbine inlet
 (c) forebay and turbine inlet
 (d) reservoir level and tail race.
 260. The lower critical Reynolds number for a pipe 

flow is
 (a) different for different fluids
 (b) the Reynolds number at which the laminar 

flow changes to turbulent flow
 (c) more than 2000
 (d) the least Reynolds number ever obtained   

for laminar flow.   
* 261. Decrease in temperature, in general, results in
 (a) an increase in viscosities of both gases and 
  liquid
 (b) a decrease in the viscosities of both liquids 

and gases
 (c) an increase in the viscosity of liquid and a  

 decrease in that of gases
 (d) a decrease in the viscosity of liquids and an 

increase in that of gases.  
 262. The components of velocity u and v along x- 

and y- directions in a 2-D flow problem of an 
incompressible fluid are

  1. u = x2 cos y;  v = –2x sin y
  2. u = x + 2;  v = 1 – y
  3. u = x yt;  v =  x3 – y2 t/2
  4. u = ln x + y;  v = xy – y/x 
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  Those which would  satisfy  the continuity 
equation would include

 (a) 1, 2 and 3 (b) 2, 3 and 4
 (c) 3 and 4 (d) 1 and 2
 263. The energy loss between sections (1) and (2) of 

the pipe shown in the given figure is

Fig. 1

 (a) 1.276 kg-m (b) 1.00 kg-m
 (c) 0.725 kg-m (d) 0.15 kg-m.
 264. Chezy’s formula is given by (m, i, C and V are, 

respectively, the hydraulic mean depth, slope 
of the channel, Chezy’s constant and average 
velocity of flow)

 (a) V i mC=  (b) V C im=

 (c) V m iC=  (d) V miC= .

* 265. The reading of the pressure gauge fitted on a 
vessel  is 25 bar. The atmospheric pressure is 
1.03 bar and the value of g is 9.81 m/s2. The 
absolute pressure in the vessel is 

  (a) 23.97 bar (b) 25.00 bar
  (c) 26.03 bar (d) 34.84 bar.
* 266. In a pipe  flow, the head lost due to friction is 

6  m. If the power transmitted through the pipe 
has to be the maximum, then the total head at 
the inlet of the pipe will have to be maintained 
at

 (a) 36 m (b) 30 m
 (c) 24 m (d) 18 m.
* 267. In a rough turbulent flow in a pipe, the friction 

factor would depend upon
 (a) velocity of flow 
 (b) pipe diameter
 (c) type of fluid flowing
 (d) pipe condition and pipe diameter.

 

Turbulent
flow

(smooth pipe)

Log f

Laminar
flow

Increasing

Fig. 2

 268. If the governing equation for a flow field is 
given by 2 0∇ φ= and the velocity is given by   

V = ∇φ, then

 (a) 0V
→

∆ × =  

 (b) 1V
→

∆ × =

 (c) 2 1V
→

∆ × =  

 (d) ( · ) VV V
t

→
→ → ∂∆ =

∂
 *269. The ‘velocity defect law’  is so named because 

it governs a 
 (a) reverse flow region near a wall
 (b) slip-stream flow at low pressures
 (c) flow with a logarithmic velocity profile a   

little away from the wall
 (d) re-circulating flow near a wall
 270. For flow through a horizontal pipe, the pressure 

gradient dp/dx in the flow direction is 
 (a) + ve (b) 1
 (c) zero (d) – ve.
271. In turbulent flow over an impervious solid wall
 (a) viscous stress is zero at the wall
 (b) viscous stress is of the same order of  

 magnitude as the Reynolds stress
 (c) the Reynolds stress is zero at the wall
 (d) viscous stress is much smaller than   

Reynolds stress.   
* 272. The speed of the air emerging from the blades of 

a running table fan is intended to be measured 
as a function of time. The point of measurement 
is very close to the blade and the time period 
of the speed fluctuation is four times the time 
taken by the  blade to complete one revolution. 
The appropriate method of measurement would 
involve the use of 

 (a) a Pitot tube
 (b) a hot wire anemometer
 (c) high speed photography 
 (d) a Schlieren system.  
 *273. A fluid jet is discharging from a 100 mm nozzle 

and the venacontracta formed has a diameter of 
90 mm. If the coefficient of viscoscity is 0.95, 
then the co-efficient of discharge for a nozzle is

 (a) 0.855 (b) 0.81
 (c) 0.9025 (d) 0.7695.
 *274. Pipe 1 branches to three pipes as shown in 

the given figure. The areas and corresponding  
velocities are as given in the following table.
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Pipe Velocity  
(cm per second)         

Area  
(sq. cm)

1. 50 20
2. V2 10
3. 30 15
4. 20 10

1

2

3

4

Fig. 3
  The value of V2 in cm per second will be 
  (a) 15 (b) 20
  (c) 30 (d) 35.
275. The differential manometer connected to a Pitot 

static tube used for measuring fluid velocity 
gives

 (a) static pressure 
 (b) total pressure
 (c) dynamic pressure 
 (d) difference between total pressure and  

dynamic pressure.   
* 276. A circular disc of radius ‘r’ is submerged verti-

cally in a static fluid upto a depth ‘h’ from the 
free surface. If h > r, then the position of centre 
of pressure will 

 (a) be directly proportional to h 
 (b) be inversely proportional to h
 (c) be directly proportional to r
 (d) not be a function of h or r. 
* 277. If a cylindrical wooden pole, 20 cm in diameter, 

and 1 m in height is placed in a pool of water in 
a vertical position (the specific gravity of wood 
is 0.6), then it will 

 (a) float in stable equilibrium
 (b) float in unstable equilibrium
 (c) float in neutral equilibrium
 (d) start moving horizontally. 
 278. In the region of the boundary layer nearest to 

the wall where vorticity is not equal to zero, the 
viscous forces are 

 (a) of the same order of magnitude as the  
inertial forces 

 (b) more than inertial forces
 (c) less than inertial forces
 (d) negligible.   
 279. A hydraulic coupling belongs to the category of
 (a) power absorbing machines

 (b) power developing machines
 (c) energy generating machines
 (d) energy transfer machines. 
* 280. Drag on cylinders and spheres decreases when 

the Reynolds number is in the region of 2 × 105 

since
 (a) flow separation occurs due to transition to  

turbulence
 (b) flow separation is delayed due to onset of   

turbulence
 (c) flow separation is advanced due to  

 transition to turbulence   
 (d) flow reattachment occurs. 
 281. The laminar boundary layer thickness in zero-

pressure-gradient flow over a flat plate along the 
x-direction varies as (x is the distance from the 
leading edge)

 (a) x1/2 (b) x1/7

 (c) x1/2 (d) x.
 282. The frictional head loss through a straight pipe 

(ht) can be expressed as 
24

2f
flVh
gD

=  for both 

laminar and turbulent flows. For a laminar flow, 
‘f’ is given by (Re is the Reynolds number based 
on pipe diameter)

 (a) 24/Re (b) 32/Re
 (c) 64/Re (d) 128/Re
283. For pumping molasses, it is preferable to employ
  (a) reciprocating pump
 (b) centrifugal pump with double shrouds
 (c) open impeller pump
 (d) multistage centrifugal pump.   
 284. In the case of a centrifugal pump, cavitation will 

occur if
 (a) it operates above the minimum net  

positive suction head
 (b) it operates below the minimum net  

position suction head
 (c) the pressure at the inlet of the pump  

 is above the atmospheric pressure
 (d) the pressure at the inlet of the pump  

 is equal to the atmospheric pressure.
*285. In turbomachinery, the relevant parameters are 

volume flow rate, density, viscosity, bulk modu-
lus, pressure difference, power consumption, 
rotational speed and a characteristic dimension. 
According to Buckingham (p)theorem, the num-
ber of independent non-dimensional groups for 
this case is 

 (a) 3 (b) 4
 (c) 5 (d) 6   
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*286. Consider the following statements :
  For a body totally immersed in a fluid,
 I. the weight acts through the centre of  

gravity of the body
 II. the upthrust acts through the centroid  

of the body
  Of these statements
 (a) both I and II are true
 (b) I is true but II is false
 (c) I is false but II is true
 (d) neither I nor II is true.    
 287. Chances of occurrence of cavitation are high if the 
 (a) local pressure becomes very high
 (b) local temperature becomes low
 (c) Thoma cavitation parameter exceeds a  

certain limit
 (d) local pressure falls below the vapour  

pressure.   
* 288. The specific speed of a hydraulic pump is the 

speed of geometrically similar pump working 
against a unit head and

 (a)  delivering unit quantity  of water
 (b) consuming unit power
 (c) having unit velocity of flow
 (d) having unit radial velocity.  
289. The degree of reaction of a turbomachine is 

define as the ratio of the 
 (a) static pressure change in the rotor to that in 

the stator
 (b) static pressure change in the rotor to that in 

the stage
 (c) static pressure change in the stator to that   

in the rotor
 (d) total pressure change in the rotor to that in 

the stage.   
 290. Both the free vortex and forced vortex can be 

expressed mathematically as functions of tan-
gential velocity V at the corresponding radius 
r.  Free vortex and forced vortex are definable 
through V and r as 

  Free Vortex  Forced Vortex

 (a)  V = r × const.  Vr = const.
 (b) V × r = const.  V2 = r × const.
 (c) V × r = const.  V =  r × const.
 (d) V2 × r = const.  V = r × const.
 291. The shear stress in turbulent flow is 
 (a) linearly proportional to the velocity  

gradient

 (b) proportional to the square of the velocity   
gradient

 (c) dependent on the mean velocity of flow
 (d) due to the exchange of energy between the 

molecules   
 292. The realisation of velocity potential in fluid flow 

indicates that the 
 (a) flow must be irrotational 
 (b) circulation around any closed curve must   

have a finite value
 (c) flow is rotational and satisfies the  

continuity equation
 (d) vorticity must be non-zero. 
* 293. An open tank contains water to a depth of 2 m 

and oil over it to a depth of 1 m. If the specific 
gravity of oil is 0.8, then the pressure intensity 
at the interface of the two fluid layers will be

 (a) 7848 N/m2 (b) 8720 N/m2

 (c) 9347 N/m2 (d) 9750 N/m2. 
 294. In the statement, “in a reaction turbine installa-

tion, the head of water is decreased and the rpm 
is also decreased at a certain condition of work-
ing. The effect of each of these changes will be 
to X power delivered due to decrease in head and 
to Y power delivered due to decrease in rpm”, 

5/4( )
N Q
H

, X and Y stand respectively for

 (a) decrease and increase
 (b) increase and increase
 (c) decrease and decrease
 (d) increase and decrease.   
 295. In a Newtonian fluid, laminar flow between two 

parallel plates, the ratio (τ) between the shear 
stress and rate of shear strain is given by

 (a) 
2

2
d u
dy

µ  (b) du
dy

µ

 (c) 
2du

dy
 µ 
 

 (d) 
1/2du

dy
 µ 
 

.

* 296. An inclined manometer, inclined at 30° to the 
horizontal, measures the pressure differential 
between two locations of a pipe carrying water. 
If the manometric liquid is mercury (specific 
gravity 13.6) and the manometer showed a level 
difference of 20 cm, then the pressure head dif-
ference of water between the two tappings will 
be 

 (a) 1.26 m (b) 1.36 m
 (c) 2.52 m (d) 2.72 m.
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 297. Which one of the following sets of conditions 
clearly apply to an ideal fluid?

 (a) Viscous and compressible
 (b) Non-viscous and incompressible
 (c) Non-viscous and compressible 
 (d) Viscous and incompressible. 
* 298. A jet of water issues from a nozzle with a ve-

locity of 20 m/s and it impinges normally on a 
flat plate moving away from it at 10 m/s.  If the 
cross-sectional area of the jet is 0.02  m2 and the 
density of water is taken as 1000 kg/m3, then the 
force developed on the plate will be 

 (a) 10 N (b) 100 N
 (c) 1000 N (d) 2000 N.
 299. The buoyant force acting on a floating body 

passes through the
 (a) metacentre of the body
 (b) centre of gravity of the body
 (c) centroid of volume of the body
 (d) centroid of the displaced volume.
 300. Consider the following statements regarding a 

plane area submerged in a liquid:
 1. The total force is the product of specific   

weight of the liquid, the area and the depth 
of its centroid.

 2. The total force is the product of the area   
and the pressure at its centroid.

  Of these statements
 (a) 1 alone is correct (b) 2 alone is correct 
 (c) both 1 and 2 are false
 (d) both 1 and 2 are correct.  
 301. The vertical force on a submerged curved surface 

is equal to the 
 (a) force on the vertical projection of the curved 

surface
 (b) force on the horizontal projection of  

the curved surface
 (c) weight of the liquid vertically above  

the curved surface
 (d) product of the pressure at the centroid and  

 the area of the curved surface.
 302. A vertical dock gate 2 metres wide remains in 

position due to horizontal force of water on one 
side. The gate weighs 800 kg and just starts 
sliding down when the depth of water upto the 
bottom of the gate decreases to 4 metres. Then 
the coefficient of friction between dock gate and 
dock wall will be

 (a) 0.5  (b) 0.2
 (c) 0.05 (d) 0.02.   

* 303. The pressure gauge reading in metre of water 
column shown in Fig. 4 will be 

 (a) 3.20 m (b) 2.72 m
 (c) 2.52 m (d) 1.52 m

 

Gauge

1m

Water

Air

20cm

Mercury
(S.G = 13.6)

Fig. 4

* 304. Two pipe lines at different pressures, pA and pB, 
each carrying the same liquid of specific gravity 
S1, are connected to a U-tube with a liquid of 
specific gravity S2 resulting in the level differ-
ences, h1, h2 and h3 as shown in the Fig. 5. The 
difference in pressure head between point A and 
B in terms of head of water is

h1
A+

S1

h3

S1

S2

+
B

h2

Fig. 5

 (a) h1 S2 + h2S1 + h3 S1
 (b) h1 S1 + h2S2 – h3 S1

 (c) h1 S1 – h2S2 – h3 S1

 (d) h1 S1 + h2S2 + h3 S1
.
   

* 305. In the situation shown in the given Fig. 6. the 
length BC is 3 m and M is the mid-point of BC. 
The hydrostatic force on BC measured per unit 
width (width being perpendicular to the plane of 
the paper) with ‘g’ being the acceleration due to 
gravity, will be

4m

M

Water

C

B

60º

Fig. 6
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 (a) 16500 g N/m passing through M
 (b) 16500 g N/m passing through a point  

between M and C
 (c) 14250 g N/m passing through M  
 (d) 14250 g N/m passing through a point  

between M and C.   
* 306. A simple Pitot tube can be used to measure which 

of the following quantities?
 1. Static head 2. Datum head
 3. Dynamic head 4. Friction head
 5. Total head
  Select the correct answer using the codes given 

below:
Codes:     
 (a) 1, 2 and 4 (b) 1, 3 and 5
 (c) 2, 3 and 4 (d) 2, 3 and 5.
 307. Match the List I with List II and select the correct 

answer using the codes given below the lists.
   List I List II
   (Turbines)                   (specific speeds )
              in MKS units)
  A.  Kaplan turbine 1. 10 to 35
  B. Francis turbine 2. 35 to 60
  C. Pelton wheel with 3. 60 to 300
   single jet
  D. Pelton wheel with 4. 300 to 1000 
   two or more jets   
 Codes:
  A B C D
 (a) 4 3 1 2
 (b) 3 4 2 1
 (c) 3 4 1 2
 (d) 4 3 2 1.
 308. Which of the following equations are forms of 

continuity equation ?

  (V


is the velocity and ∀  is volume)

 1.  1 1 2 2A V A V
→ →

=  

 2. 0u v
x y

∂ ∂+ =
∂ ∂

 3. · 0
A

V dA d
t

→

∀

∂
+ ∀ =

∂∫ ∫ρ ρ

 4. ( )11 0zrv v
r r z

∂ ∂+ =
∂ ∂

 

  Select the correct answer using the codes given 
below:

Codes:
 (a) 1, 2, 3 and 4 (b) 1 and 2
 (c) 3 and 4 (d) 2, 3 and 4.
 309. Match List I with List II and select the correct 

answer using the codes given below the lists:
   List I List II
  (Discharge measuring (Characteristic 
   device)       feature)
  A. Rotameter 1. Vena contracta
  B. Venturimeter 2. End contraction
  C. Orificemeter 3. Tapering tube 
  D. Flow nozzle 4. Convergent-           
     divergent
    5. Bell mouth entry
 Codes:
  A B C D
 (a) 1 2 3 4
 (b) 3 4 1 5
 (c) 5 4 2 1
 (d) 3 5 1 2.
 310. List I gives 4 dimensionless numbers and List 

II gives the types of forces which are one of the 
constituents describing the numbers. Match List 
I with List II and select the correct answer using 
the codes given below the lists: 

   List I List II
  A. Euler number 1. Pressure force
  B. Froude number 2. Gravity force
  C. Mach number 3. Viscous force
  D. Weber number 4. Surface tension
    5. Elastic force
Codes:  
   A B C D
 (a) 2 3 4 5
 (b) 3 2 4 5
 (c) 2 1 3 4
 (d) 1 2 5 4.
 311. Match the common observations in List I with 

the explanations in List II and select correct 
answer using the codes given below the lists.

   List I List II
  A. Singing of telephone  1. Vortex flow
   wires
  B. Velocity profile in a  2.  Drag 
   pipe initially parabolic
  C. Formation of 3.  Vortex shedding
    cyclones
  D. Shape of a rotameter 4.  Turbulence
   tube 5. Compressibility
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 Codes:
   A B C D
 (a) 5 2 1 4
 (b) 3 4 5 2
 (c) 3 4 1 2
 (d) 5 2 1 4.
312. If z is vertically upwards, ρ is the density and 

g is gravitational acceleration (see figure) then  
the pressure gradient ∂p/∂z in a fluid at rest due 
to gravity is given by

  (a) ρgz2/2    (b) – ρg     (c) – ρgz    (d) ρgz.

x

g

y

z

Fig. 7

*313. A rectangular water tank, full to the brim has 

its length, breadth and height in the ratio of   
2 : 1 : 2.  The ratio of hydrostatic forces at the 
bottom to that at any larger vertical surface is

 (a) 1/2 (b) 1
 (c) 2 (d) 4.
 *314. The manometer shown in the given figure (Fig. 

8) connects two pipes, carrying oil and water 
respectively. From the figure one

 (a) can conclude that the pressures in the pipes 
are equal

 (b) can conclude that the pressure in the  
oil pipe is higher

 (c) can conclude that the pressure in the water 
pipe is higher

 (d) cannot compare the pressure in the  
 two pipes for want of sufficient data.

Water

Pipes
Oil

Horizontal
plane

Horizontal
plane

Mercury

Fig. 8

*315. Consider the following statements:
  The metacentric height of a floating body de-

pends
 1. directly on the shape of its water-line area
 2. on the volume of liquid displaced by the   

body.
 3. on the distance between the metacentre and 

the centre of gravity
 4. on the second moment of water-line area
 (a) 1 and 2 are correct 
 (b) 2 and 3 are correct 
 (c) 3 and 4 are correct 
 (d) 1 and 4 are correct.
 *316. Which one of the following statements is true  

of two dimensional flow of ideal fluids?
 (a)  Potential function exists if stream function 

exists.
 (b) Stream function may or may not exist
 (c) Both potential function and stream  

 function must exist for every flow
 (d) Stream function will exist, but potential   

function may or may not exist.

 317. The curl or a given velocity field ( 1V
→

∆ × ) indi-

cates the rate of
 (a) increase or decrease of flow at a point
 (b) twisting of the lines of flow
 (c) deformation  (d) translation.
 318. Match List I (fluid properties) with List II (related 

terms) and select the correct answer using the 
codes given below the lists:

   List I List II

  A. Capillary 1. Cavitation

  B. Vapour pressure 2. Density of water

  C. Viscosity 3. Shear forces

  D. Specific gravity 4. Surface tension  
Codes:

  (a) A B C D (b) A B C D

   1 4 2 3  1 4 3 2

  (c) A B C D (d) A B C D

   4 1 2 3  4 1 3 2.
 319. The general form of expression for the continu-

ity equation in a cartesian coordinate system for 
incompressible or compressibe flow is given by

 (a) 0u v w
x y z

∂ ∂ ∂+ + =
∂ ∂ ∂
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 (b) ( ) ( ) ( )u v w
dx y z

∂ ρ ∂ ρ ∂ ρ
+ +

∂ ∂
 = 0

 (c) ( ) ( ) ( ) 0
u v w

t x y z
∂ ρ ∂ ρ ∂ ρ∂ρ + + + =

∂ ∂ ∂ ∂

 (d) ( ) ( ) ( ) 1
u v w

t x y z
∂ ρ ∂ ρ ∂ ρ∂ρ + + + =

∂ ∂ ∂ ∂
.

 320. In a two dimensional flow in x–y plane, if 
u v
y x

∂ ∂=
∂ ∂

 then the fluid element will undergo 

 (a) translation only 
 (b) translation and rotation
 (c) translation and deformation
 (d) rotation and deformation.

 321. Water flow through a pipeline having four  
different diameters at 4 stations is shown in the 
given Fig. 9.

V

1
2

3
4

2 d

1.5 d
d

4 d

Fig. 9

  The correct sequence of station numbers in the 
decreasing order of pressure is

  (a) 3 1 4 2 (b) 1 3 2 4

  (c) 1 3 4 2 (d) 3 1 2 4.
322. During the measurement of viscosity of air flow-

ing through a pipe, we use the relation

   
4

128
dpd

Q dx
p  µ= − 

 

  under the condition that in the measuring 
section

 (a) there is a viscous zone near the wall and an 
inviscid core persists at the centre

 (b) the entire cross-section is viscous
 (c) the flow can be assumed as potential flow
 (d) the flow is irrotational.  
 323. If energy grade and hydraulic grade lines are 

drawn for flow through an inclined pipeline the 
following  quantities can be directly observed:

 1. Static head 2. Friction head 
 3. Datum head 4. Velocity head

  Starting from the arbitrary datum line, the above 
types of heads will be in the sequence

  (a) 3 2 1 4 (b) 3 4 2 1

  (c) 3 4 1 2 (d) 3 1 4 2.
324. If a calibration chart is prepared for a hot-wire 

anemometer for measuring the mean velocities,  
the highest level of accuracy can be

 (a) equal to accuracy of pitot tube
 (b) equal to accuracy of a rotameter
 (c) equal to accuracy of venturimeter
 (d) more than that of all the three instruments  

mentioned above.   
 325. At the point of boundary layer separation
 (a) shear stress is maximum
 (b) shear stress is zero
 (c) velocity is negative
 (d) density variation is maximum.
 326. All experiments thus far indicate that there can 

be only laminar flow in a pipe if the Reynolds 
number is below

 (a) 2300 (b) 4000
 (c) 20000 (d) 40000.

 327. If 0u v
x y
′ ′∂ ∂+ =

∂ ∂
 for a turbulent flow, then it signi-

fies that
 (a) bulk momentum transport is conserved
 (b) u′ v′ is non-zero and positive
 (c) turbulence is anisotropic
 (d) none of the above is true.
 328. The predominate forces acting on an element of 

fluid in the boundary layer over a flat plate placed 
in a uniform stream include

 (a) inertia and pressure forces
 (b) viscous and pressure forces 
 (c) viscous and body forces
 (d) viscous and inertia forces.
 329. Which one of the following wind velocity  distri-

bution of u/u∞ satisfies the boundary conditions 
for laminar flow on a flat plate?

  (Here u∞ is the free stream velocity, u is veloc-
ity at any normal distance from the flat plate 

y
h =

δ
 and δ is boundary layer thickness)

 (a) h – h2 (b) 1.5 h – 0.5 h3

 (c) 3h – h2 (d) cos pn. 
 *330. The turbulent boundary layer thickness varies as
 (a) x4/5 (b) x1/2

 (c) x1/5 (d) x1/7.
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* 331. During the flow over a circular cylinder, the 
drag co-efficient drops significantly at a critical 
Reynolds number of 2 × 105. This is due to

 (a)  excessive momentum loss in the boundary 
layer

 (b) separation point travelling upstream
 (c) reduction in skin-friction drag
 (d) the delay in separation due to transition to  

turbulence
 332. Match List I with List II and select the correct 

answer using the codes given below the lists:

   List I List II
   (Predominant            (Dimensionless   

 force)    numbers) 
 A. Compressibility force 1. Euler number
 B. Gravity force 2. Froude number
 C. Surface tension force 3. Mach number
 D. Viscous force 4. Reynolds number
    5. Weber number
Codes:
  (a) A B C D (b) A B C D
   1 2 3 4  3 2 5 4
  (c) A B C D (d) A B C D
   3 1 4 5  2 3 5 1.
333. Kinematic similarity between model and proto-

type is the similarity of 
 (a) shape (b) discharge 
 (c) stream line pattern  (d) forces.
334. The specific speed of a turbine is defined as the 

speed of a member of the same homologous 
series of such a size that it

 (a) delivers unit discharge at unit head
 (b) delivers unit discharge at unit power
 (c) delivers unit power at unit discharge
 (d) produces unit power under a unit head.
 335. Match List I with List II and select the correct 

answer using the codes given below the lists:
   List I List II
  A. Pelton wheel  1. Medium discharge,
   (single jet)  low head
  B. Francis Turbine 2. High discharge,   

   low head
  C. Kaplan Turbine 3. Medium discharge,  

   medium head
    4. Low discharge, 
     high head

Codes:
  (a) A B C  (b) A B C
   1 2 3   1 3 4
  (c) A B C  (d) A B C
   4 1 3   4 3 2.
336. Consider the following statements: 
  If pump NPSH requirements are not satisfied  

then 
 1. it will not develop sufficient head to raise 

liquid
 2. its efficiency will be low
 3. it will deliver very low discharge
 4. it will be cavitated. 
  Of these statements
 (a) 1, 2 and 3 are correct
 (b) 2, 3 and 4 are correct
 (c) 1 and 4 are correct 
 (d) 1, 2, 3 and 4 are correct.
 337. In reaction turbines, the draft tube is used
 (a) for the safety of the turbine
 (b) to convert the kinetic energy of flow by a 
   gradual expansion of the flow cross- 

section
 (c) to destroy the undesirable eddies
 (d) for none of the above purposes.
 338. Given that, N = speed
  P = power, H = head,
  the specific speed of a hydraulic turbine is given 

by
 (a) 4/5

N P
H

 (b) 5/4
N P
H

 (c) 4/5
P N
H

 (d) 5/4
P N
H

. 

 339. As water flows through the runner of a reaction 
turbine, pressure acting on it would vary from,

 (a) more than atmospheric pressure to vacuum
 (b) less than atmospheric pressure to zero gauge 

pressure 
 (c) atmospheric pressure to more than  

atmospheric pressure
 (d) atmospheric pressure to vacuum
 340. Consider the following statements regarding 

torque converter:
 1.  It has a stationary set of blades in addition 

to the primary and secondary rotors
 2.  It can be used for multiplication of torques.
 3. The maximum efficiency of converter is 

less than that of a fluid coupling.
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 4.  In a converter designed to give a large  
 increase of torque, the efficiency falls off 
rapidly as the speed ratio approaches unity.

  Of these statements
 (a) 1, 2, 3 and 4 are correct
 (b) 1, 2 and 3 are correct
 (c) 1, 2 and 4 are correct
 (d) 3 and 4 are correct.   
 341. In contrast to fluid couplings, torque converters 

are operated
 (a) while completely filled with liquid
 (b) while partially filled with liquid
 (c) without liquid
 (d) while completely filled with air.
342. Which one of the following statements regarding 

an impulse turbine is correct?
 (a)  There is no pressure variation in flow 

over  the buckets and the fluid fills the pas-
sage way between the buckets

 (b) There is no pressure variation in flow over 
the buckets and the fluid does not fill   
the passage way between the buckets

 (c) There is pressure drop in flow over the 
buckets and the fluid fills the passage way 

  between the buckets
 (d) There is pressure drop in flow over the 

buckets and the fluid does not fill the pas-
sage way between the buckets.   

 343. A centrifugal pump is started with its delivery 
valve kept

 (a) fully open (b) fully closed
 (c) partially  open (d) 50% open.
 344. A cylindrical gate is holding water on one side as 

shown in the given figure (Fig. 10). The resultant 
vertical component of force of water per meter 
width of gate will be

 (a) Zero (b) 7700.8 N/m
 (c) 15401.7 N/m (d) 30803.4 N/m. 

Water surface

2 m

Fig. 10

 *345. A differential manometer is used to measure the 
difference in pressure at points A and B in terms 

of specific weight of water, w. The specific gravi-
ties of the liquids X, Y and Z are respectively S1, 
S2 and S3.  The correct difference

  A Bp p
w w

 − 
 

 is given by

+

B

h3

h2

Liquid Y

Liquid Z

+

A

h1

Liquid X

Fig. 11

 (a) h3s2 – h1s1 + h2s3

 (b) h1s1 + h2s3 + h3s2

 (c) h3s1 – h1s2 + h2s3

 (d) h1s1 + h2s2 + h3s3.
 346. A large metacentric height in a vessel
 (a) improves stability and makes periodic time 

of oscillation longer
 (b) impairs stability and makes periodic time 

of oscillation shorter
 (c) has no effect on stability or the periodic 

time of oscillation
 (d) improves stability and makes the periodic 

time of oscillation shorter.
 347. The  parameters for an ideal fluid flow around  

a rotating circular cylinder can be obtained by 
superposition of some elementary flows. Which 
one of the following sets would describe the flow 
around a rotating circular cylinder?

 (a) Doublet vortex and uniform flow
 (b) Source, vortex and uniform flow
 (c) Sink vortex and uniform flow
 (d) Vortex and uniform flow
 348. For a irrotational flow, the velocity potential lines 

and the streamlines are always
 (a) parallel to each other
 (b) coplanar
 (c) orthogonal to each other
 (d) inclined to the horizontal.
 349. The dimensions of surface tension is
 (a) N/m2 (b) J/m
 (c) J/m2 (d) W/m.
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 350. Which one of the following is the bulk modulus 
K of a fluid. (Symbols have the usual meaning)

 (a) dp
d

ρ
ρ

 (b) dp
dρ ρ

 (c) d
dp

ρ ρ  (d) d
dp
ρ

ρ
.

 351. A hydraulic jump occurs in a channel
 (a) whenever the flow is supercritical
 (b) if the flow is controlled by a sluice gate
 (c) if the bed slope changes from mild to steep
 (d) if the bed slope changes from steep to mild.
 *352. Which one of the following statements is true 

of fully developed flow through pipes?
 (a) The flow is parallel, has no inertia effects, 

the pressure gradient is of constant value 
and the pressure force is balanced by the 
viscous force 

 (b) The flow is parallel, the pressure gradient 
is proportional to the inertia force and there 
is no viscous effect

 (c) The flow is parallel, the pressure gradient is 
negligible and the inertia force is balanced 
by the viscous force

 (d) The flow is not parallel, the core region 
accelerates and the viscous drag is far too 
less than the inertia force. 

 353. Match List I  with List II and select the correct 
answer using the codes given below the lists:

   List I List II

  (Measuring device) (Parameter measured)

  A. Anemometer 1. Flow rate

  B. Piezometer  2. Velocity

  C. Pitot tube 3. Static pressure

  D. Orifice 4. Difference between  
   static and stagnation 

       pressure
Codes:  

  (a) A B C D (b) A B C D

   1 3 4 2  1 2 3 4

  (c) A B C D (d) A B C D

   2 3 4 1  2 4 3 1.
354. Given. H = height of liquid, b = width of notch, 

a = cross-sectional area,

  a1 = area at inlet, a2 = area at the throat, and 

  Cd = Co-efficient of drag;

  Match List I with List II and select the correct 
answer using the codes given below the Lists:

   List I List II

  A. Discharge 1. 3/22 2
3 dC b gH

   through venturimeter

  B. Discharge through 2. 5/28 2
15 dC g H

   an external mouthpiece

  C. Discharge over a 3. 1 2
2 2
1 2

2dC a a gH
a a−

   rectangular notch
  D. Discharge over right  4. 0.855 2a gH

   angled notch

Codes:  

  (a) A B C D (b) A B C D

   1 2 3 4  3 4 1 2

  (c) A B C D (b) A B C D

   2 1 3 4  2 3 1 4.
 355. Flow separation is caused by
 (a) reduction of pressure to local vapour pres-

sure
 (b) a negative pressure gradient
 (c) a positive pressure gradient
 (d) thinning of boundary layer thickness to zero
356. In a turbulent flow, u, v and w are time average 

velocity components. The fluctuating compo-
nents are u, v and w respectively. The turbulence 
is said to be isotropic if

 (a) u = v = w

 (b) u + u′ = v + v′ = w + w′

 (c) 2 2 2( ) ( ) ( )u v w′ ′ ′= =

 (d) none of the above situations prevails.
 357. Shear stress in a turbulent flow is due to
 (a) the viscous property of the fluid
 (b) the fluid density
 (c) fluctuation of velocity in direction of flow
 (d) none of the above.
 358. In a turbulent flow l is the Prandtl’s mixing length 

and ∂u/∂v is the gradient of the average velocity 
in the direction normal to flow. The final expres-
sion for the turbulent viscosity is given by

 (a) 1
uv l
y

 ∂=  ∂ 
 (b) 

2

1
uv l
y

 ∂
=  ∂ 

 (c) 2
1

uv l
y

 ∂=  ∂ 
 (d) 

2
2

1 .uv l
y

 ∂=  ∂ 

 359. During the growth of turbulent boundary layer 
over a flat plate for a moderately high Reynolds 
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number, the boundary layer thickness δ varies 
as 

 (a) x1/3 (b) x1/2

 (c) x4/5 (c) x1/8.
 360. Given that,

   δ = boundary layer thickness 

   δ. = displacement thickness

   δe = energy thickness

   θ = momentum thickness,

  the shape factor H of a boundary layer is given 
by

 (a) eH δ
=

δ
 (b) 

*
H δ=

θ

 (c) H δ=
θ

 (d) *H δ=
δ

361. If Ux = free stream velocity, u = velocity at y and 
δ = boundary layer thickness, then in a boundary 
layer flow, the momentum thickness θ is given 
by

 (a) 
0

1u u dy
U U

δ  θ= − 
 ∫

 (b) 
2

2
0

1u u dy
U U

δ  
θ= − 

 
∫

 (c) 
2

2 1
u u dy
U U

δ

0

 θ = −  ∫

 (d) 
2

0

1u u dy
U U

δ  
δ = − 

 
∫ .

 362. Telephone wires often snap due to cross flow of 
wind past the wires. The main reason for this is:

 (a) The force exerted by the wind on the wires 
is large in magnitude

 (b) Poor quality of the work executed
 (c) Wide variation of wind velocity in magni-

tude and direction
 (d) Vortex shedding.
 363. The variables controlling the motion of a float-

ing vessel through water are the drag force F, 
the speed v, the length l, the density ρ, dynamic 
viscosity µ of water and gravitational constant 
g. If the non-dimensional groups are Reynolds 
number (Re). Weber number (We) Prandtl num-
ber (Pr) and Froude number (Fr) the expression 
for f is given by

 (a) 2 2 ( )F f Re
v l

=
ρ

 (b) 2 2 ( , )r
F f Re P

v l
=

ρ

 (c) 2 2 ( , )F f Fr We
v l

=
ρ

 (d) 2 2 ( , ).r
F f Re F

v l
=

ρ

 364. Euler number is defined as  the ratio of inertia 
force to 

 (a) viscous force (b) elastic force
 (c) pressure force (d) gravity force.
 365. An inviscid irrotational flow field of free vortex 

motion has a circulation constant Ω. The tan-
gential velocity at any point in the flow field is 
given by Ω/r, where r is the radial distance from 
the centre. At the centre there is a mathematical 
sigularity which can be physically substituted 
by a forced vortex. At the interface of the free 
and forced vortex motion (r = rc ), the angular 
velocity ω is given by

 (a) Ω/(rc)
2 (b) Ω/rc

 (c) Ωrc (d) Ω/rc
3.

 366. Match List-I (Property ratios at the critical and 
stagnation conditions) with List-II (values of 
ratios) and select the correct answer using the 
codes given below the Lists :

      List-I     List-II

  A. T
T

•



 1. 
1

12
1

γ − 
 γ + 

 

  B. 
•ρ

ρ


 2. 2
1

 
 γ + 

  C. P
p

•



 3. 1 

  D. S
S

•



 4. 
12

1

γ
γ − 

 γ + 
 

Codes:
  (a) A B C D (b) A B C D
   2 1 4 3  1 2 3 4
  (c) A B C D (d) A B C D
   2 1 3 4  1 2 4 3.
 367. For oblique shock, the downstream Mach num-

ber 
 (a) is always more than unity
 (b) is always less than unity
 (c) may be less or more than unity
 (d) can never be unity.
 368. Fanno line flow is a flow in a constant area duct
 (a) with friction and heat transfer but in the 

absence of work
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 (b) with friction and heat transfer and accom-
panied by work

 (c) with friction but in the absence of heat 
transfer or work

 (d) without friction but accompanied by heat 
transfer and work.

 369. Rayleigh line flow is a flow in a constant area 
duct

 (a) with friction but without heat transfer
 (b) without friction but with heat transfer 
 (c) with both friction and heat transfer
 (d) without either friction or heat transfer.
 370.  The normal stress is the same in all directions at 

a point in a fluid only when
 (a) the fluid is frictionless
 (b) the fluid is frictionless and incompressible
 (c) the fluid has zero viscocity and is at rest
 (d) one fluid layer has no motion relative to an 

adjacent layer.
 371. Which of the following forces act on a fluid at 

rest ?
 1. Gravity force 2. Hydrostatic force
 3. Surface tension 4. Viscous force
  Select the correct answer using the codes given 

below :
 Codes: 
 (a) 1, 2, 3 and 4 (b) 1, 2 and 3
 (c) 2 and 4 (d) 1, 3 and 4.
 372. A stepped cylindrical container is filled with 

a liquid as shown in the Fig.12. The container 
with its axis vertical is first placed with its larger 
diameter downward and then upward. The ratio 
of the forces at the bottom in the two cases will 
be

 (a) 1
2

 (b) 1

 (c) 2 (d) 4.

h

2d

d

h

Fig. 12

 373. A circular annular plate having outer and inner 
diameters of 1.4 m and 0.6 m respectively is 
immersed in water with its plane making an 
angle of 60° with the horizontal. The centre of 
the circular annular plate is 1.85 m below the 
free surface. The hydrostatic thrust on one side 
of the plate is

 (a) 1975 N (b) 19.75 N
 (c) 11.4 N (d) 22.8 N.
 374. A house-top water tank is made of flat plates and 

is full to the brim. Its height is twice that of any 
side. The ratio of force on the bottom of the tank 
to that on any side will be

 (a) 4 (b) 2
 (c) 1 (d) 1/2.
 375. A right-circular cylinder, open at the top is filled 

with liquid of relative density 1.2. It is rotated 
about its vertical axis at such a speed that half 
the liquid spills out. The pressure at the centre 
of the bottom will be

 (a) zero 
 (b)  one-fourth of the value when the cylinder 

was full
 (c)  half of the value when the cylinder was full
 (d)  not determinable from the given data.
 376. In the Fig. 13, air is contained in the pipe and 

water is the manometer liquid. The pressure at 
‘A’ is approximately

A

200 mm

500mm

Air

Fig. 13

 (a) 10.14 m of water absolute
 (b) 0.2 m of water
 (c) 0.2 m of water vacuum
 (d) 4901 Pa.
 377. Consider the following statements:
  Filling up a part of the empty hold of a ship with 

ballasts will
 1. reduce the metacentric height 
 2. lower the position of the centre of gravity
 3. elevate the position of centre of gravity
 4. elevate the position of centre of buoyancy.
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  Of these statements
 (a) 1, 3 and 4 are correct 
 (b) 1 and 2 are correct
 (c) 3 and 4 are correct
 (d) 2 and 4 are correct
 378. A cylindrical piece of cork weighing ‘W’ floats 

with its axis in horizontal position in a liquid of 
relative density 4. By anchoring the bottom, the 
cork piece is made to float at neutral equilibrium 
position with its axis vertical. The vertically 
downward force exerted by anchoring would be

 (a) 0.5 W (b) W
 (c) 2 W (d) 4 W.
 379. Consider the following assumptions:
 1. The fluid is compressible.
 2. The fluid is inviscid 
 3. The fluid is incompressible and homoge-

neous
 4. The fluid is viscous and compressible.
  The Euler’s equations of motion requires as-

sumptions indicated in 
 (a) 1 and 2 (b) 2 and 3
 (c) 1 and 4 (d) 3 and 4
 380. The area of a 2 m long tapered duct decreases 

as A = (0.5 – 0.2 x) where ‘x’ is the distance 
in metres. At a given instant a discharge of  
0.5 m3/s is flowing in the duct and is found to 
increase at a rate of 0.2 m3 /s. The local accelera-
tion (in m2/s) at x = 0 will be

 (a) 1.4 (b) 1.0
 (c) 0.4 (d) 0.667.
 381. Surface tension is due to
 (a) viscous forces 
 (b) cohesion
 (c) adhesion 
 (d) the difference between adhesive and cohe-

sive forces
 382. Newton’s law of viscosity depends upon the
 (a) stress and strain in a fluid
 (b) shear stress, pressure and velocity
 (c) shear stress and rate of strain
 (d) viscosity and shear stress.
 383. Irrotational flow occurs when
 (a) flow takes place in a duct of uniform cross-

section at constant mass flow rate
 (b) streamlines are curved
 (c) there is no net rotation of the fluid element 

about its mass centre
 (d) fluid element does not undergo any change 

in size or shape

 384. A pipe flow system with flow direction is shown 
in the Fig. 14. The following table gives the 
velocities and the corresponding areas:

  Pipe No. Area (cm2) Velocity (cm/s)
  1.  50 10
  2.  50 V2

  3.  80 5
  4.  70 5

1
2 3

4

Fig. 14

  The value of V2 is 
 (a) 2.5 cm/s (b)  5.0 cm/s
 (c) 7.5 cm/s (d)  10.0 cm/s.
385. A liquid flows downward through a tapered 

vertical portion of a pipe. At the entrance and 
exit of the pipe, the static pressures are equal. 
If for a vertical height `h’ the velocity becomes 
four times, then the ratio of `h’ to the velocity 
head at entrance will be 

 (a) 3 (b) 8 
 (c) 15 (d) 24.
386. The equivalent length of the stepped pipeline 

shown in the Fig. 15, can be expressed in terms 
of the diameter `D’ as

 (a) 5.25 L  (b)  9.5 L 

 (c) 
1

33
32

L  (d) 
1

33
8

L . 

D D/2

4LLL

2D

Fig. 15

387. A horizontal pipe of cross-sectional area 5 cm2  is 
connected to a venturimeter of throat area 3 cm2 

as shown in the Fig. 16. The manometer reading 
is equivalent to 5 cm of water. The discharge in 
cm3/s is nearly.

  (a) 0.45 (b) 5.5 (c) 2.10 (d) 370

Water

Manometer

Fig. 16
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388. In a fully turbulent flow through a rough pipe, the 
friction factor ‘D’ is (Re is the Reynolds number 
and εs/D is relative roughness)

 (a) a function of Re 
 (b) a function of Re and εs/D
 (c) a function of εs/D
 (d) independent of Re and εs/D.
389. In a boundary layer developed along the flow, the 

pressure decreases in the downstream direction. 
The boundary layer thickness would

 (a) tend to decrease (b) remain constant 
 (c) increase rapidly 
 (d) increase gradually.
390. Which one of the following statements is true of 

flow around a submerged body ?
 (a) For subsonic, no-viscous flow, the drag is 

zero.
 (b)  For supersonic flow, the drag co-efficient 

is dependent equally on Mach number and 
Reynolds number

 (c)  The lift and drag co-efficients of an aerofoil 
is independent of Reynolds number.

 (d)  For incompressible flow around an aerofoil, 
the profile drag is the sum of form drag and 
skin friction drag.

391. If ‘n’ variables in a physical phenomenon con-
tained ‘m’ fundamental dimensions, then the 
variables can be arranged into

 (a) n dimensionless terms
 (b) m dimensionless terms
 (c) (n – m) dimensionless terms
 (d) (n + m) dimensionless terms.
392. Given power ‘P’ of a pump, the head ‘H’ and the 

discharge ‘Q’ and the specific weight `w’ of the 
liquid, dimensional analysis would lead to the 
result that ‘P’ is proportional to 

 (a) H1/2Q2 w (b) H1/2Qw 
 (c) HQ1\2w (d) HQw.
393. A 1 : 20 model of a spillway dissipates 0.25 hp, 

the corresponding prototype horsepower dis-
sipated will be

 (a) 0.25 (b) 5.00 
 (c) 447.20 (d) 8944.30.
 394. If the stream function given by Ψ = 3xy, then the 

velocity at a point (2, 3) will be
 (a) 7.21 unit (b) 10.82 unit
 (c) 18 unit (d) 54 unit.

395. The stagnation  temperature of an isentropic 
flow of air (k = 1.4) is 400 K. If the temperature 
is 200 K at a section, then the Mach number of 
the flow will be

 (a) 1.046 (b) 1.264 
 (c) 2.236 (d) 3.211
396. In isentropic flow between two points, the stag-

nation
 (a) pressure and stagnation temperature may 

vary
 (b) pressure would decrease in the direction of 

the flow
 (c) pressure and stagnation temperature would 

decrease with an increase in velocity
 (d) pressure, stagnation temperature and 

stagnation density would remain constant 
throughout the flow. 

397. The prime parameter causing change of state in 
Fanno flow is

 (a) heat transfer  
 (b)  area change
 (c) friction 
 (d) buoyancy. 
398. In a normal shock in a gas, the 
 (a) upstream flow is supersonic
 (b) upstream flow is subsonic
 (c) downstream flow is sonic
 (d) both downstream flow and upstream flow  

are supersonic.

ESE – 1999 Onwards
399. Match angle α and Mach number M are related 

as :

 (a) ( )1 1sinM −=
α

 

 (b) 
2

1 1cos M
M

−
 − α =
 

 (c) ( )2tan 1Mα = −  

 (d) ( )1 1cosec
M

−α = .

400. A triangular dam of height h and base width b is 
filled to its top with water as shown in the given 
figure. The condition of stability is

 (a) b = h (b) b = 2·6 h
 (c) b = 3 h (d) b = 0·625 h.
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Water
level

Dam in
masonry
S.G. 2.56

b

h

Fig. 17

401. Stability of a freely falling object is assured if 
its centre of

 (a) buoyancy lies below its centre of gravity
 (b) gravity coincides with its centre of buoy-

ancy
 (c) gravity lies below its metacenter
 (d) buoyancy lies below its metacenter.
*402. A vertical sluice gate, 2·5 m wide and weighing 

500 kg is held in position due to horizontal force 
of water on one side and associated friction force. 
When the water level drops down to 2 m above 
the bottom of the gate, the gate just starts sliding 
down. The coefficient of friction between the 
gate and the supporting structure is

 (a) 0·20 (b) 0·10 
 (c) 0·05 (d) 0·02.
*403. The reading of gauge ‘A’ shown in the given 

figure is
 (a) – 31·392 kPa (b) – 1·962 kPa
 (c) 31·392 kPa (d) + 19·62 kPa.

4 m

Relatives
density
of oil 0.8

Air

AGauge

l

0.25 m

Mercury
(Relative
density of
mercury 13.6)

Oil

Fig. 18

404. Match List-I with List-II regarding a body partly 
submerged in a liquid and select the correct 
answer using the codes given below the lists :

  List-I
 A. Centre of pressure 
 B. Centre of gravity
 C. Centre of buoyancy
 D. Metacentre
  List-II
 1. Point of application of the weight of dis-

placed liquid
 2. Point about which the body starts oscillating 

when tilted by a small angle
 3. Point of application of hydrostatic
 4. Point of application of the weight of the 

body
Codes :
   A B  C D A B  C D
  (a) 4 3 1 2 (b) 4 3 2 1
  (c) 3 4 1 2 (d) 3 4 2 1.
405. If a piece of metal having a specific gravity of 

13·6 is placed in mercury of specific gravity 13·6, 
then

 (a) the metal piece will sink to the bottom
 (b) the metal piece will simply float over the 

mercury with no immersion
 (c) the metal piece will be immersed in mercury 

by half
 (d) the whole of the metal piece will be im-

mersed with its top surface just at mercury 
level

*406. A bucket of water hangs with a spring balance. 
If an iron piece is suspended into water from 
another support without touching the sides of 
the bucket, the spring balance will show

 (a) an increased reading
 (b) a decreased reading 
 (c) no change in reading
 (d) increased or decreased reading depending 

on the depth of immersion.
*407. The least radius of gyration of a ship is 9 m and 

the metacentric height is 750 mm. The time 
period of oscillation of the ship is

 (a) 42·41 s (b) 75·4 s 
 (c) 20·85 s (d) 85 s.
*408. If the surface tension of water-air interface is 

0·073 N/m, the gauge pressure inside a rain drop 
of 1 mm diameter will be

 (a) 0·146 N/m2 (b) 73 N/m2 
 (c) 146 N/m2 (d) 292 N/m2.
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*409. The elbow nozzle assembly, shown in the given 
figure is in a horizontal plane. The velocity of 
jet issuing from the nozzle is

25 mm dia

1.5 m/s
100 mm
dia

500 mm

Fig. 19

 (a) 4 m/s (b) 16 m/s
 (c) 24 m/s (d) 30 m/s.
410. The pipe cross-sections and fluid flow rates are 

shown in the given figure. The velocity in the 
pipe labelled as is

2 /sl

30 sq. cm

6 /sl

70 sq. cm

40 sq. cm

A

5 /sl

40 sq. cm

9 l/s

Fig. 20

 (a) 1·5 m/s (b) 3 m/s
 (c) 15 m/s (d) 30 m/s
411. Point A of head ‘HA’is at a higher elevation than 

point B of head ‘HB’. The head loss between 
these points is HL. The flow will take place

             

A

B
HA

HB

    

Fig. 21

 (a) always from A to B 
 (b) from A to B if HA + HL = HB
 (c) from B to A if HA + HL = HB 
 (d) from B to A if HB + HL = HA

412. Consider the following statements regarding a 
hydraulic jump :

 1. There occurs a transformation of supercriti-
cal flow to sub-critical flow.

 2. The flow is uniform and pressure distribu-
tion is due to hydrostatic force before and 
after the jump

 3. There occurs a loss of energy due to eddy 
formation and turbulence.

  Which of these statements are correct ?
 (a) 1, 2 and 3 (b) 1 and 2 
 (c) 2 and 3 (d) 1 and 3
413. Match List-I (Pipe flow) with List-II (Types of 

acceleration) and select the correct answer using 
the codes given below the lists :

  List-I
 A. Flow at constant rate passing through a bend
 B. Flow at constant rate passing through a 

straight uniform diameter pipe
 C. Gradually changing flow through a bend
 D. Gradually changing flow through a straight 

pipe
  List-II
 1. zero acceleration
 2. Local and convective acceleration
 3. Convective acceleration
 4. Local acceleration
Codes :
   A B C D  A B C D
  (a) 3 1 2 4 (b) 3 1 4 2
  (c) 1 3 2 4 (d) 1 3 4 2.
 414. The value of friction factor is misjudged by +  

25% in using Darcy-Weisbach equation. The 
resulting error in the discharge will be

 (a) + 25% (b) – 18·25% 
 (c) – 12·5% (d) + 12·5%.
415. For turbulent boundary layer flow, the thickness 

of laminar sublayer ‘δ’ is given by

 (a) *u
υ  (b) *

5
u
υ  

 (c) *575 log
u
υ  (d) *2300

u
υ .

416. The correct sequence in ascending order of the 
magniude of the given parameters is :

 (a) Boundary layer thickness, momentum 
thickness, displacement thickness

 (b) Displacement thickness, boundary layer 
thickness, momentum thickness
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 (c) Momentum thickness, displacement thick-
enss, boundary layer thickness

 (d) Momentum thickness, boundary layer thick-
ness, displacement thickness.

417. Consider the following statements :
 1. The cause of stalling of an aerofoil is the 

boundary layer separation and formation of 
increased zone of wake.

 2. An a erofoil should have a rounded nose in 
supersonic flow to prevent formation of new 
shock.

 3. When an aerofoil operates at an angle of 
incidence greater than that of stalling, the 
lift decreases and drag increases.

 4. A rough ball when at certain speeds can 
attain longer range due to reduction of lift 
as the roughness induces early separation.

  Which of these statements are correct ?
 (a) 3 and 4 (b) 1 and 2 
 (c) 2 and 4 (d) 1 and 3.
418. A parachutist has a mass of 90 kg and a projected 

frontal area of 0·30 m2 in free fall. The drag 
coefficient based on frontal area is found to be 
0·75. If the air density is 1·28 kg/m3, the terminal 
velocity of the parachutist will be

 (a) 104·4 m/s (b) 78·3 m/s 
 (c) 25 m/s (d) 18·5 m/s.
419. If the number of fundamental dimensions equals 

‘m’, then the repeating variables shall be equal 
to

 (a) m and none of the repeating variables shall 
represent the dependent variable

 (b) m + 1 and one of the repeating variables  
shall represent the dependent variable

 (c) m + 1 and none of the repeating variables 
shall represent the dependent variable

 (d) m and one of the repeating variables shall 
represent the dependent variable.

420. A sphere is moving in water with a velocity of 
1·6 m/s. Another sphere of twice the diameter 
is placed in a wind tunnel and tested with air 
which is 750 times less dense and 60 times less 
viscous than water. The velocity of air that will 
give dynamically similar conditions is

 (a) 5 m/s 
 (b) 10 m/s 
 (c) 20 m/s 
 (d) 40 m/s.
421. A ship model 1/60 scale with negligible friction 

is tested in a towing tank at a speed of 0·6 m/s. If 

a force of 0·5 kg is required to tow the model, the 
propulsive force required to tow the prototype 
ship will be

 (a) 5 MN (b) 3 MN 
 (c) 1 MN (d) 0·5 MN.
422. A1 : 256 scale model of a reservoir is drained in 

4 minutes by opening the sluice gate. The time 
required to empty the prototype will be

 (a) 128 min. (b) 64 min. 
 (c) 32 min. (d) 25·4 min.
423. Air at 2 bar and 60°C enters a constant area pipe 

of 60 mm diameter with a velocity of 40 m/s. 
During the flow through the pipe, heat is added 
to the air stream. Fricitonal effects are negligible 
and the values of cp and cv are that of standard 
air. The Mach number of the flow corresponding 
to the maximum entropy will be

 (a) 0·845 (b) 1 
 (c) 0·1212 (d) 1·183.
424. An aeroplane travels at 400 km/hr at sea level 

where the temperature is 15°C. The velocity 
of the aeroplane at the same Mach number at 
an altitude where a temperature of – 25°C is 
prevailing, would be

 (a) 126·78 km/hr (b) 130·6 km/hr 
 (c) 371·2 km/hr (d) 400·10 km/hr.
425. The plot for the pressure ratio along the length of 

the convergent-divergent nozzle is shown in the 
given figure. The sequence of the flow conditions 
labelled 1, 2, 3, and 4 in the figure is respectively

p0

p0

p

Plain shock

Length

p

1 3 42

Fig. 22

 (a) supersonic, sonic, subsonic and supersonic
 (b) sonic, supersonic, subsonic and supersonic
 (c) subsonic, supersonic, sonic and subsonic
 (d) subsonic, sonic, supersonic and subsonic.
426. If the full-scale turbine is required to work under 

a head of 30 m and to run at 428 r.p.m., then a 
quarter-scale turbine model tested under a head 
of 10 m must run at
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 (a) 143 r.p.m. (b) 341 r.p.m. 
 (c) 428 r.p.m. (d) 988 r.p.m.
427. The dimensionless group formed by wavelength 

λ, density of fluid ρ, acceleration due to gravity 
g and surface tension σ, is

 (a) 2g
σ

λ ρ
 (b) 2g

σ
λ ρ

 

 (c) 2
gσ

λ ρ
 (d) 2 .

g
ρ

λ σ
428. Which one of the following sets of standard flows 

is superimposed to represent the flow around a 
rotating cylinder?

 (a) Doublet, vortex and uniform flow 
 (b) Source, vortex and uniform flow
 (c) Sink, vortex and uniform flow
 (d) Vortex and uniform flow.
429. A float of cubical shape has sides of 10 cm. The 

float valve just touches the valve seat to have a 
flow area of 0·5 cm2 as shown in the given figure. 
If the pressure of water in the pipeline is 1 bar, 
the rise of water level h in the tank to just stop 
the water flow will be

h
float

Tank

Valve

Fig. 23

 (a) 7·5 cm (b) 5·0 cm 
 (c) 2·5 cm (d) 0·5 cm.
430. A U-tube manometer is connected to a pipeline 

conveying water as shown in the given figure. 
The pressure head of water in the pipeline is

W
at

er

Atmosphere

Water

Sp. gr. = 1.0

56 cm
46 cm

50 cm

Benzene
Sp. gr. = 0.08

Sp. Gr. = 13.6

Mercury

Fig. 24

 (a) 7·12 m (b) 6·56 m 
 (c) 6·0 m (d) 5·12 m.
431. The eye of a tornado has a radius of 40 m. If the 

maximum wind velocity is 50 m/s, the velocity 
at a distance of 80 m radius is

 (a) 100 m/s (b) 2500 m/s 
 (c) 31·25 m/s (d) 25 m/s.
432. If a vessel containing liquid moves downward 

with constant acceleration g, then
 (a) the pressure throughout the liquid mass is 

atmospheric
 (b) the pressure in the liquid mass is greater 

than the hydrostatic pressure
 (c) there will be vacuum in the liquid
 (d) the pressure throughout the liquid mass is 

greater than atmospheric.
433. Improved streamlining produces 25% reduction 

in the drag coefficient of a torpedo. When it is 
travelling fully submerged and assuming the 
driving power to remain the same, the increase 
in speed will be

 (a) 10% (b) 20% 
 (c) 25% (d) 30%.
434. If a bullet is fired in standard air at 15°C at the 

Mach angle of 30°, the velocity of the bullet 
would be

 (a) 513·5 m/s (b) 585·5 m/s
 (c) 645·5 m/s (d) 680·5 m/s.
435. A stream function is given by (x2 – y2). The 

potential function of the flow will be
 (a) 2xy + f(x) (b) 2xy  + constant
 (c) 2 (x2 – y2) (d) 2xy + f(y).
436. The height of a cylindrical container is twice that 

of its diameter. The ratio of the horizontal forces 
on the wall of the cylinder when it is completely 
filled to that when it is half filled with the same 
liquid, is

  (a) 2 (b) 3 (c) 3·5 (d) 4.

437. The velocities and corresponding flow areas of 
the branches labelled 1, 2, 3, 4 and 5 for a pipe 
system shown in the given figure are given in 
the following table :

 Pipe Label 1 Velocity Area

 1 5 cm/s 4 sq. cm
 2 6 cm/s 5 sq. cm
 3 V3 cm/s 2 sq. cm
 4 4 cm/s 10 sq. cm
 5 V5 cm/s 8 sq. cm
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  The velocity V5 would be

 (a) 2·5 cm/s (b) 5 cm/s 
 (c) 7·5 cm/s (d) 10 cm/s.

1
2

3

4

5

Fig. 25

438. A pipe is connected in series to another pipe 
whose diameter is twice and length is 32 times 
that of the first pipe. The ratio of frictional head 
losses for the first pipe to those for the second 
pipe is (both the pipes have the same frictional 
constant)

  (a) 8 (b) 4 (c) 2 (d) 1.
439. Which one of the following statements is cor-

rect?
 (a) Hydraulic grade line and energy grade line 

are the same in fluid flow problems
 (b) Energy grade line lies above the hydraulic 

grade line and is always parallel to it
 (c) Energy grade line lies above the hydraulic 

grade line and they are separated from each 
other by a vertical distance equal to the 
velocity head

 (d) The hydraulic grade line slopes upwards 
meeting the energy grade line only at the 
exit of flow

440. If laminar flow takes place in two pipes, having 
relative roughnesses of 0·002 and 0·003, at a 
Reynolds number of 1815, then

 (a) the pipe of relative roughness of 0·003 has 
a higher friction factor

 (b) the pipe of relative roughness of 0·003 has 
a lower friction factor

 (c) both pipes have the same friction factor
 (d) no comparison is possible due to inadequate 

data.
441. A pipeline connecting two reservoirs has its 

diameter reduced by 20% due to deposition of 
chemicals. For a given head difference in the 
reservoirs with unaltered friction factor, this 
would cause a reduction in discharge of

 (a) 42·8% (b) 20% 
 (c) 17·8% (d) 10·6%.
442. A tank containing water has two orifices of the 

same size at depths of 40 cm and 90 cm below 
the free surface of water. The ratio of discharges 
through these orifices is

 (a) 1 : 1 (b) 2 : 3 
 (c) 4 : 9 (d) 16 : 81.
443. A Pitot-static tube is used to measure the veloc-

ity of water using a differential gauge which 
contains a manometric fluid of relative density 
1·4. The deflection of the gauge fluid when water 
flows at a velocity of 1·2 m/s will be (the coef-
ficient of the tube may be assumed to be 1)

 (a) 183·5 mm (b) 52·4 mm 
 (c) 5·24 mm (d) 73·4 mm.
444. The development of boundary layer zones la-

belled P, Q, R and S over a flat plate is shown in 
the given figure.

           

P Q R

S

Fig. 26

  Based on this figure, match List (Boundary layer 
zones) with List II (Types of boundary layer) and 
select the correct answer using the codes given 
below the Lists :

  List I List II
  A. P 1. Transitional
  B. Q 2. Laminar viscous sub-layer
  C. R 3. Laminar
  D. S 4. Turbulent
Codes :
   A B C D  A B C D
  (a) 3 1 2 4 (b) 3 2 1 4
  (c) 4 2 1 3 (d) 4 1 2 3.
445. A pipe of 20 cm diameter and 30 km length 

transports oil from a tanker to the shore with a 
velocity of 0·318 m/s. The flow is laminar. If µ 
= 0·1 N m/s2, the power required for the flow 
would be

 (a) 9·25 kW (b) 8·36 kW 
 (c) 7·63 kW (d) 10·13 kW.
446. In a turbulent boundary layer over the entire 

length of a plate, the boundary layer thickness 
increases with its distance X from the leading 
edge as

 (a) X1/2 (b) X1/5 
 (c) X2/5 (d) X4/5.
447. Separation of fluid flow is caused by
 (a) reduction of pressure in the direction of 

flow 
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 (b) reduction of the boundary layer thickness
 (c) presence of adverse pressure gradient 
 (d) presence of favourable pressure gradient.
448. When pressure drag over a body is large as 

compared to the friction drag, then the shape of 
the body is that of

 (a) an aerofoil 
 (b) a streamlined body 
 (c) a two-dimensional body
 (d) a bluff body.
449. A circular cylinder of 400 mm diameter is  

rotated about its axis in a stream of water having 
a uniform velocity of 4 m/s. When both the stag-
nation points coincide, the lift force experienced 
by the cylinder is

 (a) 160 kN/m (b) 10·05 kN/m 
 (c) 80 kN/m (d) 40·2 kN/m.
450. An automobile moving at a velocity of 40 km/

hr is experiencing a wind resistance of 2 kN. 
If the automobile is moving at a velocity of 50 
km/hr, the power required to overcome the wind 
resistance is

 (a) 43·4 kW (b) 3·125 kW 
 (c) 2·5 kW (d) 27·776 kW.
451. When a cylinder is placed in an ideal fluid and 

the flow is uniform, the pressure coefficient Cp 
is equal to

 (a) 1 – sin2 θ (b) 1 – 2 sin2 θ 
 (c) 1 – 4 sin2 θ (d) 1 – 8 sin2 θ.
452. If the upstream Mach number of a normal shock 

occurring in air (k = 1·4) is 1·68, then the Mach 
number after the shock is

 (a) 0·84 (b) 0·646 
 (c) 0·336 (d) 0·564.
453. A retangular tank of square cross-section is 

having its height equal to twice the length of 
any side at the base. If the tank is filled up with 
a liquid, the ratio of the total hydrostatic force 
on any vertical wall to that at the bottom is

 (a) 2·0 (b) 1·5 
 (c) 1·0 (d) 0·5.
454. Differential pressure head measured by mercury 

oil differential manometer (specific gravity of 
oil is 0·9) equivalent to a 600 mm difference of 
mercury levels will nearly be

 (a) 7·62 m of oil (b) 76·2 m of oil 
 (c) 7·34 m of oil (d) 8·47 m of oil.
455. A block of aluminium having mass of 12 kg 

is suspended by a wire and lowered until sub-
merged into a tank containing oil of relative den-

sity 0·3. Taking the relative density of aluminium 
as 2·4, the tension in the wire will be (take g = 
10 m/s2)

 (a) 12000 N (b) 800 N
 (c) 120 N (d) 80 N.
456. A barge 30 m long and 10 m wide has a draft of 

3 m when floating with its sides in vertical posi-
tion. If its centre of gravity is 2·5 m above the 
bottom, the nearest value of metacentric height 
is

 (a) 3·28 m (b) 2·78 m 
 (c) 1·78 m (d) zero.
457. A cylindrical vessel having its height equal to its 

diameter is filled with liquid and moved horizon-
tally at an acceleration equal to acceleration due 
to gravity. The ratio of the liquid left in the vessel 
to the liquid at static equilibrium condition is

 (a) 0·2 (b) 0·4 
 (c) 0·5 (d) 0·75.
458. The shear stress developed in a lubricating oil, 

of viscosity 9·81 poise, filled between two paral-
lel plates 1 cm apart and moving with relative 
velocity of 2 m/s is

 (a) 20 N/m2 (b) 19·62 N/m2 
 (c) 29·62 N/m2 (d) 40 N/m2.
459. The convective acceleration of fluid in the x-

direction is given by

 (a) u vu v
x y z

∂ ∂ ∂ω+ + ω
∂ ∂ ∂

 

 (b) u v
t t t

∂ ∂ ∂ω+ +
∂ ∂ ∂

 (c) u v wu u
x y z

∂ ∂ ∂+ + ω
∂ ∂ ∂

 

 (d) .u u uv
x y z

∂ ∂ ∂µ + + ω
∂ ∂ ∂

460. Match List-I (Types of flow) with List-II (Basic 
ideal flows) and select the correct answer using 
the codes given below the lists :

  List-I (Types of flow) 

 A. Flow over a stationary cylinder
 B. Flow over a half Rankine body
 C. Flow over a rotating body
 D. Flow over a Rankine oval
  List-II (Basic ideal flows)

 1. source + sink + uniform flow
 2. doublet + uniform flow
 3. source + uniform flow
 4. doublet + free vortex + uniform flow
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Codes :

   A B C D  A B C D

  (a) 1 4 3 2 (b) 2 4 3 1

  (c) 1 3 4 2 (d) 2 3 4 1.
461. A glass tube with a 90° bend is open at both the 

ends. It is inserted into a flowing stream of oil, S 
= 0·90, so that one opening is directed upstream 
and the other is directed upward. Oil inside 
the tube is 50 mm higher than the surface of 
flowing oil. The velocity measured by the tube 
is, nearly,

 (a) 0·89 m/s (b) 0·99 m/s 
 (c) 1·40 m/s (d) 1·90 m/s.
462. At location-1 of a horizontal line, the fluid pres-

sure head is 32 cm and velocity head is 4 cm. 
The reduction in area at loction II is such that 
the pressure head drops down to zero.

I
II

Fig. 27

  The ratio of velocities at location-II to that at 
location-I is 

 (a) 3 (b) 2·5 
 (c) 2 (d) 1·5.
463. For maximum transmission of power through a 

pipe line with total head. H, the head lost due to 
friction hf is given by

 (a) 0·1 H (b) 
3
H  

 (c) 
2
H  (d) 2 .

3
H

464. Two pipelines of equal length and with diameters 
of 15 cm and 10 cm are in parallel and connect 
two reservoirs. The difference in water levels in 
the reservoirs in 3 m. If the friction is assumed 
to be equal, the ratio of the discharges due to the 
larger dia pipe to that of the smaller dia pipe is, 
nearly,

 (a) 3·375 (b) 2·756 
 (c) 2·25 (d) 1·5.
465. The cirtical depth of a rectangular channel of 

width 4·0 m for a discharge of 12 m3/s is nearly,
 (a) 300 mm (b) 30 mm 
 (c) 0·972 m (d) 0·674 m.

466. An open channel flow encounters a hydraulic 
jump as shown in the figure. The following fluid 
flow conditions are observed between A and B :

 1. Critical depth
 2. Steady non-uniform flow
 3. Unsteady non-uniform flow
 4. Steady uniform flow

A X Y B

hB

hA

Fig. 28

  The correct sequence of the flow conditions in 
the direction of flow is

  (a) 1, 2, 3, 4 (b) 1, 4, 2, 3 

  (c) 2, 1, 4, 3 (d) 4, 2, 3, 1.

467. Laminar developed flow at an average velocity 
of 5 m/s occurs in a pipe of 10 cm radius. The 
velocity at 5 cm radius is

 (a) 7·5 m/s (b) 10 m/s 
 (c) 2·5 m/s (d) 5 m/s.
468. In a fully-developed turbulent pipe flow, assum-

ing 1/7th power law, the ratio of the mean 
velocity at the centre of the pipe to the average 
velocity of the flow is

 (a) 2·0 (b) 1·5 
 (c) 1·22 (d) 0·817.
469. The pressure drop in a 100 mm diameter hori-

zontal pipe is 50 kPa over a length of 10 m. The 
shear stress at the pipe wall is

 (a) 0·25 kPa (b) 0·125 kPa 
 (c) 0·50 kPa (d) 25·0 kPa.
470. The velocity distribution in the boundary layer 

is given as 
s

yu
u

=
δ

, where u is the velocity at a 

distance y from the boundary, µs is the free 
stream velocity and δ is the boundary layer 
thickness at a certain distance from the leading 
edge of a plate. The ratio of displacement to 
momentum thickness is

 (a) 5 (b) 4 
 (c) 3 (d) 2.

471. For the velocity profile u
u∞

= h , the momentum 

thickness of a laminar boundary layer on a flat 
plate at a distance of 1 m from leading edge for 
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air (kinematic viscosity = 2 × 10–5 m2/s) flowing 
at a free stream velocity of 2 m/s is given by

 (a) 3·16 mm (b) 2·1 mm 
 (c) 3·16 m (d) 2·1 m.
472. According to Blasius law, local skin friction 

coefficient in the boundry layer over a flat plate 
is given by

 (a) 0·332
Re

 (b) 
Re

0·664

 (c) 0·647
Re

 (d) 1·328 .
Re

473. Match List-I with List-II and select the correct 
answer using the codes given below the lists :

   List-I  List-II

  A. Stoke’s law 1. Strouhal number

  B. Bluff body 2. Creeping motion

  C. Streamline body 3. Pressure drag

  D. Karman Vortex Street 4. Skin friction drag

Codes :

   A B C D  A B C D

  (a) 2 3 1 4 (b) 3 2 4 1

  (c) 2 3 4 1 (d) 3 2 1 4.

474. Match List-I (Dimensionless numbers) with 
List-II (Definition as the ratio of) and select the 
correct answer using the codes given below the 
lists :

  Lists-I List-II 
 (Dimensionless	 (Definition	as	the	
 numbers)  ratio of)

  A. Reynolds number 1. Inertia force and 
     elastic force

  B. Froude number 2. Inertia force and sur-
face tension force

  C. Weber number 3. Inertia force and 
gravity force

  D. Mach number 4. Inertia force and 
viscous force

Codes :
   A B C D  A B C D

  (a) 1 2 3 4 (b) 4 3 2 1

  (c) 1 3 2 4 (d) 4 2 3 1.

475. The stream function in a 2-dimensional flow field 
is given by ψ = xy. The potiential function is

 (a) 
2 2( )

2
x y+  (b) 

2 2( )
2

x y−  

 (c) xy (d) x2y + y2x.
476. Hydrostatic law of pressure is given as

 (a) p g
z

∂ = ρ
∂

 (b) 0p
z

∂ =
∂

 

 (c) p z
z

∂ =
∂

 (d) constant.p
z

∂ =
∂

477. In a pipe-flow, pressure is to be measured at a 
particular cross-section using the most appropri-
ate instrument. Match List-I (Expected pressure 
range) with List-II (Appropriate measuring 
device) and select the correct answer using the 
codes given below the lists :

  List-I List-II

 (Expected pressure (Appropriate measuring
  range)  device) 

  A. Steady flow with 1. Bourdon pressure 
   small positive  gauge 
   gauge pressure    
  B. Steady flow with 2. Pressure transducer
    small negative and 
    positive gauge
    pressure 
  C. Steady flow with 3. Simple piezometer 
    high gauge pressure
  D. Unsteady flow with 4. U-tube manometer 
    fluctuating pressure

Codes :

   A B C D  A B C D

  (a) 3 2 1 4 (b) 1 4 3 2

  (c) 3 4 1 2 (d) 1 2 3 4.

*478. The capillary rise at 20°C in clean glass tube of 1 
mm diameter containing water is approximately:

 (a) 15 mm (b) 50 mm 
 (c) 20 mm (d) 30 mm.
*479. Pressure drop of water flowing through a pipe 

(density 1000 kg/m3) between two points is 
measured by using a vertical U-tube manometer. 
Manometer uses a liquid with density 2000 kg/
m3. The difference in height of manometric 
liquid in the two limbs of the manometer is ob-
served to be 10 cm. The pressure drop between 
the two points is :

 (a) 98·1 N/m2 (b) 981 N/m2 
 (c) 1962 N/m2 (d) 19620 N/m2.
480. Match List-I (Stability) with List-II (Conditions) 

and select the correct answer using the codes 
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given below the lists :
  List-I (Stability)

 A. Stable equilibrium of a floating body
 B. Stable equilibrium of a submerged body
 C. Unstable equilibrium of a floating body
 D. Unstable equilibrium of a submerged body

  List-II (Conditions)

 1. Centre of buoyancy below the centre of 
gravity

 2. Metacentre above the centre of gravity
 3. Centre of buoyancy above the centre of 

gravity
 4. Metacentre below the centre of gravity
Codes :

   A B C D  A B C D

  (a) 4 3 2 1 (b) 2 3 4 1

  (c) 4 1 2 3 (d) 2 1 4 3.

*481. A dam is having a curved surface as shown in 
the figure.

x

y y =
x2

4

20 m

Fig. 29

  The height of the water retained by the dam is 
20 m, density of water is 1000 kg/m3. Assuming 
g as 9·81 m/s2, the horizontal force acting on the 
dam per unit length is

 (a) 1·962 × 102 N (b) 2 × 105 N.
 (c) 1·962 × 106 N (d) 3·924 × 106 N.
482. The velocity potential of a velocity field is given 

by φ = x2 – y2 + const. Its stream function will 
be given by :

 (a) – 2xy + constant (b) + 2xy + constant
 (c) – 2xy + f (x) (d) – 2xy + f (y).
483. A steamline is a line
 (a) which is along the path of the particle
 (b) which is always parallel to the main direc-

tion of flow
 (c) along which there is no flow
 (d) on which tangent drawn at any point gives 

the direction of velocity
484. Match List-I (Example) with List-II (Types of 

flow) and select the correct answer using the 

codes given below :
  List-I (Example)

 A. Flow in a straight long pipe with varying 
flow rate

 B. Flow of gas through the nozzle of a jet 
engine

 C. Flow of water through the hose of a fire 
fighting pump

 D. Flow in a river during tidal bore
  List-II (Types of flow)

 1. Uniform, steady
 2. Non-uniform, steady
 3 Uniform, unsteady
 4. Non-uniform, unsteady
Codes :

   A B C D  A B C D

  (a) 1 4 3 2 (b) 3 2 1 4

  (c) 1 2 3 4 (d) 3 4 1 2.

485. Match List-I (Type of fluid) with List-II (Varia-
tion of shear stress) and select the correct answer 
using the codes given below the lists :

  List-I (Type of fluid)

 A. Ideal fluid
 B. Newtonian fluid
 C. Non-Newtonian fluid
 D. Bingham plastic
  List-II (Variation of shear stress)

 1. Shear stress varies linearly with the rate of 
strain 

 2. Shear stress does not vary linearly with the 
rate of strain

 3. Fluid behaves like a solid until a minimum 
yield stress beyond which it exhibits a linear 
relationship between shear stress and the 
rate of strain

 4. Shear stress is zero
Codes :

   A B C D  A B C D

  (a) 3 1 2 4 (b) 4 2 1 3

  (c) 3 2 1 4 (d) 4 1 2 3.

486. The equation of a velocity distribution over 
a plate is given by u = 2y – y2 where u is the 
velocity in m/s at a point y metre from the plate 
measured perpendicularly. Assuming µ = 8·60 
poise, the shear stress at a point 15 cm from the 
boundary is
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 (a) 1·72 N/m2 (b) 1·46 N/m2 
 (c) 14·62 N/m2  (d) 17·20 N/m2.
487. Match List-I (Fluid parameters) with List-II 

(Basic dimensions) and select the correct answer 
using the codes given below the lists :

  List-I (Fluid parameters)

 A. Dynamic viscosity
 B. Chezy’s roughness coefficient
 C. Bulk modulus of elasticity
 D. Surface tension (σ)
  List-II (Basic dimensions)

 1. M / t2 2. M / Lt2

 3. M / Lt 4. /L t
Codes :

   A B C D  A B C D

  (a) 3 2 4 1 (b) 1 4 2 3

  (c) 3 4 2 1 (d) 1 2 4 3.

*488. The force of impingement of a jet on a vane 
increase if

 (a) the vane angle is increased 
 (b) the vane angle is decreased
 (c) the pressure is reduced 
 (d) the vane is moved against the jet.
489. Which of the follwoing assumptions are made 

for deriving Bernoulli’s equation ?
 1. Flow is steady and incompressible
 2. Flow is unsteady and compressible
 3. Effect of friction is neglected and flow is 

along a streamline
 4. Effect of friction is taken into consideration 

and flow is along a streamline
  Select the correct answer using the codes given 

below :

Codes :

 (a) 1 and 3 (b) 2 and 3
 (c) 1 and 4 (d) 2 and 4.
*490. While measuring the velocity of air (ρ = 1·2 kg/

m3), the difference in the stagnation and static 
pressures of a pitostatic tube was found to be 
380 Pa. The velocity at that location in m/s is

 (a) 24·03 (b) 4·02 
 (c) 17·8 (d) 25·17.
491. The drag force exerted by a fluid on a body im-

mersed in the fluid is due to
 (a) pressure and viscous force 
 (b) pressure and gravity force
 (c) pressure and surface tension forces 

 (d) viscous and gravity forces.
492. The hydraulic mean depth (where A = area and 

P = wetted perimeter) is given by

 (a) P
A

 (b) 
2P

A
 

 (c) A
P

 (d) A
P

493. Which of the following is/are related to measure 
the discharge by a rectangular notch ?

 1. 22 · 2 ·
3

Cd b g H  

 2. 3/22 · 2 ·
3

Cd b g H

 3. 5/22 · 2 ·
3

Cd b g H

 4. 1/22 · 2 ·
3

Cd b g H

  Select the correct answer from the codes given 
below :

Codes :

 (a) 1 and 3 (b) 2 and 3 
 (c) 2 alone (d) 4 alone.
494. The critical value of Reynolds number for transi-

tion from laminar to turbulent boundary layer in 
external flows is taken as

 (a) 2300 (b) 4000 
 (c) 5 × 105 (d) 3 × 106.
495. The boundary layer flow separates from the 

surface if

 (a) 0 and 0dpdu
dy dx

= =  

 (b) 0 and 0dpdu
dy dx

= >

 (c) 0 and 0dpdu
dy dx

= <  

 (d) the boundary layer thickness is zero.
496. The laminar boundary layer thickness, δ at any 

point x for flow over a flat plate is given by  
δ/x =

 (a) 0·664
xRe

 (b) 1·328
xRe

 

 (c) 1·75
xRe

 (d) 5·0 .
xRe

497. Volumetric flow rate Q, acceleration due to grav-
ity g and head H form a dimensionless group, 
which is given by
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 (a) 
2gH

Q
 (b) Q

gH
 

 (c) 
3

Q

g H
 (d) 

2
.Q

g H

*498. A model test is to be conducted in a water tunnel 
using a 1 : 20 model of a submarine, which is 
to travel at a speed of 12 km/h deep under sea 
surface. The water temperature in the tunnel is 
maintained, so that its kinematic viscosity is half 
that of sea water. At what speed is the model test 
to be conducted to produce useful data for the 
prototype ?

 (a) 12 km/h (b) 240 km/h 
 (c) 24 km/h (d) 120 km/h.
*499. A model test is to be conducted for an under 

water structure, which is likely to be exposed to 
strong water currents. The significant forces are 
known to be dependent on structure geometry, 
fluid velocity, fluid density and viscosity, fluid 
depth and acceleration due to gravity. Choose 
from the codes given below, which of the 
following numbers must match for the model 
with that of the prototype ?

 1. Mach number 2. Weber number
 3. Froude number 4. Reynolds number

Codes :

 (a) 3 alone (b) 1, 2, 3 and 4 
 (c) 1 and 2 (d) 3 and 4.
*500. During subsonic, adiabatic flow of gases in pipes 

with friction, the flow properties go through 
particular mode of changes. Match List-I (Flow 
properties) with List-II (Mode of changes) and 
select the correct answer using the codes given 
below the lists :

  List-I (Flow Properties)

 A. Pressure
 B. Density
 C. Temperature
 D. Velocity

  List-II (Mode of changes)
 1. Increases in flow direction
 2. Decreases with flow direction
Codes :
   A B C D  A B C D
  (a) 1 1 2 2 (b) 2 2 2 1
  (c) 2 2 1 2 (d) 2 1 1 2.

501. Which of the following statements is/are true 
in case of one-dimensional flow of perfect gas 
through a converging-diverging nozzle ?

 1. The exit velocity is always supersonic
 2. The exit velocity can be subsonic or super-

sonic
 3. If the flow is isentropic, the exit velocity 

must be supersonic
 4. If the exit velocity is supersonic, the flow 

must be isentropic

  Select the correct answer from the codes given 
below :

Codes :

 (a) 2 and 4 (b) 2, 3 and 4
 (c) 1, 3 and 4 (d) 2 alone.
502. In a normal shock in a gas :
 (a) the stagnation pressure remains the same 

on both sides of the shock
 (b) the stagnation density remains the same on 

both sides of the shock
 (c) the stagnation temperature remains the same 

on both sides of the shock
 (d) the Mach number remains the same on both 

sides of the shock.
503. A normal shock
 (a) causes a disruption and reversal of flow 

pattern
 (b) may occur only in a diverging passage
 (c) is more severe than an oblique shock
 (d) moves with a velocity equal to the sonic 

velocity.
504. Fluid flow machines are using the principle  

of either (i) supply energy to the fluid, or  
(ii) extracting energy from the fluid. Some fluid 
flow machines are a combination of both (i) and 
(ii) They are classified as

 (a) compressors 
 (b) hydraulic turbines
 (c) torque converters 
 (d) wind mills.
 505. Consider the following statements :
 1. Pelton wheel is a tangential flow impulse 

turbine.
 2. Francis turbine is an axial flow reaction 

turbine.
 3. Kaplan turbine is a radial flow reaction 

turbine.

  Which of the above statements is/are correct ?
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Codes :
 (a) 1 and 3 (b) 1 alone 
 (c) 2 alone (d) 3 alone.
506. Match List-I (Hydraulic turbine) with List-II 

(Application area) and select the correct answer 
using the codes given below the lists.

  List-I (Hydraulic turbine)
 A. Pelton Turbine
 B. Francis Turbine
 C. Kaplan Turbine

  List-II (Application area)
 1. Low head, large discharge
 2. Medium head, medium discharge
 3. High head, low discharge

Codes :

   A B C   A B C

  (a) 2 3 1  (b) 2 1 3

  (c) 3 1 2  (d) 3 2 1.
507. Efficiency of Pelton wheeel shall be maximum 

if the ratio of jet velocity to tangential velocity 
of the wheel is

  (a) 1/2 (b) 1 (c) 2 (d) 4.
508. The maximum efficiency in the case of Pelton 

wheel is (angle of deflection of the jet = 180 – β)

 (a) 1 cos
2

− β  (b) 1 cos
2

+ β  

 (c) cos
2

β  (d) 1 cos .
4

+ β

509. If H is the head available for a hydraulic turbine, 
the power, speed and discharge, respectively are 
proportional to

 (a) H1/2, H1/2, H3/2 (b) H3/2, H1/2, H1/2

 (c) H1/2, H3/2, H1/2 (d) H3/2, H1/2, H.
510. In the phenomenon of cavitation, the character-

stic fluid property involved is
 (a) surface tension 
 (b) viscosity
 (c) bulk modulus of elasticity 
 (d) vapour pressure.
*511. A pump running at 1000 r.p.m. consumes 1 kW 

and generates  head of 10 m of water. When it is 
operated at 2000 r.p.m. its power consumption 
and head generated would be

 (a) 4 kW, 50 m of water
 (b) 6 kW, 20 m of water

 (c) 3 kW, 30 m of water
 (d) 8 kW, 40 m of water.
512. A centrifugal pump gives maximum efficiency 

when its blades are
 (a) bent forward (b) bent backward
 (c) straight (d) wave shaped.
513. In utilizing scaled models in the designing of 

turbomachines, which of the following relation- 
ship must be satisfied ?

 (a) 3 2 2constant ; constantQH
ND N D

= =  

 (b) 2 3constant ; constantQ H
D H N D

= =

 (c) 2 2constant ; constantP H
QH N D

= =  

 (d) 

1 1
2 2

3 3
2 4

constant ; constant.NQ NP

H H
= =

514. The correct sequence of the centrifugal pump 
components through which the fluid flows is

 (a) Impeller, Suction pipe, Foot valve and 
strainer, Delivery pipe

 (b) Foot valve and strainer, Suction pipe, Impel-
ler, Delivery pipe

 (c) Impeller, Suction pipe, Delivery pipe, Foot 
valve and strainer

 (d) Suction pipe, Delivery pipe, Impeller, Foot 
valve and strainer.

*515. A centrifugal pump driven by a directly coupled 
3 kW motor of 1450-rpm speed, is proposed to be 
connected to another motor of 2900-rpm speed. 
The power of the motor should be

 (a) 6 kW (b) 12 kW 
 (c) 18 kW (d) 24 kW.
516. A draft tube is used in a reaction turbine
 (a) to guide water downstream without splashing
 (b) to convert residual pressure energy into 

kinetic energy
 (c) to convert residual kinetic energy into pres-

sure energy
 (d) to streamline the flow in the tailrace
*517. A hydraulic press has a ram of 20 cm diameter 

and a plunger of 5 cm diameter. The force re-
quired at the plunger to lift a weight of 16 × 104 
N shall be :

 (a) 256 × 104 N (b) 64 × 104 N
 (c) 4 × 104 N (d)  1 × 104 N.
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ANSWERS

 1. (c) 2. (a) 3. (d) 4. (b) 5. (a) 6. (b) 7. (b) 8. (d) 9. (c )

 10. (d) 11. (b) 12. (d) 13. (c) 14. (b) 15. (c) 16. (d) 17. (c) 18. (a)

 19. (c) 20. (c) 21. (c) 22. (b) 23. (b) 24. (c) 25. (c) 26. (b) 27. (a)

 28. (b) 29. (a) 30. (c) 31. (d) 32. (c) 33. (d) 34. (d) 35. (a) 36. (a)

 37. (c) 38. (b) 39. (d) 40. (c) 41. (a) 42. (b) 43. (b) 44. (c) 45. (c)

 46. (c) 47. (a) 48. (c) 49. (b,d) 50. (b) 51. (b) 52. (c) 53. (d) 54. (a)

 55. (c) 56. (c) 57. (c) 58. (d) 59. (a) 60. (d) 61. (c) 62. (c) 63. (b)

 64. (c) 65. (a) 66. (b) 67. (b) 68. (c) 69. (c) 70. (d) 71. (c) 72. (c)

 73. (b) 74. (c) 75. (b) 76. (d) 77. (b,c) 78. (b) 79. (b) 80. (b) 81. (c)

 82. (d) 83. (a) 84. (b) 85. (a) 86. (a) 87. (c) 88. (c) 89. (d) 90. (b)

 91. (c) 92. (b) 93. (d) 94. (b) 95. (b) 96. (b,c) 97. (d) 98. (d) 99. (c)

 100. (c) 101. (b) 102. (b) 103. (b) 104. (b) 105. (c) 106. (d) 107. (a) 108. (c)

 109. (b) 110. (a) 111. (c) 112. (b) 113. (d) 114. (d) 115. (b) 116. (b) 117. (b)

 118. (c) 119. (c) 120. (a) 121. (d) 122. (a) 123. (b) 124. (c) 125. (b) 126. (b)

 127. (b) 128. (c) 129. (c) 130. (b) 131. (b) 132. (d) 133. (c) 134. (b) 135. (d)

 136. (c) 137. (a) 138. (c) 139. (c) 140. (a) 141. (b) 142. (a) 143. (a) 144. (b)

 145. (d) 146. (b) 147. (c) 148. (b) 149. (c) 150. (c) 151. (a) 152. (c) 153. (c)

 154. (b) 155. (b) 156. (b) 157. (c) 158. (c) 159. (c) 160. (c) 161. (c) 162. (d)

 163. (b) 164. (b) 165. (a) 166. (b) 167. (b) 168. (b) 169. (c) 170. (b) 171. (c)

 172. (c) 173. (b) 174. (a) 175. (d) 176. (a) 177. (c) 178. (c) 179. (b) 180. (a)

 181. (d) 182. (b) 183. (b) 184. (b) 185. (c) 186. (b) 187. (d) 188. (b) 189. (b)

 190. (c) 191. (b) 192. (a) 193. (a) 194. (a) 195. (b) 196. (b) 197. (b) 198. (a)

 199. (a) 200. (b) 201. (c) 202. (b) 203. (c) 204. (a) 205. (b) 206. (c) 207. (c)

 208. (d) 209. (c) 210. (c) 211. (d) 212. (a) 213. (c) 214. (c) 215. (c) 216. (b)

 217. (b) 218. (c) 219. (d) 220. (c) 221. (d) 222. (b) 223. (d) 224. (c) 225. (b)

 226. (a) 227. (a) 228. (c) 229. (a) 230. (b) 231. (d) 232. (a) 233. (d) 234. (c)

 235. (d) 236. (d) 237. (c) 238. (b) 239. (c) 240. (c) 241. (b) 242. (c) 243. (d)

 244. (d) 245. (b) 246. (b) 247. (c) 248. (d). 
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B. Match List I with List II:

 249. (b) 250. (c) 251. (d) 252. (b) 253. (d) 254. (c).

C. Competitive Examinations Questions

 255. (b) 256. (c) 257. (d) 258. (a) 259. (b) 260. (a) 261. (c) 262. (a) 263. (c)

 264. (b) 265. (c) 266. (d) 267. (d) 268. (a) 269. (c) 270. (d) 271. (d) 272. (d)

 273. (d) 274. (d) 275. (c) 276. (d) 277. (b) 278. (c) 279. (d) 280. (d) 281. (c)

 282. (d) 283. (c) 284. (b) 285. (c) 286. (b) 287. (d) 288. (a) 289. (b) 290. (b)

 291. (b) 292. (a) 293. (a) 294. (a) 295. (b) 296. (b) 297. (b) 298. (d) 299. (d)

 300. (d) 301. (c) 302. (d) 303. (d) 304. (d) 305. (d) 306. (b) 307. (c) 308. (b)

 309. (b) 310. (d) 311. (c) 312. (a) 313. (b) 314. (d) 315. (b) 316. (d) 317. (b)

 318. (d) 319. (c) 320. (a) 321. (d) 322. (b) 323. (d) 324. (d) 325. (b) 326. (a)

 327. (b) 328. (d) 329. (a) 330. (a) 331. (d) 332. (b) 333. (b) 334. (d) 335. (d)

 336. (c) 337. (b) 338. (b) 339. (b) 340. (a) 341. (a) 342. (b) 343. (b) 344. (a)

 345. (a) 346. (a) 347. (a) 348. (b) 349. (c) 350. (a) 351. (b) 352. (c) 353. (a)

 354. (b) 355. (b) 356. (d) 357. (d) 358. (c) 359. (c) 360. (b) 361. (a) 362. (d)

 363. (a) 364. (c) 365. (a) 366. (a) 367. (d) 368. (a) 369. (a) 370. (c) 371. (b)

 372. (d) 373. (a) 374. (d) 375. (a) 376. (d) 377. (b) 378. (c) 379. (b) 380. (b)

 381. (b) 382. (c) 383. (c) 384. (b) 385. (c) 386. (d) 387. (d) 388. (a) 389. (d)

 390. (d) 391. (c) 392. (d) 393. (d) 394. (b) 395. (c) 396. (d) 397. (c)    398.  (a)

 399. (a) 400. (b) 401. (c) 402. (b) 403. (b) 404. (c) 405. (d) 406. (c) 407. (c)

 408. (d) 409. (c) 410. (a) 411. (c) 412. (d) 413. (a) 414. (c) 415. (b) 416. (c)

 417. (d) 418. (b) 419. (c) 420. (b) 421. (c) 422. (b) 423. (c) 424. (d) 425. (d)

 426. (d) 427. (a) 428. (a) 429. (b) 430. (c) 431. (d) 432. (a) 433. (a) 434. (d)

 435. (b) 436. (a) 437. (b) 438. (d) 439. (c) 440. (a) 441. (a) 442. (b) 443. (b)

 444. (a) 445. (a) 446. (d) 447. (c) 448. (d) 449. (b) 450. (a) 451. (a) 452. (b)

 453. (c) 454. (d) 455. (d) 456. (b) 457. (c) 458. (b) 459. (b) 460. (d) 461. (c)

 462. (a) 463. (b) 464. (d) 465. (c) 466. (c) 467. (d) 468. (d) 469. (c) 470. (c)

 471. (b) 472. (d) 473. (a) 474. (b) 475. (d) 476. (a) 477. (b) 478. (d) 479. (c)

 480. (d) 481. (c) 482. (b) 483. (d) 484. (b) 485. (d) 486. (c) 487. (c) 488. (a)

 489. (a) 490. (d) 491. (a) 492. (c) 493. (c) 494. (a) 495. (b) 496. (d) 497. (a)

 498. (d) 499. (d) 500. (c) 501. (a) 502. (c) 503. (c) 504. (c) 505. (b) 506. (d)

 507. (c) 508. (b) 509. (b) 510. (d) 511. (d) 512. (b) 513. (d) 514. (b) 515. (d)

 516. (c) 517. (d).
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SOLUTIONS-COMMENTS
256. The friction factor will be the same for both the 

pipes because for Re < 1500, i.e. laminar flow, 
it is independent of relative roughness of pipe. 
Thus (c) is the correct choice.

 261. Viscosity for water, µ1 = [0.001793 / (1 + 
0.03368t  + 0.000221t2), and

  Viscosity for air  µ1  = [0.000001702 (1 + 
0.00329t + 0.000007t2 ]

  From above it is evident that with decrease in 
temperature, the viscosity of water increases 
while that of  air decreases. Thus, decrease in 
temperature, in general, results in an increase 
in the viscosity of liquids and a decrease in that 
of gases.

  Thus the correct choice is (c).
 263. A1V1 = A2V2 or

       2 2
20.1 0.6 0.05

4 4
Vp p× × = × × or V2 = 2.4 m/s 

  Invoking Bernoulli’s equation at sections 1 and 
2, we have

         
2 2

1 1 2 2
1 22 2 e

p V p Vz z h
w g w g

+ + = + + + (energy loss)

   he = 
2 2

1 2 1 2
2

p p V V
w g

 − −  +        

  (z1 = z2, the pipe being horizontal)  

          
4 2 2(3.5 3.4) 10 0.6 2.4 1.0 0.275

1000 2 9.81
− × −= + = −

×

   = 0.725 kg m (Ans.)
265. pabs =  pgauge +  patm = 25 + 1.03 

  = 26.03 bar (Ans.)

  Thus (c) is the correct choice.
 266. Head lost due to friction, hf = 6 m
  For maximum power transmission, the supply 

head (H) should be equal to 3 hf

  ∴ H = 3 × 6 = 18 m (Ans.) 
   Thus (d) is the correct choice.
 267. From a large number of experiments it has been 

observed that in a turbulent flow the friction fac-
tor is a function of relative roughness r/k (radius/
average diameter of sand particles (refer Fig. 
2) i.e. pipe condition and pipe diameter.

 269. In the Fig. 30 is shown the logarithmic variation 
of velocity near a wall. The difference of veloc-
ity (umax – u) is known as velocity defect. Thus 
velocity defect law occurs due to occurrence of 

flow with a logarithmic velocity profile a little 
away from the wall.

umax Velocity
profile

u

Fig. 30
  Hence, (c) is the correct choice.
 272. (d) is the correct choice since other instruments 

(choices) are used under the following condi-
tions:

  Pitot tube ...... for measuring speed in closed 
duct/pipe

  Hot wire anemometer .... for measuring speed 
over a period of time (does not respond to fast 
changes as mentioned in the question.)

  High speed photography ...... for measuring 
blade speed (not of air)

273. Co-efficient of contraction,

  
2

2

90
0.81,

100
c

c
AC
A

p
×

4= = =
p

×
4

 co-efficient of vel- 

  ocity, Cv = 0.95.
  ∴ Co-efficient of discharge, Cd = Cc × Cv = 0.81 

× 0.95 = 0.7695 (Ans.)
  Thus (d) is the correct choice.
274.  Q1 = Q2 + Q3 + Q4 or A1V1 = A2V2 + A3 V3 +
    A4V4 or 20 × 50 = 10 × V2 +  15 × 30 + 10 × 20
   or  1000 = 10 V2 + 450 + 200 or V2 = 35 cm/s.
  Thus (d) is the correct choice.
 276. (d) is the correct choice, since centre of pressure 

GI x
Ax

 + 
 

is below c.g., and as such it is not a 

function of h or r alone. 
277. Under the given conditions the pole will float 

with 0.6 m inside water and 0.4 above water 
surface; metacentre is below c.g. and as such 
the pole will float in unstable equilibrium.

  Thus (b) is the correct choice.
 280. When the Reynolds number is in the region 

of 2 × 105 the boundary layer on the cylinders 
and spheres starts becoming unstable and thus 
boundary layer is said to reattach; as a result of 
flow reattachment, there is a recovery of pressure 
over the back side and consequently there is a 
reduction in drag force.      

  Thus (d) is the correct choice. 
 285. The number of physical quantities, in the present 

case, n = 8,
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  Number of fundamental dimensions, m = 3
  ∴ Number of independent non-dimensional 

groups = n – m = 8 – 3 = 5 (Ans.)
  Thus (c) is the correct choice.
 288. (a) is the correct choice, because the specific 

speed of a hydraulic pump is the speed of geo-
metrically similar pump working against a unit 
head and delivering unit quantity of water.

 293. Pressure intensity at the interface of the two 
liquids

  = ρgh =  1000 × 9.81 × (1 × 0.8) 
  = 7848 N/m2 (Ans.)
  Thus (a) is the correct choice.
 294. In case of hydraulic reaction turbines. P∝ H3/2, 

it indicates that with the decrease in head, there 

will be decrease in power. Also speed 1
p

N ∝  

or 2
1P

N
∝ , which means that with decrease in 

speed there will be increase in power. Thus (a) 
is the correct choice. 

296. Vertical level of mercury = 20 × sin 30° = 10 cm 
or 0.1 m

  Pressure head difference of water between the 
two tappings = 0.1  ×  13.6 = 1.36 m

  Thus (b) is the correct choice.
298. V = 20 m/s, u = 10 m/s, a = 0.02 m2, ρ = 1000 

kg/m3

  Force on the plate = ρa (V – u ) × (V – u ) = 1000 
× 0.02 × (20 – 10) × (20 – 10) = 2000 N (Ans.)

  Thus (d) is the correct choice.   
 303. The pressure gauge reading (p) in metres of water 

column may be calculated as follows :

  20 201
100 100

p + + = × 13.6  or  p + 1.2 = 0.2 × 13.6 

or 
  p = 1.52 m (Ans.) 
 304. With reference to datum XX Fig. 31:
  Net pressure on left side = hA – h1S1 (the pressure 

due to inverted portion being equal) 
  Net pressure on right side = hB + h3S1 + h2S2

  ∴ hA – h1S1 = hB + h3S1 + h2S2

  or hA – hB = h1S1 + h2S2 + h3S1.
  Thus (d) is the correct choice.

x x

h1

hA

S1
s2

h2

S1

hB h3

B

Fig. 31

 305. Hydrostaitc force on BC, PBC =  2 2
V HP P+

  where, PV = vertical component = weight over 
area BC

  = 5.5 4.0 3 3 1 1000
2 2

g+  × × × × 
 

  = 12340 gN/m
  PH  =  horizontal component =  projected area of 

BC (i.e., BD) × depth upto centre of BD ×  (1000 
× g)

   = (1.5 × 1 ) × 1.54 (1000 )
2

g + × × 
 

           = 7125 gN/m

∴   PBC = ( ) ( )2 212340 7125g g+

   ≈ 14250 gN/m (Ans.) 

4 m

5.5 m

A

water

B

1.5 m 60º

c
3 3 m

2

M

Fig. 32

   Thus (d) is the correct choice.
 306.  (b) is the correct choice, since a simple pitot tube 

can measure static, dynamic and total heads.
 *313. Refer to Fig. 33. The large vertical surface is 2 

× 2. Forces on the bottom, P1 = ρgh ( 2 × 1)

   1

2

(2 1) 11 (2 2)
2

P gh
P gh

ρ ×∴ = =
ρ ×
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�gh

h

2
1

2

Bottom

Fig. 33

*314. We cannot compare the pressure in the two 
pipes since the specific gravity of the fluids is 
not given.

 *315. The metacentric height depends on the volume 
of liquid displaced and the distance between the 
metacentre and the centre of gravity.

 *316. For any possible flow, the stream function must 
exist because it means the compliance of the 
continuity equation.

 *321. Pressure is least where velocity is highest and 
at large cross-section for constant discharge, 
velocity lowers.

 *325. At the verge of separation 
0y

u
y =

 ∂
 ∂ 

is  zero.

  ∴  Shear stress,  
0y

u
y =

 ∂τ=µ ∂ 
  is also zero.

 *330. Turbulent boundary layer thickness varies as, 

0.2
0.447

x x
δ =  or, δ α 0.477 x0.8

*331. The drag co-efficient remains practically 
constant until a Reynolds number of 2 × 105 

is reached. At this stage the CD drops steeply 
by a factor of 5. This is due to the fact that the 
laminar boundary layer turns turbulent and stays 
unseparated over a longer distance, thus reducing 
the drag considerably.

 *343.  1 1 2 3 3 2
A Bp p

h S h S h S
w w

+ = + +

    ∴ 3 2 1 1 2 3
A B

pp
h S h S h S

w w
− = − +

 *347. A doublet is a special case of source and sink 
combination.

 *352. A circular pipe may have either or the two 
flows viz. laminar and turbulent. The laminar 
flow occurs when Re is less than critical value 
and in case of turbulent it is more than critical 
value. The profile of boundary layer in laminar 
and turbulent flows will be different. In laminar 
flow, the entire development of boundary layer 
is in  the laminar zone but in turbulent flow, as 
in case of flat plate boundary, the boundary has 
three zones, laminar, transition and turbulent 

zones. However, in both the cases, the boundary 
layer can grow upto centre of the pipe and there 
after the fluid moves as fully developed. The 
flow becomes fully developed in a length of the 
order of 50 to 80 times the pipe diameter. 

 50 to 80D Fully developed

Parabolic

Boundary
layer Pipe

Flow fully
developed

Velocity
distribution

Fig. 34

402. (b) Area of gate at sliding = 2 × 2.5 = 5 m2

   Pressure on upstream of gate 

   P = 25
2

gρ × ×

   Friction force = µP = W = 500 kg = 500 gN

   ∴ µ = 500 9.81 0.1
1000 9.81 5

× =
× ×

403. (b) Air pressure from manometer reading is

   = – ρg × 0.25 = – 1000 × 9.81 × 0.25 N/m2

   = 3.4 × 9.81 kPa

   Pressure of oil

   = 0.8 × 1000 × 9.81 × 4 = 3.2 × 9.81 kPa

  Resultant pressure read by gauge = 3.2 – 3.4 × 
9.81 kPa = –1.962 kPa.

406. (c) Whatever is the weight of iron piece buoy-
ance force to same extent acts upwards and thus 
spring balance on which water bucket is hanging 
will show no change in reading.

407. (c) T = 
2(Radius of gyration)2

Metacentric height g
p

×

    = 
292 3.14

0.75 9.81
×

×

    = 6.28 9 20.85 sec.
2.71

×
=  

408. (d) Pressure inside rain drop 

    = 24 4 0.073 292 N/m
0.001

T
d

×
= =

409. (c) Q = A1V1 = A2V2   or  2
1 1.5

4
dp

×  

     = 2
2 24

d Vp
×
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   or V2 = 
2 2

1

2

1001.5 1.5
25

d
d

   = ×   
  

            = 1.5 × 16 = 24 m/s 

410. (a) Q = av or 6 × 1000 = 40 × v, and v = 150 
cm/s = 1.5 m/s

411. (c) A is at higher level than B. If pressure at B is 
HL more than HA, the water will flow from B 
to A.

414. (c) As per Darcy–Weisbach equation 

   hf = 
2

2 4
4 16· . .
2

fl Q li e Q
gd fd

α
p

   If f is misjudged by +25%, new Q will be 

proportional to 1
1.25

, i.e. 89%.

   i.e., it is reduced by about 11%.

418. (b) Weight of parachutist = 21 ,
2dC U A× ρ

   or    2190 9.81 0.75 1.28 0.3
2

V× = × × × ×

   or  V = 90 9.81 2
0.75 0.3 1.28

× ×
× ×

            = 6131.25 78.3 m/s=

420. (b) 1 1 1

1

V dρ
µ

 = 2 2 2

2
,V dρ

µ

              2

1

V
V

 = 1 2 1

2 1 2

d
d

ρ µ
× ×

ρ µ

                      = 1 1750
60 2

× ×

   ∴          V2 = 750 1.6 10 m/s
120

× =

421. (c) For dynamic sinularity, as per Froude law,

     ,
m p

V V
gL gL

   
=   

   

           60m m

p p

V L
V L

∴ = =

   Propulsive force of prototype 

                 Fp = 
2 2

m m
m

p p

V L
F V L

   
×   

   

                     = 
2 2

mm
m

pp

LL
F LL

   
  ×      

   = 0.5 × 10 (60) × 602 = 1080000 N ≅ 1 MN.

422. (b) T = 4 256 4 16 64 min.× = × =

478. Capillary rise 

   = 4 4 0.071 30 mm
9.81 1000 0.001g d

σ ×
=

ρ × ×


479. (c) Pressure drop 
   = 2000 × 0.1 × 9.81 = 1962 N/m2

481. (d) FH = 1000 9.81 20 1 10gAxρ = × × × ×

             = 1.962 × 106 N

486. (c) Shear stress = 8.60 (2 2 )
du

y
dy

 
µ = × − 

 

         = 8.6 (2 – 0.3) = 14.62 N/m2

 488. (a) Force of impingement ∝ vane angle

490. (d) 21
2

uρ  = 380 and

                  380 2 25.17 m/s
1.2

u ×
= =

498. (d)   s s

s

V L
γ

= , · ·m m s m
m s

m m s

V L LV V
L

γ
=

γ γ

                   112 20 120 km/h
2

= × × =

499. (d) Since gravitational and viscosity forces are 
significant in this case, Froude & Reynold 
numbers must match for model and proto-
type.

500. (c) In subsonic, adiabatic flow in pipe with 
friction, temperature increases with flow 
direction and pressure, density and velocity 
decrease.

511. (d) H ∝ N2   and   H.P ∝ N3

515. (d) P ∝ (N2/N1)
3  and   P = 3 × 23 = 24 kW.

517. (d) Force at plunger 

   = 
2

4 4516 10 1 10 N.
20

 × × = × 
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PART – II

HYDRAULIC MACHINES
(Fluid Power Engineering)



1.1. Introduction  
1.2. Force exerted on a stationary 

flat plate held normal to the jet 
1.3. Force exerted on a stationary 

flat plate held inclined to the jet 
1.4. Force exerted on a stationary 

curved plate 
1.5. Force exerted on a moving flat 

plate held normal to jet 
1.6. Force exerted on a moving 

plate held inclined to the 
direction of jet 

1.7. Force exerted on a curved 
plate (or vane) when the plate 
(or vane) is moving in the 
direction of jet

1.8. Jet striking a moving curved 
vane tangentially at one tip 
and leaving at the other

1.9. Jet propulsion of ships
 Highlights 
 Objective Type Questions
 Theoretical Questions
 Unsolved Examples

1

Chapter

IMPACT OF FREE JETS

1

1.1.  INTRODUCTION

 A fluid jet is a stream of fluid issuing from a nozzle 
with a high velocity and hence a high kinetic energy. 
When a jet impinges on a plate or vane, it exerts a 
force on it (due to change in momentum). This force 
(hydrodynamic) can be evaluated by using ‘Impulse-
momentum principle’. This chapter deals with the 
application of the impulse-momentum equation for 
evaluating the hydrodynamic force on the stationary 
and moving vanes. The following cases of impact of jet 
will be considered:
 A. Force exerted by the jet on the stationary  
plate:
 1. When flat plate is held normal to the jet;
 2. When flat plate is held inclined to the jet;
 3. When plate is curved.
 B. Force exerted by the jet on the moving  
plate:
 1. When plate is held normal to the jet;
 2. When plate is held inclined to the jet;
 3. When plate is curved.

A. FORCE EXERTED BY THE JET ON THE STATIONARY PLATE

1.2. FORCE EXERTED ON A STATIONARY FLAT PLATE HELD  
NORMAL TO THE JET

 Fig. 1.1 shows a fluid jet striking a stationary flat plate held perpendicular to the flow direction. 
Let a and V be cross-sectional area and velocity of the jet respectively. The jet, after striking this plate 
(vertical), will get its direction changed through 90°; but, it will move on and off the plate with velocity 
V, if we neglect the friction between the jet and the plate as is possible when the plate is smooth. If the 
friction is considered, the velocity of liquid coming off the plate will be slightly less than V.
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 The force exerted by the jet on the plate (assuming it smooth) in the direction of jet (X-direction),
  Fx = Rate of change of momentum (in the direction of force)
   = (Initial momentum – final momentum) ... Impulse-momentum principle.
   = (Mass/sec) × [velocity of jet before striking the plate – velocity of jet 

after striking the plate]
   = ρaV (V – 0) [ Mass/second = ρaV ]

Stationary plate

Fixity

V

V

90º

V

Axis of
the Jet

Jet of area a

Nozzle
Pipe

d

Fig. 1.1. Fluid jet striking a stationary plate. 

 or, Fx =	 ρa V 2 ...(1.1)

 (where, ρ = mass density of liquid; a = area of jet 2
4

dπ= , d being diameter of the jet).

 It may be noted that a jet leaves in the direction normal to X-axis, the final velocity in the 
X-direction is zero.
 Since the plate is stationary, therefore, the work done on the plate is zero.

1.3. FORCE EXERTED ON A STATIONARY FLAT PLATE HELD  
 INCLINED TO THE JET

 Fig. 1.2 shows the stationary flat plate inclined at θ° to the direction of the horizontal jet. If a 
and V are the cross-sectional area and velocity of the jet respectively, then the mass of liquid per 
second striking the plate
   =	 ρ × aV (where a = π

4
 d2, d being diameter of the jet)

 After striking the plate (assuming it smooth), the jet leaves the plate with a velocity equal to 
initial velocity (V).
 Let us apply the impulse- momentum equation in the direction normal to the plate.
 Force in normal direction, Fn = ρaV (V sin θ	– 0)
   =	 ρaV2 sin θ  ...(1.2)
 This normal force can be resolved into two components; component Fx, parallel to the direction 
of jet and component Fy , normal to the direction of jet.
  Fx = Fn sin θ 	=	ρaV2	sin θ	× sin θ	=	ρaV2	sin2 θ	 ...(1.3)
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  Fy = Fn cos θ =	ρaV2	sin θ	× cos θ	=	ρaV2	sin θ cos θ	 ...(1.4)
 In this case also, the work done is zero as the plate is stationary. When the fluid strikes the plate, 
it gets divided into two streams Q1 and Q2. Since the frictional resistance has been assumed to be 
negligible, the resultant force in the direction tangential to the plate is zero. Applying the impulse-
momentum equation in the direction tangential to the plate, we obtain: 
  (ρQ1V –ρQ2V ) – ρQV cos θ	 =	 0
	 	 Q1 – Q2 – Q  cos θ	 =	 0 ...(i)
 Also, Q1 + Q2 = Q (Continuity equation)  ...(ii)

 

Stationary
inclined plate

V

Axis of Jet

Jet

Nozzle
Pipe

d
Q

Q2

Fn

�

Q1

�Fy

�

Fn

Fx

90°

90°

Fig. 1.2. Fluid jet striking a stationary inclined plate.

 Solving eqns. (i) and (ii), we get: 

  Q1 = (1 cos )
2
Q + θ  ...(1.5)

 and, Q2 = (1 cos )
2
Q − θ  ...(1.6)

 Ratio of discharges,  1

2

Q
Q

 = 1 cos
1 cos
+ θ
− θ

 ...(1.7)

1.4.  FORCE EXERTED ON STATIONARY CURVED PLATE

 Case I. Jet strikes the curved plate at the centre:
 Cosider a fluid jet striking a stationary curved plate (smooth) at the centre as shown in Fig. 1.3. 
The jet after striking the plate comes out with the same velocity, in the tangential direction of the 
curved plate.
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Nozzle
Pipe

d V

V

Fluid jet

�

�

Tangent to the curved
plate at outlet tip

Stationary
curved plate

V V sin �

V cos �

�

Fig. 1.3. Fluid jet striking a stationary curved plate.

 The velocity at the outlet of the plate can be resolved into the following two components:
 (i) Component of velocity in the direction of jet = – V cos θ 
  (–ve sign indicates that the velocity at the outlet is in a direction opposite to that of the fluid jet)
 (ii) Component of velocity perpendicular to the jet = V sin θ
 Applying impulse-momentum equation, we have:
 Force exerted by the jet (in the direction of jet),
  Fx = ρaV (V1x – V2x)
 where, ρ = Mass density of the fluid,

  a = Cross-sectional area of the jet 2

4
dπ=  (d = diameter of the jet),

  V = Velocity of the jet,
  V1x = Initial velocity in the direction of jet = V
  V2x = Final velocity in the direction of jet = – V cos θ

	 ∴ Fx = ρaV [V – ( –V cos θ)]	=	ρaV [V + V cos θ]

 or, Fx = ρaV2 (1 + cos θ) ...(1.8)

 Similarly, Fx = ρaV (V1y – V2y )

 where, V1y = Initial velocity in the direction of y = 0

  V2y = Final velocity in the direction of  y = V sin θ

	 ∴	 Fy = ρaV (0 – V sin θ) = – ρaV2 sin θ	 ...(1.9)
 –ve sign indicates that force is acting in the downward direction.
 Note:  The angle of defection of the jet = (180° – θ).

 Case II. Jet strikes the curved plate at one end tangentially when the plate is symmetrical:
 Fig. 1.4 shows a fluid jet striking a stationary symmetrical curved plate (smooth) at one end 
tangentially, the plate is symmetrical about X-axis. Let V  be the  velocity of the jet and θ be the 
angle made the jet with X-axis at inlet tip of the curved plate. The velocity of fluid at outlet tip of 
the curved plate will be equal to V (since the curved plate is assumed smooth).
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Stationary curved
plate/vane

�

V

V

Vcos �

Vcos �

V
si

n
�

Vsin �

Jet

Fy

Fx

�

Fig. 1.4. Fluid jet striking stationary curved plate/vane.

 The forces exerted by the fluid jet in X and Y directions are:
  Fx = ρaV (V1x – V2x )
   = ρaV [V cos θ	– ( – V cos θ)]
   = ρaV (V cos θ	+ V cos θ) = ρaV × 2V cos θ
 or, Fx = 2ρa V2 cos θ ...(1.10)
  Fy = ρaV (V1y – V2y )
   = ρaV [V sin θ	– V sin θ] = 0
 i.e., Fy = 0
 Case III. Jet strikes the curved plate or vane at one end tangentially when the plate is 
unsymmetrical:
 In this case, as the plate is unsymmetrical about X-axis, therefore, the angles made by the 
tangents drawn at inlet and outlet tips of the plate with X-axis will be different. Let θ and φ be the 
angles made by the tangents at inlet tip and outlet tip respectively with X-axis.
	 ∴ Components of velocity at inlet: V1x = Vcos θ; V1y  = V sin θ
 Components of velocity at outlet: V2x = – Vcos φ; V2y = V sin φ 
 Now, the forces exerted by the fluid jet in X and Y direction are:
  Fx = ρaV (V1x – V2x)
  Fx = ρaV [V cos θ – (– V cos φ)] = ρaV (V cos θ	+ V cos φ)
 or Fx = ρaV2 (cos θ	+ cos φ) ...(1.11)
 and, Fy = ρaV (V1y – V2y)
    = ρaV (V sin θ	– V sin φ)
 or Fy = ρaV2 (sin θ	– sin φ) ...(1.12)
 Example 1.1.   A jet of water, 75 mm in diameter, issues with a velocity of 30 m/s and impinges 
on a stationary flat plate which destroys its forward motion. Flnd the force exerted by the jet on the 
plate and work done.
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 Solution.  Diameter of jet, d = 75 mm = 0.075 m
  Velocity of jet, V = 30 m/s
 The force exerted by the jet on a stationary vertical plate is given by:
  F = ρaV2

 where, ρ = Mass density of water = 1000 kg/m3

  a = Area of jet = π
4

 × d2 = π
4

 × 0.0752 = 0.004418 m2

	 ∴ F = 1000 × 0.004418 × 302 = 3976.2 N (Ans.)
 As the plate is stationary, the work done is zero. (Ans.)
 Example 1.2.   A jet of water srikes with a velocity of 35 m/s a flat plate inclined at 30° with 
the axis of the jet. If the cross-sectional area of the jet is 25 cm2, determine:
 (i) The force exerted by the jet on the plate,
 (ii) The components of the force in the direction normal to the jet
 (iii) The ratio in which the discharge gets divided after striking the plate.
 Solution. Velocity of the jet, V = 35 m/s
 Inclination of the plate with the jet axis, θ = 30°
 Area of the jet, a = 25 cm2 = 25 × 10–4 m2

 (i) The force exerted by the jet, F :
  F = ρaV2  sin θ [Eqn. (1.3)]
   = 1000 × (25 × 10–4) × 352 × sin 30° = 1531.25 N (Ans.)
 (ii) The components of the force, F :
  Fx = F sin θ = 1531.25 × sin 30° = 765.625 N (Ans.)
  Fy = F cos θ = 1531.25 × cos 30° = 1326.1 N (Ans.)
 (iii) The ratio in which the discharge gets divided :

  1

2

Q
Q

 = 1 cos
1 cos
+ θ
− θ

 [Eqn. (1.7)]

  or 1

2

Q
Q

 =  1 cos 30 1 0.866
1 cos 30 1 0.866
+ ° +

=
− ° −

 = 13.925 (Ans.)

 Example 1.3.   A jet of water of  diameter 40 mm moving 
with a velocity of 30 m/s, strikes a curved fixed symmetrical 
plate at the centre. Find the force exerted by the jet water in 
the direction of the jet if the jet is deflected through an angle 
of 120 ° at the outlet of the curved plate.
 Solution. Diameter of jet, d = 40 mm = 0.04 m

	 ∴  Area of jet, a = π
4

 × d 2 = π
4

 × 0.042 

   = 0.001256 m2

  Velocity of jet, V = 30 m/s
  Angle of deflection = 120°, or, 180 – θ = 120°
	 ∴	 θ = 180° – 120° = 60°
 Force exerted by the jet of water in the direction of jet,
  Fx = ρaV2 (1 + cos θ) [Eqn. (1.8)]

�

V

�

V

Angle of
deflection

(180º – )�

Fig. 1.5.
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   = 1000 × 0.001256 × 302 (1 + cos 60°)
   = 1695.6 N (Ans.)
 Example 1.4.   A jet of water of 20 mm diameter 
and moving at 15 m/s, strikes upon the centre of a 
symmetrical vane. After impingement, the jet gets 
deflected through 160° by the vane.  Presuming vane 
to be smooth determine:
 (i) The force exerted by jet on the vane, and
 (ii) The ratio of velocity at outlet to that at inlet if 
actual reaction of the vane is 127 N.
 Solution.  Diameter of the jet, d = 20 mm = 0.02 m
  Velocity of jets, V = 15 m/s
  Angle of deflection = 160°.
 (i) The force exerted by the jet on the vane, F :
  Refer to Fig 1.6.
   160° = 180 –	θ,  or,  	θ = 180 – 160 = 20°
  For smooth vane, the theoretical force (or thrust) exerted by the jet on the vane is,
  F = ρaV2 (1 + cos θ) ...(i)

   = 1000 × ( π
4

 × 0.022) × 152 (1 + cos 20°)

   = 137.1 N (Ans.)

 (ii) 
V2
V1

 :

  Actual reaction of the vane = 127 N (Given)
  If the vane is not smooth, then outgoing velocity at the vane tip is less than the incoming 

velocity, i.e., 2

1

V
K

V
=  where K < 1. The eqn. (i) gets modified to

   F = ρaV2 (1 + K cos θ)

   127 = 1000 × ( π
4

 × 0.022) × 152 (1 + K cos 20°)

 or,  1 + K cos 20° = 
2 2

127 1.796
1000 ( 0.02 ) 15

4

=
π× × ×

 or,  K = 1.796 1
cos 20

−
°

 = 0.847 (Ans.)

 Example 1.5.   A jet of water from a nozzle is deflected through 60° from its original direction 
by curved plate which it enters tangentially without shock with a velocity of 30 m/s and leaves with 
a mean velocity of 25 m/s. If the discharge form the nozzle is 0.8 kg/s, calculate the magnitude and 
direction of the resultant force on the vane, if the vane is stationary. [UPTU]
 Solution. Velocity at inlet, V1 = 30 m/s
  Velocity at outlet, V2 = 25 m/s
  Mass per second = 0.8 kg/s
 Force in the direction of jet, Fx = Mass per sec. × (V1x – V2x)
 where, V1x = V1 = 30 m/s

Fig. 1.6.

V1 = 15m/s

V2

V2

�

�

160º

Stationary
symmetrical vane
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  V2x = V2 cos 60° = 25 cos 60° = 12.5 m/s
	 ∴ Fx = 0.8 (30 – 12.5) = 14 N
 Similarly, force normal to the jet, Fy = mass per sec. × (V1y – V2x)
 where,  V1y = 0, and
  V2y = V2 sin 60° = 25 sin 60° = 21.65 N
	 ∴ Fy = 0.8 (0 – 21.65 ) = – 17.32 N
 (–ve sign indicates that the force Fy is acting in the vertically downward direction)

60º

Original direction
of jet

30 m/s ( )V1

Stationary curved
plate

25 cos 60º

60º

25 sin 60º 25 m/s ( )V2

Y

X

�

Fx

FR

Fy

Fig. 1.7.

	 ∴ Resultant force in the curved plate,

  FR = 2 2 2 214 17.32x yF F+ = +  = 22.27 N (Ans.)

 The angle made by the resultant force with X-axis (Refer to Fig. 1.7),

  tan a = 17.32
14

y

x

F
F

=  = 1.237

	 ∴	 a	 =	 tan–1 1.237  51° (Ans.)
 Example 1.6.   A jet of water of diameter 60 mm moving with a velocity of 40 m/s, strikes a 
curved fixed plate tangentially at one end at an angle of 30° to horizontal. The jet leaves the plate 
at an angle of 20° to the horizontal. Find the force exerted by the jet on the plate in the horizontal 
and vertical directions.
 Solution. Diameter of jet, d = 60 mm = 0.06 m
	 ∴  Area, a = π

4
 × d 2 = π

4
 × 0.062 = 0.002827 m2

 Velocity of the jet, V = 40 m/s
 Angle made by the jet at inlet tip with horizontal, θ = 30°
 Angle made by the jet at outlet tip with horizontal, φ	= 20°.
 Force exerted by the jet :
 Force exerted by the jet in X-direction, 
  Fx = ρaV2 (cos θ	+ cos φ) [Eqn. (1.11)]
   = 1000 × 0.002827 × 402 (cos 30° + cos 20°) = 8167.6 N (Ans.)
 Force exerted by the jet in Y-direction,
  Fy = ρaV2 (sin θ – sin  φ) [Eqn. (1.12)]
   = 1000 × 0.002827 × 402 (sin 30° – sin 20°) = 714.57 N (Ans.)
 Example 1.7.   A rectangular plate, weighing 60 N is suspended vertically by a hinge on the 
top horizontal edge. The centre of gravity of the plate is 100 mm from the hinge. A horizontal jet of 
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water 20 mm diameter, whose axis is 150 mm below the hinge impinges normally on the plate with 
a velocity of 5 m/s. Determine:
 (i) The horizontal force applied at the centre of gravity to  maintain the plate in its vertical 

portion.
 (ii) The corresponding velocity of the jet, if the plate is deflected through 30° and the  same 

force continues to act at the centre of gravity of the plate.                    [Delhi University]
 Solution. Weight of plate, W = 60 N
 Distance of weight W from hinge, x = 100 mm = 0.1 m
  Diameter of the jet, d = 20 mm = 0.02 m

	 ∴	  Area, a = π
4

 × d2 = π
4

 × (0.02)2 = 0.000314 m2

 Distance of the axis of the jet from hinge = 150 mm = 0.15 m
  Velocity of jet, V = 15 m/s
 Refer to Fig. 1.8 for the plate and its orientation in the vertical and deflected positions.

F

20 mm
dia. jet

( )a

G

O

Hinge

100 mm

P

150 mm

( )b

150 mm

L 30º
F

F
= F cos 30º

n

P
30º

P cos 30º

O

100 mm

H
W

K

30º
G

Fig. 1.8.

 (i) Horizontal force, P :
 Normal force exerted by the jet on plate,
  F = ρaV2 = 1000 × 0.000314 × 52 = 7.85 N
 Let P be the force to be applied at the centre of gravity G [Fig. 1.8 (a)] to keep the plate in its 
vertical position. Then taking moments about the hinge point O, we get:
  F × 150 = P × 100

 or, P = 150 7.85 150
100 100

F × ×=  = 11.77 (Ans.)

 (ii)  Velocity of the jet :
 Let,  V = Velocity of the jet, if the  plate is deflected through 30° and the same force continues 
to act at the centre of gravity of the plate.
 Refer to Fig. 1.8. (b). Taking moments about the hinge point O, we get
  W × GK + P cos 30° × OG = F cos 30° × OH ...(i)

 But, GK = 0.1 sin 30° = 0.05 m, OG = 0.1 m; OH = 0.15
cos30 cos30

OL =
° °

 = 0.1732 m
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 Substituting the various values, we get
  60 × 0.05 + 11.77 × 0.866 × 0.1 =  F × 0.1732
  3 + 1.02 = 0.15 F
	 ∴	 F = 26.8 N
 Now,  jet force, F = ρaV2,   or,  26.8 = 1000 × 0.000314 × V2

	 ∴ V = 
1/2

26.8
1000 0.000314
 
 × 

 = 9.24 m/s (Ans.)

 Example 1.8.   A jet of water of diameter 20 mm strikes a 200 mm × 200 mm square plate of 
uniform thickness with a velocity of 10 m/s at the centre of the plate which is suspended vertically 
by a hinge on its top horizontal edge. The weight of the plate is 98 N. The jet strikes normal to the 
plate.
 (i) What force must be applied at the lower edge of the plate so that plate is kept vertical ?
 (ii) If the plate is allowed to deflect freely, what will be the inclination of the plate with vertical 

due to the force exerted by jet water?
 Solution.  Diameter of jet = 20 mm or 0.02 m
	 ∴  Area, a = π

4
 × 0.022 = 0.000314 m2

  Size of the plate = 200 mm × 200 mm
  Weight of the plate, W = 98 N
  Velocity of jet, V = 10 m/s

 (i)  Force to be applied at lower edge, P :
 Let,     P = The force applied at the lower edge of the plate so that plate is kept vertical [Fig. 1.9) (a)].

100 mm

�

H

Hinge

200 mmF

20 mm dia. jet

( )a ( )b

100 mm

W

G

�

Fn

F L

F Fn = cos �

�

O O

P

Fig. 1.9.

 Force exerted by the jet on the plate,
  F = ρaV2 = 1000 × 0.000314 × 102 = 31.4 N
 Now, taking moments about the hinge point O, we get
  P × 200 = F × 100

 or, P = 100 31.4 100
200 200

F × ×=  = 15.7 N (Ans.)

 (ii)  Inclination of the plate :
 Let,   θ = Inclination of the plate with vertical due to force exerted by the jet [Fig. 1.9 (b)].
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 Force exerted by water normal to the plate is given by:
  Fn = F cos θ = ρaV2 cos θ = 31.4 cos θ
   [ ρaV2 = 31.4 N, calculated earlier]
 Taking moments about the hinge point O, we get:
  Fn × OH = W × GK ...(i)

 where, OH = 0.1 m, 0.1 sin m
cos cos
OL GK= = θ

θ θ
 Substituting the values in eqn. (i), we have

  0.131.4 cos
cos

θ ×
θ

 = 98 × 0.1 sin θ

 ∴ sin θ = 31.4
98

 = 0.32

 Hence, θ = sin–1 0.32 = 18.66° (Ans.)

B. FORCE EXERTED BY THE JET ON THE MOVING PLATE

1.5. FORCE EXERTED ON MOVING FLAT PLATE HELD NORMAL   
 TO JET

 Fig. 1.10 shows a fluid jet striking a flat vertical plate moving with a uniform velocity away 
from the jet.
 Let, V = Absolute velocity of the jet,
  a = Cross-sectional area of the jet, and
  u = Velocity of the flat plate held normal to the jet.

Pipe
Nozzle

Jet

V

u

u

Moving
vertical plate

( )V – u

V – u

V – u

Fig. 1.10. Fluid jet striking a moving plate.

 The relative velocity with which the jet strikes the plate is (V – u).
 Mass of water striking the plate per second = ρa (V – u)
	 ∴ Force exerted by the jet on the plate in the direction of jet,
  Fx = Mass of water striking the plate/sec × (initial velocity with which water 

strikes–final velocity)
   = ρa (V – u) [(V – u) – 0] ( Final velocity in the diction of jet = 0)
 or, Fx = 	ρa (V – u)2 ...(1.13)
 The work done = Force × the distance through which the body moves in the direction of force.
	 ∴	 Work done = ρa (V – u)2 × u ...(1.14)
 Note :  This case is not practically feasible because the distance between the nozzle and the plate will go on 

increasing. However, if a series of plates is fitted on the wheel, there is always a plate facing the jet. 
Thus, the entire fluid issuing from the jet strikes the plates.
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1.6. FORCE EXERTED ON A MOVING PLATE HELD INCLINED TO   
 THE DIRECTION OF JET

Fig. 1.11 shows a fluid jet striking an inclined plate, which is moving with uniform velocity in 
the direction of the jet.
 Let, V = Absolute velocity of the jet,
  u = Velocity of plate in the direction of jet
  a = Cross-sectional area of jet, and
  θ	 = Angle between jet and the plate.

Pipe
Nozzle

V

Jet

u

( )V – u

u

Moving
inclined plate

( )V – u

V – u

(90°–��

�

Fig. 1.11. Fluid jet striking a moving plate held inclined to the direction of jet.

 Relative velocity with which the jet strikes the plate = (V – u)
 The mass of fluid striking the plate per second = ρa (V – u). The force exerted by the jet on the 
plate in the direction normal to the plate is given as:
  Fn = ρa (V  – u) [(V – u) sin θ – 0]
 or, Fn = ρa (V – u)2 sin θ ...(1.15)
 Component of this force in the direction of jet,
  Fx = Fn sin θ = ρa (V –u)2 sin θ	× sin θ	=ρ (V – u)2 sin2  θ	 ...(1.16)
	 ∴ Work done = Fx × u = ρa (V – u)2 sin θ	× u ...(1.17)

 Example 1.9.   A nozzle of 60 mm diameter delivers a stream of water at 24 m/s perpendicular 
to a plate that moves away from the jet at 6 m/s.
 Find: (i) The force on the plate,
  (ii) The work done, and
  (iii) The efficiency of the jet.
 Solution. Diameter of the nozzle/jet, d = 60 mm = 0.06 m
  Velocity of water, V = 24 m/s
  Velocity of the plate, u = 6 m/s
 (i) The force on the plate, F :
  F = ρa (V – u)2  [Eqn. (1.13)]

   = 1000 × ( π
4

 × 0.062) × (24 – 6)2 = 916 N (Ans.)
 (ii) The work done :
  Work done = F × u = 916 × 6 = 5496 Nm/s (Ans.)
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 (iii) The efficiency of jet,  ηjet :

  Kinetic energy of issuing jet = 2 21 1 ( )
2 2

mV aV V= ρ ×  ( Mass, m = ρaV )

  = 2 21 (1000 0.06 24) 24 19543.2 Nm/s
2 4

π× × × × =

	 ∴ ηjet = Work done
Kinetic energy of issuing jet

  = 5496 0·281 or
19543.2

= 28.1% (Ans.)

Example 1.10.   A 75 mm diameter jet having a velocity of 30 m/s strikes a flat plate, the 
normal of which is inclined at 45° to the axis of the jet. Find the normal pressure on the plate,

 (i) When the plate is stationary;
 (ii) When the plate is moving with a velocity of 15 m/s in the direction of jet, away from the jet.

Also determine the power and efficiency of the jet when the plate is moving.
   [Allahabad University]
Solution. Diameter of the jet, d = 75 mm = 0.075 m

	 ∴		 Area, a = 2 20.075 0.004418 mπ × =
4

Angle between the jet and the plate, θ = 90° – 45° = 45°
Velocity of the jet, V = 30 m/s

 (i) When the plate is stationary, the normal force on the plate is:
  Fn = ρa V2 sin θ	 [Eqn. (1.2)]
   = 1000 × 0.004418 × 302 × sin 45° = 2811.6 N (Ans.)
 (ii) When the plate is moving with  a velocity of 15 m/s and moving away from the jet, the normal 
force on the plate is
  Fn = ρa (V – u)2 sin θ			(where, u = 15 m/s) [Eqn. 1.15]
   = 1000 × 0.004418 (30 – 15)2 × sin 45° = 702.9 N (Ans.)
  Work done per second by the jet
  = Force in the direction of jet × distance moved by the plate in the direction of jet/sec.
   = Fn × u
 where, Fx = Fn sin θ	= 702.9 × sin 45° = 497 N
	 ∴ Work done = 497 × 15 = 7455 Nm/s
	 ∴ Power of the jet = 7455 J/s = 7455 W = 7.455 kW (Ans.)

  Efficiency of the jet  = Work done on the plate
Kinetic energy supplied by the jet

   = 
2 2

7455 7455
1 1( ) (1000 0·004418 30) 30
2 2

aV V
=

ρ × × × × ×
 

  = 0.125 or 12.5% (Ans.)
Example 1.11.   A 75 mm diameter water jet having a velocity of 12 m/s impinges on a plane, 

smooth plate at an angle of 60° to the normal to the plate. What will be the impact when (i) the plate 
is stationary, and (ii) the plate is moving in the direction of the jet at 6 m/s? Estimate the work done 
per unit time by the jet on the plate in each case. Take the density of water as 998 kg/m3.    [N.U.]
 Solution. Given: d = 75 mm = 0.075 m; V = 12 m/s; θ = 90 – 60° = 30°; u = 6 m/s;
  ρ = 998 kg/m3.
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 Force on the plate and work done :
 (i) When the plate is stationary :
  Force on the plate, F = (ρa V) V sin 30°

   = 2998 (0.075) 12 12sin 30
4
π × × × × °  

 = 317.45 N(Ans.)

 Work done = 0, since the plate is stationary (Ans.)
 (ii) When the plate is moving :
 Normal force on the plate, Fn = [ρa (V – u)] × (V – u) sin 30°

 =  ρa (V – u)2 sin 30° = 998 × 2 2(0.075) (12 6) 0.5
4
π × × − × = 79.36 N  (Ans.)

  Work done on the plate = Fn sin θ × u
   = 79.36 sin 30° × 6 = 238.08 Nm/s (Ans.)
 Example 1.12.   (a) Derive the following expression for force F exerted by a jet of area ‘a’ 
which strikes a flat plate at an angle θ to the normal to the plate with velocity V. The plate itself is 
moving with velocity u in the direction of normal to the plate surface.

  F = 
2( cos )

cos
V ua θ −ρ

θ
 (b) A 40 mm diameter jet having a velocity of 20 m/s strikes a flat plate, the normal of which is 
inclined at 30° to the axis of jet. If the plate itself is moving with a velocity of 8 m/s parallel to itself 
and in the direction of normal to its surface, calculate:
  (i)    Normal force exerted on the plate,
  (ii)   Work done per second, and
  (iii) Efficiency of the jet      [Punjab University]
 Solution. (a) Fig 1.12 shows the orientation of the jet and the arrangement of the plate.

Component of plate velocity in the direction of jet = 
cos

u
θ

Pipe

Jet

Nozzle

�

V

V cos �

�

Normal to plate
surface

Moving inclined
plate

u

u

Effective
incoming velocity

u

u

u

cos �

u

–
cos

u
V

q

� �

� �
� ��

 Fig. 1.12. Fluid jet and an inclined plate—plate moves in a direction normal to its surface.

 ∴ Effective incoming velocity = 
cos

uV −
θ

 Mass of fluid striking the plate = cos
cos cos

V uua V a θ −   ρ − = ρ   θ θ   



Chapter 1 : Impact of Free Jets         15

 Component of absolute velocity of jet normal to plate = V  cos θ
	 ∴		Change of velocity normal to plate = (V  cos θ	– u	)
 Force exerted on the plate (F) = Mass × change of velocity

 or, F = cos ( cos )
cos

V ua V uθ − ρ × θ − θ 

 or, F = 
2( cos )

cos
V ua θ −ρ

θ
 Proved.

 (b) Diameter of the jet, d = 40 mm = 0.04 m

	 ∴  Area, a = 2dπ
×

4
  = π

4
 × 0.042 = 0.001256 m2

 Velocity of jet (absolute), V = 20 m/s
 Velocity of the plate, u = 8 m/s
 The inclination of the normal to the plate with the axis of jet, θ = 30°
 (i) Normal force exerted on the plate, F :

    F   =  
2 2( cos ) (20 cos 30 8)1000 0·001256

cos cos 30
V ua θ − ° −ρ = × × =

θ °
125·98 N  (Ans.) 

 (ii)  Work done per second :
  Work done/sec = Normal force exerted on the plate × distance moved by the plate
   = 125.98 × 8 = 1007.84 Nm/s (Ans.)
 (iii) Efficiency of the jet, ηjet :

  ηjet = 
2

Work done 1007.84
1Kinetic energy of issuing jet
2

mV
=

   = 
2 2

1007.84 1007.84 0.201 1( ) (1000 0.001256 20) 20
2 2

or
aV V

= =
ρ × × ×

20%  (Ans.)

1.7. FORCE EXERTED ON A CURVED PLATE (OR VANE) WHEN  
THE PLATE (OR VANE) IS MOVING IN THE DIRECTION OF JET

 A. Single vane:
 Fig. 1.13 shows a fluid jet striking at the centre of curved vane moving with a uniform velocity 
in the direction of jet.
 Let, V = Absolute velocity of the jet,
  a = Area of jet, and
  u = Velocity of the plate in the direction of the jet.
 When the jet strikes the moving vane, the effective velocity is the relative velocity (V – u). The 
component of this velocity [i.e., (V – u)] in the direction of jet
   = – (V – u) cos θ
 (– ve sign indicates that the component is in the direction opposite to that of the jet.)
 Mass of fluid striking the plate = ρa (V – u)
	 ∴ Force exerted by the jet on the vane,
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 Fx =  Mass striking per sec × (initial velocity with which the jet strikes the vane in the direction 
of jet – final velocity)

Tangent to vane
at outlet tip

( )V – u

�

�

Moving curved
vane

(180º – ��

( – ) sinV u �

( )V – u

�

( – ) cosV u �
u

Jet

u

Fig. 1.13. Jet striking a curved moving vane.

   = ρa (V – u) [(V – u) – {– (V – u) cos θ}]
   = ρa (V – u) [(V – u) + (V – u) cos θ]
 or, Fx = ρa (V – u)2 (1 + cos θ) ...(1.18)
 Work done on the vane per second
   = Fx × u = ρa (V – u)2 (1 + cos θ) × u ...(1.19)

  Kinetic energy of issuing jet = 2 2 31 1 1( )
2 2 2

mV aV V aV= ρ = ρ

  Efficiency, η = Work done
Kinetic energy supplied by the jet

   = 
2

3

( ) (1 cos )
1
2

a V u u

aV

ρ − + θ ×

ρ

 or, η = 
2

3
2 ( ) (1 cos )V u u

V
− + θ  ...(1.20)

 For a given jet velocity, the efficiency will be maximum when

  d
du
η  = 0

 or,  
2

3
2( ) (1 cos )V u ud

du V

 − + θ
 
  

 = 0

 or,  2
3

2 (1 cos ) [( ) ]d V u u
duV

+ θ − ×  = 0

 or,  2 2
3

2 (1 cos ) [( 2 ) ]d V u Vu u
duV

+ θ + −  = 0

 or,  2 3 2
3

2 (1 cos ) ( 2 )d V u u Vu
duV

+ θ + −  = 0

 or,  2 2
3

2 (1 cos ) ( 3 4 )V u Vu
V

+ θ + −  = 0
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 For a given system  3
2 (1 cos )

V
+ θ  ≠ 0

	 ∴ V2 + 3u2 – 4Vu = 0
 or, (V – u) (V – 3u) = 0

 i.e., u = V or u = 
3
V  ...(1.21)

 When  u = V, the work done becomes zero. Thus, for maximum efficiency u = V /3, i.e., vane 
velocity is 1/3 rd of the jet velocity.

B. Series of vanes:
 In this case, there is always one vane or the other facing the jet (e.g., curved vanes mounted 
equidistantly around the periphery of a wheel) and the entire fluid is utilized. The mass of fluid 
striking the vanes per second equals ρaV.
Thrust exerted by the jet on the vane,
  Fx = ρaV [(V – u) – {– (V – u) cos θ)}]
   =	 ρaV [(V – u) + (V – u) cos θ)] 
 or, Fx = ρaV (V – u) (1 + cos θ)	 ...(1.22)
  Work done per second = Fx× u
   =	 ρaV [(V – u) (1 + cos θ)	× u ...(1.23)
 Kinetic energy supplied by the jet 

   = 2 31 1( )
2 2

aV V aVρ = ρ

	 ∴  Efficiency, η = Work done on the wheel
Kinetic energy supplied by the jet

   = 
3

( ) (1 cos )
1
2

aV V u u

aV

ρ − + θ ×

ρ

 or, η = 2
2 ( ) (1 cos )u V u

V
− + θ  ...(1.24)

 The efficiency is maximum if

  d
du
η  = 0

 or,  2
2 ( ) (1 cos )u V ud

du V
− + θ 

  
 = 0

 or,  2
2

2 (1 cos ) ( )d uV u
duV

+ θ × −  = 0

 or,  2
2 (1 cos ) ( 2 )V u

V
+ θ −  = 0

 For a given system, 2
2 (1 cos ) 0

V
+ θ ≠  and therefore

  V – 2u = 0 or u = 
2
V  ...(1.25)
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Hence for the maximum efficiency of the wheel, the peripheral speed (u) is one-half the velocity of 
jet.

  Maximum efficiency, ηmax = 
( ) ( )

2

2 (1 cos )
2 2
V VV

V

− + θ

Substituting in eqn. (1.24)
2
Vu =  

 or, ηmax = 1 cos
2

+ θ  ...(1.26)

 When θ = 0, i.e. the vanes are semicircular, max
1 1 1

2
+η = =  or 100%. Thus, the theoretical 

maximum efficiency of the wheel is 100%. This concept (of having vanes of semicircular 
configuration) is utilized in the design of buckets for Pelton wheel. The buckets are, however not 
exactly semicircular. The angle of deflection is limited to 160° – 170° depending upon a particular 
design. This ensures that the jet coming out of a bucket does not interfere with the jet striking the 
bucket.
 Example 1.13.   A jet of water, 60 mm in diameter, strikes a curved vane at its centre with a 
velocity of 18 m/s. The curved vane is moving with a velocity of 6 m/s in the direction of the jet. The 
jet is deflected through an angle of 165°. Assuming the plate to be smooth, find:
 (i) Thrust on the plate in the direction of jet,
 (ii) Power of the jet, and
 (iii) Efficiency of the jet.
 Solution.  Diameter of the jet, d = 60 mm = 0.06 m

	 ∴	 Area, a = π
4

 × d 2 =	 π
4

 × 0.062 = 0.002827 m2

  Velocity of the jet, V = 18 m/s
  Velocity of the vane, u = 6 m/s
  Angle of deflection of the jet = 165°
	 ∴  Angle made by the relative velocity at the outlet of the vane,
	 	 θ = 180 – 165 = 15°
 (i) Thrust on the plate :
  Thrust on the plate in the direction of the jet,
  Fx = ρa (V – u)2 (1 + cos θ) ...[Eqn. 1.18]
   = 1000 × 0.002827 (18 – 6)2 (1 + cos 15°) = 800.3 N (Ans.)
 (ii) Power of the jet :
  Work done by the jet on the vane per second
   = Fx × u = 800.3 × 6 = 4801.8 Nm/s
	 ∴ Power of the jet = 4801.8 J/s = 4801.8 W 	4.8 kW (Ans.)
 (iii) Efficiency of the jet, ηjet :

    ηjet = Work done by the jet/sec.
Kinetic energy of the jet/sec.
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     = 
2 2

4801.8 4801.8 0.5825 or1 1( ) (1000 0.002827 18) 18
2 2

aV V
= =

ρ × × × ×
58.25 % (Ans.)

 Example 1.14.  (a) A stationary vane having an inlet angle of zero degree and an outlet angle 
of 25° receives water at velocity of 50 m/s. Determine the components of force acting on it in 
the direction of the jet velocity and normal to it. Also find the resultant force in magnitude and 
direction per kg of flow.

 (b) If the vane stated above is moving with a velocity of 20 m/s in the direction of the jet, calculate 
the force components in the direction of the vane velocity and across it, also the resultant force in 
magnitude and direction. Calculate the work done and power developed per kg of flow. 

[UPTU]
 Solution. 
 (a) Stationary vane :
 Inlet angle of the vane = 0°
 Outlet angle of the vane = 25°
 Velocity of water jet, V = 50 m/s
 The force in the direction of jet per kg of flow,
  Fx = 1 × (V1x – V2x)
 where, V1x = 50 m/s
  V2x = – Vcos 25° = – 50 cos 25° = – 45.315 m/s
	 ∴	 Fx = 1 × [50 – ( – 45.315)] = 95.315 N
 Similarly, the force exerted by the jet in the direction 
perpendicular to the direction of the jet per kg of flow,
  Fy = 1 × (V1y – V2y)
 where, V1y = 0, and
  V2y = Vsin 25° = 50 sin 25° = 21.13 m/s
	 ∴ Fy = 1 (0 – 21.13) = – 21.13 N
 (– ve sign indicates that Fy is acting in the downward direction.)
	 ∴ Resulting force per N of water (Refer to Fig. 1.14),

  FR = 2 2 2 295.315 21.13x yF F+ = + = 97.63 N (Ans.)

 The angle made  by the resultant with X-axis,

  tan a = 21.13 0.2217
95.315

y

x

F
F

= =

	 ∴ a = tan–1 0.2217 = 12.5° (Ans.) 
 (b) Moving vane :
 Velocity of the vane, u = 20 m/s
 The force exerted by the jet on the moving vane in the direction of jet,

25º

V = 50 m/s V sin 25º

V cos 25º
Stationary Vane

Y

X

Fx

�

FR
Fy

V = 50 m/s

Fig. 1.14. Stationary Vane.
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25º

u

( ) sin 25ºV – u
( )V – u

( ) cos 25ºV – u Moving
vane

V – u

Y

X

F'
x

�

FR

F'y

Fig. 1.15. Moving Vane.

  F’x = 1 × (V1x – V2x)
 where, V1x = V – u = 50 – 20 = 30 m/s
  V2x = – (V – u) cos 25° = – (50 – 20) cos 25° = – 27.19 m/s
	 ∴ F′x = 1 × [30 – ( – 27.19)] = 57.19 N (Ans.)
 Similarly, F’y = 1 × (V1y – V2y)
 where V1y = 0,
  V2y = (V – u) sin 25° = (50 – 20) sin 25° = 12.67 m/s
  F′y = 1 × (0 – 12.67) = – 12.67 N (Ans.)

	 ∴  Resultant force, FR = 2 2 2 257.19 12.67x yF F′ ′+ = + = 58.57 N  (Ans.)

 The angle made by the resultant with X-axis,

  tan a = 12.67 0.2215
57.19

y

x

F
F

′
= =

′

 or, a = tan–1 0.2215 = 12.5° (Ans.)
  Work done per second = F’x × u = 57.19 × 20 = 1143.8 Nm/s (Ans.)
	 ∴ Power developed = 1143.8 J/s or W or 1.1438 kW (Ans.)
 Example 1.15.   A jet of water 80 mm diameter and having a velocity of 20 m/s impinges at 
the centre of hemispherical vane. The linear velocity of vane is 10 m/s in the direction of jet. Find 
the force exerted on the vane. How this force would change if the jet impinges on a series of vanes 
attached to the circumference of wheel ?
 Solution.  Diameter of the jet, d = 80 mm = 0.08 m

	 ∴  Area, a = π
4

× 0.082 = 0.005026 m3

  Velocity of the jet, V = 20 m/s
  Velocity of the vane, u = 10 m/s
 When the jet strikes at the centre of a moving vane, then effective incoming velocity = V – u
  Force exerted on the vane, F = ρa (V – u)2 (1 + cos θ) ...[Eqn. (1.18)]
  For a hemispherical vane, θ = 0
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	 ∴ F = ρa (V – u)2 (1 + cos 0°) = ρa (V – u)2 × 2 = 2ρa (V – u)2

   = 2 × 1000 × 0.005026 (20 – 10)2 = 1005.2 N (Ans.)
 When the jet impinges on a series of vanes, the entire fluid mass issuing from the jet (m = ρaV) 
hits the vane and the force exerted by the jet on the vane system is
  F = ρaV (V – u) (1 + cos θ) ...[Eqn. (1.22)]
   = ρaV (V – u) (1 + cos 0°)
   = 2ρaV (V – u) ( θ	=	0°)
   = 2 × 1000 × 0.005026 × 20 × (20 – 10) = 2010.4 N (Ans.)
 Example 1.16.   A jet strikes tangentially a smooth curved vane moving in the same direction 
as the jet, and the jet gets reversed in the direction. Show that the maximum efficiency is slightly 
less than 60 per cent.
 Solution. Refer to Fig 1.16.
 Let, V = Velocity of the jet, and
  u = Velocity of the vane.
  (V > u for impact)
 The force exerted by jet in the direction of motion of the vane,
  Fx = Mass/sec × change in velocity
   = ρa (V – u)[(V – u) – {– (V – u)}]

Jet

V

a
Nozzle

V – u

u

V – u

Moving
vane

Fig. 1.16.

   = ρa (V – u)[(V – u) + (V – u)]
   = 2ρa (V – u)2

  Work done = Fx × u = 2ρa (V – u)2 × u

  η = Work done on the vane
Kinetic energy of the jet

   = 
2 2

32

2 ( ) ( )41 ( )
2

a V u u u V u
VaV V

ρ − × −= ×
ρ

 ...(i)

 For maximum efficiency, d
dV
η  = 0

 or,             
2 3 2 2

3 6
4 ( ) 2 ( ) ( ) 34u V u V V u V u Vd u

dV V V

   − × − − − ×=   
      

 = 0 
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 or,             
3 2 2

6
2 ( ) ( ) 3V V u V u V

V
− − − ×  = 0 ( u ≠	0)

 or, 2V (V – u) – 3 (V – u)2 = 0
 or, (V – u) [2V – 3 (V – u)] = 0
 or, (V – u) (2V – 3V + 3u) = 0
 or, (V – u) (3u – V) = 0, (V – u) ≠	 0, for impact,

	 ∴ 3u – V = 0  or    u = 
3
V  

 Substituting this value of u ( )3
V=  in expression (i), we get

  ηmax = 
( )2

3

/3
3 164 0.593 or

27

VV V

V

−
× = = 59.3%

 which is slightly less than 60%.  (Ans.)

1.8.  JET STRIKING A MOVING CURVED VANE TANGENTIALLY 
AT ONE TIP AND LEAVING AT THE OTHER

A. Single vane:
 Fig. 1.17, shows a jet striking a moving curved vane tangentially at one tip and leaving at the 
other. The effective velocity with which the jet strikes the vane is the relative velocity (Vr1). The 
relative velocity Vr1 may be obtained by drawing the velocity triangle at the inlet. The absolute 
velocity (V2) at the exit may be obtained from the velocity triangle at the outlet. Fig. 1.17 shows the 
velocity triangles.
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Outlet velocity
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�

Vr2

V2

D'

Vf2
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C' u2 Vw2

�

Vr1

Fig. 1.17. Jet striking a moving curved vane tangentially at one tip and leaving at the other.
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 Let, V1, V2 = Absolute velocities of the jet at the inlet and outlet respectively,
  u1, u2 = Peripheral velocities of the vane at the inlet and outlet respectively,
  Vr1, Vr2 = Relative velocities at the inlet and outlet respectively,
  Vf1, Vf2 = Velocities of the flow at the inlet and outlet respectively,
  Vw1, Vw2 = Velocities of the whirl at the inlet and outlet respectively,
  θ,φ = Tip angles at the inlet and outlet respectively,
  a,β = Angles which the absolute velocities make at the inlet and outlet 

respectively.
 It may be noted that:
	 l All angles are measured with the direction of motion of vane,
	 l The velocity of whirl is the component of the absolute velocity in the direction of motion.
	 l The velocity of flow is the component of the absolute velocity normal to the direction of 

motion.
 The triangles ABD and B′C′D′ are called inlet and outlet velocity triangles and are drawn as 
follows:
 1. Inlet velocity triangle:
 l Take any point A and draw a line AB = V1 (in magnitude), making an angle a with the 

horizontal line AD.
	 l Draw a line AC = u1 and join C to B, CB then represents relative velocity (Vr1) of the jet at 

inlet. If the loss of energy at inlet due to impact is zero, then CB must be in the tangential 
direction to the vane at inlet.

	 l From B draw a perpendicular BD meeting the horizontal line AC produced at D. Then BD 
represents the  velocity of flow at lnlet (Vf1). AD represents the velocity of whirl at inlet 
(Vw1). ∠BCD = θ = vane angle at inlet.

 2.  Outlet velocity triangle:
 If the vane surface is assumed smooth, the energy loss due to friction will be zero and thus  
Vr1 = Vr2 will be in tangential direction to the vane at outlet.
 l Draw B′C′ in the tangential direction of the vane at outlet and cut  B′C′ = Vr2.
	 l From C′ draw a line C′ A′ in the direction of vane at outlet and equal to u2 (the velocity of 

vane at outlet). Join B′A′. Then B′ A′ represents the absolute velocity of the jet (V2) at outlet 
in magnitude and direction.

	 l From B′ draw a perpendicular B′ D′ to meet the line C′ A′ produced at D′ . Then  B′ D′ and 
A′ D′ represent the velocity of flow (Vf2) and velocity of whirl (Vw2) at outlet respectively.

	 l φ = angle of vane at outlet,	β = angle made by V2 with the direction of motion of vane at 
outlet.

 If vane is smooth and is having velocity in the direction of motion at inlet and outlet equal,then
  u1 = u2 = u (velocity in the direction of motion), and Vr1 = Vr2
 Mass of water striking the vane per second = ρaVr1
     (where, a = area of jet water)
	 ∴ Force exerted in the direction of motion,
  Fx = Mass of water striking the vane per second  × (Initial velocity 

with which the jet strikes in the direction of motion – final 
velocity)

    = ρaVr1[Vr1 cos θ	– ( – Vr2 cos φ)]
 But, Vr1 cos θ = (Vw1  – u1), and Vr2 cos φ = (u2 + Vw2 ) (Refer to Fig. 1.17)
	 ∴ Fx = ρaVr1 [(Vw1  – u1) – { – (u2 + Vw2)}]
   = ρaVr1 [Vw1  – u1 + u2 + Vw2]
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 or, Fx = ρaVr1 (Vw1 + Vw2) ( u1 = u2) ...(i)
 The eqn. (i) is true only when β	is an actue angle (See Fig. 1.17), When β	= 90°, Vw2 = 0 the 
eqn. (i) redues to
  Fx = ρaVr1 (Vw1)
 If β is an obtuse angle, the expression for Fx  will become
  Fx = ρaVr1 (Vw1 – Vw2)
 Thus, in general Fx  is written as:
  Fx = ρaVr1 (Vw1 ±	Vw2) ...(1.27)
 Work done per second by the jet on the vane
   = Fx × u = ρaVr1 (Vw1 ±	Vw2) × u ...(1.28)
	 ∴	Work done per second per unit weight of fluid striking

   = 1 1 2( )
Weight of fluid striking

r w waV V V uρ ± ×

   = 1 1 2

1

( )r w w

r

aV V V u
aV g

ρ ± ×
ρ ×

   = 1 2
1 ( )w wV V u
g

± ×  ...(1.29)

 B. Force exerted on a series of radial curved vanes :
Consider a series of radial curved vanes mounted on a wheel as shown in Fig. 1.18. The jet water 
impinges upon the vanes and the wheel starts rotating at a constant angular speed.
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D'
A'

A

Fig. 1.18. Series of radially curved vanes mounted on a wheel.
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 Let, ω = Angular speed of the wheel, and 
  R1, R2 = Radii of the wheel at the inlet and outlet of the vane respectively.
 As the vanes are situated radially round the wheel the blade velocities at the inlet and outlet tips 
of the vane would be different, i.e.,
  u1 = ωR1   and   u2 = ω	R2
 The flow system is inward or outward, depending upon whether the jet enters the outer periphery 
or the inner periphery.
 The inlet and outlet triangles are shown in Fig. 1.18.
 The mass of water striking per second (for a series of vanes)
   = Mass of water issuing from the nozzle per second
   = ρaV1 (where, a = area of jet, V1 = velocity of jet).
 Momentum of water striking the vanes (in tangential direction) per second at inlet
   = (ρaV1) × Vw1
 [where, Vw1 (= V1 cos a) = component of V1 in the tangential direction.]
 Similarly, momentum of water per second at outlet
   =	 ρaV1 × (– Vw2) = – ρaV1 × Vw2
 [where, Vw2 = (V2 cos β) = component of V2 in tangential direction]
 –ve sign is taken as V2 at outlet is in opposite direction.
 Now, angular momentum per second at inlet = momentum at inlet × radius at inlet.
   = (ρaV1) × Vw1 × R1
 Angular momentum per second at outlet = – (ρaV1) × Vw2 × R2
 Torque exerted by water on the wheel,
  T = Rate of change of angular momentum
   = (initial angular momentum per second – final angular momentum per 

second)
   =	 ρaV1 × Vw1 × R1 – {– (ρaV1 × Vw2 × R2)}
   =	 ρaV1 (Vw1 × R1 + Vw2 × R2)
 Work done per second on the wheel = T × ω
   =	 ρaV1 (Vw1 × R1 + Vw2 × R2) × ω
	   =	 ρaV1 (Vw1 ×  ωR1 + Vw2 ×  ωR2)
   =	 ρaV1 (Vw1 × u1 +	Vw2 × u2)
    (u1 = ωR1   and   u2 =	ωR2)
 In case β	is an obtuse angle (Fig. 1.18) then work done per second is
   =	 ρaV1 (Vw1 u1 –	Vw2 u2)
	 ∴ The general expression for the work done per second on the wheel
   =	 ρaV1 (Vw1u1 ±	Vw2u2) ...(1.30)
If the discharge is radial at outlet, then β	= 90° and work done is
   =	 ρaV1 (Vw1 u1) (Vw

2
 = 0)

 Efficiency of the radial curved vane, ηvane:

      ηvane = Work done per second
Kinetic energy per second

                              = 
( )

1 1 1 2 2
2

1 1

[ ]
1
2

w waV V u V u

aV V

ρ ±

ρ ×
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                = 1 1 2 2
2

1

2 [ ]w wV u V u
V
±

   ...(1.31)

 Example 1.17.  A jet of water having a 
velocity of 40 m/s strikes a curved vane, which is 
moving with a velocity of 20 m/s. The jet makes an 
angle of 30° with the direction of motion of vane at 
inlet and leaves at an angle of 90° to the direction 
of motion of vane at outlet. Draw the velocity 
triangles at inlet and outlet and determine the 
vane angles at inlet and outlet so that the water 
enters and leaves the vane without shock. 

[Delhi University]
 Solution.  Velocity of jet, V1 = 40 m/s
 Velocity of vane, u1 = 20 m/s
 Angle made by the jet at inlet, a = 30°
 Angle made by the jet at outlet = 90°
	 ∴ β = 180° – 90° = 90°
 Here, we have u1 =  u2 = u = 20 m/s
 Vane angles at inlet and outlet:
 Vane angles at inlet and outlet are θ and φ 
respectively.
 From ∆ BCD, we have

        tan θ = 1

1 1– –
f

w

VBD BD
CD AD AC V u

= =

 where, Vf1 = V1 sin a = 40 × sin 30° = 20 m/s
  Vw1 = V1 cos a = 40 × cos 30° = 34.64 m/s
  u1 = 20 m/s (Given)

  tan θ = 20 1.366
34.64 20

=
−

 or, θ = tan–1 (1.366) = 53.79° (Ans.)
 Again form ∆	BCD, we have:

   1

1
sin f

r

V
V

θ = , or, Vr1 = 1 20 24.78 m/s
sin sin 53.79

fV
= =

θ °

 But, Vr2 = Vr1 = 24.78 m/s
 Hence from ∆ B’C’D’ , we have:

  cos φ = 2

2

20 0.8071
24.78r

u
V

= =

 or, φ = cos –1 (0.8071) = 36.18° (Ans.)
 Example 1.18.   A jet of water having a velocity of 45 m/s impinges without shock on a series 
of vanes moving at 15 m/s. The direction of motion of the vanes is inclined at 20° to that of jet. The 
relative velocity at outlet is 0.9 of that at inlet, and absolute velocity of water at exit is to be normal 
to the motion of vanes. Find:
 (i) Vane angles at inlet and outlet,

Direction of
motion of vane

��

Inlet velocity
triangle

Cu1

Vw1

D

Vf1

B

A

V1

B'
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V Vf 2 2=

u2

� �

D'

90º

Vr1

Motion of
vane

C'

Fig. 1.19.
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 (ii) Work done on vanes per N (newton) of water supplied by the jet, and
 (iii) Hydraulic efficiency.    [UPTU]
 Solution.  Velocity of the jet, V1 = 45 m/s
 Velocity of vane, u1 = u2 = (u =) 15 m/s

�

�

Moving vane
B'

�

Vw1

= 15 m/s

C
D

B

�
Vr1

� = 20ºA

V1
= 45 m/s

Vf1

������º

C'

V Vr r2 1= 0.9

u2 = 15 m/s

V = V2 2f

u = 15 m/s

D'

u1

Fig. 1.20.

 Angle made by jet at inlet, with direction of motion of vane, a = 20°
 Relative velocity at outlet, Vr2 = 0.9Vr1 (relative velocity at inlet).
 (i) Vane angles at inlet and outlet :
  Vane angles at inlet and outlet are θ and φ .

  In ∆ BCD, tan θ	 = 1

1 1( )
f

w

V
V u−

 where, Vf1 = V1  sin a = 45° sin 20° = 15.39 m/s
  Vw1 = V1 cos a = 45 cos 20° = 42.29 m/s

	 ∴	 tan θ	 = 15.39 0.564
42.29 15

=
−

 

 or, θ	 = tan–1 0.564 = 29.42° (Ans.)

 Again from  1 1
1

1

15.39, sin or 31.33 m/s
sin sin 29.42

f f
r

r

V V
BCD V

V
∆ = θ = = =

θ °

	 ∴ Vr2 = 0.9 Vr1 = 0.9 × 31.33 = 28.2 m/s
 From ∆ B′C′D′, we have:

  cos φ = 2

2

15 0.5319
28.2r

u
V

= =

	 ∴ φ = cos–1 0.5319 = 57.87° (Ans.)
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 (ii) Work done on vanes per N of water :
  Work done per second per N of water striking

   = 1 1 2 2 1 1
1 1( ) ( )w w wV u V u V u
g g

+ =  [ Vw2 = 0]

   = 1 (42.29 15)
9.81

× =
N.m J / s64.66 or
N.s N

 (Ans.)

 (iii) Hydraulic efficiency :

    Hydraulic efficiency = Work done
Kinetic energy supplied by the jet

   = 2 2
1

64.66 (per ) 64.66 0.6265 or
45(per )

2 2 9.81

N
V N

g

= =
 
 

× 

62.65% (Ans.)

 Example 1.19.   A jet of 50 mm diameter impinges on a curved vane and is deflected through 
an angle of 175°. The vane moves in the same direction as that of jet with a velocity of 35 m/s. If the 
rate of flow is 170 litres per second, determine the component of force on the vane  in the direction 
of motion. How much would be the power developed by  the vane  and what would be the water 
efficiency? Neglect friction.    [Punjab University]
 Solution. Diameter of jet, d = 50 mm = 0.05 m

	 ∴  Area, a = 
4
π  × d 2 = 

4
π  × 0.052

   = 0.001963 m2

  Angle of deflection = 175°
  Velocity of the vane, u1 = u2 (= u) = 35 m/s.
  Rate of flow, Q = 170 litres = 0.17 m3/s

Angle of
deflection

� 175º� �= 0, = 0

u1 Vr1

V1

Vw1

Curved
vane

Vf2V2

��

Outlet
velocity
triangle

Vr2

u2 Vw2

Fig. 1.21.

 Since the jet of water moves in the same direction as that of vane, a = θ = 0 and, therefore, the 
inlet velocity triangle will be a straight line with,

  V1 = 0.17 86·6 m/s
0.001963

Q
a
= =
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  Vr1 = V1 – u1 = 86.6 – 35 = 51.6 m/s
 and, Vw1 = V1 = 86.6 m/s
 Corresponding to outlet velocity triangle,
  φ = 180° – 175° = 5°
 Further, since the vane is smooth, therefore,
  Vr2 = Vr1 = 51.6 m/s
  Vw2 = Vr2 cos φ – u2

   = 51.6 × cos 5° – 35 = 16.4 m/s
 Power developed by the vane :
 Force exerted by the jet on the vane in the direction of motion,
  F = ρaVr1 (Vw1 + Vw2)
   = 1000 × 0.001963 × 51.6 (86.6 + 16.4) = 10432.9 N
  Work done = Force × velocity
   = 10432.9 × 35 = 365151 Nm/s or  J/s
 Hence, power developed by the vane = 365151 J/s or W or 365.151 kW (Ans.)

 Efficiency of vane (water efficiency) = Work done on the vane
Kinetic energy supplied by the jet

 

   = 
2 2

1

365151 365151 0.573 or
1 1 1000 0.17 86.6
2 2

Q V
= =

ρ × × ×
57.3%  (Ans.)

 Example 1.20.   A jet of water moving at 12 m/s impinges on a concave shaped vane to deflect 
the jet through 120° when stationary. The vane is moving at 5 m/s. Find:
 (i) The angle of jet so that there is no shock at inlet,
 (ii) The absolute velocity of the jet at exit both in magnitude and direction, and
 (iii) The work done per second per N of water.
  Assume that vane is smooth.  [Anna University]
 Solution. Velocity at jet, V1 = 12 m/s
   Velocity of vane, u1 = u2 (= u) = 5 m/s
  Angle of deflection of the jet = 120°
 (i) The angle of the jet at inlet of the vane, a	:
   Assuming vane to be symmetrical, we have
 	 θ = φ
 Now, 120° = 180 – (θ + φ)
	 ∴	 θ + φ	 = (180° – 120°) = 60°   		∴ θ = φ = 30°
  Applying sine rule to ∆ ABC, we have:

  
sin (180 – )

AB
° θ

 = 1 1, or,
sin ( ) sin sin ( )

V uAC
=

θ − a θ θ − a
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 or, 12
sin 30°

 = 5 5 sin 30, or, sin (30 ) 0.2083
sin (30 ) 12

× °
° − a = =

° − a

 ∴ 30° – a = sin–1 0.2083 = 12°
 or, a = 30° – 12° = 18° (Ans.)
 (ii) The absolute velocity of the jet at exit; V2 :
  Again applying sine rule to ∆ ABC, we have:

  1

sin (180 )
V
° − θ

 = 1 112, or,
sin sin sin 18

r rV V
=

a θ °

	 ∴ Vr1 = 12 sin 18 12 sin 18 7.42 m/s
sin sin 30
× ° × °

= =
θ °

  In ∆ ABD: Vw1 = V1cos a = 12 cos 18° = 11.41 m/s
  Now, since the vane is smooth, therefore,
  Vr2 = Vr1 = 7.42 m/s
  At outlet, from ∆ B′C′D′, we have:
  Vr2 cos φ = u2 + Vw2
	 ∴ Vw2 = Vr2 cos φ	– u2 = 7.42 cos 30° – 5 = 1.42 m/s
 Also, Vf2 = Vr2 sin φ = 7.42 sin 30° = 3.71 m/s	

 Now, tan β = 2

2

3.71 2.613
1.42

f

w

V
V

= =

	 ∴  Angle of jet at outlet, β = tan–1 2.613 = 69.06°
  Hence, angle made by V2 at oulet with direction of motion of vane is
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   = 180° – β = 180° – 69.06° = 110.94° (Ans.)

  Absolute velocity of jet at exit, V2 = 2 2
2 2w fV V+

   = 2 21.42 3.71 /+ = 3.97 m s  (Ans.)

 (iii) The work done per second per N of water :
  The work done per second per N of water

   = 1 1 2 2 1 2
1 1( ) ( )w w w wV u V u V V u
g g

+ = + ×  [ β < 90°]

   = 9 (11.41 1.42) 5
9.81

+ × = 6.539 Nm  (Ans.)

 Example 1.21.   A jet of water having a velocity of 35 m/s impinges on a series of vanes moving 
with a velocity of 20 m/s. The jet makes an angle of 30° to the direction of motion of vanes when 
entering and leaves at an angle of 120°. Draw the triangles of velocities at inlet and outlet and 
find:
 (i) The angles of vanes tips so that water enters and leaves without shock,
 (ii) The work done per N of water entering the vanes, and
 (iii) The efficiency.    [AMIE, Fluid Power Engg.]
 Solution.  Velocity of jet, V1  =  35 m/s
  Velocity of vane, u1  =  u2 (= u) = 20 m/s
  Angle made by jet at inlet, a  =  30°
  Angle made by the jet at outlet  = 120° (with the direction of motion of vane)
	 ∴	 β = 180 – 120 = 60° (See Fig. 1.23)
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 (i) Angles of vane tips :
  From inlet triangle, we have:
  Vw1 = V1 cos a = 35 cos 30° = 30.31 m/s
  Vf1 = V1 sin a = 35 sin 30° = 17.50 m/s

  tan θ = 1

1 1

17.5 1.697
30.31 20

f

w

V
V u

= =
− −

	 ∴ θ = tan–1 1.697  60° (Ans.)
  Applying sine rule to inlet velocity triangle, we have:

  1

sin 90
rV

°
 = 1 1

1
17.50or or 20.25 m/s

sin 1 sin 60
f r

r
V V V= =

θ °
 Now, Vr2 = Vr1 = 20.25 m/s
  Applying sine rule to outlet velocity triangle, we have:

  2

sin 120
rV

°
 = 2 20.25 20, or,

sin (60 ) sin 120 sin (60 )
u

=
° − φ ° ° − φ

 or, sin (60° – φ) = 20 sin 120 0.855
20.25
× °

=

 or, 60° – φ = sin–1 (0.855)   or 		φ = 58.75°
	 ∴	 φ = 60° – 58.75° = 1.25° (Ans.)
 (ii) Work done per N of water entering the vanes :
  Work done per N of water entering the vanes

    = 1 2 1
1 ( )w wV V u
g

+ ×  [ β	< 90°]

  Vw1 = 30.31 m/s, u1 = 20 m/s
  Vw2 = Vr2cos φ – u2 = 20.25 –20 = 0.25 m/s

	 ∴  Work  done per N = 1 (30.31 0.25) 20
9.81

+ × = 62.3 Nm  (Ans.)

 (iii) Efficiency, η	:
  η = 2

1

Work done per N 62.3
Energy supplied per N

2
V

g

=

   = 2 2
62.3 2 9.8162.3

35 35
2 9.81

× ×=

×

 = 0.9978 or 99.78% (Ans.) 

 Example 1.22.   A wheel consist of radial blades with inner and outer radii of 360 mm and 720 
mm respecitvely. Water enters the blades at the outer periphery with a velocity of 60 m/s and supply 
jet makes an angle of 25° with tangent to wheel at inlet tip. Water leaving the blade has a flow 
velocity of 12 m/s. If the blade angles at entrance and exit are 40° and 30° respectively, determine:
 (i) Work done per N of water,
 (ii) Speed  of the wheel, and
 (iii) Efficiency of blading.
 Solution. Refer to Fig. 1.18.
 Inlet velocity triangle :
 	 a = 25°, θ = 40° and V1 = 60 m/s
  Vf1 = V1sin a = 60 sin 25° = 25.36 m/s
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  Vw1 = V1cos a	= 60 cos 25° = 54.38 m/s

  u1 = 1
1

25.3654.38 24.16 m
tan tan 40

f
w

V
V − = − =

θ °

 Outlet velocity triangle :
  φ = 30°, Vf2 = 12 m/s
 Since, u1 = ωR1    and    u2 = ωR2

	 ∴ u2 = 2
1

1

0.3624.16 12.08 m/s
0.72

Ru
R

× = × =

   (R2 = 360 mm = 0.36 m    and    R1 = 720 mm = 0.72 m)

  Vw2 = 2
2

12 12.08 8.70 m/s
tan 30 tan 30

fV
u− = − =

° °

 (i) Work done per N of water :
  The work done per second  per N of water

   = 1 1 2 2
1 ( )w wV u V u
g

+  [ β	< 90° ]

   = 1 (54.38 24.16 8.70 12.08)
9.81

× + × = 144.6 Nm  (Ans.) 

 (ii) Speed of the wheel :

  Angular velocity, ω = 1

1

24.16 38.55 rad/s
0.72

u
R

= =

  But , ω	= 2
60

Nπ  where N is the speed of the wheel.

	 	 ∴	 N = 60 33.55 60
2 2

ω × ×
=

π π
320.38 r.p.m.  (Ans.)

 (iii) Efficiency of blading, η	:

  η = 2
1

Work done 144.6
Energy supplied by jet

(per N of water)
2
V

g

=

   = 2 2
144.6 144.6 2 9.81 0.788 or
60 60

2 9.81

× ×
= =

×

78.8%  (Ans.)

 Example 1.23.   A jet of water having a velocity of 18 m/s strikes a curved vane which is 
moving with a velocity of 6 m/s. The vane is symmetrical and so shaped that the jet is deflected 
through 120°. Determine:
 (i) The angle of the jet at inlet of the vane so that there is no shock,
 (ii) The absolute velocity of the jet at outlet in magnitude and direction, and
 (iii) The work done per N of water.
 Solution. Velocity of jet, V1 = 18 m/s
 Velocity of vane, u1 = u2 (= u) = 6 m/s
 Refer to Fig 1.24.
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 (i) The angle of jet at inlet of the vane, a	:
  As the vane is symmetrical, hence θ	=	φ
  Angle of deflection of jet = 120° (Given)
  120° = 180° – (θ	+	φ)   or   θ	+	φ	= 180° – 120° = 60°
	 	 ∴	  θ	=	φ = 30°
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Fig. 1.24.

  Applying sine rule to ∆ ABC, we have:

   
sin ( )

AC
θ − a

 = 
sin (180 30 )

AB
° − °

  or, 1

sin (30 )
u
° − a

 = 1

sin 30
V

°

  or, 6
sin (30 )° − a

 = 18
sin 30°

  or, sin (30° – a) = 6 sin 30 0.1667
18

× °
=

  or, 30° – a = sin–1 (0.1667) = 9.6°
	 	 ∴ a = 30° – 9.6° = 20.4° (Ans.)
 (ii) The absolute velocity of jet at outlet, V2 : 
   Vr1 = Vr2 ( Vane is smooth.)
  Again, applying sine rule to  ∆ ABC, we have:

   
sin (180 )

AB
° − θ

 = 1 1, or,
sin sin (180 30 ) sin 20.4

rV VBC
=

a ° − ° °



Chapter 1 : Impact of Free Jets         35

  or, 18
sin 30°

 = 1
1

18 sin 20.4or 12.55 m/s
sin 20.4 sin 30

r
r

V V × °
= =

° °

	 	 ∴  Vr2 = Vr1 = 12.55 m/s
  From outlet velocity triangle B′C′D′, we have:
   Vr2 cos φ = u2 + Vw2

   12.55 cos 30° = 5 + Vw2

  or, Vw2 = 12.55 cos 30° – 6 = 4.87 m/s
  Also, Vf2 = Vr2 sin φ = 12.55 × sin 30° = 6.27 m/s
  From 	∆B′A′D′, we have:

   V2 = 2 2 2 2
2 2 (4.87) (6.27) /w fV V+ = + = 7.94 m s  (Ans.)

  tan β = 2

2

6.27 1.287
4.87

f

w

V
V

= =

	 ∴  β = tan–1 1.287 = 52.15°

	 ∴		 Angle made by absolute velocity at outlet with the direction of motion,
   β* = 180 – β = 180° – 52.15° = 127.85° (Ans.)
 (iii) The work done per N  of water : 
  The work done per N of water

   = 1 2
1 ( )w wV V u
g

+ ×  ( β	< 90°)

   = 1 2 1 1
1 ( cos ) ( cos )

9.81 w wV V u V Va + × = a

   = 1 (18 cos 20.4 4.87) 6 /
9.81

° + × = 13.3 Nm s  (Ans.)

 Example 1.24.   A jet of water having a velocity of 36 m/s strikes a series of radial curved 
vanes mounted on a wheel which is rotating at 240 r.p.m. The jet makes an angle of 20° with the 
tangent to the wheel at inlet and leaves the wheel with a velocity of 6 m/s at an angle of 130° to the 
tangent to the wheel at outlet. Water is flowing from outward in a radial direction. The outer and 
inner radii of the wheel are 500 mm and 250 mm respectively. Determine:
 (i) Vane angles at inlet and outlet,
 (ii) Work done per second per N of water, and
 (iii) Efficiency of the wheel.

 Solution.  Velocity of jet, V1 = 36 m/s
  Speed of wheel, N = 240 r.p.m.

	 ∴  Angular speed, ω	 = 2 2 240 25.13 rad./s
60 60

Nπ π ×
= =  
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Fig. 1.25.

  Angle of jet inlet, a = 20°
  Velocity of jet at outlet, V2 = 6 m/s
 Angle made by the jet at outlet with the tangent to wheel = 130°
	 ∴		 Angle, β = 180 – 130° = 50°
  Outer radius, R1 = 500 mm = 0.5 m
  Inner radius, R2 = 250 mm = 0.25 m
	 ∴  Velocity, u1 = ωR1 = 25.13 × 0.5 = 12.56 m/s
 and, u2 = ωR2 = 25.13 × 0.25 = 6.28 m/s
 (i) Vane angles at inlet and outlet, θ and φ	:
  From ∆	ABD, we have:
   Vw1 = V1cos a = 36 × cos 20° = 33.83 m/s
   Vf1 = V1sin a = 36 × sin 20° = 12.31 m/s

  In ∆	CBD, tan θ = 1

1 1

12.31 0.578
– 33.83 12.56

f

w

VBD BD
CD AD AC V u

= = = =
− −

	 	 ∴ θ = tan–1 0.578 = 30° (Ans.)
  From outlet velocity triangle, we have:
   Vw2 = V2cos β = 6 cos 50° = 3.86 m/s
   Vf2 = V2sin β = 6 sin 50° = 4.59 m/s

   In ∆	B′C′D′,  tan φ = 2

2 2

4.59 0.4527
6.28 3.86

f

w

V
u V

= =
+ +

	 	 ∴ φ	= tan–1 (0.4527) = 24.35° (Ans.)
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 (ii) Work done per second per N of water :

 Work done per second = 1 1 2 2)
1 ( w wV u V u
g

+  ( β < 90°)

  = 1 (33.83 12.56 3.86 6.28)
9.81

× + × = 45.78 Nm  (Ans.)

 (iii) Efficiency of the wheel, η	:

   η = 1 1 2 2
2

1

2 ( )w wV u V u
V
+

 [Eqn. (1.31)]

    = 2
2 (33.83 12.56 3.86 6.28) 0.693 or

36
× + ×

= 69.3%  (Ans.)

 Example 1.25.   A 30 mm diameter jet strikes without shock on a series of vanes. The jet 
velocity is 60 m/s and the vanes move in the same direction as the jet. The shape of each vane is 
such that, when stationary, it would deflect the jet through an angle of 150°. The friction reduces 
the relative velocity by 10%  as water flows across the vanes and there is a further windage loss 

given by 
2

2
u  Nm/kg of water, where u is the vane speed. Determine:

 (i) The velocity of vanes corresponding to maximum efficiency, and
 (ii) The corresponding thrust on the vanes in the direction of motion.
 Solution.  Diameter of the jet, d = 30 mm = 0.03 m

	 ∴  Area, a = 
4
π  × d 2 = 

4
π  × 0.032 = 0.0007068 m2

  Velocity of jet, V1 = 60 m/s.
 Reduction in relative velocity due to friction = 10%
	 ∴	 Vr2 = (1 – 0.1) Vr1 = 0.9 Vr1
  Deflection of jet = 150°

  Windage loss = 
2

2
u  Nm/kg of water, where u is the vane speed.

 (i) The velocity of vanes corresponding to maximum efficiency :
  Refer to Fig. 1.26 for inlet and outlet velocity tringles.

��� 30º
150º

Angle of deflection

u1 Vr1

Vw1

V1

Vane

u2 Vw2

Vf2

V Vr r2 1= 0.9

V2

� = 30º
�

� �= 0, = 0

Fig. 1.26.
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  Vw1 = V1 = 60 m/s; u1 = u2 = u
  Vr1 = V1 – u; φ = 180° – 150° = 30°
  Vr2 = 0.9  Vr1 = 0.9 (V1 – u)
  Vw2 = Vr2 cos φ –u
   = 0.9 (V1 – u) cos 30° – u = 0.78 (V1 – u) –u
 When series of such vanes are fixed to the wheel, the entire fluid of mass ρaV1 issuing from the 
jet is utilized in striking the vanes.
 Thrust or force on the vane in the direction of its motion,
  F = ρaV1 (Vw1 + Vw2) ( β	< 90°)
   = ρaV1 [V1 + 0.78 (V1 – u) –u]
   = ρaV1 (1.78 V1 – 1.78 u)  ...(i)
  Work done per second = F × u = ρaV1 (1.78 V1 – 1.78 u) u

  Windage loss = 
2

2
u  Nm per unit mass of water

   =	 ρaV1 × 
2

2
u

	 ∴  Useful work done = ρaV1 (1.78 V1 – 1.78 u) u – ρaV1 × 
2

2
u

 Energy supplied by the water jet

   = 2 2
1 1 1

1 1
2 2

mV aV V= ρ ×

 Now,  efficiency, η = Useful work done
Energy supplied

   = 

2

1 1 1

2
1 1

(1.78 1.78 )
2

1
2

uaV V u u aV

aV V

ρ − −ρ ×

ρ ×

   = 
2

1
2

1

2 (1.78 1.78 )V u u u
V

− −

  For efficiency to be maximum, d
du
η  =  0

	 ∴ 
2

1
2

1

2 (1.78 1.78 )V u u ud
du V

 − −
 
  

 = 0

 or,  
2 2

1
2

1

2 (1.78 1.78 )V u u ud
du V

 − −
 
  

 = 0 

 or,  2 × 1.78V1 – 2 × 1.78 × 2u – 2u = 0

 or, 3.56 V1 – 9.12u = 0

 or,                               Vane speed, u = 13.56 3.56 60 /
9.12 9.12

V ×
= = 23.42 m s  (Ans.)
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 (ii) The corresponding thrust on the vanes, F :
  Substituting the relavent data in eqn (i), we get
  F = 1000 × 0.0007068 × 60 (1.78 × 60 – 1.78 × 23.42) = 2761.2 N (Ans.)
 Example 1.26.   The rotor of inward flow hydraulic turbine has a diameter over the tips of the 
moving vanes of 1.2 m. The diameter at the bottom of the vanes is 0.72 m. The speed is 300 r.p.m. 
The water is supplied through fixed vanes at 10° to the tangent to the outer circumference of the 
rotor, the velocity of water being  12 m/s. If the water leaves the moving vanes with the velocity 
entirely radial and equal to 4.2 m/s, determime:
 (i) The blade angles at entry and exit, so that the water may enter and leave the moving blades 
without shock.
 (ii) The velocity of water relative to the vanes at the exit.

 Solution.  Radius of the wheel at inlet of the vane, R1 = 1.2 0.6 m
2

=

  Radius of the wheel at outlet of the vane, R2 = 0.72 0.36 m
2

=

  Speed of the wheel, N = 300 r.p.m.

	 ∴  Angular speed, ω	 = 2 2 300 10 rad./s
60 60

Nπ π ×
= = π

  Then, tangential velocity at inlet tip of this blade, u1  = ωR1 = 10π × 0.6 = 18.85 m/s,
 and,  tangential velocity at outlet tip of the blade, u2 = ωR2 = 10π × 0.36 = 11.31 m/s
  Angle at inlet, a = 10°
  Absolute velocity of jet at inlet, V1 = 12 m/s
  Absolute velocity of jet at outlet, V2 = 4.2 m/s

Vw1

u1

�

Vf1

V1

�'
�

Inlet velocity
triangle

Inlet tip Rotor

R 1

R 2

Vr1

Vr2

Outlet tip

Moving
vane

�

�

V V2 2= f

Outlet velocity
triangle

u2

Fig. 1.27.
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 (i) The blade angles at entry and exit, θ and φ	:
  From inlet velocity triangle, we have :
   Vw1 = V 1cos a = 12 cos 10° = 11.82 m/s
   Vf1 = V1sin a = 12 sin 10° = 2.08 m/s

  ∴ tan θ′ = 1

1 1

2.08 0.295
18.85 11.82

f

w

V
u V

= =
− −

  or, θ′ = tan–1 0.295 = 16.43°
	 	 ∴ Blade angle at inlet, θ = 180° – θ′ = 180° – 16.43° = 163.57° (Ans.)
  From outlet triangle, we have:

   tan φ = 2

2

4.2 0.3713
11.31

V
u

= =

  or, φ = tan–1 0.3713 = 20.37° (Ans.)
 (ii) The velocity of water relative to the moving vanes, Vr2 :
  From outlet velocity triangle, we have:

  2

2r

V
V

 = 2
2

4.2sin , or, /
sin sin 20.37r
VVφ = = =
φ °

12.06 m s  (Ans.)

1.9.  JET PROPULSION OF SHIPS 

 One of the applications of the impulse-momentum equation is ‘jet propulsion’ wherein the 
reaction of a high velocity jet issuing from a nozzle provides the necessary thrust. This principle is 
employed in propelling the ships, aircrafts and missiles.

 Case I. When the inlet orifices are at right angles to the direction of the motion of the ship.
 Fig. 1.28. shows a ship which is having the inlet orifices at right angles to its direction.

u

V
Ship

( ) Elevationa

Jet

Direction of ship

Bow or front

Inlet orifice

Centrifugal pump

V

Jet of water

Inlet orifice

( ) Planb

Intake pipe taking water from
sides of the ship or amidship

Stern or back

Fig. 1.28. Inlet orifices at right angles to the ship motion.
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 The ship carries a centrifugal pump which takes water from the sea and discharges it through 
nozzle at the rear of the ship.
 Let, V = Absolute velocity of the issuing jet,
  u = Velocity of the moving ship,
  Vr = Relative velocity of the jet with respect to ship
   = V – ( – u ) = V + u (since the ship velocity is in a direction opposite to that of 

absolute jet velocity), and
  a = Area of orifices.
 Mass of water issuing from the orifice at the back of the ship = ρaVr = ρa (V + u)
	 ∴ Propulsive force exerted on the ship,
  F = Mass flow rate of water × change in jet velocity
   = ρa (V + u) (Vr – u) = ρa (V + u) [ (V + u) – u ] = ρa (V + u) × V ...[1.32]
 Thrust or propulsive work per second = Forward thrust × speed of ship
   = F × u = ρa (V + u) × V × u ...[1.33]
 As the intake is at right angles to the direction of motion, inlet velocity of water is zero; hence 
the outlet velocity equals Vr and hence the kinetic energy supplied by the jet per second is

   = 2 3 31 1 1( ) ( )
2 2 2r r raV V aV a V uρ × = ρ = ρ +  ...[1.34]

	 ∴ Efficiency of propulsion, η	= Propulsive work
Kinetic energy supplied by the jet

   = 22

( ) 2
1 ( )( )
2

a V u V u Vu
V ua V u

ρ + × × =
+ρ +

 ...[1.35]

 For a given jet velocity V, the condition for maximum efficiency of propulsion is given by, d
du
η  = 0

 i.e., 2
2

( )
d Vu
du V u

 
 + 

 = 0

 or,  
2

4
( ) 2 2 2 ( )

( )
V u V Vu V u

V u
+ × − × +

+
 = 0

 or, (V + u)2 × 2 V – 2Vu × 2 (V + u) = 0
 or, (V + u) [(V + u) 2V – 4Vu] = 0

  (V + u) 2V – 4Vu = 0 ( V ≠ – u)

 or, 2V (V + u – 2u) = 0 ( V ≠ – u)
 or, V – u = 0
	 ∴ u = V ...[1.36]
 Hence for maximum efficiency of propulsion, u = V and by substitution,

  ηmax = 
2

2 2
2 2 05 or
( ) (2 )

u u u
u u u
× ×

= =
+

50%

 (Neglecting loss of head due to friction, etc. in the intake and ejecting pipes.)
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 Case II. When the inlet orifices face the direction of motion of the ship.
 Fig. 1.29 shows a ship which is having the inlet orifices facing the direcion of the motion of 
the ship. The water is drawn in by a longitudinal (intake) pipe from bow (front) of the ship and is 
discharged at the stern (back).
 For this case the expressions for propulsive force and work done per second will be the same as 
those for the case I i.e.,when the inlet orifices are at right angles to the ship motion. But the energy 
supplied by the jet will be different, as in this case the water enters with a velocity equal to the 
velocity of the ship (u).

	 ∴  Kinetic energy supplied  by the jet = 1
2

 mass of water supplied per second × (Vr
2 – u2)

   = 2 21 ( )
2 r raV V uρ −

 But, Vr = V + u (as in case I)

u

Stern or
back

Bow or
front

Intake pipe facing ahead
or taking water from bow

(or front) of the ship ( ) Planb

u

( ) Elevationa
Ship

Jet

Pump

Fig. 1.29. Inlet orifices facing the direction of ship.

	 ∴ Kinetic energy supplied  by the jet = 2 21 ( ) [ ( ) ]
2

a V u V u uρ + + −  ...(1.37)

	 ∴ Efficiency of propulsion,

  η = Work done per second by jet
Energy supplied by the jet

   = 
2 2

( )
1 ( ) [ ( ) ]
2

a V u V u

a V u V u u

ρ + × ×

ρ + + −

 [Work done = ρa (V + u) × V × u] ...from eqn. (1.33)

   = 2 2 2 2 2 2
2 2 2 2

2( ) 2 2
Vu Vu Vu u

V uV u u V u Vu u V Vu
= = =

++ − + + − +
 ...(1.38)

 In this case, however it is not possible to derive a practical condition for maximum efficiency. 
But for u = V, which is the condition for the maximum efficiency in the previous case (i.e., case I), 
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corresponding value of the efficiency for this case will be:

  η = 2 2 2 or 0.6667 .
2 2 3

u u
V u u u

= = =
+ +

66 67%  

 In actual practice, since the velocity of ship u will normally be less than the velocity of jet V, 
and therefore the limiting value of u is equal to V. Hence the above obtained value of the efficiency 
may be cosidered as the maximum possible efficiency for this case.
 Note:  The propulsion of ships is also known as water rocket.  In practice, jet propulsion is used only in small 

life boats. For large ships, the screw propulsion is generally perferred because of high overall efficiency 
of screw propulsion.

 Example 1.27.  A ship driven by reaction jets and discharging astern is found to have 
resistance to motion of 2950 N when moving at 30 km/h. The velocity of jet relative to ship is  
18 m/s. Determine:
 (i) The number of jets if each jet has an area of 85 cm2;
 (ii) The power required to work the pump and the propulsive efficiency for the following cases:
               (a)   Inlet orifices at right angles to ship motion;
               (b)   Inlet orifices face the direction of ship motion.
 Solution.  Resistance to motion = 2950 N

  Velocity of the ship, u = 30 km/h = 30 1000 8.33 m/s
60 60
×

=
×

  Velcoity of the jet relative to the ship, Vr = (V + u) = 18 m/s
	 ∴  Absolute velocity of the jet, V = Vr – u = 18 – 8.33 = 9.67 m/s
  Area of each jet, a = 85 cm2 = 85 × 10–4 m2

 (i) Number of jets required :
  Thrust force exerted on the ship, F = ρa (V + u) × V ...[Eqn. (1.32)]
  Since thrust equals the resistance to motion of ship, therefore,

   2950 = 1000 × a × 18 × 9.67, or, a = 22950 0.01695 m
1000 18 9.67

=
× ×

	 						∴ Number of jets = 4
Total area of jets 0.01695
Area of each jet 85 10−

= =
×

2  (Ans.)

 (ii) Power required to drive the pump and propulsive efficiency :
   Propulsive work = Thrust × forward velocity = 2950 × 8.33 = 24573.5 Nm/s
	 	 ∴  Power required = 24573.5 J/s or W or  24.573kW (Ans.)
  This will be same for both the cases (a) and (b).
  (a) When intake orifices are at right angles to motion of ship, then kinetic energy supplied 

by jets

   = 31 ( )
2

a V uρ +  ...[Eqn. 1.34]

   = 31 1000 0.01695 18 49426.2 Nm/s
2
× × × =

	 																	∴  Propulsive efficiency

   = Propulsive work 24573.5
Kinetic energy supplied by the jet 49426.2

=  = 0.497 or 49.7% (Ans.)
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2 2

Alternatively,
2 2 9.67 8.33 0.497 or

( ) 18
Vu

Propulsive efficiency
V u


× ×  = = = + 

49.7%

  (b) When intake orifices face the direction of ship motion, then kinetic energy supplied 
by the jet, 

   = 2 21 ( ) [( ) ]
2

a V u V u uρ + + −  ...[Eqn. (1.37)]

   = 2 21 1000 0.016695 18 (18 8.33 ) 38840.9 Nm/s
2
× × × − =

	 							∴	 Propulsive efficiency = Propulsive work
Kinetic energy supplied by the jet

   = 24573.5 0.6326 or
38840.9

= 63.26%  (Ans.)

 Example 1.28.   A small ship is fitted with jets of total area 0.65 m2. The velocity through the jet 
is 9 m/s and speed of the  ship is 18 km/h in sea water. The efficiencies of the engine and the pump 
are 85% and 65% and respectively. If the water is taken amidship, determine:
 (i) Propelling force, and
 (ii) Overall efficiency.
 Assume the pipe losses to be 10% of the kinetic energy of the jets.

[MDU Haryana]

 Solution.  Total area of jets, a = 0.65 m2 

  Velocity of jet relative to ship, Vr = 9 km/s

  Speed of the ship, u = 18 km/h = 18 1000 5 m/s
60 60
×

=
×

  Efficiency of the engine, ηE = 85%
  Efficiency of the pump, ηP = 65%
  Pipe losses,  hf  = 10% of K.E. of jets

   = 
2 210

100 2 20
r rV V

× =

 Now, Vr = V + u
 or, V = Vr – u = 9 – 5 = 4 m/s
 (where, V = absolute velocity of jet)
 (i) Propelling force, F :
   F = ρa (V + u) V ...[Eqn. (1.32)]
    = 1000 × 0.65 (4 + 5) × 4 = 23400 N (Ans.)
 (ii) Overall efficiency, ηoverall :
  Work done by the jets per second
    = F × u = 23400 × 5 = 117000 Nm/s
   The output of the pump should be such as to give the jet a relative velocity Vr and also 

overcome the pipe losses.
	 	 	 ∴ Output of the pump per kg of water
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   = K.E. of jet + pipe losses

   = 
2 2 2 2

(1 0.1) 1.1
2 20 2 2
r r r rV V V V
+ = + =

  Input to the pump per kg of water = Output of the pump
Efficiency of the pump( )pη

   = 
21.1

2 0.65
rV

×

  The input to the pump = Output of the engine

	 	∴ Input  to the engine per kg of water = 
21.1

2 0.65
r

E

V
× × η

   = 
21.1 9 80.63 Nm

2 0.65 0.85
×

=
× ×

	 ∴ Total input to the engine = Mass of water × input per kg of water
   = (ρaVr) × 80.63
   = 1000 × 0.65 × 9 × 80.63 = 471685.5 Nm

	 ∴ ηoverall = Work done by jets 117000 0.248 or
Total input to engine 471685.5

= = 24.8%  (Ans.)

 Example 1.29.   A jet propelled boat, moving with a velocity of 6 m/s, draws water amidship. 
The total area of the jet is 424 cm2. If the total resistance offered to the motion of the boat is  
5890 N, determine:
 (i) Volume of water drawn by the pump per second, and
 (ii) Efficiency of the jet propulsion.
 Solution.  Velocity of boat, u = 6 m/s
  Total area of jets, a =  424 cm2 = 424 × 10–4 = 0.0424 m2

  Total resistance to motion = 5890 N
 Since the propelling force must be equal to the resistance to the motion, therefore,
 Propelling force, F = 5890 N
 But propelling force, F = ρa (V + u) V ...[Eqn. (1.32)]
	 ∴	 ρa (V + u) V = 5890
 or, 1000 × 0.0424 (V + 6) × V = 5890

 or, (V + 6) V = 5890 138.9
1000 0.0424

=
×

 or, V2 + 6V – 138.9 = 0

  V = 
26 6 4 138.9 6 24.32· 916 m/s

2 2
− ± + × − ±

=

 (i) Volume of water drawn by the pump per second :
   = Volume of water discharged through orifices at the  back in the form of the jets
   = aVr = a (V + u) = 0.0424 (9.16 + 6) = 0.643 m3/s (Ans.)
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 (ii) Efficiency of the jet propulsion :

  η = 2
2

( )
Vu

V u+
 ...Eqn. (1.35)

   = 2
2 9.16 6 0.478 or
(9.16 6)
× ×

=
+

47.8%  (Ans.)

 Example 1.30.   (a) A small ship driven by reaction jets and discharging astern is estimated to 
have a relative velocity of 12 m/s when moving at 30 km/h. The cross-sectional area of the jets at 
discharge is 240 cm2. Find resistance to the motion of ship and propulsive work.
 (b) If water enters through orifices facing the direction of motion of ship and pump is 85 per 
cent efficient and frictional losses in the pipe are equivalent to 3.6 m of water head, find:
    (i)   Power required to drive the pump, and
  (ii)  Overall efficiency of propulsion.
 Solution. Relative velocity of ship, Vr = 12 m/s

  Speed of the ship, u = 30 100030 km/h 8.33 m/s
60 60
×

= =
×

 The cross-sectional area of the jet at discharge, a = 240 cm2 = 0.024 m2

  Efficiency of pump, ηp = 85%
  Frictional losses, hf = 3.6 m of water head.
 (a) Resistance to motion and propulsive work :
  Thrust or propulsive force, F = ρa (V + u)V ...[Eqn. (1.32)]
  Now, Vr = V + u    or   V = Vr – u = 12 – 8.33 = 3.67 m/s
  (where, V = absolute velocity of the jet)
	 	 ∴ F = 1000 × 0.024 × 12 × 3.67 = 1057 N
  Hence, resistance to motion = F = 1057 N (Ans.)
   Propulsive work = Thrust × forward velocity
    = 1057 × 8.33 = 8804.8 Nm/s
    = 8804.8 J/s or W or 8.8 kW (Ans.)
 (b) When the intake of water is at the front end and the water enters with the boat speed u and 

discharges astern (back) with relative velocity Vr’ then,

  Energy supplied by the jet  = 2 21 ( )
2 rm V u−

  Actual energy supplied to water, considering frictional loss in the pipes

    = 2 2 2 21 1( ) ( ) ( )
2 2r f r r r fm V u mgh aV V u aV gh− + = ρ − + ρ

    = 2 21 ( )
2r r faV V u gh ρ − +  

    = 2 211000 0.024 12 (12 8.33 ) 9.81 3.6 20913 Nm/s 20.9 kW
2
 × × − + × =  



  This is equal to the output of the pump.
 (i) Power required to drive the pump :

  Power required ro drive the pump = Output of the pump 20.9
0.85p

= =
η

24.58 kW  (Ans.)
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 (ii) Overall efficiency of propulsion,	ηoverall :  

  ηoverall = Propulsive power
Power supplied to the pump

   = 8.8 0.358 or
24.58

= 35.8% (Ans.)

 Example 1.31.   A jet-propelled boat discharges water through a jet of area 240 cm2; the water 
being drawn from inlet openings facing the direction of motion. The total drag is estimated to be 
21.2 u2 N where u is the  speed of the boat in m/s. If the boat moves at 64.8 km/h, determine:
 (i) Relative velocity of jet,
 (ii) Energy supplied by the jet,
 (iii) Power of the motor required to work the pumps, and
 (iv) Efficiency of propulsion.  [Anna University]
 Take efficiency of pump set as 80% and density of water 1020 kg/m3.

 Solution.  Area of jet, a = 240 cm2 = 0.024 m2

  Total drag = 21.2 u2N ,where u is the speed of boat in m/s.
  Velocity of  the boat, u = 64.8 km/h

   = 64.8 1000 18 m/s
60 60

×
=

×
  Efficiency of the pump, ηp  =  80%
 (i) Relative velocity of jet, Vr :
  Thrust force on the boat = ρaVr (Vr – u)
  Also, resistance to the motion of ship (drag) equals the thrust force,
	 	 ∴ 21.2u2 = ρaVr (Vr – u)
  or, 21.2 × 182 = 1020 × 0.024 Vr (Vr – 18)
  or, 6868.8 = 24.48 Vr(Vr – 18)

  or, Vr(Vr – 18) = 6868.8 280.6
24.48

=

  or, Vr
2 – 18Vr – 280.6 = 0

  or, Vr = 
218 18 4 280.6

2
± + ×

    = 18 38.03 /
2

+
= 28 m s  (Ans.) (–ve value is not possible.)

 (ii) Energy supplied by the jet :
  Mass of water discharged = ρaVr
	 	 ∴ Kinetic energy supplied by the jet

    = 2 21 ( ) ( )
2 r raV V uρ −

    = 1
2

(1020 × 0.024 × 28) (282 – 182) = 157651.2 N m/s
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 (iii) Power of motor :
  Power of the motor required to work the pumps

   = 157651.2
0.8

 = 197064 Nm/s or 197064 J/s or W or  197 kW (Ans.)

 (iv) Efficiency of propulsion, ηprop :

   ηprop. = 2
2

u
V u+

 ...[Eqn. (1.38)].

    = 2 2 18 0.7826 or
28 18r

u
V u

×
= =

+ +
78.26%  (Ans.) (V + u = Vr)

HIGHLIGHTS 

 1. A fluid jet is a stream of fluid issuing from a nozzle with a high velocity and hence a high 
kinetic energy.

 2. The force exerted by a jet of water on a “stationary plate” (Fx):
   Fx = ρa V2 ...for a vertical plate,
    = ρaV2 sin2 θ ...for an inclined plate,
    = ρaV2 (1 + cos θ) ...for a curved plate and jet strikes at the centre,
    = 2 ρaV2 cos θ ...for a curved plate and jet strikes at one of the tips of the jet.
  where, V = Velocity of the jet,
  	 θ = Angle between the jet and the plate for inclined plate, and
    = Angle made by the jet with the direction of motion for curved plates.
 3. The force exerted by a jet of water on a moving plate in the direction of the motion of the 

plate (Fx):
   Fx = ρa (V – u)2 ...for a moving vertical plate,
    = ρa (V – u)2  sin2 θ	 ...for an inclined moving plate, and
      = ρa (V – u)2  (1 + cos θ) ...when jet strikes the curved plate at the centre.
 4.  When a jet of water strikes a curved moving vane at one of its tips and comes curved out at 

the other tip, the force exerted and work done are given by (from inlet and outlet velocity 
triangles):

  Force exerted, Fx = ρaVr1 (Vw1 ± Vw2)
  Work done per second  = ρaVr1 (Vw1 ± Vw2) × u
  + ve sign is taken  ...when β < 90° (i.e.,	β is an acute angle)
  – ve sign is taken  ...when  β > 90° (i.e.,	β is an obtuse angle)
  Vw2 = 0  ...when β = 90°
  Work done per second per N of fluid

    = 1 2
1 ( )w wV V u
g

+ ×

  For series of vanes:
   Force exerted, Fx = ρaV1 (Vw1 ± Vw2)
   Work done per sec  = ρaV1 (Vw1 ± Vw2) × u

  Work done per sec per N of fluid = 1 2
1 ( )w wV V u
g

+ ×
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  where, V1 = Absolute velocity of jet at inlet,
   Vw1 = Velocity of whirl at inlet,
   Vw2 = Velocity of whirl at outlet, and
   u = Velocity of the vane.
 5. For seires of radial curved vanes:
  Work done per second on the wheel 
	 	 	 	 = 	ρaV1 (Vw1 × u1 ± Vw2 × u2)
  Efficiency of the radial curved vane,

   ηvane = 1 1 1 2 2 1 1 2 2
22 11 1

( ) 2 ( )
1 ( )
2

w w w waV V u V u V u V u
VaV V

ρ ± ±
=

ρ ×

  where, u1 = Tangential velocity of vane at inlet, and
   u2 = Tangential velocity of vane at outlet.
 6. Jet propulsion of ships:

  Case I. When the inlet orifices are at right angles to the direction of motion of the ships.

  Efficiency of propulsion, η	= 2
2

( )
Vu

V u+

  Conditions for maximum efficiency, 0, . .,d i e u V
du
η
= =

	 	 ηmax = 50% (neglecting loss of head due to friction, etc. in the intake and ejecting pipes)
  Case II. When the inlet orifices face the direction of motion of the ship.

  Efficiency of propulsion, η	= 2
2

u
V u+

OBJECTIVE TYPE QUESTIONS

Choose the Correct Answer:
 1. The force exerted by a jet of water on a stationary 

vertical plate in the direction of jet is given by
   (a) ρaV (b) ρaV2

   (c) ρa2V (c) ρaV3.
 2. The force exerted by a jet of water on a moving 

vertical plate, in the direction of motion of plate 
is given by

   (a) ρaV2 (b) ρaV3

   (c) ρa (V – u)2 (d) ρa (V – u)3.
 3. When a steady jet impinges on a fixed inclined 

surface
   (a) the flow is divided into parts proportional 

to the angle of inclination of the surface
   (b) no force is exerted by the jet on the vane
   (c) the momentum component is unchanged 

parallel to the surface
   (d) none of the above.

 4. For maximum efficiency of a series of curved 
vanes, the speed is

  (a) equal to the jet speed

  (b) 3
4

 of the jet speed

  (c) 1
2

 of the jet speed

  (d) 1
3

 of the jet speed.

 5. The efficiency of jet propulsion with inlet orifices 
at right angles to the direction of motion of ship 
is given by

  (a) 2u
V u+

 (b) 2
2

( )
V

V u+

  (c) 2
2

( )
Vu

V u+
 (d) 3

2 ( )u V u
V
− .
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 6. The efficiency of jet propulsion when the inlet 
orifices face the direction of motion of the ship 
is given by

   (a) 2V
V u+

 (b) 2
2

u
V u+

. 

   (c) 2Vu
V u+

 (d) 2 .V
V u+

ANSWERS

 1. (b) 2. (c) 3. (a) 4. (c) 5. (c) 6. (b).

 1. Derive an expression for the force exerted by a jet 
of water on a fixed vertical plate in the direction 
of the jet.

 2. Show that the force exerted by a jet of water on 
moving inclined plate in the direction of jet is 
given by

    Fx = ρa (V – u)2 sin2 θ
   where, a = Area of jet,
    V = Velocity of the jet, and
    θ = Inclination of the plate with the jet.

 3. Prove that for a curved radial vane the efficiency 
is given by

   η	= 1 1 2 2
2

1

2 ( )w wV u V u
V
±  

 4. Show that efficiency of propulsion when the inlet 
orifices face the direction of motion of the ship 

is given by, η	= 
2

2
u

V u+
, where V is absolute 

velocity of issuing jet and u is the velocity of the 
ship.

THEORETICAL QUESTIONS

UNSOLVED EXAMPLES

 1. A jet of water, 50 mm in diameter, issues with a 
velocity of 10 m/s and impinges on a stationary 
flat plate which destroys its forward motion. Find 
the force exerted by the jet on the plate and the 
work done. [Ans. 196.35 N]

 2. A jet  of water of diameter 75 mm moving with a 
velocity of 20 m/s strikes a fixed plate in such a 
way that the angle between the jet and the plate 
is 60°. Find the force exerted by the jet on the 
plate.

   (i) in the direction normal to the plate, and
   (ii) in the direction of jet.
    [Ans. (i) 1530 N; (ii) 1325 N]
 3. A jet of water of diameter 60 mm moving with 

a velocity of 40 m/s, strikes a curved fixed sym-
metrical plate at the centre. Find the force exerted 
by the jet of water in the direction of the jet, if 
the jet is deflected through an angle of 120° at 
the outlet of the curved plate. [Ans. 6785.8 N]

 4. A jet of water of diameter 70 mm moving with 
a velocity of 40 m/s, strikes a curved fixed plate 
tangentially at one end at an angle of 30° to the 
horizontal. The jet leaves the plate at an angle 
20° to the horizontal. Find the force exerted by 
the jet on the plate in the horizontal and vertical 
directions. [Ans. 11117 N; 972.61 N]

 5. A rectangular plate weighing 60 N is suspended 
vertically by a hinge on the top horizontal edge. 
The centre of gravity of the plate is 100 mm 
from the hinge. A horizontal jet of water of 25 
mm diameter, whose axis is 150 mm below the 
hinge, impinges normally to the plate with a 
velocity of 6 m/s. Find:

   (i) The horizontal force applied at the centre 
of gravity to maintain the plate in vertical 
position, and

   (ii) The change in velocity of jet if the plate 
is deflected through 30° and the same 
horizontal force continues to act at the 
centre of gravity of the plate.

   [Ans. (i) 26.49 N, (ii) 2.48 m/s (increase)]
 6. A square plate weighing 117.72 N and of 

uniform thickness and 300 mm edge is hung so 
that horizontal jet 20 mm dimater and having a 
velocity of 15 m/s impinges on the plate. The 
centre line of the jet is 150 mm below the upper 
edge of  the plate, and when the plate is vertical 
the jet strikes the plate normally and at its centre.

   (i) Find what force must be applied at the 
lower edge of the plate in order to keep 
the plate vertical.
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   (ii) If the plate is allowed to swing freely, find 
the inclination to the vertical which the 
plate will assume under the action of jet.

   [Ans. (i) 35.32 N, (ii) 36.87°]
 7. A nozzle of 50 mm diameter delivers a stream 

of water at 20 m/s prependicular to a plate that 
moves away from the jet at 5 m/s. Find:

   (i) The force on the plate,
   (ii) The work done, and
   (iii) The efficiency of jet.
 [Ans. (i) 441.45 N; (ii) 2207 Nm/s (iii) 28.1%]
 8. A jet of water of 75 mm diameter strikes a curved 

vane at its centre with a velocity of 20 m/s. The 
curved vane is moving with a velocity of 8 m/s 
in the direction of jet. Find the force exerted on 
the plate in the direction of the jet, power and 
efficiency of the jet.

  Assume the plate to be smooth.
   [Ans. 1250.4 N; 10 kW (app.), 56.4%]
 9. A jet of water 100 mm diameter and having a 

velocity of 30 m/s strikes tangentially on a wheel 
which deflects the jet through an angle of 120°. 
Calculate the thrust on the vane when

   (i) The axis of symmetry of the vane is 
horizontal.

   (ii) The tangent at inlet tip is horizontal.
   [Ans. 1958 N; 30°, (ii) 1958 N; 30°]
 10. A jet of water 100 mm diameter and having 

a velocity of 15 m/s impinges at the centre of 
a hemispherical vane. The linear velocity of 
vane is 5 m/s in the direction of the jet. Find the 
force exerted on the vane. How this force would 
change if the jet impinges on a series of vanes 
attached to the circumference of a wheel ?

   [Ans. 1569.6 N, 2354.4 N]
 11. A jet of water moving with a velocity of 30 m/s 

impinges on series of curved vanes moving with 
a velocity of 15 m/s. The jet makes an angle 
of 20° with the direction of motion of vanes. 
Assuming K = 0·9, and that the absolute velocity 
of water at exit is normal to the direction of 
motion of vanes, determine:

   (i) Vane angles at entrance and exit,
   (ii) Work done on the vanes per N of water, 

and
   (iii) Efficiency of the system.
    [Ans. (i) 37.85°, 3.8°; (ii) 43.2 Nm/s; (iii) 94%]
 12. A jet of water moving with a velocity of 20 m/s 

impinges on a curved vane, which is moving with 
a velocity of 10 m/s. The jet makes an angle of 
20° with the direction of motion of vane at inlet 
and leaves at angle of 130° to the direction of 
motion of vane at outlet. Determine:

   (i) The angles of curved vane tips so that water 
enters and leaves without shock;

   (ii) The work done per N of water entering 
the vane.

   [Ans. (i) θ = 37.87°; φ = 6.56°;
  (ii) 20.24 Nm/s or W]
 13. A wheel consists of radial blades with inner and 

outer radii of 300 mm and 600 mm respectively. 
Water enters the blades at the outer periphery 
with a velocity of 50 m/s and the supply jet 
makes an angle of 25° with tangent to wheel 
at inlet tip. Water leaving the blade has a flow 
velocity of 10 m/s. If the blade angles at entrance 
and exit are 40° and 30° respectively, determine:

   (i) Work done per N of water,
   (ii) Speed of the wheel, and
   (iii) Efficiency of blading.
   [Ans. (i) 100.43 Nm; (ii) 320.38 r.p.m., (iii) 78.8%]
 14. In a jet propelled boat water is drawn amidship 

and discharged at the back with an absolute 
velocity of 20 m/s. If the cross-sectional area of 
the jet is 200 cm2 and the boat is moving in sea 
water with a speed of 8·33 m/s determine: 
(i) The propelling force on the boat, (ii) Power 
required to drive the pump, and (iii) Efficiency 
of jet propulsion.

   [Ans. 11332 N; (ii) 94.3 kW; (iii) 41.5%]
 15. A jet propelled boat is discharging water at a 

speed of 10 m/s relative to the ship in a jet of 
0·02 m2 corss-sectional area. If the boat moves 
through water with a velocity of 20 km/h, 
determine:

   (i) The resistance of the vessel and power 
exerted by the jet, and

   (ii) The efficiency of jet apart from losses in 
pumping machinery.

    Assume that inlet orifices face the direc-
tion of flow.

   [Ans. (i) 890 N; (ii) 6.91 kW; 71.4%]
 16. A jet-propelled boat discharges water through a 

jet of area 200 cm2; the water being drawn form 
inlet openings facing the direction of motion. The 
total drag is estimated to be 17·66 u2 N where u is 
the speed of the boat in  m/s. If the boat moves 
at 54 km/h, determine:

   (i) Relative velocity of jet,
   (ii) Energy supplied by the jet,
   (iii) Power of motor required to work the 

pumps, and
   (iv) Efficiency of propulsion.
    Assume: Efficiency of pump-set = 75 per 

cent, and density of water = 1020 kg/m3.
   [Ans.  (i) 23.34 m/s; (ii) 76125 Nm/s; 
   (iii) 101.4 kW; (iv) 78.2%]
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2.1.  INTRODUCTION

 A hydraulic turbine is a prime mover (a machine 
which uses the raw energy of a substance and converts it 
into mechanical energy) that uses the energy of flowing 
water and converts it into the mechanical energy (in the 
form of rotation of the runner). This mechanical energy 
is used in running an electric generator which is directly 
coupled to the shaft of the hydraulic turbine; from this 
electric generator, we get electric power which can be 
transmitted over long distances by means of transmission 
lines and transmission towers. The hydraulic turbines are 
also known as ‘water turbines’ since the fluid medium 
used in them is water.
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Fig. 2.1. Flow sheet of hydroelectric power plant.

 2.1. Introduction
 2.2. Classification of hydraulic turbines
 2.3. Impulse turbines-Pelton wheel
 2.4. Reaction turbines—Francis turbines 

— Propeller and Kalpan turbines
 2.5. Deriaz turbine
 2.6. Tubular or bulb turbines
 2.7. Run away speed
 2.8. Draft tube
 2.9. Specific speed
 2.10. Unit quantities
2.11. Model relationship
2.12. Scale effect
2.13. Performance characteristics of 

hydraulic turbines
2.14. Governing of hydraulic turbines
2.15. Cavitation
2.16. Selection of turbines
2.17. Surge tanks
  Highlights
  Objective Type Questions
  Theoretical Questions
  Unsolved Examples

 First hydroelectric station was probably started 
in America in 1882 and thereafter development 
took place very rapidly. In India, the first major 
hydroelectric power plant of 4.5 MW capacity 
named as Sivasamudram Scheme in Mysore was 
commissioned in 1902.
 Hydro (water) power is a conventional 
renewable source of energy which is clean, free from 
pollution and generally has a good environment 
effect. However, the following factors are major 
obstacles in the utilisation of hydropower resources:
 (i) Large investments,
 (ii) Long gestation period, and
 (iii) Increased cost of power transmission.
 Fig. 2.1 shows the flow sheet of hydroelectric 
power plant.

Chapter

HYDRAULIC TURBINES

2
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2.2.  CLASSIFICATION OF HYDRAULIC TURBINES

 The hydraulic turbines are classified as follows :
 1. According to the head and quantity of water available.
 2. According to the name of the originator.
 3. According to the action of water on moving blades.
 4. According to the direction of flow of water in the runner.
 5. According to the disposition of the turbine shaft.
 6. According to the specific speed N.

 1. According to the head and quantity of water avaliable :
 (i) Impulse turbine ... requires high head and small quantity of flow.
 (ii) Reaction turbine ... requires low head and high rate of flow.
 Actually there are two types of reaction turbines, one for medium head and medium flow and 
the other for low head and large flow.

 2. According to the name of the originator :
 (i) Pelton turbine ... named after Lester Allen Pelton of California (U.S.A.). It is an impulse 

type of turbine and is used for high head and low discharge.
 (ii) Francis turbine ... named after James Bichens Francis. It is a reaction type of turbine from 

medium high to medium low heads and medium small to medium large quantites of water.
 (iii) Kalpan turbine ... named after Dr. Victor Kaplan. It is a reaction type of turbine for low 

heads and large quanties of flow.

 3. According to action of water on the moving blades :

Turbine

Reaction turbine

Impulse turbine-Pelton turbine

Francis turbine

Kaplan and propeller turbines

 4. According to direction of flow of water in the runner :
 (i) Tangential flow turbines (Pelton turbine)
 (ii) Radial flow turbine (no more used)
 (iii) Axial flow turbine (Kaplan turbine)
 (iv) Mixed (radial and axial) flow turbine (Francis turbine).
 In tangential flow turbine of Pelton type the water strikes the runner tangential to the path of 
rotation.
 In axial flow turbine water flows parallel to the axis of the turbine shaft. Kaplan turbine is an 
axial flow turbine. In Kaplan turbine the runner blades are adjustable and can be rotated about 
pivots fixed to the boss of the runner. If the runner blades of the axial flow turbines are fixed, these 
are called “propeller turbines”.
 In mixed flow turbines the water enters the blades radially and comes out axially, parallel to the 
turbine shaft. Modern Francis turbines have mixed flow runners.
 5. According to the disposition of the turbine shaft :
 Turbine shaft may be either vertical or horizontal. In modern practice, Pelton turbines usually 
have horizontal shafts whereas the rest, especially the large units, have vertical shafts.
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 6. According to specific speed :
 The specific speed of a turbine is defined as the speed of a geometrically similar turbine that 
would develop 1 kW under 1 m head. All geometrically similar turbines (irrespective of the sizes) 
will have the same specific speeds when operating under the same head.

  Specific speed, Ns = 5/4
N P
H

 where, N = The normal working speed,
  P = Power output of the turbine, and
  H = The net or effective head in metres.
 Turbines with low specific speeds work under high head and low discharge conditions, while 
high specific speed turbines work under low head and high discharge conditions.
 The following table gives the comparison between the impulse and reaction turbines with 
regard to their operation and application.

Table 2.1. Comparison between Impulse and Reaction Turbines

S. No. Aspects Impulse turbine Reaction turbine
1. Conversion of fluid 

energy
The available fluid energy is 
converted into K.E. by a 
nozzle.

The energy of the fluid is partly 
transformed into K.E. before it (fluid) 
enters the runner of the turbine.

2. Changes in pressure 
and velocity

The pressure remains same 
(atmospheric)throughout 
the action of water on the 
runner.

After entering the runner with an 
excess pressure, water undergoes 
changes both in velocity and pressure 
while passing through the runner.

3. Admittance of 
water over the 
wheel

Water may be allowed to 
enter a part or whole of the 
wheel circumference.

Water is admitted over the circum- 
ference of the wheel.

4. Water-tight causing Required Not necessary.
5. Extent to which 

the water fills the 
wheel/ turbine

The wheel/turbine does not 
run full and air has a free 
access to the buckets.

Water completely fills all the passages 
between the blades and while flowing 
between inlet and outlet sections does 
work on the blades.

6. Installation of unit Always installed above the 
tail race. No draft tube is 
used.

Unit may be installed above or below 
the tail race, use of a draft tube is 
made.

7. Relative velocity of 
water

Either remaining constant 
or reduces slightly due to 
friction.

Due to continuous drop in pressure 
during flow through the blade, the 
relative velocity increases.

8. Flow regulation — By means of a needle 
valve fitted into the 
nozzle.

— Impossible without loss.

— By means of a guide-vane 
assembly.

—  Always accompanied by loss.
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2.3.  IMPULSE TURBINES—PELTON WHEEL

 In an impulse turbine the pressure energy of water is converted into kinetic energy when passed 
through the nozzle and forms the high velocity jet of water. The formed water jet is used for driving 
the wheel.
 Pelton wheel (named after the American engineer Lester Allen Pelton), among the various 
impulse turbines that have been designed and utilized, is by far the important. The Pelton wheel or 
Pelton turbine is a tangential flow impulse turbine.
 Important Pelton turbine installations in India :
 S. No. Scheme/Project Location (State) Source of water
 1. Koyana hydroelectric project Koyana (Maharashtra) Koyana river
 2. Mahatama Gandhi hydroelectric works Sharavathi (Karnataka) Sharavathi river
 3. Mandi hydroelectric scheme Joginder Nagar  Uhl river
   (Himachal Pradesh)
 4. Pallivasal power station Pallivasal (Kerala) Mudirapuzle river
 5. Pykara hydroelectric scheme Pykara (Tamil Nadu) Pykara river.

2.3.1. Construction and working of Pelton Wheel/Turbine
 A Pelton wheel/turbine consists of a rotor, at the periphery of which are mounted equally 
spaced double hemispherical or double ellipsoidal buckets. Water is transferred from a high head 
source through penstock which is fitted with a nozzle, through which the water flows out at a high 
speed jet. A needle spear moving inside the nozzle controls the water flow through the nozzle and 
the same time, provides a smooth flow with negligible energy loss. All the available potential energy 
is thus converted into kinetic energy before the jet strikes the buckets of the runner. The pressure 
all over the wheel is constant and equal to atmosphere, so that energy transfer occurs due to purely 
impulse action.

Casing

Jet of water

Buckets

Runner

Nozzle

Brake nozzle

Pen stock

Water

Spear

Fig. 2.2. Pelton wheel.
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 The Pelton turbine is provided with a casing the function of which is to prevent the splashing 
of water and to discharge water to the tail race.
 When the nozzle is completely closed by moving the spear in the forward direction the amount 
of water striking the runner is reduced to zero but the runner due to inertia continues revolving for 
a long time. In order to bring the runner to rest in a short time, a nozzle (brake) is provided which 
directs the jet of water on the back of buckets; this jet of water is called braking jet.
 Speed of the turbine runner is kept constant by a governing mechanism that automatically 
regulates the quantity of water flowing through the runner in accordance with any variation of load.
 Fig. 2.2 shows a schematic diagram of a Pelton wheel, while Fig. 2.3 shows two views of its bucket.

Water jet diameter

Splitter

Water

T

10º to 15º
dd

B

d

L

 2 to 3; 3 to 4; 11 to 16; 0.8 to 1.2; notch (width) 1.1 5 mm= = = = = +
L B D T d
d d d d

Fig. 2.3. The bucket dimensions.

 The jet emerging from the nozzle hits the splitter symmetrically and is equally distributed into 
the two halves of hemispherical bucket as shown. The bucket centre line cannot be made exactly 
like a mathematical cusp, partly because  of manufacturing difficulties and partly because the jet 
striking the cusp invariably carries particles of sand and other abrasive material which tend to 
wear it down. The inlet angle of the jet is therefore between 1° and 3°, but it is always assumed to 
be zero in all calculations. Then the relative velocity of the jet leaving the bucket would be opposite 
in direction to the relative velocity of the entering jet; this cannot be achieved in practice since 
the jet leaving the bucket would then strike the back of the succeeding bucket to cause splashing 
and interference so that overall turbine efficiency would fall to low values. Hence, in practice, the 
angular deflection of the jet in the bucket is limited to about 165° or 170°, and the bucket is therefore 
slightly smaller than a hemisphere in size.

Fig. 2.4 shows a section through a horizontal-impulse turbine.

Baffle
Plate

Jet deflector

Tail water elevation

Hydraulic brake

Nozzle pipe

Penstock
gate
valve

Needle

Fig. 2.4. Section through a horizontal-impulse turbine.



Chapter 2 : Hydraulic Turbines         57

2.3.2. Work done and Efficiency of a Pelton Wheel
 Fig. 2.5 shows the velocity triangles.
 Let, N = Speed of wheel in r.p.m.,
  D = Diameter of the wheel,
  d = Diameter of the jet,
  u = Peripheral (or circumferential) velocity of runner. It will be same at 

inlet and outlet of the runners at the mean pitch. (i.e. u = u1 = u2)

   = ,
60
DNπ

A A

To be fixed
to runner

Splitter

Inlet L

V1

M N

u1 Vr1

Vw1

�

Angle of deflection

�

Vr2

V2
Vf2

�

Outlet

u2 Vw2

u u u1 2= =

� = 0, = 0�

Fig. 2.5. Velocity triangles.

  V1 = Absolute velocity of water at inlet,
  Vr1 = Jet velocity relative to vane/bucket at inlet,
	 	 α = Angle between the direction of the jet and direction of motion of the vane/

bucket (also called guide angle),
	 	 θ = Angle made by the relative velocity (Vr1) with the direction of motion at inlet 

(also called vane angle at inlet),
  Vwl and Vf l = The components of the velocity of the jet Vl, in direction of motion and 

perpendicular to the direction of motion of the vane respectively;
    Vw1 is also known as velocity of whirl at inlet,
    Vf1 is also known as velocity of flow at inlet,
  V2 = Velocity of jet, leaving the vane or velocity of jet at outlet of the vane,
  Vr2 = Relative velocity of the jet with respect to the vane at outlet,
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	 	 φ = Angle made by the relative velocity Vr2 with the direction of motion of the 
vane at outlet and also called vane angle at outlet,

	 	 β = Angle made by the velocity V2 with the direction of motion of the vane at outlet, 
and

 Vw2 and Vf2 = Components of the velocity V2, in the direction of motion of vane and 
perpendicular to the direction of motion of vane at outlet;

    Vw2 is also called the velocity of whirl at outlet, and
    Vf2 is also called the velocity of flow at outlet.
 Inlet. The velocity triangle at inlet will be a straight line where
  Vr1 = V1 – u1 = V1 – u, Vw1 = V1 ( u1 = u2 = u)
	 	 α = 0 and  θ = 0
 Outlet : From velocity triangle at outlet, we have
  Vr2 = KVr1,

 
where, K = blade friction co-efficient, . Idealy when bucket
surfaces are and energy losses due to impact at splitter are ,

1

slightly less than unity
perfectly smooth neglected

K

 
 
 = 

 and, Vw2 = Vr2 cos φ – u2 = Vr2 cos φ – u ( u1 = u2 = u) (When β < 90°)

 
2

2

2

Depending upon magnitude of the peripheral speed ( ), the unit may have a
slow, medium or fast runner and the angle and will vary as follows :
( ) < 90° ( is –ve)
( ) = 90° ( 0)
( ) 90 (

w

w

w

u
V

i Slow runner V
ii Medium runner V
iii Fast runner

β
β
β =
β > ° 2 is +ve)wV

 
 
 
 
 
  

 The force exerted by the jet of water in the direction of motion is given as:
  F = ρaV1 (Vw1 + Vw2) ...(2.1)

 2and are the mass density and area of jet respecitvely.
4

a a d π  ρ =    

 Now work done by the jet on runner per second
   = F × u = ρaV1 (Vw1 + Vw2) × u ...(2.2)
 Work done per second per unit weight of water striking

   = 1 1 2 1 1 2

1

( ) ( )
Weight of water striking

w w w waV V V u aV V V u
aV g

ρ + × ρ + ×
=

ρ ×
 

   = 1 2
1 ( )w wV V u
g

+  ...[2.2 (a)]

 The energy supplied to the jet at inlet is in the form of K.E. and is equal to 2
1

1
2

mV .

	 ∴ Kinetic energy (K.E.) of jet per second = 2
1 1

1 ( )
2

aV Vρ ×

	 ∴  Hydraulic efficiency, hh = 1 1 2

2
1 1

( )Work done per second
1K.E. of jet per second ( )
2

w waV V V u

aV V

ρ + ×
=

ρ ×

 or,  hh = 1 2
2

1

2 ( )w wV V u
V
+ ×

 ...(2.3)
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 From inlet and outlet velocity triangles, we have:
  Vw1 = V1, Vr1 = V1 – u1 = V1 – u

  Vw2 = Vr2 cos φ – u2 = Vr2 cos φ – u = KVr1 cos φ – u = K (V1 – u) cos φ – u

 Substituting the values of Vw1 and Vw2 in eqn (2.3), we have:

  hh = 1 1
2 2

1 1

2[ ( – )cos – ] 2[( – ) (1 cos )]V K V u u u V u K u
V V

+ φ + φ
=  ...(2.4)

 The hydraulic efficiency will be maximum for given value of V1 when,

  ( )h
d
du

h  = 0

 i.e.,  1
2

1

2 ( ) (1 cos )V u ud
du V

− + φ 
 
 

 = 0

 or,   2
12

1

2 (1 cos ) ( )K d V u u
duV

+ φ
× −  = 0

 Since, 2
1

2 (1 cos )K
V

+ φ
 ≠ 0, ∴ 2

1( )d V u u
du

−  = 0

 or, V1 – 2u = 0, or, u = 1

2
V

 ...(2.5)

 The above equation states that hydraulic efficiency of a Pelton wheel is maximum when the 
velocity of the wheel is half the velocity of jet of water at inlet. The maximum efficiency can be 

obtained by substituting the value of u = 1

2
V

 in eqn. (2.4).

  (hh)max = 

1 1 1 1
1

2 2
1 1

2 (1 cos ) 2 (1 cos )
2 2 2 2

V V V VV K K

V V

 − + φ × + φ × 
  =

 or, (hh)max = 
(1 cos )

2
K+ φ

 ...(2.6)

 If friction factor, K = 1 (i.e., assuming no friction), we have

  (hh)max = 
1 cos

2
+ φ

 ...[2.6(a)]

2.3.3. Definitions of Heads and Efficiencies
 Fig. 2.6 shows a general layout of a hydroelectric power plant using an impulse turbine (Pelton 
wheel).

 1. Gross head. The gross (total) head is the difference between the water level at the reservoir 
(also known as the head race) and the water level at the tail race. It is denoted by Hg.

 2. Net or effective head. The head available at the inlet of the turbine is known as net or 
effective head. It is denoted by H and is given by:
  H = Hg – hf – h
 where, hf = Total loss of head between the head race and entrance of the turbine
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   = 
24

2
fLV

D g×
 (L = length of penstock, D = diameter of penstock, 

      V = velocity of flow in penstock), and
  h = Height of nozzle above the tail race.

 3. Efficiencies. The following are the important efficiencies of turbine :
 (i) Hydraulic efficiency (hh). It is defined as the ratio of power developed by the runner to the 
power supplied by the jet at entrance to the turbine.

 Mathematically, hh = 
Power developed by the runner

Power supplied at the inlet of turbine

   = 
1 2

1 2
( )

( ) a w w
a w w

a a

w Q V V u
gQ V V u

wQ H wQ H

  ± ρ ±  =

   = 1 2( )w w rV V u H
gH H
±

=  ...(2.7)

Pelton wheel

Vanes

Head race

Reservoir

Dam

Penstock

Tail race

hf

h

Hg

H

Fig. 2.6. Layout of hydroelectric power plant using an impulse turbine (Pelton wheel).

 where, Vw1, Vw2 = Velocities of whirl at inlet and outlet respectively,
  u = Tangential velocity of vane,
  H = Net head on the turbine, and
  Qa = Actual flow rate to turbine runner (bucket).

 The parameter, Hr = 1 2
1 ( )w wV V u
g

+  represents the energy transfer per unit weight of water 

and is referred to as the ‘runner head’ or ‘Euler head’.
  H – Hr = ∆H = Hydraulic losses within the turbine.
 (ii) Mechanical efficiency (hm). It is defined as the ratio of the power obtained from the shaft 
of the turbine to the power developed by the runner. These two powers differ by the amount of 
mechanical losses, viz.,bearing friction, etc.

 Mathematically, hh = 
Power available at the turbine shaft Shaft power
Power developed by turbine runner Bucket power

=
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   = 
1 2w w a r

a

P P
V V wQ HwQ u

g

=
+ 

 
 

 ...(2.8)

 Values of mechanical efficiency for a Pelton wheel usually lie between 97 to 99 percent 
depending on size and capacity of the unit.
 (iii) Volumetric efficiency (hv). The volumetric efficiency is the ratio of the volume of water 
actually striking the runner to the volume of water supplied by the jet to the turbine. That is,

  hn = 
Volume of water actually striking the runner ( )
Total water supplied by the jet to the turbine ( )

aQ
Q

 ...(2.9)

 For Pelton turbines, hn  0.97 to 0.99.
 (iv) Overall efficiency (ho). It is defined as the ratio of power available at the turbine shaft to 
the power supplied by the water jet. That is

  h0 = 
Power available at the turbine shaft Shaft power=
Power available from the water jet Water power

P
wQH

=  ...(2.10)

 (where, Q = the total discharge in m3/s supplied by the jet.)
 The values of overall efficiency for a Pelton wheel lie between 0.85 to 0.90.
 The individual efficiencies may be combined to give,
  h0 = hh × hm × hv

   = ,ar

a r

QH P P
H wQ H Q wQH

× × =  which is the same as defined vide eqn. (2.10)

 If hg is the efficiency of a generator, then power output of hydrounit (turbine + hydrogenerators)
   = (wQH) × h0 × hg
 The product h0 × hg is known as hydroelectric plant efficiency.

2.3.4. Design Aspects of Pelton wheel
 The  following points should be considered while designing a Pelton wheel :
 1. Velocity of jet. The velocity of jet at inlet is given by,

  V1 = 2vC gH  ...(2.11)
 where, Cv = Co-efficient of velocity (= 0·98 or 0·99), and
  H = Net head on turbine.
 2. Velocity of wheel. The velocity of wheel (u) is given by,

  u = 2uK gH  ...(2.12)
 where, Ku = Speed ratio. It varies from 0.43 to 0.48.
 3. Angle of deflection of the jet. The angle of deflection of the jet through the buckets is taken 
as 165° if no angle of deflection is given.
 4. Mean diameter of the wheel (D). The mean diameter or pitch diameter D of the  Pelton 
wheel is given by,

   u = 
60or

60
DN uD

N
π

=
π

 ...(2.13)

 5. Jet ratio (m). It is defined as the ratio of the pitch diameter (D) of the Pelton wheel to the 
diameter of the jet (d). It is denoted by ‘m’ and is given as :
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 m = 
D
d

 (lies between 11 and 16 for maximum hydraulic efficiency) ...(2.14)

 Normally, the jet ratio is adopted as 12 in practice.
 6. Bucket dimensions. Some of the main dimensions of the bucket of a Pelton wheel are as 
follows :
  Refer to Fig. 2.3 : B = 3 to 4d;     L = 2 to 3d;     T = 0.8 to 1.2d.
 7. Number of jets. Normally a Pelton wheel has one nozzle or one jet. However, a number of 
nozzles may be employed when more power is to be produced with the same wheel. Theoretically six 
nozzles can be used on Pelton wheel. However, practical considerations limit the use of not more than 
two jets per runner for a vertical runner and not more than four jets per runner if it is of horizontal 
configurations.
 Number of jets is obtained by dividing the total rate of flow through the turbine by the rate  of 
flow of water through a single jet.
 8. Number of buckets (Z). The number  of buckets for a Pelton wheel should be such that 
the jet is always completely intercepted by the buckets so that volumetric efficiency of the turbine 
is very close to unity. Number of buckets on a runner is given by,

  Z = 15 15 0.5 m
2
D
d

+ = +  ...(2.15)

 Example 2.1.   A Pelton wheel is receiving water from a penstock with a gross head of 510 m. 
One-third of gross head is lost in friction in the penstock. The rate of flow through the nozzle fitted 
at the end of the penstock is 2·2 m3/s. The angle of deflection of the jet is 165°. Determine :
 (i) The power given by water to the runner, and
 (ii) Hydraulic efficiency of the Pelton wheel.
 Take Cv (co-efficient of velocity) = 1·0 and speed ratio = 0·45.

 Solution.  Gross head, Hg  =  510 m

  Head lost in friction, hf = 
510 170 m

3 3
gH
= =

	 ∴   Net head, H = Hg – hf = 510 – 170 = 340 m
   Discharge, Q = 2·2 m3/s

  Angle of deflection = 165°

u1 Vr1

V V1 1= w

165º

Bucket/vane

Outlet
triangle

� �

V2
Vr2

u2 Vw2

Vf2

Fig. 2.7
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∴  Angle, φ  =  180° – 165° = 15°
  Co-efficient of velocity, Cv  =  1.0
  Speed ratio, Ku  =  0.45

 (i) The power given by water to the runner :

   Velocity of jet, V1 = 2 1.0 2 9.81 340 81.67 m/svC gH = × × =

   Velocity of wheel, u = 2 0.45 2 9.81 340 36.75 m/suK gH = × × =

  Refer to fig. 2.7. Vr1 = V1 – u1 = V1 – u = 81.67 – 36.75 = 44.92 m/s ( u1 = u2 = u)
  Also, Vw1 = V1 = 81.67 m/s
  From outlet velocity triangle, we have:
   Vr2 = Vr1 = 44.92 m/s
  Also, Vr2 cos φ = u2 + Vw2 = u + Vw2
  or, Vw2 = Vr2 cos φ – u = 44.92 cos 15° – 36.75 = 6.64 m/s
  Work done by the jet on the runner per second
    = ρQ (Vw1 + Vw2) × u ...[Eqn (2.2)]
    = 1000 × 2.2 (81.67 + 6.64) × 36.75 = 7139863 Nm/s
	 	∴ Power given by water to the runner = 7139863 J/s   
  or, W   7139.8 kW (Ans.)
 (ii) Hydraulic efficiency of the Pelton wheel, hh :

    hh = 1 2
2

1

2 ( )w wV V u
V
+ ×

 ...[Eqn (2.4)]

     = 2
2 (81.67 6.64) 36.75 0.973

(81.67)
+ ×

=    or   97.3 % (Ans.)   

                             1 2

Alternatively :
( )

...[Eqn (2.8)]

(18.67 6.64) 36.75 0.973 or .
9.81 340

 
 +

h = 
 
 + ×

= = × 
97 (An .)3 % s

w w
h

V V u
gH

 Example 2.2.   A Pelton wheel having a mean bucket diameter of 1·2 m is running at 1000 
r.p.m. The net head on the Pelton wheel is 840 m. If the side clearance angle is 15° and discharge 
through the nozzle is 0·12 m3/s, determine :
 (i) Power available at the nozzle, and
 (ii) Hydraulic efficiency of the turbine.

Solution.  Mean diameter of Pelton wheel, D  =  1.2 m
   Speed of wheel, N  =  1000 r.p.m.

	 ∴   Tangential velocity of the wheel,  u = 
1.2 1000 62.83 m/s

60 60
DNπ π × ×

= =

   Net head on the turbine, H  =  840 m
   Side clearance angle, θ  = 15°

  Discharge Q  =  0.12 m3/s
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 (i) Power available at the nozzle :

  Velocity of jet at inlet, V1 = 2vC gH

   = 1.0 2 9.81 840 128.38 m/s× × =

    (Assume Cv = 1.0 if not given)
	 	 ∴ Power available at nozzle
   = wQH = 9810 × 0.12 × 840 = 988848 Nm/s or J/s or W  988.85 kW (Ans.)

 (ii) Hydraulic efficiency, hh :

  hh = 1
2

1

2 ( ) (1 cos )V u K u
V

− + φ
 ...[Eqn. (2.4)]

   = 2 2
2 (128.38 62.83) (1 cos 15 ) 62.83 131.1 (1 0.966) 62.83

(128.38) (128.38)
− + ° × + ×

=

     (Assume K = 1)
   = 0.982   or   98.2 % (Ans.)

 Example 2.3.   A Pelton wheel is to be designed for the following specifications :
 Power (brake or shaft) ... 9560 kW
 Head ... 350 metres
 Speed ... 750 r.p.m.
 Overall efficiency ... 85%
 Jet diameter ... not to exceed 1/6 th of the wheel diameter
 Determine the following :
 (i) The wheel diameter,             (ii)  Diameter of the jet, and
 (iii) The number of jets required.
  Take Cv = 0·985, Speed ratio =  0.45. [UPTU]

 Solution.  Shaft or brake power  =  9560 kW
  Head, H  =  350 m
  Speed, N  =  750 r.p.m.
  Overall efficiency, h0  =  85%

  Ratio of jet diameter to wheel, d
D

 = 
1
6

 

  Co-efficient of velocity, Cv = 0.985
  Speed ratio, Ku = 0.45

 (i) The wheel diameter, D :

  Velocity of jet, V1 = 2 0.985 2 9.81 350 81.62 m/svC gH = × × =

  The velocity of wheel, u = u1 = u2

   = 2 0.45 2 9.81 350 37.3 m/suK gH× = × × =

 But,    u = 
60
DNπ

	 ∴ 37.3 = 750 37.3 60, or, .
60 750

D Dπ × ×
= =

π ×
0 95 m  (Ans.)
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 (ii) Diameter of the jet, d :

  
d
D

 = 
1
6

     

	 ∴ d = 
0.95 .

6 6
D

= = 0 158 m  (Ans.)

 (iii) The number of jets required :
  Discharge of one jet, q = Area of jet × velocity of jet

   = 2 2 3
1 0.158 81.62 1.6 m /s

4 4
d Vπ π

× = × × =

 Now,  overall efficiency, h0 = 
Shaft power 9560
Water power wQH

=

 or, 0.85 = 
9560

9.81 350Q× ×
 ( w = 9.81 kN/m3)

	 ∴  Total discharge, Q = 39560 3.27 m /s
0.85 9.81 350

=
× ×

	 ∴  Number of jets = 
Total discharge 3.27

Discharge of one jet 1.6
Q
q

= = = 2 jets  (Ans.)

 Example 2.4.   A Pelton wheel nozzle, for which Cv = 0·97, is 400 m below the water surface 
of a lake. The jet diameter is 80 mm, the pipe diameter is 0·6 m, its length is 4 km, and f = 0.032 in 

the formula hf = 
2

.
2

fLV
D g×

The buckets deflect the jet through 165° and they run at 0·48 times the 

jet speed, bucket friction reducing the velocity at outlet by 15 per cent of the relative velocity at 
inlet. Mechanical efficiency = 90%. Determine :
 (i) The flow rate, and
 (ii) The shaft power developed by the turbine. [MDU Haryana]

 Solution.  Co-efficient of velocity, Cv = 0.97
    Gross head, Hg = 400 m
    Diameter of jet, d = 80 mm = 0.08 m
    Diameter of pipe, D = 0.6 m
    Length of pipe, L = 4 km = 4000 m
    Friction factor, f = 0.32
    Angle, φ = 180° – 165° = 15°
    Bucket speed, u = 0.48 times the jet speed
  Relative velocity at the outlet (Vr2)  =  0.85 times the relative velocity at inlet Vr1.
 (i)  The flow rate, Q :
 Let,  V = Velocity of water in pipe, and
    V1 = Velocity of jet of water.
 Also, AV = aV1 ...Continuity equation
  (where, A = area of pipe, and a = area of jet)
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 or, 4
π  × D2 × V = 4

π  × d 2 × V1

  V = 
22

1 1 12
0.08 00177
0.6

d V V V
D

 × = × = 
 

 ...(i)

  Applying Bernoulli’s equation to free surface of water in the reservoir and the outlet of the 
nozzle, we have:
  Head at reservoir = Kinetic head of jet of water + head lost due to friction in pipe + head 

lost in nozzle

   = 
2 2

1 head lost in nozzle,
2 2
V fLV

g D g
+ +

×
 ...(ii)

 Let, (V1)th = Theoretical velocity at outlet of nozzle, and

  V1 = Actual velocity of jet of water.

 Then, 1

1( )th

V
V

 = Cv, or, (V1)th = 1

v

V
C

  Now,  Head lost in nozzle = Head corresponding to (V1)th – head corresponding to V1

   = 
22 2 2

1 1 1 1( ) 1– –
2 2 2 2

th

v

V V V V
g g C g g

 = × 
 

   = 
2

1
2

1 1
2 v

V
g C
 − 
 

  Substituting this value in eqn. (ii), we get:

  Head at reservoir  = 
2 22

1 1
2

1 1
2 2 2 v

V VfLV
g D g g C

 + + − ×  

 or, 400 = 
2 2 2 2

1 1 1 1
2

0.032 4000 1
2 0.6 2 9.81 2 9.81 2 2v

V V V VV
g g gC

2×
+ + + × −

× × ×
  

   = 
2 2

1 1
2

0.032 4000 (0.0177 ) 1
0.6 2 9.81 2 9.81 (0.97)

V V× ×
+ ×

× × ×
 ( V = 0.0177V1)

   = 0.0034 V1
2 + 0.054 V1

2 = 0.0574 V1
2

  V1 = 
1/2400 83.48 m/s

0.0574
  = 
 

	 ∴ Flow rate  =  Area of jet × velocity of jet 

   = 4
π  × (0.08)2 × 83.48 = 0.419 m3/s (Ans.)

 (ii) The shaft power :
  Velocity of bucket, u1 = 0·48V1 = 0·48 × 83·48 =  40·07 m/s
  Refer to Fig. 2.8. Vr1 = V1 – u1 = 83.47 – 40.07 = 43.4 m/s
  Vw1 = V1 = 83.48 m/s
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Fig. 2.8

  From the outlet velocity triangle, we have:
  Vr2 = 0.85Vr1 = 0.85 × 43.4 = 36.89 m/s
  Vw2 = u2 – Vr2 cos φ
   = 40.07 – 36.89 × cos 15° = 4.44 m/s
  Mechanical efficiency,

  hm = 
Shaft power

Power given to runner

	 ∴  Shaft power,  =  hm × power given to runner
  But power given to runner

   = 1 2( )w w
w Q V V u
g

− ×

  [Here –ve sign is taken since β > 90° (i.e., Vw1 and Vw2 are in the same direction)]

	 ∴  Shaft power  = 1 2 1( )m w w
w Q V V u
g

h × − ×

   = 
9.810.9 0.419 (83.48 4.44) 40.07 kW
9.81

× × − ×  ( w = 9.81 kN/m3)

   = 1194.3 kW (Ans.)
 Example 2.5.   The water available for a Pelton wheel is 4 m3/s and the total head from the 
reservoir to the nozzle is 250 m. The turbine has two runners with two jets per runner. All the four 
jets have the same diameters. The pipe is 3 km long. The efficiency of transmission through the 
pipeline and the nozzle is 91 % and efficiency of each runner is 90 %. The velocity co-efficient of 
each nozzle is 0·975 and co-efficient of friction ‘4f’ for the pipe is 0·0045. Determine :
 (i) The power developed by the turbine,
 (ii) The diameter of the jet, and
 (iii) The diameter of the pipeline. [M.U]
 Solution. Rate of flow, Q = 4 m3/s
  Total or gross head, Hg = 250 m
  Total number of jets  = 2 × 2 = 4
  Length of pipe, L = 3 km = 3000 m
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 Efficiency of transmission, h = 91% 
 Efficiency of each runner, hh = 90%
  Co-efficient of velocity, Cv = 0.975
  Co-efficient of friction, 4f = 0.0045

 (i) The power developed by the runner :

  Efficiency of power transmission, h	= g f

g

H h
H
−

  (where, hf = loss of head due to friction)

  or, 0.91 = 
250 –

250
fh

	 	 ∴ hf = 250 – 250 × 0.91 = 22.5 m

	 	 ∴  Net head on the turbine, H = Hg – hf = 250 – 22.5 = 227.5 m

   Velocity of jet, V1 = 2 0.975 2 9.81 227.5 65.14 m/svC gH = × × =

  Now,   Water power  =  Kinetic energy of the jet

   2
1

1
2

mV  = 2 2
1

1 1 1000 4 65.14 8486439 Nm/s
2 2

QVρ = × × × =

    = 8486439 J/s or W  8486.44 kW

  But, hydraulic efficiency, hh = 
Power developed by the turbine

Water power

  or, 0.9 = 
Power developed by the turbine

8486.44
	 	 ∴ Power developed by the turbine
    = 0.9 × 8486.44 = 7637.8 kW (Ans.)
 (ii) The diameter of the jet, d :

   Discharge per jet, q = 3Total discharge 4 1.0 m /s
No. of jets 4

= =

  But, q = 4
π  × d2 × V1 

	 	 ∴ 1.0 = 4
π  × d2 × 65.14  or d = 

1/21.0 4 .
65.14
× 

 π × 
0 14 m (Ans.)

 (iii) The diameter of the pipeline, D :

   Head lost due to friction, hf = 
24

2
fLV

D g×

  where, V = velocity through pipe = 2 2
4

Area ( / 4)
Q Q Q

D D
= =

π × π
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	 	 ∴ hf = 

2

2
40.0045 3000

2

Q
D

D g

 × ×  π 
×

  or, 22.5 = 
2

2 4
0.0045 3000 16

2 9.81
Q

D D
× ×

× × × π ×

    = 
2

5 2 5
0.0045 3000 16 (4) 17.85

2 9.81D D
× × ×

=
× × × π

  or, D5 = 
1/512.85 17.85or 0.955 m

22.5 22.5
D  = = 

 
  Hence, the diameter of the pipeline, D = 0.955 m (Ans.)

 Example 2.6.   A single jet Pelton wheel runs at 300 r.p.m. under a head of 510 m. The jet  
diameter is 200 mm, its deflection inside the bucket is 165° and its relative velocity is reduced by 
15% due to friction. Determine :
 (i) Water power,
 (ii) Resultant force on the bucket, and
 (iii) Overall efficiency.
  Take: Mechanical losses = 3%,  co-efficient of velocity = 0.98, and speed ratio = 0.46.

[PTU]
 Solution.       Speed of the wheel, N  =  300 r.p.m.
   Diameter of jet, d = 200 mm = 0.2 m
   Net head, H = 510 m
   Angle of deflection of jet  = 165°
  Reduction of relative velocity due to friction = 15%
   Mechanical losses = 3%
   Co-efficient of velocity, Cv = 0.98
   Speed ratio, Ku = 0.46.
 (i) Water power :

   Velocity of jet, V1 = 2 0.98 2 9.81 510 98 m/svC gH = × × =

  ∴ Discharge through the Pelton wheel,
   Q = Area of jet (a) × velocity (V1)

    = 4
π  × (0.2)2 × 98 = 3.078 m3/s

   Water power = wQH = 9.81 × 3.078 × 510 kW = 15399.5 kW (Ans.)
 (ii) Resultant force on the bucket :

  Peripheral speed of the wheel, u  = 2 0.46 2 9.81 510 46 m/suK gH = × × =

  Refer to fig. 2.8. At inlet to turbine :
   Vw1 = V1= 98 m/s
   Vr1 = (V1 – u1) = 98 – 46 = 52 m/s
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  At exit from the turbine :
   The blade angle at exit, φ = 180° – 165° = 15°
   Vr2 = 0.85 Vr1 ...(Given)
  or, Vr2 = 0.85 × 52 = 44.2 m/s
  As Vr2 cos φ is less than blade speed u, the velocity triangle at outlet will be as shown in 

Fig. 2.8 (β > 90°)
   Vw2 = u2 – Vr2 cos φ = 46 ( u1 = u2 = u)
    = 46 – 44.2 cos 15° = 3.31 m/s
	 	 ∴ Resultant force on the bucket,
   F = ρQ (Vw1 – Vw2) ( β > 90°)
    = 1000 × 3.078 (98 – 3.31) = 291455.8 N (Ans.)
 (iii) Brake power, P :
  Power developed by the wheel = F × u = 291455.8 × 46 Nm/s  or  J/s or W
    = 291455.8 × 46 × 10–3 kW
    = 13406.97 kW
	 	 ∴ Brake power (power produced at the shaft),
   P = 13406.97 × (1 – 0.03) = 13004.76 kW (Ans.)
 (iv) Overall efficiency, ho :

   h0 = Brake power
Water power

 

    = 
13004.76 0.844
15399.5

= or   84.4% (Ans.)

 Example 2.7.   A Pelton wheel running at 480 r.p.m. and operating under an available head 
of 420 m is required to develop 4800  kW. There are two equal jets and the bucket deflection angle 
is 165°. The overall efficiency is 85 percent when the water is discharged from the wheel in a 
direction parallel to the axis of rotation. The co-efficient of velocity of nozzle = 0·97 and blade 
speed ratio = 0·46. The relative velocity of water at exit from the bucket is 0·86 times the relative 
velocity at inlet. Calculate the following :
 (i) Cross-sectional area of each jet,
 (ii) Bucket pitch circle diameter, and
 (iii) Hydraulic efficiency of the turbine.

 Solution.  Speed of the wheel, N  =  480 r.p.m.
    Available head, H = 420 m
    Shaft power, P = 4800 kW
    Angle of deflection of jet = 165°
    Overall efficiency, h0 = 85%
   Co-efficient of velocity of nozzle, Cv  = 0.97
    Blade speed ratio, Ku = 0.46
   Relative velocity of water at exit  = 0·86 times the relative velocity at inlet

 (i)   Cross-sectional area of each jet, a :
    Shaft power, P = wQH × h0
    4800 = 9.81 × Q × 420 × 0.85
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	 	 ∴ Total discharge through the wheel, Q = 34800 1.37 m /s
9.81 420 0.85

=
× ×

   Velocity of jet, V1 = 2 0.97 2 9.81 420 88.05 m/svC gH = × × =

  Now, total discharge Q = No. of jets × area of each nozzle (a) × velocity of jet (V1)
  or, 1.37 = 2 × a × 88.05

	 	 ∴ a = 
1.37 .

2 88.05
−= ×

×
3 27 779 10 m (Ans.)

 (ii) Bucket pitch circle diameter, D :

  Velocity of bucket,  u = 2 0.46 2 9.81 420 41.76 m/suK gH = × × =

  Also, u = 
480; 41.76 ;

60 60
DN Dπ π ×

=

	 	 ∴ D = 
41.76 60 .

480
×

=
π ×

1 66 m  (Ans.)

 (iii) Hydraulic efficiency of the turbine, hh :

   hh = 1
2

1

2 ( ) (1 cos )V u K u
V

− + φ
 ...[Eqn. (2.4)]

  The blade angle at exit; φ = 180° – 165° = 15°
  Substituting the relevant data in the above eqn. we get:

   hh = 2
2 (88.05 41.76) (1 0.86 cos 15 ) 41.76

(88.05)
× − + × ° ×

 ( K = 0.86)

    = 
2 46.29 (1 0.86 0.966) 41.76 0.913

7752.8
× + × ×

=  or 91.3% (Ans.)

 Example 2.8.   The following data relate to a Pelton wheel :
 Head at the base of the nozzle = 82 m; diameter of the jet = 100 mm; discharge of the nozzle = 
0.30 m3/s; shaft power = 206 kW; power absorbed in mechanical resistance = 4.5 kW. Determine :
 (i) Power lost in nozzle, and
 (ii) Power lost due to hydraulic resistance in water.

 Solution. Head at the base of the nozzle, H1 = 82 m
   Diameter of the jet, d = 100 mm = 0.1 m

  ∴  Area of the jet, a = 2 20.1 0.007854 m
4
π
× =

   Discharge of the nozzle, Q = 0.30 m3/s
   Shaft power, P = 206 kW
  Power absorbed in mechanical resistance = 4.5 kW.

 (i) Power lost in nozzle :
   Discharge, Q =  Area of jet × velocity of jet
   0.30 = 0.007854 × V1
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	 	 ∴ V1 = 
0.30 38.2 m/s

0.007854
=

  Power available at the base of the nozzle
   wQH1 = 9.81 × 0.30 × 82 = 241.3 kW [ w = 9.81 kN/m3]
   Power corresponding to K.E. of the jet,

   2
1

1
2

wQ V
g

 
 
 

 = 21 9.81 0.30 38.2 218.9 kW
2 9.81

× × × = 
 

	 	 ∴ Power lost in nozzle = Power available at the nozzle base – power corresponding 
to K.E. of the jet

    = 241.3 – 218.9 = 22.4 kW (Ans.)
 (ii) Power lost due to hydraulic resistance in water :
  Power at the base of the nozzle = Shaft power + power lost in runner + power lost in nozzle
   241.3 = 206 + power lost in runner + 22.4
	 	 ∴  Power lost in runner = 241.3 – 206 – 23.4 = 12.9 kW (Ans.)

 Example 2.9.   A single jet Pelton turbine is required to drive a generator to develop 10000  
kW. The available head at the nozzle is 760 m. Assuming electric generation efficiency 95 percent, 
Pelton wheel efficiency 87 percent, co-efficient of velocity for nozzle 0·97, mean bucket velocity 
0·46 of jet velocity, outlet angle of bucket 15° and the relative velocity of the water leaving the 
buckets 0·85 of that inlet, find :
 (i) The flow in m3/s,
 (ii) The diameter of jet,
 (iii) The force exerted by the  jet on the buckets, and
 (iv) The best synchronous speed for generation at 50 Hz and the corresponding mean diameter 

if the ratio of the mean bucket circle diameter to the jet diameter is not to be less than 10.
   [N.U.]

 Solution.  Output of generator = 10000 kW
    Generator efficiency = 95%
   Availavble head at the nozzle, H = 760 m
    Pelton wheel efficiency = 87%
    Co-efficient of velocity, Cv = 0.97
    Bucket velocity, u = 0.46 × jet velocity
    Relative velocity of water at outlet =  0.85 × relative velocity at inlet
    Outlet angle of bucket, φ = 15°
 (i)  The flow in m3/s :
    Output of turbine, Pt =  Input of generator

     = 
Output of the generator

Generator efficiency

     = 
10000 10526.3 kW
0.95

=

    Available power of the turbine = wQH = 
Pelton wheel efficiency

tP
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  or, 9.81 × Q × 760 = 
10526.3

0.87

	 	 ∴ Q = 
10526.3 .

9.81 760 0.87
=

× ×
31 62 m / s  (Ans.)

 (ii) The diameter of jet d :

   Q = 4
π  × d2 × V1

  where, V1 = Velocity of jet = 2vC gH×

    = 0.97 2 9.81 760 118.45 m/s× × × =

	 	 ∴ 1.62 = 4
π  ×d2 × 118.45

  or, d = 
1/21.62 4 0.132 m

118.45
×  = π × 

 or 132 mm (Ans.)

 (iii) The force exerted by the jet on the buckets :
  Bucket velocity, u = 0.46V1 = 0.46 × 118.45 = 54.5 m/s
  At inlet : Vwl = V1 = 118.45 m/s
   u1 = u2 = 54.5 m/s
   Vr1 = V1 – u1 = 118.45 – 54.5  64 m/s

Bucket

Outlet
velocity
triangle

�

Vr2

V2

�

Vf 2

u2

Vr1
u1

Vw1

V1

Vw2

Fig. 2.9

  At outlet :
   Vr2 = 0.85 Vr1 = 0.85 × 64 = 54.4 m/s
   Vw2 = u2 – Vr2 cos φ = 54.5 – 54.4 × cos 15° = 1.95 m/s
	 	 ∴ Force exerted by jet on water,
   F = ρQ (Vw1 – Vw2) ( β > 90°)
    = 1000 × 1.62 (118.5 – 1.95)
    = 188811 N  188.8 kN (Ans.)
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 (iv) Best synchronous speed (Nsyn); mean bucket diameter (D) :

  Now,  
D
d

 = 10, where D is the mean bucket diameter

 	 ∴	 D = 10 × d = 10 × 132 = 1320 mm or 1.32 m

   u = 
60 60 54.5or 788 r.p.m.

60 1.32
DN uN

D
π ×

= =
π π ×



  Frequency of generator, f = .

120
synN P

, where P = no. of poles.

  If  P = 8, Nsyn. = 120 120 50 750 r.p.m.
8

f
P

×
= =  which is nearest to 788 r.p.m.

	 	 ∴ D(revised) = 
1320 788 1387 mm

750
×

= or  1.387 m (Ans.)

 Example 2.10.   The following data relate to a double overhung Pelton unit :
 Output of generator ...25000 kW
 Generator efficiency ...93 %
 Effective head at the base of nozzle ...300 m
 Pelton wheel efficiency ...85 %
 Co-efficient of velocity ...0·97
 Speed ratio ...0·46
 Jet ratio ...12
 Determine the following :
 (i) Size of jet, 
 (ii) Mean diameter of runner, and 
 (iii) Synchronous speed.

 Solution.  Generator output =  25000 kW
  Generator efficiency, hg  =  93 %
  Effective head, H  =  300 m
  Efficiency of Pelton wheel =  85 %
  Co-efficient of velocity, Cv  =  0.97
  Speed ratio, Ku  =  0.46

  Jet ratio, m = 12D
d
=

 (i) Size of jet, d :
 There are two runners keyed on the two ends of the shaft, and the generator lies between them. 
Each runner is to be considered as one complete turbine. Thus, two Pelton turbines are feeding the 
generator.

	 ∴   Output of each turbine, Pt  = 
25000 25000 13440.8 kW
2 2 0.93g

= =
× h ×
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   Power developed by each turbine = 
13440.8 15812.7 kW

Pelton wheel efficiency 0.85
tP

= =

But, 15812.7 = wQH

	 	 	 ∴ Q = 315812.7 15812.7 5.37 m /s
9.81 300wH

= =
×

    Velocity of jet, V1 = 2 0.97 2 9.81 300 74.4 m/svC gH = × × =

   Also,  Q = Area of jet × velocity of jet = a × V1 = 4
π  × d2 × V1

   or,  5.37 = 4
π  × d2 × 74.4

	 	 	 ∴ d = 
1/25.37 4 0.3 m

74.4
×  = π × 

or  300 mm (Ans.)

 (ii) Mean diameter of runner, D :

    m = 12D
d
=

   or, D = 12d = 12 × 0.3 = 3.6 m (Ans.)
 (iii) Synchronous speed (Nsyn.) :

    Peripheral speed, V = 2 0.46 2 9.81 300 35.3 m/suK gH× = × × =

   But,  u = 
60 60 35.3 187.3 r.p.m.

60 3.6
DN uN

D
π ×

∴ = = =
π π ×

    Frequency of generator, f = .

120
synN P×

   ∴ Nsyn. = 120 120 50 6000f
P P P

×
= =  

   [where, f = frequency = 50 Hz (given), and P = no. of poles]
   Assuming P = 32, we have:

    Dsyn. = 6000 . . .
32

= 187 5 r p m.  (Ans.)

    D(revised) = 
3.6 187.3 .

187.5
× 3 6 m  (Ans.)

 Example 2.11.   The following data relate to a Pelton wheel :
 Head ... 72 m
 Speed of the wheel ... 240 r.p.m.
 Shaft power of the wheel ...115 kW
 Speed ratio ... 0·45
 Co-efficient of velocity ... 0·98
 Overall efficiency ... 85%
 Design the Pelton wheel.
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 Solution.  Effective head, H = 72 m
  Speed of the wheel, N  =  240 r.p.m.
  Shaft power, P  =  115 kW
  Speed ratio, Ku  =  0·45
  Co-efficient of velocity, Cv  =  0·98
  Overall efficiency, h0  =  85%
 Design the Pelton wheel; it means to find diameter of the wheel D, diameter of jet (d), width and 
depth of buckets and number of buckets on the wheel.

 (i) Diameter of wheel, D:

   Velocity of jet, V1 = 2 0.98 2 9.81 72 36.8 m/svC gH = × × =

 	 ∴ Bucket velocity, u (= u1 = u2) = Ku × V1 = 0.45 × 36.8 = 16.56 m/s

  But, u = 
60 60 16.56, or, .

60 240
DN uD

N
π ×

= = =
π π ×

1 32 m  (Ans.)

 (ii) Diameter of jet, d:

   Overall efficiency, h0 = 
Shaft power
Water power

P
wQH

=

  or, 0.85 = 
115

9.81 72Q× ×

  or,   Q = 3115 0.1915 m /s
0.85 9.81 72

=
× ×

  But,                 Q  =  Area of jet × velocity of jet

   0.1915 = 2 2
1× 36.8

4
d V dπ π

× = ×
4

  ∴ d = 
1/20.1915 4

0.0814 m or
36.8
× 

= π × 
81.4 mm  (Ans.)

 (iii) Size of buckets:
   Width of the bucket, B = 3 to 4 times jet diameter (d)
     3.5 d = 3.5 × 81.4 = 285 mm (Ans.)
   Radial length of bucket, L = 2 to 3 times jet diameter (d)
     2.5 d = 2.5 × 81.4 = 203.5 mm (Ans.)
   Depth of bucket, T = 0.8 to 1.2 times jet diameter (d)
     1.0 d = 81.4 mm (Ans.)

 (iv) Number of buckets on the wheel, Z :

    Z = 
1.32 100015 15

2 2 81.4
D
d

×
+ = + =

×
23   (Ans.)

 Example 2.12.   A Pelton wheel of 1.1 m mean bucket diameter works under a head of 500 m. 
The deflection of jet is 165° and its relative velocity is reduced over the bucket by 15 per cent due 
to friction. If the diameter of jet is 100 mm and the water is to leave the bucket without any whirl, 
determine :
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 (i) Rotational speed of wheel,
 (ii) Ratio of bucket speed to jet velocity,
 (iii) Impulsive force and power developed by the wheel,
 (iv) Available power (water power),
 (v) Power input to buckets, and
 (vi) Efficiency of the wheel with power input to bucket as reference input.
  Take Cv = 0.97. [UPSC]

  Solution.  Mean bucket diameter, D =  1.1 m
    Net head, H = 500 m
    Deflection of jet = 165°
   Reduction of relative velocity due to friction = 15%
    Diameter of jet, d = 100 mm = 0.1 m
    Co-efficient of velocity, Cv = 0.97
 (i) Rotational speed of wheel, N :
   Velocity of jet, V1 = 2 0.97 2 9.81 500 96.07 m/svC gH = × × =

  Let,   bucket speed u1 = u2 = u
   Relative velocity at inlet, Vr1 = V1 – u1 = (96.07 – u) 
   Relative velocity at outlet, Vr2 = 0.85 Vr1

    = 0.85 (96.07 – u) ...(i)
    The blade angle at exit, φ = 180° – 165° = 15°
  As the jet leaves the bucket without any whirl, the velocity triangle at outlet will be as shown 

in Fig. 2.10 (β = 90°)

Outlet velocity
triangle

� = 15º

u2

u1 Vr1

V V1 1= w

Deflection of jet

165º15º

� = 90º
V V V2 2 2= , = 0f w

Vr2

Bucket

Fig. 2.10

  Vr2 cos φ	= u,      or,     Vr2 cos 15° = u  ...(ii)
  From (i) and (ii), we get:
    0.85 (96.07 – u) cos 15° = u
  or, 0.85 (96.07 – u) × 0.966 = u
  or, 78.88 – 0.821 u = u
  or, u = 43.31 m/s

  Also, u = 1.1, or, 43.31
60 60
DN Nπ π × ×

=

	 	∴  Rotational speed of wheel, N = 
43.31 60 . . .

1.1
×

π ×
752 r p m (Ans.)
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 (ii)  Ratio of bucket speed to jet velocity :

    
1

u
V

 = 
43.31 .
96.07

= 0 4508  (Ans.)

 (iii) Impulsive force and power developed by the wheel :
  Discharge through the wheel,

   Q = 2 2 3
1 (0.1) 96.07 0.7545 m /s

4 4
d Vπ π

× × = × × =

  Impulsive force on the buckets,
   F = ρQ (Vw1 ± Vw2) = ρQ (Vw1) ( Vw2 = 0)
    = 1000 × 0.7545 × 96.07 ( Vw1 = V1)
    = 72484.8 N (Ans.)
   Power developed by the wheel,
    = F × u = 72484.8 × 43.31 = 3139316.7 Nm/s or J/s or W
    = 3139.3 kW (Ans.)
 (iv) Available power (water power) :
   Available power (water power)  = wQH
    = 9.81 × 0.7545 × 500 = 3700.8 kW (Ans.)
 (v) Power input to buckets :

   Power input to buckets  = 2 2
1 1

1 1 ( )
2 2

mV Q V= ρ ×

    = 21 1000 0.7545 (96.07) 3481808 Nm/s or J/s or W
2
× × × =

    = 3481.8 kW (Ans.)
 (vi) Efficiency of wheel hwheel :

   hwheel = 
Power developed by wheel 3139.3 0.9016

Power input to buckets 3481.8
= =  or 90.16 % (Ans.)

 Example 2.13.   The following are the design particulars of a large Pelton turbine :
 Head at distributor = 630 m; discharge = 12.5 m3/s; power  = 65 MW; speed of rotation = 500 
r.p.m; runner diameter = 1.96 m; number of jets = 4; jet diameter = 192 mm; angle through which 
the jet is defleted by the buket = 165°; and mechanical efficiency of the turbine = 96%.
 Determine the hydraulic power losses in the distributor nozzle assembly and the buckets.
 [UPSC]

 Solution.  Head at distributor, H  =  630 m
  Discharge, Q  =  12.5 m3/s
  Shaft power, P  =  65 MW = 65000 kW
  Speed of rotation, N  =  500 r.p.m.
  Runner diameter, D  =  1.96 m
  Number of jets  =  4
  Jet diameter, d  =  192 mm = 0.192 m
  Angle of deflection  =  165°
  Mechanical efficiency of the turbine, hm = 96%
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 Hydraulic power losses in nozzle assembly and buckets :

  Mechanical efficiency, hm = 
Shaft power

Power developed by the runner

 or, 0.96 = 
65000

Power developed by the runner

 or,  Power developed by the runner = 
65000 67708 kW
0.96

=

	 ∴  Power developed per jet  = 
67708 16927 kW

4
=

  Discharge per jet, q = 312.5 3.125 m /s
4 4
Q

= =

 But  q (= 3.125) = Area of jet (a) × velocity of jet (V1)

 or, 3.125 = 2 2
1 10.192

4 4
d V Vπ π

× × = × ×

	 ∴  = 2
3.125 4 107.93 m/s

0.192
×

=
π ×

 Also,  peripheral speed of runner, u = 
1.96 500 51.31 m/s

60 60
DNπ π × ×

= =

  Blade angle at outlet, φ = 180° – 165° = 15°

  Work developed per jet  = 1( ) (1 cos )wQ V u K u
g

− + φ

    (where, K = blade friction co-efficient)

	 ∴		 1( ) (1 cos )− + φ
wq V u K u
g

 = 16927

 or,           9 81 3 125

9 81
107 93 51 31 1 15 51 31 16927

. .

.
( . . ) ( cos ) .

×
− + ° × =K  

 or, 9078.7 (1 + K cos 15°)  =  16927

 or, K cos 15° = 
16927 1 0.8644
9078.7

− =

	 ∴ K = 
0.8644 0.895
cos 15

=
°

 Also, Vr2 = KVr1
 But, Vr1 = (V1 – u1) = (V1 – u)
	 ∴ Vr2 = K (V1 – u)

  Theoretical velocity of jet  (V1)th = 2gH

  Actual velocity of jet V1 = 1( ) 2v th vC V C gH× =

	 ∴  Head lost in nozzle V1 = 
2 2 2

1 1( ) 2 (2 )
2 2

th vV V gH C gH
g g
− −

=
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   = (1 – Cv
2)H

 But, Cv = 1 107.93 0.97
2 2 9.81 630
V
gH

= =
× ×

	 ∴  Head lost in nozzle  = (1 – 0.972) × 630 = 37.23 m

  Head lost in buckets = 
2 2 2 2 2 2

21 2 1 1 1 (1 )
2 2 2

r r r r rV V V K V V K
g g g
− −

= = −

  = 
2

21( )
(1 )

2
V u K

g
−

−  = 
2

2(107.93 51.31) (1 0.895 ) 32.5 m
2 9.81

−
× − =

×

	 ∴ The head lost in nozzle and buckets,
  HL = 37.23 + 32.5 = 69.73 m
  Power loss  =  wQHL = 9.81 × 12.5 × 69.73 = 8550.6 kW (Ans.)

 Example 2.14.  Show that in Pelton wheel, where the buckets deflect the water through  
(180°  – φ), the hydraulic efficiency of the wheel is given by:

  hh = 2
2 ( ) (1 cos )u V u

V
− + φ

 where, V is the velocity of the jet and u is the velocity of the wheel at the pitch radius.
 [UPSC]

 Solution. Refer to Article 2.3.2.

 Example 2.15.   Prove that the maximum efficiency of Pelton wheel occurs when the ratio of 
bucket velocity u to the velocity V is given by the expression.

  u
V  = 1

1 2

1 cos
2 (1 cos )

K
K K

− θ +
− θ + +

 where K1 and K2 are the constants.

 Loss due to bucket friction and shock = 
2

1 ( )
2

K V u
g
−

 Loss due to bearing friction and windage losses = 
2

2 2
uK

g

	 θ = bucket angle at outlet  = (180° – φ ) i.e., angle of deflection of jet.
 Volumetric losses to be considered negligible.

 Solution. The net amount of work done per unit weight of water (taking into account the losses 
given)

   = 
2 2

1 2
1 ( )[( ) (1 cos )]

2 2
V u uV u u K K

g g g
−

− − θ − −

	 ∴		 Efficiency, h	 =	

2 2

1 2

2

1 ( )[( ) (1 cos )]
2 2

( / 2 )

V u uV u u K K
g g g

V g

−
− − θ − −
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   = 
2 2

1 2
2

2 [( ) (1 cos )] – ( )V u u K V u K u
V

− × − θ − −

 The efficiency to be maximum, 
d
du
h

= 0.

	 ∴	
d
du
h
	 = 	 1 2

2
2 ( 2 ) (1 cos ) 2 ( ) 2

0
V u K V u K u

V
− − θ + − −

= 	

 or,   (V – 2u) (1 – cos θ) + K1 (V – u) – K2u = 0
 or,  V (1 – cos θ) – 2u (1 – cos θ) + K1V – K1u – K2u  =  0
 or,   V (1 – cos θ + K1)  =  u [2 (1 – cos θ) + K1 + K2]

	 ∴	
u
V
	 = 	 1

1 2

1 cos
2 (1 cos )

K
K K

− θ +
− θ + +

 ...(Proved)

2.4.  REACTION TURBINES

 In reaction turbines, the runner utilizes both potential and kinetic energies. As the water flows 
through the stationary parts of the turbine, whole of its pressure energy is not transformed to kinetic 
energy and when the water flows through the moving parts, there is a change both in pressure and 
in the direction and velocity of flow of water. As the water gives up its energy to the runner, both 
its pressure and absolute velocity get reduced. The water which acts on the runner blades is under a 
pressure above atmospheric and the runner passages are always completely filled with water.

Guide wheel

From penstock

Guide
blades/vanes

0.5 to 1 D

Draft tube
Tail race

Runner

Shaft
Guide blades

Spiral casing

D2.5 to
3 D

Runner blade

Fig. 2.11. Schematic diagram of a Francis turbine.

 Important reaction turbines are Francis, Kaplan and Propeller.

2.4.1. Francis Turbine
 Fig. 2.11 shows a schematic diagram of a Francis turbine. The main parts of a Francis 
turbine are:
 1. Penstock ... It is a large size conduit which conveys water from the upstream of the 

dam/reservoir to the turbine runner.



82         Hydraulic Machines

 2. Spiral/scroll casing ... It constitutes a closed passage whose cross-sectional area 
gradually decreases along the flow direction, area is maximum 
at inlet and nearly zero at exit.

 3. Guide vanes/wicket gates ... These vanes direct the water onto the runner at an angle ap-
propriate to the design. The motion to them is given by means 
of a hand wheel or automatically by a governor.

 4. Governing mechanism ... It changes the position of the guide blades/vanes to affect a 
variation in water flow rate, when the load conditions on the 
turbine change.

 5. Runner and runner blades ... — The driving force on the runner is both due to impulse 
and reaction effects;

   — The number of runner blades usually varies  between 
16 to 24.

 6. Draft tube ... It is a gradually expanding tube which discharges water, passing through 
the runner, to the tail race.

 The modern Francis turbine is an inward mixed flow reaction turbine (in the earlier stages of 
development, Francis turbine had a purely radial flow runner), i.e. water under pressure, enters the 
runner from the guide vanes towards the centre in radial direction and discharges out of the runner 
axially. The Francis turbine operates under medium heads and also requires medium quantity of 
water. It is employed in the medium head power plants. This type of turbine covers a wide range 
of heads. Water is brought down to the turbine through a penstock and directed to a number of 
stationary orifices fixed all around the circumference of the runner. These stationary orifices are 
commonly called as guide vanes or wicket gates.
 The head acting on the turbine is partly transformed into kinetic energy and the rest remains 
as pressure head. There is a difference of pressure between the guide vanes and the runner which is 
called the reaction pressure and is responsible for the motion of the runner. That is why a Francis 
turbine is also known as reaction turbine.
 In Francis turbine the pressure at inlet is more than that at the outlet. This means that the water 
in the turbine must flow in a closed conduit. Unlike the Pelton type, where the water strikes only 
a few of the runner buckets  at a time, in the Francis turbine the runner is always full of water. The 
moment of runner is affected by the change of both the potential and kinetic energies of water. After 
doing the work the water is discharged to the tail race through a closed tube of gradually enlarging 
section. This is known as draft tube. It does not allow water to fall freely to tail race level as in the 
Pelton turbine. The free end of the draft tube is submerged deep in tail water making, thus, the entire 
water passage, right from the head race up to the tail race, totally enclosed.
 Fig. 2.12 shows general layout of a hydroelectric power plant using a reaction turbine.
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Fig. 2.12. General layout of a hydroelectric power plant using a reaction turbine.

 Important Francis Turbine Installations in India :

S.No. Scheme/Project Location (State) Source of water
1. Bhakhra dam project Bhakra (Punjab) Sutlej river
2. Cauvery hydroelectric scheme Siva Samudram  (Karnataka) Cauvery river
3. Chambal hydroelectric scheme Gandhi sagar (Rajasthan) Chambal river
4. Hirakud dam project Hirakud (Orissa) Hirakud river
5. Rihand dam project Rihand (Uttar Pradesh) Rihand river

 Important differences between Inward and Outward Flow Reaction Turbines :
 The following are the important differences between inward and outward flow reaction turbines :

S.No. Aspects Inward flow reaction turbine Outward flow reaction turbine
1 Entry of water Water enters at the outer 

periphery, flows inward and 
towards the centre of the 
turbine and discharges at the 
outer periphery.

Water enters at the inner periphery 
flows outward and discharges at the 
outer periphery.

2 Centrifugal head 
imparted

Negative (negative centrifugal 
head reduces the relative 
velocity of water at the outlet).

Positive (Positive centrifugal head 
increases the relative velocity of 
water at the outlet).

3 Discharge Does not increase. The discharge increases. 
4 Speed control Easy and effective. Very difficult.
5 Tendency of the 

wheel to race
Nil. The turbine adjusts the 
speed by itself.

If the turbine speed increases the 
wheel tends to race; the turbine 
cannot adjust the speed by itself.

6 Suitability Quite suitable for medium high 
heads; best suitable for large 
outputs and units.

Quite suitable for low or medium 
heads.

7 Application For power projects. Practically obsolete.
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2.4.1.1. Work done and efficiency of Francis turbine
 Net head at the turbine runner : In the Fig. 2.12,
	 	 Hg = Gross head = Difference of water levels between head race and tail race;
  hf = Loss of head in the penstock;
  H = Net head = (Hg – hf). The net head is also called available or working or 

operation head.

 Also, H = 
Total energy available at exit total energy available at exit

from the penstock from the draft tube
   −      

   = 
2 2

penstock draft tube2 2
p V p Vz z
w g w g

   
+ + − + +   

   

 If the draft tube exit is at tail race level, and the datum is also taken at that level, then,

  H = 
22

penstock2 2
dVp V z

w g g
 

+ + − 
 

 (where, Vd = velocity at the exit of the draft tube)
 Neglecting the velocity at the draft tube exit (Vd), we have:

  H = 
2

2
p V z
w g

 
+ + 

 
 ...(2.16)

 Work done by the runner :
 Fig. 2.13 shows the runner and the velocity diagrams (inlet and outlet) for an inward flow 
reaction turbine. The general expression for the work done with usual notations according to the 
Euler momentum equation, is given by,

O (Center of wheel)
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�
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Fig. 2.13. Velocity diagrams for an inward flow reaction turbine.
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  Work done  =  ρQ (Vw1 u1 ± Vw2 u2)

   = 1 1 2 2( )w w
wQ V u V u
g

±  ...(2.17)

 where, Q = Discharge through the runner, m3/s.
 The maximum output under given conditions is obtained when Vw2 = 0.
 Thus, the maximum work done is given by,

  Work done = 1 1( )w
wQ V u
g

 ...(2.18)

 This discharge in this case is radial. For radial discharge, the absolute velocity at exit is radial.

 Hydraulic efficiency, hh :
 If H is the net head, then input to the turbine = wQH.

  hh = 
1 1( )

Power developed by the runner
Power supplied to the turbine (water power)

w
wQ V u
g

wQH
=

 or, hh = 1 1wV u
gH

 ...(2.19)

 
1 1 2 2

However, if the velocity of whirl at the exit is zero, then

...[2.19( )]

 
 ±

h = 
 

w w
h

not
V u V u

a
gH

 The hydraulic efficiency of the Francis turbine varies from 85 to 90 percent.

 Mechanical efficiency, hm :
 The mechanical efficiency is given by:

  hm = 
Shaft power (P)

Power developed by the runner
 ...(2.20)

 Overall efficiency, h0 :
 The overall efficiency is given as:

  h0 = 
Shaft water

Water power
P

wQH
=  ...(2.21)

 and, h0 = hh × hm [2.21(a)]

 The overall efficiency varies from 80 to 90 percent.

2.4.1.2. Working proportions of a Francis turbine
 The following working proportions pertain to a Francis turbine :

 1. Ratio of width to diameter  
 
 

B
D

:

 The ratio of width (B1) to the diameter of the wheel (D1) at inlet is represented by n. Thus,

  n = 1

1

B
D

 The value of n varies from 0.10 to 0.45.
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 2. Flow ratio (Kf) : 
 Flow ratio is the ratio of the velocity of flow at inlet to the theoretical jet velocity. Thus,

  Flow ratio, Kf = 1

2
fV

gH
 ...(2.23)

 The value of Kf varies from 0.15 to 0.30.
 3. Speed ratio (Ku)
 Speed ratio is the ratio of the peripheral speed at inlet to the theoretical jet velocity. Thus,

  Speed ratio, Ku = 
2
u
gH

 The value of Ku ranges from 0.6 to 0.9.

2.4.1.3. Design of Francis turbine runner
 The runner of a Francis turbine is required to be designed to develop a known power P, when 
running at a known speed N r.p.m. under a known head H. The design of the runner involves the 
determination of its size and the vane angles.
 The design of a Francis turbine runner is carried out as follows :
 1. Assume suitable values of h0,	hh, n, Kf  and Kt.
 2. Determine the required discharged Q from the relation:
  P = h0 × wQH ...(2.24)
 3. Obtain the velocity of flow from the discharge and flow area.
 Let B1, D1 and t1 respectively be the width, diameter and thickness of runner vane at inlet  
(Fig. 2.14).

D1

Shaft axis

Vf1

Vane

Vf2
B2

D2

B1

Fig. 2.14. Entry of flow to runner vane.

 Then, total area at the outer periphery (i.e., at the runner inlet),
  A = (πD1 – Zt1) B1 = Kt1πD1B1 ...(2.25)
 where Kt1 is known as vane thickness factor/co-efficient; its value is always less than unity 
(usually of the order of 0.95 or so).
  Discharge  =  Area of flow × velocity of flow
 i.e., Q = Kt1πD1B1 × Vf1 ...(2.26)

	 ∴  Flow velocity,  Vf1 = 2
1 1 1 1t t

Q Q
K D B K nD

=
π π

     ( B1 = nD1)          ...[2.26(a)]

 Also, Vf1 = 2
1

2 , 2f f
t

QK gH K gH
K nD

∴ =
π
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 or, D1 = 
1/2

( 2 )f t

Q
K gH K n

 
 π 

 ...(2.27)

 Then,  width B1 = nD1 [Eqn. (2.22)]
 4. Find the rim velocity (tangential velocity) u1 from the relation:

  u1 = 1

60
D Nπ

 5. Find the velocity of whirl at inlet (Vw1) from Eq [2.19)

  hh = 1 1
1

1
, or,w h

w
V u gH

V
gH u

h
=  ...(2.28)

 6. Obtain the guide vane angle (α) and the runner vane angle (θ) from the following relations 
obtained from inlet velocity triangle (Fig. 2.13):

  tan α = 1

1

f

w

V
V

 ...(2.29)

  and, tan θ = 1

1 1

f

w

V
V u−

 ...(2.30)

 7. Assume runner diameter D2 at the outlet to be approximately one-half the diameter at inlet.

  Thus, D2 = 1 1
2and

2 2
D uu = .

 8. The velocity of flow at the exit (Vf2) is obtained as follows :
  Q = Kt1πD1B1Vf1 = Kt2πD2B2Vf2 ...Continuity equation

  Thus, 1

2

f

f

V
V

 = 2 2 2

1 1 1

t

t

K D B
K D B

π
π

  Usually, it is presumed that Vf1 = Vf2 and Kt1 = kt2, that gives B2 = 2B1

 9. Find the runner vane angle at exit (φ) from the velocity outlet triangle, assuming the discharge 
at the runner exit to be radial (β = 90°). Thus,

  tan θ = 2

2

fV
u

 ...(2.31)

 10. The number of vanes varies from 16 to 24. In order to avoid periodic impulse, the number 
of vanes should be either one more or one less than the number of guide vanes.

2.4.1.4. Advantages and disadvantages of a Francis turbine over a   
    Pelton wheel

  Advantages :
 The Francis turbine claims the following advantages over Pelton wheel :
 1. In Francis turbine the variation in the operating head can be more easily controlled.
 2. In Francis turbine the ratio of maximum and minimum operating heads can be even two.
 3. The operating head can be utilized even when the variation in the tail water level is relatively 

large when compared to the total head.
 4. The mechanical efficiency of Pelton wheel decreases faster with wear than Francis turbine.
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 5. The size of the runner, generator and power house required is small and economical if the 
Francis turbine is used instead of Pelton wheel for same power generation.

Disadvantages/Drawbacks :
 As compared with Pelton wheel, the Francis turbine has the following drawbacks/ shortcomings:
 1. Water which is not clean can cause very rapid wear in high head Francis turbine.
 2. The overhaul and inspection is much more difficult comparatively,
 3. Cavitation is an ever-present danger.
 4. The water hammer effect is more troublesome with Francis turbine.
 5. If Francis turbine is run below 50 percent head for a long period it will not only lose its 

efficiency but also the cavitation danger will become more serious.

 Example 2.16.  An inward flow reaction turbine has external and internal diameters as  
1·08 m and 0.54 m. The turbine is running at 200 r.p.m. The width of the turbine at inlet is 240 mm 
and velocity of flow through the runner is constant and is equal to 2.16 m/s. The guide blades make 
an angle of 10° to the tangent of the wheel and discharge at the outlet of the turbine is radial. Draw 
the inlet and outlet velocity triangles and determine : 
 (i) The absolute velocity of water at inlet of the runner,
 (ii) The velocity of whirl at inlet,
 (iii) The relative velocity at inlet,
 (iv) The runner blade angles,
 (v) Width of runner at outlet,
 (vi) Weight of water flowing through the runner per second,
 (vii) Head at inlet of the turbine,
 (viii) Power developed, and 
 (ix) Hydraulic efficiency of the turbine.

 Solution.  External diameter, D1 = 1.08 m
  Internal diameter, D2 = 0.54 m
  Speed, N = 200 r.p.m.
  Width at inlet, B1 = 240 mm = 0.24 m
  Velocity of flow, Vf1 = Vf2 = 2.16 m/s
  Guide blade angle, α = 10°
 Discharge at outlet .... radial
	 ∴	 β = 90° and Vw2 = 0

 Tangential velocity of wheel at inlet, u1 = 1 1.08 200 11.31 m/s
60 60
D Nπ π × ×

= =

 Tangential velocity of wheel at outlet, u2 = 2 0.54 200 5.65 m/s
60 60
D Nπ π × ×

= =

 (i) Absolute velocity of water at inlet of the runner, V1 :
  From inlet velocity triangle, we have:
  V1 sin α = Vf1

	 ∴	 V1 = 1 2.16 . /
sin sin 10

= =
α °

fV
12 44 m s  (Ans.)
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 (ii) Velocity of whirl at inlet, Vw1 :

   Vw1 = V1cos α = 12.44 × cos 10° = 12.25 m/s (Ans.)

�

�

V1

u1

�

u2

Vf1

Vw1

Intel velocity
triangle

Runner

� V2

Outlet velocity
triangle

= 10º
= =

= 90º

�

�

V V Vf f1 2 2

Vr1

Vr2 V Vf2 2=

Fig. 2.15

 (iii) Relative velocity at inlet, Vr1 :

  Vr1 = 2 2
1 1 1( )w fV u V− +

   = 2 2(12·25 11.31) (2.16)− +  = 2.35 m/s (Ans.)

 (iv) Runner blade angles, θ, φ :

  Again, from inlet velocity triangle, we have:

  tan θ = 1

1 1

2.16 2.298
12.25 11.31

f

w

V
V u

= =
− −

  ∴ θ = tan–1 2.298 = 66.48° (Ans.)

  From the outlet velocity triangle, we have:

  tan θ = 2

2

2.16 0.382
5.65

fV
u

= =

	 	 ∴	 φ = tan–1 0.382 = 20.9° (Ans.)

 (v) Width of runner at outlet, B2 :
	 	 πD1B1Vf1 = πD2B2Vf2 (= Q) ...Continuity equation

 or, D1B1 = D2B2 ( Vf1 = Vf2)

 ∴	 B2 = 1 1

2

1.08 0.24 0.48 m
0.54

D B
D

×
= =  or 480 mm (Ans.)
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 (vi) Weight of water flowing through the runner per second :
  Weight of water flowing per second
   = wQ = w × πD1B1Vf1

   = 9.81 × π	× 1.08 × 0.24 × 2.16 = 17.25 kN/s (Ans.)
 (vii) Head at inlet of turbine, H :

   = 
2

2
1 1 2 2

1 ( )
2w w
VV u V u

g g
± +

   = 
2

2
1 1

1 ( )
2w
VV u

g g
+  ( Vw2 = 0)

   = 
21 2.16(12.25 11.31)

9.81 2 9.81
× +

×
 ( V2 = Vf2)

   = 14.36 m (Ans.)
 (viii) Power developed :

  Power developed = 1 1 1 1w w
wQQ V u V u
g

ρ × = ×

   = 
17.25 12.25 11.31 .
9.81

× × = 243 6 kW  (Ans.)

 (ix) Hydraulic efficiency, hh :

  hh = 1 1wV u
gH

 ...[Eqn (2.19)]

   = 
12.25 11.31 0.9835
9.81 14.36

×
=

×
    or    98.35% (Ans.)

 Example 2.17.   A reaction turbine works at 450 r.p.m. under a head of 120 m. Its diameter at 
inlet is 1.2 m and the flow area is 0.4 m2 . The angles made by absolute and relative velocities at 
inlet are 20° and 60° respectively with the tangential velocity. Determine :
 (i) The volume flow rate,
 (ii) The power developed, and
 (iii) The hydraulic efficiency. [PTU]

 Solution.  Speed of turbine, N = 450 r.p.m
  Head, H = 120 m
  Diameter at inlet, D1  = 1.2 m
  Flow area, πD1B1  =  0.4 m2

  Angle made by absolute velocity, α  =  20°
  Angle made by the relative velocity at inlet, θ	 = 60°
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Fig. 2.16

 (i) The volume flow rate, Q :
  Tangential velocity of the turbine, 

   u1 = 1 1.2 450 28.27 m/s
60 60
D Nπ π × ×

= =

  From inlet velocity triangle, we have:

   tan α = 1 1

1 1
, or, tan 20f f

w w

V V
V V

° =

 	 ∴	 Vf1 = Vw1 tan 20° = 0.364 Vw1 ...(i)

  Also, tan θ  = 1 1

1 1 1

0.364
28.27

f w

w w

V V
V u V

=
− −

 ( Vf1 = 0.364 Vw1)

  or,  tan 60° = 1

1

0.364
28.27

w

w

V
V −

, or,  1

1

0.364
1.732

28.27
w

w

V
V

=
−

  or, 1.732 (Vw1 – 28.27) = 0.364 Vw1, or ,   1.732 Vw1 – 48.96 = 0.364 Vw1

  ∴	 Vw1	= 
48.96 35.79 m/s

(1.732 0.364)
=

−

  From eqn. (i), we have:
   Vf1 = 0.364 × 35.79 = 13.027 m/s
 	 ∴	Volume flow rate, Q = πD1B1 × Vf1

  But, πD1B1 = 0.4 m2 ...(Given)
 	 ∴ Q  = 0.4 × 13.027 = 5.211 m3/s (Ans.)

 (ii) Power developed :
   Work done per second = ρQ (Vw1u1) [ Vw2 = 0 ...Given]
    = 1000 × 5.211 × 35.79 × 28.27 = 5272402 Nm/s  or  J/s
  ∴ Power developed = 5272402 J/s,     or,     W = 5272.4 kW (Ans.)
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 (iii) The hydraulic efficiency, hh :

   hh = 1 1wV u
gH

 ...[Eqn (2.19)]

    = 
35.79 28.27 0.8595

9.81 120
×

=
×

 = 85.95% (Ans.)

 Example 2.18.   An inward flow reaction turbine has an external diameter of 1 m and its breadth 
at inlet is 250 mm. If the velocity of flow at inlet is 2 m/s, find weight of water passing through the 
turbine per second. Assume 10 per cent of the area of flow is blocked by blade thickness. If the  
speed of the runner is 210 r.p.m. and guide blades make an angle of 10° to the wheel tangent, draw 
the inlet velocity triangle and find :
 (i) The runner vane angle at inlet,
 (ii) The velocity of wheel at inlet,
 (iii) The absolute velocity of water leaving the guide vanes, and
 (iv) The relative velocity of water entering the runner blade. [Rookee University]

 Solution.  External diameter, D1 = 1 m
  Breadth of inlet, B1 = 250 m = 0·25 m
  Velocity of flow at inlet, Vf1 = 2.0 m/s
  Area of flow blocked by blade thickness = 10 %
  Speed of the runner, N = 210 r.p.m.
  Guide blade angle, α = 10°
 Weight of water passing through the turbine :

  Area blocked by vane thickness = 1 1 1 1
10 0.1
100

D B D B× π = π

	 ∴	Actual area through which flow takes place,
  A = πD1B1 – 0.1 πD1B1 = 0.9 πD1B1 
   = 0.9 π × 1 × 0.25 = 0.7068 m2

	 ∴ Weight of water passing per second through the turbine
   = w × A × Vf1 = 9.81 × 0.7068 × 2 
   = 13.68 kN/s (Ans.)
 Inlet velocity triangle is shown in Fig 2.17.

 (i) The runner vane angle at inlet, θ	:
  Tangential velocity of wheel at inlet,

  u1 = 1 1 10 10.99 m/s
60 60
D Nπ π × ×

= =

  From inlet velocity triangle, we have:

  tan α = 1
1

1 1

2.0 2.0 2.0, or,
tan tan 10

f
w

w w

V
V

V V
= = =

α °
= 11.34 m/s

  tan θ = 1

1 1

2.0 5.714
11.34 10.99

f

f

V
V u

= =
− −

 or, θ = tan–1 5.714 
   = 80.07° (Ans.)
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 (ii) The velocity of wheel at inlet u1 :
  The velocity of wheel at inlet = u1 = 10.99 m/s (Ans.)

 (iii) The absolute velocity of water leaving the guide vanes, V1 :
  Again, from inlet velocity triangle , we have:

   sin α = 1

1 1

2·0, or, sin 10fV
V V

° =

 	 ∴	 V1 = 2.0 . /
sin 10

=
°

11 52 m s (Ans.)

 (iv) The relative velocity of water entering the runner blade, Vr1 :

   sin θ = 1

1 1

2.0, or, sin 80.07f

r r

V
V V

° =

 	 ∴	 Vr1 = 2.0 . /
sin 80.07

=
°

2 03 m s (Ans.)

Example 2.19.   In an inward flow reaction turbine the head on the turbine is 32 m. The 
external and internal diameters are 1.44 m and 0.72 m respectively. The velocity of flow through 
the runner is constant and equal to 3 m/s. The guide blade angle is 10° and the runner vanes are 
rigid at inlet. If the discharge at outlet is radial, determine :
 (i) The speed of the turbine,
 (ii) The vane angle at outlet of the runner, and
 (iii) Hydraulic efficiency.

 Solution.  Head on the turbine, H = 32 m
  External diameter, D1 = 1.44 m
  Internal diameter, D2 = 0.72 m
  Velocity of flow, Vf = constant; Vf1 = Vf2 = 3 m/s
  The guide blade angle, α = 10°
 Runner vanes are radial at inlet,
	 ∴	 θ	 = 90°; ∴	 Vw1 = u1
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 Discharge is radial,
	 ∴	 Vw2 = 0, V2 = Vf2 = 3 m/s

�
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triangle

�
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V Vr f1 1=
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Vw1 1= u

Outlet
velocity
triangle

V V2 2= f

u2

�

Vr2

�

� = 10°

�

�

= 90°

= 90°

Fig. 2.18

 (i) The speed of the turbine, N :
  From inlet velocity triangle, we have:

   tan	α = 1 1
1

1

3, or,
tan tan 10

f fV V
u

u
= =

α °

  or, u1 = 17.01 m/s

  Also, u1 = 1 1

1

60
, or,

60
D N uN

D
π

=
π

  or, N = 60 17.01 .
1.44

×
=

π ×
225 6 r.p.m.  (Ans.)

 (ii) The vane angle at outlet of the runner, φ :

   u2 = 2 0.72 225.6 8.505 m/s
60 60
D Nπ π × ×

= =

  From the outlet velocity triangle, we have:

   tan φ = 2

2

3.0 0.3527
8.505

fV
u

= =

 	 ∴	 φ = tan–1 0.3527 = 19.43° (Ans.)
 (iii) Hydraulic efficiency, hh :

   hh = 1 1wV u
gH

 [Vw2 = 0, the discharge being radial at outlet.]

    = 
17.01 17.01 0.9217

9.81 32
×

=
×

or 92.17% (Ans.) 1 1, the runner
at inlet being radial

= 
  
 wV u V

 Example 2.20.   An inward flow reaction turbine is supplied 0·233 m3/s  of water under a head 
of 11 m. The wheel vanes are radial at inlet and the inlet diameter is twice the outlet diameter. The 
velocity of flow is constant and equal to 1.83 m/s. The wheel makes 370 r.p.m. Determine :
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 (i) Guide vane angle,
 (ii) Inlet and outlet diameters of the wheel, and
 (iii) The width of the wheel at inlet and exit.
 Assume that the discharge is radial and there are no losses in wheel.
 Take speed ratio = 0.7 
  Neglect the thickness of the vanes. [Anna University]

 Solution.  Flow rate, Q  =  0.233 m3/s
  Head, H  =  11 m
  Velocity of flow  =  constant; Vf1 = Vf2 = 1.83 m/s
  Speed of the wheel  =  370 r.p.m
  Speed ratio, K  =  0.7
  Wheel vanes are radial at inlet, thus θ		=  90°, Vr1 = Vf1
  Inlet diameter  =  2 × outlet diameter i.e., D1 = 2D2

u2

Vr2

V Vf2 2=

� = 90º

Wheel vane

V Vf r1 1=

� = 90º

V1

u V1 1= w

Inlet velocity
triangle

�

Outlet
velocity
triangle

�

Fig. 2.19

 (i) Guide vane angle, α :

   u1 = 2 0·7 2uK gH gH=

    = 0.7 2 9.81 11 10.28 m/s× × × =
  From inlet velocity triangle, we have:

   tan α = 1

1

1.83 0.178
10.28

fV
u

= =

 	 ∴	 α = tan–1 0.178 = 10.09° (Ans.)
 (ii) Inlet and outlet diameters of the wheel, D1 and D2 :

   u1 = 1 1 370
, or, 10.28

60 60
D N Dπ π ×

=

 	 ∴ Inlet diameter, D1 = 
10.28 60 .

370
×

=
π ×

0 53 m  (Ans.)

   Outlet diameter, D2 = 1 0.53 .
2 2
D

= = 0 265 m  (Ans.)
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 (iii) The width of the wheel at inlet and outlet, B1 and B2 :
   Q = πD1B1Vf1 = πD2B2Vf2 ...Continuity equation
  or, D1B1 = D2B2 ( Vf1 = Vf2)
  Now, Q = πD1B1Vf1,   or,   0.233 = π	× 0.53 × B1 × 1.83

  or, B1 = 
0.233 0.0765 m

0.53 1.83
=

π × ×
,   or,   76.5 mm (Ans.)

   B2 = 2B1 = 2 × 76.5 = 153 mm (Ans.)

 Example 2.21.   The following data pertain to an inward flow reaction turbine :
 Net head ... 86.4 m
 Speed of the runner ... 650 r.p.m
 Shaft power available .... 397 kW
 Ratio of wheel width to wheel diameter at inlet ... 0·10
 Ratio of outer diameter to inner diameter .... 0.5
 Flow ratio ... 0.17
 Hydraulic efficiency ... 95 %
 Overall efficiency .... 85 %
 Flow velocity ... constant.
 Discharge ... radial
 Neglecting blockage by blades, find the dimensions and blade angles of the turbine.

 Solution.  Net head, H  =  86.4 m.
  Speed of the runner, N  =  650 r.p.m.
  Shaft power available, P  =  397 kW
 Ratio of wheel width to wheel diameter at inlet,

  n = 1

1
0.1

B
D

=

 Ratio of outer diameter to inner diameter = 0.5
  Flow ratio, Kf = 0.17

Runner vane

V Vf2 2=

� = 90º

u2

Outer velocity
triangle

Vr2

�

� �
Vr1

Vw1

u1

Vf1

Inlet velocity
triangle V1

Fig. 2.20
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  Hydraulic efficiency, hh = 95%
  Overall efficiency, h0 = 85%
  Flow velocity = constant i.e., Vf1 = Vf2
  Discharge is radial i.e., β = 90° or V2 = Vf2

 Main dimensions of the turbine :

         Flow velocity, Vf1 = 2fK gH

   = 0.17 2 9.81 85.4 7.0 m/s× × =

	 ∴	 Vf1 = Vf2 = 7.0 m/s
 The shaft power available from the turbine,
  P = wQH × h0

 or, 397 = 9.81× Q × 86.4 × 0.85

	 ∴  Discharge, Q = 3397 0.551 m /s
9.81 86.4 0.85

=
× ×

 Also Q = πD1B1Vf1 (Neglecting blockage by blades)
 [where, D1 and B1 are the diameter and width of the wheel at the inlet respectively.]

 or,  0.551 = πD1 × 0.1D1 × 7.0 1

1
0.1 ...

B Given
D

 = 
 


	 ∴	 D1 = 
1/20.551 .

0.1 7.0
  = π × × 

0 5 m  (Ans.)

  B1 = 0.1D1 = 0.1 × 0.5 = 0.05 m (Ans.)
 Diameter of wheel at outlet,  D2 = 0.5 D1 = 0.5 × 0.5 = 0.25 m (Ans.)
 ( D2 = 0.5 D1 ...Given)
 Since the discharge of water at inlet and outlet tips is same, therefore,
  Q = πD1B1Vf 1 = πD2B2Vf2  ....Continuity equation
 or, D1B1 = D2B2 ( Vf1 = Vf2)

 or, B2 = 1 1 1 1
1

2 1
2 2 0.05 .

0.5
D B D B B
D D

= = = × = 0 1 m  (Ans.)

 Refer to Fig 2.20.
 Angles at inlet :

 Peripheral velocity at inlet, u1 = 1 0.5 650 17.0 m/s
60 60
D Nπ π × ×

= =

  Hydraulic efficiency, hh = 1 1wV u
gH

 2 0, the discharge
being radial at outlet.

wV = 
  


  0.95 = 1 17.0
9.81 86.4

wV ×
×

 or, Vw1 = 
0.95 9.81 86.4 47.36 m/s

17.0
× ×

=

 Since u1 < Vw1 the inlet triangle will be as shown in Fig 2.20.
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 From inlet triangle, we have:

  tan α = 1

1

7.0 0.1478
47.36

f

w

V
V

= =

	 ∴		 Guide vane angle, α = tan–1 0.1478 = 8.4° (Ans.)

 Again, tan θ = 1

1 1

7.0 0.23
47.36 17.0

f

w

V
V u

= =
− −

	 ∴  Vane inlet angle, θ = tan–1 0.23 = 12.95° (Ans.)

 Angles at outlet :
 From outlet triangle, we have:

  u2 = 2 0.25 650 8.5 m/s
60 60
D Nπ π × ×

= =

  tan φ = 2

2

7.0 0.823
8.5

fV
u

= =

	 ∴		 Vane angle at outlet, φ = tan–1 0.823 = 39.45° (Ans.)
  β = 90° ( Discharge is radial.)  (Ans.)

 Example 2.22.   The following data pertain to an inward flow reaction turbine :
 Diameter of wheel at inner periphery = 540 mm
 Width of wheel at inner periphery = 60 mm
 Diameter of wheel at outer periphery = 360 mm 
 Width of wheel at outer periphery = 90 mm
 Area occupied by the vanes = 8% of the periphery
 Guide vane angle = 25° to the tangent to the runner
 Moving vane angle at inlet = 95° (vane inclined forward to the direction of motion)
 Exit angle = 30°
 Hydraulic losses = 10% of the supply head
 Mechanical friction losses = 5% of the supply head
 Pressure in the outer casing = 66 m more than that at discharge from the runner.
 Determine the following :
 (i) Speed of the runner (for no shocks at entry), and
 (ii) Power available at the turbine shaft.

 Solution. At inner periphery : D1 = 540 mm or 0.54 m; B1 = 60 mm or 0.06 m
 At outer periphery :  D2 = 360 mm = 0.36 m; B2 = 90 mm = 0.09 m
  Guide vane angle, α = 25° to the tangent to the runner
  Moving vane angle at inlet = 95° (vanes inclined forward to the direction of motion)
  Exit angle φ  = 30°
  Hydraulic losses = 10% of the supply head
  Mechanical losses  =   5% of the supply head
  Pressure in the outer casing  =  66 m more than that at discharge from the runner.
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 (i) Speed of the runner, N :
  Refer to Fig. 2.21.
   Q = Kt1πD1B1 × Vf1 = Kt2πD2B2 × Vf2 ...Continuity equation

  Taking, Kt1 = 2 2
2 1 2 2 2

1 1

0.36 0.09;
0.54 0.06t f f f f

D BK V V V V
D B

= × × = × × =

Vw1

u1

Vf1Vr1

� �

V1

Inlet velocity triangle

u2

Vr2

Vf2

�

V2

Outlet velocity triangle

�

Vw2

� = 25º
� = 95º
� = 30º

Moving vane

Fig. 2.21

	 ∴	 Vf1 = Vf2 = Vf

 From inlet velocity triangle, we have:

  tan α = 1 1 1
1

1
, or,

tan tan 25
f f f

w
w

V V V
V

V
= =

α °

   = 2.144 Vf1 ...(i)

  tan(180° – θ) = 1

1 1
;f

w

V
u V−

  tan(180° – 95°) = 1

1 12.144
f

f

V
u V−

 ( Vw1 = 2.144 Vf1)

 or, 1

1 12.144
f

f

V
u V−

 = 11.43

 or, Vf1 = 11.43 (u1 – 2.144 Vf1) = 11.43 u1 – 24.5 Vf1
 or, 25.5 Vf1 = 11.43 u1, or,   u1 = 2.23 Vf1
 From outlet velocity triangle, we have:
 Since blade speed is proportional to diameter, therefore,

  u2 = 2
1 1 1

1

0.362.23 1.49
0.54f f

Du V V
D

× = × =

  2

2 2

f

w

V
V u+

 = 2

2 1
tan , or, tan 30 0.577

1.49
f

w f

V
V V

φ = ° =
+

 or, 2

2 21.49
f

w f

V
V V+

 = 0.577 ( Vf1 = Vf2)
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 or, Vf2 = 0.577 Vw2 + 0.86 Vf2 , or,   Vw2 = 0.243 Vf2
 Absolute velocity of water at outlet,

  V2 = 
2

2 2 2 2
2 2 2 2(0.243 ) 1.03f w f f fV V V V V+ = + =

 Now,  Head supplied = Head utilised (i.e., work done) + energy or head  at outlet (neglecting 
loss of head in the runner)
  66 × 0.9* = 

2
1 1 2 2 2

2
w wV u V u V

g g
+

+  
*Hydraulic losses = 10%

...Given
 
 
 


  59.4 = 
2

1 1 2 2 22.144 2.23 0.243 1.49 (1.03 )
2

f f f f fV V V V V
g g

× + ×
+

  59.4 = 0.524 Vf1
2 + 0.054 Vf1

2 = 0.578 Vf1
2 ( Vf1 = Vf2)

	 ∴  Flow velocity, Vf1 = 
1 259.4

0.578
 
 
 

 = 10.14 m/s

 Now,  u1 = 2.23 Vf1 = 2.23 × 10.14 = 22.61 m/s

 Also,  u1 = 1 1

1

60 60 22.61;
60 0.54
D N uN

D
π ×= =

π π ×
 = 800 r.p.m. (Ans.)

 (ii) Power available at the turbine shaft, P :
  Discharge, Q =  Kt1πD1B1 × Vf1
   = (1– 0.08) π	× 0.54 × 0.06 × 10.14 = 0.949 m3/s

  Power developed by the turbine = 1 1 1 2w wV u V u
wQ

g
+ ×  

 
   = 9.81 × 0.949 × 0·524 V2

f1

    21 1 2 2
10.524 , as calculated abovew w

f
V u V u

V
g
+ = 

 


   =  9.81 × 0.949 × 0.524 × (10.14)2 = 501.6 kW
 As the mechanical losses amount to 5 percent,
  Shaft/brake power, P = 501.6 × 0.95 = 476.5 kW (Ans.)

 Example 2.23.   An inward flow reaction turbine 
(vertical shaft) running at 400 r.p.m requiring a 
discharge of 15.0 m3/s has an overall efficiency of 
90 per cent. The velocity at inlet of the spiral casing 
is 8·5 m/s and pressure head at this point 230 m. The 
centre-line of the spiral casing inlet is 2.5 m above the 
tail water level. The diameter  of  the runner at inlet is 
2.0 m and width at inlet is 0.25 m. If the hydraulic 
efficiency is 94 per cent and the flow is radial at the 
outlet from the runner, determine:
 (i) Power developed by the turbine,
 (ii) Specific speed,
 (iii) Guide vane angle,
 (iv) Runner blade angle at inlet, and

Outlet
velocity
triangle

Runner
vane

Vr2

�

u2

� Vw2 = 0

V vf2 2=

Inlet
velocity
triangle

� �

u1

Vw1

Vr1 Vf1

V1

Fig. 2.22
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 (v) Percentage of net head which is kinetic at entry to the runner.
 Assume the thickness of the blades to be negligible.

 Solution.  Speed of the turbine/runner, N  = 400 r.p.m.
  Flow rate/discharge, Q  =  15.0 m3/s
  Overall efficiency, h0  =  90 %
  Velocity at inlet of spiral casing  =  8.5 m/s
  Pressure head  =  230 m
  Diameter of the runner at inlet, D1  =  2.0 m
  Width at inlet, B1  =  0.25 m
  Hydraulic efficiency, hh  =  94 %.

 (i) Power developed by the turbine :
  Head at inlet to the spiral casing,

   H = 
28.5230 2.5 236.2 m

2 9.81
+ + =

×

   Overall efficiency, h0	 = 	
Power developed by the turbine

wQH

  or, 0.9 = 
Power developed by the turbine

9.81 15.0 236.2× ×

  ∴	Power developed by the turbine
    = 0.9 × 9.81 × 15.0 × 236.2 = 31281 kW (Ans.)
 (ii) Specific speed, Ns :

   Ns = 5/4 5/4
400 31281 .

(236.2)
N P
H

×
= = 76 4  (Ans.)

 (iii) Guide vane angle, α :
   Discharge, Q = πD1B1Vf1,  or,   15.0 = π	× 2.0 × 0.25 × Vf1

  ∴ Velocity of flow at inlet,  Vf1 = 
15.0 9.55 m/s

2.0 0.25
=

π × ×

  Peripheral velocity of blade at inlet, 

   u1 = 1 2.0 400 41.88 m/s
60 60
D Nπ π × ×

= =

  Also  Vw2 = 0, since the discharge is radial.

   Hydraulic efficiency,  hh = 1 1wV u
gH

 [ Vw2 = 0]

  or,          0.94 = 1 41.88
9.81 236.2

wV ×
×

	 	 ∴	Velocity of whirl at inlet, Vw1 = 
0.94 9.81 236.2 52.0 m/s

41.88
× ×

=

   From inlet velocity triangle, we have:
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   tan α = 1

1

9.55 0.1836
52.0

f

w

V
V

= =

 	 ∴	 α = tan–1 0.1836 = 10.4° (Ans.)

 (iv) Runner blade angle at inlet, θ :
  Again, from inlet velocity triangle, we have :

   tan θ = 1

1 1

9.55 0.9436
52.0 41.88

f

w

V
V u

= =
− −

 	 ∴	 θ = tan–1 0.9436 = 43.34° (Ans.)

 (v) Kinetic head as percentage of net head :

  Absolute velocity at inlet,  V1 = 1 52.0 52.87 m/s
cos cos 10.4

wV
= =

α °

  Percentage of net head which is kinetic at entry to the runner

    = 
2 2 2

1 1/ 2 52.87 0.603
2 2 9.81 236.2

V g V
H gH

= = =
× ×

  or   60.3% (Ans.)

 Example 2.24.   In an inward flow reaction turbine the diameter of the outer periphery is two 
times the diameter of inner one, and the turbine operates under a head of 20 m. The turbine has 
radial tips at the inlet while at the exit the blades make an angle of 30° with the forward tangent. 
Assuming a constant radial velocity of flow and that the blade friction accounts for a dissipation of 
energy equivalent to 10 per cent of kinetic energy at the outlet, determine :
 (i) Runner velocity at the rim, and
 (ii) Hydraulic efficiency of the turbine.
 Assume the turbine discharges radially at the outlet.
 Solution. Diameter of the outer periphery, D1 = 
2D2 (diameter of the inner periphery)
 Head under which the turbine operates, H = 20 m
 Tips at inlet = radial i.e., θ	= 90°
 Blade angle at the outlet, φ = 30° (with the forward 
tangent)
 Dissipation of energy (due to blade friction) = 10 
percent of K.E. at the outlet
 Turbine discharge is radial i.e., β	= 90°
 Constant radial velocity of flow i.e., Vf1 = Vf2 = Vf

 (i) Runner velocity at the rim, u1 :
  From energy considerations, we have:
  Energy supplied = Energy transferred to the 

runner + energy lost in blade friction + K.E. at 
outlet

   H = 
2 2 2 2

1 1 2 2 1 20.1 1.1
2 2 2 2

wV u V V u V
g g g g g

+ + = +  ( Vw1 = u1)

  From outlet velocity triangle (Fig. 2.23),

�

V1

V Vr f1 1=

� = 90º

Vw2 = 0

V Vf 22 =

u V1 1= w

u2

� � = 90º

Vr2
Runner

blade/vane

Fig. 2.23
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   tan φ = 2

2
,fV

u
  or,   Vf2 = u2 tan φ = u2 tan 30°

 	 ∴		 H = 
2 2
1 2( tan 30 )

1.1
2 2
u u

g g
°

+  ( Vf2 = V2)

  Also, u1  = ωR1    and    u2 = ωR2

	 	 ∴ 1

2

u
u

 = 1 1

2 2
2

R D
R D

ω ω
= =

ω ω
, or,    u1 = 2u2 [ D1 = 2D2  ...Given]

 	 ∴	 H = 
2 2 2 2 2

22 2 2 2 2
2

(2 ) (0.577 ) 4 0.183 4.183
1.1 0.426

2 9.81
u u u u u u
g g g g

+ = + = =

  or, 20 = 0.426 u2
2, or, u2 = 

1/220 6.85 m/s
0426

  = 
 

 	 ∴	Runner velocity at the rim,
   u1 = 2u2 = 2 × 6.85 = 13.70 m/s (Ans.)

 (ii) Hydraulic efficiency, hh :

   hh = 
2 2

1 1 1 13.70 0.9566
9.81 20

wV u u
gH gH

= = =
×

or 95.66% (Ans.) 2

1 1

0;w

w

V
V u

= 
 = 



 Example 2.25.    A Francis turbine with an overall efficiency of 76% is required to produce 150 
kW. It is working under a head of 8 m. The peripheral velocity = 0.25 2gH  and the radial velocity 

of flow at inlet is 0.95 2gH . The wheel runs at 150 r.p.m. and the hydraulic losses in the turbine 
are 20% of the available energy. Assuming radial discharge, determine :
 (i) The guide blade angle,
 (ii) The wheel vane angle at inlet,
 (iii) Diameter of the wheel at inlet, and
 (iv) Width of the wheel at inlet.

 Solution.  Overall efficiency, h0  =  76%
  Shaft power produced, P  =  150 kW.
  Head, H  =  8 m

  Peripheral velocity, u  = 0.25 2gH

 Radial velocity of flow at inlet, Vf1 = 0.95 2gH  
  Wheel speed, N  =  150 r.p.m.
 Since discharge at the outlet is radial; Vw2 = 0, Vf2 = V2
 Hydraulic losses in the turbine = 20% of available energy 

 Now, u1 = 0.25 2 9.81 8 3.13 m/s× × =

  Vf1 = 0.95 2 9.81 8 11.9 m/s× × =

  Hydraulic efficiency, hh = Total head at inlet hydraulic losses

Total head at inlet

−
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   = 
0.2 0.8H H

H
−

=  

 Also, hh = 1 1wV u
gH

 [ Vw2 = 0]

 ∴	 0.8	 =	 1 3.13
9.81 8
wV ×

×
, or,  Vw1 = 

0.8 9.81 8 20.0 m/s
3.13
× ×

=

 (i) The guide blade angle, α :
  From inlet velocity triangle (Fig. 2.24),

  tan α = 1

1

11.9 0.595
20.0

f

w

V
V

= =

  α = tan–1 0.595 = 30.75° (Ans.)
 (ii) The wheel vane angle at inlet, θ	:

  tan θ = 1

1 1

11.9 0.705
( ) (20.0 3.13)

f

w

V
V u

= =
− −

 ∴	 θ	 = tan–1 0.705 = 35.18° (Ans.)

� �

u2

Outlet velocity
triangle

Vr2

V Vf2 2=

Runner
vane

Vf1
Vr1

V1

� �

Inlet velocity
triangle

u1

Vw1

Fig. 2.24

 (iii) Diameter of the wheel at inlet, D1 :

   Using the relation, u1 = 1

60
D Nπ

, we get:

   D1 = 160 60 3.13 .
150

u
N

×
= =

π π ×
0 398 m  (Ans.)

 (iv) Width of the wheel at inlet, B1 :
  Overall efficiency, 

   h0 = 
Shaft power
Water power

P
wQH

=

  or, 0.76 = 
150

9.81 8Q× ×
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  or, Q = 3150 2.515 m /s
0.76 9.81 8

=
× ×

  Also, Q = πD1B1 × Vf1

   2.515 = π	× 0.398 × B1 × 11.9

 	 ∴ B1 = 
2.515 .

0398 11.9
=

π × ×
0 169 m (Ans.)

 Example 2.26.   The following data pertain to a Francis turbine :
 Net head ... 70 m
 Speed ... 700 r.p.m.
 Shaft power ... 330 kW
 Overall efficiency ... 85 %
 Hydraulic efficiency ... 92 %
 Flow ratio ... 0·22
 Breadth ratio ... 0·1
 Outer diameter of runner ... 2 × inner diameter of runner
 Velocity of flow ... constant
 Outlet discharge ... radial
 The thickness of vanes occupy 6 per cent of circumferential area of the runner. 
 Determine:
 (i) Diameters of runner at inlet and outlet,
 (ii) Width of the wheel at inlet,
 (iii) Guide blade angle, and
 (iv) Runner vane angles at inlet and outlet.

 Solution.  Net head, H  =  70 m; Speed, N = 700 r.p.m.;
    Shaft power  =  330 kW; Overall efficiency, h0 = 85%;
    Hydraulic efficiency, hh  =  92%;

    Flow ratio  =  0.22;  Breadth ratio, 1

1
0.1

B
D

= ;

    D1 (outer diameter)  =  2D2 (inner diameter); 
    Thickness of vanes  =  6% of circumferential area of runner;
    Vf1  =  Vf2 ...Velocity of flow is constant (Given).

 (i) Diameters of runner at inlet and outlet D1, D2 :

  Now,  flow ratio = 10.22
2

fV

gH
=

 	 ∴	 Vf1 = 0.22 2 0.22 2 9.81 70 8.15 m/sgH = × × =

   Actual area of flow = 1 1 1 1
61 0.94

100
D B D B − π = π 

 
  Since discharge is radial at outlet,
 	 ∴	 Vw2 = 0   and   Vf2 = V2
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  Using relation : h0 = 
Shaft power 330 330, or, 0.85
Water power 9.81 70wQH Q

= =
× ×

 	 ∴ Q = 3330 0.565 m /s
0.85 9.81 70

=
× ×

  But, Q = Actual area of flow × velocity of flow
    = 0.94 πD1B1 × Vf1

 	 ∴	 0.565 = 0.94 πD1 × 0.1D1 × 8.15 1

1
0.1 ...

B Given
D

 = 
 
  

	 	 ∴ D1 = 
1/20.565 .

0.94 0.1 8.15
  = π × × 

0 484 m  (Ans.)

   D2 = 1 0.484 .
2 2
D

= = 0 242 m (Ans.)

 (ii) Width of the wheel at inlet, B1 :
   B1 = 0.1D1 = 0.1 × 0.484 = 0.0484,   or,   48.4 mm (Ans.)
  Tangential speed of the runner at inlet,

   u1 = 1 0.484 700 17.74 m/s
60 60
D Nπ π × ×

= =

  Using relation for hydraulic efficiency,

   hh = 1 1wV u
gH

 [ Vw2 = 0]

V1

� �

Vr1
Vf1

u1

Vw1

Inlet velocity
triangle

u2

Vr2

Outlet velocity
triangle

V V Vf f2 2 1= =

�

Runner vane

�

Fig. 2.25

 or, 0.92 = 1 17.74
9.81 70
wV ×

×

 or, Vw1 = 
0.92 9.81 70 35.6 m/s

17.74
× ×

=
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 (iii) Guide blade angle, α :
  From inlet velocity triangle,

   tan α = 1

1

8.15 0.229
35.6

f

w

V
V

= =

 	 ∴	 α = tan–1 (0.229) = 12.89° (Ans.)
 (iv) Runner vane angles at inlet and outlet θ, φ :

   tan θ = 1

1 1

8.15 0.456
35.6 17.74

f

w

V
V u

= =
− −

 	 ∴	 θ = tan–1 (0.456) = 24.5° (Ans.)
  From outlet velocity triangle,

    tan φ = 2 1

2 2

f fV V
u u

=  ...(i)

  But,  u2 = 2 1

60 2 60
D N D Nπ π ×

= ×  1
2 ...

2
DD Given =  



     = 
0.484 700 8.87 m/s
2 60

π × ×
=

×

  Putting the value of u2 in eqn. (i), we get

    tan φ =  
8.15 0.9188
8.87

= , or,   φ = tan–1 (0.9188) = 42.58° (Ans.)

 Example 2.27.    (a) Show that the hydraulic efficiency for a Francis turbine having velocity of 
flow through runner as constant, is given by the relation:

  hh = 
2

1
1 tan
21

tan1
tan

=
 − 
 

α

α
θ

 where, α = guide blade angle, θ	 = runner vane 
angle at inlet.
 The turbine is having radial discharge at outlet.
 (b) If the vanes are radial at inlet, then show that,

  hh = 2
2

2 tan+ α

 Solution. Velocity of flow is constant i.e., Vf1 = Vf2
 Discharge is radial at outlet i.e., Vw2 = 0, Vf2 = V2

 From inlet velocity triangle : tan α	= 1

1

f

w

V
V

	 ∴	 Vf1 = Vw1 tan α ...(i)

 Also, 1

1 1
tan f

w

V
V u

θ =
−

,   or,   1
1 1 tan

f
w

V
V u− =

θ

u1

Vw1

Inlet
velocity
triangle

�

Vf1

V1

�
Vr1

V Vf f1 2=

Outlet
velocity
triangle

�

Vr2

Runner
vane

u2

V Vf2 2=

� = 90º

Vw2 0=

Fig. 2.26
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 or, Vw1 – u1 = 1 tan
tan

wV α
θ

 

	 ∴ u1 = 1
1 1

tan tan1
tan tan

w
w w

V
V V

α α − = − θ θ 
 ...(ii)

 Head under which turbine is working,

  H = 
2

1 1 2

2
wV u V
g g

+  [ Vw2 = 0]

 or, H = 
2
11 1

2
fw VV u

g g
+  [ V2 = Vf2 = Vf1]

 Substituting the values of Vf1 and u1 from eqns. (i) and (ii), we get:

  H = 
2

1 1
1

( tan )tan1
tan 2

w w
w

V V
V

g g
αα × − + θ 

   = 
2 2 2 2

21 1 1tan tan tan1 tan 1
tan 2 tan 2

w w wV V V
g g g

 α α α − + α = − +  θ θ   
 Using relation for hydraulic efficiency, we have:

  hh = 
1 1

1 1
2 2 2
1

tan tan1 1
tan tan

tan tan tan tan1 1
tan 2 tan 2

w w
w

w

V V
V u
gH Vg

g

α α   × − −   θ θ   = =
   α α α α

× − + − +   
θ θ   

 or, hh = 
2

1
1 tan
21

tan1
tan

α
+

α − θ 

     
Dividing numerator and

tandenominator by 1
tan

 
 α −  θ   

 ...(Proved)

 (b) When vanes are radial at inlet, θ	= 90°

	 ∴		Hydraulic  efficiency, hh = 22

1 2
1 2 tantan
21
(1 0)

=
+ αα

+
−

 ...(Proved)

 Example 2.28.   Water leaves the guide vanes of an inward radial flow turbine at an angle α  
to the tangent to the wheel. The vane angle at entry to the wheel is 90° and the velocity of flow at 
exit is K times that at entry. Prove that for maximum efficiency under a head H, the peripheral 

speed should be 2 2
2 .

2 tan
gH

K+ α

 Solution. From energy considerations,
  Head supplied  =  Work done + kinetic head at exit

  H = 
2

1 1 2 2 2

2
w wV u V u V

g g
±

+



Chapter 2 : Hydraulic Turbines         109

 (Assuming the losses within the runner to be negligible)
 From inlet velocity triangle, we have:
  u1 = Vw1 ,  and ,   Vf1 = u1 tan α
 ( Flow at inlet is radial.)
 For conditions of maximum efficiency, the flow 
leaves the runner radially, i.e., Vw2 = 0
 Also, V2 = Vf2 = KVf1 = Ku1 tan α

	 ∴	H	= 
2

1 1 2

2
wV u V
g g

+

 or,  H = 
2 2 2 2 2

2 21 1 1 1tan
(2 tan )

2 2
u K u u K
g g g

α
+ = + α

	 ∴	 Peripheral speed,

  u1 = 2
2

2 tan
gH

K+ α
 ...(Proved)

 Example 2.29.   A vertical shaft Francis turbine runs at 420 r.p.m. while the discharge is  
15 m3/s. The velocity and pressure head at entrance of the runner are 10 m/s and 230 m respectively. 
The elevation above the tail race is 5 m. The diameter of the runner is 2 m and the width at the inlet is 
270 mm. The overall and hydraulic efficiencies are 92% and 98% respectively. Calculate :
 (i) Total head across the turbine;
 (ii) Power output;
 (iii) The guide vane angle;
 (iv) Vane angle at the inlet.
 Density of water may be taken as 1000 kg/m3.  [GATE]

 Solution. Given : N = 420 r.p.m.; Q = 15 m3/s; V1 = 10 m/s; Head at the entrance = 230 m; 
Elevation above the tail race, z = 5 m; D1 = 2 m; B1 = 270 mm = 0.27 m; h0 = 92 %; hh = 98 %.
 (i) Total head across the turbine :

  h = 
2 2

1 10230 230 5 .
2 2 9.81
V z

g
+ + = + + =

×
240 09 m (Ans.)

 (ii) Power output =  h0 × power delivered to the fluid
   = 0.92 × wQH
   = 0.92 × (1000 × 9.81) × 15 × 240.09 × 10–6 MW = 32.5 MW (Ans.)
 (iii) Guide vane angle, α : Refer to Fig. 2.28.

    u1 = 1 2 420 43.98 m/s
60 60
D Nπ π × ×

= =

  Now discharge, Q = πD1B1 × Vf1
  or,  15 = π	× 2 × 0.27 × Vf1

  or,  Vf1 = 
15 8.84 m/s

2 0.27
=

π × ×

    sin α = 1

1

8.84 0.884
10

fV
V

= =

u V1 1w=

Inlet
velocity
triangle Vf1

V1

Outlet
velocity
triangle Vr2

Runner
vane

� �

� = 90º

�

V V KVw f f2 2 1= 0, =

� = 90º

V Vf2 2=

u2

Fig. 2.27
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	 	 ∴ α = sin–1 (0.884) = 62.13° (Ans.)

�

Vf1

V1

Vr1

�(180 – )�

V1 cos �

u1

u V1 1– cos �

Fig. 2.28

 (iv) Vane angle at the inlet, θ :

  tan(180° – θ) = 1

1 1

8.84
cos 43.98 10 cos (62.13 )

fV
u V

=
− α − °

 = 0.2249

 ∴	 180° – θ	 = tan–1 (0.2249) = 12.67°
 ∴	 θ = 180° – 12.67° = 167.33° (Ans.)
 Example 2.30.   An inward flow turbine runner has an outer diameter of 0.6 m and an inner 
diameter of 0.3 m and runs at 750 r.p.m. The radial velocity of flow at inlet and exit is 6 m/s. Water 
enters the runner making an angle of 12° to the direction of motion of the blades at inlet. It leaves 
the runner radially. The mass flow rate is 1 kg/s. Calculate :
 (i) Power developed.
 (ii) Angle between the relative velocity of water and tangential velocity of the runner at exit: 
    [UPTU]

 Solution. Given : D1 = 0.6 m; D2 = 0.3 m; N =  750 r.p.m.; Vf1 = Vf2 = 6 m/s; α = 12°; β = 90°;  
m = 1 kg/s.
 Refer to Fig. 2.29.

Intel velocity
triangle

V1

�

Vf1V r1

Outlet velocity
triangle

� �

Vr2

u2 Vw2 = 0

V V Vf f2 2 1= =

�

Vw1

u1

Fig. 2.29
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 (i) Power developed, P :
  Peripheral velocity at inlet,

   u1 = 1 0.6 750 23.56 m/s
60 60
D Nπ π × ×

= =

  Peripheral velocity at exit:

   u2 = 2 0.3 750 11.78 m/s
60 60
D Nπ π × ×

= =

  From inlet velocity triangle, we get

   tan α = 1

1

f

w

V
V

  or, tan 12° = 1
1

6 6, or, 28.23 m/s
tan 12w

w
V

V
= =

°

  Power developed by the turbine,

   P = 1 1 2 2w wV u V u
wQ

g
+ ×  

 

    = 1 1wV u
wQ

g
×  ( Vw2 = 0)

	 	 ∴ P = 1 1wV u
mg

g
×

    = 
28.23 23.561 9.81 .

9.81
×

× × = 666 09 W  (Ans.)

 (ii) Angle φ :
  From outlet velocity triangle, we have:

   tan φ = 2

2

6 0.5093
11.78

fV
u

= =

 	 ∴	 φ = tan–1 (0.5093)  27° (Ans.)

 Example 2.31.   An inward flow reaction turbine operating under 30 m head, develops 4000 
kW while running at 300 r.p.m. The overall efficiency of the turbine is 0.85; the hydraulic efficiency 
is 0.9; and the radial velocity of flow at inlet is 7 m/s; 
the inlet guide vane angle at full gate opening is 30°. 
Calculate the diameter and width of the runner at inlet. 
Blade thickness co-efficient is 5%. [UPSC]
 Solution. Given: H = 30 m; Power developed = 
4000 kW; N = 300 r.p.m.; h0 = 0.85; hh = 0.9; Vf1 = 7 
m/s, α = 30°, Vane thickness co-efficient,

  K1 = 
51 0.95

100
 − = 
 

 Diameter and width of the runner at the inlet (D1, B1):

  Overall efficiency, h0 = 
Output power 4000 1000

Power of water supplied w Q H
×

=
× ×

 

Fig. 2.30

� = 30º
�

V1
Vr1

Vf1

u1

Vw1

Intel velocity
triangle
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  0.85 = 
4000 1000

9810 30Q
×
× ×

 or, Q = 34000 1000 15.99 m /s
0.85 9810 30

×
=

× ×

 Hydraulic efficiency, hh = 1 1wV u
gH
×

 ...[Eqn. 2.19]

 Now, from inlet velocity triangle (Refer to Fig. 2.30), we get:

  1

1

f

w

V
V

 = 1
1

7tan 30 , or, 12.12 m/s
tan 30 tan 30

f
w

V
V° = = =

° °

 Now, substituting the values in the above eqn., we get:

  0.9 = 112.12
9.81 30

u×
×

 or, u1 = 
0.9 9.81 30 21.85 m

12.12
× ×

=

 Also, u1 = 1 1 300
, or, 21.85

60 60
D N Dπ π × ×

=

 or, D1 = 
21.85 60 .

300
×

=
π ×

1 39 m (Ans.)

 Further,  discharge Q = Kt1πD1B1Vf1
 Substituting the values, we get:
  15.99 = 0.95 π × 1.39 × B1 × 7

	 ∴	 B1 = 
15.99 .

0.95 1.37 7
=

π × ×
0 55 m (Ans.)

 Example 2.32. In an inward flow reaction turbine (vertical shaft) the sum of the pressure and 
kinetic heads at entrance to the spiral casing is 132 m and vertical distance between this section 
and the tail race level is 3·3 m. The peripheral velocity of the runner at entry is 33 m/s, the radial 
component of velocity of water (velocity of flow) is constant at 11·0 m/s and the discharge from the 
runner is without whirl, i.e. radial discharge. The hydraulic losses are: (a) losses between turbine 
entrance and discharge from guide vanes = 4·95 m, (b) losses in the runner = 8·8 m, (c) losses in 
the draft tube = 0·88 m, and (d) kinetic energy rejected to the tail race = 0·55 m. Determine :
 (i) The guide vane angle and the runner blade angle at inlet;
 (ii) The pressure heads at entry to and discharge from the runner.

 Solution. The sum of pressure and kinetic heads at entrance to the spiral casing = 132 m
 Vertical distance between the section (entrance) and the tail race level = 3.3 m
 Peripheral velocity of the runner at entry, u1 = 33 m/s.
 Velocity of flow is constant, Vf1 = Vf2 = 11.0 m/s
 Discharge is radial, Vw2 = 0
 Losses between turbine entrance and discharge from guide vanes = 4.95 m
 Losses in the runner = 8.8 m
 Losses in the draft tube = 0.88 m
 Kinetic energy rejected to the tail race = 0.55 m.



Chapter 2 : Hydraulic Turbines         113

 (i) The guide vane angle (α), the runner blade angle, (θ) :
   Head utilized by the runner, H = 132 + 3.3 – hydraulic losses
    = 132 + 3.3 – (4.95 + 8.8 + 0.88 + 0.55) = 120.12 m
  Head utilized by the runner is given by,

   H = 1 1wV u
g

 ( Vw2 = 0)

  ∴	 Vw1 = 
1

9.81 120.12 35.71 m/s
33

gH
u

×
= =

  From inlet velocity triangle, we have:

   tan α = 1

1

11.0 0.308
35.71

f

w

V
V

= =

 	 ∴	 α = tan–1 0.308 = 17.12° (Ans.)

  Again, tan θ = 1

1 1

11.0 4.06
35.71 33

f

w

V
V u

= =
− −

	 	 ∴	 θ = tan–1 4.06 = 76.16 (Ans.)
 (ii) The pressure heads at entry and discharge from the runner :
  Taking tail race as datum, applying Bernoulli’s equation to the turbine inlet and the runner, 

we obtain :

   132 + 3.3 = 
2

1 1
1 4.95

2
V p z

g w
+ + +

  Substituting z1 = 3·3 m, and,
   V1 = 1 11.0 37.37 m/s

sin sin 17.12
fV

= =
α °

, we have :

  The pressure head at inlet,

   1p
w

 = 
237.37(132 3.3) 3.3 4.95

2 9.81
+ − − −

×
    = 55.87 m (Ans.)
  Now, applying Bernoulli’s equation to the turbine entrance and runner outlet, we get:

�

Vr2

u2
Vw2 = 0

V Vf2 2=

� = 90º

Runner
vane

� �

Vr1 Vf1

V1

u1

Vw1

Fig. 2.31
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  132 + 3.3 = 
2

2 2
2 4·95 8.8

2
V p z H

g w
+ + + + +

 Substituting, V2 = 11.0 m/s, z2 = 3.3 m, H = 120.12 m, we get:

  135.3 = 
2

211.0 3.3 120.12 4.95 8.8
2 9.81

p
w

+ + + + +
×

   = 26.17 137.17
p
w

+ +

 ∴ 2p
w

 = 135.3 – 61.7 – 137.17 = – 8.04 m (Ans.)

 Example 2.33.   The following data pertain to a vertical shaft inward flow reaction turbine :
 Net head under which the turbine operates = 24.5 m
 Discharge through the turbine = 10.5 m3/s
 Speed of the turbine = 225 r.p.m
 Inlet angle of the runner vane = 115° (measured from the direction of runner rotation)
 Velocity of flow at inlet to runner = 6.5 m/s
 Velocity with which water enters the draft tube without swirl = 6 m/s
 Discharge velocity from the exit of draft tube = 2.5 m/s
 The mean height of the runner entry surface = 1.5 m
 The mean height of entrance to the draft tube = 1.2 m above tail race level

 Hydraulic efficiency = 90 %
 Determine the following :
 (i) Diameter of the runner at entry surface, and
 (ii) Pressure head at entry to the runner and at entrance to the draft tube; friction loss in the 

runner is 0·9 m and that in the draft tube 0·6 m of water.

 Solution. Refer to Fig. 2.32. Inlet angle of runner vane, θ = 115°

�

Vr1 Vf1

�

V1
Inlet velocity

triangle

Vw1

u1

Runner vane
� = 90º

Vw2 = 0
�

�

V Vf2 2=
Vr2

u2

Outlet velocity
triangle

� = 115°

Fig. 2.32
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 From inlet velocity triangle, we have:

 1 1
1 1

1 1

6.5tan (180 115 ), or, 3.03
( ) tan (180 115 ) 0.466

f f
w

w

V V
u V

u V
° − ° − = = =

− ° − °

	 ∴	 u1 = Vw1 + 3.03 ...(i)

 Hydraulic efficiency, hh = 1 1wV u
gH

 [ Vw2 = 0  ... Given]

  0.9 = 1 1

9.81 24.5
wV u
×

,   or,   Vw1u1 = 0.9 × 9.81 × 24.5 = 216.31

 i.e., Vw1u1 = 216.31 ...(ii)
 From eqns. (i) and (ii), we obtain
  Vw1 (Vw1 + 3.03) = 216.31
 or, V2

w1 + 3.03 Vw1 – 216.31 = 0

 or, Vw1 = 
23.03 3.03 4 216.31 3.03 29.57 13.27 m/s

2 2
− ± + × − ±

= =

	 ∴ u1 = 13.27 + 3.03 = 16.3 m/s  (neglecting –ve sign)
 (i) Diameter of the runner at entry surface, D1 :

  u1 = 1 1 225
60 60
D N Dπ π ×

=

 ∴	 D1 =  160 60 16.3 .
225 225
u ×

= =
π × π ×

1 38 m (Ans.)

 (ii) Pressure head at entry to the runner (p1/w) and at entrance to the draft tube (p2 /w) :
  Absolute velocity at entry to runner,

   V1 = 2 2 2 2
1 1 6.5 13.27 14.78 m/sf wV V+ = + =

  Taking tail race as datum, the total head across the turbine,

   H = 
2

1 1
12

p V z
w g

+ +  ...(i)

 (neglecting losses in scroll and guide blades and the velocity head with which the water comes 
out of the draft tube)

	 ∴  Pressure head at entry to turbine runner,

   1p
w

 = 
2 2

1
1

14.7824.5 – 1.5 .
2 2 9.81
VH z

g
− − = − =

×
11 87 m of water (Ans.)

 From energy considerations at the inlet and outlet of the turbine runner, we have:

   
2

1 1
12

p V z
w g

+ +  = 
2

2 2
2 work done + losses in runner

2
p V z
w g

+ + +  ...(ii)

 Now, work done (or head utilized) = 0.9 H      (since, hh = 90% ...Given)

 Also, 
2

1 1
12

p V z
w g

+ +  = 24.5 ...From eqn. (i)
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 Substituting the above value in eqn. (ii), we obtain:

  24.5 = 
2

2 2
2 22.05 0.9

2
p V z
w g

+ + + +

 or, 
2

2 2
22

p V z
w g

+ +  = 24.5 – (22.05 + 0.9) = 1.55 m

	 ∴ Pressure head at exit from the turbine runner (or at inlet to draft tube),

  2p
w

 = 
2 2

2
2

61.55 1.55 1.2 – .
2 2 9.81
V z

g
− − = − − =

×
1 485 m (Ans.)

[ V2 = 6 m/s   ... Given]

 Example 2.34.   In a vertical shaft inward flow reaction turbine, water enters the runner 
from the guide blades at an angle of 155° with the runner blade angle at entry being 100°. Both 
these angle are measured from the tangent at runner periphery drawn in the direction of runner 
rotation. The flow velocity through the runner is constant, water enters the draft tube from the 
runner without whirl and the discharge from the draft tube into the tail race takes place with a 
velocity of 3.0 m/s. The runner has the dimensions of 480 mm external diameter and 45.6 mm inlet 
width. The turbine works with a net head of 50·4 m and the loss of head in the turbine due to fluid 
resistance is 5.76 m of water. Determine :
 (i) Speed of the runner;
 (ii) Runner blade angle at a point on the 
outlet edge where the radius of rotation is  
108 mm;
 (iii) Power generated by the turbine and its 
specific speed;
 (iv) Inlet diameter of the draft tube.

 Solution. External diameter of the runner, 
D1 = 480 mm = 0.48 m
 Inlet width of the runner, B1 = 45.6 mm = 
0.0456 m
 Net head, H = 50.4 m
Loss of head in the turbine due to fluid resistance 
= 5.76 m
 Refer to Fig. 2.33. From the inlet velocity 
triangle,
	 	 α = 180° – 155° = 25° ;	θ	= 180° – 100° = 80°

 Also,      1

1

f

w

V
V

 = 1
1tan , or,

tan
f

w
V

Vα =
α

	 ∴ Vw1 = 1
12.144

tan 25
f

f
V

V=
°

 Again, tan θ = 1 1
1 1

1 1
, or,

tan
f f

w
w

V V
V u

V u
− =

− θ

 or,  u1 = 1
1 tan 80

f
w

V
V −

°

Intel velocity
triangle

155º
�

100°

V1

Vr1
Vf1

�

Vw1

u1

� = 25º
� = 80º

� � = 90º

V Vf2 2=

Vw2 = 0

Runner
vane

Outer velocity
triangle

Vr2

u2

Fig. 2.33
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   = 2.144Vf1 – 0.1763Vf1 = 1.968Vf1
 Since the discharge is radial, therefore, 
  Vw2 = 0
 Now, from energy considerations, we have:
  Head supplied = Work done + kinetic head at exit + losses in the runner

  50.4 = 
2

1 1 2 4.8
2

wV u V
g g

+ +

  50.4 = 
2

1 1 2
1

2.144 1.968 3.0 5.76 0.43 0.459 5.76
9.81 2 9.81

f f
f

V V
V

×
+ + = + +

×

	 ∴	 0.43	V2
f1	 = 

1/2

1
44.1844.18, or, 10.14 m/s
0.43fV  = = 

 
  u1 = 1.968 Vf1 = 1.968 × 10.14 = 19.95 m/s
 (i) Speed of the runner, N :

  u1 = 1 1

1

60 60 19.95, or,
60 0.48
D N uN

D
π ×

= = =
π π ×

794 r.p.m.  (Ans.)

 (ii) Runner blade angle at a point on the outlet edge where the radius of rotation is  
108 mm, φ :

  In the outlet velocity triangle, V2 = Vf2 = Vf1 = 10·14 m/s
  Periphery velocity of the outer edge at 108 mm radius,

  u2 = 2
1

1

10819.95 8.97 m/s
(480 / 2)

Ru
R

× = × =

  tan φ = 2

2

10.14 1.13
8.97

fV
u

= =

  ∴	 φ = tan–1 (1.13) = 48.5° (Ans.)
 (iii) Power generated by the turbine and its specific speed :

  Power developed by the turbine = 1 1wV u
wQ

g
×

 where, Q = Discharge through the turbine
   = πD1B1 × Vf1 = π × 0.48 × 0.0456 × 10.14 = 0.697 m3/s;

 and  1 1wV u
g

 = 1 1 2 2
1

2.144 1.968
0.43 0.43 (10.14) 44.2

9.81
f f

f
V V

V
×

= = × =

 	∴ Power developed by the turbine = 9.81 × 6.97 × 44.2 = 302.2 kW (Ans.)
  Assuming a mechanical efficiency of 97%,
  Power available at the turbine shaft, P = 302.2 × 0.97 = 293.13 kW

    Specific speed, Ns = 5/4 5/4
794 293.13 .

(50.4)
N P
H

×
= = 101 23  (Ans.)

 (iv) Inlet diameter of the draft tube, di :

    Inlet area of draft tube = 2Discharge 0.697 0.0687 m
Flow velocity 10.14

= =
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  ∴	 2
4 idπ 	= 

1/20.0687 40.0687, or, .id × = = π 
0 295 m  (Ans.)

 Example 2.35.   A Francis turbine supplied through a 6 m diameter penstock has the following 
particulars :
 Output of installation = 63500 kW; Flow = 117 m3/s; Speed = 150 r.p.m. Hydraulic efficiency 
= 92 per cent; Mean diameter of turbine at entry = 4 m; Mean blade height at entry = 1 m; Entry 
diameter of draft tube = 4·2 m; Velocity in tail race = 2·4 m/s.
 The static pressure head in the penstock measured just before entry to the runner is 57·4 m. The 
point of measurement  is 3 m above the level of the tail race. The loss in the draft tube is equivalent 
to 30 percent of the velocity head at entry to it. The exit plane of the runner is 2 m above the tail 
race and the flow leaves the runner without swirl. Determine :
 (i) Overall efficiency;
 (ii) Direction of flow relative to the runner at inlet;
 (iii) Pressure head at entry to the draft tube. [M.U.]

 Solution. Output of installation, P = 63500 kW
 Diameter of the penstock, Dp = 6 m
 Discharge through the turbine, Q = 117 m3/s
 Speed, N = 150 r.p.m.
 Hydraulic efficiency, hh = 92%
 Mean diameter of turbine at inlet, D1 = 4 m
 Mean blade height at entry, B1 = 1m
 Entry diameter of draft tube, di = 4·2 m
 Velocity in the tail race, Vtr = 2·4 m/s
 The static pressure head in the penstock just before 
entry to the runner = 57·4 m
 Loss of head in the draft tube = 30 per cent of the 
velocity head at entry to it.
 (i) Overall efficiency, h0 :
  Velocity in the penstock,

  Vp = 
2 2

117 4.138 m/s
6

4 4p

Q

D
= =

π π
× ×

  Velocity at entry to the draft tube,

  Ved = 
2 2

117 8.44 m/s
4.2

4 4i

Q

d
= =

π π
× ×

  Head just before entry to the runner

  
2

2
p V z
w g
+ +  = 

24.13857.4 3 61.27 m
2 9.81

+ + =
×

   (where z = 3 m    ...Given)
 Net or effective head, H = Head at entry to runner – kinetic energy in tail race

Vf1

Vr1

�

V1

u1

�

Vw1

V Vf2 2=

u2

Vr2

�

�

Runner
vane

Vw2 = 0

Fig. 2.34
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   = 
2

61.27
2

trV
g

−

	 ∴ H = 
22.461.27 60.97 m

2 9.81
− =

×

  Overall efficiency, h0 = 
Output power 63500 63500
Input power 9.81 117 60.97wQH

= =
× ×

   = 0.907 or 90.7% (Ans.)
 (ii) Direction of flow relative to the runner at inlet, θ	:

  Hydraulic efficiency, hh =	
1 1wV u

gH

  [ Vw2 = 0, since the flow leaves the runner without swirl]

 or, Vw1 = 
1

h gH
u

h ×

 where, u1 = 1 4 150 31.41 m/s
60 60
D Nπ π × ×

= =

	 ∴	 Vw1 = 
0.92 9.81 60.97 17.52 m/s

31.41
× ×

=

 From inlet velocity triangle, we have : tan θ	= 1

1 1

f

w

V
V u−

 But, Vf1 = 
1 1

117 9.3 m/s
4 1

Q
D B

= =
π π × ×

 ( Q = πD1B1 × Vf1)

	 ∴ tan θ = 
9.31 0.67 m/s

17.52 31.41
= −

−

	 ∴	 	 = tan–1 (– 0.67) = 180° – 33.82° = 146.18° (Ans.)
  (Fig. 2.34 to be modified accordingly)

 (iii) Pressure head at entry to the draft tube, (p2/w) :
 Applying Bernoulli’s equation between the entrance to the draft tube and the tail race, we 
obtain:

  
2

2 2
22

p V z
w g

+ +  = 
2 2

20 0.3
2 2

trV V
g g

+ + ×

 or,  2p
w

  =  
22 2 2

2
2

8.44 2.4– 0.7 2 07
2 2 2 9.81 2 9.81

trVVz
g g

− + = − − × +
× ×

 

[ V2 = Ved = 8·44 m/s]
   = – 2 – 2.54 + 0.29 = – 4.25 m (Ans.)

 Example 2.36.  (Outward flow reaction turbine). (a) What are the disadvantages of an 
onward-flow radial turbine as compared with a radial inward-flow turbine.
 (b) An outward reaction turbine is running at 300 r.p.m. and the rate of flow of water through 
the turbine is 7.2 m3/s. The internal and external diameters of the turbine are 2 m and 2.75 m 
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respectively. The width of the runner is constant at inlet and outlet and is equal to 300 mm. The head 
on the turbine is 216 m. The discharge at the outlet is radial. Neglecting thickness of the vanes, 
determine :
 (i) Velocities of flow at inlet and outlet, and
 (ii) Vane angles at inlet and outlet. [Anna University]
 Solution. (a) At inlet and exit of the turbine, the relative velocities (Vr1, Vr2) and blade velocities 
(u1, u2) are related as follows :

  
2 2
2 1

2
r rV V

g
−

 = 
2 2 2 2 2
2 1 2 1 2 1( )

, or,
2 2 2 2

r ru u V V u u
g g g g
− −

= +

 In case of an inward flow turbine the relative velocity decreases at exit from the turbine since  
u2 < u1. But in an outward flow turbine the relative velocity increases at outlet as u2 > u1; this aspect 
makes the task of speed control of an outward flow turbine more difficult than that of an inward 
flow turbine.
 (b)  Speed of the turbine, N = 300 r.p.m.
   Rate of flow of water, Q = 7·2 m3/s
   Internal diameter, D1 = 2 m
   External diameter, D2 = 2.75 m
  Width of runner = constant, B1 = B2 = 300 mm = 0.3 m
   Head, H = 216 m 
   Discharge at outlet  =  radial,  Vw2 = 0, Vf2 = V2
  Tangential velocity at inlet,

V Vf2 2=

u2

Vr2

�

Runner
vane

Vf1

Vr1

�

V1

u1

�

Vw1

Inlet
velocity
triangle

Outlet
velocity
triangle

B B1 2=

Vw2 =0

� = 90º

Fig. 2.35

  u1 = 1 2 300 31.4 m/s
60 60
D Nπ π × ×

= =

  Tangential velocity at outlet,

  u2 = 2 2.75 300 43.19 m/s
60 60
D Nπ π × ×

= =

 (i) Velocities of flow at inlet and outlet Vf1, Vf2 :
  The discharge (Q) through the turbine is given by,
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    Q = πD1B1Vf1 = πD2B2Vf2

 	∴  Vf1 = 
1 1

7.2 .
2 0.3

Q
D B

= =
π π × ×

3 82 m / s  (Ans.)

  and,  Vf2 = 
2 2

7.2 .
2.75 0.3

Q
D B

= =
π π × ×

2 77 m / s  (Ans.)

  Now,  head, H = 
22
21 1 1 12

2 2
fw w VV u V uV

g g g g
+ = +  ( Vw2 = 0, V2 = Vf2)

    216 = 
2

1 31.4 2.77
981 2 9.81

wV ×
+

×
,    or,    216 = 3.2 Vw1 + 0.391

  ∴	 	 Vw1	= 
(216 0.391) 67.38 m/s

3.2
−

=

 (ii) Vane angles at inlet and outlet, θ, φ :

  From inlet velocity triangle, tan θ = 1

1 1

3.82 0.1062
67.38 31.4

f

w

V
V u

= =
− −

  ∴	 	 θ = tan–1 (0.1062) = 6.06° (Ans.)

  From outlet velocity triangle, tan φ = 2

2

2.77 0.0641
43.9

fV
u

= =

 	∴	 	 φ = tan–1 (0.0641) = 3.66° (Ans.)

2.4.2. Propeller and Kaplan turbines-Axial Flow Reaction Turbines
 It has been observed that with increasing specific speed the flow tends to be axial. If water 
flows parallel to the axis of the rotation of the shaft, the turbine is known as axial flow turbine; when 
the head at inlet of the turbine is the sum of pressure energy and kinetic energy and during the flow 
of water through runner a part of the pressure energy is converted into kinetic energy, the turbine is 
known as reaction turbine. The shaft of an axial flow reaction turbine is vertical. The lower end of 
the shaft is made larger which is known as ‘hub’ or ‘boss’. The vanes are fixed on the hub and it acts 
as runner for axial flow reaction turbine. Two important axial flow reaction turbines are:
 (i) Propeller turbine, and 
 (ii) Kaplan turbine.
 In these turbines all parts such as spiral casing, stay vanes, guide vanes, control vanes, and 
draft tube are similar to mixed-flow turbines in design. But the water enters the runner in an axial 
direction and during the process of energy transfer, it travels across the blade passage in axial 
direction and leaves axially. The pressure at the inlet of the blades is larger than the pressure at the 
exit of the blades. The energy transfer is due to the reaction effect, i.e. the change in the magnitude 
of relative velocity across the blades.
 In an axial flow turbine the number of blades are fewer and hence the loading on the blade is 
larger. Smaller contact area causes less frictional loss compared to mixed flow turbines, but the 
peripheral speed of the turbine is larger. Axial flow rotors do not have a rim at the outer end like the 
Francis rotors; but the blades are enclosed in a cylindrical casing.
 The tip clearance between the blades and the cylindrical casing is small; hence the flow past 
blades can be considered two-dimensional. The water coming out from the guide vanes undergoes a 
whirl which is assumed to satisfy the law of free vortex (Vw = C/r). Accordingly the whirl is largest 
near the hub and smallest at the outer end of blade. Hence the blade is twisted along its axis.
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2.4.2.1. Propeller turbine
 The need to utilize low heads where large volume of water is available makes it essential to 
provide a large flow area and to run the machine at very low speeds. The propeller turbine is a 
reaction turbine used for heads between 4 m and 80 m. It is purely axial-flow device providing the 
largest possible flow area that will utilize a large volume of water and still obtain flow velocities 
which are not too large.
 The propeller turbine (Fig. 2.36) consists of an axial-flow 
runner with four to six or at the most ten blades of air-foil shape. 
The runner is generally kept horizontal, i.e the shaft is vertical. The 
blades resemble the propeller of a ship. In the propeller turbine, as 
in Francis turbine, the runner blades are fixed and non-adjustable. 
The spiral casing and guide blades are similar to those in Francis 
turbine. The guide mechanism is similar to that in a Francis turbine.

2.4.2.2. Kaplan turbine
 A propeller turbine is quite suitable when the load on the 
turbine remains constant. At part load its efficiency is very low; 
since the blades are fixed, the water enters with shock (at part load) 
and eddies are formed which reduce the efficiency. This defect 
of the propeller turbine is removed in Kaplan turbine. In a Kaplan turbine the runner blades are 
adjustable and can be rotated about pivots fixed to the boss of the runner. The blades are adjusted 
automatically by servomechanism so that at all loads the flow enters them without shock. Thus, a 
high efficiency is maintained even at part load. The servomotor cylinder is usually accommodated 
in the hub. Figs. 2.37 and 2.38 show the Kaplan turbine runner and Kaplan turbine (schematic 
diagram) respectively.

Shaft

Vanes

Hub

            

Hub

Runner
vane

Tail race

Draft tube

Guide vane

Scroll cassing

Shaft

Section X – X

Runner
vane

Water inlet
from penstockGuide vanes

X X

 Fig. 2.37. Kaplan turbine runner. Fig. 2.38

Fig. 2.36. Propeller turbine.
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 The Kaplan turbine has purely axial flow. Usually it has 4 to 6 blades having no outside rim. 
It is also known as a variable-pitch propeller turbine since the pitch of the turbine can be changed 
because of adjustable vanes. The Kaplan turbine behaves like a propeller turbine at full-load 
conditions.
 The scroll casing, guide mechanism and draft tube are similar to that in the Francis turbine. The 
shape of runner blades is different from that of Francis turbine. The blades of Kaplan turbine are 
made of stainless steel.
 Kaplan turbine, like every propeller turbine, is a high speed turbine and is used for smaller 
heads; as the speed is high, the number of runner-vanes is small.
 Kaplan turbines have taken the place of Francis turbines for certain medium head installations. 
Kaplan turbines with sloping guide vanes to reduce the overall dimensions are being used.

Important Kaplan Turbine Installations in India :

S.No. Scheme/Project Location (State) Source of water
1 Bhakra-Nangal Project Gangwal & Kota (Punjab) Nangal hydel
2 Hirakud Dam Project  Hirakud (Orissa) Mahanadi river
3 Nizam Sagar Project Nizam Sagar (Andhra Pradesh) Nanjira river
4 Radhanagri Hydroelectric Scheme Kolhapur (Maharashtra) Bhagvati river
5 Tungbhadra Hydroelectric Scheme Tungbadhra (Karnataka) Tungbadhra river

Differences between Francis Turbine and Kaplan Turbine :

S.No. Aspects Francis turbine Kaplan turbine
1. Type of turbine Radially inward or mixed 

flow.
Partially axial flow.

2. Disposition of shaft Horizontal or vertical Only vertical.
3. Adjustability of runner 

vanes
Runner vanes are not 
adjustable.

Runner vanes are adjustable.

4. Number of vanes Large, 16 to 24 blades Small, 3 to 8 blades
5. Resistance to be 

overcome
Large, (owing to large number 
of vanes and greater area of 
contact with water)

Less (owing to fewer number of 
vanes and less wetted area)

6. Head Medium (60 m to 250 m) Low (up to 30 m)
7. Flow rate Medium Large
8. Specific speed 50-250 250-850
9. Type of governor Ordinary Heavy duty

 Working proportions :
 The expressions for work done, efficiency and power developed by axial flow propeller and 
Kaplan turbines are identical to those of a Francis turbine, and the working proportions are obtained 
in an identical fashion. However, the following deviations need to be noted carefully:

 1. In case of a propeller/Kaplan turbine, the ratio n is taken as 
0

and notbD B
D D

 
 
 

  where, D0 = Outside diameter of the runner, and
   Db = Diameter of boss (or hub).
  Discharge, Q = Area of flow × velocity of flow
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    = 2 2
0( )

4 b fD D Vπ
− ×

    = 2 2
0( ) 2

4 b fD D K gHπ
− ×  (where, Kf = flow ratio)

  or, Q = 2 2
0 (1 ) 2

4 fD n K gHπ
− ×  ...(2.31)

     0
0

, or,b
b

D
n D nD

D
 = = 
 


  The value of n ranges from 0.35 to 0.60.
  The value of Kf   0.70.
 2. The peripheral velocity u of the runner vanes depends upon the radius of the point under 

consideration and thus the blade angles vary from the rim to the boss and the vanes are 
warped; this is necessary to ensure shock free entry and exit.
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Fig. 2.39. Comparison of efficiencies of propeller (fixed blades) and Kaplan turbines.

 3. The velocity of flow remains constant throughout.
  Fig. 2.39 shows the comparison of efficiencies of propeller (fixed blades) and Kaplan turbines.

2.4.2.3. Kaplan turbine versus Francis turbine :
  Kaplan turbine claims the following advantages over Francis turbine :
 1. For the same power developed Kaplan turbine is more compact in construction and smaller 

in size.
 2. Part-load efficiency is considerably high.
 3. Low frictional losses (because of small number of blades used).

 Example 2.37.   A Kaplan turbine develops 22000 kW at an average head of 35 m. Assuming 
a speed ratio of 2, flow ratio of 0.6, diameter of the boss equal to 0·35 times the diameter of the 
runner and an overall efficiency of 88 per cent, calculate the diameter, speed and specific speed of 
the turbine.

 Solution.  Shaft power, P = 22000 kW; Head, H = 35 m;
  Speed ratio, Ku = 2.0; Flow ratio, Kf = 0.6;
  Diameter of boss (Db) = 0.35 × diameter of the runner (D0), i.e. Db = 0.35D0;
  Overall efficiency, h0 = 88 per cent.
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 Diameter of the runner, D0 :

  Ku = 1
12.0; 2.0 2 2.0 2 9.81 35 52.4 m/s

2
u u gH
gH

= = × = × × × =

  Kf = 1
10.6, or, 0.6 2

2
f

f
V

V gH
gH

= = ×

   = 0.6 2 9.81 35 15.7 m/s× × × =

Boss

Runner

Db

Do

Fig. 2.40

 Overall efficiency,

  h0 = 
Shaft power (P) 22000

Water power wQH
=

 or, 0.88 = 
22000

9.81 35Q× ×

  Q = 322000 72.8 m /s
0.88 9.81 35

=
× ×

 Also  Q  =  Area of flow × velocity of flow

   = 2 2
0 1( )

4 b fD D Vπ
× − ×

 or, 72.8 = 2 2
0 0[ (0.35 ) ] 15.7

4
D Dπ

− ×  [ Db = 0.35 D0]

   = 2 2 2
0 0[1 0.35 ] 15.7 10.82

4
D Dπ

− × =

	 ∴	 D0 = 
1/272.8 .

10.82
 
 
 

2 6 m  (Ans.)

 Speed of the turbine, N :

  u1 = 0 1

0

60 60 52.4, or, . . . .
60 2.6
D N uN

D
π ×

= = =
π π ×

384 9 r p m (Ans.)

 Specific speed of the turbine, Ns :

  Ns = 5/4 5/4
384.9 22000 .

(35)
N P
H

×
= = 670 6 (Ans.)
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 Example 2.38.   The following data pertain to a Kaplan turbine :
 Power available at shaft = 22500 kW; Head = 20 m; Speed = 150 r.p.m. Hydraulic efficiency 
= 95 %; Overall efficiency = 88 %; Outer diameter of runner = 4·5 m; Diameter of the hub = 2 m.
 Assuming that the turbine discharges without whirl at 
exit, determine the runner vane angles at the hub and at 
the outer periphery.

 Solution.  Shaft power, P = 22500 kW
  Head, H = 20 m
  Speed, N = 150 r.p.m.
  Hydraulic efficiency, hh = 95%
  Overall efficiency, h0 = 88%
  Outer diameter of runner, D0 = 4·5 m
  Diameter of the hub, Db = 2 m
 Overall efficiency,  

 h0 = 
0

Shaft power (P) 22500 22500, or,
Water power

Q
wQH wH

= =
h

	 ∴ Discharge,

  Q = 322500 130.32 m /s
0.88 9.81 20

=
× ×

 Also, Q = 2 2
0 1( )

4 b fD D Vπ
− ×

 or, 130.32 = 2 2
1(4.5 2 )

4 fVπ
− ×

	 ∴	 Vf1 = 
2

130.32 10.21 m/s
(4.5 2 )

4

=
π
× −

 Vane angles at hub :

  u1 = 
2 150 15.7 m/s

60 60
bD Nπ π × ×

= =

 Hydraulic efficiency, hh = 1 1
1

1

0.95 9.81 20, or, 11.87 m/s
15.7

w h
w

V u gH
V

gH u
h × ×

= = =

 From inlet velocity triangle, tan (180° – θ) = 1

1

10.21 2.26
15.7 11.87

f

w

V
u V

= =
− −

	 ∴	 180° – θ = tan–1 (2.66) = 69.4°
	 ∴	Runner vane angle at inlet, θ = 180° – 69.4° = 110.6° (Ans.)

 From outlet velocity triangle,  tan φ	= 2 1

2 1

10.21 0.6503
15.7

f fV V
u u

= = =

∴	Runner vane angle at exit, φ = tan–1 (0.6503) = 33.03° (Ans.)

Vr2

�

Vw2 = 0

V V Vf f2 1 2= =

Inlet velocity
triangle

�

Runner vane

Vf1

Vr1

�

V1

�

Vw1

u1

u2

Outlet
velocity
triangle

Fig. 2.41



Chapter 2 : Hydraulic Turbines         127

Vane angles at extreme edge of the runner (outer periphery) :

  u1 = 0 4.5 150 35.34 m/s
60 60
D Nπ π × ×

= =

  Hydraulic efficiency, hh = 1 1wV u
gH

  0.95 = 1
1

35.34 0.95 9.81 20, or, 5.27 m/s
9.81 20 35.34
w

w
V

V
× × ×

= =
×

 From inlet velocity triangle, tan (180° – θ) = 1

1 1

10.21 0.339
35.34 5.27

f

w

V
u V

= =
− −

 or, (180° – θ) = tan–1 (0.339) = 18.72°
	 ∴	Runner vane angle at inlet, θ = 180° – 18.72° = 161.28° (Ans.)

 From outlet velocity triangle,  tan φ = 2 1

2 1

10.21 0.2889
35.34

f fV V
u u

= = =

	 ∴	Runner vane angle at exit, φ = tan–1 (0.2889) = 16.11° (Ans.)

 Example 2.39.   Calculate the diameter and speed of the runner of a Kaplan turbine developing 
6000 kW under an effective head of 5 m. Overall efficiency of the turbine is 90%. The diameter of 
the boss is 0·4 times the external diameter of the runner. The turbine speed ratio is 2·0 and flow 
ratio 0·6. What is the specific speed of the turbine? [UPSC]

 Solution. Given : Power developed, P = 6000 kW; H = 5m; h0 = 90%;
 Db = 0.4D0; Speed ratio, Ku = 2.0; Flow ratio, Kf = 0.6.

 Diameter (D0) and speed (N) of the runner :

  Ku = 12.0
2
u
gH

= , or, u1 = 2 2 9.81 5 19.81 m/s× × =

  Kf = 10.6
2

fV

gH
= , or, Vf1 = 0.6 2 9.81 5 5.94 m/s× × =

 Also, h0	 = 	
P

wQH

 or, Q = 36000 1000 135.9 m /s
0.9 9810 5

P
wH0

×
= =

h × ×

 But, Q = 2 2
0 1( )

4 b fD D Vπ
− ×

 or, 135.9 = 22 2
00 0 5.94 (1 0.16) 5.94(0.4 ) DD D

π π  × = − ×− 4 4

	 ∴	 D0	=	
1/2135.9 4 .

(1 0.16) 5.94
×  = π − × 

5 89 m  (Ans.)

 Now, u1 = 0

60
D Nπ
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 or, N = 1

0

60 19.81 60 .
5.89

u
D
× ×

= =
π π ×

64 23 r.p.m.  (Ans.)

 Specific speed of the turbine, Ns :

  Ns = 5/4
N P
H

   = 5/4
64.23 6000 .

(5)
= 665 4  (Ans.)

 Example 2.40.   The propeller reaction turbine of runner diameter 4.5 m is running at 48 r.p.m. 
The guide blade angle at inlet is 145° and the runner blade angle at outlet is 25° to the direction of 
vane. The axial flow area of water through the runner is 30 m2. If the runner blade angle at inlet is 
radial, determine :
 (i) Hydraulic efficiency of the turbine,
 (ii) Discharge through the turbine, and 
 (iii) Power developed by the runner. [Roorkee University]

 Solution.  Diameter of the runner, D0  =  4·5 m
    Speed of the runner, N  =  48 r.p.m.
    Guide blade angle, α  =  145°
   Runner blade angle at inlet is radial i.e. θ  =  90°, Vf1 = Vr1
    Runner blade angle at outlet, φ  =  25°
    Area of flow, Af  =  30 m2

 (i) Hydraulic efficiency of the turbine, hh :

�

V Vf r1 1= V1

�

u V1 1= w

u2 Vw2

�

Vr2

Vf2V2

�

Runner vane

Direction of motion

� = 25º

� = 145º

� = 90º

Inlet velocity triangle

Outlet velocity triangle

Fig. 2.42

   Vf1 = Vf2 , because area of flow is constant.

  The tangential speed of turbine at inlet, u1 = 0 4.5 48 11.31 m/s
60 60
D Nπ π × ×

= =
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  Also, u2 = u1 = 11.31 m/s
  From inlet velocity triangle, we have:

   tan (180° – α) = 1 1

1 1
, or, tan (180 145 )f fV V

u u
° − ° =

 	 ∴	 Vf1 = u1 × tan 35° = 11.31 × tan 35° = 7.92 m/s

  Also, Vw1 = u1 = 11.31 m/s
  From outlet velocity triangle, we have:

   tan φ = 2

2 2 2

7.92
11.31

f

w w

V
u V V

=
+ +

  (Vf2 = Vf1; u2 = u1)

 	 ∴	 tan 25°  = 2
2

7.92 7.92, or, 11.31 16.98
11.31 tan 25w

w
V

V
+ = =

+ °

 	 ∴	 Vw2 = 16.98 – 11.31 = 5.67 m/s

 	 ∴	 V2 = 2 2 2 2
2 2 7.92 5.67 9.74 m/sf wV V+ = + =

  Also, H = 
2

2
1 1 2 2

1 ( )
2w w
VV u V u

g g
− +

  (Negative sign is taken since the absolute velocities at inlet and outlet are in the same direc-
tion and so are the velocities of whirl).

 	∴	 	 H	= 
21 9.74(11.31 11.31 5.67 11.31) 6.5 4.83 11.33 m

9.8 2 9.81
× − × + = + =

×

  ∴	Hydraulic efficiency, hh = 1 1 2 2w wV u V u
gH
−

     = 
(11.31 11.31 5.67 11.31) 0.575

9.81 11.33
× − ×

=
×

  or   57.5% ( Ans.)

 (ii) Discharge through the turbine, Q :
    Q = Area of flow × velocity of flow = Af × Vf1
     = 30 × 7.92 = 237.6 m3/s (Ans.)

 (iii) Power developed by the turbine :

   Power developed by the turbine = 1 1 2 2( )w w
wQ V u V u
g

−

     = 
9.81 237.6 (11.31 11.31 5.67 11.31) .

9.81
×

× − × = 15156 12 kW  (Ans.)

2.5.   DERIAZ TURBINE

 Fig. 2.43 shows a schematic view of a Deriaz (or diagonal) turbine which is a reaction turbine. 
It is named in the honour of its inventor P. Deriaz. This turbine is intermediate between the mixed-
flow and the axial-flow turbines, because the flow of water as it passes through the runner is at an 
angle of 45° to axis and hence it is also known as Diagonal turbine. Deriaz turbine has the following 
features :
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	 l It can be employed for the heads varying from 30 
m to 150 m.

	 • The blades of the runner are pivoted to the hub and 
unlike in the Kaplan turbines, the axes of the blades 
are inclined to the axis of shaft. The direction of 
flow of water is as in the Francis runner.

 l  Guide vanes are provided ahead of the blades to 
regulate and direct the flow.

 l The runner has no outer rim connecting all the 
blades as these blades are movable.

 l The casing of the turbine (not shown in Fig. 2.43) is 
so shaped that there is only small clearance between the blade tips and the casing to reduce 
leakage loss.

 The runner of the Deriaz turbine is so shaped that it can be used both as a turbine as well as a 
pump and hence it may be classified as a reversible type turbine. As such Deriaz turbines are amply 
suitable for pumped storage hydropower plants.

 Advantages of Deriaz turbine :
 The Deriaz turbine entails the following advantages :
 1. Improved part load efficiency.
 2. Can be conveniently used as a pump-turbine unit.
 3. By adjusting the runner to shut position the starting torque under water can be reduced.
 4. Unlike axial flow turbines at shut position the flow area is completely closed.
 5. Due to oblique location of blades the loading on the outer trunnion journal bearing is reduced.
 6. The arrangement for varying the blade angle can be housed with greater convenience as 

compared to the Kaplan turbine.

2.6.   TUBULAR OR BULB TURBINES 

 Invariably the electric generator coupled to the Kaplan turbine is enclosed and works inside 
a straight passage having the shape of a bulb. The water tight bulb is submerged directly into a 
stream of water, and the bends at inlet to casing, draft tube, etc. which are responsible for the loss 
of head are dispensed with. The unit then needs less installation space with a consequent reduction 
in excavation and other civil engineering works. These turbines are referred to as tubular or bulb 
turbines. The tubular turbine, a modified axial flow turbine, was developed in Germany by Arno 
Fischer in 1937. The economical harnessing of fairly low heads on major rivers is now possible with 
high-output bulb turbines. The following features are worth noting :
 • A tubular bulb turbine is an axial flow turbine with either adjustable or non-adjustable 

runner vanes (and hence similar to Kaplan or propeller turbines).
	 • In such a turbine the scroll casing is not provided but the runner is placed in a tube extending 

from head water to the tail water (and hence it is called tubular turbine).
	 • It is a low head turbine and is employed for heads varying from 3 m to 15 m.
	 •	 The disposition of shaft in a tubular turbine may be vertical, or inclined or horizontal.
 The turbo-generator set using tubular turbine has an outer casing having the shape of a bulb. Such 
a set is now termed as bulb set and the turbine used for the set is called a bulb turbine (Fig. 2.44). 
The advantages and disadvantages of bulb sets compared to Kaplan turbines are as follows :

Shaft

Hub

Adjustable
blades

Fig. 2.43. Deriaz turbine.
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 Advantages :
 The bulb sets claim the following advantages over the Kaplan turbines.
 1. Due to absence of spiral casing the plant width is small.
 2. Can be used for the sites having very low head.
 3. Because of almost straight flow and straight draft tube the maximum turbine efficiency is 

increased by about 3 per cent.
 4. Bulb units can pass higher discharge (than conventional Kaplan turbine) under equivalent 

conditions.
 5. At part loads there is reduced loss of efficiency.
 6. Quite suitable for operation on widely varying heads.
 7. Because of small dimensions of the power house there is saving in excavation and civil 

engineering works.
 Disadvantages :
 1. Leakage of water into generator chamber 

and condensation are source of trouble 
(leading to gradual deterioration of 
electrical insulation).

 2. The erection techniques may be time 
consuming.

 The use of bulb turbines offers the saving 
in the equipment of low head developments and 
great flexibility of operation and hence are highly 
suitable for tidal power station.

2.7.   RUNAWAY SPEED

 Runaway speed is the maximum speed, governor being disengaged, at which a turbine would 
run when there is no external load but operating under design head and discharge. All the rotating 
parts including the rotor of alternator should be designed for the centrifugal stresses caused by this 
maximum speed.
 The practical values of run away speeds for various turbines with respect to their rated speed N 
are as follows :
 Pelton wheel ...1.8 to 1.9 N
 Francis turbine (mixed flow) ...2.0 to 2.2 N
 Kaplan turbine (axial flow) ...2.5 to 3.0 N

2.8.   DRAFT TUBE

 In the case of mixed and axial flow turbines only a part of available energy is converted 
into velocity energy at the inlet to the runner; the rest is in the form of pressure energy. This 
residual pressure is converted into velocity in the runner, as a consequence of which the outlet 
velocity increases. With the increase in the value of specific speed Ns, the exit velocity energy 

2
2

2
V

g
 increases compared with H (the available energy).

 In the Pelton wheel all the available energy is converted into velocity energy before it strikes 
the wheel. As such it works under atmospheric conditions and the wheel has to be placed above the 
maximum tail water level. The loss of energy due to exit velocity varies from 1 to 4% .

Turbine
Generator

Conical
draft tube

Fig. 2.44. Bulb turbine.
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 In the case of mixed and axial flow turbines a large portion of the energy is associated with the 
water as it leaves the runner. This exit energy varies from 4 to 25% for mixed flow turbines and 
from 20 to 50% of the total head for axial flow turbines. As this energy cannot be used in the runner, 
therefore, it becomes necessary to find a way out to extract this energy. An expanding pressure 
conduit hermetically fixed at runner outlet and having the other end below the minimum tail water 
level helps to convert the velocity head into pressure or potential head. This expanding device is 
called draft tube. Draft tube is an integral part of mixed and axial flow turbines. Because of the 
draft tube it is possible to have the pressure at runner outlet much below the atmospheric pressure.
The draft tube serves the following two purposes :
 1. It allows the turbine to be set above tail-water level, without loss of head, to facilitate  

inspection and maintenance.
 2. It regains, by diffuse action, the major portion of the kinetic energy delivered to it from the 

runner.
 At rated load, the velocity at the upstream end of the tube for modern units ranges from 7 to 9 m/s, 
representing from 2.7 to 4.8 m head. As the specific speed (it is the speed of a geometrically similar 
turbine running under a unit head and producing unit power) is increased and the head reduced, it 
becomes increasingly important to have an efficient draft tube. Good practice limits the velocity at the 
discharge end of the tube from 1.5 to 2.1 m/s, representing less than 0·3 m velocity head loss.

2.8.1. Draft Tube Theory
 Consider a turbine fitted with a draft tube (conical) as shown in Fig. 2.45.
 Let, y = Distance of the bottom of draft tube from tail race, and
  pa = Atmospheric pressure at the surface of tail race.
 Applying Bernoulli’s equation to the section 2-2 (representing the runner exit or inlet of the 
draft tube) and the section 3-3 (representing the draft tube exit); assuming section 3-3 as the datum 
line, we have:

Turbine casing

Inlet of the draft tube

Draft tube

Atmospheric
pressure ( )pa

3V3

Outlet of draft tube

Tailrace

3

y2

Hs

2 2V2

y

Fig. 2.45.  Draft tube theory.

  
2

2 2
22

p V y
w g

+ +  = 
2

3 3 0
2 f

p V
h

w g
+ + +  ...(i)

 where, hf =  Loss of energy between sections 2-2 and 3-3.

 Rewriting the above expression (i) for 2p
w

, we obtain:
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  2p
w

 = 
2 2

3 2 3
2 2 f

p V V
y h

w g
 −

− − − 
 

 ...(ii)

 Substituting 3 ap p
y

w w
= +  in expression (ii), we get:

  2p
w

 = 
2 2

2 3
2( )

2
a

f
p V V

y y h
w g

 −
+ − − − 

 
 The term (y2 – y) which represents the vertical distance between the runner exit and the tail 
water level is called the suction head of draft tube and is denoted by Hs. Correspondingly the 

factor 
2 2

2 3

2
V V

g
−

 is called the dynamic head.

	 ∴	 2p
w

 = 
2 2

2 3

2
a

s f
p V V

H h
w g

 −
− − − 

 
 ...(2.32)

 In eqn. (2.32), 2p
w

 is less than atmospheric pressure.

 The efficiency of a draft tube (hd ) is defined as the ratio of net gain in pressure head to the 
velocity head at entrance of draft tube. Thus,

  hd = 
Net gain in pressure head

Velocity head at entrance of draft tube

   = 

2 2
2 3

2
2

2

2

f
V V h

g
V

g

 −
− 

   ...(2.33)

 where, V2 = Velocity of water at section 2-2 (inlet of draft tube), and
  V3 = Velocity of water at section 3-3 (outlet of draft tube).

  hf = 
2 2 2

2 3 2

2 2
−

− h ×d
V V V

g g
 ...2.33 (a)

2.8.2. Types of Draft Tubes

 The following two types of draft tubes are commonly used :
 1. The straight conical or concentric tube.
 2. The elbow type.
 Properly designed, the two types are about equally efficient, over 85 per cent.
 1. Conical type. The conical type draft tube is generally used on low-powered units for all 
specific speeds, frequently, on large-head units. The side angle of flare ranges from 4 to 6°, the 
length from 3 to 4 times the diameter and the discharge area from four to five times the throat area.  
Fig. 2.46 shows a straight conical draft tube.
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Tail race

 
 Fig. 2.46. Straight conical draft tube. Fig. 2.47. Elbow type draft tube.

 2. Elbow type. The elbow type of tube is used with most turbine installations. This type of 
draft tube is designed to turn the water from the vertical to the horizontal direction with a minimum 
depth of excavation and at the same time having a high efficiency. The transition from a circular 
section in the vertical leg to a rectangular section in the horizontal leg takes place in the bend. The 
horizontal portion of the draft tube is generally inclined upwards to lead the water gradually to the 
level of the tail race and to prevent entry of air from the 
exit end. The exit end of the draft tube must be totally 
immersed in water. Fig. 2.47 shows an elbow type draft 
tube. One or two vertical piers are placed in the horizontal 
portion of the tube, for structural and hydraulic reasons.
 Moody’s spreading draft tube. Fig. 2.48 shows a 
Moody’s spreading draft tube. It is provided with a solid 
central core of conical shape which reduces whirling 
action of discharged water. The efficiency of such a draft 
tube is about 85%. It is suited particularly for helical 
flows which occur when the water leaves the runner with 
a whirl component.
 Example 2.41.   A Kaplan turbine develops 1500 kW under a head of 6 m. The turbine is set 2.5 
m above the tail race level. A vacuum gauge inserted at the turbine outlet records a suction head of 
3·1 m. If the hydraulic efficiency is 82 per cent, what would be the efficiency of draft tube having 
inlet diameter of 3 m ?
 What will be the reading of suction gauge if power developed is reduced to 750 kW, the head 
and speed remaining constant.

 Solution. Power developed = 1500 kW;   Head, H = 6 m
 Height of turbine above tail race level = 2·5 m;  Hydraulic efficiency, hh = 82%
 Draft tube inlet diameter, di = 3 m.
 Efficiency of draft tube, hd :

  Hydraulic efficiency, hh = 
Power developed Power developed

Water power wQH
=

	 ∴  Power developed = wQH × hh

  1500 = 9.81 × Q × 6 × 0.82,   or,  31500 31.08 m /s
9.81 6 0.82

Q = =
× ×

 Velocity of water at inlet of draft tube,

  V2 = 
2 2

31.08 4.397 m/s
3

4 4i

Q

d
= =

π π
×

  Pressure head required = 3.1 – 2.5 = 0.6 m

Solid conical
core

Fig. 2. 48. Moody’s spreading draft tube 
or ‘Hydrocone’.

Vertical leg

Horizontal leg
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	 ∴	Efficiency of draft tube, hd  = 2 2
2

0.6 0.6 0.6088
4.397
2 9.812

V
g

= =

×

 or 60.88% (Ans.)

 Reading of suction gauge :
 For reduced output of 750 kW assuming constant efficiency, we have:

          Discharge, Q1 = 331.08 15.54 m /s
2 2
Q

= =

 Also, V2 = 
2

15.54 2.198 m/s
3

4

=
π
×

  Head gained in draft tube  = 
22.198

2d g
h ×

   = 
22.1980.6088 0.15 m

2 9.81
×

×


	 ∴		 Reading of gauge = 2.5 + 0.15 = 2.65 m (Ans.)

 Example 2.42.   Determine the overall efficiency of a Kaplan turbine developing 2850 kW 
under a head of 5·2 m. It is provided with a draft tube with its inlet (diameter 3 m) set 1·8 m above 
the tail race level. A vacuum gauge connected  to the draft tube indicates a reading of 5·2 m of 
water. Assume draft tube efficiency as 75 per cent.

 Solution. Power developed = 2850 kW;  Head, H = 5.2 m
 Height of draft inlet tube above tail race level, Hs = 1.8 m
 Reading of the gauge = – 5.2 m
 Draft tube efficiency, hd = 75%
 Overall efficiency of the turbine, h0 :

   2p
w

 = 
2 2

2 3

2
a

s f
p V V

H h
w g

 −
− − − 

 
 ...[Eqn. (2.32)]

   – 5.2 = 
2 2

2 30 1.8
2

V V
g

 −
− −  

 
, neglecting hf  ( head loss in draft tube )

 or, 
2 2

2 3

2
V V

g
−

 = 3.4

 Also, hd = 
2 2

2 3
2

2

( ) / 2
( / 2 )

V V g
V g
−

 ...[Eqn. (2.33)]

 or, 0.75 = 
2

2
2

2

3.4 3.4, or, 4.533
2 0.75( / 2 )
V

gV g
= =

	 ∴	 V2 = 4.533 2 4.533 2 9.81 9.43 m/sg× = × × =

   Discharge, Q = 2 33 9.43 66.65 m /s
4
π
× × =

	 ∴		Overall efficiency, h0 = 
Power developed 2850

Water power wQH
=
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   = 
2850 0.8382

9.81 66.65 5.2
=

× ×
   or   83.82% (Ans.)

 Example 2.43.  A conical draft tube having inlet and outlet diameters 1.2 m and 1.8 m 
discharges  water at outlet with a velocity of 3 m/s. The total length of the draft tube is 7.2 m and 
1·44 m of the length of draft tube is immersed in water. If the atmospheric pressure head is 10.3 m 
of water and loss of head due to friction in the draft tube is equal to 0.2 × velocity head at outlet of 
the tube, determine :
 (i) Pressure head at inlet, and
 (ii) Efficiency of the draft tube.

 Solution. Inlet diameter of the draft tube, di  = 1.2 m
  Outlet diameter, d0  =  1.8 m
  Velocity at outlet, V3  =  3 m/s
  Total length of draft tube, Hs + y  =  7.2 m
  Length of draft tube in water, y  =  1.44 m

In t of
draft tube

le

Draft tube

pa

V3

Outlet of
draft tube

3

Hs

2
V2

y = (1.44 m)

7.2 m

di

d0

Tail
race

Fig. 2.49

	 ∴		 	 Hs = 7.2 – 1.44 = 5.76 m

   Atmospheric pressure head, ap
w

 = 10.3 m

 Loss of head due to friction,
    hf = 0.2 × velocity head at outlet

     = 
2

30.2
2
V

g

 (i) Pressure head at inlet, 2p
w

:

  Discharge through the draft tube,

    Q = 2 2
3 3 0 3 1.8 3 7.634 m/s

4 4
A V d Vπ π

= × × = × × =

    Velocity of inlet, V2 = 
2 22

7.634 7.634 6.75 m/s
1.2

4 4i

Q
A d

= = =
π π

×

  Using eqn. (2.32), 
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   2p
w

 = 
2 2 2 2 2

2 3 2 3 30.2
2 2 2

a a
s f s

p V V p V V V
H h H

w g w g g
   − −

− − − = − − −   
   

    = 
2 2 26.75 3 310.3 5.76 – 0.2

2 9.81 2 9.81
 −

− − × 
× × 

 or,  2p
w

 = 4.54 – (1.863 – 0.092) = 2.769 m (abs) (Ans.)

 (ii) Efficiency of the draft tube, hd :

   hd = 

2 2 2 222 2 2
2 3 3 322 3 3

2 2 2
2 2 2

0.20.2
2 2 2 22 2

2 2 2

f
V V V VVV V Vh

g g g gg g
V V V

g g g

   − −− − +−   
   = =

    = 
2 2

3

2

31 1.2 1 1.2 0.763
6.75

V
V
   − = − =     

,   or,   76.3 % (Ans.)

 Example 2.44.   A reaction turbine and its draft tube have a vertical axis. The pressure head 
in the spiral casing at inlet is 48 m above atmospheric pressure and the velocity of water is 6 m/s. The 
water flow through the tube is 2.1 m3/s, and the hydraulic and overall efficiencies are 83 per cent 
and 80 per cent respectively. The top of the draft tube is 1.2 
m below the centre line of the spiral casing while the tail 
race is 3.9 m below the top of the draft tube. The diameter 
of the draft tube at inlet is 0·75 m and that at the tail race 
level 1.05 m. Determine :
 (i) Total head across the turbine,   (ii)  Shaft power,
 (iii) Head lost in friction in turbine and draft tube, and
 (iv) Power lost in mechanical friction.

 Solution. Pressure head in the spiral casing = 48 m 
(above atmospheric pressure)
  Velocity of water, V = 6 m/s
  Discharge through the draft tube, Q = 2.1 m3/s
  Hydraulic efficiency, hh = 83%
  Overall efficiency, h0 = 80%
  Inlet diameter of draft tube, di = 0.75 m
  Outlet Diameter, d0 = 1.05 m
 (i) Total head across the turbine :
  Total head across the turbine above the tail race level = Total head in the spiral casing 

measured above the tail race.

  or, H = 
2

(1.2 3.9)
2

p V
w g
+ + +

    = 
2648 (1.2 3.9) .

2 9.81
+ + + =

×
54 93 m  (Ans.)

Turbine

1.2 m

Tail race

V'

3.9 m

V
Draft tube

Fig. 2.50
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 (ii) Shaft power, P :
   P = h0 × wQH = 0.8 × 9.81 × 2.1 × 54.93
    = 905.3 kW (Ans.)
 (iii) Head lost in friction in turbine and draft tube, (hft + hfd) :

   V′ = 2 22 00

4 4 2.1 2.425 m/s
1.05

4

Q Q
dd

×
= = =

π π π ×

  Head utilized by the turbine 
2

2ft fd
VH h h

g
′

− − −

    = 
22.42554.93 ( ) 54.63 ( )

2 9.81ft fd ft fdh h h h− + − = − +
×

 

  (where, hft and hfd  are the heads lost due to friction in the turbine and draft tube respectively.)

   Hydraulic efficiency, hh = 
Head utilized by the turbine
Head supplied to the turbine

   0.83 = 
54.63 ( )

54.93
ft fdh h− +

  or, hft + hfd = 54.63 – 0.8 × 54.93 = 10.68 m (Ans.)

 (iv) Power lost in mechanical friction, Pf :
  Power developed by the runner = Shaft power (P) + power lost in mechanical friction (Pf) 
    = P + Pf

   Mechanical efficiency, hm = 
Shaft power

Power developed by the runner

  or, hm = 
f

P
P P+

  But, h0 = 0 0.8, or, 0.9638
0.83h m m

h

h
h × h h = = =

h

 	 ∴	 0.9638 = 
905.3 ,

905.3 fP+
   or,    0.9638 (905.3 + Pf) = 905.3

  or, Pf = 
905.3 905.3
0.9638

− = 34 kW (Ans.)

2.9.   SPECIFIC SPEED

 The specific speed of a turbine is defined as the speed of a turbine which is identical in shape, 
geometrical dimensions, blade angles, gate opening, etc. which would develop unit power when 
working under a unit head.
 The specific speed may be derived as follows :
 The overall efficiency (h0) of any turbine is given by,

  h0 = 
Power available at the shaft of the turbine (shaft power)
Power supplied at the inlet of the turbine (water power)
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   = 
P

wQH
 ...(i)

 where, P = Shaft power,
  Q = Discharge through turbine,
  H = Head under which turbine is working, and
  w = Weight density of water.
 From eqn. (i), P = h0 × wQH
 or, P ∝ Q × H (as h0 and w are constant.) ...(ii)
 Now, let D = Diameter of actual turbine,
  N = Speed of actual turbine,
  u = Tangential velocity of the turbine,
  Ns = Specific speed of the turbine, and
  V = Absolute velocity of water.
 Then relation between V, u and H is as given below :

  u ∝ V   where, V H∝

 or,  u ∝ H  ...(iii)
 But the tangential velocity u is given by:

  u = 
60
DNπ

 or, u ∝ DN ...(iv)
	 ∴ From eqns. (iii) and (iv), we have:

  H  ∝ DN

 or, D = 
H

N
 ...(v)

 The discharge (Q) through the turbine is given by:
  Q = Area × velocity
 But, Area ∝ B × D      (where, B = width)
	 ∴	 	 ∝ D2 ( B ∝ D)

	 ∴	 Q ∝ 2D H

	 	 	 ∝	
2

H H
N

 
 
 

	 From eqn. ( ), Hv D
N

 
∝ 

 


   ∝ 
3/2

2 2
H HH
N N

∝

 Substituting the value of Q in eqn. (i), we get:

  P ∝ 
3/2 5/2

2 2
H HH
N N

× ∝

	 ∴	 P = 
5/2

2
HK
N

 where, K = constant of proportionality.
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 If, P = 1 kW and H = 1 m, the speed N = specific speed Ns , then by substituting these values in 
the above equation, we get:

  1 = 
5/2

2
2

(1) , or, s
s

K N K
N
×

=

	 ∴	 P = 
5/2 2

2 2
2 5/2, or,s s

H N PN N
N H

=

	 ∴	 Ns = 5/4
N P
H

 ...(2.33)

 where, P is in kW and H in metres.
 [Ns (S.I units) = 0.86 Ns (metric)]
	 l Specific speed plays an important role in the selection of the type of turbine. By knowing 

the specific speed of turbine the performance of the turbine can also be predicted.
	 l	 If a runner of high specific speed is used for a given head and power output, the  overall 

cost of installation is lower. The selection of too high specific speed reaction runner would 
reduce the size of the runner to such an extent that the discharge velocity of water into the 
throat of draft tube would be excessive. This is objectionable because a vacuum may be 
created in the extreme case.

 l The runner of too high specific speed with high available head increases the cost of turbine 
on account of high mechanical strength required. The runner of too low specific speed with 
low available head increases the cost of generator due to the low turbine speed.

	 l An increase in specific speed of turbine is accompanied by lower maximum efficiency and 
greater depth of excavation of the draft tube. In choosing a high specific speed turbine, an 
increase in cost of excavation of foundation and draft tube should be considered in addition to 
the efficiency. The weighted efficiency over the operating range of turbine is more important 
in the selection of a turbine instead of maximum efficiency.

 Note :  For Ns –range refer to Table 2.2.  (P-163). e:

 Example 2.45.   A turbine is to operate under a head of 25 m at 200 r.p.m . The discharge is  
9 m3/s. If the overall efficiency is 90 per cent, determine :
 (i) Power generated;           (ii)  Specific speed of the turbine;
 (iii) Type of turbine. [N.U.]

 Solution. Head, H = 25 m;  Speed, N = 200 r.p.m.;
 Discharge, Q = 9 m3/s;  Overall efficiency, h0 = 90%.
 (i) Power generated, P :
   P = h0 × wQH = 0.9 × 9.81 × 9 × 25 = 1986.5 kW (Ans.)

 (ii) Specific speed of the turbine, Ns :

   Ns = 5/4 5/4
200 1986.5 . . . .

(25)
N P
H

×
= = 159 4 r p m  (Ans.)

 (iii) Type of Turbine :
  As the specific speed lies between 80 and 400 (Refer to table 2.2), the turbine is a Francis 

turbine.   (Ans.)
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 Example 2.46.    A  Pelton wheel generates 8000 kW under a net head of 130 m at a speed of 
200 r.p.m. Assuming the co-efficient of velocity for the nozzle 0.98, hydraulic efficiency 87 percent, 

speed ratio 0.46, and  jet diameter to wheel diameter ratio 1
9 , determine :

 (i) Discharge required, (ii) Diameter of the wheel,
 (iii) Diameter and number of jets required, and (iv) Specific speed.
  Mechanical efficiency is 75 per cent.   [GATE]

 Solution.  Power generated (shaft power), P = 8000 kW
    Net head, H  = 130 m
    Speed, N  =  200 r.p.m.
    Co-efficient of velocity, Cv  =  0.98
    Hydraulic efficiency, hh  =  87%
    Speed ratio, Ku  =  0.46

                       Jet diameter to wheel diameter, 
1
9

d
D

=

    Mechanical efficiency, hm  =  75 %
 (i) Discharge required, Q :
   Overall efficiency, h0  =  hh × hm = 0.87 × 0.75 = 0.6525

  Also, h0 = 
Shaft power
Water power

P
wQH

=

 	 ∴	 Q = 
0

8000 .
0.6525 9.81 130

P
wH

= =
h × ×

39 614 m / s (Ans.)

 (ii) Diameter of the wheel, D :

   Speed ratio, Ku = 1 1, or, 0.46
2 2 9.81 130
u u
gH

=
× ×

 	 ∴	 u1 = 0.46 2 9.81 130 23.23 m/s× × =

  Also, u1 = 160
, or,

60
uDN D

N
π

=
π

  or, D = 
60 23.23 .

200
×

=
π ×

2 218 m (Ans.)

 (iii) Diameter and number of jets required :

   
d
D

 = 
1 2.218; 0.2464 m
9 9 9

Dd = = = or   246.4 mm (Ans.)

 	 ∴		 Area of jet, a = 2 2 2(0.2464) 0.04768 m
4 4

dπ π
× = × =

   Velocity of the jet, V = 2 0.98 2 9.81 130 49.5 m/svC gH = × × 

 	 ∴		Discharge through one jet, q = a × V = 0.04768 × 49.5 = 2.36 m3/s

 	 ∴		 Number of jets  = 
9.614 4.07
2.36

Q
q
= = say 4 (Ans.)
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 (iv) Specific speed, Ns :

   Ns = 5/4 5/4
200 8000 . . . .

(130)
N P
H

×
= = 40 75 r p m (Ans.)

 Example 2.47.   Give the range of specific speed values of the Kaplan, Francis turbines and 
Pelton wheels. What factors decide whether Kaplan, Francis or a Pelton wheel type turbine would 
be used in a hydroelectric project.   [UPSC]

 Solution. 	 • The specific speed of a turbine is defined as the speed of a turbine which is 
identical in shape, geometrical dimensions, blade angles, gate opening, etc. which would develop 
unit power when working under a unit head.
 • Based on specific speed, the turbines for the project are selected as shown in the Fig. 2.51.
 • In general, the selection of a turbine for hydroelectric project is based on the following 

considerations :

H
ea

d
(m

)

0
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500

2000

100 300 500 700

Specific speed (N )s

1 jet

2 jet 3 jet

Pelton wheel

Francis turbine

Kaplan turbine

Fig. 2.51

 1. For high heads, Pelton wheels are invariably selected.
 2. For intermediate heads, Francis turbines are selected.
 3. For low head and high discharge, Kaplan turbines are selected.

 Example 2.48.   In a hydroelectric station, water is available at the rate of 175 m3/s under a 
head of 18 m. The turbines run at a speed of 150 r.p.m. with overall efficiency of 82%. Find the 
number of turbines required if they have the maximum specific speed of 460. [GATE]

 Solution. Given : Q = 175 m3/s;  H = 18 m;  N = 150 r.p.m.;  h0 = 82%;  Ns = 460.
 Number of turbines required :

  Specific speed of the turbine, = 5/4
N P
H

 ...[Eqn. (2.33)]

  460 = 5/4
150
(18)

P
 (where, P is in kW and H is in metres.)

 or, Power available at turbine shaft, P = 
25/4460 (18) 12927.5 kW

150
 ×

= 
 

  Power available from  turbines = wQH × h0 = 9.81 × 175 × 18 × 0.82 = 25339.23 kW
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                   No. of turbines required = 
25339.23 1.96
12927.5

=  say 2 (Ans.)

2.10.  UNIT QUANTITIES

 Let us consider a single unit. When the head on the unit is changed/varied then the speed of 
an ungoverned turbine changes. The velocities at various points do not change direction but their 
magnitudes vary in proportion to the square root of the head.
At a given point in the turbine under a head H, let
  V = Absolute velocity,
  Vr = Relative velocity,
  u = Peripheral velocity, and
 V’, Vr’ , u’ = Corresponding values at a different head H’ , then as velocity is proportional to 

H , we have

  
u
u′

 = r

r

V V H
V V H

= =
′ ′ ′

 ...(2.34)

 If the discharges are Q and Q’ then,

  
Q
Q′

 = 
V N H
V N H

= =
′ ′ ′

 ...(2.35)

 If the power outputs are P and P’  then,

  
P
P′

 = 
3/2QH H H H

Q H H HH
 = × =  ′ ′ ′ ′ ′

 ...(2.36)

     
Q H
Q H

 
= ′ ′ 



 The hydraulic efficiency of the turbine under these two heads may be considered to be nearly 
same, as the velocity triangles at these heads are similar at a point.
 If the various quantities are reduced to a theoretical one metre head the comparison of 
performance data and computations of experimental values on a single unit are considerably 
simplified.

 Then, Nu = 
N
H

 ...(2.37)

  Qu = 
Q
H

 ...(2.38)

  Pu = 3/2
P

H
 ...(2.39)

 The above quantities are called unit quantities of a turbine. Unit speed is the hypothetical 
speed of the turbine operating under one metre head. Similarly, other proportionality constants in 
Eqns. 2.38 and 2.39 are defined.
 For presenting the performance of geometrically similar turbines independent of the actual 
head, discharge and power output the unit characteristics prove quite helpful. Geometrically 
similar turbines will have the same unit characteristics under similar operating conditions. 
Thus with the help of a model the performance of a prototype can be predicted within certain limits.
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 If a turbine is working under different heads the behaviour of the turbine can be easily known 
from the values of the unit quantities as follows :
 Let, H1, H2 = Heads under which a turbine works,
  N1, N2 = Corresponding speeds,
  Q1, Q2 = Corresponding discharges, and
  P1, P2 = Corresponding powers developed.
 Then using eqns. (2.37), (2.38), (2.39), respectively, we obtain

  Nu = 1 2

1 2

N N
H H

=  ...(2.40)

  Qu = 1 2

1 2

Q Q
H H

=  ...(2.41)

  Pu = 1 2
3/2 3/2
1 2

P P
H H

=  ...(2.42)

 Example 2.49.   A turbine is to operate under a head of 25 m at 200 r.p.m. The discharge is  
9 m3/s. If the efficiency is 90 per cent determine the performance of the turbine under a head of  
20 m.    [M.U]
 Solution.  Head under which turbine works, H1  =  25 m
  Speed of the turbine, N1  =  200 r.p.m.
  Discharge through the turbine, Q1  =  9 m3/s
  Efficiency (overall), h0  =  90%

 Performance of turbine under a head of 20 m; N2, Q2, P2 :
 Performance of the turbine under a head, H2 = 20 m means to find speed (N2), discharge (Q2), 
and power generated (P2) by the turbine when working under a head of 20 m.

 Overall efficiency, h0 = 1

1 1

Shaft power
Water power

PP
wQH wQ H

= =

	 ∴	 P1 = h0 × wQ1H1 = 0.9 × 9.81 × 9 × 25 = 1986.5 kW

 Now, 1

1

N
H

 = 2

2

N
H

 ...[Eqn. (2.40)]

	 ∴	 N2 = 1 2

1

200 20 . . . .
25

N H
H

×
= = 178 88 r p m (Ans.)

 and, 1

1

Q
H

 = 2

2

Q
H

 ...[Eqn. (2.41)]

	 ∴ Q2 = 1 2

1

9 20 .
25

Q H
H

×
= = 38 05 m / s (Ans.)

 and, 1
3/2
1

P
H

 = 2
3/2

2( )
P

H
 ...[Eqn (2.42)]

∴	  P2 = 
3/2 3/2

1 2
3/2 3/2

1

( ) 1986.5 (20) .
( ) (25)

P H
H
× ×

= = 1421 4 kW (Ans.)



Chapter 2 : Hydraulic Turbines         145

2.11.  MODEL RELATIONSHIP

 (i) Head co-efficient, CH :

  The tangential velocity of the runner, u = 2
60u
DNK gH π

=

  or, N = 
60 2

, or,uK gH HN
D D

∝
π

 	 ∴ ND = 2 2, or, constantHH
N D

=  ...(2.43)

  The parameter 2 2
H

N D
 is called head co-efficient, CH.

 (ii) Capacity or flow co-efficient, CQ :
  Discharge through the turbine, Q = Area × velocity = A × Vf

  But, A ∝ D2,  and,    2f fV K gH H= ∝

 	 ∴	 Q ∝ 2D H

  Substituting the value of Q in eqn. (2.43), we obtain:
   Q ∝ D2 × ND ∝ ND3

  or, 3
Q

ND
 = constant ...(2.44)

  The parameter, 3
Q

ND
 is called the capacity or flow co-efficient, CQ .

 (iii) Power co-efficient CP :
  The shaft power available from a turbine,
   P = h0 × wQH ∝ QH
  But,         Q ∝ ND3    and     H  ∝  N2D2         ∴  P ∝ ND3 × N2D2,   or,   ∝ N3D5

  or, 3 5
P

N D
 = constant ...(2.45)

  The parameter 3 5
P

N D
 is called the power co-efficient, CP . 

 With the use of above relations it is possible to present the behaviour of a prototype from the 
test runs made on a geometrically similar model; the model is presumed to have the same values of 
speed ratio Ku, flow ratio Kf  and specific speed Ns. A group of geometrically similar machines are 
said to belong to a homologous series. All machines of such a series have the same values of CH , 
CQ  or CP or their combinations.
 Example 2.50. A hydro-turbine is required to give 25 MW at 50 m head and 90 r.p.m. runner 
speed. The laboratory facilities available permit testing of 20 kW model at 5 m head. What should 
be the model runner speed and model to prototype scale ratio? [UPTU]

 Solution. Given : Pp = 25  MW;  Hp = 50 m;  Np = 90 r.p.m.;  Pm = 20 kW;  Hm = 5 m

 ( ):=p
m r

m

D
N ; L

D
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 Prototype specific speed, (Ns)p = 5/4( )
p p

p

N P

H
 (where, P is in kW)

   = 
3

5/4
90 25 10

107
(50)
× ×

=

 For model, 107 = 5/4( )
m m

m

N P
H

 [ (Ns)p = (Ns)m]

 or, Nm = 
5/4 5/4107 ( ) 107 (5) . . . .

20
m

m

H
P

× ×
= = 178 89 r p m (Ans.)

 For similar turbines 3/2 2
P

H D
 should be equal.

	 ∴	 3/2 2
p

p p

P

H D
 = 3/2 2

m

m m

P
H D

 or, ( )p
r

m

D
L

D
=  = 

3/2 3/2325 10 5 .
20 50

p m

m p

P H
P H

×   × = × =     
6 287 (Ans.)

 Example 2.51.   A water turbine delivering 10 MW power is to be tested with the help of a 
geometrically similar 1 : 8 model, which runs at the same speed as the prototype.
 (i) Find the power developed by the model assuming the efficiencies of the model and the 

prototype are equal.
 (ii) Find the ratio of the heads and the ratio of mass flow rates between the prototype and the 

model. [PTU]

 Solution. Given : Pp = 10 MW;  Np = Nm; 
1
8

m m

p p

L D
L D

= = ; hp = hm.

 (i) Power developed by the model, Pm :
  We know that, P ∝ N3 × D5    ... [Eqn. (2.45)]
  (where, N is the speed and D is the diameter.)

 	 ∴	 Pp ∝ 3 5 3 5, and,p p m m mN D P N D∝

  or, p

m

P
P

 = 
3 5 5

3 58(1) 8
1

p p

m m

N D
N D

     × = × =    
    

 ( Np = Nm)

 	 ∴	 Pm = 
6

5 5
10 10 .

(8) (8)
pP ×

= = 305 2 W (Ans.)

 (ii) Ratio of heads 
 
 
 

p

m

H
H

 and ratio of mass flow rates 
 
 
 

p

m

m
m

 :

  We know that,  H ∝ N2D2 ... [Eq. (2.43)]

 	 ∴	
p

m

H
H

 = 
2 2

2 2(1) (8)p p

m m

N D
N D

   
× = × =   

   
64  (Ans.)
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  Also, discharge, Q ∝ ND3 ... [Eqn. (2.47)]

 	 ∴	Ratio of mass flow rates, p

m

Q
Q

 = 
3

31 (8)p p p

m m m

m N D
m N D

   
= = × =   
   

512  (Ans.)

 Example 2.52.   Obtain an expression for the specific speed of a hydraulic tubine and explain 
its significance. Give the range of speed values of the Kaplan, Francis tubines and Pelton wheels.

[UPSC]
 Solution. Refer to Article 2.9 and Table 2.2.

 Example 2.53.   A 1/5 scale model of a centrifugal pump absorbs 20 kW when pumping against 
a test head of 8 m at its best speed of 400 r.p.m. If the actual pump works against 32 m head, find the 
speed and power required for the actual pump. Determine also the quantities of water discharged 
by the two pumps.    [UPSC]

 Solution. Given : 5p
r

m

D
L

D
= = ;  Pm = 20 kW;  Hm = 8 m,  Nm = 4000 r.p.m.;

  Hp = 32 m.
 Np, Pp; Qp, Qm :

 Now, 
p

p p

H

D N
 = m

m m

H
D N

 (where, suffix p stands for prototype and suffix m  for model)

	 ∴	 Np = 
1 32400
5 8

pm
m

p m

HD
N

D H
× = × × = 160 r.p.m. (Ans.)

 Also, 5 3
p

p p

P

D N
 = 5 3

m

m m

P
D N

	 ∴	 Pp = 
5 3 3

5 160(5) 20
400

p p
m

m m

D N
P

D N
     × × = × × =     

    
4000 kW (Ans.)

 We know that Pm = wmQmHm

 or, 20 × 203 = 9810 × Qm × 8

	 ∴	 Qm = 
320 10 .

9810 8
×

=
×

30 255 m / s (Ans.)

 Also, 3
p

p p

Q

D N
 = 3

m

m m

Q
D N

 or, Qp = 
3

3 160(5) 0.255 .
400

p p
m

m m

D N
Q

D N
 

× × = × × = 
 

312 75 m / s (Ans.)

 Example 2.54.   A hydraulic turbine is to develop 1015 kW when running at 120 r.p.m. under a 
net head of 12 m. Work out the maximum flow rate and specific speed for the turbine if the overall 
efficiency at the best operating point is 92 per cent. In order to predict its performance, a 1 : 10 
scale model is tested under a head of 7.2 m. What would be the speed, power output and water 
consumption of the model if it runs under the conditions similar to the prototype ?
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 Solution. Shaft power, P = 1015 kW;  Speed, N = 120 r.p.m.
 Overall efficiency, h0 = 92 %;  Head, H = 12 m

 Flow rate (Q), Specific speed (Ns) :

  h0 = 
0

Shaft power ;
Water power

P PQ
wQH wH

= =
h

 or,   Flow rate, Q = 
1015 .

0.92 9.81 12
=

× ×
39 372 m / s (Ans.)

  Specific speed, Ns = 5/4 5/4
120 1015 . . . .

(12)
N P
H

= = 171 2 r p m (Ans.)

  Model scale =  1 : 10 (Given)
 Head under which under model is tested, Hm = 7.2 m (Given)

 Nm, Pm, Qm :

 For similar turbines each of the following parameters must be same for both model and 
prototype:

 (i)  Head co-efficient, CH = 2 2
H

N D
; 

 (ii)  Flow co-efficient, CQ = 3
Q

ND

 (iii)  Power co-efficient, Cp = 3 5
P

N D

 (i)  2 2
m

H
N D

 
 
 

 = 
2

2 2
2 2 2 2 2 2 2, or, , or,p pm m

m p
pp m m p p m

H DH HH N N
HN D N D N D D

  = = × 
 

 	 ∴	Model speed, Nm = 
1/2 1/27.2120 10 .

12
p m

p
m p

D H
N

D H
   × × = × × =     

929 5 r.p.m. (Ans.)

 (ii)  3
m

Q
ND

 
 
 

 = 3 3
3

, or, pm

m m p pp

QQQ
ND N D N D

  = 
 

 	 ∴	Discharge in the model,

   Qm = 
3 3929.5 19.372 .

120 10
m m

p
p p

N D
Q

N D
   × × = × × =     

30 0726 m / s (Ans.)

 (iii)  3 5
m

P
N D

 
 
 

 = 3 5 3 5 3 5, or, pm

p m m p p

PPP
N D N D N D

  = 
 

 	 ∴	Power produced by the model, 

   Pm = 
3 5 3 5929.5 11015 .

120 10
m m

p
p p

N D
P

N D
       × × = × × =             

4 72 kW  (Ans.)
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 Example 2.55.   In a hydroelectric generating plant there are four similar turbines of total 
output 220000 kW. Each turbine is 90 per cent efficient and runs at 100 r.p.m. under a head of 
65 m. It is proposed to test the model of the above turbine in a flume where discharge is 0.4 m3/s 
under a head of 4 m . Determine the size (scale ratio) of the model. Also calculate the model speed 
and power results expected from the model. [P.E.C.]

 Solution.  Power available from each turbine = 
220000 55000 kW

4
=

  Efficiency (overall) of each turbine, h0  =  90%
  Speed of the turbine, N  =  100 r.p.m.
  Head, H  =  65 m
  Discharge through the model, Qm  =  0.4 m3/s
  Head under which model is tested, Hm  =  4 m
 Scale ratio :

 Using the relation, P = 3
0

0

55000, or, 95.84 m /s
0.9 9.81 65

PwQH Q
wH

h × = = =
h × ×

 For similar turbines the following dimensionless parameters must be same for model and 
prototype :

 (i) Head co-efficient, 2 2H
HC

N D
= ; (ii) Flow co-efficient, 3Q

QC
ND

= ;

 (iii) Power co-efficient,  3 5P
PC

N D
=

  From the head co-efficient and flow co-efficient it follows that:

   2
Q

D H
 = 2 2 2 2Constant; , or, pm

m p m m p p

QQQ Q
D H D H D H D H

   = =   
   

 	 ∴ Scale ratio :

   m

p

D
D

 = 

1/2 1/21/2 1/20.4 65 0.1297
95.84 4

pm

p m

HQ
Q H

           = =               
 or 1 : 7·71 (Ans.)

          Speed of the model, Nm :

   2 2
m

H
N D

 
 
 

 = 2 2 ,
p

H
N D

 
 
 

   or,   
22

2 2 2 2 2 2, or,p pm m m

pm m p p p m

H DH N H
HN D N D N D

= = ×

  ∴	 Nm = 
4 1100 .
65 0.1297

pm
p

p m

DH
N

H D
 × = × = 
 

191 26 r.p.m.

        Power available from the model Pm :

   3 5
m

P
N D

 
 
 

 = 3 5 3 5 3 5, or, pm

p m m p p

PPP
N D N D N D

  = 
 

   Pm  = 
3 5 3

5191.2655000 (0.1297) .
100

m m
p

p p

N D
P

N D
     × × = × =         

14 12 kW
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 Example 2.56.  (a) Prove that specific speed can be expressed as  03.13s u uN N Q= h ,  
where, Nu =  unit speed, Qu =  unit discharge, and h0 =  overall efficiency.
 (b) A Kaplan turbine working under a head of 10 m and at a design speed of 250 r.p.m. has a 
flow rate of 24 m3/s. The diameters of the runner and boss/hub are 2 m and 1 m respectively. The 
inlet and outlet diameters of the draft tube are 2 m and 3 m respectively. The pressure recorded at 
inlet to the draft tube is 3 m vacuum. The vapour and barometric pressures are 1·6 m and 10 m 
respectively. The efficiency of the draft tube is 80 per cent. The Thoma’s cavitation factor for the 
turbine is given by the relation, 2 2 ,d f uK Ks = h + λ in which hd  is the efficiency of the draft tube, 
Kf is the flow ratio, Ku is the speed ratio and λ is a dimensionless factor defined by λ = (p2 / w –  
pmin/w)/(u2/2g) in which u is the tangential velocity, (p2 /w) is the pressure head at inlet to draft 
tube, and (pmin/w) is the minimum pressure head at a point on the blade. If overall efficiency is  
90 per cent determine :
 (i) The minimum pressure on the blade;
 (ii) The value of Ns.

 Solution. (a) Specific speed (Ns) is given by : 5/4s
N PN
H

=  ...(i)

 Also power output (shaft power), P = wQH × h0 = 9.81 QHh0 kW
 Substituting the value of P in eqn. (i), we get:

  Ns = 0 05/4 5/49.81 3.13N NQH QH
H H

h = h

   = 0 03.13 3.13 u u
N Q N Q
H H

× × × h = h       ...(Proved)

      ,u u
N QN Q
H H

 = = 
 


 (b)  Head under which the turbine is working, H  =  10 m
   Speed of the turbine runner, N  =  250 r.p.m.
   Flow rate, Q  =  24 m3/s
   Runner Diameter, D0  =  2 m
   Diameter of the boss/hub, Db  =  1 m
   Inlet diameter of the draft tube, di  =  2 m
   Outlet diameter of the tube, d0  =  3 m
   Vapour pressure, Hv  =  1.6 m

   Barometric pressure, ap
w

 = 10 m

     The pressure head inlet to the draft tube, 2 3 m
p
w

=  vacuum

   Efficiency of draft tube, hd = 80%
   Overall efficiency, h0  =  90%
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 (i) The minimum pressure on the blade, pmin :

  Discharge, Q = 2 2 2 2
0 0( ) ( ) 2

4 4b f b fD D V D D K gHπ π
− × = −

  or,  = 2 2(2 1 ) 2 9.81 10 33.0
4 f fK Kπ

− × × × × =

 	 ∴	 Kf = 24 0.727
33.0

=  

  Also, u = 0 2 2502 , or, 2 9.81 10
60 60u u
D N

K gH K
π π × ×

= = × × ×

  ∴	 Ku	= 
2 250 1.87

60 2 9.81 10
π × ×

=
× ×

  Also, u = 0 2 250 26.18 m/s
60 60
D Nπ π × ×

= =

  Using the Eqn. (2.32), we have:

   2p
w

 = 
2 2

2 3

2
a

s f
p V V

H h
w g

 −
− − − 

 

  But hf  (head lost in draft tube) = 
2 2 2

2 3 2

2 2d
V V V

g g
−

− h  ...[Eqn. (2.33 (a)]

  ∴ 2p
w

 = 
2 2 2 2 2

2 3 2 3 2

2 2 2
a

s d
p V V V V VH
w g g g

  − −
− − − − h  

   
 (By substitution)

  or, 2p
w

 = 
2

2

2
a

s d
p VH
w g

− − h

  where, 2p
w

 = – 3 + 10 = 7 m absolute, and

V3

Tail race

Draft tube

p2

w
= 3 m vacuum

Turbine casing

d0 = 3 m

3 3

Hs

2 2

Atmospheric
pressure /p wa

di = 2 m

Fig. 2.52
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  V2 = 
2 2

24 7.64 m/s
2

4 4i

Q

d
= =

π π
×

  By substituting these values in the above equation, we get:

   7 = 
27.6410 0.8

2 9.81sH− − ×
×

 	 ∴	 Hs = 
27.6410 7 0.8 0.62 m

2 9.81
− − × =

×

  The cavitation factor (s) is given by:

   s = a v sH H H
H

− −
 ...[Eqn. (2.48)]

  By substituting the values, we get:

   s = 
10 1.6 0.62 0.778

10
− −

=

  Also, s = 2 2
d f uK Kh + λ  ...(Given)

  Thus, by substituting the values, we obtain:
   0.778 = 0.8 × 0.7272 + λ × 1.872

  or, 0.778 = 0.423 + 3.497λ

  ∴	 λ = 
0.778 0.423 0.1015

3.497
−

=  

  But, λ = 
2 min

2

2

p p
w w

u
g

−

 
 
 

 ...(Given)

  or, 0.1015 = 
min

2

3

(26.18)
2 9.81

p
w

− −

×

  or, min3
p
w

− −  = 
2

min(26.18)0.1015 , or, 3 3.545
2 9.81

p
w

× − − =
×

  or, minp
w

 = – 3 – 3.545 = – 6.545 m, or 6.545 m (vacuum)

  or, pmin = 9.81 × 6.545 = 64.2 kN/m2 (vacuum) (Ans.)
 (ii) The value of Ns :

   Ns = 03.13 u uN Q h  ...[Proved at (a)]

    = 03.13 N Q
H H

× × h

    = 
250 243.13 0.9 .
10 10

× × = 646 7 (Ans.)
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2.12.  SCALE EFFECT

 However smooth a model is made, the geometric similarity between the prototype and model 
cannot be extended to surface roughness. This variation of surfaceness with respect to the size of 
turbine will cause a small but appreciable variation in the proportion of the effective head lost due 
to hydraulic friction. Thus, the efficiency of prototype will be different from the corresponding model 
efficiency. This aspect is referred to as scale effect. It has been observed that with increase in size 
a geometrically similar mixed or axial flow turbine has greater efficiency than that of the model 
operating under hydraulically similar conditions.
 In order to express the difference of efficiencies as found in tests of model and prototypes, 
various laws have been proposed. One of the earliest and most generally accepted is the semi-
empirical formula suggested by Moody;

  
1
1

p

m

− h

− h
 = 

0.2
m

p

D
D

 
 
 

 ...(2.46)

Ackert suggested the following formula, considering the frictional loss as a function of Reynolds 
number,

  
1
1

p

m

− h

− h
 = 

0.2 011 1
2

m m

p p

D H
D H

    +    
     

 ...(2.47)

 where, hp = Overall efficiency of the prototype,
  Dp = Linear dimension of the prototype,
  Hp = Head of the prototype,
 and, hm , Dm, Hm = Corresponding values of overall efficiency, linear dimension 
and head of the model.
 These formulae are applicable for the point of best efficiency.

  Note : (i) Moody’s formula is based on the assumptions that all losses are due to fluid friction only and the 
flow is completely turbulent  (and that eliminates any effect of Reynolds number).

  (ii) No scale effect has been observed in the case of Pelton wheel; this may be due to the deterioration 
in the smoothness of the jet with increasing size, which offsets the benefits due to reduced 
frictional losses.

 Example 2.57.   A model turbine constructed to a scale of 1:10 when tested under a head 
of 8 m at 400 r.p.m. gave an efficiency of 77 per cent. Determine the r.p.m. of the prototype and 
the ratio of powers developed by the model and prototype if the prototype works under a head of  
100 m. What will be the efficiency of the prototype if scale effect is considered ? 

[Anna University]

 Solution. Given : Scale ratio = 1 : 10; 10p

m

D
D

= ;  Hm = 8 m;  Nm = 400 r.p.m.;  hm = 77% ; 

Hp = 100  m.

 Speed of the prototype, Np:

 For similarity between model and prototype :

  2 2
m

H
N D

 
 
 

 = 
2

2 2
2 2 2 2 2 2 2, or, , or,p pm m

p m
mp m m p p p

H HH DH N N
HN D N D N D D

  = = × × 
 



154         Hydraulic Machines

	 ∴	 Np = 
1/2 1/21 100400 .

10 8
pm

m
p m

HD
N

D H
   × × = × × =   

  
141 42 r.p.m. (Ans.)

 Ratio of powers developed, p

m

P
P

 :

	 ∴	 3 5
m

P
N D

 
 
 

 = 3 5 3 5 3 5, or, pm

p m m p p

PPP
N D N D N D

  = 
 

	 ∴	
p

m

P
P

 = 
3 5 3

5141.42 (10) .
400

p p

m m

N D
N D

     × = × =     
    

4419 3 (Ans.)

 Efficiency of the prototype when scale effect is considered :
 The efficiencies are related by:

  p

m

N
N

 = p pm

p m m

HD
D H

h

h

  p

m

h

h
 = 

2 2 2
2141.42 8(10) 0.9999

400 100
p p m

m m p

N D H
N D H

     = × =     
    

	 ∴	 hp = hm × 0.9999 = 0.77 × 0.9999 = 0.7699 or 76.99% (Ans.)

2.13.  PERFORMANCE CHARACTERISTICS OF HYDRAULIC TURBINES

 The turbines are normally designed for specific values of head, speed, discharge, power and 
efficiency (known as the designed conditions). But oftenly turbines may be required to operate 
under conditions different from those for which these have been designed. Thus, to know about 
their exact behaviour under varying conditions it becomes necessary to conduct tests either on the 
actual turbines at the site or on their small scale models in a research laboratory. The results so 
obtained are usually represented graphically and the curves obtained are known as “Characteristic 
curves”. These curves are usually plotted in terms of unit quantities (for sake of convenience). The 
characteristic curves are of the following types :
 1. Main or constant head  characteristic curves.
 2. Operating or constant speed characteristic curves.
 3. Constant efficiency or iso-efficiency or Muschel curves.

2.13.1. Main or Constant Head Characteristic Curves

	 l Head and gate opening are maintained constant.
	 l Speed is varied by allowing a variable quantity of water to flow through the inlet opening.
	 l The brake power (P) is then measured mechanically by means of a dynamometer.
	 l The overall efficiency and unit quantities are then calculated by using the basic data;  these 

are then plotted against unit speed as abscissa.
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Fig. 2.53. Main characteristic curves of Pelton wheel.

 Figs. 2.53, 2.54 and 2.55 show the main characteristic curves of Pelton wheel, Francis turbine 
and Kaplan turbine respectively.
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G.O

G.O
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1/4

1.0 G.O

3/4

1/21/4
G.O

G.O

G.O

�0

Nu

Fig. 2.54. Main characteristic curves of Francis turbine.

 The main characteristic curves yield the following information :
	 • The discharge Qu for a Pelton wheel depends only upon the gate opening and is independent 

of Nu; the curves for Qu are horizontal.
	 • The curves between Qu and Nu for a Francis turbine are falling curves. This is due to the 

fact that a centrifugal head develops which acts outwards and opposes the external head 
causing flow, eventually decreasing the discharge as the speed increases.

	 • The curves between Qu and Nu for a Kaplan turbine are rising curves;  the discharge increases 
with the increase in speed.
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G.O

G.O
1/2

1/4 G.O

1.0 G.O

3/4 G.O

1/2 G.O

�0

Nu

1
4

G.O

Fig. 2.55. Main characteristic curves of Kaplan turbine.

	 • The curves between Pu and Nu and those between h0 and Nu indicate that at a particular 
speed the efficiency is maximum.

 The maximum efficiency for a Pelton wheel usually occurs at the same speed for all gate 
openings; this speed usually corresponds to a speed ratio of 0.45 . However, the maximum efficiency 
for a reaction turbine usually occurs at different speeds for different gate openings.
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2.13.2. Operating or Constant Speed Characteristic Curves
 These curves are obtained as follows :

 (a) Percentage of full load v/s overall efficiency (h0) curves :
	 • For each gate opening speed is kept constant. The constant speed is attained by regulating  

the gate opening thereby varying the discharge flowing through the turbine as the load varies; 
the head may or  may not remain constant.

	 • The brake power (P) is measured mechanically by means of a dynamometer.
 • The overall efficiency (h0) is then calculated from the measured values of discharge, head 

and power.
 • Further knowing the total load capacity of the turbine the percentage of full load is computed 

from the measured power and a plot of h0 v/s percentage of full load is prepared.
 Fig. 2.56 shows the graphs plotted between percentage of full load v/s h0 for different types of 
turbines. The following points are worth noting :
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Fig. 2.56. Percentage of full load v/s h0 curves for hydraulic turbines.

	 • As the percentage full load increases h0 
also increases (In other words, at reduced 
loads h0 is also less).

 • At 100 per cent full load h0 is near about 
the maximum efficiency in all cases.

 • The Kaplan, the Deriaz and the Pelton 
wheel maintain a high efficiency over a 
longer range of part load  as compared 
with either the Francis or the fixed blade 
propeller turbine.

 • The maximum overall efficiency of all the 
turbines is almost the same (about 85%).

 (b)  Overall efficiency (h0) and output 
(shaft) power (P) v/s discharge (Q) curves:
 Fig. 2.57 shows overall efficiency (h0) and 
shaft power (P) v/s discharge curves. Qmin is the minimum discharge required to set the turbine 
runner into motion from its state of rest. These curves yield the following information :
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Fig. 2.57. h0 and P v/s discharge curves.
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 • Shaft power or output power (P) is a straight line, since P ∝ Q if H (head) is constant.
 •	 h0 v/s discharge (Q) graph is curvilinear and h0 increases with Q and remains nearly constant 

beyond a particular value of discharge.

2.13.3. Constant efficiency or iso-efficiency or Muschel curves
 Refer to Fig. 2.58. As h–N curve is of parabolic nature, there exits two speeds for one value of 
efficiency except for maximum efficiency which occurs at one speed only. Corresponding to these 
values of speeds there are also two values of discharge for each value of efficiency (Q-N curve). 
Hence on Q-N curve we can plot two points for each value of efficiency and one point for maximum 
efficiency. By adopting this procedure for different gate openings or heads we can get number of 
Q-N curves and we can plot on them efficiency points (as described above). The points denoting 
the same efficiency can now be joined to get constant iso-efficiency curves or Muschel curves (The 
German word ‘Muschel’ means shell, indicating shape of curve). The diagram showing these curves 
is also called Hill diagram ( since it looks like top view of a hill). In actual practice unit speed and 
unit discharge are taken along the co-ordinate axes.
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Fig. 2.58. Constant efficiency curves for turbines.

 The curve for the best performance is obtained by joining the peak points of the various 
efficiency curves.
 The constant efficiency curves are helpful for determining the zone of constant efficiency and 
for predicting the performance of the turbine at various efficiencies.

2.14.  GOVERNING OF HYDRAULIC TURBINES

 Governing of hydraulic turbine means speed regulation. Governing of a turbine is necessary as 
a turbine is directly coupled to an electric generator, which is required to run at constant speed under 
all fluctuating load conditions. This is achieved by means of a governor called oil pressure governor.

2.14.1. Governing of Impulse Turbines
 In order to regulate the quantity of water rejected from the turbine nozzle and from striking the 
buckets one of the following methods of regulation may be adapted :
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 1. Spear regulation.  2. Deflector regulation.  3. Combined spear and deflector regulation.
 1. Spear regulation. Refer to Fig. 2.59. In this method 
the rate of flow is regulated by altering the cross-sectional area 
of stream by moving the spear to and from inside nozzle. This 
method of speed regulation is suitable when the fluctuation 
of load is small and a relatively large penstock feeds a small 
turbine. The disadvantages of this method is that when the load 
falls all of sudden, the turbine nozzle has to close suddenly 
which may cause water hammer in the penstock.
 2. Deflector regulation. Refer to Fig. 2.60. The deflec-
tor is generally a plate connected to the oil pressure governor 
by means of levers. When necessity arises to deflect the jet, the plate can be brought in between the 
nozzle and buckets, thereby diverting the water away from the runner and directing into the tail race. 
The use of deflector regulation is restored to when the supply of water is constant but the load fluctu-
ates. The position of spear can be adjusted by hand. As the nozzle has always a constant opening, it 
results in wastage of water and can be employed only when there is an abundant water supply.

Deflector

Water jet

To tail race

  (a) Full load (b) Deflector diverts part of the jet.

Fig. 2.60. Deflector regulation.

 3. Combined spear and deflector regulation. As the above mentioned methods have some 
disadvantages, the modern turbines make use of combined spear and deflector regulation; the spear 
regulates the speed and the deflector arrangement regulates the pressure.  Fig. 2.61 shows such an 
arrangement for governing of Pelton turbine when the turbine is running at normal speed. The work-
ing of the system is as follows :
	 • When the load on the turbine increases the speed of the runner falls and consequently balls 

of the centrifugal governor move inwards; the governor sleeve moves downwards.
	 • The downward movement of the sleeve is transmitted to a relay or control valve (through 

suitable linkages) which admits oil under pressure to a servomotor. The oil exerts a force 
on the piston of the servomotor, and that pushes the spear to a position which increases the 
annular area of the nozzle flow passage; the quantity of water striking the buckets is then 
increased and the turbine regains its normal speed.

 • When the load on the turbine decreases the direction of movement of the servomotor is such 
the nozzle area decreases and that allows a smaller quantity of water to strike the runner of 
the turbine.

 • A deflector arrangement safeguards against excessive water hammer pressure.

2.14.2. Governing of Reaction Turbines
 In a reaction turbine the discharge is controlled by varying the area of flow between adjacent 
guide vanes. The guide vanes are connected to the regulating ring through links. The regulating 
ring is connected to the regulating lever through two regulating rods. The regulating ring is thus 
connected to the regulating shaft which is operated by a servomotor (Fig. 2.62). The servomotor, 
oil sump, control valve and system of pipes, etc. are similar to that in the governing arrangement of 

To and fro movement
of the spear

Water jet

Spear

       Fig. 2.59.   Spear regulation in 
       Pelton wheel.
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an impulse turbine. The component parts are, however, stronger as the greater energy is required to 
move the gates as compared to the spear in the nozzle of a Pelton turbine.
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2.15.  CAVITATION

 The formation, growth, and collapse of vapour filled cavities or bubbles in a flowing liquid due 
to local fall in fluid pressure is called cavitation. When the pressure at any point in a flow field 
equals the vapour pressure of the liquid at that temperature vapour cavities (bubbles of vapour) 
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begin to appear. It is presumed that a vapour cavity is formed around a dust nuclei which is in the 
liquid (The vapour pressure values of water at 15° and 20° C are 1.74 m and 2.38 m of water column 
absolute). The cavities thus formed, due to motion of liquid, are carried to high pressure regions 
where the vapour condenses and they suddenly collapse. The adjoining liquid rushes with a very 
great velocity (and hence with very great force) to occupy the empty spaces thus created, causes 
series of violent, irregular, spherical shock waves. When these irregular implosions occur on the 
metallic surface, they produce noise and vibration.

Servomotor

Connected to relay valve

Regulating
shaft

Regulating
lever

From penstock

Regulating
rod

Scroll casing

Close

Open

regulating
ring

Fig. 2.62. Governing mechanism for reaction turbines.

 When the cavities collapse (the collapsing pressure is of the order of 100 times the atmospheric 
pressure) on the surface of a body, due to repeated ‘hammering’ action, the metal particle gives way 
ultimately due to fatigue and indentations are formed; this erosion of material is called pitting 
(Fig. 2.63).
 In reaction turbines the cavitation may occur at the runner exit or the draft tube inlet where the 
pressure is negative. The hydraulic machinery is affected by 
the cavitation in the following three ways :
 1. Roughening of the surface takes place due to loss of 

material caused by pitting.
 2. Vibration of parts is caused due to irregular collapse 

of cavities. 
 3. The actual volume of liquid flowing through the 

machine is reduced (since the volume of cavities is 
many times more than the volume of water from which 
they are formed) causing sudden drop in output and 
efficiency.

 Cavitation factor. Prof. Dietrich Thoma of Munich 
(Germany) suggested a cavitation factor (sigma) to determine 
the zone where turbine can work without being affected from 
cavitation. The critical value of cavitation factor (sc) is given 
by,
  sc = 

( )a v sH H H
H

− −
 ...(2.48)

 where, Ha = Atmospheric pressure head in metres of water,
  Hv = Vapour pressure in metres of water corresponding to the water 

temperature,

Pitting action
on the inside

surface

Fig. 2.63. Pitting action on the 
surface (shown on large scale).
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  H = Working head of turbine (difference between head race and tail race 
level in metres), and 

  Hs = Suction pressure head (or height of turbine outlet above tail race level 
in metres).

 The values of critical factor depends upon the specific speed of the turbine.
 The value for sc for different materials may be determined with the help of the following 
empirical relations :

 For Francis turbine : sc = 
2

0.625
380.78

sN 
 
 

 ...(2.49)

 For propeller turbine : sc = 
310.28

7.5 380.78
sN  +   

  
 ...(2.50)

 For Kaplan turbines, values of sc obtained by eqn. (2.50) should be increased by 10%.
 (In the above expressions Ns is in (r.p.m., kW, m) units.
 Suction specific speed (Ns)suc.: In addition to Thoma’s criterion the consideration of suction 
specific speed provides very useful criterion for establishing similarity in respect of cavitation in 
the turbines. The suction speed may be defined as the speed of a geometrically similar turbine such 
that when it is developing a power equal to 1 kW, the total suction head Hsv is equal to 1 m (absolute 
units). It can be proved that specific speed is given by:

  (Ns)suc. = 4/5( )
N P

Hs
 ...(2.51(a))

  s = 
4/5

suc.( )
s

s

N
N

 
 
 

 ...(2.51(b))

 The eqns. 2.51(a) and (b) give the relation between the two parameters s and (Ns)suc., both of 
which are useful for establishing a similarity in respect of cavitation in the model and prototype 
turbines. The concept of suction speed, however, is more commonly used in pumps.
 Methods to avoid cavitation :
 The following methods may be used to avoid cavitation :
 1. Runner/turbine may be kept under water. But it is not advisable as the inspection and repair 

of the turbine is difficult. The other method to avoid cavitation zone without keeping the 
runner under water is to use the runner of low specific speed.

 2. The cavitation free runner may be designed to fulfil the given conditions with extensive 
research.

 3. It is possible to reduce the cavitation effect by selecting materials which resist better the 
cavitation effect. The cast steel is better than cast iron and stainless steel or alloy steel is 
still better than cast steel.

 4. The cavitation effect can be reduced by polishing the surface. That is why the cast steel 
runners and blades are coated with stainless steel.

 5. The cavitation may be avoided by selecting a runner of proper specific speed for given head.

 Example 2.58.   A Francis turbine works under a head of 25 m and produces 11800 kW while 
running at 120 r.p.m. The turbine has been installed at a station where atmospheric pressure is  
10 m of water and vapour pressure is 0·2 m of water. Calculate the maximum height of the straight 
draft tube for the turbine.
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 Solution.  Head under which the turbine works, H  =  25 m
  Power output, P  =  11800 kW
  Speed of the turbine, N  =  120 r.p.m.
  Atmospheric pressure, pa  =  10 m of water
  Vapour pressure, Hv  =  0.2 m.

 Maximum height of the draft tube, Hs :

  Specific speed, Ns = 5/4 5/4
120 11800 233.2 r.p.m.

(25)
N P
H

= =

 Critical value of Thoma’s cavitation factor for a Francis turbine

  sc = 
2

0.625
380.78

sN 
 
 

 ...[Eqn. (2.49)]

   = 
2233.20.625 0.2344

380.78
  = 
 

 Also, sc = c v sH H H
H

− −
  ...By definition

 or, 0.2344 = 
10 0.2

, or, 0.2344 25 10 0.2
25

s
s

H
H

− −
× = − −

	 ∴	 Hs = 10 – 0.2 – 0.2344 × 25 = 3.94 m

 Hence, maximum permissible height of the draft tube = 3.94 m (Ans.)

2.16.  SELECTION OF HYDRAULIC TURBINES

 The following points should be considered while selecting right type  of hydraulic turbines for 
hydroelectric power plant :
 1. Specific speed. High specific speed is essential where head is low and output  is large, because 
otherwise the rotational speed will be low which means cost of turbo-generator and power- house will 
be high. On the other hand, there is practically no need of chosing a high value of specific speed for 
high installations, because even with low specific speed high rotational speed can be attained with 
medium capacity plants. Refer to Table 2.2.
 2. Rotational speed. Rotational speed depends on specific speed. Also the rotational speed 
of an electrical generator with which the turbine is to be directly coupled, depends on the frequency 
and number of pair of poles. The value of specific speed adopted should be such that it will give the 
synchronous speed of the generator.
 3. Efficiency. The turbine selected should be such that it gives the highest overall efficiency 
for various operating conditions.
 4. Partload operation. In general the efficiency at partloads and overloads is less than normal. 
For the sake of economy the turbine should always run with maximum possible efficiency to get 
more revenue.
 When the turbine has to run at part or overload conditions Deriaz turbine is employed. Similarly, 
for low heads, Kaplan turbine will be useful for such purposes in place of propeller turbine.
 5. Cavitation. The installation of water turbines of reaction type over the tail race is affected 
by cavitation. The critical value of cavitation factor must be obtained to see that the turbine works in 
safe zone. Such a value of cavitation factor also affects the design of turbine, especially of Kaplan, 
propeller and bulb types.
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 6. Disposition of turbine shaft. Experience has shown that the vertical shaft arrangement is 
better for large-sized reaction turbines, therefore, it is almost universally adopted. In case of large 
size impulse turbines, horizontal shaft arrangement is mostly employed.
 7. Head. (i) Very high heads (350 m and above). For heads greater than 350 m, Pelton turbine 
is generally employed and there is practically no choice except in very special cases.
 (ii) High heads (150 m to 350 m). In this range either Pelton or Francis turbine may be employed. 
For higher specific speeds Francis turbine is more compact and economical than the Pelton turbine 
which for the same working conditions would have to be much bigger and rather cumbersome.
 (iii) Medium heads (60 m to 150 m). A Francis turbine is usually employed in this range. Whether 
a high or low specific speed unit would be used depends on the selection of the speed.
 (iv) Low heads (below 60 m). Between 30 and 60 m heads both Francis and Kaplan turbines 
may be used. The latter is more expensive but yields a higher efficiency at partloads and overloads. 
It is therefore preferable for variable loads. Kaplan turbine is generally employed for heads under  
30 m. Propeller turbines are however, commonly used for heads up to 15 m. They are adopted only 
when there is practically no load variations.
 (v) Very low heads. For very low heads bulb turbines are employed these days. Although Kaplan 
turbines can also be used for heads from 2 m to 15 m but they are not economical.

 Table 2.2. Criteria for Selection of Turbines

S.
No.

Type of 
turbine

Head 
H(m)

Specific
speed 
(Ns)

Speed 
ratio
(Ku )

Maximum
hydraulic

efficiency (%)

Remarks

1. Pelton: 1 jet
             2 jets
             4 jets

up to 2000
up to 1500
up to 500

12 to 30
17 to 50
24 to 70

0.43 to 0.48 89 Employed
for very high
 head.

2. Francis:
High-head
Medium head
Low head

up to 300
50 to 150
30 to 60

80 to  150
150 to 250
250 to 400

0.6 0.9 to 93 Full load
efficiency
high;
partload
efficiency
lower than
Pelton wheel.

3. Propeller and
Kaplan

4 to 60 300 to
1000

1.4 to 2 93 High part
load
efficiency;
high discharge 
with low head.

4. Bulb or 
tubular
turbines

3 to 10 1000 to 
1200

6 to 8 91 Employed for 
very low head–
tidal power plants.

 Overall efficiency (h0) of all turbines  85 per cent.
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2.17.  SURGE TANKS

 A surge tank is a small reservoir or tank in which the water level rises or falls to reduce the 
pressure swings so that they are not transmitted in full to a closed circuit. In general a surge tank is 
employed to serve the following purposes :
 1. To reduce the distance between the free water surface and turbine thereby reducing the water 

hammer effect (the water hammer is defined as the change in pressure rapidly above or 
below normal pressure caused by sudden changes in rate of flow through the pipe according 
to the demand of the prime mover) on penstock and also protect upstream tunnel from high 
pressure rises.

 2. To serve as supply tank to the turbine when water in the pipe is accelerating during increased 
load conditions and storage tank when the water is decelerating during reduced load condi-
tions.

Types of surge tanks :
 The different types of surge tanks in use are :
 1. Simple surge tank 2. Inclined surge tank
 3. The expansion chamber and gallery type surge tank
 4. Restricted orifice surge tank 5. Differential surge tank.

 1. Simple surge tank. A simple surge tank is a vertical standpipe connected to the penstock as 
shown in Fig. 2.64. In the surge tank if the overflow is allowed, the rise in pressure can be eliminated 
but overflow surge tank is seldom satisfactory and usually uneconomical. Surge tanks are built high 
enough so that water cannot overflow even with a full load change on the turbine. It is always desirable 
to place the surge tank on ground surface, above the penstock line, at the point where the latter drops 
rapidly to the powerhouse as shown in Fig. 2.64. Under the circumstances when site for its location 
is not available the height of the tank should be increased with the help of a support.

Reservoir

Hydraulic gradient line
Tunnel

Penstock

Power house

Surge tankReservoir levelDam

Fig. 2.64. Surge tank on ground level.

 2. Inclined surge tank. When a surge tank is inclined (Fig.2.65) to the horizontal its effective 
water surface increases and therefore, lesser height surge tank is required of the same diameter if it 
is inclined or lesser diameter tank is required for the same height. But this type of surge tank is more 
costlier than ordinary type as construction is difficult and is rarely used unless the topographical 
conditions are in favour.
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Inclined surge
tank

Conduit

Conduit

 
Fig. 2.65. Inclined surge tank.

 3. Expansion chamber surge tank. Refer to Fig. 2.66. This type of a surge tank has an 
expansion tank at top and expansion gallery at the bottom; these expansions limit the extreme surges. 
The ‘upper expansion chamber’ must be above the maximum reservoir level and ‘bottom gallery’ 
must be below the lowest steady running level in the surge tank. Besides this the intermediate shaft 
should have stable minimum diameter.

Lower gallery

Conduit

Expansion
chamber

Surge tank

Conduit

Restricted
orifice

 Fig. 2.66. Expansion chamber surge tank. Fig. 2.67. Restricted orifice surge tank.

 4. Restricted orifice surge tank. Refer to Fig. 2.67. It is also called throttled surge tank. 
The main object of providing a throttle or restricted orifice is to create an appreciable friction loss 
when the water is flowing to or from the tank. When the load on the turbine is reduced, the surplus 
water passes through the throttle and a retarding head equal to the loss due to throttle is built up in 
the conduit. The size of the throttle can be designed for any desired retarding head. The size of the 
throttle adopted is usually such as the initial retarding head is equal to the rise of water surface in 
the tank when the full load is rejected by the turbine (a case when there is closure of the gate valve).
Advantage. Storage function of the tank can be separated from 
accelerating and retarding functions.
Disadvantage. Considerable portion of water hammer pressure is 
transmitted directly into the low pressure conduit.
 In comparison to other types of surge tanks these are less 
popular.
 5. Differential surge tank. Refer to Fig. 2.68. A differential 
surge tank has a riser with a small hole at its lower end through 
which water enters in it. The function of the surge tank depends 
upon the area of hole.GHLIGHTS

Conduit

Riser

Fig. 2.68. Differential surge tank.
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HIGHLIGHTS

 1. A hydraulic turbine is a prime mover that uses the energy of flowing water and converts it 
into the mechanical energy (in the form of rotation of the runner).

 2. In an impulse turbine the pressure energy of water is converted into kinetic energy when 
passed through the nozzle and forms the high velocity jet of water. The formed water jet is 
used for driving the wheel.

  The Pelton wheel or Pelton turbine is a tangential flow impulse turbine and is used for high 
head. Some important formulae relating Pelton wheel are :

  Work done and efficiencies :
 (i) The work done by the jet on runner per second =	ρa V1 (Vw1 ± Vw2)
 (ii) The work done per second per unit weight of water striking     

    = 1 2
1 ( )w wV V u
g

± ×

 (iii) Hydraulic efficiency, hh = 1 2
2

1

2 ( )w wV V u
V
± ×

    
Power developed by the runner

Power supplied at the inlet of turbineh
 h = 
 

  	 hh is maximum when u = 1

2
V

, and

   (hh)max = 
1 cos

2
+ φ

 ...Assuming no friction (i.e., K = 1)

 (iv) Mechanical efficiency, hm = 
Shaft power

Bucket power

 (v)  Volumetric efficiency, hv = 
Volume of water actually striking the runner
Total water supplied by the jet to the turbine

 (vi)  Overall efficiency, h0 = 
Shaft power
Water power

P
wQH

=

  Also, h0 = hh × hm × hv

 Design aspects :

 (i)  Velocity of jet, V1 = 2vC gH  1or,
2v
VC
gH

 = 
 

   (Cv = 0.98 or 0.99)

 (ii)  Velocity of wheel, u = 1 2( ) 2uu u K gH= =   
2u
uK
gH

 = 
 

   (Ku, the speed ratio varies from 0.43 to 0.48).

   Number of buckets on a runner Z  =  15 15 0.5
2
D m
d

+ = +
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   Where m (jet ratio) = 
D
d

; D and d being the pitch diameters of Pelton wheel and the jet 

diameter respectively. 
D
d

 lies between 11 and 16 for maximum hydraulic efficiency; 

normally jet ratio is adopted as 12 in practice.

 3. In a reaction turbine the runner utilizes both potential and kinetic energies.
  Formulae for various reaction turbines are as follows :
   (a) Francis turbine :
   (i) Francis turbine is an inward radial flow reaction turbine having discharge radial at 

outlet which means the angle made by absolute velocity at outlet is 90°, i.e. β = 90° 
Then Vw2 = 0 and work done by water on the runner per second per unit weight of 
water is

      = 1 1
1

wV u
g

   (ii)  Flow ratio, Kf = 1

2
fV

gH
 ; Kf varies from 0.15 to 0.30.

   (iii)   Speed ratio, Ku = 
2
u
gH

; Ku ranges from 0.6 to 0.9.

   (iv) The ratio of width (B1) to the diameter of the wheel (D1), n = 1

1

B
D

; n varies from 0.10 

to 0.45.
   (v)  Discharge, Q = Kt1πD1B1Vf1 = Kt2πD2B2Vf2
    [where Kt is known as vane thickness factor/co-efficient; its value is usually of the 

order of 0·95 or so (always less than unity)]
   (b) Kaplan turbine :
     It is an axial flow turbine in which the vanes on the hub are adjustable. It is used 

for low heads where large volumes of water are available. In this turbine a high ef-
ficiency is maintained even at partload. The peripheral velocities at inlet and outlet 
are equal, i.e. u1 = u2

     Discharge, Q = 2 2
0( )

4 b fD D Vπ
× − ×

    where, D0 = Outside diameter of the runner, and
     Db = Diameter of boss (or hub).
     Vf = Velocity of flow; (Vf1 = Vf2 = Vf)
 4. Deriaz turbine. It is also known as diagonal turbine. Its runner is so shaped that it can be 

used both as a turbine as well as a pump and hence it may be classified as a reversible type 
turbine. As such these turbines are amply suitable for pumped storage hydropower plants.

 5. Tubular or bulb turbine. It is an axial flow turbine with either adjustable or non-adjustable 
runner vanes. It is employed for low heads, varying from 3 m to 15 m.

 6. Runaway speed is the maximum speed, governor being disengaged, at which a turbine would 
run when there is no external load but operating under design head and discharge.
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 7. A draft tube is a pipe of gradually increasing area used for discharging water from the exit 
of a reaction turbine. It is an integral part of mixed and axial flow turbines. The efficiency 
of a draft tube (hd) is given by :

   hd = 

2 2
2 3

2
2

2Net gain in pressure head
Velocity head at entrance of draft tube

2

f
V V h

g
V

g

 −
− 

 =

  where, V2 = Velocity of water at inlet of the draft tube, and
   V3 = Velocity of water at outlet of the draft tube.

    
2 2 2

2 3 2or,
2 2f d

V V Vh
g g

 −
= − h × 

 
 

 8. Specific speed (Ns) of a turbine is defined as the speed of a geometrically similar turbine 
which would develop unit power when working under a unit head. It is given by the relation:

   Ns = 5/4
N P
H

  where, P = Shaft power, and
   H = Net head on the turbine.
  Specific speed plays an important role in the selection of the type of turbine.
 9. Unit quantities are the quantities which are obtained when the head on the turbine is unity. 

They are given as:

   Unit speed, Nu = 
N
H

   Unit discharge, Qu = 
Q
H

   Unit power, Pu = 3/2
P

H
 10. The important characteristic curves of a turbine are:
   (i) Main or constant head characteristic curves.
   (ii) Operating or constant speed characteristic curves.
   (iii) Constant efficiency or iso-efficiency or Muschel curves.
 11. The formation, growth and collapse of vapour filled cavities or bubbles in a flowing liquid 

due to local fall in fluid pressure is called cavitation. The critical value of cavitation factor 
(sc) is given by

   sc = ( )a v sH H H
H

− −  

  where, Ha = Atmospheric pressure head in metres of water,
   Hv = Vapour pressure in metres of water corresponding to the water 

temperature,
   H = Working head of turbine (difference between head race and tail 

race levels in metres), and
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   Hs = Suction pressure head (or height of turbine inlet above tail race 
level) in metres.

  The value of critical factor depends upon specific speed of the turbine.
 12. A ‘surge tank’ is a small reservoir or tank in which the water level rises or falls to reduce 

the pressure swings so that they are not transmitted in full to a closed circuit. 

OBJECTIVE TYPE QUESTIONS

Choose the Correct Answer
 1. For an impulse turbine which of the following 

statements is correct :
   (a) It makes use of a draft tube
   (b) It is not exposed to atmosphere
   (c) It is most suited for low head installations
   (d) It operates with initial complete conversion 

of pressure head to velocity head.
 2. Which of the following statements is correct in 

case of a Pelton wheel :
   (a) It can operate at optimum efficiency at all 

high speeds
   (b) It is kept entirely submerged in water 

below the tail race.
   (c) It gives optimum efficiency at runaway 

speed
   (d) It operates by converting the available 

energy fully into kinetic energy before 
entering the rotor.

 3. The effective (or net) head at the turbine is
   (a) the sum of gross head plus head loss in 

penstock and the velocity head at the 
turbine exit.

   (b) the difference between gross head minus 
the head loss in penstock

   (c) the difference between the gross head 
minus head loss in penstock and the 
velocity head at the turbine exit

   (d) the sum of gross head plus the head loss 
in the penstock.

 4. The difference between the power obtained from 
the turbine shaft and power supplied by water at 
its entry to the turbine is equal to

   (a) sum of hydraulic and mechanical losses
   (b) sum of mechanical and volumetric losses
   (c) mechanical losses
   (d) hydraulic losses.
 5. Which of the following statements is a definition 

of the hydraulic efficiency of a turbine?
   (a) The ratio of power available at the turbine 

shaft to that supplied to it by runner.
   (b) The ratio of the power supplied by the 

runner to the power available at the shaft.
   (c) The ratio of power utilized by runner to 

that supplied by the water at entry to the 
turbine.

   (d) The ratio of power supplied by water at 
entry to the power utilized by runner.

 6. The power which appears in the expression for 
the specific speed is the:

   (a) shaft power
   (b) water power
   (c) power into the turbine
   (d) none of the above.
 7. Which of the following statements is correct: 

Runaway speed of a hydraulic turbine is the 
speed

   (a) at which there would be no damage to the 
turbine runner

   (b) at which the turbine runner can be allowed 
to run freely without load and with wicket 
gates wide open

   (c) corresponding to maximum overload 
permissible

   (d) at full load.
 8. The specific speed of a turbine is expressed as

   (a) N P
H

 (b) 2
N P
H

   (c) 3/4
N P
H

 (d) 5/4
N P
H

 9. Which of the following statements is correct for 
a reaction turbine?

   (a) The outlet must be above the tail race.
   (b) Water may be allowed to enter a part or 

whole of wheel circumference.
   (c) Flow can be regulated without loss.
   (d) There is only partial conversion of avail-

able head to velocity head before entry to 
rotor.

 10. In a reaction turbine the function of a draft tube 
is to

   (a) provide safety to turbine
   (b) prevent air from entering
   (c) reconvert the kinetic energy to flow energy
   (d) increase the rate of flow.
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 11. Which of the following statements with respect 
to a reaction water turbine is  incorrect:

   (a) The spiral casing serves to uniformly 
distribute water into guide blades

   (b) The water leaves the turbine at atmospheric 
pressure

   (c) The draft tube allows setting of the 
turbine above the tail race with minimum 
reduction of available energy

   (d) The guide vanes direct the flow at proper 
angle.

 12. Which of the following turbines is suitable for 
specific speed ranging from 300 to 1000 and 
heads below 30 m:

   (a) Francis (b) Kaplan
   (c) Propeller (d) Pelton.
 13. Specific speed of a turbo-machine
   (a) relates the shape rather than the size of the 

machine
   (b) remains unchanged under different 

condi tions of operation
   (c) has the dimensions of rotational speed
   (d) is the speed of a machine having unit 

dimensions.
 14. In an outward radial flow turbine energy conver-

sion process is
   (a) purely by reaction only
   (b) purely by impulse only
   (c) partly by impulse and partly by reaction
   (d) none of the above.
 15. Which of the following turbines is least efficient 

under part load conditions:
   (a) Propeller (b) Kaplan
   (c) Francis (d) Pelton.
 16. A surge tank is used to
   (a) prevent occurrence of hydraulic jump
   (b) smoothen the flow
   (c) relieve the pipeline of excessive pressure 

transients
   (d) avoid reversal of flow.
 17. Which of the following turbines is most efficient 

at partload operation?
   (a) Kaplan (b) Propeller
   (c) Francis (d) Pelton wheel.
 18. With respect to a Kaplan turbine which of the 

following statements is incorrect?
   (a) It employs large guide vane angles than is 

the case for a Francis turbine.
   (b) It is designed for flow velocity of mixed 

flow type.

   (c) It has blades of small camber to prevent 
separation.

   (d) It can adjust both guide vane and blade 
angles according to rate of discharge.

 19. Specific speed of an impulse turbine (Pelton 
wheel) ranges from

   (a) 12 to 70 (b) 80 to 400
   (c) 300 to 1000 (d) 1000 to 1200.
 20. A turbo-machine becomes more susceptible to 

cavitation if
   (a) velocity attains a high value
   (b) pressure become very high
   (c) temperature rises above the critical value
   (d) Thoma’s cavitation parameter exceeds a 

certain limit
   (e) pressure falls below the vapour pressure.
 21. Cavitation damage in turbine runner occurs near 

the
   (a) inlet on the convex side of blades
   (b) outlet on the convex side of blades
   (c) inlet on the concave side of blades
   (d) outlet on the concave side of blades.
 22. Which of the following serious problems arise 

from cavitation?
   (a) Noise and vibration.
   (b) Damage to blade surface.
   (c) Fall in efficiency.
   (d) All of the above.
 23. Which of the following statements is correct?
   (a) Muschel curves are the performance plots 

pertaining to constant efficiency.
   (b) Operating characteristics curves of a 

turbine refer to the performance curves 
drawn at constant speed.

   (c) Main characteristic curves of a turbine are 
the performance curves obtained under 
condition of constant head.

   (d) All of the above.
   (e) None of the above.
 24. A Kaplan turbine is
   (a) an inward flow impulse turbine
   (b) low head axial flow turbine
   (c) high head axial flow turbine
   (d) high head mixed flow turbine.
 25. An impulse turbine requires
   (a) high head and small quantity of flow
   (b) low head and small quantity of flow
   (c) low head and high rate of flow
   (d) none of the above.
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 26. ......of a turbine is defined as the ratio of power 
available at the turbine shaft to the power 
supplied by the water jet.

   (a) Mechanical efficiency
   (b) Hydraulic efficiency
   (c) Overall efficiency
   (d) Volumetric efficiency.
 27. The ratio of power developed by the runner to 

the power supplied by the jet at entrance to the 
turbine is known as

   (a) hydraulic efficiency
   (b) mechanical efficiency
   (c) volumetric efficiency
   (d) overall efficiency.
 28. The water which acts on the runner blades of a 

reaction turbine is under a pressure
   (a) equal to atmospheric
   (b) below atmospheric
   (c) above atmospheric
   (d) none of the above.
 29. The runner passages of a reaction turbine are
   (a) partially filled with water
   (b) always completely filled with water
   (c) never filled with water
   (d) none of the above.
 30. The value of speed ratio (Ku) in case of a Francis 

turbine ranges from
   (a) 0.2 to 0.3 (b) 0.4 to 0.5
   (c) 0.6 to 0.9 (d) none of the above.
 31. The value of flow ratio (Kf) in case of a Francis 

turbine varies from:

   (a) 0.1 to 0.14 (b) 0.15 to 0.30
   (c) 0.35 to 0.5 (d) 0.6 to 0.9.
 32. A Kaplan turbine claims which of the following 

advantages over a Francis turbine?
   (a) More compact in construction and smaller 

in size.
   (b) Partload efficiency is considerably high.
   (c) Low frictional losses.
   (d) All of the above.
 33. Which of the following draft tubes is suited 

particularly for helical flow?
   (a) Conical type draft tube.
   (b) Elbow type draft tube.
   (c) Moody’s spreading draft tube.
   (d) None of the above.
 34. Critical value of cavitation factor (sc) is given 

by:

   (a) 
( )a v sH H H

H
+ −

   (b) 
( )a v sH H H

H
− +

   (c) 
( )a v sH H H

H
− −

   (d) 
( ) .a v sH H H

H
+ +

 35. Which of the following surge tank is also called 
a throttled surge tank?

   (a) Inclined surge tank.
   (b) Expansion chamber surge tank.
   (c) Restricted orifice surge tank.
   (d) None of the above.

ANSWERS

 1. (d) 2. (d) 3. (c) 4. (a) 5. (c) 6. (a)
 7. (b) 8. (d) 9. (d) 10. (c) 11. (b) 12. (b)
 13. (a) 14. (d) 15. (a) 16. (c) 17. (a) 18. (b)
 19. (a) 20. (e) 21. (b) 22. (d) 23. (d) 24. (b)
 25. (a) 26. (c) 27. (a) 28. (c) 29. (b) 30. (c)
 31. (b) 32. (d) 33. (c) 34. (c) 35. (c).

THEORETICAL QUESTIONS
 1. What is a hydraulic turbine ?
 2. How are hydraulic turbines classified ?
 3. Give the comparison between impulse and reac-

tion turbines.
 4. With the help of neat diagram explain the 

construction and working of a Pelton wheel 
turbine.

 5. Derive an expression for hydraulic efficiency of 
a Pelton wheel.

 6. What is the condition for hydraulic efficiency of 
a Pelton wheel to be maximum ?

 7. Derive an expression for maximum hydraulic 
efficiency of a Pelton wheel.
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 8. Draw a general layout of a hydroelectric power 
plant using an impulse turbine and define the 
following:

   (i) Gross head, (ii) Net head,
   (iii) Hydraulic efficiency, and
   (iv) Overall efficiency of the impulse turbine.
 9. Draw a schematic diagram of a Francis turbine 

and explain briefly its construction and working.
 10. Draw a general layout of a hydroelectric power 

plant using a reaction turbine.
 11. State the advantages and disadvantages of a 

Francis turbine over a Pelton wheel.
 12. What are the functions of a draft tube ?
 13. Why does a Pelton wheel not possess any draft 

tube ?
 14. How do the losses in the draft tube effect the 

pressure at runner exit ?
 15. What is the difference between a propeller tur-

bine and a Kaplan turbine ?
 16. Where is Kaplan turbine used ?
 17. State the advantages of a Kaplan turbine over 

Francis turbine.
 18. Write a short note on Deriaz turbine.

 19. What are tubular or bulb turbines ?
 20. What are the advantages and disadvantages of 

bulb sets compared to Kaplan turbines ?
 21. How is specific speed of a turbine defined ?
 22. Write a short note on ‘scale effect.’
 23. What is cavitation? How can it be avoided in 

reaction turbines ?
 24. On what factors does the cavitation in water 

turbines depend ?
 25. Enumerate some methods to avoid cavitation in 

water turbines.
 26. What is governing and how it is accomplished 

for different types of water turbines ?
 27. Sketch and describe a modern method of regula-

tion to maintain a constant speed for either (a) 
Pelton wheel or (b) Francis turbine.

 28. Show with the help of a line sketch as to how the 
speed of a reaction water turbine is governed by 
servomotor ?

 29. What is a surge tank ?
 30. Which points should be considered while 

selecting right type of hydraulic turbines for 
hydroelectric power plant ?

UNSOLVED EXAMPLES

 1. A Pelton wheel has a mean bucket speed of 10 
m/s with a jet of water flowing at the rate of 0.7 
m3/s under a head of 30 m. The buckets deflect 
the jet through an angle of 160°. Calculate the 
power and the efficiency of the turbine. Assume 
co-efficient of velocity as 0.98.

   [Ans. 186.9 kW; 94.54%]
 2. A Pelton wheel having a mean bucket diameter of 

1·0 m is running at 1000 r.p.m. The net head on 
the Pelton wheel is 700 m. If the side clearance 
angle is 15° and discharge through the nozzle is 
0·1 m3/s, determine power available at the nozzle 
and hydraulic efficiency of the turbine. 

[Ans. 686.5 kW; 97.18%]
 3. The shaft power of a Pelton wheel, the buckets 

of which are struck by two jets, is 15445 kW. 
The diameter of each jet is 200 mm. If the net 
head on the turbine is 400 m, find the overall 
efficiency of the turbine. Take Cv = 1.0. 
 [Ans. 70.8%]

 4. The jet of water coming out of nozzle strikes the 
buckets of a Pelton wheel which when stationary 
would deflect the jet through 165°. The velocity 
of water at exit is 0·9 times at the inlet and the 
bucket speed is 0·45 times the jet speed. If the 
speed of the Pelton wheel is 300 r.p.m. and the 
effective head is 150 m, determine:

   (i) Hydraulic efficiency, and
   (ii) Diameter of the Pelton wheel.
   Take co-efficient of velocity, Cv = 0.98
   [Ans. (i) 92.5%; (ii) 1.55 m]
 5. A Pelton wheel is required to develop 9193.7 kW 

at the shaft when working under a head of 300 
m. Assuming the values of Cv , Ku (speed ratio) 
and m (= D/d) as 0.98, 0.45 and 12 respectively, 
determine:

   (i) The number of jets,
   (ii) The diameter of the wheel,
   (iii) The quantity of water required, and
   (iv) The diameter of the jet.
    Take the speed of the wheel as 550 r.p.m. 

and overall efficiency as 85%.
  [Ans. (i) 7; (ii) 1.2 m; (iii) 3.68 m3/s; (iv) 0.1 m]
 6. A Pelton wheel is to be designed to develop 735.5 

kW at 400 r.p.m. It is to be supplied with water 
from a reservoir whose level is 250 m above the 
wheel through a pipe 900 m long. The pipeline 
losses are to be 5 per cent of gross head. The co-
efficient of friction is 0.005. The bucket speed 
is to be 0.46 of the jet speed and efficiency of 
wheel is 85%. Calculate :

   (i) Pipeline diameter,
   (ii) Jet diameter, and



Chapter 2 : Hydraulic Turbines         173

   (iii) Wheel diameter. [Panjab University]
   [Ans. (i) 440 mm; (ii) 84 mm; (iii) 1.48 m]
 7. The following data is related to a Pelton turbine:
  Brake/shaft power = 126.5 kW
  Head = 300 m
  Speed = 600 r.p.m.
  Co-efficient of velocity, Cv = 0.98
  Speed ratio, Ku = 0.45
  Overall efficiency, h0 = 75%
  Determine the following :
   (i) The discharge,
   (ii) The least jet diameter,
   (iii) The mean runner diameter jet ratio, and
   (iv) The number of buckets.
   [Panjab University]
   [Ans. (i) 0.0573 m3/s; (ii) 31 mm; 

(iii) 35.6; (iv) 33]
 8. A Pelton wheel has a mean bucket speed of 12 

m/s and is supplied with water at the rate of 0.7 
m3/s under a head of 30 m. If the buckets deflect 
the jet through an angle of 160°, find the power 
and the efficiency of the turbine.

   [Madras University and UPSC]
   [Ans. 194.12 kW; 93.4%]
 9. A jet of water impinges on a series of curved 

vanes at an angle of 30° to the direction of 
motion of the vanes while entering and leaves 
the vanes horizontally. The head under which 
the jet issues from the nozzle is 30 m, the co-
efficient of velocity for the nozzle is 0·9 and the 
diameter of the jet after leaving the nozzle is 50 
mm. The speed of the vanes is 10 m/s and the 
relative velocity of the water at outlet is 0·8 times 
the relative velocity at inlet. Calculate :

   (i) The angle of vane tips at inlet;
   (ii) The power developed by the jet, and
   (iii) The efficiency of the system.
   [Rajputana University]
   [Ans. 50.8°; 8.6 kW; 69.2 %]
 10. A Pelton wheel is to be designed to the following 

specifications :
  Power   ... 11948 kW
  Head   ... 381 m
  Speed   ... 750 r.p.m.
  Overall efficiency ... 86%

  Jet diameter not to exceed 
1

16
 times the wheel 

diameter. Determine :
   (i) The wheel diameter.
   (ii) The number of jets required.

   (iii) The diameter of the jet.
   [Rajasthan University]
   [Ans. (i) 1 m; (ii) 4; (iii) 118 mm]
 11. The buckets of a Pelton impulse turbine deflect 

the jet through a total angle of 165° and owing 
to surface friction the relative velocity of water 
leaving the bucket is 0·85 times that at entry. 
Draw the velocity vector diagram at entry and 
exit and find the ratio of bucket velocity to jet 
velocity in order that the water shall leave the 
buckets without whirl. In such a turbine the 
available head at the nozzle is 650 m, the co-
efficient of velocity for the nozzle is 0·97, the 
jet diameter 100 mm and mean bucket diameter 
1·2 m. Using the conditions referred to above 
determine :

   (i) Best running speed in r.p.m,
   (ii) Impulsive force of the buckets at this 

speed,
   (iii) Power developed by the buckets, and
   (iv) Efficiency of buckets.
   [UPSC, Ravi Shanker University]
   [Ans. (i) 786 r.p.m.; (ii) 94470 N; 
   (iii) 4660 kW; (iv) 90.5%]
 12. A Pelton wheel, 2.45 m in diameter, operates 

under the following conditions :
  Net head = 370 m; co-efficient of velocity = 0.98; 

speed ratio = 0.47; relative velocity of water at 
outlet = 0.90 times that at inlet; deflection of jet 
= 160°; diameter of the jet = 0·88 m.

  Determine the following :
   (i) The input power to the shaft, and
   (ii) The r.p.m. of the wheel.
   [UPSC Exams.]
   [Ans. (i) 7549.8 kW; (ii) 312.15 r.p.m.]
 13. A Pelton wheel has to develop 13230 kW under 

a net head of 800 m while running at a speed of 
600 r.p.m. If the co-efficient of the jet Cv = 0.97, 
speed ratio Ku = 0·46 and the ratio of jet diameter 

is 
1

16
 of wheel diameter, determine the 

following :
   (i) The diameter of the pitch circle,
   (ii) The diameter of each jet,
   (iii) The quantity of water supplied to the 

wheel, and 
   (iv) The number of jets required.
    Assume overall efficiency as 85 percent.
   [UPSC; AMIE]
   [Ans. 1.834 m; 114.6 mm; 1.254 m3/s; 2]
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 14. In a Pelton wheel the buckets deflect the jet 
by 170° and the relative velocity is reduced by 
12% due to bucket friction. For a speed ratio of 
0.47, calculate from first principles the hydraulic 
efficiency of the wheel.

  The bucket circle diameter of the wheel is 0.9 
m and there is one jet for which Cv = 0.98. The 
actual efficiency of the wheel is 0.9 times its 
theoretical efficiency. The wheel develops 
1700 kW under a head of 550 m. Calculate :

   (i) The speed of wheel in r.p.m. and
   (ii) The diameter of the nozzle. [UPSC]
   [Ans. (i) 1035.6 r.p.m; (ii) 66 mm]
 15. An inward flow reaction turbine has external 

and internal diameters as 0.9 m and 0.45m 
respectively. The turbine is running at 200 
r.p.m. and width of turbine at inlet is 0.2 m. The 
velocity of flow through the runner is constant 
and is equal to 1.8 m/s. The guide blades make 
an angle of 10° to the tangent of the wheel 
and discharge at the outlet of turbine is radial. 
Draw the inlet and outlet velocity triangles and 
determine: (i) Relative velocity at inlet, (ii) The 
runner blade angles, (iii) Width of the runner at 
outlet, (iv) Head at the inlet of the turbine, (v) 
Power developed; and (vi) Hydraulic efficiency 
of the turbine.

  [Ans. (i) 1.963 m/s; (ii) θ = 66.48°; φ = 20.9°;   
(iii) 0.4 m; (iv) 9.97 m; (v) 97.8 kW; 

   (vi) 98.34%]
 16. An inward flow reaction turbine of inlet diam-

eter 1·2 m operates under a head of 150 m and 
requires a discharge of 6 m3/s at a rotational 
speed of 400 r.p.m. The guide vane angle is 20° 
and the water leaves the runner blade axially. If 
the runner is 0.1 m wide at the inlet, calculate :

   (i) The torque and power supplied to the shaft, 
and

   (ii) The efficiency of the turbine.
   [Ravi Shanker University]
   [Ans. (i) 156 kNm; 6533 kW; (ii) 74%]
 17. The inward flow reaction turbine develops 735 

kW at 750 r.p.m. under a net head of 100 m. 
The guide vanes makes an angle of 15° with the 
tangent at inlet. The axial length of the blade at 
inlet is 0.1 times the outer diameter. The radial 
velocity of flow through the wheel is constant 
and the discharge from the wheel is radial. The 
blade thickness blocks 5 per cent of the area of 
flow at inlet. The hydraulic efficiency of the 
wheel is 88% and overall efficiency is 84%. 
Determine :

   (i) The wheel diameter,

   (ii) The wheel width, and
   (iii) The blade angle at inlet.
  [Ans. (i) 0.574 m; (ii) 0.0574 m; (iii) θ = 38.7°]
 18. A Francis turbine has to be designed to develop 

367.5 kW under a head of H = 70 m while running 
at N = 750 r.p.m. Ratio of width of runner to 
diameter of runner, n = 0.1, inner diameter is half 
the outer diameter. Flow ratio = 0.15, hydraulic 
efficiency = 95%, mechanical efficiency = 84%. 
Four percent of the circumferential area of 
runner to be occupied by the thickness of vanes, 
velocity of flow is constant and the discharge is 
radial at exit. Calculate: (i) The diameter of the 
wheel, (ii) The quantity of water supplied, and 
(iii) The guide vane angle at inlet and runner 
vane angles at inlet and exit. [UPSC Exams.]

  [Ans. (i) 0.633 m; (ii) 0.67 m3/s; (iii) α = 11° 
58’, θ	= 76° 50’ φ = 24° 5’]

 19. A Francis turbine with an overall efficiency of 
75 percent is required to produce 149.26 kW. It 
is working under a head of 7.62 m. The 
peripheral velocity = 0.26 2g H  and the radial 

velocity of flow at inlet is 0.96 2g H . The 

wheel runs at 150 r.p.m. and the hydraulic losses 
in the turbine are 22 percent of the available 
energy. Assuming radial discharge, determine :

   (i) The guide blade angle,
   (ii) The wheel vane angle at inlet,
   (iii) Diameter of the wheel at inlet, and
   (iv) Width of the wheel at inlet.
    [AMIE, Fluid Power Engg.]
    [Ans. (i) α = 32.6°; (ii) θ	= 37.7°;
  (iii) 0.404 m; (iv) 0.17 m]
 20. Design a Francis turbine runner with the 

following data :
  Net head ... 68 m
  Speed of the runner ... 750 r.p.m.
  Output ... 330·9 kW.
  Hydraulic efficiency ... 94%
  Overall efficiency ... 85%
  Flow ratio ... 0.15
  Breadth ratio ... 0·1

  Inner diameter of runner = 
1
2  × outer diameter

  Also assume 5 per cent of circumferential area 
of the runner to be occupied by the thickness of 
the vanes.

  Velocity of flow remains constant throughout 
and flow is radial at exit.

   [Ans. D1 = 0.6 m; D2 = 0.3 m, B1 = 0.06 m; 
	 	 	 α = 11° 38′, θ = 60° 40′ ; φ = 24°.57′
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 21. A Francis turbine has a wheel diameter of 1 m at 
the entrance and 0.5 m at the exit. The vane angle 
at the entrance is 90° and the guide vane angle 
is 15°. The water at the exit leaves the vanes 
without any tangential velocity. The head is 30 
m and the radial component of flow is constant. 
What would be the speed of the wheel in r.p.m. 
and vane angle at exit ? State whether the speed 
calculated is synchronous one or not. If not, 
what speed would you recommend to couple 
the turbine with an alternator of 50 Hz ? 
 [UPSC Exams.]

   [Ans. 324 r.p.m; 28° 12’ ; 300 r.p.m.]
 22. The following data pertain to an inward flow 

reaction turbine :
  Overall efficiency ... 75%
  Power given by the turbine ... 128·7 kW.
  Head ... 6 m
  The velocity of the periphery of wheel

    = 0.5 2g H

  Radial velocity of flow = 0.5 2g H

  Speed of the wheel = 250 r.p.m.
  Hydraulic losses in the turbine = 22 per cent of 

the available energy.
  Determine the following :
   (i) Guide blade angle at inlet,
   (ii) The wheel vane angle at inlet,
   (iii) The diameter of the wheel, and
   (iv) The width of wheel at inlet.
    Assume the discharge to be radial.
   [Panjab University]
   [Ans. (i) 34° 48’, (ii) 49° 36’ ; (iii) 662 mm;
    (iv) 371 mm]
 23. The following data pertain to an inward flow 

reaction turbine:
  Power to be developed ... 625 kW
  Speed of the runner ... 1000 r.p.m.
  Head ... 100 m
  Guide vane angle ... 16°
  Internal diameter = 0·6 times the external 
   diameter
  Hydraulic efficiency ... 88%
  Overall efficiency ... 86%
  Allowance of blade thickness ... 5%
  Axial length of blade inlet = 0·1 times the outer 

diameter
  Radial velocity of flow ... constant
  Find the leading dimensions of the runner.
   [Jadavpur University]

   [Ans. D1 = 0.527 m; D2 = 0.316 m; 
   B1 = 52.7 mm;  θ = 67.5°; φ = 31° 37’]
 24. The following data pertain to a Kaplan turbine :
  Power available at shaft = 8850 kW; net available 

head = 5.5 m;
  speed ratio = 2.1; flow ratio = 0.67, overall 

efficiency = 85%.
  Assuming that hub diameter of the wheel is 0·35 

times the outside diameter, determine :
   (i) Runner diameter; 
   (ii) Runner speed.
   [Ans. (i) 6.34 m; (ii) 65.7 r.p.m.]
 25. A Kaplan turbine produces 44000 kW under a 

head of 24.7 m, with an overall efficiency of 
90 per cent. Taking the value of speed ratio as 
1.6, flow ratio as 0.5 and the hub diameter as 
0.35 times the outside diameter, find the runner 
diameter and speed of the turbine.

   [Ans. 5.16 m, 130.7 r.p.m.]
 26. The following data pertain to a Kaplan turbine :
  Shaft power = 13230 kW; Speed = 75 r.p.m; 

Head = 8 m; Diameter of boss of runner = 0.35 
times the external diameter; speed ratio = 2; Flow 
ratio = 0.6.

  Find the efficiency of the turbine.
   [Ans. 80.7%]
 27. A Kaplan turbine develops 1471 kW under a 

head of 6 m. The turbine is set 2.5 m above the 
tail race level. A vacuum gaunge inserted at the 
turbine outlet records a suction head of 3.1 m. 
If the hydraulic efficiency is 85 per cent, what 
would be the efficiency of draft tube having inlet 
diameter of 3 m ? What will be the reading of 
suction gauge if power developed is reduced to 
half (735.5 kW), the head and speed remaining 
constant.  
 [Ans. 68%; 2.6496 m]

 28. Calculate the efficiency of a Kaplan turbine 
developing 2900 kW under a net head of 5 m. 
It is provided with a draft tube with its inlet 
(diameter 3 m) set 1.6 m above the tail race 
level. A vacuum gauge connected to the draft 
tube indicates a reading of 5 m of water. Assume 
draft tube efficiency as 78 per cent.  
 [Ans. 90.4%]

 29. A conical draft tube is discharging water at outlet 
with a velocity of 2.5 m/s. Its inlet and outlet 
diameters are 1 m and 1.5 m respectively. The 
total length of the draft tube is 6 m and 1.2 m 
of the length of draft tube is immersed in water. 
If the atmospheric pressure head is 10.3 m of 
water and loss of head due to friction in the draft 
tube is equal to 0.2 × velocity head at outlet of 
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the draft tube, find: (i) Pressure head at inlet,  
(ii) Efficiency of the draft tube.

   [Ans. (i) 4·27 m (abs.); 76·3%]
 30. A hydraulic turbine is to develop 845. kW when 

running at 100 r.p.m. under a head of 10 m. 
Work out the maximum flow rate and specific 
speed for the turbine if the overall efficiency at 
the best operating point is 92 per cent. In order 
to predict its performance, a 1:10 scale model is 
tested under a head of 6 m. What would be the 
speed, power output and water consumption of 

the model if it runs under the conditions similar 
to the prototype ?

  [Ans. Q = 9.37 m3/s; Ns = 163.5; Nm = 774.6 
r.p.m.; Qm = 0.0726 m3/s; Pm = 3.93 kW]

 31. Determine the maximum height of straight 
conical draft tube of 13240 kW Francis turbine 
running at 150 r.p.m., under a net head of 27 m. 
The turbine is installed at station where the ef-
fective atmospheric pressure is 10·6 m of water. 
The draft tube must sink at least 0·77 m below 
the tail race. [Ans. 2.22 m]

   [Hint: Max. height of draft tube = Hs + 0.77]



3.1.  INTRODUCTION

 A pump is a contrivance which provides energy to a 
fluid in a fluid system; it assists to increase the pressure 
energy or kinetic energy, or both of the fluid by converting 
the mechanical energy. The basic difference between 
a turbine and the pump, from hydrodynamic point of 
view, is that in the former flow takes place from the high 
pressure side to the low pressure side,whereas in pump 
flow takes place from the low pressure towards the higher 
pressure. Thus in a turbine  there is accelerated flow, 
while in a pump, the flow is decelerated.

3.2.  CLASSIFICATION OF PUMPS

 On the basis of transfer of mechanical energy the 
pumps can be broadly classified as follows:
 1. Rotodynamic pumps:
 (i) Radial flow pumps 
 (ii) Axial flow pumps 
 (iii) Mixed flow pumps .
 2. Positive displacement pumps.
 In rotodynamic pumps, increase in energy level 
is due to a combination of centrifugal energy, pressure 
energy, and kinetic energy.

 l The energy transfer, in a radial flow pump, occurs 
mainly when the flow is in its radial path.

 l In an axial flow pump, the energy transfer  occurs 
when the flow is in its axial direction.

 l The energy transfer in a mixed flow pump takes 
place when the flow comprises radial as well as 
axial components.

 The radial flow type pumps are commonly called 
centrifugal pumps (only these pumps will be discussed in 
this chapter).
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 Classification of centrifugal pumps:
 On the basis of characteristic features, the centrifugal pumps are classified as follows:

 1. Type of casing:
  (i) Volute pumps   (ii) Turbine pump or diffusion pump.

 2. Working head: 
  (i) Low lift centrifugal pumps .... they work against heads upto 15 m
  (ii) Medium lift centrifugal pumps .... used to build up heads as high as 40 m
  (iii) High lift centrifugal pumps .... employed to deliver liquids at heads above 40 m.

 3. Liquid handled:
  (i) Closed impeller pump (ii) Semi-open impeller pump (or Non-clog pump)
  (iii) Open impeller pump.

 4. Number of impellers per shaft:
  (i) Single stage centrifugal pump ... has one impeller, usually a low lift pump.
  (ii) Multi- stage centrifugal pump ... has two or more impellers and pressure is built in 

steps; used usually for high working heads and the 
number of stages depends on the head required.

 5. Number of entrances to the impeller:
  (i) Single entry or single suction pump ... water is admitted on one side of the impeller.
  (ii) Double entry or double suction pump ... water is admitted from both sides of the 

impeller; axial thrust is neutralised.
    ... employed for pumping large quantities of 

fluid.

 6. Relative direction of flow through impeller: 

  (i) Radial flow pump ... normally radial flow impellers are used in 
all centrifugal pumps

  (ii) Axial flow pump  ... designed to deliver huge quantities of water 
at comparatively low heads; ideally suited 
for irrigation purposes.

  (iii) Mixed flow pump ... mostly employed for irrigation purposes.

3.3. ADVANTAGES OF CENTRIFUGAL PUMP OVER DISPLACEMENT 
(RECIPROCATING) PUMP

 The centrifugal pump claims the following advantages with reference to a positive displacement 
(reciprocating ) pump.
 1. The cost of a centrifugal pump is less as it has fewer parts.
 2. Installation and maintenance are easier and cheaper.
 3. Its discharging capacity is much greater than that of a reciprocating pump.
 4. It is compact and has smaller size and weight for the same capacity and energy transfer.
 5. Its performance characteristics are superior.
 6. It can be employed for lifting highly viscous liquid such as paper pulp, muddy and sewage 

water, oil, sugar molasses etc.
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 7. It can be operated at very high speeds without any danger of separation and cavitation.
 8. It can be directly coupled to an electric motor or an oil engine.
 9. The torque on the power source is uniform, the output fron the pump is also uniform.
 However, because of higher efficiency the reciprocating pumps are still employed  for high 
heads and small discharges. A  reciprocating pump can build up very high pressures (as high as 700 
bar or even more) and as such these pumps are used for lifting oils from very deep oil wells.

3.4.  COMPONENT PARTS OF A CENTRIFUGAL PUMP

 Refer to Fig. 3.1. A centrifugal pump consists of the following main components:
 1. Impeller 2. Casing 3. Suction pipe 4. Delivery pipe.

Overhead tank

Discharge level

Vd

Delivery pipe

Delivery valve

Delivery flange

Pressure gauge

Impeller

S = Shaft driven by
electric motor or oil engine

Centre line of
the pump

Casing
Eye of the impeller

S

Vacuum gauge

Suction flange

Suction
pipe

Vs

Foot valve

Strainer

sump

hs

hd

Fig. 3.1. Volute type centrifugal pump–component parts.

 1. Impeller. An impeller is a wheel (or rotor) with a series of backward curved vanes  
(or blades). It is mounted on a shaft which is usually coupled to an  electric motor.
 The impellers are of  following three types:
 (i) Shrouded  or closed impeller. Refer to Fig. 3.2 (a). In this type of impeller vanes are provided 
with metal cover plates or shrouds on both the sides. It provides better guidance for the liquid and has a 
high efficiency. It is employed when the liquid to be pumped is pure and relatively free from debris.
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( )a ( )b ( )c

Fig. 3.2. Types of impellers.

 (ii) Semi-open impeller. Refer to Fig. 3.2 (b). A semi-open impeller is one in which vanes have  
only the base plate and no crown plate. This impeller can be used even if the liquids contain some debris.
 (iii) Open impelller. Such an impeller is shown in Fig. 3.2 (c); the vanes have neither the crown 
plate nor the base plate i.e. the vanes are open on both sides. Such impellers are employed for pumping 
liquids which contain suspended solid matter (e.g. sewage, paper pulp, water containing sand or grit)
 2. Casing. The casing is an airtight chamber surrounding the pump impeller. It contains suction 
and discharge arrangements, supporting for bearings, and facilitates to house the rotor assembly. It 
has  provision to fix stuffing box and house packing materials which prevent  external leakage. The 
essential purposes of the casing are:
 (i) To guide water to and from the impeller, and 
 (ii) To partially convert the kinetic energy into pressure energy.
 The following three types of casing are commonly employed:
 (a) Volute casing. Refer to Fig. 3.1. In this type of casing the  area of flow gradually increases 
from the impeller outlet to the delivery pipe so as to reduce the velocity of flow. Thus the increase in 
pressure occurs in voute casing (in other words the kinetic energy is concerted into the pressure energy)
 (b) Vortex casing. Refer to Fig. 3.3. If a circular chamber is provided between the impeller and 
the volute chamber, the casing is know as vortex casing. The circular chamber is know as vortex 
or whirlpool chamber and such a pump is known as volute pump with vortex chamber. The vortex 
chamber converts some of the kinetic energy into the pressure energy. The volute chamber further 
increases the pressure energy. Thus the efficiency of a volute pump fitted with a vortex chamber is 
more than that of a simple volute pump.

Vortex chamber

Impeller

Guide vanes

Impeller

 Fig. 3.3. Vortex casing. Fig. 3.4. Casing with guide blades.
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 (c) Casing with guide blades. Refer to Fig. 3.4. In this type of casing impeller is surrounded 
by a series of guide blades (or vanes) mounted on a ring which is know as a diffuser. The liquid 
leaving the impeller passes through the passage (having a gradually increasing area) between guide 
vanes/blades; the velocity of flow decreases and the kinetic energy, is converted into pressure energy. 
Machines with diffuser blades have rather maximum efficiency, but are less satisfactory when a wide 
range of operating conditions is required. These pumps are costlier than volute pumps.
 3. Suction pipe. The pipe which connects the centre/eye of the impeller to sump from which 
liquid is to be lifted is known as suction pipe. In order to check the formation of air pockets the pipe 
is laid air tight. To prevent the entry of soid particles, debris etc. into the pump the suction pipe is 
provided with a strainer at its lower end. The lower end of the pipe is also fitted with a non-return 
foot valve which does not permit the liquid to drain out of the suction pipe when pump is not working; 
this also helps in priming.
 4. Delivery pipe. The pipe which is  connected at its lower end to the outlet of the pump and 
it delivers the liquid to the required height is known as delivery pipe. A regulating valve is provided 
on the delivery pipe to regulate the supply of water.
 Following points, regarding impellers, are worth noting:
 (i) Where it is required to pump clear  and fresh water, the impeller is cast as a single piece 
and is made of castiron. The cast–iron impellers are cheaper.
 (ii) Where corrosion due to salt water or chemicals is expected the impellers are made of ma-
terials such as gunmetal, stainless steel etc.
 (iii) Machines (pumps) that handle hot water, having temperatures above 150°C have to be made 
of cast steel impellers with special types of packings.
 (iv) Where acids are to pumped, the impeller and all inside surfaces in contact with liquid should 
be  coated with a suitable material to withstand corrosion.
 (v) Machines (pumps) employed in milk industry are made of stainless steel to prevent con-
tamination of the liquids handled.

3.5.   WORKING OF A CENTRIFUGAL PUMP

 A centrifugal pump works on the principle that when a certain mass of fluid is  rotated by an 
external source, it is thrown away from the central axis of rotation and a centrifugal head is 
impressed which enables it to rise to a higher level.
 The working /operation of a centrifugal pump is explained step-wise below: 
 1. The delivery valve is closed and the pump is primed that is, suction pipe, casing and portion 
of the delivery pipe upto the delivery valve are completely filled with the liquid (to be pumped) so 
that no air pocket is left.
 2. Keeping the delivery valve still closed the electric motor is started to rotate the impeller. 
The rotation of the impeller causes strong suction or vaccum just at the eye of the casing.
 3. The speed of the impeller is gradually increased till the impeller rotates at its normal speed 
and develops normal energy required for pumping the liquid.
 4. After the impeller attains the normal speed the delivery valve is opened when the liquid 
is continuously sucked (from sump well) up the suction pipe, it passes through the eye of casing 
and enters the impeller at its centre or it enters the impeller vanes at their inlet tips. This liquid is 
impelled out by the rotating vanes and it comes out at the outlet tips of the vanes into the casing. 
Due to impeller action the pressure head as well as velocity heads of the liquid are increased (some 
of this velocity heads is converted into pressure head in the casing and in the diffuser blades/vanes 
if they are also provided). 



182         Hydraulic Machines

 5. From casing, the liquid passes into pipe and is lifted to the required height (and discharged 
from the outlet or upper end of the delivery pipe).
 6. So long as motion is given to the impeller and there is supply of liquid to be lifted the process 
of lifting the liquid to the required height remains continuous.
 7. When pump is to be stopped the delivery valve should be first closed, otherwise there may 
be some backflow from the reservoir.

3.6. WORK DONE BY THE IMPELLER (OR CENTRIFUGAL PUMP) 
ON LIQUID

 The expression for work done  or energy supplied by the impeller of a centrifugal pump on the 
liquid flowing through may be derived in the same way as for turbine. Fig . 3.5 shows one vane of 
the impeller.
 The liquid enters the impeller at its centre and leaves at its outer periphery.

 Assumptions:

 (i) Liquid enters the impeller eye in radial direction, the whirl component Vwl (of the inlet 
absolute velocity V1) is zero and the flow component Vf1 equals the absolute velocity itself (i.e. Vfi = 
V1 );  α = 90°.
 (ii) No energy loss in the impeller due to friction and eddy formation.
 (iii) No loss due to shock at entry.
 (iv) There is uniform velocity distribution in the narrow passages formed between two adjacent 
vanes.
 Fig. 3.5 shows a portion of the impeller of a centrifugal pump with the one vane and the velocity 
triangles at the inlet and the outlet tips of the vane.

Tangent to
impeller at
outlet of vane

Tangent to
impeller at

inlet of vane

�

Inlet velocity
triangle

u1

�

Vr1

V V1 1= f

Rotatio
n

Vane

�

V2

Vf2
Vr2

�
Outlet

velocity
triangle

R1

R2

Vw2

u2

Fig. 3.5. Velocity triangles for an impeller vane.

 Let, D1 = Diameter of the impeller at inlet (R1 = D1/2),
  N = Speed of the impeller in r.p.m.,

  ω = Angular velocity 2 rad/s ,
60

Np = 
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  u1 = Tangential velocity of the impeller at inlet

   = 1 1
1

2 ,
60 60
D N R N Rp p = = ω 

 

  D2 = Diameter of the impeller at outlet (R2 = D2/2),
  u2 = Tangential velocity of impeller at outlet

   = 2 2
2

2 ,
60 60
D N R N Rp p = = ω 

 

  V1 = Absolute velocity of water at inlet,
  Vw1 = Velocity of whirl at inlet,
  Vr1 = Relative velocity of liquid at inlet,
  Vf1 = Velocity of flow at inlet,
  α = Angle made by absolute velocity (V1) at inlet with the 

direction of motion of vane,
  θ = Angle made by the relative velocity (Vr1) at inlet with the 

direction of motion of vane, and 
 V2, Vw2, Vr2, Vf2, β and φ are the corresponding values at outlet.
 While passing through the impeller, the velocity of whirl changes and there is a change of 
moment of momentum.
  Torque on the impeller = Rate of change of moment of momentum
  Moment of momentum at inlet = 0                    ( Vw1 = 0 )

  Moment of momentum at outlet = ( )2 2w
W V R
g

	 ∴  Torque = 2 2( )w
W V R
g

  Work done per second = Torque × angular velocity

    = 2 2 2 2( ) ( )w w
W WV R V u
g g

× ω =   2 2( )u R= ω   ...(3.1)

 Work done per second per unit weight of liquid

        = 2 2wV u
g

 ...[3.1 (a)]

 Eqn. (3.1) has been developed assuming flow at inlet to be radial (i.e. Vw1 = 0). If the flow is 
not radial, the expression for work done may be written as :

  Work done per second = 2 2 1 1( )w w
W V u V u
g

−

 or, Work done per second per unit weight of liquid

    = 2 2 1 1
1 ( )w wV u V u
g

−  ...(3.2)

 Eqn 3.2 is known as the Euler momentum equation for centrifugal pumps.

 The term 2 2 1 1
1 ( )w wV u V u
g

−  is referred to as Euler head He [Theoretical head]
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  1 1 1 2 2 2

1 2

1 2

where, = weight of liquid = × and
= volume of liquid

× =

where, and are the widths of impeller at inlet and outlet and
and are the velocities of flow at inlet and outlet respectively.
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 Eqn. 3.1 stipulates that for delivering liquid at high heads the peripheral velocity u2 must be 
high and vector Vw2 must be large (so as to provide adequate whirl to the liquid). The increase in u2 
can be obtained by increasing the impeller diameter and speed of rotation. The whirl component Vw2

 

however can be augmented by the providing adequate number of vanes of suitable size and shape.
 Further, from outlet triangle, we have:
  2

2rV  = 
2 2

2 2 2 2 2
2 2 2 2 2( ) , or, ( )

f rf w wV u V V V u V+ − = − −  ...(i)

 Also, 2
2
fV  = 2 2

2 2wV V−  ...(ii)

 From expressions (i) and (ii), we have: 
  2 2

2 2wV V−  = 2 2 2 2 2
2 2 2 2 2 2 2 2( ) ( 2 )r w r w wV u V V u V u V− − = − + −

 or, 2 2
2 2wV V−  = 2 2 2

2 2 2 2 22r w wV u V u V− − +

 or, u2Vw2 = 2 2 2
2 2 2

1 ( )
2 rV u V+ −

 Similarly from inlet triangle, we can obtain:

  u1Vw1 = 2 2 2
1 1 1

1 ( )
2 rV u V+ −

 Substituting in eqn. (3.2), we get:
 Work done per second per unit weight of liquid (or He)

   = 
2 2 2 2 2 2

2 1 2 1 1 2

2 2 2
r rV V u u V V

g g g
− − −

+ +  ..(3.3)

 Eqn. (3.3) indicates that work done on the liquid consists of three terms:

 –  The first term 
2 2

2 1
2

V V
g

 −
 
 

 represents the increase in kinetic energy or dynamic head.

 –  The second term 
2 2
2 1
2

u u
g

 −
 
 

 represents an increase in static pressure.

 –  The third term 
2 2
1 2
2

r rV V
g

 −
 
 

 indicates the change in kinetic energy due to retardation of flow 

relative to the impeller (this term, therefore, represents conversion of kinetic energy within the 
impeller itself).
 Eqn. (3.3) is sometimes known as the fundamental equation of centrifugal pump.

3.7.  HEAD OF A PUMP

 The head of a centrifugal pump may be expressed in the following ways:
 (i) Static head;           (ii) Manometric head;                (iii) Total, gross or effective head.
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 (i) Static head. The sum of suction head and delivery head is known as static head. This is 
represented by Hstat and is written as: 

   Hstat = hs + hd       ...(3.4)
 where, hs = Suction head (it is the vertical height of the centre line of the pump shaft above 

the liquid surface in the sump from which the liquid is being raised), and
  hd = Delivery head (it is vertical height of the liquid surface in the tank / reservoir to 

which the liquid is delivered above the centre line of the pump shaft).
 The terms hs and hd are known as static suction lift and static delivery lift respectively.
 (ii) Manometric head. The head against which a centrifugal pump has to work is known as 
the manometric head. It is the head measured across the pump inlet and outlet flanges. It is denoted 
by Hmano and is given by the following expressions:
 (i) Hmano = Head imparted by the impeller to liquid – loss of head in the pump (i.e. impeller, 
and casing )

   = 2 2 ( )w
Li Lc

V u h h
g

− +  ...(3.5)

 (where, hLi and hLc are the losses of head in the impeller and casing respectively.)

     = 2 2wV u
g

      ...if loss of head in the pump is zero.       ...(3.6)

 (ii)  Hmano = Hstatic + losses in pipes + 
2

2
dV
g

   = 
2

( ) ( )
2

d
s d fs fd

Vh h h h
g

+ + + +  ...(3.7)

 where, hs = Suction head, 
  hd = delivery head,
  hfs = Frictional head loss in the suction pipe,
  hfd = Frictional head loss in the delivery pipe, and
  Vd = Velocity of liquid in delivery pipe.
 (iii)  Hmano = Total head at outlet of the pump – total head at inlet of the pump

   = 
2 2

2 2 1 1
2 12 2

p V p Vz z
w g w g

   
+ + − + +   

   
 ...(3.8)

 where, 2p
w

 = Pressure head at outlet of pump = hd,

  
2

2
2
V

g
 = Velocity head at outlet of the pump

   = Velocity head in the delivery pipe = 
2

,
2

dV
g

  z2 = Vertical height of the pump outlet from the datum line, and 

 
2

1 1
1, ,

2
p V z
w g

 = corresponding values of pressure head, velocity head and datum head at inlet of 

the pump 
2

. ., , and respectively .
2

s
s s

Vi e h z
g
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 (iii) Total, gross or effective head. It is equal to the static head plus all the head losses occur-
ring in flow before, through and after the impeller.

3.8.  LOSSES AND EFFICIENCIES OF A CENTRIFUGAL PUMP
3.8.1. Losses in Centrifugal Pump

 When a centrifugal pump operates, the various losses which occur are as follows:
 1. Hydraulic losses:
  (i) Hydraulic losses in the pump:
  (a) Shock or eddy losses at the entrance to and exit from the impeller.
  (b) Losses due to friction in the impeller.
  (c) Friction and eddy losses in the guide vanes/diffuser and casing.
  (ii) Other hydraulic losses:
   (a) Friction and other minor losses in the suction pipe.
  (b) Friction and other minor losses in the delivery pipe.
 2. Mechanical losses:
  (i) Losses due to disc friction between the impeller and the liquid which fills the clearance 

spaces between the impeller and casing.
  (ii) Losses pertaining to friction of the main bearing and glands.
 3. Leakage loss:
 The loss of energy due to leakage of liquid is known as leakage loss. The various losses in a 
centrifugal pump are shown diagramatically in Fig. 3.6.

3.8.2. Efficiencies of a Centrifugal Pump
 The various efficiencies of a centrifugal pump are:
 (i) Manometric efficiency (ηmano), (ii) Volumetric efficiency (ην),
 (iii) Mechanical efficiency (ηm), and (iv) Overall efficiency (η0).

Shaft

Shaft power (P)
(kW)

Impeller

Impeller
power (kW)

Mechanical
losses

Hydraulic losses
in the pump

Other hydraulic
losses

wQV uw2 2

1000 g
=

wQHmano

1000
=

Output power
(kW)

=
wQHstat

1000

Static power
(kW)

Casing exit Delivery exit

Fig. 3.6. Losses in centrifugal pump.

 (i) Manometric efficiency (ηmano). The ratio of the manometric head developed by the pump 
to the head imparted by the impeller to the liquid is known as manometric efficiency. Thus, 

  ηmano = Manometric head
Head imparted by impeller to liquid

  or, ηmano = mano mano

2 22 2

H
ww

gH
V uV u

g

=
 
 
 

 ...(3.9)
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 (ii) Volumetric efficiency (ηv). The ratio of quantity of liquid discharged per second from the 
pump to quantity passing per second through the impeller is known as volumetric efficiency. Thus,

  ηv = Liquid discharged per second from the pump
Quantity of liquid passing per second through the impeller

 or, ηv = Q
Q q+

 where, Q = Actual liquid discharged at the pump outlet per second, and
   q = Leakage of liquid per second from the impeller (through the 

clearances between the impeller and casing).
 (iii) Mechanical efficiency (ηm). The ratio of the power delivered by the impeller to the liquid 
to the power input to the pump shaft is known as mechanical efficiency. Thus,

  ηm = Power delivered by the impeller to the liquid
Power input to the pump shaft (P)

 or, ηm = 2 2( ) ( / )ww Q q V u g
P

+  ...(3.11)

   = .mech lossP P
P

−  ...[3.11(a)]

 (iv) Overall efficiency (η0). The ratio of power output of the pump to the power input to the 
pump is known as overall efficiency. Thus,

  η0 = manoPower output of the pump
Power input to the pump / shaft

wQH
P

=  ...(3.12)

 Also, η0 = ηmano × ηv × ηm

   = mano 2 2

2 2

( ) ( / )
( / ) ( )

w

w

H w Q q V u gQ
V u g Q q P

+
× ×

+

   =  mano ,wQH
P

 which is the same as eqn. (3.12)

3.8.3. Effect of Outlet Vane Angle (φ) on Manometric Efficiency
 The total energy of liquid before entering the impeller, with reference to the centre of pump, is 
taken as zero. After leaving the impeller, the liquid has a pressure energy (Hmano) and kinetic energy 

2
2 .

2
V

g
 
  
 

 The energy supplied to the impeller is 2 2 .wV u
g

 Neglecting the losses in the pump and 

equating the energy given to the impeller to the increase in total energy, we have: 

  2 2wV u
g

 = 
2

2
mano 2

VH
g

+

 or, Hmano = 
2

2 2 2

2
wV u V
g g

−  ...(3.13)

 From velocity triangle at outlet shown in Fig. 3.5, we have:

  2
2V  = 22 2

2 2 2 2 22 , and, cot
tan

f
f w fw

V
V V V u u V+ = − = − φ

φ
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 Then, Hmano = 
2 2

2 2 2 2 2 2( cot ) ( cot )
2

f f fu V u u V V
g g

− φ × − φ +
−  

   = 
2 2 2 2 2
2 2 2 2 2 2 2 22 ( cot ) [( cot 2 cot ) ]

2
f f f fu u V u V u V V

g
− φ − + φ − φ +

   = 
2 2 2 2 2
2 2 2 2 2 2 2 22 2 cot cot 2 cot

2
f f f fu u V u V u V V

g
− φ − − φ + φ −

   = 
2 2 2 2 2 2
2 2 2 2(1 cot ) cosec

2 2
f fu V u V

g g
− + φ − θ

=  ...(3.14)

 The manometric efficiency of the pump, under the ideal condition assumed above, will become:  

  ηmano = 
2 2 2
2 2mano mano

2 2 2 2 2 2 2

cosec
( / ) 2 ( cot )

f

w w f

u VH gH
V u g V u u u V

− θ
= =

− φ

 Let us assume the flow ratio 2

mano2
f

f
V

K
gH

 
= 
  

 = 0.25; computing the value of u2 in terms of

Hmano from eqn. 3.14 for different values of φ, it will be observed that as the value of φ	varies from 
90° to 20° the value of ηmano increases from 0.47 to 0.73. A further decrease in the angle φ will 
increase the efficiency, but it is impracticable to have the angle φ less than 20°, as it would result 
in long and narrow blades, with very high frictional losses. As such the minimum value of φ	is 20°.
 Example 3.1.   The impeller of a centrifugal pump has an external diameter of 450 mm and 
internal diameter of 200 mm and it runs at 1440 r.p.m. Assuming a constant radial flow through the 
impeller at 2.5 m/s and that the vanes at exit are set back at an angle 25°, determine:
 (i) Inlet vane angle,
 (ii) The angle, absolute velocity of water at exit makes with the tengent, and
 (iii) The work done per N of water. 
 Solution. Internal diameter of the impeller, D1 = 200 mm = 0.2 m

Outlet

u2
Vw2

�

�

V2
Vr2

Vf2

�
�

V V1 1= :f Vw1 = 0Vr1

u1

Vane

Inlet

� = 90º

Fig. 3.7
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  External diameter of the impeller, D2 = 450 mm = 0.45 m
  Speed of impeller, N = 1440 r.p.m.
  Velocity of flow, Vf1 = Vf2 = 2.5 m/s
  Vane angle at outlet,	φ = 25°
 (i) Inlet vane angle, θ:
  Tangential velocity of impeller at inlet,

  u1 = 1 0.2 1440
60 60
D Np p × ×

=  = 15.08 m/s

  From velocity triangle at inlet, we have: 

  tan θ = 1

1

2.5, or, tan
15.08

fV
u

θ =  = 0.1658

  ∴	 θ = tan–1 0.1658 = 9.4° (Ans.)
 (ii) The angle, absolute velocity of water at exit makes with the tangent, β:
  Tangential velocity of impeller at outlet,

    u2 = 2 0·45 1440
60 60
D Np p × ×

=  = 33.93 m/s

  From velocity triangle at outlet, we have:

    Vw2 = 2
2 2

2.5, or, 33.93
tan tan 25º

f
w

V
u V− = −

φ
 = 28.57 m/s

  Now, tan β = 2

2

2.5
28.57

f

w

V
V

=  = 0.0875

  ∴	 β = tan–1 0.0875 = 5° (Ans.)
 (iii) Work done per N of water:

  Work done per N of water = 2 2 28.57 33.93
9.81

wV u
g

×
=  = 98.81 Nm  (Ans.)

 Example 3.2.   A centrifugal pump is to discharge 0.118 m3/s at a speed of 1450 r.p.m against 
a head of 25 m. The impeller diameter is 250 mm, its width at outlet is 50 mm and manometric 
efficiency is 75 percent. Determine the vane angle at the outer periphery of the impeller.    [PTU]

 Solution.   Discharge, Q = 0.118 m3/s
  Speed N = 1450 r.p.m. 
  Speed, Ηmano = 25 m
 Diameter of impeller at outlet, 
  D2 = 250 mm = 0.25 m
  Width at outlet, B2 = 50 mm =  0.05 m
 Manometric efficiency, ηmano = 75%
 Vane angle at outlet, φ:

Tangential velocity of impeller at outlet,

  u2 = 2 0.25 1450
60 60
D Np p × ×

=  = 18.98 m/s

  Discharge, Q = pD2B2 × Vf 2

Vr2
V2

Vf2

�

�

Vane

V Vf1 1=Vr1

u1

�
�

Inlet

� = 90º

u2

Outlet
Vw2

Fig. 3.8
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 ∴ Vf 2 = 
2 2

0.118
0.25 0.05

Q
D B

=
p p× ×

 = 3.0 m/s

 Manometric efficiency, ηmano = mano

2 2w

gH
V u

 or, 0.75 = 2
2

9.81 25 9.81 25, or, 17.23 m/s
18.98 0.75 18.98w

w
V

V
× ×

= =
× ×

 From velocity triangle at outlet, we have:

  tan φ = 2

2 2

3.0
18.98 17.23

f

w

V
u V

=
− −

 = 1.7143

	 ∴	 φ = tan–1 1.7143 = 59.74°  (Ans.)

 Example 3.3.   The impeller of a centrifugal pump having external and internal diameters  
500 mm and 250 mm respectively, width at outlet 50 mm and running at 1200 r.p.m. works 
against a head of 48 m. The velocity of flow through the impeller is constant and equal to  
3.0 m/s. The vanes are set back at an angle of 40º at outlet. Determine:
 (i) Inlet vane angle,
 (ii) Work done by the impeller on water per second, and 
 (iii) Manometric efficiency.

 Solution.  External diameter of impeller, D2 = 500 mm = 0.05 m
  Internal  diameter, D1 = 250 mm = 0.25 m
  Width at outlet, B2 = 50 mm = 0.05 m
  Speed, N = 1200 r.p.m.
  Head, Hmano = 48 m
  Velocity of flow, Vf 1 = Vf 2 = 3.0 m/s
  Vane angle at outlet, φ = 40°
 (i) Inlet vane angle, θ: 
  Refer to Fig. 3.8. From velocity triangle at inlet, we have:

              tan θ = 1 1
1

1

0.25 1200where,
60 60

fV D Nu
u

p p × ×
= =  = 15.7 m/s

  Substituting the values of Vf 1 and u1, we get:

    tan θ = 3.0
15.7

 = 0.191  ∴	θ = tan–1 0.191 = 10.81°  (Ans.)

 (ii) Work done by the impeller:
   Work done by the impeller on water per second is given by eqn. (3.1) as

     = 2 2 2 2w w
W wQV u V u
g g

= ×  ...(i)

  where, Q = pD2B2 × Vf 2 = p × 0.5 × 0.05 × 3.0 = 0.2356 m3/s
  Also, from velocity triangle at outlet, we have:

    tan φ = 
2

2

2 2 2

3.0 3.0, or, tan 40
31.41 31.41

f

w w w

V
u V V V

= ° =
− − −

  2
2

0.5 1200where, 31.41 m/s
60 60
D Nu p p × × = = = 
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  or,           31.41 – Vw2 = 
2

3.0 3.0, or, 31.41 27.83 m/s
tan 40 tan 40wV = − =

° °
  Substituting the values in eqn (i), we get the work done by the impeller

     = 9.81 0.2356 27.83 31.41
9.81
×

× ×  = 205.95 kNm (Ans.)
( w = 9.81 kN/m3)

 (iii) Manometric efficiency, (ηmano):
  Manometric efficiency is given by eqn. (3.9) as:

    ηmano = mano

2 2

9.81 48
27.83 31.41w

gH
V u

×=
×

 = 0.5386 or 53.86%  (Ans.)

 Example 3.4.   A centrifugal pump running at 800 r.p.m. is working against a total head of  
20.2 m. The external diameter of the impeller is 480 mm and outlet width 60 mm. If the vanes angle 
at outlet is 40° and manometric efficiency is 70 percent, determine:
 (i) Flow velocity at outlet,
 (ii) Absolute velocity of water leaving the vane,
 (iii) Angle made by the absolute velocity at outlet with the dircetion of motion at outlet, and
 (iv) Rate of flow through the pump.

 Solution.  Speed, N  =  800 r.p.m.; Head, Hmano = 20.2 m;
  External diameter, D2  =  480 mm =  0.48 m; Width at outlet, B2 = 60 mm = 0.06 m;
  Outlet vangle angle, φ  =  40°; Manometric efficiency, ηmano = 70 %.
  Refer to Fig. 3.9. 
 (i) Flow velocity at outlet, Vf2 :
  Tangential velocity of impeller at outlet,

    u2  = 2 0.48 800
60 60
D Np p × ×

=  

     = 20.1 m/s
  Also, manometric efficiency is given by,

    ηmano = 
2 2

m

w

gH
V u

 ...(Eqn 3.9)

  or, 0.70 = 
2

9.81 20.2
20.1wV

×
×

  or, Vw2 = 9.81 20.2
0.70 20.1

×
×

 = 14.08 m/s 

  From velocity triangle at outlet, we have:

    tan φ = 2 2

2 2 (20.1 14.08)
f f

w

V V
u V

=
− −

  or,     Vf2
 = tan φ (20.1 – 14.08) 

     =  tan 40° (20.1 – 14.08) = 5.05 m/s (Ans.)
 (ii) Absolute velocity of water leaving the vane, V2 :

    V2 = 2 2 2 2
2 2 5.05 14.08f wV V+ = +  = 14.96 m/s (Ans.)

Vr2V2

Vf2

� �

Vane

V Vf1 1=Vr1

u1

�
�

Inlet

u2

Outlet
Vw2

� = 40º

� = ?

� = 90º

Fig. 3.9
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 (iii) Angle made by the absolute velocity at outlet with the direction of motion, β:
  From velocity triangle at outlet, we have:

     tan β = 2

2

5.05
14.08

f

w

V
V

=  = 0.3586 ∴	 β = tan–1 (0.3586) = 19.7° (Ans.)

 (iv) Rate of flow through the pump, Q:
     Q = pD2B2 × Vf 2 = p × 0.48 × 0.06 × 5.05 = 0.457 m3/s (Ans.)

 Example 3.5.  A centrifugal pump impeller 
runs at 80 r.p.m. and has outlet vane angle of 60°. 
The velocity of flow is 2.5 m/s throughout and 
diameter of the impeller at exit is twice that at inlet. 
If the manometric head is 20 m and the manometric 
efficiency is 75 percent, determine:
 (i) The diameter of the impeller at the exit, and
 (ii) Inlet vane angle.

 Solution. Speed, N = 80 r.p.m.; Outlet vane 
angle, φ = 60°; Velocity of flow, Vf 1 = Vf 2 = 2.5 m/s; 
manometric head, Hmano = 20 m; Manometric 
efficiency, ηmano = 75%;
 Diameter of the impeller at outlet, 
                D2 = 2D1(diameter at inlet)
 (i) The diameter of the impeller at the exit, D2:

	 	 		 ηmano  = mano

2 2w

gH
V u

                         .... Eqn. (3.9) 

    0.75 = 2 2
2 2

9.81 20 9.81 20, or, 261.6
0.75w

w
V u

V u
× ×

= =                         ...(i)

  From velocity triangle at outlet (Fig. 3.10), we have

    tan φ = 2

2 2

f

w

V
u V−

  or, u2 – Vw2 = 2 2
2 2, or,

tan tan
f f

w
V V

V u= −
φ φ

  or, Vw2 = 2 2
2.5 1.44

tan 60
u u− = −

°
  Substituting this value of Vw2 in (i), we get: 
    (u2 – 1.44) u2 = 261.6, or u2

2 – 1.44u2 – 261.6 = 0

  or, u2 = 
21.44 1.44 4 261.6 1.44 32.38
2 2

± + × ±
=  = 16.91 m/s (ignoring –ve sign)

  Also, tangential velocity of impeller at outlet, u2 = 2 2
2

60
, or,

60
D N uD

N
p

=
p

  ∴ D2 = 60 16.91
80

×
p ×

 = 4.037 m  4 m (Ans.)

 (ii) Inlet vane angle, θ:
  Tangential velocity of the impeller at inlet, u1 = 2 16.91

2 2
u

=  = 8.455 m/s  2
1 2

DD = 
 


� = 60º

Outlet

Vr2

V2

� �

� = 90º

Vane

V Vf1 1=Vr1

u1

�
�

Inlet � = ?

Vw2

u2

Vf2

Fig. 3.10
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  From velocity triangle at inlet, we have:

    tan θ = 1

1

2.5
8.455

fV
u

=  = 0.2957

  ∴ θ = tan–1 (0.2957) = 16.47° (Ans.)

 Example 3.6.   A centrifugal pump impeller having external and intenal diameters 480 mm and 
240 mm respectively is running at 100 r.p.m. The rate of flow through the pump is 0.0576 m3/s and 
velocity of flow is constant and equal to 2.4 m/s. The diameters of the suction  and delivery pipes 
are 180 mm and 120 mm respectively and suction and delivery heads are 6.2 m (abs.) and 30.2 m 
of water respectively. If the power required to drive the pump is 23.3 kW and the outlet vane angle 
is 45°, determine:
 (i) Inlet vane angle,
 (ii) The overall efficiency of the pump, and
 (iii) The manometric efficiency of the pump.

 Solution. External diameter of the impeller, 
  D2  = 480 mm = 0.48 m,
  Internal diameter, D1 = 240 mm = 0.24 m,
  Speed, N = 1000 r.p.m.,
  Discharge, Q = 0.0567 m3/s;
  Velocity of flow, Vf1 = Vf2 = 2.4 m/s
 The diameter of suction pipe,
  Ds = 180 mm = 0.18 m
 The diameter of delivery pipe,
  Dd = 120 mm = 0.12 m
  Suction head, hs = 6.2 m (abs.)
  Delivery head, hd = 30.2 m (abs.)
  Shaft power, P = 23.3 kW 
  Outlet vane angle, φ = 45°

Outlet

Vr2

V2

� �

Vr1

u1

�
�

Inlet

Vw2

u2

Vf2

� = 90º

Vane

V Vf1 1=

� = ?

V Vf f1 2= = 2.4 m/s

3.11
Fig. 3.11
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 (i) Inlet vane angle, θ:
  Tangential velocity of impeller at inlet,

    u1 = 1 0.24 1000
60 60
D Np p × ×

=  = 12.56 m/s

  From velocity triangle at inlet, we have:

    tan θ = 1

1

2.4
12.56

fV
u

=  = 0.191

  ∴ θ = tan–1 (0.191) = 10.8° (Ans.)
 (ii) The overall efficiency of the pump, η0:
  The overall efficiency of a centrifugal pump is given by,

    η0 = mano mano9.81 0.0567
23.3

wQ H H
P

× ×
=  = 0.02387 Hmano

(where, w = 9.81 kN/m3)
  Also Hmano is given by eqn. (3.8) as:

    Hmano = 
2 2

2 2 1 1
2 12 2

p V p Vz z
w g w g

   
+ + − + +      

   
 ...(ii)

  where,   2p
w

 = Pressure head at pump outlet, hd = 30.2 m,

    
2

2

2
V

g
 = Velocity head at pump outlet = 

2

2
dV
g

,

    z2 = Vertical height of pump outlet from datum line,

    1p
w

 = Pressure heat at pump inlet, hs = 6.2 m (abs.),

    
2

1

2
V

g
 = Velocity head at pump inlet, 

2

2
sV
g

, and

    z1 = Vertical height of pump inlet from datum line.
  Now, velocity of water in suction pipe,

    Vs = 
2 2

0.0567

0.18
4 4s

Q

D
=p p× ×

 = 2.23 m/s

  Velocity of water in delivery pipe,

    Vd = 
2 2

0.0567

0.12
4 4d

Q

D
=p p× ×

 = 5.01 m/s

  Assuming z2 = z1 and substituting the values in eqn. (ii), we get:

    Hmano = 
2 25.01 2.2330.2 6.2

2 9.81 2 9.81
   

+ − +      × ×   
     = 31.48 – 6.45 = 25.03 m
  Substituting this value of Hmano in eqn. (i), we get: 

    η0 = 0.02387 × 25.03 = 0.597 or 59.7% (Ans.)
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 (iii) The manometric efficiency of the pump, ηmano:

    ηmano = mano

2 2w

gH
V u

 ...Eqn. (3.9)

    u2 = 2 0.48 1000
60 60
D Np p × ×

=  = 25.13 m/s

  From velocity triangle at outlet (Fig. 3.11), we have:

  tan φ = 2
2

2 2 2

2.4 2.4, or, tan 45 , or, 25.13
25.13 tan 45

f
w

w w

V
V

u V V
° = − =

− − °
 = 2.4 

  ∴ Vw2 = 25.13 – 2.4 = 22.73 m/s
  Substituting the values in the above equation, we get:

    ηmano = 9.81 25.03
22.73 25.13

×
×

 = 0.43 or 43% (Ans.)

 Example 3.7.  It is required to deliver 0.048 m3 /s of water to a height of 24 m through a  
150 mm diameter pipe and 120 m long, by a centrifugal pump. If the overall efficiency of the pump 
is 75 percent and co-efficient of friction, f = 0.01 for thr pipe line, find the power required to drive 
the pump.

 Solution.  Rate of flow, Q = 0.048 m3/s;  Height, Hstat = hs + hd = 24 m
  Diameter of pipe, Ds = Dd =  D = 150 mm, or, 0.15 m,
  Length, Ls + Ld   = L =120 m
  Overall efficiency, ηo = 75%
  Co-efficient of friction, f  = 0.01

 Power required to drive the pump, P:

  Velocity of water in pipe, Vs = Vd = V = 
2

0.048
Area of pipe 0.15

4

Q
=
p
×

 = 2.7 m/s

 Loss of head due to friction in pipe,

  (hfs = hfd) = 
2 24 4 0.01 120 2.7

2 0.15 2 9.81
fLV

D g
× × ×

=
× × ×

 = 11.89 m

 The manometric head (Hmano) is given by eqn. (3.7) as:

  Hmano = 
2

( ) ( )
2

d
s d fs fd

Vh h h h
g

+ + + +

   = 24 + 11.89 + 
22.7

2 9.81×
 = 36.26 m

 Using the relation : η0 = manowQH
P

, we get:

  0.75 = 9.81 0.048 36.26
P

× ×  ( w = 9.81 kN/m3)

 or, P = 9.81 0.048 36.26
0.75

× ×  = 22.76 kW (Ans.)
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 Example 3.8.   The impeller of a centrifugal pump is of 300 mm diameter and 50 mm width at 
the periphery, and has blades whose tip angle incline backwards 60° from  the radius. The pump 
delivers 17 m3/min. of water and the impeller rotates at 1000 r.p.m. Assuming that the pump is 
designed to admit radially, calculate:
  (i) Speed and direction of water as it leaves 
the impeller,
  (ii) Torque exerted by the impeller on water,
  (iii) Shaft power required, and
  (iv) Lift of the pump. 
 Take, mechanical efficiency = 95% and 
hydraulic efficiency = 75%. 

[Rajasthan University]

 Solution. External diameter of impeller,  
D2 = 300 mm =  0.3 m
 Width at periphery, B2 =50 mm = 0.05 m
 Outlet vane angle, φ = 60°
 Discharge, Q = 17 m3/min., or, 0.2833m3/s 
 Speed of the impeller, N = 1000 r.p.m.
 ηm = 95%; ηh = 70%.

 (i) Speed and direction of water as it leaves the impeller, V2, β: 
  Tangential velocity of impeller at outlet,

    u2 = 2 0.3 1000
60 60
D Np p × ×=  = 15.71 m/s

  Also, Q = pD2B2 × Vf 2, or, Vf 2 = 
2 2

Q
D Bp

  ∴ Vf 2 = 0.2833
0.3 0.05p× ×

 = 6.01 m/s

  From velocity triangle at outlet, (Fig. 3.12), we have:

    tan φ	=	 2

2 2

f

w

V
u V−

, or, u2 – Vw2 = 2

tan
fV
φ

  or, Vw2 = u2 – 2

tan
fV
φ

 = 15.71 – 6.01
tan 60°

 = 12.24 m/s

  ∴ Absolute velocity of water at outlet tip of impeller,

    V2 = 2 2 2 2
2 2 12.24 6.01w fV V+ = +  = 13.63 m/s (Ans.)

    tan β =  2

2

6.01
12.24

f

w

V
V

=  = 0.491

  ∴  The direction of outgoing velocity, β	= tan–1 (0.491) = 26.15° (Ans.)

 (ii) Torque exerted by the impeller on water, T: 

    T = wQ
g

 (Vw2 R2)

Outlet

Vr2

V2

� �

� = 90º

Vane

V Vf1 1=
Vr1

u1

�
�

Inlet � = ?

Vw2

u2

Vf2

� = 60°

Fig. 3.12
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    =  9.81 0.2833 0.312.24
9.81 2
×  × ×  

 
= 0.52 kNm (Ans.)

          ( w = 9.81 kN/m3)
 (iii) Shaft power required, P:

    Impeller or rotor power = 2 1000 0.522
60 60
NT p × ×p = = 54.45 kW

    ηm = Impeller power
Shaft power

, or, 0.95 = 54.45
P

    P =  54.45
0.95

 = 57.31 kW (Ans.)

 (iv) Lift of the pump:
    Impeller power = w (Q + q) Hi
  where, w = Weight density of water, kN/ m3,
    Hi = Ideal head, m (= theoretical head – hydraulic losses), and
    q = Leakage of water, m3/s.
  Neglecting leakage effects, we obtain:

    54.45 = 9.81 × 0.2833 × Hi, or, Hi = 54.45
9.81 0.2833×

 =19.59 m

	 	 Now,	hydraulic	efficiency,	ηh = Actual head or lift
Ideal head

  ∴ Lift of the pump  = ηh × ideal head (Hi) = 0.70 × 19.59 = 13.71 m of water (Ans.)

 Example 3.9.   A centrifugal pump (diffusion type) has suction lift of 1.8 m and the delivery 
tank is 14.2 m above the pump. The velocity of water in the delivery pipe is 1.6 m/s. The radial 
velocity of flow through the wheel is 2.8 m/s and the tangent to the vane at the exit from the wheel 
makes an angle of 120° with the dirction of motion. Assuming that the water enters radially and 
neglecting friction and other losses, determine:
 (i) Velocity of wheel at the exit,
 (ii) Velocity and pressure head at exit from the wheel, and 
 (iii) Direction of the fixed guide vane.

 Solution.  Suction lift, hs  =  1.8 m
  Delivery head, hd  =  14.2 m
  The velocity of water in delivery pipe, Vd  =  1.6 m/s
  The radial velocity of flow, Vf1  =  Vf2 = 2.8 m/s
  Outlet vane angle,  φ  =  180° –  120° = 60°.

 (i) Velocity of wheel at the exit, u2:
  Head against which pump has to work,
    H = hs + hd    (neglecting friction and other losses)
     = 1.8 + 14.2 = 16 m of water

  Also, H = 2 2wV u
g

  ...Euler equation

    Vw2u2 = gH = 9.81 × 16 = 156.96  ...(i)
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  From velocity triangle at outlet (Fig. 3.13), we have:

    tan φ = 2

2 2

f

w

V
u V−

, or u2 – Vw2 = 2

tan
fV
φ

  or, Vw2 = u2 – 2

tan
fV
φ

� = 90º

Vane

V Vf1 1=
Vr1

u1

�
�

Inlet

� = 60º

Outlet

Vr2V2

� �

� =?

120º

u2
Vw2

Vf2

Fig. 3.13

  ∴ Vw2 = u2 – 2.8
tan 60°

 u2 – 1.616 ...(ii)

  Substituting this value of Vw2 in (i), we get:
     (u2 – 1.616) u2 = 156.96,  or, u2

2 – 1.616 u2 – 156.96 = 0

  ∴  u2 = 
21.616 1.616 4 156.96 1.616 25.108

2 2
± + × ±=  = 13.36 m/s (ignoring –ve sign)

  Hence, the velocity  of wheel at exit = 13.36 m/s (Ans.)

 (ii) Velocity and pressure head at exit from the wheel:

  From eqn. (i), we have: Vw2 = 
2

156.96 156.96
13.36u

=  = 11.75 m/s

    Absolute velocity, V2 = 2 2 2 2
2 2 11.75 2.8w fV V+ = +  = 12.08 m/s

  ∴ Velocity head at exit = 
2 2

2 12.08
2 2 9.81
V

g
=

×
 = 7.44 m of water (Ans.)

    Pressure head at exit = 
2

2 2
2d

p Vh
w g

= −

     = 14.2 – 7.44  = 6.76 m of water  (Ans.) 
 (iii) Direction of fixed guide vane, β:

    tan β = 2

2

2.8
11.75

f

w

V
V

=  = 0.2383

    β = tan–1 (0.2383) = 13.4° (Ans.)
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 Example 3.10.  Show that the rise of pressure in the impeller of a centrifugal pump when 
frictional and other losses in the impeller are neglected, is given by

  2 2 2 2
1 2 2

1 [ cos ]
2 f fV u V ec

g
+ − φ

 where, Vf 1, Vf 2 = Velocities of flow at inlet and outlet respectively,
  u2 = Tangential velocity of impeller at outlet, and
  φ = Vane angle at outlet.

 Solution. Let the values at inlet and outlet of impeller are represented by the suffices 1 and 2 
respectively.
 Invoking Bernoulli’s equation at the inlet and outlet of the impeller, neglecting losses from inlet 
to outlet, we have:
  (Total energy)inlet = (Total energy)outlet – work done by impeller on water

  
2

1 1
12

p V z
w g

+ +  = 
2

2 2
22

p V z
w g

 
+ +  

 
  – work done by impeller on water per unit weight of water

    = 
2

2 22 2
22

wV up V z
w g g

+ + −  (assuming flow to be radial at inlet)

 If the inlet and outlet of the impeller are at the same height  (i.e. z1 = z2), then

  
2

1 1

2
p V
w g

+  = 
2

2 22 2

2
wV up V

w g g
+ −

	 ∴ 2 1p p
w w

 − 
 

 = 
2 2

2 21 2

2 2
wV uV V

g g g
− +  ...(i)

 where, 2 1p p
w w

−  = Pressure rise in impeller.

 Refer to Fig. 3.8. From velocity triangle at inlet, we have V1 = Vf 1 ... (ii)
 From velocity triangle at outlet, we have: 

  tan φ = 2 2
2 2

2 2
, or,

tan
f f

w
w

V V
u V

u V
− =

− φ

 or, Vw2 = 2
2 2 2 cot

tan
f

f
V

u u V− = − φ
φ

 ...(iii)

 Also, V2
2 = 2 2 2 2

2 2 2 2 2( cot )f w f fV V V u V+ = + − φ

   = 2 2 2 2
2 2 2 2 2( cot 2 cot )f f fV u V u V+ + φ − φ

   = 2 2 2 2
2 2 2 2 2cot 2 cotf f fV V u u V+ φ + − φ

   = 2 2 2
2 2 2 2(1 cot ) 2 cotf fV u u V+ φ + − φ

   = 2 2 2
2 2 2 2cosec 2 cotf fV u u Vφ + − φ         ...(iv) 

                                      ( 1 + cot2 φ = cosec2 φ) 

 Substituting the values of V1, Vw2 and V 2
2 from eqns. (ii), (iii), and (iv), respectively in eqn. (i), 

we get:
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 Pressure rise in impeller  = 
2
1 2 2 22 2 2

2 2 2 2
( cot )1 ( cosec 2 cot )

2 2
f f

f f
V u V u

V u u V
g g g

− φ ×
− φ + − φ +

      = 2 2 2 2 2
1 2 2 2 2 2 2 2

1 [ cosec 2 cot 2 2 cot ]
2 f f f fV V u u V u u V

g
− φ − + φ + − φ

           = 2 2 2 2
1 2 2

1 [ cosec ]
2 f fV u V

g
+ − φ  ...(3.16)

 Example 3.11.   The following data relate to a centrifugal pump:
 The diameters of the impeller at inlet and outlet = 180 mm and 360 mm respectively 
 The widths of the impeller at inlet and outlet = 14.4 mm and 7.2 mm respectively 
 The rate of flow through the pump = 17.28 litres/s 
 Speed of the impeller = 1500 r.p.m.
 Vane angle at the outlet = 45° 
 The water enters the impeller radially at inlet.
 Neglecting losses through the impeller, find the pressure rise in the impeller 

 Solution. Given : D1 = 180 mm = 0.18 m; D2 = 360 mm = 0.36 m; B1 = 14.4 mm = 0.0144 m;
  B2 = 7.2 mm = 0.0072 m; Q = 17.26 litres/s = 0.01728 m3/s ; N =1500 r.p.m.; φ = 45°

 Pressure rise in the impeller:

 Velocity of flow at inlet, Vf1 = 
1 1

0.01728
0.18 0.0144

Q
D B

=
p p × ×

 = 2.12 m/s

 Velocity of flow at outlet, Vf2 = 
2 2

0.01728
0.36 0.0072

Q
D B

=
p p × ×

 = 2.12 m/s

 Tangential velocity of impeller at outlet,

  u2 = 2 0.36 1500
60 60
D Np p × ×

=  = 28.27 m/s

  Pressure rise in impeller  = 2 2 2 2
1 2 2

1 [ cosec ]
2 f fV u V

g
+ − φ  ...[Eqn. 3.16]

   = 2 2 2 21 [2.12 28.27 2.12 cosec 45 ]
2 9.81

+ − × °
×

   = 1 (4.494 799.193 8.988)
2 9.81

+ −
×

 = 40.5 m (Ans.)

 Example 3.12.   A centrifugal pump impeller has at outlet a diameter of 360 mm and width 
60 mm. The vanes are curved backwards at 35° to the tangent at outer periphery and thickness of 
vanes occupies 20 percent  of the peripheral area and the velocity of flow is constant from inlet 
to outlet. The impeller rotates at 800 r.p.m. If the rate of flow through the pump is 0.13 m3 /s, 
determine:  
 (i) The pressure rise in the impeller, and
 (ii) The percentage of total work converted to kinetic energy.

 Solution.  Diameter of the impeller at outlet, D2  =  360 mm = 0.36 m
  Width of impeller at outlet, B2  =  60 mm = 0.06 m
  Outlet vane angle, φ  =  35°
  Area occupied by thickness of vanes  =  20% of the peripheral area
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  Thickness co-efficient, Kt   =  1 – 0.2 = 0.8
  Speed of impeller, N  =  800 r.p.m.
 Rate of flow through the pump,
  Q  =  0.13 m3/s

 (i) Pressure rise in the impeller:
  Tangential velocity of impeller at outlet,

  u2 = 2 0.36 800
60 60
D Np p × ×

=  = 15.08 m/s

  Rate of flow, Q = Kt × p D2B2 × Vf 2

  or, 0.13 = 0.8 × p × 0.36 × 0.06 × Vf 2

  ∴	Vf 2 = 0.13
0.8 0.36 0.06× p × ×

 = 2.39 m/s

  Since the velocity of  flow is constant from 
inlet to outlet, Vf 1 = Vf 2 = 2.39 m/s 

  From velocity triangle at outlet (Fig, 3.14), we have:

    tan φ = 2 2 2
2 2 2 2

2 2
, or, , or,

tan tan
f f f

w w
w

V V V
u V V u

u V
− = = −

− φ φ

  ∴ Vw2 = 2.3915.08 11.66 m/s
tan 35

− =
°

  Now,   Pressure rise  = 2 2 2 2
1 2 2

1 [ cosec ]
2 f fV u V

g
+ − φ  ...[Eqn.  3.16]

      = 2 2 2 21 [2.39 15.08 2.39 cosec 35 ]
2 9.81

+ − × °
×

     = 1 [5.712 227.406 17.362]
2 9·81

+ −
×

 11 m of water  (Ans.)

 (ii) The percentage of work converted to kinetic energy:
  Absolute velocity of water leaving the vane,

    V2 = 2 2 2 2
2 2 2.39 11.66 11.9 m/sf wV V+ = + =

  Kinetic energy per unit weight of water = 
2 2

2 11.9 7.217 Nm
2 2 9.81
V

g
= =

×

  Work done per unit weight of water = 2 2 11.66 15.08 17.92 Nm
9.81

wV u
g

×
= =

  ∴	Percentage of work converted to kinetic energy

     = 7.217 100
17.92

× = 40.27%  (Ans.)

 Example 3.13.   A pump impeller is 375 mm in diameter and it discharges water with velocity 
components of 2 m/s and 12 m/s in the radial and tangential directions respectively. The impeller 
is surrounded by a concentrical cylindrical chamber with parallel sides; the outer diameter being  
450 mm. If the flow in the chamber is a free spiral vortex, find:

Fig. 3.14

� = 90º

Vane

V Vf1 1=
Vr1

u1

��

Inlet

� = 35º

Outlet

Vr2
V2

� �

u2

Vw2

Vf2
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 (i) The component velocities of water on leaving, and
 (ii) The increase in pressure. 
  Assume losses to be negligible.

  Solution. Let the suffices 1 and 2 represent the conditions at inlet and outlet of the concentric 
cylindrical chamber respectively.
  Given : D1 = 375 mm  = 0.375 m; D2 = 450 mm = 0.45 m; Vf1 = 2 m/s; Vw1 = 12 m/s.
 (i) The component velocities of water at outlet of the chamber:
  Using the free vortex law, we have Vw1 R1 = Vw2 R2

   ∴ Tangential velocity at outlet of chamber,

    Vw2 = 1 1

2

(0.375 / 2)12 /
(0.45 / 2)

= × =wV R
R

10 m s  (Ans.) 

  Using the continuity relationship, we have:
    pD1B1 × Vf1 = D2B2 × Vf2
  (where, Vf2 = radial velocity at outlet of chamber)
  But, B1 = B2 ... for a parallel sided chamber

  ∴ D1 × Vf1 = 1 1
2 2 2

2

0.375 2, or, /
0.45

×
× = = =f

f f
D V

D V V
D

1.667 m s  (Ans.)

 (ii) The increase in pressure:
  Invoking Bernoulli’s equation assuming no loss of head and no change in datum, we have:

    
2

1 1
2

p V
w g

+  = 
2

2 2
2

p V
w g

+

  ∴  The increase in pressure, = 
2 2

2 1 1 2
2

p p V V
w g
− −

=

     = 
2 2 2 2(12 2 ) (10 1.667 )

2 9.81
+ − +

×
 = 2.3 m of water (Ans.)

 Example 3.14.  A centrifugal pump, in which water enters radially, delivers water to a 
height of 165 mm. The impeller has a diameter of 360  mm and width 180 mm at inlet and the 
corresponding dimensions at the outlet are 720 mm and 90 mm respectively; its rotational speed 
is 1200 r.p.m. The blades are curved backward at 30° to the tangent at exit and the discharge is  
0.389 m3/s. Determine:
 (i) Theoretical head developed,
 (ii) Manometric efficiency
 (iii) Pressure rise across the impeller assuming losses equal to  12 percent of velocity head at 

exit,
 (iv) Pressure rise and the loss of head in the volute  casing,
 (v) The vane angle at inlet, and
 (vi) Power required to drive the pump assuming an overall efficiency of 70%. What would be 

corresponding mechanical efficiency ?

 Solution.  Manometric head, Hmano = 165 m
     Diameter of impeller at inlet, D1 = 360 mm = 0.36 m
     Width at inlet, B1 = 180 mm = 0.18 m
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  Diameter of impeller at outlet, 
    D2 = 720 mm = 0.72 m
    Width at outlet, B2 = 90 mm = 0.09 m
    Speed, N = 1200 r.p.m. 
  Outlet vane angle, φ = 30°
    Discharge, Q = 0.389 m3/s    
	 	 		 η0 = 70%.

 (i) Theoretical head developed:
  In case of a centrifugal pump the Euler or 

outlet theoretical head is given by:

                                    He  = 2 2 1 1w wV u V u
g
−

  As the flow is radial, α	= 90°, and Vw1  =  0 

  ∴	 He = 2 2wV u
g

  Now, u2 = 2 0.72 1200 45.24 m/ s
60 60
D Np p × ×

= =

    Vf2 = 
2 2

0.389 1.91 m/s
0.72 0.09

Q
D B

= =
p p × ×

  From velocity triangle at outlet (Fig. 3.15), we have:

  tan φ = 2 2 2
2 2 2 2

2 2
, or, , or,

tan tan
f f f

w w
w

V V V
u V V u

u V
− = = −

− φ φ
 

  ∴ Vw2 = 1.9145.24 41.93 m/ s
tan 30

− =
°

  ∴ He (Euler head) = 2 2 41.93 45.24
9.81
×

= =wV u
g

193.4 m  (Ans.)

 (ii) Manometric efficiency, ηmano:

  ηmano = Manometric head 165
Theoretical head 193.4

+  = 0.853 or 85.3% (Ans.)

 (iii) Pressure rise across the impeller:
  Applying energy equation between the inlet (suffix 1) and outlet (suffix 2), we have

    
2

1 1
12 e

p V z H
w g

+ + +  = 
2

2 2
2 loss2

p V z h
w g

+ + +      

   (where, hloss = head loss in impeller)  

  Pressure rise,   2 1p p
w
−

 = 
2 2

1 2
loss2e

V VH h
g
−

+ −  ...(i)  (Assuming z1 = z2)

  where, V1
2 = Vf1

2 = 1.912 = 3.648

    V2
2 = 2 2 2 2

1 2 1.91 41.93 1761.77f wV V+ = + =

    1 2( 1.91 m/s)f fV V= =

� = 90º

Vane

V Vf1 1=
Vr1

u1

��

Inlet

� = 30º

Outlet

Vr2
V2

� �

u2

Vw2

Vf2

Fig. 3. 15
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    Head loss in the impeller, hloss = 
2

20.12 0.12 1761.77 10.77 m
2 2 9.81

V
g

×
= =

×

  Substituting the value in eqn. (i), we have:

    Pressure rise, 2 1p p
w
−

 = 3.648 1761.77193.4 10.77
2 9.81
−

+ − =
×

93.02 m  (Ans.)

 (iv) Pressure rise and loss of head in casing:
    Pressure rise in casing = Hmano – pressure rise in impeller
     = 165 – 93.02 = 71.98 m   (Ans.) 
    Loss of head in casing = He – Hmano – hloss 
     = 193.4 – 165 – 10.77 = 17.63 m (Ans.)
 (v) Inlet vane angle, θ:
  From velocity triangle at inlet, we have: 

  tan θ = 1

1 1

1.91 1.91 0.0844
( / 60) ( 0.36 1200 / 60)

fV
u D N

= = =
p p × ×

  ∴ θ = tan–1 (0.0844) = 4.8° (Ans.)

 (vi) Power required to drive the pump, P:

  Overall efficiency, η0 = manowQH
P

  or P = mano

0

9.81 0.389 165 899.5 kW
0.7

wQH × ×
= =

η

  Mechanical efficiency, ηm:
  We know that, η0 = mano v mη × η × η

  Assuming volumetric efficiency (ηv) to be 100%, we have:

    ηm = 0

mano

0.7 0.82 or
0.853

η
= =

η
82 %  (Ans.)

 Example 3.15.   A centrifugal pump lifts water under a static head of 36 m of water of   which 
4 m is suction lift. Suction and delivery pipes are both 150 mm in diameter. The head loss in suction 
pipe is 1.8 m and in delivery pipe 7 m. The impeller is 380 mm in diameter and 25 mm wide at 
mouth and revolves at 1200 r.p.m. Its exit blade angle is 35°. If the manometric efficiency of 
the pump is 82 percent determine:
 (i) The discharge through the pump, and
 (ii) The pressure at the suction and delivery branches of the pump, [M.U]

 Solution.  Static head, Hstat = 36 m;  Suction lift, hs = 4 m;
  The diameter of each of the suction and delivery pipes,
      Ds = Dd = 150 mm or 0.15 m;
     Head lost in suction pipe, hfs = 1.8 m;
     Head lost in delivery pipe, hfd = 7 m;
   Diameter of impeller at the outlet, D2  = 380 mm or 0.38 m
     Width of impeller at the outlet, B2 = 25 mm or 0.025 m
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     Speed of impeller, N = 1200 r.p.m.
     Outlet blade/ vane angle, φ = 35°
     Manometric efficiency, ηmano = 82%
 (i) The discharge through the pump, Q :
  Total head to be supplied by the pump,
    Hmano = (hs  + hd) + hfs + hfd = 36 + 1.8 + 7 = 44.8 m 
    [where (hs + hd) = Hstat = 36 m ...(Given)]
  Tangential/periphery velocity of impeller/ wheel at outlet,

    u2 = 2 0.38 1200 23.87 m/s
60 60
D Np p × ×

= =

  Assuming flow at the inlet to be radial, α = 90°

  Work done per unit weight of water = 2 2wV u
g

  Manometric efficiency,  ηmano = mano mano

2 2 2 2w w

H gH
V u V u

g

=

  ∴   Vw2 = mano

mano 2

9.81 44.8 22.45 m/s
0.82 2387

gH
u

×
= =

η × ×

  Now, tan φ = 2

2 2

f

w

V
u V−

 (Refer to Fig. 3.8)

 or,   tan 35° = 2
2, or, tan 35 (23.87 22.45) 0.99 m/s

23.87 22.45
f

f
V

V = ° − =
−

  ∴   Discharge, Q = 2 2 2 0.38 0.025 0.99 /p × = p × × × =fD B V 30.0295 m s (Ans.)

 (ii) The pressure at the suction and delivery branches of the pump :

  Velocity in suction or delivery pipe, Vs or Vd  = 
2

0.0295 1.67 m/s
Area of pipe 0.154

Q
= =
p
×

    Velocity head, 
2

2
sV
g

 = 
2 21.67 0.142m

2 2 9.81
= =

×
dV
g

  Total effective pressure on the delivery side

   = 
2

32 7 0.142 39.142 m of water
2

d
d fd

V
h h

g
+ + = + + =

   = 9.81 × 39.142 kN/m2 = 383.98 kN/m2  (Ans.)
    3( ; 9.81 kN/ m )p wH w= =

   (where hd = Hstat – hs = 36 – 4 = 32 m)

  Pressure on the suction side = 
2

2
s

s fs
V

h h
g

+ +  = 4 + 1.8 + 0.142 = 5.942 m of water vacuum 

 or, 10 – 5.942 = 4.058 m of water absolute
   = 29.81 4.058 kN/ m /× = 239.8 kN m absolute (Ans.)
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 Example 3.16.   A centrifugal impeller has 
dimensions and blade angles as given in Fig. 
3.16. Water at the rate of 60 litres per second 
enters the impeller radially and the radial 
velocity remains constant in the impeller. 
Determine the impeller speed and the torque 
produced by it.          [GATE]
 data: R1 = 7.5 cm
  R2 = 15 cm

  β1 = β2 = 30°
 Impeller inlet area, A1 = 250 cm2.

 Solution. Given: Q  = 60 l /s  = 0.06 m3/s;
  R1 = 7.5 cm = 0.075 m;
  R2 = 15 cm = 0.15 m β1 = β2 = 30°
 Impeller inlet area, A1 = 250 cm2

             = 250 × 10–4 m2

 ∴ V1 = 4
0.06 2.4 m/s

250 10
Q
A −
= =

×

 If speed of the impeller is N r.p.m. then,

 u1 =  12 2 0.075 0.00785 N
60 60
R N Np p ×

= =

  u2 = 22 2 0.15 0.0157 N
60 60
R N Np p × ×

= =

 From inlet velocity triangle, we have:

  tan 30° = 1 1
1

1
, or,

tan 30
f fV V

u
u

=
°

   = 2.4 4.16 m/s
tan 30

=
°

	 ∴ u1 = 4.16 = 0.00785 N
 or,  Impeller speed, 

  N = 4.16
0.00785

= 530 r.p.m. (Ans.)

  Vr1 = 2 2
1 1fV u+  = 2 2

2(2.4) (4.16) 4.8 m/s rV+ = =

  u2 = 0.0157 N = 0.0157 × 530 = 8.32 m/s
 From outlet velocity triangle, we have:
    Vw2 = 2 2 cos30ru V− °

          = 8.32 4.8 cos 30 4.16m / s− × °=

 Torque = 2 2 2 2
(1000 ) 0.06 4.16 0.15w w

W wQ gV R V R
g g g

× ×
× = × = × ×  = 37.44 Nm (Ans.)

30º

Outlet

Vr2
V2

Vf2

Vw2

u2

30º

u1

V V1 1= f

Vr1 Vw1 = 0

Inlet

Fig. 3.16
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�1
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Fig. 3.17



Chapter 3 : Centrifugal Pumps         207

 Example 3.17.   A centrifugal pump is required to discharge 0.2 m3 of water per second against 
a head  of  22 m when the impeller rotates at a speed of 1500 r.p.m. The manometric efficiency 
is 75 percent. The loss of head in pump in metres due to fluid resistance is 0.03 V2

2 where V2 m/s 
is the velocity of water leaving the impeller. The area of the impeller outlet surface is 1.2 D2

2 m2, 
where D is the impeller diameter in m. Determine:
 (i) The impeller diameter, and      (ii)  The outlet vane angle.
  Assume that the water enters the impeller without whirl.

 Solution.  Discharge through the centrifugal pump, Q  =  0.2 m3/s
  Manometric head, Hmano  =  22 m 
  Speed of the impeller, N  =  1500 r.p.m. 
  Manometric efficiency, ηmano  =  75%
  Loss of head  due to fluid resistance  =  0.03 V2

2

  Area of impeller outlet surface  =  1.2 D2
2

 (i) The impeller diameter, D2 :

    ηmano = mano

2 2w

gH
V u

 ...[Eqn. 3.9]

  ∴  = 2 2 mano

mano

22 29.33 m
0.75

wV u H
g

= = =
η

 ...(i)

  Also, Hmano = 2 2 loss of head in the pumpwV u
g

−  [Eqn. 3.5]

  ∴  Losses in the pump = 29.33 – 22 = 7.33 m

  Thus,   0.03 V2
2 = 

1/2

2
7.337.33, or, 15.63 m/s
0.03

V  = = 
 

    Velocity of flow at outlet,  Vf2 = 2 2
2 2

0.2 0.167 m/s
Area of flow 1.2

Q
D D

= =

  Peripheral or tangential velocity of impeller at outlet,

    u2 = 2 2
2

1500
78.54 D

60 60
D N Dp p × ×

= =

  Substituting the value of u2 in eqn (i), we have

    Vw2 = 
2 2 2

29.33 9.81 29.33 3.66 m/s
78.54

g
u D D

× ×
= =

  Refer to Fig. 3.8. From velocity triangle at outlet, we have:
    Vf 2 = 2 2 1/2

2 2( )wV V−

  or, 2
2

0.167
D

 = 
1/2 1/22

2
2

2 2

3.66 13.4(15.63) 244.3
D D

    − = −    
       

  Squaring both sides, we have:

  or, 4
2

0.0279
D

 = 4 2
2 22

2

13.4244.3 , or, 0.0279 244.3 13.4D D
D

− = −
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  or,   4 2
2 2244.3 13.4 0.0279D D− −  = 0

  D2
2 =  

2
213.4 13.4 4 244.3 0.0279 13.4 14.38 0.0568 m

2 244.3 2 244.3
± + × × ±

= =
× ×

 (ignoring –ve sign)

  ∴ D2 = 0.0568 0.238 or= 238 mm  (Ans.)

 (ii) Outlet vane angle, φ:
  From velocity triangle at outlet, we have:

  2

2 2
tan f

w

V
u V

φ =
−

 = 
2(0.167 / 0.238 ) 2.95 0.8912

(78.54 0.238) 3.66 / 0.238) 18.69 15.38
= =

× − −

  ∴	        φ = tan–1 (0.8912) = 41.7° (Ans.)

 Example 3.18.   The following data refer to a radial, single stage, double suction, centrifugal 
pump:
 Discharge at the pump outlet = 90 litres / sec; Diameter at inlet = 100 mm;
 Diameter at outlet = 290 mm; Head = 36 m;
 Speed of impeller = 1750 r.p.m; Width at inlet = 25 mm per side; Width at outlet = 23 mm in 
total;
 Overall efficiency = 60 percent; Leakage losses = 2.7 litres / sec;
 Mechanical losses = 1.5 kW; Contraction factor due to vane thickness = 0.87;
 Outlet vane angle = 27°.
 Assuming that water enters the impeller at inlet radially, determine; 
 (i) The inlet vane angle,
 (ii) The angle at which water leaves the wheel,
 (iii) The speed ratio,
 (iv) The absolute velocity of water leaving the impeller,
 (v) The manometric efficiency,
 (vi) The volumetric efficiency, and
 (vii) The mechanical efficiency.

 Solution. Given : Qpo = 90 litres/sec. = 
0.09 m3/s; D1 = 100 mm  or 0.1 m; D2 = 290 
mm or 0.29 m;  Hmano = 36 m; N = 1750 r.p.m;  
B1 = 0.025 m per side;
 B2 = 0.023 m in total; η0 = 60%;
 Leakage losses, q = 2.7 litres/sec. = 
0.0027 m3/s;
 Mechanical losses = 1.5 kW; 
 Contraction factor due to vane thickness, 
 Kt = 0.87; φ = 27°; α = 90º.
 (i) The quantity of water handled:
  Total quantity of  water handled by   

pump, 

� = 90º

Vane

V Vf1 1=
Vr1

u1

�
�

Inlet

� = 27º

Outlet

Vr2V2

�
�

u2

Vw2

� = ?

� = ?

Vf2

Fig. 3.18
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    Q = Qpo + q = 0.09 + 0.0027 = 0.0927 m3/s
  (where, Qpo = discharge at pump outlet)

  ∴	 Q per side = 30.0927 0.04635m /s
2

=

  Peripheral speed at inlet, 

    u1 = 1 0.1 1750 9.16 m/s
60 60
D Np p × ×

= =

  Also, Q = 1 1 1t fK D B V× p ×

  or, Vf1 = 
1 1t

Q
K D B× p

  or, Vf1 = 0.04635 6.78 m/s
0.87 0.1 0.025

=
× p × ×

  From velocity triangle at inlet (Fig. 3.18), we have:

    tan θ = 1 1

1

6.78 0.74 tan (0.74)
9.16

−= = ∴θ = =fV
u

36.5°    (Ans.)

 (ii) The angle at which water leaves the wheel, β:

  Again, Q = 2 2 2t fK D B V× p ×

         2
0.023where, 0.0115m from one side

2
B = = 

 

  ∴ Velocity of flow at outlet, Vf2 = 
2 2

0.04635 5.08 m/s
0.87 0.29 0.0115t

Q
K D B

= =
p × p × ×

       Peripheral speed at outlet, u2 = 2 0.29 1750 26.57 m/s
60 60
D Np p × ×

= =

  From velocity triangle at outlet (fig. 3.18), we have: 

    tan φ = 2 2
2 2

2 2
, or,

tan
f f

w
w

V V
u V

u V
− =

− φ

  ∴ Vw2   = 2
2

5.0826.57 16.6 m/s
tan tan 27

fV
u − = − =

φ °

  Further, tan β = 2

2

5.08 0.306
16.6

f

w

V
V

= =

  ∴	           β = tan–1 (0.306) = 17° (Ans.)
 (iii) The speed ratio, Ku2:

    Ku2 = 2

mano

26.57
2 2 9.81 36

=
× ×



u
gH

1  (Ans.)

 (iv) The absolute velocity of water leaving the impeller, V2:

          Refer to Fig. 3.18: V2 cos	β = Vw2,   or,  V2 = 2 16.6 /
cos cos 17

= =
β °

wV
17.36 m s (Ans.)
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 (v) The manometric efficiency, ηmano:

    ηmano = mano

2 2w

gH
V u

 ...Eqn. (3.9)

      = 9.81 36 0.8 or
16.6 26.57

×
=

×
80 %  (Ans.)

 (vi) The volumetric efficiency, ηv:

    ηv = 0.09 0.97 or
0.09 0.0027

= =
+ +

po

po

Q
Q q

97 %  (Ans.)

 (vii) The mechanical  efficiency, ηm:

    ηm = Shaft power – mechanical losses
Shaft power

  But,  shaft power       = mano

0

9.81 (0.09 / 2) 36 26.49 kW
0.6

powQ H × ×
= =

η

  ∴	  = 26.49 1.5 0.9433 or
26.49

−
= 94.33 %  (Ans.)

 Example 3.19.   A centrifugal pump impeller, having outlet diameter 0.35 m is running at 960 
r.p.m. The velocity of flow (assumed constant throughout the system) is equal to 2.4 m/s. The vane 
angle at outlet is 28°. The static suction lift is 4.03 m. The energy losses in suction pipe, impeller 
and volute casing are 0.88 m, 0.70 m and 1.26 m of water respectively. Determine the readings of 
vacuum or pressure gauges placed at:
 (i) Inlet to the pump,
 (ii) Impeller outlet (in clearance between impeller and outlet), and
 (iii) Pump outlet or delivery flange, 0.24 m above the centreline of the pump. 

 Solution.  Diameter of impeller at outlet, D2 = 0.35 m
   Speed of impeller, N = 960 r.p.m. 

	 	 Velocity	of	flow,	Vf1 = Vf2 = 2.4 m/s
  The vane angle at outlet, φ = 28°
  The static suction lift, hs = 4.03 m
  The energy losses in suction pipe, hfs = 0.88 m
  The energy losses in impeller, hLi = 0.70 m
  The energy losses in volute casing, hLc = 1.26 m

 (i) Reading of the vacuum gauge at inlet to the pump, ps:
  The pressure head at inlet to the pump is given by, 

    
sp

w  = 
2

2
s

s fs
V

h h
g

 
− + + 
  

 = 
22.44.03 0.88 .

2 9.81
 

− + + = −  × 
5 2 m  (Ans.)

 (ii) Reading of the gauge at impeller outlet, 2p
w

:

    
2

2 2
2

s s wp V V u
w g g

+ +  = 
2

2 2
2 Li

p V h
w g

+ +  ...(i)

  Now, u2 = 2 0.35 960 17.59 m/ s
60 60
D Np p × ×

= =  
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  Refer to Fig. 3.8.

    Vw2 = 2
2

2.417.59 13.07 m/s
tan tan 28

fV
u − = − =

φ °
 

    V2 = 2 2 2 2
2 2 13.07 2.4 13.29 m/sw fV V+ = + =

  Substituting the above values in eqn. (i), we have: 

        
2 2

22.4 13.07 17.59 13.295·2 0.7
2 9.81 9.81 2 9.81

p
w

×
− + + = + +

× ×

  or,       25.2 0.293 23.43 9.0 0.7
p
w

− + + = + +

  or, 2p
w

 = – 5.2 + 0.293 + 23.43 – 9.0 – 0.7 = 8.82 m (Ans.)

Delivery pipe

VdDelivery flange

Casing

Impeller

h = 0.24 m

Vs

Suction pipe

Fig. 3.19

 (iii) Reading of the gauge at pump outlet or delivery flange, dp
w

:

  Refer to Fig. 3.19: 
22

2 2
2 2

a d
Lc

p Vp V h h
w g w g

+ = + + +

  or, 
213.298.82

2 9.81
+

×
 = 

22.4 0.24 1.26
2 9.81

dp
w

+ + +
×

  or, 8.82 + 9.0 = 0.293 0.24 1.26dp
w

+ + +

  ∴  dp
w

 = 8.82 + 9.0 – 0.293 – 0.24 – 1.26 = 16.03 m (Ans.)

Example 3.20. Show that, in general, for  a centrifugal pump running at speed N and giving 
a discharge Q, the manometric head is expressible in the form:

Hmano = AN2 + BNQ + CQ2

where A, B and C are constants.
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 Solution. Pressure rise, 2 2 2 22 1
1 2 2

1 [ cosec ]
2 f f

p p V u V
w g
−

= + − φ  ...[Refer to example  3.10.]

 The above relationship has been derived by neglecting gravitational effects, any friction losses, 
and assuming radial entry of water. Further, neglecting any loss of head in the pump, the manometric 
head is given by pressure rise through the impeller together with a certain percentage of kinetic 
head at the impeller exit which is recovered in the volute chamber or the diffuser ring. Thus,

  Hmano = 
2

2 1 2
2

p p kV
w g
−

+

 where, V2
2 = 2 2 2 2

2 2 2 2 2cot 2 cotf f fV V u u V+ φ + − φ  ...Refer to example  3.10

	 ∴	 Hmano = 2 2 2 2 2 2 2 2
1 2 2 2 2 2 2 2

1 [ cos ] [ cot 2 cot ]
2 2f f f f f

kV u V ec V V u u V
g g

+ − φ + + φ + − φ

   = 2 2 2 2 2
2 2 2 2 1

1 [ (1 ) 2 cot ( cot cosec ) ]
2 f f fu k ku V V k k V

g
+ − φ + + φ − φ +

 Assuming, velocity of flow remains constant, Vf1 = Vf 2 = Vf , we have:

  Hmano = 2
2 2

1 [ (1 ) 2 cot
2 fu k k u V

g
+ − φ + 2 2 2( cot cosec )]+ φ − φfV k k

   = 2 2
2 2

1 [ ]
2

+ +f fau bu V cV
g

 where, a = 2 2(1 ); 2 cot and cot coseck b k c k k+ = − φ = + φ − φ

 Also, u2 = 2
60
D Np

  i.e., 2 ; . .f f
Qu N V i e V Q
A

∝ = ∝

  Hmano = AN2 + BNQ + CQ2 ...Proved
 (where A, B and C are constants.)
 The above equation prescribes the head delivery law from one particular pump at one particular 
speed.

 Example 3.21.   The impeller of a centrifugal pump has an outer diameter of 250 mm and an 
effective area of 0.017 m2. The blades are bent backwards so that the direction of outlet relative 
velocity makes an angle of 148° with the tangent drawn in the direction of impeller rotaton, the 
diameters of suction and delivery pipes are 150 mm and 100 mm respectively. The pump delivers 
0.031 m3/s at 1450 r.p.m. when the gauge points on the suction and delivery pipes close to the 
pumps show heads of 4.6 m below and 18.0 m above atmosphere respectively. The head losses 
in the suction and delivery pipes are 2.0 m and 2.9 m respectively. The motor driving the pump 
delivers 8.67 kW. Assumimg that water enters the pump without shock and whirl, determine:
 (i) The manometric efficiency, and 
 (ii) The overall efficiency of the pump. [UPSC Exams.]

 Solution.  Outer diameter of impeller, D2 = 250 mm = 0.25 m
     Effiective area of  flow = 0.017 m2

     Outlet vane angle, φ = 180° – 148° = 32°
     Diameter of the suction pipe, Ds = 150 mm = 0.15 m
     Diameter of the delivery pipe, Dd = 100 mm = 0.1 m
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    Discharge through the pump, Q = 0.031 m3/s
    Speed of the pump, N = 1450 r.p.m.
    Head lost in the suction pipe, hfs = 2.0 m
    Head lost in the delivery pipe, hfd = 2.9 m
    Power delivered to the pump, P = 8.67 kW

 (i) The manometric efficiency, ηmano:
  Velocity in the suction pipe,

    Vs = 
2 2

0.031

0.154 4s

Q

D
=

p p
× ×

     = 1.754 m/s
  Invoking Bernoulli’s equation between 

the water surface in the sump and the 
pump inlet where pressure gauge is fitted, 
we have:

    0 = 
2

2
s s

s fs
p V

h h
w g

+ + +

  or,  0 = 
2(1.754)2.0 4.6

2 9.81sh + − +
×

  or, hs = 
2(1.754)2.0 4.6 2.44m

2 9.81
− + − =

×

  Again, applying Bernoulli’s equation between the impeller outlet where the delivery pressure 
gauge is fitted and outlet of the delivery pipe, we have:

    
2

2
d dp V

w g
+  = 

2

2
d

d fd
V

h h
g

+ +

  or, hd = 18 2.9 15.1 md
fd

p
h

w
− = − =

  From velocity triangle at outlet (Fig. 3.20), we have:

    tan φ = 2 2 2
2 2 2 2

2 2
, or, , or,

tan tan 32
f f f

w w
w

V V V
u V V u

u V
− = = −

− φ °
 

  or, Vw2 = 2
2 2 21.6

tan 32
f

f
V

u u V− = −
°

  where, u2 = 2 0.25 1450 18.98 m/s
60 60
D Np p × ×

= =

  and, Vf2 = 0.031 1.82 m/s
Effective area of flow 0.017

Q
= =

  ∴	 Vw2 = 18.98 – 1.6 × 1.82 = 16.07 m/s

  Velocity in the delivery pipe,  Vd  = 
2 2

0.031 3.95 m/s
0.14 4d

Q

D
= =

p p
× ×

� = 90º

Vane

V Vf1 1=
Vr1

u1

�
�

Inlet

� = 32º

Outlet

Vr2

� �

u2

Vw2

Vf2

V2

Fig. 3.20
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          Manometric head,  Hmano = 
2

( ) ( )
2

d
s d fs fd

V
h h h h

g
+ + + +

              = 
23.95(2.44 15.1) (2.0 2.9) 23.23m

2 9.81
+ + + + =

×

 Manometric efficiency, ηmano = mano

2 2

9.81 23.23 0.747 or
16.07 18.98

×
= =

×w

gH
V u

74.7%  (Ans.)

 (ii) The overall efficiency, η0:

   = mano 9.81 0.031 23.23 0.8148, or, .
Input to the pump 8.67

wQH × ×
= = 81 48%

  (where, w = 9.81 kN /m3)

 Example 3.22. A three - stage centrifugal pump has impeller 400 mm in diameter and 20 mm 
wide. The vane angle at outlet is 45° and the area occupied by the thickness of the vanes may be 
assumed 8 percent of the total area. If the pump delivers 3.6 m3 of water per minute when running 
at 920 r.p.m. determine:
 (i) Power of the pump,  (ii) Manometric head, and  (iii) Specific speed. 
 Assume mechanical efficiency as 88 % and manometric efficiency as 77 percent.

[Delhi University]

 Solution.  Number of stage, n = 3
     Diameter of impeller at outlet, D2 = 400 mm = 0.4 m
     Width of impeller at outlet, B2 = 20 mm = 0.02 m
     Outlet vane angle, φ = 45°
     Area occupied by thickness of vanes = 8% of the total area
     Discharge through the pump, Q = 3.6 m3/min. = 0.06 m3/s
     Speed of the impeller, N = 920 r.p.m.
     Mechanical efficiency = 88%. 
     Manometric efficiency = 77%.

 (i) Manometric head (Hmano)total :
  Peripheral or tangential velocity of impeller at outlet,

    u2 = 2 0.4 920 19.27 m/s
60 60
D Np p × ×

= =

    Net outlet area  = 2 2
81

100
D B − p 

 
     = 0.92p × 0.4 × 0.02 = 0.02312 m2

  Velocity of flow at outlet,

     = 0.06 2.59 m/ s
Net outlet area 0.02312

Q
= =

  From velocity triangle at outlet (Fig. 3.21), we have:

  tan φ = 2 2
2 2

2 2
, or,

tan
f f

w
w

V V
u V

u V
− =

− φ



Chapter 3 : Centrifugal Pumps         215

  or, Vw2 = 2
2

2.5919.27 16.68 m/s
tan tan 45

fV
u − = − =

φ °

� = 90º

Vane

V Vf1 1=
Vr1

u1

�
�

Inlet

� = 45º

Outlet

Vr2

� �

u2
Vw2

Vf2

V2

Fig. 3.21

  Assuming radial entry, the head developed by each impeller,

  Hmano = 2 2
mano

16.68 19.270.77 25.23 m
9.81

wV u
g

×
η × = × =

  ∴  Manometric head (Hmano) total developed by three impeller,
  3 × 25.23 = 75.69 m (Ans.)

 (ii) Power of the pump, P:
    η0 = mano 0.88 0.77 0.6776mη × η = × = (Assuming ηv to be unity)

  Also, η0 = mano
Power of pump

wQH

  ∴  Power of pump, P = mano total

0

( ) 9810 0.06 75.69
1000 0.6776

× ×
= =

η ×
wQ H

65.75 kW (Ans.)

 (iii) Specific speed, Ns:

    Ns = 3/4
mano

,
( )

N Q
H

  where Hmano is the manometric head developed per impeller

   ...(Eqn. 3.25)

     = 3/4
920 0.06

(25.23)
×

= 20 (Ans.)

 Example 3.23.   A centrifugal pump rotating at 1500 r.p.m. delivers 0.2 m3/s at a head of  
15 m. Calculate the specific speed of the pump and the power input. Assume overall  efficiency of 
the pump as 0.68.
 If this pump were to operate at 900 r.p.m. what would be the head, discharge and power 
required for homologous conditions? Assume overall efficiency remains unchanged at new r.p.m.
 [UPTU]
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 Solution. Given: N = 1500 r.p.m.; Q = 0.2 m3/s; H = 15 m; η0 = 0.68; N = 900 r.p.m. 
 At 1500 r.p.m.:

  Specific speed, Ns = 3/4 3/4
1500 0.2

( ) (15)
×

= =
N Q
H

88 (Ans.) 

  Power input, P = 
0

9.81 0.2 15
0.68
× ×

= =
η

wQH 43.28 kW  (Ans.)

 At 900 r.p.m.:

  Nu = N
H

 i.e. 900
H

 = 1500
15

 or,   Head, H = 
2900 15

1500
  × = 
 

5.4 m  (Ans.)

  Qu = Q
H

 i.e. 
5·4
Q  = 0.2

15

	 ∴ Q = 5.4 0.2 /
15

× = 30.12 m s  (Ans.)

  Pu = 3/2( )
P

H

  i.e. 3/2(5·4)
P  = 3/2

43.28
(15)

  P = 
3/25.4 43.28

15
  × = 
 

9.35 kW  (Ans.)

 Example 3.24.   Two geometrically similar pumps are running at the same speed of 1000 r.p.m. 
One has an impeller diameter of 0.4 m and discharge of 30 l/s against a head of 20 m. If the other 
pump gives half of this discharge rate, determine the head and diameter of the second pump.       

[GATE]
 Solution. Given: N1 = N2 = 1000 r.p.m.; D1 = 0.4 m; Q1 = 30 l/s = 0.03 m3/s;

  H1 = 20 m; Q2 = 330 15 / 0.015 m /s.
2

l s= =

 H2, D2 :
 All geometrically similar pumps will have the same specific speed.

 i.e. Ns = 1 1 2 2
3/4 3/4

1 2( ) ( )
N Q N Q
H H

=

 or, H2 = 
4/3

3/42 2
1

1 1
( )

N Q H
N Q

 
× × 
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   = 
4/3

3/41000 0.015 (20)
1000 0.030
 

× × = 
 

12.6 m  (Ans.)

 Also, D ∝ H
N

 or, D1 ∝ 1 2
2

1 2
, and

H H
D

N N
∝  ( N1 = N2)

 ∴ 1

2

D
D

 = 1

2

20 1.256
12.6

H
H

= =

 or, D2 = 1 0.4
1.256 1.256

= =
D 0.317 m  (Ans.)

 Example 3.25.   A centrifugal pump running at 750 r.p.m. discharges water at 0.1 m3/s against 
a head of 10 m at its best efficiency. A second pump of the same homologous series, when working 
at 500 r.p.m., is to  deliver water at 0.05 m3/s at its best efficiency. What will be the design head of 
the second pump and what is the scale ratio between the first and the second ? [GATE]

 Solution. Given: N1= 750 r.p.m.; Q1 = 0.1m3/s; H1 = 10 m; N2 = 500 r.p.m.; Q2 = 0.05 m3/s

 Design head of the second pump, H2:

 We know that, 1 1
3/4

1

N Q
H

 = 2 2
3/4

2

N Q
H

 or, 3/4
750 0.1

(10)
×  = 3/4

2

500 0.05
( )H
×

 or, 42.17 = 3/4
2

111.8
( )H

 ∴  H2 = 
4/3111.8

42.17
  = 
 

3.67 m  (Ans.)

 (ii) Scale ratio, Lr:

 We know that, 1

2

Q
Q

 = (Lr)
2.5

 or, 0.1
0.05

 = (Lr)
2.5

 or, Lr = 
1

2.50.1
0.05

 
 
 

= 1.32  (Ans.)

3.9.  MINIMUM SPEED FOR STARTING A CENTRIFUGAL PUMP
 When a centrifugal pump is started, it will start delivering liquid only if the pressure rise in 
the impeller is more than or equal to the manometric head (Hmano). In other words, there will be no 
flow of liquid until the speed of the pump is such that the required centrifugal head caused by the 
centrifugal force on rotating water when the impeller is rotating, but there is no flow 

   = 
2 2 2 2
2 1 2 1

2 2 2
u u u u

g g g
−

− =               
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 Flow will commence only if   
2 2
2 1

mano2
u u H

g
−

≥

 For minimum speed, we must have:

  
2 2
2 1

2
u u

g
−

 = Hmano ...(3.17)

 Also, ηmano = mano

2 2w

gH
V u

 [Eqn (3.9)]

	 ∴	 Hmano = 2 2
mano

wV u
g

 η ×  
 

 Also, u1 = 1 2
2;

60 60
D N D Nup p

=

 Substituting the values in eqn. (3.17), we get:

  
2 2

22 1 2
mano

1
2 60 60 60

wVD N D N D N
g g
 p p p     − = η × ×      
       

 Dividing both sides by 
60

N
g
p
×

, we have:

  2 2
2 1( )

120
N D Dp

−  = ηmano × (Vw2 × D2)

 ∴  N (i.e. Nmin.) = mano 2 2
2 2
2 1

120
( )

wV D
D D

× η × ×

p −
 ...(3.18)

 Example 3.26.   A centrifugal pump working in a dock pump 1565 litres per second against 
a mean lift of 6.1m  when the impeller rotates at 200 r.p.m.The impeller diameter is 1.22 m and 
the area at outer periphery is 6450 cm2. If the vanes are set back at an angle of 26° at the outlet, 
determine:
 (i) Hydraulic efficiency,
 (ii) Power required to drive the pump, and
 (iii) Minimum speed to start pumping if the ratio of external to internal diameter is 2. 
 [PTU]

 Solution.  Discharge through the pump, Q = 1565 litres/ sec. or 1.565 m3/s
     Actual or manometric head = 6.1 m
     Speed of the impeller, N = 200 r.p.m.
     Diameter of the impeller at outlet, D2 = 1.22 m
     Area at the outer periphery = 6450 cm2 = 0.645 m2

     Outlet vane angle, φ = 26°
 (i) Hydraulic efficiency, ηh:
  Peripheral or tangential velocity of impeller at outlet,

    u2 = 2 1.22 200 12.77 m/s
60 60
D Np p × ×

= =

    Vf2 = 1.565 2.43 m/ s
0.645

Q
A
= =
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  Refer to Fig. 3.8. Vw2 = 2
2

2.4312.77 7.79 m/ s
tan tan 26

fV
u − = − =

φ °

    Euler head, He = 2 2 7.79 12.77 10.14 m
9.81

wV u
g

×
= =

  If the effect of slip is neglected, ideal head  equals Euler head.

  ∴ Hydraulic (or manometric) efficiency, ηh = Actual or manometric head
Ideal or Euler head

  or, ηh = 6.1 0.6016 or
10.14

= 60.16 % (Ans.)

 (ii) Power required to drive the pump:
  Power required to drive the pump (neglecting mechanical losses)

     = 2 2 kW
1000

wV uwQ
g

×

     = 9810 1.565 7.79 12.77
1000 9.81

× × ×
=

×
155.68 kW  (Ans.)

 (iii) Minimum speed to start pumping, Nmin:
  For minimum speed, we must have:

    
2 2
2 1

2
u u

g
−

 = Hmano

  Since, D2 = 2D1 (Given),     ∴ u2 = 2u1

  ∴ 
2 2
2 2 / 4

2
u u

g
−  = 

1
2 22

2
3 6.1 8 9.816.1, or, , or, 12.63 m/ s
8 3
u u
g

× × = = 
 

  Also, u2 = 2 min min1.22
, or, 12.63

60 60
D N Np p × ×

=

  ∴  Nmin = 12.63 60
1.22
×

=
p ×

197.7 r.p.m.  (Ans.)

 Example 3.27.   A centrifugal pump impeller has diameters at inlet and outlet as 360 mm and 
720 mm respectively. The flow velocity at outlet is 2.4 m/s and the vanes are set back at an angle of 
45° at the outlet. If the manometric efficiency is 70 percent, calculate the minimum starting speed 
of the pump.

 Solution.  Diameter of impeller at inlet, D1 = 360 mm or 0.36 m
  Diameter of impeller at outlet, D2 = 720 mm or 0.72 m
  The flow velocity at outlet, Vf2 = 2.4 m/s
  Outlet vane angle, φ = 45°
  Manometric efficiency, ηmano = 70 %

 Minimum starting speed of the pump, Nmin:
 Refer to Fig 3.8. From velocity triangle at outlet, we have:

  tan φ = 2 2
2 2

2 2

2.4, or, 2.4 m/ s
tan tan 45

f f
w

w

V V
u V

u V
− = = =

− φ °
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	 ∴ Vw2 = u2 – 2.4

 But, u2 = 2 min min
min

0.72
0.0377

60 60
D N N Np p ×

= =

	 ∴ Vw2 = 0.0377Nmin – 2.4
 Using  eqn. (3.17) for minimum starting speed, we have:

  Nmin = mano 2 2
2 2
2 1

120
( )

wV D
D D

× η × ×

p −

    = min
2 2

120 0.70 (0.0377 – 2.4) 0.72
(0.72 – 0.36 )

N× × ×

p

 or, Nmin = 49.51 (0.0377Nmin – 2.4)

    = 1.866Nmin – 118.824
 or, 0.866Nmin = 118.824

 ∴ Nmin = 118.824
0.866

= 137.2 r.p.m. (Ans.)

3.10.  EFFECT OF VARIATION OF DISCHARGE ON THE EFFICIENCY

 When a centrifugal pump runs and discharges at its ‘designed speed’, its efficiency is maximum. 
If the discharge is either increased or decreased its efficiency drops owing to loss of head due to 
shock at entry to impeller.
 Refer to Fig 3.22:
	 l abc is velocity triangle at inlet when the pump is operating under the normal conditions of 

flow rate (discharge). The relative velocity Vr1 is along the contour of vane (θ is the inlet 
vane angle).

 l With the decrease (or increase) in discharge, the flow velocity decreases (or increases) from 
cb to cd.

 l With the pump running at the same speed, the peripheral velocity ac remains unchanged 
and the effective inlet velocity diagram becomes edc.

 l The new relative velocity ad (V ′r1) no longer remains parallel to the vane and consequently 
shock occurs at entry to impeller. With fixed value of flow velocity cd (V ′f1) and flow taking 
place along the blade, the velocity vector should have the form cde; de is parallel to ab. The 
sudden change in peripheral velocity ac brings about shock and as a consequence of which 
there is a loss of head.

a

b

c
e

dV r1

V'f1

u1

( ) Decrease in dischargea

�

( ) Increase in dischargeb

� ��

V r1

V' r1

e a

b

d

c
u1

Vf1

V'f1
V'r1 Vf1

Fig. 3.22. Inlet velocity triangles with decrease and increase in discharge.
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 Loss of head (at entrance to impeller), HL = 
2 2(Change of velocity) ( )

2 2
ae

g g
=

 (a) For decrease in discharge: HL = 
22 2

1 1( cot )( ) ( )
2 2 2

fu Vae ac ec
g g g

′− θ−
= =  ...(3.19)

 (b) For increase in discharge: HL = 
22 2

1 1( cot )( ) ( )
2 2 2

fV uae ec ac
g g g

′ θ −−
= =  ...(3.20)

 Example 3.28.   A centrifugal pump is delivering 0.216 m3/s of water against a head of 18 m; 
the speed of rotation of impeller being 600 r.p.m. The diameters at outer and inner periphery of the 
impeller are 600 mm and 300 mm respectively. The area of flow is constant at 0.084 m2 from inlet 
to outlet of impeller. If the vanes of the impeller are bent at an angle of 35° to the tangent at exit, 
determine:
 (i) Manometric efficency,  
 (ii) Inlet vane angle, and
 (iii) Loss of head at inlet to impeller when the discharge is reduced by 35 percent.

 Solution. Discharge through the pump, Q  =  0.216 m3/s
    Manometric head, Hmano = 18 m
    Speed of rotation of impeller, N = 600 r.p.m.
    Diameter of impeller at outlet, D1 = 600 mm = 0.6 m
    Diameter of impeller at inlet, D2 = 300 mm = 0.3 m 
    The area of flow, Af = 0.084 m2

    Outlet vane angle, φ = 35°
 (i) Manometric efficiency, ηmano:
  Peripheral or tangential velocities at inlet and outlet of the impeller are:

                   u1 = 1 0.3 600 9.42 m/ s
60 60
D Np p × ×

= =

    u2 = 2 0.6 600 18.85 m/ s
60 60
D Np p × ×

= =

    Flow velocity, Vf1 = 2
0.216 2.57 m/ s
0.084f f

f

QV V
A

= = = =

  Refer to Fig 3.8. Vw2 = 2
2

2.5718.85 15.18 m/ s
tan tan 35

fV
u − = − =

φ °

  Manometric efficiency, η mano = mano

2 2w

gH
V u

 ...[Eqn.  (3.9)]

     = 9.81 18 0.617 or
15.18 18.85

×
=

×
61.7% (Ans.)

 (ii) Inlet vane angle, θ:

  Refer to Fig. 3.8. tan θ = 1

1

2.57 0.2728
9.42

fV
u

= =

 ∴ 																		 θ = tan–1 (0.2728) = 15.26° (Ans.)
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 (iii) Loss of head when the discharge is reduced by 35% :
  When the discharge is reduced by 35 %, the velocity of flow,
  Vf = V′f1 = 2.57 × (1 – 0.35) = 1.67 m/s

    Loss of head at inlet = 
2

1 1( cot )
2
fu V
g
′− θ

 ...[Eqn. (3.19)]

     = 
2(9.42 1.67 cot15.26 )

2 9.81
− × °

=
×

0.55 m of water (Ans.)

3.11. EFFECT OF NUMBER OF VANES OF IMPELLER ON HEAD 
AND EFFICIENCY

 The velocities indicated in velocity triangles (shown in Fig 3.5 and elsewhere) known as 
Euler’s velocity triangles, can be obtained in practice only if the impeller has very closely - spaced 
vanes. Practically, it is impossible to have a very large number of vanes due to the two reasons; 
(i) The larger the number of vanes, the greater is the obstructed area owing to vanes thickness and 
consequently there is greater loss of head loss due to friction (ii) In order to fabricate the impeller 
easily, it is desirable that passages should be wider; it also minimises the possibility of pump being 
choked due to floating debris in the liquid.
 Although, practically, the vanes are designed according to Euler’s velocity triangles yet there is 
slight difference in the actually developed velocity triangles. The actual velocity of whirl (Vw2) at the 
outlet, due to secondary or circulatory flow in the impeller, is less than that in the Euler’s velocity 
triangles. consequently, the actual head imparted (Hactual) by the impeller is less than the Euler head 
(He).
 Thus,  Hactual  <  He

 The ratio actual

e

H
H

 
 
 

 is known as vane efficiency or effectiveness ε (Greek ‘epsilon’) 

 i.e. ε = actual

e

H
H

 It has been observed through experiments that as the number of vanes is increased the value of 
ε	increases and approaches unity. The value of ε, in addition to number of vanes, depends on the 
shape of the vane and the outlet vane angle. In general, for radial flow pumps the value of ε varies 
from 0.6 to 0.8 as the number of vanes is increased from 4 to 12. However, for impeller with vanes 
more than 24 the value of ε may be taken as unity. Unless otherwise mentioned, the value of ε is 
taken as unity. 

3.12.  WORKING PROPORTIONS OF CENTRIFUGAL PUMPS

 1.  Speed ratio (Ku).  The speed ratio is the ratio of peripheral speed at exit (u2) to the theoretical 
velocity of jet corresponding to manometric head (Hmano) . Thus,

  Ku = 2

mano
;

2
u

gH
Ku varies from 0.95 to 1.25

 2. Flow ratio, (Kf). The flow ratio is the ratio of the velocity of flow at exit to the theoretical 
velocity of the jet corresponding to manometric head (Hmano). Thus,

  Kf = 2

mano
;

2
fV

gH
 Kf varies from 0.1 to 0.25
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 Diameters of impellers and pipes:

 (i) Outlet diameter of impeller (D2):

 Peripheral speed, u2 = 2 ,
60
D Np

 where N is the speed of rotation of impeller.

 Also, u2 = mano( 2 ),uK gH where Ku is the speed ratio.

 ∴  2
60
D Np

 = mano
mano 2

60 2
2 , or, u

u
K gH

K gH D
N

=
p

 or, D2 = mano84.6 uK H
N

 ...(3.21)

 If D2 and N are known, by using eqn. (3.21) we can find out the head which a pump can 
develop; it will serve as a cheak for existing pump.
 (ii) Inlet diameter of impeller (D1):
 Depending upon specific speed (Ns) or total head (Hmano) the inlet diameter D1 is kept in range; 

1
1
3

D =  D2 to 2
2
3

D . An average value of D1 = 0.5D2 is usually taken.

 (iii) Least diameter of impeller:
 The least or minimum diameter of an impeller can be determined on the basics of the fact that 
the pump will start delivering liquid only when centrifugal head equals the total head Hmano .Thus,

  
2 2
2 1

2
u u

g
−

 = Hmano

 or, 
2 2

2 1
60 60
D N D Np p   −   

   
 = ( )

2
2 2

mano 2 1 mano2 , or, 2
60
NgH D D gHp  − = 

 

 Taking  D1 = 0.5D2, we obtain:

  
2

2 2
2 2[ (0·5 ) ]

60
N D Dp  − 

 
 = 

2
2

mano 2 mano2 , or, 0.75 2 9.81
60
NgH D Hp  × = × 

 

 ∴	 D2 = 
1/2

manomano 97.682 9.81 60
0.75

HH
N N

×  × =  p 
 ...(3.22)

 (iv) Diameter of suction pipe (Ds) :
 If Ds is the diameter of the suction pipe and Vs is the velocity of flow in suction pipe (usually Vs 
is 1.5 to 3 m/s), then the quantity of water to be pumped is given by:

  Q = 2 2 4, or,
4 s s s

s

QD V D
V

p
× =

p

 or, Dd = 4
s

Q
Vp

 ...(3.23)

 (v) Diameter of delivery pipe (Dd):
 If Dd is the diameter of the delivery pipe and Vd is the velocity of flow in delivery pipe (usually 
Vd is 1.5 to 3.5 m/s), then the discharge,

  Q = 2 2 4, or,
4 d d d

d

QD V D
V

p
× × =

p
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 ∴ Dd = 4
d

Q
Vp

 ...(3.24)

 Note :  The value of Vd is generally equal to or slightly higher than that Vs.

3.13.  MULTI-STAGE CENTRIFUGAL PUMPS

 A multi-stage centrifugal pump is one which has two or more identical impellers mounted on 
the same shaft or on different shafts. The important functions performed by a multi-stage pump are:
 1. To produce heads greater than that permissible with a single impeller, ‘discharge remain-

ing constant’. The task can be achieved by ‘series arrangement’ where in the impellers are 
mounted on the same shaft and enclosed in the same casing.

 2. To discharge a large quantity of liquid, ‘head remaining same’. This task is accomplished 
by ‘parallel arrangement’ wherein impellers are mounted on separate shafts

3.13.1. Pumps in Series
 For obtaining a high head, a number of impellers are mounted in series or on the same shaft. 
Fig. 3.23 shows such an arrangment for a two-stage pump. The discharge from impeller–1 passes 
through a guided passage and enters the 
impeller–2. At the outlet of impeller–2, 
the pressure of water will be more than the 
pressure of water at outlet of impeller–1. 
Thus if more number of impellers are 
mounted on the same shaft the pressure at 
outlet will be increased further. If in each 
stage, the manometric head imposed on 
the liquid is Hmano, then for n identical 
impellers the total head developed will be; 
Htotal = nH, however, the discharge passing 
through each impeller is same.
 The series arrangement is employed 
for delivering a relatively small quantity of 
liquid against very high heads.
 The advantages of multi–stage pumps–
impellers in series over single-stage pumps 
are as follows:
 1. Less loss due to friction.
 2. Reduced stresses.
 3. Small slip leakage.
 4. The number of stages may be so chosen that the pump speed suits the driving motor speed.
 5. By proper arrangement of impellers a thrust can be eliminated.
 6. Owing to lower specific speed of individual impellers a higher suction lift is possible.

3.13.2. Pumps in Parallel
 When a large quantity of liquid is required to be pumped against a relatively small head 
(which is impossible for a single pump to accomplish), two or more pumps are employed which 
are so arranged that each of these pumps working separately lifts the liquid from a common sump 
and delivers it to a common collecting pipe through which it is carried to required height. This 

Guided
passage

Impeller-1

Shaft

Impeller-2

To delivery
pipe

Guided
passage

From
suction
pipe

Fig. 3.23. Two-stage pump-impellers in series.
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arrangement is known as pumps in parallel (since each pump delivers the liquid against the same 
head). If Q is the discharge capacity of one pump and there are n identical pumps (arranged in 
parallel) then total discharge will be, Qtotal = nQ

Suction
pipe Pump-1

Suction
pipe Pump-2

Collecting pipe

Delivery
pipes

Q1

Q1 Q Q1 2+

Q2

Sump

 
Fig. 3.24. Pumps in parallel.

 Example 3.29.   A three stage centrifugal pump has impellers 400 mm in diameter and 20 mm 
wide at outlet. The vanes are curved back at the outlet at 45° and reduce the circumferential area 
by 10 percent. The manometric efficiency is 90 percent and the overall efficiency is 80 percent. The 
pump is running at 1000 r.p.m. and delivering 0.05 m3/s. Determine:
 (i) Head generated by the pump, and
 (ii) Shaft power required to run the pump.

 Solution.  Number of stages, n = 3
     Diameter of impeller at outlet, D2 = 400 mm = 0.4 m
     Width at outlet, B2 = 20 mm = 0.02 m
     Outlet vane angle, φ	 = 45°
     Reduction in area at outlet = 10%
     Manometric efficiency, ηmano = 90%
     Overall efficiency, η0 = 80 %; Speed , N = 1000 r.p.m.
     Discharge through the pump, Q = 0.05  m3/s.

 (i)  Head generated by the pump, Htotal:

     Area of flow at outlet = 0.9p D2B2 = 0.9 × p	× 0.4 × 0.02 = 0.02262 m2

  ∴    Velocity of flow at outlet, Vf2 = 0.05 2.21 m/ s
Area of flow 0.02262

Q
= =

  Peripheral or tangential velocity of impeller at outlet,

     u2 = 2 0.4 1000 20.94 m/ s
60 60
D Np p × ×

= =
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  Refer to Fig. 3.8. From velocity triangle  at outlet, we have:

    tan φ = 2 2 2
2 2 2 2

2 2
, or, , or,

tan tan
f f f

w w
w

V V V
u V V u

u V
− = = −

− φ φ

  or, Vw2 = 2.2120.94 18.73 m/s
tan 45

− =
°

  Also, ηmano = mano

2 2w

gH
V u

 ...[Eqn  (3.9)]

    0.9 = mano9.81
18.73 20.94

H×
×

  or, Hmano = 0.9 18.73 20.94 35.98 m
9.81

× ×
=

  ∴ Htotal = mano 3 35.98× = × =n H 107.94 m  (Ans.)

 (ii) Shaft lower required, P:

    Power output of the pump = total kW
1000

wQ H×

     = 9810 0.05 107.94 52.94 kW
1000

× ×
=

    Now, Overall efficiency, η0 = Power output of pump 52.94
Power input to the pump P

=

  ∴ P = 
0

52.94 52.94
0.8

= =
η

66.17 kW (Ans.)

 Example 3.30.   It is required to pump water out of deep well under a total head of 90 m. A 
number of identical pumps of design speed 1000 r.p.m. and specific speed 30 with a rated capacity 
of 0.15 m3/s are available. How many pumps are required and how should they be connected 
whether in series or in parallel ?

 Solution. Total head, Htotal = 90 m; Design speed, N = 1000 r.p.m.
 Specific speed, Ns = 30; Discharge through each pump, Q = 0.15 m3/s

 Number of pumps required, n:
 Let,    Hmano = Manometric head developed by each pump.

 Now,  specific speed, Ns = 3/4
mano( )
N Q

H

 or, 30 = 
4/3

mano3/4
mano

1000 0.15 1000 0.15, or, 30.28 m
30( )

H
H

 × ×
= = 
 

 ∴  Number of pumps stages = total

mano

90 3
30.28

H
H

= =

 As the total head required to be developed is more that the head developed by each pump, the 
pumps should be connected in series. (Ans.)
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3.14.  SPECIFIC SPEED

 The specific speed of a centrifugal pump is defined as the speed of a geometrically similar 
pump which would deliver unit quantity (one cubic metre of liquid per second) against a unit head 
(one metre). It is denoted by Ns. The specific speed is a characteristic of pumps which can be used 
as a basis for comparing the performance of different pumps.
 An expression for specific speed may be obtained as follows:
  Discharge, Q = Area × velocity of flow
   = pDB × Vf

 or, Q ∝ D × B × Vf ...(i)
 where,  D and B are the diameter and width of the pump impeller respectively.
 Now, B ∝ D, therefore, from eqn. (i), we have:

  Q ∝ D2 × Vf ...(ii)
 Also, the tangential velocity is given by:

  u = , or,
60
DN u DNp

∝  ...(iii)

 Again, the tangential velocity (u) and velocity of flow (Vf) bear the following relationship with 
the manometric head (Hmano):
  u ∝ manofV H∝  ...(iv)

 Substituting the value of u in eqn. (iii), we have:

  manoH  ∝ mano, or,
H

DN D
N

∝

 Substituting the value of D in eqn. (ii) , we obtain:

 Q ∝	
3/2

mano mano mano
mano2 2 2

( )
f

H H H
V H

N N N
× ∝ × ∝  mano ...eqn.( )fV H iv ∝ 

	 ∴ Q = 
3/2

mano
2

( )H
K

N
   ...(v)

 (where, K = constant of proportionality)
 By definition: When H = 1 m, and Q = 1 m3/s, then N = specific speed, Ns. That is, 

  1 = 
3/2

2
2

(1) , or, s
s

K K N
N

=

 Eqn. (v) may then be written as:

  Q = 
3/2 2

2 2mano
2 3/2

mano

( )
, or,

( )s s
H N QN N

N H
=

 ∴  Specific speed, Ns = 3/4
mano( )
N Q

H
 ...(3.25)

 — The values of N, H and Q are those for normal operating condition (the design point) which 
would generally coincide with the optimum efficiency.
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 — In case of a multi-stage pump the value of Hmano to be used in eqn. (3.25) is obtained by 
dividing the total head developed by the number of stages. For a double suction pump half  
the actual discharge delivered by the pump is taken as Q.

 The ranges of specific speeds for different types of pumps are tabulated below:

Type of pump Slow speed
radial flow

Medium
speed
radial flow

High speed
radial flow

Mixed flow
(or screw type)

Axial flow
(or propeller
type) 

Specific speed 10 to 30 30 to  50 50 to 80 80 to 160 160 to 500
 — Within limits of net positive suction head (NPSH) is the net head in metres of liquid that is 

required to make the liquid flow through the suction pipe from the sump to the impeller) 
available, the pump with the highest specific speed is generally the best choice. Such a pump 
can operate at the highest rotational speed and is of the smallest size.

 Example 3.31.   The diameter and width of a centrifugal pump impeller are 300 mm and 60 mm 
respectively. The pump is delivering 144 litres of liquid per second with a manometric efficiency 
of 85 percent. The effective outlet vane angle is 30°. If the speed of rotation is 950 r.p.m. calculate 
specific speed of the pump.

 Solution.  Diameter of impeller at outlet, D2 = 300 mm = 0.3 m
  Width of impeller at outlet, B2 = 60 mm = 0.06 m
  Discharge through the pump, Q = 144 litres/s = 0.144 m3/s
  Manometric efficiency, ηmano = 85 %
  The effective outlet vane angle, φ = 30°
  Speed of rotation, N = 950 r.p.m.

 Specific speed of the pump, Ns :
 Peripheral or tangential velocity at outlet of impeller,

  u2 = 2 0.3 950 14.92 m/ s
60 60
D Np p × ×

= =

  Velocity of flow, Vf2 = 
2 2

0.144 2.55 m/ s
0.3 0.06

Q
D B

= =
p p × ×

 Refer to Fig. 3.8. From velocity triangle at outlet, we have:

  Vw2 = 2
2

2.5514.92 10.5 m/ s
tan tan 30

fV
u − = − =

φ °

 Now,  manometric efficiency, ηmano = mano mano

2 2

9.81
10.5 14.92w

gH H
V u

×
=

×

 ∴ Hmano = mano 10.5 14.92 0.85 10.5 14.92 13.57 m
9.81 9.81

η × × × ×
= =

  Specific speed, Ns = 3/4
mano( )
N Q

H
 ...[Eqn. (3.25)]

                              = 3/4
950 0.144

(13.37)
×

 51 (Ans.)
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3.15.  MODEL TESTING AND GEOMETRICALLY SIMILAR PUMPS

 In order to know the performance of prototypes, the models of centrifugal pumps are tested. 
The performance of the prototype pump will be correctly predicted by its model test only if the 
following conditions are satisfied:
	 l    Specific speed of model  =  Specific speed of prototype
 i.e. (Ns)m = (Ns)p

 or,  3/4
mano( ) m

N Q
H

 
 
  

 = 3/4
mano( ) p

N Q
H

 
 
  

 ...(3.26)

	 		l  Peripheral tangential  velocity, u = mano, also
60
DN u Hp

∝

 ∴	 manoH  ∝ mano, or, constant
H

DN
DN

=

  mano
2 2 s called the -H i head or lift co efficient

D N
 
  

 or, mano

m

H
DN

 
  
 

 = mano

p

H
DN

 
  
 

 ...(3.27)

	 l   Also Q ∝ D2 × Vf ...(Eqn (iii) of Art. 3.7)
 But, Vf ∝ u ∝	DN

	 ∴	 Q ∝ 2 3
3, or, , or, QD DN Q D N

D N
× ∝  = constant

 The factor 3 is calledQ
D N
 
  

flow co-efficient

 or, 3
m

Q
D N

 
 
 

 = 3
p

Q
D N

 
 
 

 ...(3.28)

	 l    Power of the pump, P = wQHmano  (neglecting losses)
 ∴ P ∝ Q × Hmano

 or , P ∝ D3N × Hmano (Q ∝ D3N)

 or , P ∝	 3 2 2 5 3
5 3, or, , or, constantPD N D N P D N

D N
× ∝ =  mano( )H DN∝

  5 3 is called theP
D N
 
  

power co-efficient

 or, 5 3
m

P
D N

 
 
 

 = 5 3
p

P
D N

 
 
 

 ...(3.29)

 In case of geometrically similar pumps the suffix ‘m’ is replaced by ‘1’ and suffix ‘p’ is replaced 
by ‘2’.
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 Example 3.32.   In order to predict the performance of a large centrifugal pump, a scale model 
of one - sixth size was made with the following specifications: Power P = 25 kW; Head Hmano = 7 
m; Speed N = 1000 r.p.m. If the prototype pump has to work against a head of 22 m, calculate its 
working speed, the power required to drive it, and the ratio of the flow rates handled by the two 
pumps.
 Solution. Scale ratio = one – sixth
 Model:  Prototype:
 Power, Pm = 25 kW Power, Pp = ?
 Head, (Hmano)m = 7 m Head, (Hmano)p = 22 m
 Speed, Nm = 1000 r.p.m. Speed, Np = ?

 Speed of prototype, Np:

 Using eqn. (3.27),  mano

m

H
DN

 
  
 

 = mano ,
p

H
DN

 
  
 

we have:

  mano( )m

m m

H
D N

 = mano mano

mano

( ) ( )
, or,

( )
p p m

p m
p p pm

H H D
N N

D N DH
= × ×

 or NP = 22 1 1000
67

× × = 295.47 r.p.m. (Ans.)

 Power required to drive the prototype pump, Pp:    

 Using eqn. (3.29),  5 3
m

P
D N

 
 
 

 = 5 3 ,
p

P
D N

 
 
 

 we have:

  5 3
m

m m

P
D N

 = 
5 35 3

5 3 5 3, or,p p p p p
p m m

m mp p m m

P D N D N
P P P

D ND N D N
   

= × = × ×   
   

   = 
5 36 295.4725

1 1000
   × × =   
   

5014.6 kW (Ans.)

 Ratio of the flow rates, :p

m

Q
Q

 Using eqn. (3.28), 3
m

Q
D N

 
 
 

 = 3 , we have
p

Q
D N

 
 
 

:

  3
m

m m

Q
D N

 = 
33

3 3, or,p p p p p p

m m mp p m m

Q Q D N D N
Q D ND N D N

 
= = × 

 

 or, p

m

Q
Q

 = 
36 295.47

1 1000
  × = 
 

63.82 (Ans.)

 Example 3.33.   Two geometrically similar pumps are running at the same speed of 1000 r.p.m. 
One pump has an impeller diameter of 300 mm and lifts water at the rate of 0.02 m3/s against a 
head of 15 m. Determine the head and impeller diameter of the other pump to deliver half the 
discharge.                                                  [M.U.]
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 Solution. Pump -1: Speed, N1 = 1000 r.p.m Pump -2:  Speed, N2 = 1000 r.p.m.
 Diameter, D1 = 300 mm or 0.3 m   Diameter, D2 = ?
 Head, Hmano1

 = 15 m      Head, Hmano2  = ?

 Discharge, Q1 = 0.02 m3/s     Discharge, Q2 = 31 0.02 0.01m /s
2 2

Q
= =

 Head, Hmano2
:

 Using the eqn. (3.26),  3/4
mano 1( )
N Q

H

 
 
  

= 3/4
mano 2

,
( )

N Q
H

 
 
  

 we have:

  
1

1 1
3/4

mano( )
N Q

H
 = 

2

2 2
3/4

mano( )
N Q

H

 or, 3/4
1000 0.02

(15)
×  = 

2

3/4
mano

1000 0.01
( )H

×

 or, (Hmano2
)3/4 = 

3/41000 0.01 (15) 5.389
1000 0.02
× ×

=
×

 or, Hmano2
 = (5.389)4/3 = 9.45 m (Ans.)

 Impeller diameter, D2:

 Using the eqn. (3.27),  mano

1

H
DN

 
 
  

 = mano

2

,
H
DN

 
 
  

 we have:

  1mano

1 1

H
D N

 = 2mano

2 2

H
D N

 or, 15
0.3 1000×

 = 
2

9.45
1000D ×

 ∴ D2 = 0.3 1000 9.45 0.238 m or
1000 15
× ×

=
×

238 mm  (Ans.)

 Example 3.34.   3 m3 of water per second is lifted to a height of 30 m with an efficiency of  
75 percent by single - stage centrifugal pump. The impeller diameter is 300 mm and it is rotating at 
2000 r.p.m. Find the number of stages and diameter of each impeller of a similar multi-stage pump 
to lift 5 m3 of water per second to a height of 200 m when rotating at 1500  r.p.m.

[Allahabad University]

 Solution.  Single-stage pump:  Multi-stage pump:
 Discharge, Q1 = 3 m3/s   Discharge, Q2 = 5 m3/s
 Manometric height, Hmano1

 = 30 m Manometric height, Hmano2
 = ? (per stage)

 Diameter of impeller, D1 = 300 mm or 0.3 m Diameter of each impeller, D2 = ?
 Speed N1 = 2000 r.p.m.   Speed, N2 = 1500 r.p.m.
 Number of stage, n:
 Since specific speed should be same, therefore, applying eqn. 3.26, we have:
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  3/4
mano 1( )
N Q

H

 
 
  

 = 3/4
mano 2( )
N Q

H

 
 
  

 or, 
1

1 1
3/4

mano( )
N Q

H
 = 

2 2

2 2
3/4 3/4 3/4

mano mano

2000 3 1500 5, or,
( ) (30) ( )

N Q
H H

× ×
=

 or, (Hmano2
)3/4 = 

2

3/4
4/3

mano
1500 5 (30) 12.411, or, (12.411) 28.71 m

2000 3
H× ×

= = =
×

 ∴ Number of stages  = Total head 200
Head per stage 28.71

= = 6.966 7  (Ans.)

 Diameter of each impeller, D2:

 Using eqn.3.27, mano

1

H
DN

 
 
  

 = mano

2

H
DN

 
 
  

, we have:

  1mano

1 1

H
D N

 = 2mano

2 2 2

30 28.71, or,
0.3 2000 1500

H
D N D

=
× ×

 or, D2 = 0.3 2000 28.71 0.3913m or
1500 30
× ×

=
×

391.3mm  (Ans.)

 Example 3.35.   A centrifugal pump is discharging 0·025 m3/s of water against a total head 
of 18 m. The diameter of the impeller is 0.4 m and it is rotating at 1400 r.p.m. Calculate the  head, 
discharge and ratio of powers of a geometrically similar pump of diameter 0.25 m when it is 
running at 2800 r.p.m.

 Solution.  Centrifugal pump:  Geometrically similar pump:
 Discharge, Q1 = 0·025 m3/s   Discharge, Q2 = ?
 Head, Hmano1

 = 18 m    Head, Hmano2
 = ?

 Diameter, D1 = 0.4 m   Diameter D2 = 0.25 m
 Speed, N1 = 1400 r.p.m   Speed, N2 = 2800 r.p.m.
 Head, Hmano2

:

 Using eqn. (3.27) : mano

1

H
DN

 
 
  

 = mano

2

H
DN

 
 
  

, we have:

  1mano

1 1

H
D N

 = 2 2mano mano

2 2

18, or,
0.4 1400 0.25 2800

H H
D N

=
× ×

 or, Hmano2
 = 

2
18 0.25 2800

0.4 1400
 × ×

=  × 
28.125m  (Ans.)

 Discharge, Q2:

 Using eqn. (3.28) : 3
1

Q
D N

 
 
 

 = 3
2

Q
D N

 
 
 

, we have:

  1
3
1 1

Q
D N

 = 2 2
3 3 3
2 2

0.025, or,
0.4 1400 0.25 2800

Q Q
D N

=
× ×
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 or, Q2 = 
3

3
0.025 0.25 2800 . /

0.4 1400
× ×

=
×

30 0122 m s (Ans.)

 Ratio of power, 1

2

P
P

:

 Using eqn. (3.29): 5 3
1

P
D N

 
 
 

 = 5 3
2

P
D N

 
 
 

,  we have

  1
5 3
1 1

P
D N

 = 
5 3 5 3

2 1 1 1
5 3 5 3 3 3

22 2 2 2

0.4 1400, or,
0.25 2800

×
= = =

×

P P D N
PD N D N

1.31  (Ans.)

3.16.  CHARACTERISTICS OF CENTRIFUGAL PUMPS

 Ordinarily a centrifugal pump is worked under its maximum efficiency conditions. However, 
when the pump is run at conditions different from the design conditions, it performs differently. 
Therefore, to predict the behaviour of the pump under varying conditions of speeds, heads, discharges 
or powers, tests are usually conducted. The results obtained from these tests are plotted in from of 
characteristic curves; these curves delineate useful information about the performance of a pump in 
its installation.
 The following four types of characteristic curves are usually prepared for centrifugal pumps:
 1. Main characteristic curves,
 2. Operating characteristic curves,
 3. Constant efficiency or Muschel curves, and
 4. Constant head and constant discharge curves.

 1. Main characteristic curves:
 The main characteristic curves are obtained as follows:
	 l The pump is run at a constant speed and the discharge is varied over the desired range (by 

delivery valve)
	 l Measurements are taken for manometric head (Hmano) and shaft power (P) for each 

discharge(Q).
	 l Calculations are made for the pump overall efficiency, η0
	 l The curves are plotted between Q and Hmano; Q and P; and Q and η0 for that speed. 
	 l The same procedure is repeated by running the pump at another speed.
	 l A family of curves is obtained as shown in Fig. 3.25.

Q
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.m 400
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Fig. 3.25. Main characteristic curves.
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 2. Operating characteristic curves:
When a centrifugal pump operates at the design speed (same as speed of driving motor) the 

maximum efficiency	occurs.	Evidently	for	optimum performance, the pump needs to be operated 
at the design speed. To obtain operating characteristic curves the pump is run at the design speed 
and the discharge is varied, as in the case of main characteristic curves. The operating characteristic 
curves are shown in Fig. 3.26. The design discharge and head are obtained from the corresponding 
curves	where	the	efficiency	is	maximum,

Design
head

Speed = constantN

Hmano P �0

Discharge, Q

Shaft power (P)

Effi
cie

ncy
(

)
� 0

Maximum
efficiency

Design discharge

Head (H )mano

Fig. 3.26. Operating characteristic curves of a centrifugal pump.

 3. Constant efficiency or Muschel curves:
The	constant	efficiency	curves	(also	called	iso-efficiency	curves),	depict	the	performance	of	a	

pump over its entire range of operations. These curves are obtained from main characteristic curves 
as follows:
	 l For a given efficiency, the values of 

discharges are obtained from Fig. 
(3.25) (c). These points are projected on 
the head (Hmano) v/s discharge (Q) for 
that speed in Fig. 3.25 (a).

 l Similarly, for another value of 
efficiency and speed, the points are 
obtained and projected.

 l The points corresponding to one 
efficiency are joined.

 l The curves so obtained are the constant 
efficiency or Muschel curves.

 l The curve/ line of maximum efficiency (or 
best performance) is obtained when the 
peak points of various iso-efficiency curves 
are joined.

 The constant efficiency curves help to locate 
the regions where the pump would operate with 
maximum efficiency.
 4. Constant head and constant discharge 

curves:
 The performance of a variable speed pump for which the speed constantly varies can be 
determined by these curves. When the pump has a variable speed, the plots between Q and N, and 

Discharge, Q
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Fig. 3.27. Constant efficiency or Muschel curves
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Fig. 3.28. (a) Qv/s N and (b) Hmano v/s N 
    curves of a centrifugal pump
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Hmano and N may be obtained. In the first case Hmano is kept constant and in the second case, Q is 
kept constant. The curves are shown in Fig. 3.28.

3.17.  NET POSITIVE SUCTION HEAD (NPSH)

 Fig. 3.29. shows a centrifugal pump drawing liquid from a sump open to a atmosphere.
 Let, hs = Vertical distance between the centre line of the pump and the free 

liquid surface of the sump,
  Vs = Velocity of liquid in the suction pipe,
  hfs = Losses in the suction pipe upto the pump inlet (1),
  p1 = Absolute static pressure at pump inlet,
  pa = Absolute atmospheric pressure, and 
  pv = Vapour pressure of the liquid for a given temperature.

pa

Vs
pa Sump

hs

p1

w

2g

Vs

2

hfs

Pump

pa

w

Fig. 3.29. Pressure balance at pump section.

 Now the pump will work without cavitation, if p1 is greater than pv by an amount equal to that 
required by the liquid for the increase in velocity head when entering the impeller; if this amount be 
denoted by Hsv, we can write

  1p
w

 = v
sv

p
H

w
+  ...(i)

 Also, 1p
w

 = 
2

2
a s

s fs
p V

h h
w g

 
− + +  
 

 ...(ii)

 From (i) and (ii), we have: 

  Hsv = 
2

2
a s v

s f s
p V p

h h
w g w

 
− + + −  
 

 or, Hsv = Ha – Hs – Hv ...(3.30)

   , and,a v
a v

p p
H H

w w
 = = 
 

 where,  Hs = Total suction head = 
2

2
s

s fs
V

h h
g

 
+ +  
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 This value of Hsv is frequently called the net positive suction head (NPSH). Thus the net 
positive suction head may be defined “as the difference between the net inlet head and the head 
corresponding to the vapour pressure of the liquid”. NPSH may also be defined as “the net head (in 
metres of liquid) that is required to make the liquid flow through the suction pipe from the sump to 
the impeller.”
 This term has significance  only when cavitating liquids are handled.
 NPSH is a parameter (diamensional) that can be used to check cavitation in pump. The term 
NPSH   is a frequently used in pump industry. The minimum NPSH depends upon the pump design, 
its speed and the discharge.
 From eqn. (ii), the limiting value of suction lift (hs) is given by:

  hs = 
2

1, when
2

a v s
fs v

p p V
h p p

w g
−  − − = 

 
 ...(3.31)

 Suction height is usually limited from 7 to 8 metres. The permissible suction lift would be less 
at elevated pump elevation since atmospheric pressure diminishes with altitude. The suction lift 
should in no case be more than that given by eqn. (3.31), otherwise due to reduction in pressure, 
rapid vaporization of the liquid may occur, which may ultimately lead to cavitation.

3.18.  CAVITATION IN CENTRIFUGAL PUMPS

 Cavitation begins to appear in centrifugal pumps when the pressure at the suction falls below 
the vapour pressure of the liquid. The intensity of cavitation increases with the decrease in value 
of NPSH. The cavitation in a pump can be noted by a sudden drop in efficiency, head and power 
requirement. The cavitation imposes limitation on the flow rate and speed of rotation of pump (since 
as the speed of rotation and flow rate of discharge increase the velocity of liquid at inlet increases 
due to which absolute pressure is reduced which facilitates cavitation).
 As in the case of turbines, for pumps also, Thoma’s cavitation factor is used to indicate the onset 
of cavitation. For pumps Thoma’s cavitation factor is defined as:

  s = 
mano mano

a s v svH H H H
H H
− −

=  ...(3.32)

 where, Ha = Atmospheric pressure expressed in metres of water head,
  Hv = Vapour pressure expressed in metres of water head,

  Hs = Total suction head 
2

,
2

s
s fs

V
h h

g
 
= + +  
 

  Hsv = Net positive suction head (NPSH), and
  Hmano = Manometric head.

 The cavitation will occur if the value of s is less than the critical value sc at which the cavitation 
just begins. The cavitation parameter s is a function of specific speed, efficiency of the pump, and 
number of vanes.
 The harmful effects  of cavitation are:
 (i) Pitting and erosion of surface (due to continuous hammering action of collapsing bubbles)
 (ii) Sudden drop in head, efficiency and the power delivered to the fluid.
 (iii) Noise and vibration (produced by the collapse of bubbles)
 The factors which facilitate onset of cavitation are as follows:
 (i) Restricted suction, (ii)  High runner speed,
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 (iii) Too high specific speed for optimum design parameters, and
 (iv) Too high temperature of the flowing liquid.

 Suction specific speed: 
 For geometrically similar machines (homologous),
  Q ∝ ND3 ...(i)

  NPSH ∝ 
2 2

42
V Q

g D
∝  ...(ii)

 Eliminating the dimension D from the above expression, we have:

  3/4( )
N Q

NPSH
 = constant = (Ns)suc. ...(3.33)

 The parameter (Ns)suc. is called the suction specific speed. When the different machines have 
equal values of (Ns)suc., it indicates that the machines are operating with similar degree of cavitation.
 Now by eliminating  N Q  from the following expressions, we get:

  (Ns)suc. = 3/4( )
N Q

NPSH
 ...Suction specific speed

  Ns = 3/4
mano( )
N Q

H
 ... pump specific speed (normal)

  
mano

NPSH
H

 = 
.

4/3

)(
suc

s

s

N
N

 
 
 

 or, s = 
4/3

.( )
s

s suc

N
N

 
 
 

 ...(3.34)

 Example 3.36.   Tests on a pump model indicate a cavitation parameter sc = 0.10. A homologous 
unit is to be installed at a location where atmospheric pressure, pa = 0·91 bar and vapour pressure 
pv = 0·035 bar absolute and is to pump water against a head of 25 m. What is the maximum 
permissible suction head ?     [P.E.C.]

 Solution.  Cavitation paremeter, sc  =  0.10

  Atmospheric pressure, pa  =  0.91 bar,    or,  Ha = 
50.91 10 9.27 m of water

9810
×

=

  Vapour pressure,  pv  =  0.035 bar,  or,  Hv = 
50.035 10 0.356 m of water

9810
×

=

  Manometric head, Hmano =  25 m

 Maximum permissible suction head, hs:

 Using the relation: s	= 
mano mano

, or,a s v c s v
c

H H H H H H
H H
− − − −

s = , neglecting head lost due to 

friction 
 or, 0.10 = 

9.27 0.356
, or, 0.10 25 8.914

25
s

s
h

h
− −

× = −

 ∴  hs = 8.914 – 0.10 × 25 = 6.41 m (Ans.)
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 Example 3.37.   Find the height from the water surface at which a centrifugal pump may be 
installed in the following case to avoid cavitation:
 Atmospheric  pressure = 1.01 bar; vapour pressure = 0.022 bar; inlet and other losses in suction 
pipe = 1.42 m; effective head of pump = 49 m; and cavitation parameter =  0.115.

 Solution. Given :  pa = 1.01 bar,  or,   Ha = 
51.01 10 10.29 m

9810
×

=

   pv = 0.022 bar,  or, Hv = 
50.022 10 0.224 m

9810
×

=   

 Inlet and other losses in suction pipe, hfs = 1.42 m,
 Effective head of pump (manometric head), Hmano = 49 m.
 Cavitation parameter, s = 0.115.
 Installation height above water surface, hs:
 Cavitation factor/ parameter is given by:

  s = 
mano mano

( )a s fs ea s v H h h HH H H
H H

− + −− −
=

 or, 0.115 = 
10.29 ( 1.42) 0.224 8.646

49 49
s sh h− + − −

=

 or, hs = 8.646 – 0.115 × 49 = 3.01 m (Ans.)

 Example 3.38.   A single-stage centrifugal pump runs at 600 r.p.m. and delivers 360 m3/min.. 
of water against a head of 144 m. The pump impeller is 2.4 m in diameter and it has a positive 
suction lift (including the velocity head and friction) of 3.6 m. Laboratory tests are to be conducted 
on a model with 0.54 m diameter impeller and on a reduced head of 114 m. Calculate the speed, 
discharge and suction lift for the laboratory tests. Assume atmospheric head = 10.18 m of water 
and vapour head = 0·32 m of water.

 Solution. Prototype pump: Model pump:
  Speed, Np = 600 r.p.m. Speed, Nm = ?
  Discharge, Qp = 360 m3/min Discharge, Qm = ?
  Manometric head, (Hmano)p = 144 m Manometric head, (Hmano)m = 114 m
  Diameter of impeller, Dp = 2.4 m Diameter of impeller, Dm = 0.54 m
  Positive suction lift = 3.6 m Atmospheric head, Ha = 10.18 m of water.
  Vapour head, Hv = 0·32 m of water.

 (i) Speed of the model pump, Nm:

  Using the relation:  mano

m

H
DN

 
  
 

 = mano

p

H
DN

 
  
 

 ...[Eqn. (3.27)]

  or, mano( )m

m m

H
D N

 = mano mano

mano

( ) ( )
, or,

( )
p pm

m p
p p mp

H DH
N N

D N DH
= × ×  

  or, Nm = 114 2.4 600
144 0.54

× × = 2372.7 r.p.m. (Ans.)
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 (ii) Discharge for the model pump, Qm:

  Using the relation: 3
m

Q
D N

 
 
 

 = 3
p

Q
D N

 
 
 

 ...[Eqn. (3.28)]

  3
m

m m

Q
D N

 = 
2

3 , or,p m m
m p

p pp p

Q D N
Q Q

D ND N
 

= × 
 

  or, Qm = 
3

30.54 2372.7360 16.21m /min
2.4 600

 × × = 
 

 (iii) Positive suction lift with which model should be tested, Hs:
  Cavitation factor for the prototype,

    sp = 
mano

10.18 3.6 0.32 0.0435
( ) 144

a s v

p

H H H
H
− − − −

= =

  For cavitation similarity, sm = sp

  ∴ sm = 
10.18 0.32 9.86

, or, 0.0435
114 114

s sH H− − −
=

  ∴  Hs = 9.86 – 0.0435 × 114 = 4.9 m (including velocity head and friction) (Ans.)

3.19.  PRIMING OF A CENTRIFUGAL PUMP

 The operation of filling the suction pipe, casing of the pump and a portion of the delivery pipe 
completely from outside source with the liquid to be raised, before starting the pump, to remove 
any air, gas or vapour from these parts of the pump is called priming of a centrifugal pump. If a 
centrifugal pump is not primed before starting, air pockets inside the impeller may give rise to 
vortices and cause discontinuity of flow. Further, dry running of the pump may result in rubbing and 
seizing of the wearing rings and cause serious damage.
	 l Small pumps  are usually primed by pouring liquid into the funnel provided for the pur-

pose. While doing priming, the air-vent valve provided in the pump casing is opened; the 
air escapes through the valve. The priming is continued till all air from the suction pipe, 
impeller and casing has been removed.

 l Large pumps are primed by evacuating the casing and the suction pipe by a vacuum pump 
or by an ejector; the liquid is thus drawn up the suction pipe from the sump and the pump 
is filled with liquid.

	 l	 The internal construction of some pumps is such that special arrangements containing a 
supply of liquid are provided in the suction pipe due to which automatic priming of the pump 
occurs; such pumps are known as ‘self priming pumps’.

3.20.  SELECTION OF PUMPS

 l The main criteria of the selection of the type of pump are values of discharge (Q), head (H) 
and speed (N). From these values the specific speed of the pump is calculated and subse-
quently the type of the pump can be decided.

 l When the specific  speed is low and it is possible to increase the pump speed, it is better 
to use multi-stage pump; the number of stages are decided on the basis of the head and the 
type of the pump to be used.

 l The type of impeller is another aspect of pump selection:
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 (i) Impeller shrounded type            ... for pumping fresh clean water.
 (ii) Impeller-unshrounded or propeller type ... for pumping soild-liquid mixture or near 

plastic material.
  (For pumping molasses etc. sometimes positive displacement screw pump or lobe pumps are 
employed.)
 (iii)   Mixed flow impellers with diffuser vanes   ...  used for deep well or submersible pumps.
 l Axial flow pumps are employed for very low heads of about six metres and for large  

discharges.
 l Radial flow pumps are used when the head is high.

3.21.  OPERATIONAL DIFFICULTIES IN CENTRIFUGAL PUMPS

 The type of operational difficulties commonly experienced in centrifugal pumps and their 
remedies (given in parentheses) are as given below:
 I. Pump fails to start pumping:
  1. Pump may not be properly primed – (Reprime the pump).

  2. Total head against which the pump is working may be much higher than that for which 
the pump is designed – (Check the head with accurate gauges; reduce the head or change 
the pump).

  3. Impeller may be clogged – (Clean the impeller).

  4. The rotation of the impeller may be in the wrong direction. (Change the direction of  
rotation).

  5. Too high suction lift (Reduce the suction lift).

  6. Law speed –  (Increase the speed).

 II. Pump is not working upto capacity and pressure:
  1. Leakage of air into the pump – (Plug the leakege).

  2. Some of the parts are damaged due to excessive wear and tear – (Replace the worn out/
damaged parts).

 III. Pump stops working:
  1. Presence of air in suction line – (Remove the air by priming and plug the entry of air).

  2. High suction lift (Reduce the suction lift).

 IV. Pump has very low efficiency :
  1. Speed may be too high – (Reduce the speed)

  2. Head may be too low and the pump delivers the liquid in large quantity – (Reduce the 
discharge or change the pump).

  3. Pump may be operating in wrong direction – (Correct the direction of rotation of 
impeller).

  4. Shaft may be bent, the impeller may be touching the casing, stuffing boxes may be too 
tight, wearing rings may be worn – (Repair the affected parts).
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HIGHLIGHTS

 1. A pump is a contrivance which provides energy to a fluid in a fluid system; it assists to increase 
the pressure energy or kinetic energy, or both of the fluid by converting the mechanical 
energy.

 2. (a)  Work done per second per unit weight of liquid

      = 2 2wV u
g

, assuming flow at inlet to be radial ...(i)

  (b) If the flow is not radial, the expression for work done may be written as:
   Work done per second per unit weight of liquid

      = 2 2 1 1
1 ( )w wV u V u
g

−  ...(ii)

   Eqn. (ii) is known as the Euler momentum equation for centrifugal pumps.

   The term 2 2 1 1
1 ( )w wV u V u
g

−  is referred to as Euler head (He)

  (c) Work done per second per unit weight of liquid (or He)

       = 
2 2 2 2 2 2

2 1 2 1 1 2
2 2 2

r rV V u u V V
g g g
− − −

+ +  ...(iii)

  This equation is sometimes called the fundamental equation of a centrifugal pump.
 3.  Suction head (hs). It is the vertical height of the centreline of pump shaft above the liquid 

surface in the sump from which the liquid is being raised.
  Delivery head (hd). It is the vertical height of the liquid surface in the tank/reservoir to which 

the liquid is delivered above the centreline of the pump shaft.
  The sum of suction head and delivery head is known as static head (Hstat).
 4. Manometric head (Hmano). The head against which a centrifugal pump has to work is known 

as manometric head. It is given as: 

  (i)  Hmano = 2 2wV u
g

 – loss of head in the pump (i.e. impeller and casing)

  (ii)  Hmano = 
2

losses in pipe
2

d
stat

V
H

g
+ +

     = 
2

( ) ( )
2

d
s d fs fd

V
h h h h

g
+ + + +

  (iii)  Hmano = Total head at outlet of the pump – total head at inlet of the pump

     = 
2 2

2 2 1 1
2 12 2

p V p Vz z
w g w g

   
+ + − + +      

   

 5. The	various	efficiencies	of	the	pump	are

  (i)  Manometric efficiency, ηmano = mano

2 2w

gH
V u

  (ii)  Volumetric efficiency, ηv = Q
Q q+

   where, Q = Actual liquid discharge at the pump outlet second, and
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         q = Leakage of liquid   per second from the impeller (through the clearances 
between the impeller and casing)

  (iii)  Mechanical efficiency, ηm = 2 2( ) ( / )ww Q q V u g
P

+

     = .mach lossP P
P

−
 (where, P = shaft power)

  (iv)  Overall efficiency, η0 = manowQH
P

   Also,       η0 = ηmano × ηv × ηm

 6. The minimum speed for starting a centrifugal pump is given by:

      N(i.e. Nmin) = mano 2 2
2 2
2 1

120
( )

wV D
D D

× η × ×

p −

 7. A multi-stage pump is one which has two or more identical impellers (mounted on the same 
shaft or on different shafts); to produce a high head the impellers are connected in series 
while to discharge a large quantity of liquid, the impellers are connected in parallel.

 8. The specific speed (Ns ) of a centrifugal pump is defined as the speed of a geometrically 
similar pump which would deliver unit quantity (one cubic metre of liquid per second) 
against a unit head (one metre). Thus.

      Ns = 3/4
mano( )
N Q

H

 9. For complete similarity between the model and prototype/actual centrifugal pump the  
following conditions should be satisfied:

  (i)   3/4
mano( ) m

N Q
H

 
 
  

 = 3/4
mano( ) p

N Q
H

 
 
  

  (ii)  mano

m

H
DN

 
  
 

 = mano

p

H
DN

 
  
 

 

  (iii)  3
m

Q
D N

 
 
 

 = 3
p

Q
D N

 
 
 

  (iv)  5 3
m

P
D N

 
 
 

 = 5 3
p

P
D N

 
 
 

 10. The characteristics curves are used for predicting the behaviour and performance of a pump 
when it is  working under different heads, speeds and rates of flow.

 11. The net positive suction head (NPSH) may be defined as “The difference between the net 
inlet head and the head corresponding to the vapour pressure of the liquid”

 12. Cavitation begins to appear in centrifugal pumps when the pressure at the suction falls 
below the vapour pressure of the liquid. It can be noted by sudden drop in efficiency, head 
and power requirement.
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OBJECTIVE TYPE QUESTIONS

Choose the Correct Answer:
 1. Which of the following types of impeller is used 

for centrifugal pumps dealing with muds?
   (a) One-side shrouded 
   (b) Two -sides shrouded
   (c) Double section
   (d) Open.
 2. Which of the following statements is correct with 

reference to an impeller with backward curved 
vanes?

   (a) It has a falling head - discharge character-
istic.

   (b) It has rising head - discharge characteristic
   (c) It is easier to fabricate.
   (d) It cannot run at speeds other than the 

design speed.
 3. The head developed by a centrifugal pump may 

be expressed as

   (a) H = 2 2 1 2w wV u V u
g
+

   (b) H = 2 2wV u
g

   (c) H = 1 1wV u
g

   (d) none of the above.
 4. With reference to a centrifugal pump which of   

the following statements is incorrect ?
   (a)	 The	discharge	control	valve	is	fitted	in	the	

delivery pipe.
   (b) The suction pipe is provided with a foot 

valve and a strainer.
   (c) The suction pipe has larger diameter as 

compared to the discharge pipe.
   (d)	 The	discharge	control	valve	is	fitted	in	the	

suction pipe.
 5. A centrifugal pump should be so installed above 

the water level in the sump such that
   (a) the negative pressures are not allowed to 

develop in the impeller 
   (b) the negative pressures do not reach as low 

a value as the vapour pressure
   (c) its height is more than 10·28 m at ordinary 

temperature of liquid
   (d) none of the above.
 6. The	specific	speed	of	a	pump	is	defined	as	the	

speed of unit of such a size that it
   (a) produces unit power with unit head avail-

able
   (b) delivers unit discharge at unit head

   (c) requires unit power to develop unit head
   (d) delivers unit discharge at unit power.
 7. Which of the following statements pertaining to 

a given centrifugal pump is correct ?
   (a) Discharge varies as the square of speed
   (b) Power varies as the square of speed
   (c) Discharge varies directly as speed 
   (d) Head varies inversely as speed.
 8. The delivery valve, while starting centrifugal 

pump, is kept
   (a) fully closed (b) fully open
   (c) half open (d) in any position.
 9. Which of the following is not a dismensionless 

parameter ?
   (a) Friction factor 
   (b)	 Specific	speed	
   (c) Thoma’s cavitation parameter
   (d)	 Pressure	co-efficient.
 10. With reference to manometric head which of the 

following statements is correct ?
   (a) It is the head developed by the pump. 
   (b) It is the height to which water is lifted 

by the pump measured above the pump 
centreline.

   (c) it is the difference in elevation between the 
water surface in the high level reservoir 
and the water level in the sump.

   (d) It is the difference in the piezometric 
heads between the points on the delivery 
and suction pipes as close to the pump as 
possible.

 11.	 Higher	specific	speeds	(160	to	500)	of	centrifugal	
pump indicate that the pump is of 

   (a)	 radial	flow	type	 (b)	 axial	flow	type
   (c)	 mixed	flow	type	 (d) any of these types.
 12. What will happen if requirements of net positive 

suction head (NPSH) for a given pump are not 
satisfied	?

   (a) The pump will get cavitated.
   (b) The pump will consume more power.
   (c) The pump will not develop head.
   (d)	 The	pump	will	have	a	low	efficiency.
 13. The net positive suction head (NPSH) which 

represents the suction head at the impeller eye 
is given by

   (a) a v
s fs

p p h hw
−

− −

   (b) a v
s fs

p p h hw
−

− +
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   (c) a v
s fs

p p h hw
−

+ +

   (d) .a v
s fs

p p h hw
−

+ −

 14. To prevent cavitation, the suction lift must be 
considerably lower than the maximum limit 
expressed by

   (a) 
2

2
a v s

fs
p p V hw g

−
+ −

   (b) 
2

2
a v s

fs
p p V hw g

−
− +

   (c) 
2

2
a v s

fs
p p V hw g

−
− −

   (d) 
2

.2
a v s

fs
p p V hw g

−
+ +

 15. In centrifugal pumps, cavitation is reduced by 
   (a)	 increasing	the	flow	velocity
   (b) reducing the discharge
   (c) throttling the discharge
   (d) reducing the suction head.
 16. Which of the following statements pertaining to 

a centrifugal pump is incorrect ?
   (a) The suction lift of a pump can be upto  

10·3 m or even more.
   (b) The impellers of a multi-stage pump are 

arranged in parallel to discharge a large 
quantity of liquid.

   (c) The volute casing of the pump maintains 
the	velocity	of	flow	constant,	prevents	
eddies and converts velocity head to 
pressure head.

   (d) The manometric head refers to the differ-
ence between the total energy of liquid at 
exit from and at inlet to the pump.

 17. Regarding cavitation which of the following 
statements in incorrect ?

   (a) Cavitation affects the performance of a 
turbine to a lesser degree than that of a 
pump.

   (b) Thoma’s cavitation parameter has different 
expressions for turbines and pumps.

   (c) With the increase in pump speed, there 
is increase in its minimum net positive 
suction head requirement.

   (d) The leading edge of blades in pumps and 
the trailing edge of blades in water tur-
bines are more susceptible  to cavitation 
damage.

 18. A centrifugal pump is taking much of power, the 
probable reason may be

   (a) liquid being pumped is heavy
   (b) speed of the pump is low
   (c) there is leakage of air
   (d) ineffective strainer and foot valve arrange- 

ment.
 19. In rotodynamic pumps, the increase in energy 

level is due to
   (a) centrifugal energy only
   (b) pressure energy only
   (c) kinetic energy only
   (d) combination of a, b and c.
 20. In a pump there is 
   (a)	 accelerating	flow	
   (b)	 decelerated	flow
   (c) either of the above
   (d) none of the above.
 21. In a centrifugal pump the regulating valve is 

provided on 
   (a) the suction pipe (b) delivery pipe 
   (c) the casing  (d) none of the above.
 22. In a centrifugal pump the sum of suction head  

and delivery head is known as 
   (a) manometric head (b) total head
   (c) static head (d) none of the above.
 23. Regarding manometric head (Hmano) which of 

the following  relations is correct ?
   (a) Hmano= head imparted by the impeller to 

the liquid – loss of head in the pump

   (b) Hmano= static head + losses in pipes + 
2

2
dV
g

   (c) Hmano= total head at outlet of the pump- 
total head at inlet of pump

   (d) All of the above.
 24. The ratio of power outlet of the pump to the 

power input to the pump is known as
   (a)	 mechanical			efficiency
   (b)	 overall	efficiency
   (c)	 manometric	efficiency
   (d) none of the above.
 25. The	flow	 ratio	 in	 case	 of	 a	 centrifugal	 pump	

varies from
   (a) 0.1 to 0.25 (b) 0.25 to 0.40
   (c) 0.40 to 0.50 (d) 0.50 to 0.65.
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ANSWERS

 1. (d)       2. (a)  3. (b)  4. (d)  5. (b) 6. (b)
  7. (c)  8. (a)  9. (b) 10. (d)  11. (b) 12. (a)
 13. (a) 14. (c) 15. (d) 16. (a) 17. (b) 18. (a)
 19. (d) 20. (a) 21. (b) 22. (c) 23. (d) 24. (b)
 25. (a).

THEORETICAL QUESTIONS

 1. What is a pump ?
 2.	 How	are	pumps	classified	?
 3.	 How	are	centrifugal	pumps	classified	?
 4. State the advantages of a centrifugal pump over 

a displacement (reciprocating) pump.
 5. List the main component parts of a centrifugal 

pump	and	explain	them	briefly.
 6.  Explain the working of a single - stage centrifu-

gal pump with a neat sketch.
 7. How does a volute casing differ from a vortex 

casing for the centrifugal pump ?
 8.	 Explain	briefly,	with	neat	sketches,	any	two	of	

the following types of casing
   (i) Volute casing; (ii) Vortex casing; 
   (iii) Casing with  guide blades/vanes.
 9. Derive an expression for the work done by the 

impeller of a centrifugal pump on liquid per 
second per unit weight of liquid.

 10. What is ‘Euler head’ ?
 11.	 Define	the	following	terms
   (i) Static head, 
   (ii) Manometric head, and 
   (iii) Total head.
 12. Enumerate the losses which occur when a cen-

trifugal pump operates.
 13.	 Explain	briefly	 the	 following	efficiencies	of	a	

centrifugal pump:
   (i)	 Manometric	efficiency,
   (ii)	 Volumetric	efficiency,	
   (iii)	 Mechanical	efficiency,	and
   (iv)	 Overall	efficiency.
 14.	 Discuss	 the	 influence	 of	 exit	 blade	 angle	 on	

the	performance	and	efficiency	of	a	centrifugal	
pump.	Assume	radial	flow	at	entrance.

 15. Derive an expression for the minimum speed for 
starting a centrifugal pump.

 16. Explain briefly the effect of variation of 
discharge	on	the	efficiency.

 17. What is the effect of number of vanes of impeller 
on	head	and	efficiency	?

 18. State the difference between single stage and 
multi-stage pumps.

 19. Discribe multi-stage pump with (i) impeller in 
series and (ii) impellers in parallel.

 20.	 Define	 specific	 speed	 of	 a	 centrifugal	 pump.	
Derive an expression for the same.

 21.	 How	does	 the	 specific	 speed	 of	 a	 centrifugal	
pump differ from that of a turbine ?

 22.	 Write	down	the	ranges	of	specific	speeds	for	the	
following types of pumps:

   (i)	 Slow	speed	radial	flow,
   (ii)	 Medium	speed	radial	flow,
   (iii)	 High	speed	radial	flow,	and
   (iv)	 Axial	flow.
 23. How is the model testing of the centrifugal 

pumps carried out ?
 24. What do you mean by ‘characteristics of 

centrifugal pumps ?
 25.	 What	is	the	significance	of	characteristic	curves?
 26. What do you mean by ‘net positive suction head’ 

(NPSH) ?
 27. What is ‘cavitation’ ?
 28. What are the effects of cavitation ? Give the 

necessary precautions against cavitation.
 29. List the factors which facilitate onset of  

cavitation.
 30.	 Define	‘suction	specific	speed’.
 31. What is priming ? Why is it necessary ?
 32. How are small and large centrifugal pumps 

primed ?
 33. How is the selection of pumps made ?
 34. Give the operational difficulties commonly 

experienced in centrifugal pumps and their 
remedies.

 35. Why are centrifugal pumps used sometimes 
in series and sometimes in parallel ? Draw the 
following characteristic curves for a centrifugal 
pump:

	 	 Head,	 power	 and	 efficiency	 versus discharge 
with constant speed.  
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UNSOLVED EXAMPLES

 1. The impeller of a centrifugal pump has an 
external diameter of 400 mm and internal 
diameter of 180 mm and it runs at 1440 r.p.m. 
Assuming	a	constant	 radial	flow	 through	 the	
impeller at 2·5 m/s and that the vanes at the 
exit are set back at an angle of 25°, determine :  
(i) Inlet vane angle, (ii) The angle, absolute 
velocity of water at the exit makes with the 
tangent, and (iii) The work done per N of water.

   [Ans. (i) 10.42° ; (ii) 5.75° ; (iii) 76.18 Nm]
 2. A centrifugal pump delivers water against a net 

head of 14·5 m and a design speed of 1000 r.p.m. 
The vanes are curved back to an angle of 30° 
with the periphery. The impeller diameter is 
300 mm and outlet width 50 mm. Determine the 
discharge	of	the	pump	if	manometric	efficiency	
is 95 percent. 

   [Ans. 0.1675 m3/s]
 3. The impeller of a centrifugal pump having external 

and internal diameters 500 mm and 250 mm 
respectively, width at outlet 50 mm and running 
at 1000 r.p.m. works against a head of 40 m. The 
velocity	of	flow	through	the	impeller	is	constant	
and equal to 2.5 m/s. The vanes are set back at 
angle of 40°at outlet. Determine: (i) Inlet vane 
angle, (ii) Work done by the impeller on water 
per second, and (iii)	Manometric	efficiency.	

   [Ans. (i) 10.81°; (ii) 119.2 kNm; (iii) 64.6%]
 4.	 Determine	 the	 head	 imparted	 to	 a	 fluid	 as	 it	

passes through an impeller of 250 mm outlet 
diameter and 100 mm inlet diameter rotated at 
1440 r.p.m. The outlet vane angle is set back at 
an angle of 20° to the tangent. Assume radial 
entrance	and	velocity	of	flow	as	3	m/s.	
 [Ans. 20.4 m]

 5. A centrifugal pump impeller has an outer diamter 
of 300 mm and width at outer periphery 12·5 
mm.	The	pump	has	radial	 inflow	and	delivers	
0·08 m3/s of water against a total of 40 m. if 
the speed of the pump is 1500 r.p.m. and its 
manometric	 efficiency	 is	 80	 percent	 find	 the	
blade angle at the exit. [Ans. φ = 69°]

 6. A  centrifugal pump is running at 1000 r.p.m. and 
working	against	a	head	of	20	m.	The	rate	of	flow	
through the pump is 0.2 m3/s. The outlet vane 
angle	of	impeller	is	45°	and	velocity	of	flow	at	
outlet	is	2.5	m/s.	If	the	manometric	efficiency	of	
the pump is 80 percent, calculate the diameter 
and width of impeller at outlet, 

   [Ans. (i) 324  mm ; (ii) 78.6 mm]

 7. A centrifugal pump (diffusion type) has a suction 
lift of 1.5 m and the delivery tank is 13.5 m 
above the pump. The velocity of water in the 
delivery pipe is 1.5 m/s. The radial velocity of 
flow	through	the	wheel	is	3	m/s	and	the	tangent	
to the vane at exit from the wheel makes  an angle 
of 120° with the direction of motion. Assuming 
that the water enters radially and neglecting 
friction and other losses, determine : (i) Velocity 
of wheel at exit , (ii) Velocity and pressure head 
at exit from the wheel, and(iii)	Direction	of	fixed	
guide vanes.

   [Ans. (i) 13.07 m/s; (ii) 6.5 m of water;
   (iii) 14.89°]
 8. A centrifugal pump impeller whose external 

and internal diameters are 400 mm and 200 
mm respectively is running at 950 r.p.m. The 
rate	of	flow	through	the	pump	is	0.035	m3/s. 
The suction and delivery heads are 5 m and 25 
m respectively. The diameters of the suction 
and delivery pipe are 120 mm and 80 mm 
respectively. If the outlet vane angle is 45°, the 
flow	velocity	 is	constant	and	equal	 to	1.8	m/s	
and power required to drive the pump is 15 kW, 
determine:

  (i) Inlet vane angle, (ii)	The	overall	efficiency,	and	
(iii)	The	manometric	efficiency.

   [Ans. (i) 10.26°; (ii) 61.76 % ; (iii) 73.65 %]
 9. A centrifugal pump impeller whose external 

diameter and width at the outlet are 0.8 m and 
0·1m respectively is running at 550 r.p.m. The 
angle of impeller vanes at outlet is 40°. The 
pump delivers 0.98 m3 of water per second 
under an effective head of 35 m. If the pump 
is driven by a 500 kW motor, determine : (i) 
The manometric efficiency, (ii) The overall 
efficiency,	and		(iii)	The	mechanical	efficiency,	

  Assume water enters the vanes radially at inlet.
   [Ans. (i) 81 %; (ii) 67 %; (iii) 83 %]
 10. A centrifugal pump impeller having external 

and internal diameters 400 mm and 200 mm 
respectively is running at 1200 r.p.m. The widths 
of impeller at outlet and inlet are 8 mm and 
16	mm	respectively.	The	rate	of	flow	of	water	
through the pump is 0.015 m3/s. The outlet vane 
angle of the impeller is 30°. If the loss of head 
through	the	impeller	is	1.15	m	find	the	pressure	
rise in the impeller.

  Assume water enters the impeller radially at 
inlet. [Ans. 30.7 m]
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 11. A centrifugal pump is delivering 0.04 m3 of 
water per second to a height of 20 m through 
a 150 mm diameter 100 m long pipeline. If the 
inlet losses in suction pipe are equal to 0.33 m 
and	friction	factor	is	0.06	for	the	pipeline	find	
the power required to drive the pump.

	 	 Assume	overall	efficiency	of	the	pump	as	70	
percent. [Ans. 17.4 kW ]

 12. A centrifugal pump with 1.2 m diameter runs 
at 200 r.p.m. and discharges 1880 litres/sec, the 
average lift being 6 m. The angle which the vanes 
make at exit with the tangent to the impeller is 
26°	and	the	radial	velocity	of	flow	is	2.5	m/s.	
Determine	 the	manometric	 efficiency	 and	 the	
least speed to start pumping against a head of 6 m; 
the inner diameter of the impeller being 0.6 m .

   [Ans. 199.36 r.p.m ]
 13. The diameter of a centrifugal pump impeller 

is 300 mm and its width is 600 mm. the pump 
delivers 120 litres/sec with a manometric 
efficinecy	of	85	percent.	The	effictive	outlet	vane	
angle is 30°. If the speed of the rotation is 1000 
r.p.m.	calculate	the	specific	speed	of	the	pump.

 14. A multi - stage centrifugal pump has four 
identical impellers, keyed to the same shaft. The 
width and diameter of each impeller at outlet 
are 50 mm and 600 mm respectively. The vanes 
of each impeller are having outlet angle as 45°. 
The speed of the pump is 400 r.p.m. and the 

total manometric head developed is 40 m. If the 
discharge through the pump is 0.2 m3/s,	find	the	
manometric	efficiency.	 [Ans. 74.82 % ]

 15.  Find the number of pumps required to take water 
from a deep well under a total head of 120 m. All 
the pumps are identical and are running at 800 
r.p.m.	The	specific	speed	of	each	pump	is	given	
as 25 while the rated capacity of each pump is 
0.16 m3/s [Ans. 4]

 16. A centrifugal pump is discharging 0.03 m3/s of 
water against a total head of 20 m. The diameter 
of the impeller is 400 mm and it is rotating 
at 1500 r.p.m. Calculate the head, discharge 
and ratio of powers of a geometrically similar 
pump of diameter 250 mm when it is running at  
3000 r.p.m. 

[Ans. 31.25 m;  0.01465 m3/s ; 1.31]
 17. A centrifugal pump (single stage) runs at 500 

r.p.m. and delivers 300 m3/min of water against 
a head of 120 m. The pump impeller is 2 m 
in diameter and it has a positive suction lift 
(including the velocity head and friction) of  
3 m. Laboratory tests are to be conducted on a 
model with 450 mm diameter impeller and on 
a reduced head of 95 m. Assuming atmospheric 
head = 10.15 m of water and vapour head = 0.34 
m of water calculate the speed, discharge and 
suction lift for the laboratory tests.

   [Ans. 1977 r.p.m.; 13.51 m3/min ; 4.418 m]
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4.1.  INRODUCTION

  The reciprocating pump is a positive displacement 
pump as it sucks and raises the liquid by actually displacing 
it with a piston/plunger that executes a reciprocating 
motion in a closely fitting cylinder. The amount of liquid 
pumped is equal to the volume displaced by the piston.
 The pumps designed with disk pistons create 
pressures upto 25 bar and the plunger pumps built up 
still higher pressures. Discharge from these pumps is almost 
wholly dependent on the pump speed.
 The total efficiency of a reciprocating pump is about 
10 to 20% higher than a comparable centrifugal pump.
 Reciprocating pumps for industrial uses have 
almost become obsolete owing to their high capital 
cost as well as maintenance cost as compared to that of 
centrifugal pumps. However, small hand-operated pumps 
such as cycle pumps, football pumps, kerosene pumps, 
village well pumps and pumps used as important parts 
of hydraulic jack etc. still find wide applications. The 
reciprocating pump is best suited for relatively small 
capacities and high heads. This type of pump is very 
common in oil drilling operations.
 The reciprocating pump is generally employed for:
 (i) Light oil pumping,
 (ii) Feeding small boilers condensate return, and
 (iii) Pneumatic pressure systems.
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4.2.  CLASSIFICATION OF RECIPROCATING PUMPS

 Reciprocating pumps are classified as follows:
 1.  According to the water being in contact with piston:
 (i) Single-acting pump  ...water is in contact with one side of the piston
 (ii) Double-acting pump  ...water is in contact with both sides of the piston.

Chapter

RECIPROCATING PUMPS

4
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 2. According to number of cylinders:
 (i) Single cylinder pump
 (ii) Double cylinder pump (or two throw pump)
 (iii) Triple cylinder pump (or three throw pump)
 (iv) Duplex double-acting pump (or four throw pump)
 (v) Quintuplex pump or (five throw pump).
 In general the reciprocating pumps having more than one cylinder are known as multi-cylinder 
pumps.

4.3. MAIN COMPONENTS AND WORKING OF A RECIPROCATING 
PUMP

 Refer to Fig. 4.1. The main parts of a reciprocating pump are:
 1. Cylinder 2. Piston
 3. Suction valve 4. Delivery valve
 5. Suction pipe 6. Delivery pipe
 7.  Crank and connecting rod mechanism operated by a power source e.g. steam engine, internal 

combustion engine or an electric motor.

L

hd

Delivery pipe

Delivery
valve

Cylinder

Piston rod

Connecting
rod

Crank
�

�

O.D.CI.D.C

r

x Piston

Suction valve

suction pipe

Suction stroke

Delivery stroke

Sump well

hs

x

L r= 2

O.D.C

I.D.C = Inner dead centre

= Outer dead centre

Fig. 4.1. Schematic view of single-acting reciprocating pump.

Working of a single-acting reciprocating pump:
 As shown in Fig. 4.1, a single acting reciprocating pump has one suction pipe and one delivery 
pipe. It is usually placed above the liquid level in the sump. When the crank rotates the piston moves 
backward and forward inside the cylinder. The pump operates as follows:
 — Let us suppose that initially the crank is at the inner dead centre (I.D.C.) and crank rotates in 

the clockwise direction. As the crank rotates, the piston moves towards right and a vacuum 
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is created on the left side of the piston. This vacuum causes suction valve to open and 
consequently the liquid is forced from the sump into the left side of the piston. When the 
crank is at the outer dead centre (O.D.C) the suction stroke is completed and the left side of 
the cylinder is full of liquid.

 — When the crank further turns from O.D.C to I.D.C., the piston moves inward to the left and 
high pressure is built up in the cylinder. The delivery valve opens and the liquid is forced 
into the delivery pipe. The liquid is carried to the discharge tank through the delivery pipe. 
At the end of delivery stroke the crank comes to the I.D.C and the piston is at the extreme 
left position.

Working of a double-acting reciprocating pump:
 Refer to Fig. 4.2. In a double-acting reci-
procating pump, suction and delivery strokes 
occur simultaneously. When the crank rotates 
from I.D.C. in the clockwise direction, a vacuum 
is created on the left side of piston and the liquid 
is sucked in from the sump through value S1. At 
the same time, the liquid on the right side of the 
piston is pressed and a high pressure causes the 
delivery valve D2 to open and the liquid is passed 
on to the discharge tank. This operation continues 
till the crank reaches O.D.C.
 With further rotation of the crank, the liquid is 
sucked in from the sump through the suction valve 
S2 and is delivered to the discharge tank through 
the delivery valve D1. When the crank reaches I.D.C., the piston is in the extreme left position. Thus 
one cycle is completed and as the crank further rotates, cycles are repeated.
 Because of continuous delivery strokes, a double-acting reciprocating pump gives more uniform 
discharge (as compared to a single-acting pump which pumps the liquid intermittently). To get a 
still more uniform feed, invariably a multi-cylinder arrangement having two or more cylinders is 
employed.
 Fig. 4.3 and 4.4 show the variations of discharge through delivery pipe (Qd) with crank angle 
(θ) for single-acting and double-acting pumps respectively.

Qd

0º 90º 180º 270º 360º

� (Crank angle)

Suction Delivery

360º270º180º90º0º

Qd

� (Crank angle)

Suction Delivery

Fig. 4.3. Qd v/s θ variations for single-acting pump.     Fig. 4.4. Qd v/s θ variations for double-acting pump. 

Fig. 4.2. Double-acting reciprocating pump.
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4.4. DISCHARGE, WORK DONE AND POWER REQUIRED TO 
DRIVE RECIPROCATING PUMP

4.4.1. Single-acting reciprocating pump

 Consider a single-acting reciprocating pump shown in Fig. 4.1
 Let, D = Diameter of the cylinder, m

  A = Cross-sectional area of the piston/cylinder = 2 2m
4

Dπ  

  r = Radius of crank, m
  N = Speed of the crank, r.p.m.
  L = Length of the stroke (= 2r), m
  hs = Height of the centre  of the cylinder above the liquid surface, 

m and
  hd = Height to which the liquid is raised above the centre of the 

cylinder, m.
 Volume of liquid sucked in during suction stroke = A × L

	 ∴  Discharge of the pump per second, Q = A × L × 
60
N  ...(4.1)

  Weight of water delivered per second, W = w Q = 
60

wALN  ...(4.2)

 Work done per second = Weight of water lifted/sec. × total height through which liquid is lifted

   = W (hs + hd) = 
60

wALN (hs + hd) ...(4.3)

	 ∴  Power required to drive the pump = 
60 1000

wALN
×

 (hs + hd) kW ...(4.4)

 (where, w = weight density of liquid in N/m3)

4.4.2. Double-acting Reciprocating Pump
 Refer to Fig. 4.2.
 Let, D = Diameter of the piston,
  d = Diameter of the piston rod,

  Apr = cross-sectional area of the piston rod  = 2
4

dπ

  Area on one side of the piston,  A = 2
4

Dπ

 Area on other side of the piston where piston rod is connected to the piston,

  A′ = A – Apr = 2 2 2 2– ( – ).
4 4 4

D d D dπ π π=

 Volume of liquid delivered in one revolution of crank

   = A L + A′ L = (A + A′) L = 2 2 2( – )
4 4

D D d Lπ π +  

 ∴  Discharge of the pump per second = 2 2 2( – )
4 4 60

ND D d Lπ π + ×  
 ...(4.5)
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 If the diameter of the piston rod ‘d’ is very small as compared to the diameter of the piston ‘D’ 
then it can be neglected and hence discharge of the pump per second will become

  Q = 2 2 2 22
4 4 60 4 60 60

A L NLN LND D Dπ π π + × = × × = 
 

... (4.6)

 Evidently the output of a double acting pump is two-times that of a single acting pump.
 Work done per second = Weight of water delivered × total height through which liquid is lifted

   =  2
60
ALNw × 

 
× (hs + hd)

   = 2
60

wALN  (hs + hd) ...(4.7)

 Power required to drive the pump,  P = 2
60 1000

wALN
×

 (hs + hd) kW ...(4.8)

   (where, w = weight density of liquid in N/m3)

4.5. CO-EFFICIENT OF DISCHARGE AND SLIP OF RECIPROCATING 
PUMP

4.5.1. Co-efficient of Discharge
 In a reciprocating pump, the actual discharge (Qact.) is always slightly different from the 
theoretical discharge (Qth.) due to following reasons:
 (i) Leakage through the valves, glands and piston packing,
 (ii) Imperfect operation of the valves (suction and discharge), and
 (iii) Partial filling of cylinder by the liquid.
 The ratio between actual discharge and theoretical discharge is known as the co-efficient of 
discharge (Cd) of the pump. That is,

  Cd = .

.

Actual discharge
Theoretical discharge

act

th

Q
Q

=  ...(4.9)

 When the value of Cd is expressed in percentage, it is known as ‘volumetric efficiency’ of the 
pump. Volumetric efficiency depends upon the dimensions of the pump and its value ranges from 
85-98%.

4.5.2. Slip
 The difference between the theoretical discharge and actual discharge is called the slip of the 
pump. That is
  Slip = Qth. – Qact. ...(4.10)
 But the slip is oftenly expressed in percentage which is given by,

  % Slip = . . .

. .

– 100 1 –th act act

th th

Q Q Q
Q Q

 × =  
 

 × 100 = (1 – Cd) × 100 ...(4.11)

 The percentage of slip for the pumps maintained in good condition is of the order of 2% or even 
less.
 Negative slip. In most of the reciprocating pumps Qact. is less than Qth.; in such a case the value 
of Cd is less than unity and the slip of the pump is ‘positive’. However, in some cases Qact. may be 
more than Qth.; in such a case Cd is more than unity and the slip will be ‘negative’. The slip will be 
negative when there is a direct connection between the suction and delivery sides before the end of 
suction stroke. This happens if the momentum of liquid in the suction pipe is large enough to open 
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the delivery valve before the beginning of delivery stroke. The negative slip is possible in case of 
pumps having long suction pipe and a short delivery pipe, especially when these are operating at 
high speeds.

 Example 4.1.   A single-acting reciprocating pump, running at 50 r.p.m. delivers 0.00736 m3/s  
of water. The diameter of the piston is 200 mm and stroke length 300 mm. The suction and delivery 
heads are 3.5 m and 11.5 m respectively. Determine:
 (i) Theoretical discharge,
 (ii) Co-efficient of discharge,
 (iii) Percentage slip of the pump, and
 (iv) Power required to run the pump.

 Solution.  Speed of the pump, N = 50 r.p.m.
  Actual discharge, Qact. = 0.00736 m3/s
  Diameter of the piston, D = 200 mm = 0.2 m

 ∴		 Area, A = π
4

 × 0.22 = 0.0314 m2

  Stroke length, L = 300 mm = 0.3 m
  Suction head, hs = 3.5 m
  Delivery head, hd = 11.5 m

 (i) Theoretical discharge, Qth.:

  Qth. = 0.0314 0.3 50
60 60

ALN × ×= = 0.00785 m3/s (Ans.)

 (ii) Co-efficient of discharge, Cd:

  Cd = .

.

0.00736
0.00785

act

th

Q
Q

= = 0.937 (Ans.)

 (iii) Percentage slip of the pump:

       % slip = . .

.

– 0.00785 – 0.00736100 100
0.00785

th act

th

Q Q
Q

× = ×  = 6.24% (Ans.)

 (iv) Power required to run the pump, P:

  P = 9810 0.0314 0.3 50( ) kW
60 1000 60 1000s d

wALN h h × × ×+ =
× ×

 (3.5 + 11.5) = 1.155 kW (Ans.)

 Example 4.2.   A single-acting reciprocating pump operating at 120 r.p.m. has a piston diameter 
of 200 mm and stroke of 300 mm. The suction and delivery heads are 4 m and 20 m, respectively. 
If the efficiency of both suction and delivery strokes is 75 percent, determine the power required by 
the pump. [UPTU]

 Solution. Given: N = 120 r.p.m.; D = 200 mm = 0.2 m; L = 300 mm = 0.3 m; hs = 4 m;  
hd = 20 m; η(suction and delivery strokes, each) = 75%

 Power require by the pump, P :
 Theoretical discharge of the pump,

  Q = 
2(0.2) 0.3 120

4
60 60

ALN
π × × ×

=  = 0.0188 m3/s
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 Power required to drive the pump,

  P = ( ) 9810 0.0188 (4 20)
0.75

s dwQ h h+ × +=
η

 = 5901.7 W or 5.9 kW (Ans.)

 Example 4.3.  The discharge / crank-
angle characteristic for a reciprocating pump 
has the likeness of the top half of a sine-curve 
as shown in Fig. 4.5.
 Draw the quantitative characteristic 
curve for a system consisting of three such 
pumps connected in parallel and discharging 
at a crank phase difference of 120° from each 
other. Identify the  magnitude and position of 
two consecutive maxima on that curve.  
  [GATE]

 Solution. The maximum discharge is equal to Q0 (maximum discharge of one pump) and occurs 
at 60° intervals of 30°, 90°, 150°........ (See Fig. 4.6).

Q

Q0

0 90º 180º 270º 360º
�t

Fig. 4.6

 Example 4.4.   A “three throw” pump has cylinders of 250 mm diameter and stroke of 500 mm 
each. The pump is required to deliver 0.1 m3/s at a head of 100 m. Friction losses are estimated to 
be 1 m in suction pipe and 19 m in delivery pipe. Velocity of water in delivery pipe is 1 m/s, overall 
efficiency is 85% and the slip is 3%. Determine:
 (i) Speed of the pump, and
 (ii) Power required to run the pump. [PTU]

 Solution.  Diameter of each cylinder, D = 250 mm = 0.25 m
  Stroke length of each cylinder, L = 500 mm = 0.5 m
  Actual discharge, Qact. = 0.1 m3/s
  Static head, (hs + hd) = 100 m
  Friction loss in suction pipe, hfs = 1 m
  Friction loss in delivery pipe, hfd = 19 m
  Velocity of water in delivery pipe, Vd = 1 m/s
  Overall efficiency of the pump, η0 = 85%
  Percentage slip = 3%

Fig. 4.5

Q

Q0

0 180º 360º
�t
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 (i) Speed of the pump, N:
  A three throw pump uses three equal cylinders with rams connected to cranks at 120° apart 

driven by a common shaft.
  For a three throw pump, the theoretical discharge is given by:

  Qth =  3 × 2 0.53 0.25
60 4 60

NALN ×π= × × ×  = 0.001227 N

	 	 ∴ Actual discharge, Qact  = 31 –
100

 
 
 

 Qth. = 0.97 × 0.001227 N = 0.00119 N

 But, Qact =   0.1 m3/s ...(Given)

	 ∴ 0.1 = 0.00119 N,   or,   N = 0.1
0.00119

 = 84 r.p.m (Ans.)

 (ii) Power required to run the pump, P:
  Total head against which pump has to work,

  H = (hs + hd) + (hfs + hfd) + 
2

2
dV
g

   = 100 + (1 + 19) + 
21.0

2 9.81×
 = 120.05 m

	 ∴  Water power  = . 9810 0.1 120.05kW
1000 1000

actwQ H × ×= 117.77 kW

  Power required to drive the shaft,

  P = Water power 117.77
Overall efficiency 0.85

=  = 138.55 kW (Ans.)

4.6. EFFECT OF ACCELERATION OF PISTON ON VELOCITY AND                                                                      
PRESSURE IN THE SUCTION AND DELIVERY PIPES

 Refer to Fig. 4.1. If the crank rotates uniformly and the length of connecting rod is enough 
compared to the radius of crank, the piston makes simple harmonic motion. This causes acceleration 
during the first half of the stroke, and deceleration during the second half of the stroke.
 Let, A = Area of the cylinder,
  a = Area of the pipe (suction or delivery),
  l = Length of pipe (suction or delivery),
  r = Radius of the crank, and
  ω = Angular speed of the crank in rad/s.
 The crank is rotating with an angular velocity ω and let in time t seconds, the crank turns 
through angle θ (in radians) from I.D.C. (inner dead centre). The displacement of the piston in time 
t is x as shown in Fig. 4.1.

 Now, angle turned by the crank in time t, θ = ωt = 2
60

Nπ  × t

      (where, N = rotational speed of crank in r.p.m.)
 The corresponding distance (x) travelled by the piston,
  x = r – r cos θ = r (1 – cos θ) = r (1 – cos ωt) ...(4.12)

  Velocity of the piston, V = [ (1 – cos )]dx d dr t
dt dt dt

= ω =  (r – r cos ωt)
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 or, V = ωr sin ωt ...(4.13)

  Acceleration of the piston, ap = dV d
dt dt

=  (ωr sin ωt) = ω2r cos ωt ...(4.14)

 Now from continuity considerations, the volume of liquid flowing from the pipe equals the 
volume of liquid flowing into the cylinder.
	 ∴ Velocity of liquid in the pipe (v) × area of pipe (a)
   = velocity of piston (V) × area of cylinder (A)

	 ∴ v = AV A
a a

= ωr sin ωt ...(4.15)

 Acceleration of liquid in pipe  = ( ) sind d Av r t
dt dt a

 = ω ω  

   = A
a

 ω2r cos ωt  ...(4.16)

  Mass of water in pipe = Density × volume of liquid in pipe = ρal
 Force required to accelerate the water in the pipe = Mass × acceleration

   = ρal × A
a

 ω2r cos ωt

 ∴ Intensity of pressure due to acceleration

   = 
2 cosForce required to accelerate the liquid

Area of pipe

Aal r t
a

a

ρ × ω ω
=

   = ρl × A
a
ω2r cos θ

 ∴ Pressure head due to acceleration,  ha = Intensity of pressure
Weight density of liquid ( )w

   = 
2 cosAl r

a
g

ρ × ω θ

ρ
  ( w = ρg)

   = l A
g a
×  ω2r cos θ ...(4.17)

 The pressure head due to acceleration in the suction and delivery pipes is obtained by using 
subscripts ‘s’ and ‘d’ respectively in the eqn. (4.17) as follows:

  has =  s

s

l A
g a
×  ω2r cos θ ...(4.18)

  had = d

d

l A
g a
×  ω2r cos θ	 ...(4.19)

 Thus the pressure head due to acceleration given by eqn. (4.17), is a function of angular 
displacement θ.
 Note : It may be noted that for any stroke, the angular displacement θ is measured from the instant of com-

mencement of that stroke. In case of suction stroke the piston moves outward and θ is measured from 
I.D.C. (inner dead centre) and during delivery stroke the piston moves inward and θ is measured from 
O.D.C (outer dead centre).
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 The values of ‘ha’ for different values of θ are:

 (i) When θ = 0°  (i.e. the beginning of the stroke), ha = l A
g a

 ω2r ...(4.20)

    ( cos 0° = 1)
 (ii) When θ = 90° (i.e. the middle of the stroke), ha = 0 ...(4.21)
    ( cos 90° = 0)

 (iii) When θ = 180° (i.e. the end of the stroke), ha = – l A
g a

ω2r ...(4.22)

    ( cos 180° = – 1)

	 ∴  Maximum pressure head due to acceleration, (ha)max = l A
g a
×  ω2r ...(4.23)

 For 0° < θ < 90°, ha has +ve values and for 90° < θ < 180°, ha has –ve values, thereby indicating 
that for the first half of the stroke there is acceleration head development and in the later half of the 
stroke retardation head is developed.
 In case the connecting rod is not very long as compared to crank length then it cannot be 
assumed that the piston has a simple harmonic motion and in that case the pressure head, ha is given 
by:

  ha = 2 cos 2cos cosl A r
g a n

θ ω θ θ + 
 

 ...(4.24)

 where, n = Ratio of the length of connecting rod to the crank length.
 From eqn. (4.24), we have:

 (i) When θ = 0°  (i.e. the beginning of the stroke), ha = 2 11l A r
g a n

 ω + 
 

 ...(4.25)

 (ii) When θ = 90° (i.e. the middle of stroke), ha = 0 ...(4.26)

 (iii) When θ = 180°  (i.e. at the end of the stroke), ha = 2 11 –l A r
g a n

 ω  
 

 ...(4.27)

Effect of variation of velocity on friction in pipes:
 The liquid flowing through suction and delivery pipes causes loss of head due to friction, which 
is given by Darcy-Weisbach equation as:

  hf = 
24

2
f l v

d g×
 ...(i)

 where, f = Co-efficient of friction,
  l = Length of the pipe,
  d = Diameter of the pipe, and
  v = Velocity of liquid in the pipe.

 Also the velocity of liquid in the pipe, v = sinA Ar t
a a
ω ω =  ωr sin θ ...[Eqn. (4.15)]

 Substituting the value of ‘v’ in (i), we get:

  hf = 
24 sin

2
f l A r

d g a
 ω θ ×  

 ...(4.28)

 The variation of hf with θ is parabolic. The values of hf for suction and delivery pipes are 
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obtained from eqn. (4.28) by using subscripts ‘s’ for suction pipe and ‘d’ for delivery pipe as:

  hfs = 
24 sin

2
s

s s

fl A r
d g a

 ω θ ×  
 ...(4.29)

  hfd = 
24 sin

2
d

d d

fl A r
d g a

 ω θ ×  
 ...(4.30)

 The loss of head due to friction (hf) in pipes given by eqn. (4.28) varies with θ as:
 (i) When θ = 0° (i.e. the beginning of the stroke), hf = 0 ...(4.31)

 (ii) When θ = 90° (i.e. the middle of the stroke), hf = 
24

2
fl A r

d g a
 ω ×  

 ...(4.32)

 (iii) When θ = 180° (i.e. the end of the stroke), hf = 0 ...(4.33)
	 ∴ Maximum value of loss of head due to friction,

  (hf)max = 
24

2
fl A r

d g a
 ω ×  

 ...(4.34)

4.7.  INDICATOR DIAGRAMS

 The indicator diagram of a reciprocating pump is the diagram which shows the pressure head 
of the liquid in the cylinder corresponding to any position during the suction and delivery strokes. 
It is a graph between pressure head and stroke length of the piston for one complete revolution 
(pressure head is taken as ordinate and stroke length as abscissa).

4.7.1. Ideal Indicator Diagram
The indicator diagram obtained by neglecting the loss of head due to friction in the suction and 

delivery pipes and the effect of acceleration of piston, is known as an ideal indicator diagram. Such 
diagram for a single-cylinder single-acting pump is shown is Fig. 4.7, the line EF represents the 

atmospheric pressure head .
a

atm
pH
w

 =  
 equal to 10.3 m of water.

 Let, hs = Suction head, and
  hd = Delivery head.

	 • The pressure head in the cylinder 
(represented by line AB) during 
suction stroke, is constant and 
equal to suction head (hs) which 
is below the atmospheric pressure 
head (Hatm.) by a height hs. The 
absolute pressure head in cylinder 
during the suction stroke will be 
(Hatm. – hs); it is shown by ordinate 
AS at the beginning of the stroke 
and by ordinate BT at the end of 
stroke and, is uniform throughout 
the stroke.

 • During the delivery stroke the 
pressure head in the cylinder Fig. 4.7. Ideal indicator diagram.
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(represented by line CD) is constant and equal to delivery head (hd). The uniform absolute 
pressure head throughout the delivery stroke is (hd + Hatm.) and is denoted by the ordinate 
TC or SD.

 The work done by the pump per second is

   = 
60

w ALN× × (hs + hd) ...[Eqn. (4.3)]

   = K × L × (hs + hd) where, const.
60

wANK = = 
 

    ∝ L × (hs + hd)
 But from Fig. 4.7, the area of indicator diagram ABCDA
   = AB × BC = AB (BF + FC) = L (hs + hd) ...(ii)
 From (i) and (ii), we have:
 Work done by the pump ∝ area of indicator diagram

 Thus, work done by the pump per second 
60

wAN  × area of indicator diagram ...(4.35)

 If the pump is double-acting, neglecting the area of the piston rod, work done per second is 
proportional to twice the area of the indicator diagram.

4.7.2. Effect of Acceleration in Suction and Delivery Pipes on    
 Indicator Diagram
 The effect of acceleration in suction and delivery pipes is discussed below:
 (a) Effect of acceleration in the suction pipe:
 As the piston (considering it as the 
beginning of the stroke) moves outward, it 
should create not only a negative pressure 
equal to the suction head (hs) but it should also 
accelerate the liquid. If has is the acceleration 
head, then total negative pressure head at the 
beginning of the suction stroke is (hs + has), 
the ordinate EA’, absolute pressure head at 
this point is denoted by ordinate A’ S. So that 
separation does not take place, the absolute 
pressure at the beginning of stroke should not 
fall below the vapour pressure.
 If ls and as are length and cross-sectional 
area of the suction pipe respectively, then:
 (i) At the beginning of the suction 

stroke:

  The accelerating head, has = 2s

s

l A r
g a
× ω  ...[Eqn. 4.20]

  Negative pressure (vacuum) head, hs + has = hs +  s

s

l A
g a
×  ω2r ...(4.36)

  Absolute pressure head = Hatm. – 2s
s

s

l Ah r
g a

 + × ω 
 

Fig. 4.8. Effect of acceleration on indicator diagram.
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 (ii) At the middle of the suction stroke:
    The acceleration head, has  =  0 ...[Eqn. 4.20]
    Negative pressure (vacuum) head = hs ...(4.37)
    Absolute pressure head  =  Hatm. – hs

 (iii) At the end of the suction stroke:

    The acceleration head, has = – s

s

l A
g a
×  ω2r  ...[Eqn. 4.22]

    Negative pressure (vacuum) head = hs + has = hs – s

s

l A
g a
×  ω2r ...(4.38)

    Absolute pressure head = Hatm. – 2– s
s

s

l Ah r
g a

 × ω 
 

 (b) Effect of acceleration in the delivery pipe:
 In the beginning of delivery stroke the liquid in the delivery pipe is accelerated, while at the end 
of delivery stroke the liquid is retarded.
 If ld and ad are the length and cross-sectional area of the delivery pipe respectively, then:
 (i) At the beginning of delivery stroke:

    Pressure head (gauge) = hd + had = hd + d

d

l A
g a
×  ω2r ...(4.39)

 (ii) At the middle of delivery stroke:
    Pressure (gauge) head = hd                                                 ( 0)= adh  ...(4.40)
 (iii) At the end of delivery stroke:

    Pressure (gauge) head = hd – d

d

l A
g a
×  × ω2r ...(4.41)

    Absolute pressure head = Hatm. + hd – 2d

d

l A r
g a
× × ω  ...(4.42)

 The absolute pressure head (at the end of delivery stroke) given by eqn. (4.42) should not be 
less than vapour pressure to avoid separation.
 It is evident from Fig. 4.8. that due to acceleration in suction and delivery pipes, the indicator 
diagram has changed from ABCD to A′ B′ C′	D′  but the area of indicator diagram remains unaltered. 
Thus the total work done remains the same. The main effect of the acceleration head is that it 
increases the negative head at the beginning of suction stroke. If the simple harmonic motion does 
not take place, the straight lines A′	B′ and C′	D′ will become slightly curved.

 Example 4.5.   A single-acting reciprocating pump has a diameter (piston) of 150 mm and 
stroke length 350 mm. The centre of the pump is 3.5 m above the water surface in the sump and  
22 m below the delivery water level. Both the suction and delivery pipes have the same diameter of 
100 mm and are 5 m and 30 m long respectively. If the pump is working at 30 r.p.m., determine:
 (i) The pressure heads on the piston at the beginning, middle and end of both suction and 

delivery strokes.
 (ii) The power required to drive the pump.
  Take atmospheric pressure as 10.3 m of water.
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 Solution.  Diameter of piston, D = 150 mm = 0.15 m
  Stroke length L = 350 mm = 0.35 m
  Suction head, hs = 3.5 m
  Delivery head, hd = 22 m
  Diameter of pipes, ds = dd = 100 mm = 0.1 m
  Length of suction pipe, ls = 5 m
  Length of delivery pipe, ld = 30 m
  Speed of pump, N = 30 r.p.m.
  Atmospheric pressure, Hatm. = 10.3 m

 (i) The pressure heads on the piston:
 (a) Suction stroke:
 The pressure head due to acceleration in suction pipe is given by:

  has = s

s

l A
g a
×  × ω2r cos θ ...Eqn. (4.18)

 At the beginning of the stroke (θ = 0°),

  has = 
22

2
2

( / 4) 0.15 2 305
9.81 60( / 4) 0.1

s

s

l A r
g a

 π × π × × × ω = × ×   π ×   
× (0.175) = 1.98 m of water

  0.35 0.175 m
2 2
Lr = = = 

 


 At the middle of the stroke (θ = 90°), has = 0

 At the end of the stroke (θ = 180°), has = 2– s

s

l A r
g a
× × ω  = – 1.98 m of water (as calculated 

above)
	 ∴ Pressure heads (on the piston) in metres of water during suction stroke:
 At beginning = (hs + has) = 3.5 + 1.98 = 5.48 m (vacuum)
  = 10.3 – 5.48 = 4.82 m of water (absolute) (Ans.)
 At middle =  (hs + 0) = 3.5 m (vacuum)
  = 10.3 – 3.5 = 6.8 m of water (absolute) (Ans.)
 At end =  3.5 – 1.98 = 1.52 m (vacuum)
  = 10.3 – 1.52 = 8.78 m of water (absolute) (Ans.)
 (b)  Delivery stroke:
 The pressure head due to acceleration in delivery pipe is given by:

  had = d

d

l A
g a
× × ω2r cos θ

 At the beginning of the stroke (θ = 0°),

 had = 
22

2
2

( / 4) 0.15 2 3030
9.81 60( / 4) 0.1

d

d

l A r
g a

 π × π × × × ω = × ×   π ×   
 × 0.175 = 11.88 m

 At the middle of the stroke (θ = 90°), had = 0
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 At the end of the stroke (θ = 180°), had = – d

d

l A
g a
×  × ω2r = – 11.088 m (as calculated above)

	 ∴ Pressure heads (on the piston) in the metres of water during delivery stroke:
 At beginning = hd + had = 22 + 11.88 = 33.88 m (gauge)
  = 10.3 + 33.88 = 44.18 m of water (absolute) (Ans.)
 At middle = hd + 0 = 22 m (gauge)
  = 10.3 + 22 = 32. 3 m of water (absolute) (Ans.)
 At end = hd – had = 22 – 11.8 = 10.2 m (gauge)
  = 10.3 + 10.2 = 20.5 m of water (absolute) (Ans.)

 (ii) Power required to drive the pump, P:
 Theoretical discharge of the pump,

  Q = 2 1(0.15) 0.35 30
60 4 60

ALN π= × × × ×  = 0.00309 m3/s

 Work done by the pump
   = wQ (hs + hd) = 9810 × 0.00309 (3.5 + 22) = 772.98 Nm/s or J/s
	 ∴ Power required to drive the pump, P = 772.98 W (Ans.)

 Example 4.6. A single-acting reciprocating pump has a diameter (piston) of 100 mm and stroke 
length 200 mm. The length and diameter of the suction pipe are 6.5 m and 50 mm respectively. If 
the suction lift of the pump is 3.2 m and separation occurs when pressure in the pump falls below 
2.5 m of water absolute and the manometer reads 763 mm of mercury, find the maximum speed at 
which pump can be run without separation in the suction pipe.

 Solution. Diameter of piston, D = 100 mm = 0.1 m

	 ∴  Area, A = 20.1
4
π ×  = 0.00785 m2

  Stroke length, L = 200 mm = 0.2 m
	 ∴  Crank radius, r = L/2 = 0.2 = 0.1 m
  Length of suction pipe, ls = 6.5 m
  Diameter of suction pipe, ds = 50 mm = 0.05 m

	 ∴  Area of suction pipe, as = π
4

 × 0.052 = 0.001963 m2

  The suction lift of the pump, hs = 3.2 m
  Separation pressure head, hsep = 2.5 m

 Maximum speed at which pump can run without separation, N :

  Atmospheric head, Hatm. = 763 13.6
1000

× = 10.377 m of water

 During suction stroke, the possibility of separation is only at the beginning of the stroke. At the 
beginning of suction stroke θ = 0° and cos θ = 1, that gives:

  has = 2 6.5 0.00785
9.81 0.001963

s

s

l A r
g a
× × ω = ×  × ω2 × 0.1 = 0.265 ω2

 Pressure head in the cylinder at the beginning of suction stroke
   = (hs + has) vacuum
   = Hatm. – (hs + has) absolute.
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 This absolute pressure (at the beginning of suction stroke) should not fall below the vapour 
pressure head (hsep.) to avoid separation, thus, in limiting condition,
  Hatm. – (hs + has) = hsep.

 or,  10.377 – (3.2 + 0.265ω2) = 2.5,   or,   10.377 – 3.2 – 0.265ω2 = 2.5

 or,  ω2 = 10 377 – 3 2 – 2 5
0 265

⋅ ⋅ ⋅
⋅

∴ Angular velocity, ω = 4.2 rad./s.

 But,  ω = 2 ,
60

Nπ  or, N = 60 4 260
2 2

× ⋅ω =
π × π

 40.1 r.p.m. (Ans.)

 Example 4.7.   The cross-sectional area of a plunger of a reciprocating pump equals 1.5 times 
that of a delivery pipe. The delivery pipe is 60 m long and it rises upward at a slope of 1 in 6. If the 
plunger has an acceleration of 2.4 m/s2 at the end of the stroke and separation pressure is 2.5 m of 
water, find whether separation will take place and, if so, at which section of the pipe.
 Assume simple harmonic motion, and take atmospheric pressure = 10.3 m of water.

 Solution.  Cross-sectional area of plunger, A = 1.5 ad (area of delivery pipe)
  Length of delivery pipe, ld = 60 m
  Slope of the delivery pipe = 1 in 6
 Acceleration of the plunger at the end of the stroke = 2.4 m/s2

  Separation pressure head, hsep. = 2.5 m
  Atmospheric pressure head, Hatm. = 10.3 m
 Delivery head, hd = Slope of the delivery pipe × length of the delivery pipe

   = 1 60
6
× = 10 m

 The possibility of separation during delivery stroke is only at the end of the stroke where  
θ = 180° and cos θ =  – 1; that gives the pressure head due to acceleration in the delivery pipe,

  had = d

d

l A
g a
× × ω2r cos θ

  had = 2 60–
9 81

d

d

l A r
g a

− × × ω =
⋅

× 1.5 × 2.4 = – 22.02 m

  ( Acceleration, ω2 r = 2.4 m/s2)
	 ∴ Pressure head in the cylinder at the end of delivery stroke
   =  (hd + had) gauge
   =  Hatm + (hd + had) absolute
   = 10.3 + (10 – 22.02) = – 1.72 m of water
 Since the absolute pressure head is less than the allowable separation pressure head of 2.5 m of 
water therefore, separation will occur. (Ans.)
 Let, l = The length of pipe upto the section where the separation 

occurs.

 Then, hd = 1
6

l×  = 0.1667l

  had = – l
g

× 1.5 × 2.4 = –
9 81

l
⋅

× 1.5 × 2.4 = – 0.367l
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 From limiting condition for separation, we have:
   Hatm. + (hd + had) = hsep.
   10.3 + (0.1667 l – 0.367l) = 2.5

   l = 10.3 – 2.5
(0.367 – 0.1667)

 = 38.94 m (Ans.)

 Example 4.8.   The diameter and stroke length of a single-acting reciprocating pump are 75 
mm and 150 mm respectively. It takes its supply of water from a sump 3 m below the pump through 
a pipe 5 m long and 40 mm in diameter. It delivers water to a tank 12 m above the pump through 
a pipe 30 mm in diameter and 15 m long. If separation occurs 75 kN/m2 below the atmospheric 
pressure, find the maximum speed at which pump may be operated without separation. Assume that 
the piston has a simple harmonic motion. [Rajasthan University]

 Solution.  Diameter of pump, D = 75 mm = 0.075 m

	 ∴  Area, A =  
4
π  × 0.0752 = 0.004418 m2

  Stroke length, L = 150 mm = 0.15 m

	 ∴  Crank radius, r =  0.15
2

= 0.075 m

  Suction head, hs = 3 m
  Delivery head, hd = 12 m
  Length of suction pipe, ls = 5 m
  Diameter of suction pipe, ds = 40 mm = 0.04 m

	 ∴  Area of suction pipe, as = 
4
π × 0.042 = 0.001256 m2

  Length of delivery pipe, ld = 15 m
  Diameter of delivery pipe, dd = 30 mm = 0.03 m

	 ∴  Area of delivery pipe, ad = 
4
π  × 0.032 = 0.0007068 m2

  Separation head, hsep. = 75 1000–
9810
×  = – 7.645 m of water

 Maximum speed at which pump may be operated without separation, N:

 Speed of pump without separation during ‘Suction stroke’, N:
 The possibility of separation, during suction stroke, is only at the beginning of the stroke. At the 
beginning of the stroke θ = 0° and cos θ = 1, that gives:

  has = 2 5 0.004418
9.81 0.001256

s

s

l A r
g a
× × ω = ×  × ω2 × 0.075 = 0.134 ω2

	 ∴ Pressure head in the cylinder at the beginning of suction stroke
   =  (hs + has) vacuum
   = Hatm. – (hs + has) absolute
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 Limiting condition for no separation gives:
  Hatm. – (hs + has) = hsep.

  Hatm. – (hs + has) = (Hatm. – 7.645) abs.

 or, 7.645 = hs + has , or, 7.645 = 3 + 0.134ω2, or, 2 7 645 – 3
0 134
⋅ω =
⋅

, or, ω = 5.88 rad/s

 But,   ω = 60 60 5.882 , or,
60 2 2

N N ω ×π = =
π × π

= 56.15 r.p.m

 Speed of pump without separation during delivery stroke, N:
 The pressure head due to acceleration in the delivery pipe is given as:

  had = d

d

l A
g a
×  × ω2 r cos θ

 During delivery stroke the possibility of separation is only at the end of the stroke. At the end of 
delivery stroke θ = 180° and cos θ = – 1, that gives:

  had = 15 0.004418–
9.81 0.0007068

× × ω2 × 0.075 = – 0.7168 ω2

 ∴ Pressure head in the cylinder at the end of delivery stroke
   = (hd + had) gauge
   = Hatm. + (hd + had) absolute
 Limiting condition for no separation gives:
  Hatm. + (hd + had) = hsep.

  Hatm. + (hd + had) = (Hatm. – 7.645) abs.
 or,  7.645 = – (hd + had),  or,  7.645 = – (12 – 0.7168ω2),  or,  0.7168ω2 = 19.645

 or, Angular velocity,  ω = 
1/219.645

0.716
 
 
 

 = 5.235 rad/s

 But, ω = 60 5.2352 60, or,
60 2 2

N N ×π ω= =
π π

  50 r.p.m.

	 ∴ Maximum permissible speed, N = 50 r.p.m. (minimum of the two speeds obtained above)
(Ans.)

 Example 4.9.    The bore and stroke of a reciprocating pump are 250 mm and 500 mm respectively. 
The pump delivers water through a 100 mm delivery pipe to a tank located at 14 m above it and  
27 m horizontally from it. If separation occurs at a pressure of 22 kN/m2 absolute, find the safe 
speed at which pump should run for the following arrangements of delivery pipe: (i) The delivery 
pipe is horizontal from the pump and then vertical upto the tank and (ii) The delivery pipe is 
vertical from the pump and then horizontal upto the tank.
 The atmospheric pressure at the pump side = 10.3 m of water and connecting rod-crank  
ratio = 5.

 Solution. The bore of the pump, D = 250 mm = 0.25 m

	 ∴ Area, A = 20.25
4
π ×  = 0.0491 m2

  Stroke length, L = 500 mm = 0.5 m
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	 ∴  Crank radius, r =  0.5
2 2
L = = 0.25 m

  Diameter of delivery pipe, dd = 100 mm = 0.1 m

	 ∴  Area of delivery pipe, ad =  20.1
4
π × = 0.007854 m2

  Length of delivery pipe, ld = 14 + 27 = 41 m

  Separation head, hsep. = 22 1000
9810
×  = 2.242 m

 Safe speed at which pump should run, N:
 (i) The delivery pipe is horizontal from the pump and then vertical upto the tank:
 Acceleration head at the end of delivery stroke,

  had = 2 1– 1 –d

d

l A r
g a n

 × × ω  
 

 ...[Eqn.(4.27)]

   = 241 0.0491 1– 0.25 1 –
9.81 0.007854 5

 × × ω ×  
 

 = – 5.22 ω2

 The separation possibility, if any, is at the bend after the horizontal portion of the delivery pipe. 
The entire delivery head is available at the bend.
 Limiting condition for no separation gives:
  Hatm. + (hd + had) = hsep.

 or, 10.3 + (14 – 5.22 ω2) = 2.242,  or,  5.22 ω2 = 22.058

	 ∴	 ω	 =	
1/222.058

5.22
 
 
 

	=	2.055 rad/s

 But, ω = 60 2.0552 60, or,
60 2 2

N N ×π ω= =
π π

 = 19.62 r.p.m. (Ans.)

 (ii) The delivery pipe is vertical from the pump and then horizontal upto the tank:
 The possibility of separation is at the bend after the vertical portion of the delivery pipe. The 
delivery head becomes zero at the bend and the horizontal pipe after the bend has a considerable 
value of acceleration head. The limiting condition for no separation gives:
  Hatm. + (hd + had) = hsep.

  10.3 + (0 – 5.22ω2) = 2.242,  or,  5.22ω2 = 8.058

	 ∴ ω = 
1/28.058

5.22
 
 
 

 = 1.242 rad/s

 But, ω = 60 1.2422 60, or,
60 2 2

N ×π ω= =
π π

N  = 11.86 r.p.m. (Ans.)

 From above calculations, it is evident that the pump can run at a higher speed without occurrence 
of separation with arrangement (i). (Ans.)

4.7.3.  Effect of Friction in Suction and Delivery Pipes on Indicator   
 Diagram
 The head lost due to friction in suction and delivery pipes is given by eqns. (4.29) and (4.30) as:
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  hfs = 
24 sin ,

2
s

s s

fl A r
d g a

 ω θ ×  
  and  hfd = 

24 sin
2
d

d d

fl A r
d g a

 ω θ ×  

 From the above equations, it is evident that the variation of hfs or hfd with θ is parabolic.
 (i) At the beginning of suction or delivery stroke: θ = 0°, sin θ = 0 and therefore hfs = 0,  

hfd = 0 i.e. there is no loss of head due to friction.
 (ii) At the middle of the suction or delivery stroke: θ = 90°, sin θ = 1 and, therefore,

  hfs = 
24

2
s

s s

fl A r
d g a

 ω ×  
, and  hfd = 

24
2
d

d d

fl A r
d g a

 ω ×  

 (iii) At the end of suction or delivery stroke: θ = 180°, sin θ = 0 and therefore hfs and hfd = 0
 These results, evidently, indicate that frictional losses are zero at the beginning and end of the 
strokes and maximum at the mid of the strokes. Fig. 4.9 shows the effect of friction on the indicator 
diagram.
 The work done against friction in suction and delivery pipes is given by the areas of parabolas 
AGB and CDI.

  Area AGB = 2 2
3 3 fsAB GH AB h× = ×

   = 2
3 fsL h×

                  
24where,

2
s

fs
s s

fl Ah r
d g a

   = ω  ×   

  Similarly, area CDI = 2 2
3 3 fdCD IJ L h× × = ×

             ( CD = AB = L)

                  
24where,

2
d

fd
d d

fl Ah r
d g a

   = ω  ×   

4.7.4. Effect of Acceleration and Friction in Suction and Delivery   
 Pipes on Indicator Diagram.
 The acceleration head (ha) and friction head (hf) at any instant of flow in the suction and delivery 
pipes of a reciprocating pump are given as:

      ha = 
2

2 4cos ; sin
2f

fll A Ar h r
g a d g a

 ω θ = ω θ ×  

 (a)  Suction stroke:
 The pressure head on the piston during suction stroke for any angle θ of the crank = (hs + has  
+ hfs)
 (i)  At the beginning of the suction stroke, θ = 0° and we have:

      has = 2s

s

l A r
g a

ω  and hfs = 0

  ∴ Pressure head in the cylinder = (hs + has) below atmospheric head

Fig. 4.9. Effect of friction on 
indicator diagram.
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     = Hatm. – (hs + has) absolute.
 (ii)   At middle of suction stroke, θ = 90° and we have:

    has = 0, hfs = 
24

2
s

s s

fl A r
d g a

 ω ×  

  ∴   Pressure head in the cylinder = (hs + hfs) below atmospheric head
     = Hatm. – (hs + hfs) absolute.

 (iii) At the end of suction stroke, θ = 180° and we have:

    has = – s

s

l A
g a

ω2r, or hfs = 0

  ∴   Pressure head in the cylinder = (hs – has) below atmospheric head
     = Hatm. – (hs – has) absolute.
 (b)  Delivery stroke:
 The pressure head on the piston during delivery stroke for any angle θ of the crank = (hd + had + hfd)

 (i) At the beginning of delivery stroke, θ = 0° and we have:

    had = d

d

l A
g a

 ω2r, and hfd = 0

  ∴   Pressure head in the cylinder = (hd + had) above atmospheric head
     = Hatm. + (hd + had) absolute.

 (ii)   At middle of delivery stroke, θ = 90° and we have:

    had = 0 and hfd = 
24

2
d

d d

fl A r
d g a

 ω ×  

  ∴   Pressure head in the cylinder = (hd + hfd) above atmospheric head
     = Hatm. + (hd + hfd) absolute

 (iii)   At the end of delivery stroke, θ = 180° and we have:

    had = – d

d

l A
g a

ω2r and hfd = 0

  ∴   Pressure head in the cylinder = (hd – had) above atmospheric head
   = Hatm. + (hd – had) absolute.
 Fig. 4.10 shows a complete indicator diagram 
including the effects of acceleration and friction.
 Area of indicator diagram
 A′GB′C′ID′ = Area A′HB′C′JD′ + area of 
parabola A′GB′ + area of parabola C′ID′
 But,    Area A′HB′C′JD′ 
  =  area ABCD = (hs + hd) × L
 Area of parabola A′GB′

  =  A′GB′ = A′B′ × 2
3

 × HK

  =  2
3

 × (A′B′ × HK) Fig. 4.10. Effect of acceleration and friction
on indicator diagram.
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    =  2
3

× (AB × GH) = 2
3

 × L × hfs

 Similarly, area of parabola C′ID′ = 2 2 ( )
3 3

C D JM C D JM′ ′ ′ ′× = ×

   = 2 2( )
3 3 fdCD JI L h× = × ×

 ∴ Area of indicator diagram = (hs + hd) L + 2 2
3 3fs fdL h L h× × + × ×

   = 2 2
3 3s d fs fdh h h h L + + + 

 
 

 As the area of the indicator diagram is proportional to work done by the pump, therefore,

 Work done by pump per second ∝	 2 2
3 3s d fs fdh h h h L + + + 

 

	 	 	 = 	 2 2
3 3s d fs fdK h h h h L + + + 

 
 Where,  K = a constant of proportionality

   = 
60

wAN  ...for a single-acting pump

   = 2
60

wAN  ...for a double-acting pump.

 Hence, the work done per second by a single-acting pump

   = 2 2
60 3 3s d fs fd

wALN h h h h + + + 
 

 ...(4.43)

 and, for a double-acting pump

   = 2 2 2
60 3 3s d fs fd

w ALN h h h h + + + 
 

 ...(4.44)

 Example 4.10.   A single-acting reciprocating pump has a stroke length of 150 mm, suction 
pipe is 7 m long and the ratio of suction pipe diameter to the piston diameter is 3/4. The water level 
in the sump is 2.5 m below the axis of the pump cylinder and the pipe connecting the sump and 
pump cylinder is 75 mm in diameter. If the crank is running at 75 r.p.m., determine the pressure 
head on the piston at the beginning, middle and end of the suction stroke. Take friction co-efficient,  
f = 0.01.  [Delhi University]

 Solution.  Stroke length, L  =  150 mm = 0.15 m

	 ∴  Crank radius, r  =  L/2  = 0 15
2
⋅  = 0.075 m

  Length of suction pipe, ls  =  7 m

 Ratio of suction pipe dia. to the piston dia  sd
D

= 3/4
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 The water level in the sump below the axis of the pump cylinder, 
  hs = 2.5 m
  Diameter of suction pipe, ds = 75 mm = 0.075 m
  Speed of the crank, N = 75 r.p.m.
  Friction co-efficient, f = 0.01
 Pressure head on the piston at the beginning, middle and end of the suction stroke:

                                            
2 2 2

2

Area of piston 4 164
Area of suction pipe 3 9

4
s ss

DA D
a dd

π
   = = = = =  π   

  3 / 4 ...sd Given
D

 = 
 


  Angular velocity, ω  = 2 752
60 60

N π ×π =  = 7.85 rad/s

 The acceleration head (has) and friction head (hfs) at any instant of flow through suction pipes 
are given as:

 has = 2 7 16cos
9 81 9

s

s

l A r
g a

ω θ = ×
⋅

 × 7.852 × 0.075 cos θ = 5.86 cos θ

 hfs = 
2 24 4 0.01 7 16sin 7.85 0 075 sin

2 0.075 2 9.81 9
s

s s

fl A r
d g a

  × ×  ω θ = × × ⋅ × θ  × × ×   

    = 0.199 sin2θ
 The pressure head on the piston during suction stroke for any angle θ of the crank = hs + has + hfs
 (i) At the beginning of suction stroke, θ = 0° and we have:
    has = 5.86 m,  and,  hfs = 0
  ∴   Pressure head on the piston = Hatm. – (hs + has) = Hatm. – (2.5 + 5.86)
     = (Hatm. – 8.36 m) m of water absolute, or,
      8.36 m of water vacuum.  (Ans.)
 (ii) At the middle of suction stroke, θ = 90° and we have:
    has = 0 and hfs = 0.199 m
  ∴   Pressure head on the piston = Hatm. – (hs + hfs) = Hatm. – (2.5 + 0.199)
     = (Hatm. – 2.699) m of water absolute, or,
      2.699 m of water vacuum  (Ans.)
 (iii) At the end of suction stroke, θ = 180° and we have:
    has = – 5.86 m and hfs = 0
  ∴   Pressure head on the piston  = Hatm. – (hs + has) = Hatm. – (2.5 – 5.86)
     = Hatm. + 3.36 m of absolute, or,
      3.36 m of water gauge  (Ans.)

Example 4.11.   The piston diameter and stroke length of a double-acting single cylinder 
reciprocating pump are 150 mm and 300 mm respectively. The centre of the pump is 4.5 m above 
the water level in the sump and 32 m below the delivery water level. Both the suction and delivery 
pipes have the same diameter of 75 mm and are 6 m and 36 m long respectively. If the pump is 
working at 30 r.p.m. determine:
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 (i) The pressure heads on the piston at the beginning, middle and end of both suction and 
delivery strokes,

 (ii) The power required to drive pump if the mechanical efficiency is 80%,
 (iii) The maximum head at any instant against which the pump has to work and its  

corresponding duty.
 Take atmospheric pressure head = 10.3 m of water, and Darcy’s friction co-efficient for both 
the pipes as 0.01.

 Solution.  Diameter of the piston, D = 150 mm = 0.15 m

 ∴  Area, A = 
4
π  × 0.152 = 0.01767 m2

  Stroke length, L = 300 mm = 0.3 m

 ∴  Crank radius, r = L/2 = 0.3
2

 = 0.15 m

  Suction head, hs = 4.5 m
  Delivery head, hd = 32 m
  Diameters of suction and delivery pipes, ds = dd = 75 mm = 0.075 m

 ∴	  Area, as = ad = 
4
π  × 0.0752 = 0.00442 m2

  Length of suction pipe, ls = 6 m
  Length of delivery pipe, ld = 36 m
  Speed of the pump, N = 30 r.p.m.

 ∴  Angular velocity, ω = 2 302
60 60

N π ×π =  = 3.14 rad/s

  Mechanical efficiency,  ηmech = 80%

 (i) Pressure heads on the piston:
Suction stroke:

 Acceleration head,  has = s

s

l A
g a

ω2r cos θ

   = 6 0 01767
9 81 0 00442

⋅×
⋅ ⋅

 × 3.142 × 0.15 cos θ = 3.62 cos θ

  Friction head, hfs = 
24 sin

2
s

s s

fl A r
d g a

 ω θ ×  

   = 
24 0 01 6 0 01767 3 14 0 15 sin

0 075 2 9 81 0 00442
× ⋅ × ⋅ × ⋅ × ⋅ × θ ⋅ × × ⋅ ⋅ 

 = 0.578 sin2 θ

 The pressure head on the piston during suction stroke for any angle θ of the crank = (hs + has + hfs)
 (a)   At the beginning of stroke, θ =  0° and we have:
    has = 3.62 m and hfs = 0
  ∴   Pressure head on the piston = Hatm. – (hs + has)
     = 10.3 – (4.5 + 3.67) = 2.13 m of water absolute  (Ans.)
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 (b)   At the middle of stroke, θ = 90° and we have:
    has = 0 and hfs = 0.578 m
  ∴   Pressure head on the piston = Hatm. – (hs + hfs) = 10.3 – (4.5 + 0.578)
     = 5.22 m of water absolute  (Ans.)
 (c) At the end of stroke, θ = 180° and we have:
    has = – 3.62 m and hfs = 0
  ∴   Pressure head on the piston = Hatm. – (hs + has) = 10.3 – (4.5 – 3.62)
     = 9.42 m of water absolute  (Ans.)
 Delivery stroke:

  Acceleration head, had = d

d

l A
g a

ω2r cos θ

   = 36 0.01767
9.81 0.00442

×  × 3.142 × 0.15 cos θ = 21.69 cos θ

  Friction head, 
fd

h
h  = 

24 sin
2
d

fd d d

flh A r
h d g a

 = ω θ ×  

   = 
24 0.01 36 0.01767 3.14 0.15 sin

0.075 2 9.81 0.00442
× ×  × × θ × ×  

 = 3.47 sin2 θ

 The pressure head on the piston during delivery stroke for an angle θ of the crank = (hd + had + hfd)

 (a) At the beginning of the stroke, θ = 0° and we have:

  had = 21.69 m and hfd = 0

  ∴ Pressure head on the piston = Hatm. + (hd + had) = 10.3 + (32 + 21.69)

   = 63.99 m of water absolute  (Ans.)

 (b) At the middle of stroke, θ = 90° and we have:

  had = 0, and hfd = 3.47 m

  ∴ Pressure head on the piston = Hatm. + (hd + hfd) = 10.3 + (32 + 3.47)

   = 45.77 m of water absolute  (Ans.)

 (c) At the end of stroke, θ = 180° and we have:

  had = – 21.69 m,  and,  hfd = 0

  ∴ Pressure head on the piston = Hatm. + (hd + had) = 10.3 + (32 – 21.69)

   = 20.61 m of water absolute  (Ans.)

 (ii) The power required to drive the pump:

 Work done by the pump (double-acting)

   = 2 2 2
60 3 3s d fs fd

wALN h h h h + + + 
 

 ...[Eqn. (4.44)]

 = 2 9810 0.01767 0.3 30 2 24.5 32 0.578 3.47
60 3 3

× × × ×  + + × + × 
 

= 2038.44 Nm/s
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 	∴ Power required to drive the pump = 
mech.

Work done by the pump
η

   = 2038.44
0.8

= 2548 W = 2.548 kW  (Ans.)

 (iii) The maximum head and power required to drive the pump:
  The maximum head against which the pump has to work is larger of
 (a)   (hs + hfs) + (hd + hfd) = (4.5 + 0.578) + (32 + 3.47)
   = 40.548 m (mid position of piston)
 (b)   (hs + has) + (hd + had) = (4.5 – 3.62) + (32 + 21.69)
   = 54.57 m (end position of piston)
  Thus, maximum head = 54.57 m (Ans.)
  ∴ The work done by the pump

                   2 9810 0.01767 0.3 302 54.57
60 60

wALN × × × ×= × =  × 54.57 = 2837.8 N/ms. 

  ∴  Power required to drive the pump

   = 2837.8
0.8

= 3547 W = 3.547 kW (Ans.)

 Example 4.12.  The bore and stroke of a double-acting single-cylinder reciprocating pump, 
running at 30 r.p.m., are 200 mm and 400 mm respectively. The pump draws water from a sump 1.2 
m. below the pump through a suction pipe 100 mm in diameter and 3.0 m long. The water is delivered 
to a tank 28 m above the pump through a delivery pipe 100 mm in diameter and 38 m long. Assuming 
the motion of the piston to be simple harmonic determine the net force due to fluid pressure on the 
piston when it has moved through a distance of 100 mm from the I.D.C. (inner dead centre).
 Take friction co-efficient for both the suction and delivery pipes as 0.006. Neglect the size of 
the piston rod.

 Solution.  Bore of the pump, D = 200 mm = 0.2 m
  Stroke length, L  =  400 mm = 0.4 m

	 ∴  Crank radius, r = 0.4
2 2
L =  = 0.2 m

  Area of piston, A = 20.2
4
π ×  = 0.0314 m2

  Area of suction and delivery pipes, ad = as = 
4
π  × 0.12 = 0.00785 m2

  Speed of the pump, N = 30 r.p.m.

	 ∴  Angular velocity, ω = 2 302
60 60

N π ×π =  = 3.14 rad/s

  Suction head, hs = 1.2 m
  Delivery head, hd = 28 m
  Length of suction pipe, ls = 3.0 m
  Length of delivery pipe, ld = 38 m
  Friction co-efficient for both the pipes, f = 0.006.
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 Net force on the piston:
 (a) Suction side:
 Distance moved by the piston from I.D.C., x = 100 mm = 0.1 m ..(Given)
 But, x = r (1 – cos θ)
	 ∴  0.1 = 0.2 (1 – cos θ),  or,  cos θ = 0.5 or θ = 60°
 The pressure head on the piston during suction stroke for any angle θ of the crank = (ha + has + hfs)
 Now, hs = 1.2 m ...(Given)
 Acceleration head, 

    has = 2 3 0.0314cos
9.81 0.00785

s

s

l A r
g a

ω θ= ×  × (3.14)2 × 0.2 × cos 60° = 1.206 m

  Friction head, hfs = 
24 sin

2
s

s s

fl A r
d g a

 ω θ ×  

   = 
24 0.006 3.0 0.0314 3.14 0.2 sin 60

0.1 2 9.81 0.00785
× ×  × × × ° × ×  

 = 0.1737 m

	 ∴  Pressure head on the piston = (hs + has + hfs) = 1.2 + 1.206 + 0.1737

   = 2.579 m of water below atmospheric head
   = 10.3 – 2.579 = 7.721 m of water absolute
	 ∴ Force on the piston from suction side
   = Specific weight (w) × pressure head (h) × area of piston (A)
   = 9810 × 7.721 × 0.0314 = 2378.3 N

 (b) Delivery side:
 The angular displacement from the O.D.C. (outer dead centre) for delivery stroke (corresponding 
to angular displacement of 60° from the I.D.C.), θ = 180° – 60° = 120°
 The pressure head on the piston during delivery stroke for any angle θ of the crank = (hd + had + hfd)
 Acceleration head,

 had = 2 38 0.0314cos
9.81 0.00785

d

d

l A r
g a

ω θ = ×  × 3.142 × 0.2 × cos 120° = – 15.27 m

  Friction head, hfd = 
24 sin

2
d

d d

fl A r
d g a

 ω θ ×  

   = 
24 0.006 38 0.0314 3.14 0.2 sin 120

0.1 2 9.81 0.00785
× ×  × × × ° × ×  

 = 2.2 m

	 ∴  Pressure head on the piston = (hd + had + hfd) = 28 – 15.27 + 2.2
   = 14.93 m of water above atmospheric head
   = (10.3 + 14.93) = 25.23 m of water absolute
	 ∴ Force on the piston from delivery side
   = Specific weight (w) × pressure head (h) × area of piston (A)
   = 9810 × 25.23 × 0.0314 = 7771.7 N
	 ∴  Net force on the piston  =  7771.7 – 2378.3 = 5393.4 N  (Ans.)
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4.8.  AIR VESSELS

 An air vessel is a closed chamber containing compressed air in the upper part and liquid being 
pumped in the lower part. One air vessel is fixed on the suction pipe just near the suction valve and 
one is fixed on the delivery pipe near the delivery valve. The air vessels are used for the following 
purposes:
 1. To get continuous supply of liquid at a uniform rate (whatever fluctuations take place, they 

occur between the air vessels and the pump).
 2. To save the power required to drive the pump (By the use of air vessels the acceleration and 

friction heads are considerably reduced, thereby the work is also reduced).
 3. To run the pump at much higher speed without any danger of separation (By fitting the air 

vessels as close to the pump as possible, the length of the pipe in which acceleration takes 
place is reduced due to which acceleration head is reduced, and pump can run at a high speed 
without separation).

 Fig. 4.11 shows a reciprocating pump fitted with air vessels. When the liquid level in the air 
vessel rises, the air above is compressed, this compressed air forces the liquid as soon as the pressure 
in the pipe falls. The variation in air pressure may be reduced by increasing the capacity of the air 
vessels.
 In a delivery pipe the liquid beyond the 
air vessel is assumed to flow with a uniform 
velocity (Vd). When the piston forces the liquid 
into the delivery pipe with a velocity greater 
than mean velocity Vd, the additional liquid 
moves into the air vessel. When the velocity is 
less than mean velocity, Vd, the liquid flows out 
of the air vessel and makes up the deficiency. 
The volume of liquid present in the portion of 
the delivery pipe between the cylinder and air 
vessel is accelerated. The same reasoning is 
applicable to the air vessel fitted on the suction 
pipe.
 Fig. 4.12 shows the indicator diagrams 
without and with adequate air vessels.
 Let, A = Area of cross-section of 

the cylinder,
  a = Area of cross-section of 

suction or delivery pipe,
  ld = Length of delivery pipe 

beyond the air vessel,

  dl ′  = Length of delivery pipe between cylinder and air vessel,

  ls = Length of suction pipe below air vessel,
  sl′  = Length of suction pipe between cylinder and air vessel,

  had = Pressure head due to acceleration in delivery pipe,
  has = Pressure head due to acceleration in suction pipe,
  hfd = Loss of head due to friction in delivery pipe beyond the air vessel,

Fig. 4.11. Reciprocating pump with air vessels.
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  h′fd = Loss of head due to friction in delivery pipe between cylinder and air vessel,
  hfs = Loss of head due to friction in suction pipe below the air vessel, and
  h′fs = Loss of head due to friction in suction pipe between cylinder and air vessel.

Hatm.

hs

hfs

has

L

had
hfd

hd Atmospheric
pressure line

hfd

hd

hs

hfs

L

Fig. 4.12. Indicator diagrams without and with air vessels.

 Case I. Work done or power expended against friction ‘without air vessels’:
 The velocity of flow (v) in pipes (suction and delivery), for a single-acting reciprocating pump 
without any air vessel, is given as:

  v = A
a
ωr sin θ ...[Eqn. (4.15)]

 Loss of head due to friction, hf = 
224 4 sin

2 2
flv fl A r

d g d g a
 = ω θ × ×  

 ...(4.45)

 The variation of hf with θ is parabolic in nature and hence indicator diagram for the loss of head 
due to friction in pipes will be a parabola. The work done by the pump against friction per stroke is 
equal to the area of the indicator diagram due to friction.
	 ∴ Work done by the pump per stroke against friction

   = Area of parabola = 2
3

 × base × height

   = 
242

3 2
fl AL r

d g a
  × × × ω  ×    

 ...(4.46)

 [ The base of the parabola = L (stroke length), and the height = hf at θ = 90°]
 Work done or power expended against friction,

  P1 = 
242

60 3 2
flwAN AL r

d g a
 × × × ω ×  

 or, P1 = 
24

60 3
flwANL A r

d g a
 × ω ×  

 ...(4.47)

 Case II. Work done or Power Expended Against Friction ‘with air vessels’:
 When air vessels having adequate capacity are fitted on the suction and delivery pipes, the 
velocity of flow in pipes (suction and delivery) may be assumed constant and equal to the average/
mean flow velocity.

 Mean velocity of flow, v  = ( / 60) 2 ( / 2 )Discharge
Area of pipe

A L N A r A r
a a a

× × × × ω π ω= = = ×
π
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  Loss of head due to friction, hf  = 
224 4

2 2
flv fl A r

d g d g a
ω = × × × π 

 ...(4.48)

 Eqn. (4.48) shows that with the fitting of air vessels, the loss of head due to friction is independent 
of θ and hence indicator diagram is a rectangle.
	 ∴ Work done by the pump per stroke against friction
   = Area of rectangle = base × height

   = 
24

2
fl A rL

d g a
ω × × × π 

 ...(4.49)

 Work done or power expended against friction,

  P2 = 
24

60 2
flwAN A rL

d g a
ω × × × × π 

 ...(4.50)

 Now, ratio, 2

1

P
P

 = Work done or power expended against friction
Work done or power expended against friction

with air vessels
without air vessels

  = 

2

2 2

4
60 2 3

24
60 3

flwANL A r
d g a

flwANL A r
d g a

ω × × × π  =
π × ω ×  

 Percentage of work saved in pipe friction by fitting air vessels

  =  1 2 2
2

1 1

– 31 – 1 –
2

P P P
P P

 = =  π 
= 0.848 or 84.8%

 Work saved in a double-acting reciprocating pump:
 The work done or power expended against friction in case of double-acting reciprocating pump 
without air vessel is the same as given in case of single-acting reciprocating pump, i.e

  P1 = 
24

60 3
fLwANL A r

d g a
 × ω ×  

 The mean velocity of flow, v for double-acting pump is given by:

  v = 2 ( / 60) 2 2 ( / 2 )Discharge 2
Area of pipe

AL N A r A r
a a a

× × × ω π ω= = = ×
π

 Loss of head due to friction, hf = 
224 4 2

2 2
flv fl A r

d g d g a
 = × ω × ×  

 ...(4.51)

 Work done by the pump per stroke against friction

   = L × 
24 2

2
fl A r

d g a
ω × × π 

 ...(4.52)

 Work done or power expended against friction,

  P2 = 
24 2

60 2
flwAN A wrL

d g a
 × × × × π 

  ...(4.53)
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 Now  ratio, 2

1

P
P

 = 

2

2 2

4 2
60 2 6

4
60 3

flwANL A wr
d g a

flwANL A r
d g a

 × × × π  =
π × ω ×  

 Percentage of work saved in pipe friction by fitting air vessels

   = 1 2 2
2

1 1

– 61 – 1 –P P P
P P

 = =  π 
 = 0.392 or 39.2%

 Example 4.13.   A single-acting reciprocating pump is to raise a liquid of density 1200 kg/m3 
through a vertical height of 11.5 m, from 2.5 m below pump axis to 9 m above it. The plunger moves 
with simple harmonic motion, has diameter 125 mm and stroke 225 mm. The suction and delivery 
pipes are of 75 mm diameter and 3.5 m and 13.5 m long respectively. There is a long vessel placed 
on the delivery pipe near the pump axis but there is no air vessel on the suction pipe. If separation 
takes place 0.88 bar below atmospheric pressure find:
 (i) Maximum speed with which the pump can run without separation taking place, and
 (ii) Power required to drive the pump, if f = 0.02
 Neglect slip for the pump. [AMIE-Fluid Power Engg.]

 Solution.  Density of liquid, ρ = 1200 kg/m3

  Total vertical height = 11.5 m
  Suction head, hs = 2.5 m
  Delivery head, hd = 9 m
  Diameter of plunger, D = 125 mm = 0.125 m

	 ∴  Area of plunger, A = 
4
π  × 0.1252 = 0.0123 m2

  Stroke length, L  =  225 mm = 0.225 m, ∴ Crank radius, r = 0.225
2

 = 0.1125 m

 Diameter of each pipe (suction and delivery), 
  ds  =  dd = 75 mm = 0.075 m

  Area, aa  =  ad = 
4
π  × 0.0752 = 0.00442 m2

  Length of suction pipe, ls  =  3.5 m 
  Length of delivery pipe, ld  =  13.5 m.
  Friction co-efficient, f  =  0.02.
 Since air vessel is placed on delivery side only therefore, the velocity in the delivery pipe will 
be uniform and there will be no accelerating head (on delivery side).
  Separation pressure  =  0.88 bar below atmospheric pressure

	 ∴  Separation pressure head = 
50.88 10

1200 9.81
×
×

 = 7.47 m , and,ph w g
w

 = = ρ  


 (i) Maximum speed with which pump can run without separation, N:
 The separation can take place only at the beginning of suction stroke. Since no air vessel has 
been fitted on suction side, therefore, there will be accelerating head (on suction side).
 Pressure head at the beginning of suction stroke = (hs + has) below atmosphere.
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 Limiting condition for no separation gives,
  hs + has = 7.47,  or,  2.5 + has = 7.47,  or,  has = 4.97 m

 But has (at the beginning of stroke) = 2s

s

l A r
g a
× ω

	 ∴ 4.97 = 3.5 0.0123
9.81 0.00442

×  × ω2 × 0.1125

 or, ω = 
1/24.97 9.81 0.00442

3.5 0.0123 0.1125
× × 

 × × 
 = 6.67 rad/s

 But, ω = 60 6.672 60, or,
60 2 2

N N ×π ω= =
π π

  63.69 r.p.m. (Ans.)

 (ii) Power required to drive the pump, P:
 In case of a single-acting pump the discharge (Q) is given by :

  Q = 0.0123 0.225 63.69
60 60

ALN × ×=  = 0.00294 m3/s

 Velocity of liquid in the delivery pipe, v = 0.00294
0.00442d

Q
a

=  = 0.665 m/s

 Loss of head due to friction in delivery pipe,

  hfd = 
2 24 4 0.02 13.5 0.665

2 0.075 2 9.81
d

d

fl v
d g

× × ×=
× × ×

 = 0.324 m

 The maximum value of hfs, during suction stroke, is given by:

        hfs = 
2 24 4 0.02 3.5 0.0123 6.67 0.1125 0.829m

2 0.075 2 9.81 0.00442
s

s s

fl A r
d g a

  × ×  × ω = × × × =  × × ×   
 

 Now, power required to drive the pump,

  P = wQ 2
3s d fs fdh h h h + + + 

 

   = (1200 × 9.81) × 0.00294 22.5 9 0.829 0.324
3

 + + × + 
 

 

   = 428.3 W (Ans.)

 Example 4.14.   The plunger diameter and stroke length of a single-acting reciprocating pump 
are 300 mm and 500 mm respectively. The speed of the pump is 50 r.p.m. The diameter and length 
of delivery pipe are 150 mm and 55 m respectively. If the pump is equipped with an air vessel on 
the delivery side at the centre line of the pump, find the power saved in overcoming friction in the 
delivery pipe.
 Take friction co-efficient, f = 0.01

 Solution.  Diameter of plunger, D = 300 mm = 0.3 m

	 ∴  Area, A = 
4
π  × 0.32 = 0.07068 m2

  Stroke length, L = 500 mm = 0.5 m,
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	 ∴  Crank radius,  r = 0.5
2

 = 0.25 m

  Speed of the pump, N = 50 r.p.m.

	 ∴  Angular velocity, ω = 2 502
60 60

N π ×π =  = 5.23 rad/s

  Diameter of delivery pipe, dd = 150 mm = 0.15 m

	 ∴  Area of delivery pipe, ad = 
4
π  × 0 .152 = 0.01767 m2

  Length of delivery pipe, ld = 55 m
  Friction co-efficient, f = 0.01
 Power saved in overcoming friction in the delivery pipe:
 Maximum velocity of water in delivery pipe,

  vd = 0.07068
0.01767d

A r
a

ω =  × 5.23 × 0.25 = 5.23 m/s

 Maximum loss of head due to friction,

  hfd = 
2 24 4 0.01 55 5.23 20.45 m

2 2 9.81 0.15
d d

d

fl v
g d

× × ×= =
× × ×

	 ∴ Power required to overcome friction

 = 9810 0.07068 0.5 502 2 20.45
60 3 60 3fd

wALN h × × ×   × = × ×   
   

 = 3938.7 W = 3.938 kW 

 With air vessel fitted, the velocity in the delivery pipe becomes constant and is given by,

  vd = 5.23 0.250.07068
0.01767d

A r
a

×ω× = ×
π π

 = 1.66 m/s

 Loss of head due to friction,

  hfd = 
2 24 4 0.01 55 1.66

2 0.15 2 9.81
d d

d

fl v
d g

× × ×=
× × ×

 = 2.06 m

	 ∴ Power required to overcome friction

  = 
60 fd

wALN h×  = 9810 0.07068 0.5 50
60

× × ×  × 2.06 = 595 W or 0.595 kW

 Hence, the power saved by fitting an air vessel
   =  3.938 – 0.595 = 3.343 kW (Ans.)

 Example 4.15.   The diameter and stroke of a single-acting reciprocating pump are 300 mm 
and 500 mm respectively. The pump takes its supply of water from sump 3.2 m below the pump axis 
through a pipe 9 m long and 200 mm diameter. If separation occurs at 2.4 m of water absolute, 
determine:
 (i) The speed at which separation may take place at the beginning of suction stroke, and
 (ii) The speed of the pump if an air vessel is fitted on the suction side 2.4 m above the sump 

water level.
 Take atmospheric pressure head = 10.3 m of water, and friction co-efficient, f = 0.01.
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 Solution.  Diameter of piston, D = 300 mm = 0.3 m

	 ∴  Area, A = 
4
π × 0.32 = 0.07068 m2

  Stroke length, L = 500 mm = 0.5 m

	 ∴  Crank radius, r = 0.5
2

 = 0.25 m

  Suction head, hs = 3.2 m
  Diameter of suction pipe, ds = 200 mm = 0.2 m

	 ∴  Area of suction pipe, as = 
4
π  × 0.22 = 0.0314 m2

  Length of suction pipe, ls = 9 m
  Separation head, hsep = 2.4 m of water absolute
 Atmospheric pressure head, Hatm. = 10.3 m of water
  Friction co-efficient, f  =  0.01

 (i) The speed at which separation may take place (no air vessel fitted), N:
 The pressure head due to acceleration in the suction pipe,

  has = s

s

l A
g a
× ω2r cos θ

 At the beginning of the suction stroke, θ = 0° and we have:

  has = 2 9 0.07068
9.81 0.0314

s

s

l A r
g a
× ω = ×  × ω2 × 0.25 = 0.516 ω2

	 ∴ Pressure head in the cylinder at the beginning of suction stroke
   = (hs + has) = (3.2 + 0.516 ω2) below atmospheric head
 Limiting condition for no separation gives:
  Hatm. – (hs + has)  =  hsep. or, 10.3 – (3.2 + 0.516 ω2) = 2.4

 or, ω = 
1/210.3 – 2.4 – 3.2

0.516
 
 
 

 = 3.02 rad./s

 But, ω = 2
60

Nπ , or, N = 60 3.0260
2 2

×ω =
π π

  = 28.8 r.p.m. (Ans.)

 (ii) The speed of pump when an air vessel is fitted on suction side, N:
 Since the air vessel is installed 2.4 m above the sump water level, therefore: (i) there will be a 

loss of head due to friction in the suction pipe for the length of 2.49
3.2

×  = 6.75 m; (ii) the acceleration 

pressure head will be restricted in the remaining (9 – 6.75) = 2.25 m length of suction pipe.
 The pressure head due to acceleration (has) in the suction pipe at the beginning of suction stroke   
(θ = 0°) is given by:

  has = 2 2.25 0.07068
9.81 0.0314

s

s

l A r
g a
× × ω = ×  × ω2 × 0.25 = 0.129 ω2
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 The velocity of water in the suction pipe fitted with air vessel,

  vs = 0.250.07068
0.0314s

A r
a

ω ×ω× = ×
π π

 = 0.179 ω

 Loss of head due to friction, hfs = 
2 24 4 0.01 6.75 (0.179 )

2 0.2 2 9.81
s s

s

fl v
d g

× × × ω=
× × ×

 = 0.0022 ω2

 Limiting condition for no separation gives:
  Hatm. – (hs + has + hfs) = hsep.

  10.3 – (3.2 + 0.129ω2 + 0.0022ω2) = 2.4

 or,  10.3 – 3.2 – 0.1312ω2 = 2.4,   or,   ω = 
1/210.3 – 3.2 – 2.4

0.1312
 
 
 

= 5.98 rad./s

 But,       ω = 60 5.982 60, or, N
60 2 2

N ×π ω= =
π π

 = 57.1 r.p.m. (Ans.)

 Evidently by fitting an air vessel, the pump can be run at higher speeds without any chance of 
separation.

 Example 4.16.   A double-acting reciprocating pump is running at 30 r.p.m. Its bore and stroke 
are 250 mm and 400 mm respectively. The pump lifts water from a sump 3.8 m below and delivers 
it to tank at a height 65 m above the cylinder axis. The length of suction and delivery pipes are 6 m 
and 150 m respectively. The diameter of the delivery pipe is 100 mm. If an air vessel of adequate 
capacity has been fitted on the discharge side, determine:
 (i) The minimum diameter of suction pipe to prevent cavitation assuming 2.5 m as the minimum 

head to prevent separation of flow which causes cavitation.
 (ii) The maximum gross head against which pump has to work and the corresponding power 

of motor. Assume mechanical efficiency = 78% and slip = 1.5%.
 Take atmospheric pressure head (at the pump site) = 10.0 m, and friction co-efficient,  
f = 0.012.

 Solution.  The speed of the pump, N = 30 r.p.m.

	 ∴  Angular velocity, ω = 2 302
60 60

N π ×π =  = 3.14 rad/s

  Bore of the pump, D  =  250 mm = 0.25 m

	 ∴  Area, A = 
4
π  × 0.252 = 0.0491 m2

  Stroke length, L  =  400 mm = 0.4 m

	 ∴  Crank radius, r = 0.4
2

 = 0.2 m

  Suction head, hs  =  3.8 m
  Delivery head, hd  =  65 m
  Length of suction pipe, ls  =  6 m
  Length of delivery pipe, ld  =  150 m
  Diameter of delivery pipe, dd  =  100 mm = 0.1 m

	 ∴  Area of delivery pipe, ad = 
4
π  × 0.12 = 0.00785 m2
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  Separation head, hsep. = 2.5 m of water absolute
  Mechanical efficiency, ηmech. =  78%; slip = 1.5%
  Atmospheric pressure head, Hatm. = 10.0 m; friction co-efficient, f = 0.012.

 (i) The minimum diameter of suction pipe, to prevent cavitation, ds:
 It is at the beginning of the suction stroke (θ = 0°) where cavitation is likely to occur and at that 
instant the pressure head due to acceleration is given by,

  has = 2 coss s

s s

l lA Ar
g a g a

ω θ =  ω2r [ when θ = 0°, cos θ = 1]

   = 2
22

6 0.0491 0.07543.14 0.2
9.81

4
ss

dd
× × × =
π ×

 ...(i)

  Friction head, hfs = 
24 sin 0

2
s

s s

fl A r
d g a

 ω θ = ×  
 ( sin θ = sin 0° = 0)

 Limiting condition for no separation gives,
   Hatm. – (hs + has) = hsep.

 or,   10.0 – 2 2
0.0754 0.07543.8 2.5, or,

s sd d
 

+ =  
 

 = 10.0 – 2.5 – 3.8

 or, ds = 
1/2

0.0754
10.0 – 2.5 – 3.8
 
 
 

 = 0.1427 m or 142.7 mm (Ans.)

 (ii) Gross head and power of motor:

  The discharge, Q = 2 0.0491 0.4 302
60 60
ALN × × ×=  = 0.01964 m3/s

 The total head (H) against which the water has to be lifted is equal to sum of various heads at 
I.D.C. (inner dead centre) position of the piston,
 i.e., H = (hs + has + hfs) + (hd + had + hfd)

 (a) Suction side:  hs = 3.8 m (Given)
 At the beginning of the stroke, θ = 0° and we have:

  has = 2
2

0.0754s

s s

l A r
g a d
× ω =    [as eqn. (i)]

   = 2
0.0754 3.7 m

0.1427
=

 Friction head,  hfs = 
2

4
sin

2
s

s s

fl A r
d g a

 
ω θ ×  

 = 0

    ( sin θ = sin 0° = 0)

 (b)  Delivery side: hd = 65 m (Given)
 As an air vessel of adequate capacity has been 
installed on the delivery side, therefore acceleration 
is zero and velocity is no longer fluctuating (except 
in short length between the cylinder and air vessel). 
Also, since this shaft length has not been specified, the 
acceleration head can be assumed to be negligible.

Delivery

had = 0
hfd

hd

hs

hfshas

Hatm.

hfs = 0
L
Suction

Fig. 4.13
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	 ∴ had = 0
 Velocity in the delivery pipe,

  vd = 
0.01964 2.5 m/s
0.00785d

Q
a

= =

	 ∴  Friction head, hfd = 
2 24 4 0.0012 150 2.5 22.93 m

2 0.1 2 9.81
d d

d

fl v
d g

× × ×
= =

× × ×

	 ∴ Gross head against which pump has to work,
  H = (3.8 + 3.7 + 0) + (65 + 0 + 22.93) = 95.43 m
 Gross volume of water with a slip of 1.5%
   = 0.01964 × 1.015 = 0.01993 m3/s
	 ∴  Power required  = wQH = 9810 × 0.01993 × 95.43 = 18657.8 W  18.66 kW

  Power of motor, P = 
.

18.66 18.66
0.78mech

= =
η

23 92 kW. (Ans.)

HIGHLIGHTS

 1. The reciprocating pump is a positive displacement pump and consists of a cylinder, a piston 
a suction valve, a delivery valve, a suction pipe, a delivery pipe and crank and connecting 
rod mechanism operated by a power source e.g. steam engine, I.C. engine or an electric 
motor.

 2. Discharge through a pump per second is given as

   Q = 
60

ALN
 ...for a single-acting pump

   Q = 
2

60
ALN

 ...for a double-acting pump

 3. Work done by reciprocating pump per second is given as

    = ( )
60 s d

wALN h h+  ...for a single-acting pump

    = 
2 ( )

60 s d
wALN h h+  ...for a double-acting pump

  Power required to drive the pump

    = ( )
60 1000 s d

wALN h h kW+
×

 ...for a single-acting pump

    = 
2 ( )

60 1000 s d
wALN h h kW+
×

 ...for a double-acting pump.

  (where, w = weight density of liquid in N/m3.)
 4. The difference between the theoretical discharge and actual discharge is called the ‘slip’ of 

the pump.
 5. Pressure head due to acceleration (ha) in the suction and delivery pipes is given as:

   has = 2 coss

s

l A r
g a
× ω θ  ...For suction pipe;
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   had = 2 cosd

d

l A r
g a
× ω θ  ...For delivery pipe.

 6. The indicator diagram of a reciprocating pump is the diagram which shows the pressure 
head of the liquid in the pump cylinder corresponding to any position during the suction 
and delivery strokes. It is a graph between pressure head and stroke length of the piston for 
one complete revolution.

 7. Work done by the pump is proportional to the area of the indicator diagram.
 8. Work done by the pump per second due to acceleration and friction in suction and delivery 

pipes

    = 
2 2

60 3 3s d fs fd
wALN h h h h + + + 

 
 ...For a single-acting pump

    = 
2 2 2

60 3 3s d fs fd
wALN h h h h + + + 

 
 ...For a double-acting pump.

 9. An air vessel is a closed chamber containing compressed air in the upper part and liquid 
being pumped in the lower part. The air vessels are used: (i) To get continuous supply of 
liquid at a uniform rate, (ii) To save the power required to drive the pump and (iii) To run 
the pump at a much higher speed without any danger of separation.

OBJECTIVE TYPE QUESTIONS

Choose the correct Answer
 1. With respect to a reciprocating pump which of 

the following statements is incorrect ?
   (a) The limiting value of separation pressure 

head for water is 6·8 m (absolute).
   (b) During suction, the separation may take 

place at the beginning of suction stroke.
   (c) During delivery, the separation may take 

place at the end of delivery stroke.
   (d) Indicator diagram shows variation of 

pressure head in the cylinder for one 
revolution of crank.

 2. Reciprocating pumps are most suited where
   (a) constant heads are required on mains 

despite fluctuation in discharge
   (b) operating speeds are much high
   (c) constant supplies are required regardless 

of pressure fluctuations
   (d) none of the above.
 3. Which of the following statements is incorrect 

for a reciprocating pump ?
   (a) The reciprocating pump is essentially a 

low speed machine.
   (b) The percentage of power saved by fitting 

air vessels is more in a double-acting than 
in a single-acting pump.

   (c) The reciprocating pumps can handle only 
low viscosity liquids free from impurities.

   (d) none of the above.

 4. In a reciprocating pump the air vessels are used 
for which of the following purposes ?

   (a) To get continuous supply of liquid at a 
uniform rate.

   (b) To save the power required to drive the 
pump.

   (c) To run the pump at much higher speed 
without any danger of separation.

   (d) All of the above.
 5. The pressure head due to acceleration in the 

suction pipe (has) is given as:

   (a) coss

s

l A r
g a
× × ω θ

   (b) 
2

cos
2

s

s

l A r
g a
× × ω θ

   (c) 2 coss

s

l A r
g a
× × ω θ

   (d) none of the above.
 6. Discharge through a double-acting reciprocating 

pump is given as

   (a) 
60

ALN
 (b) 

120
ALN

   (c) 
2

60
ALN

 (d) 
3 .
120
ALN
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ANSWERS

 1. (a) 2. (c) 3. (b) 4. (d) 5. (c) 6. (c).

THEORETICAL QUESTIONS

 1. Describe the principle and working of a recip-
rocating pump.

 2. How are reciprocating pumps classified ?
 3. Define slip, percentage slip and negative slip of 

a reciprocating pump.
 4. What is negative slip in reciprocating pump ? 

Explain with neat sketches the function of air 
vessels in a reciprocating pump ?

 [AMIE, Fluid Power Engg.]
 5. Obtain an expression for the pressure head due 

to acceleration in the suction and delivery pipes.
 6. Define indicator diagram. Prove that work 

done by the pump is proportional to the area of 
indicator diagram.

 7. Draw an indicator diagram, considering the 
effect of acceleration and friction in suction 
and delivery pipes. Find an expression for the 
work done per second in case of a single-acting 
reciprocating pump.

 8. What is an air vessel ?
 9. What are the uses of air vessels ?
 10. Show from the first principles that work saved 

in a single-acting reciprocating pump, by fitting 
an air vessel, is 84.8 percent.

 1. A single-acting reciprocating pump, running at 
60 r.p.m., delivers 0.53 m3 of water per minute. 
The diameter of the piston is 200 mm and stroke 
length 300 mm. The suction and delivery heads 
are 4 m and 12 m respectively. Determine: 
(i) Theoretical discharge, (ii) Co-efficient of 
discharge, (iii) Percentage slip of the pump, and 
(iv) Power required to run the pump.

   [Ans. (i) 0.00942 m3/s; (ii) 0.937; 
   (iii) 6.26%; (iv) 1.47 kW]
 2. A single-acting reciprocating pump having a bore 

of 150 mm and a stroke of 300 mm is raising 
water to height of 20 m above the sump level. 
The pump has an actual discharge of 0.0052 m3/s. 
The efficiency of the pump is 70%. If the speed 
of pump is 60 r.p.m. determine: (i) Theoretical 
discharge, (ii) Theoretical power, (iii) Actual 
power, and (iv) Percentage slip.

   [Ans. (i) 0.0053 m3/s; (ii) 1.04 kW, 
   (iii) 1.48 kW; (iv) 1.88%]
 3. A single-acting reciprocating pump has a piston 

diameter of 150 mm and stroke length 350 mm. 
The centre of the pump is 3 m above the water 
surface in the sump and 20 m below the delivery 
water level. Both the suction and delivery pipes 
have the same diameter of 100 mm and are 5 
m and 30 m long respectively. If the pump is 
working at 35 r.p.m., determine:

   (i) Pressure heads due to acceleration at the 
beginning of suction and delivery strokes,

   (ii) Pressure heads in the cylinder at the 
beginning of suction and delivery strokes, 
and

   (iii) Pressure heads in the cylinder at the end 
of suction and delivery strokes.

  [Ans. (i) 2.695 m, 16.17 m; (ii) 4.605 m of water 
(abs.), 46.47 m of water (abs.), (iii) 9.99 m of 
water (abs.), 14.13 m (abs.)]

 4. The diameter and stroke of a single-acting 
reciprocating pump are 125 mm and 300 mm. 
The pump is fed by a suction pipe 75 mm in 
diameter and 7 m long; the suction lift being 4 
m. The separation occurs if the absolute pressure 
head in the cylinder during suction stroke falls 
below 2·5 m of water. What is the maximum 
speed at which pump can be run without 
separation in the suction pipe ?

  Take atmosphere pressure head = 10.3 m of 
water. [Ans. 34.1 r.p.m.]

 5. The diameter and stroke length of single-acting 
reciprocating pump are 100 mm and 200 mm 
respectively. It takes its supply of water from 
a sump 4 m below the pump through a pipe 
6 m long and 40 mm in diameter. It delivers 
water to a tank 14 m above the pump through 
a pipe 30 mm in diameter and 18 m long. If 
the separation occurs at 78.48 kN/m2 below 
the atmospheric pressure, find the maximum 
speed at which pump may be operated without 
separation. Assume plunger has a simple 
harmonic motion. [Ans. 30.9 r.p.m.]

UNSOLVED EXAMPLES
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 6. The cross-sectional area of plunger equals 1.65 
times that of a delivery pipe. The delivery pipe 
is 55 m long and it rises upward at a slope of  
1 in 5. If the plunger has an acceleration of 2.5 m/s2 
at the end of the stroke and separation pressure 
is 2.5 m of water find whether separation will 
take place and, if so, at which section of the pipe.

  Assume simple harmonic motion and take 
atmospheric pressure = 10·3 m of water

   [Ans. Separation will take place; 35.45 m]
 7. The bore and stroke of a reciprocating pump 

are 250 mm and 500 mm respectively. The 
pump delivers water through 100 mm delivery 
pipe to a tank located at 12 m above it and  
25 m horizontally from it. If the separation  
occurs at a pressure of 22.5 kN/m2 absolute, find 
the safe speed at which the pump should run for 
the following arrangements of delivery pipe:

   (i) The delivery pipe is horizontal from the 
pump and then vertical upto the tank and

   (ii) The delivery pipe is vertical from the pump 
and then horizontal upto the tank.

   Take: Atmospheric pressure (at the pump site) = 
10.3 m of water, connecting rod-crank ratio = 5.

   [Ans. (i) 19.68 r.p.m; (ii) 12.45 r.p.m.]
 8. The piston diameter and stroke length of a single 

acting reciprocating pump are 150 mm and  
300 mm respectively. The centre of the pump is 
5·0 m above the water level in the sump and 33 m 
below the delivery water level. Both the suction 
and delivery pipes have the same diameter of  
75 mm and are 65 m and 39 m long respectively. 
If the pump is working at 30 r.p.m. determine:

   (i) The pressure head on the piston at the 
beginning, middle and end of both suction 
and delivery strokes, and

   (ii) The power required to drive the pump.
  Take atmospheric pressure head = 10.3 m of 

water and friction co-efficient, f = 0.01 for both 
the pipes.

  [Ans. (i) 1.38 m (abs.); 4.672 m (abs.), 9.22 m 
(abs.); 66.84 m (abs.); 47.067 m (abs.); 19.76 m 
(abs.); (ii) 1.064 kW]

 9. The bore and stroke of a double-acting single-
cylinder reciprocating pump, running at 35 r.p.m., 
are 200 mm and 400 mm respectively. The pump 
draws water from a sump 1·0 m below the pump 
through a suction pipe 100 mm in diameter and 
2·5 m long. The water is delivered to a tank 30 m 
above the pump through a delivery pipe 100 mm 
in diameter and 40 m long. Assuming the motion 
of the piston to be simple harmonic determine 
the net force due to fluid pressure on the piston 
when it has moved through a distance of  
100 mm from inner dead centre (I.D.C.).

  Take friction co-efficient for both the suction and 
delivery pipes as 0.0075. Neglect the size of the 
piston rod. [Ans. 2.522 kN]

 10. The plunger diameter and stroke length of a 
single-acting reciprocating pump are 300 mm 
and 500 mm respectively. The speed of the 
pump is 60 r.p.m. The diameter and length of 
delivery pipe are 150 mm and 60 m respectively. 
If the pump is equipped with an air vessel on 
the delivery side at the centre line of the pump 
find the power saved in overcoming friction in 
delivery pipe.

  Take friction co-efficient, f = 0.01.
   [Ans. 6.3 kW]
 11. The diameter and stroke of a single-acting 

reciprocating pump are 300 mm and 500 mm 
respectively. The pump takes its supply of 
water from sump 3.5 m below the pump axis 
through a pipe 10 m long and 200 mm diameter. 
If separation occurs at 2.5 m of water absolute, 
determine:

   (i) The speed at which separation may take 
place at the beginning of suction stroke, 
and

   (ii) The speed of the pump if an air vessel is 
fitted on the suction side 2.5 m above the 
sump water level.

  Take atmospheric pressure head = 10.3 m of 
water and friction co-efficient, f = 0.01.

   [Ans. (i) 26.16 r.p.m; (ii) 48.56 r.p.m.]
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5.1.  INTRODUCTION

 There are many hydraulic devices/machines which 
are based on the principles of fluid statics and fluid 
kinematics and are used for either storing the hydraulic 
energy and then transmitting when needed or magnifying 
the hydraulic energy several times and transmitting the 
same. In all such machines power is transmitted with the 
help of a fluid which may be a liquid (water or oil). In 
this chapter following hydraulic devices/machines will 
be discussed.
 1. Hydraulic accumulator, 2.  Hydraulic intensifier,
 3. Hydraulic press, 4.  Hydraulic crane,
 5. Hydraulic lift, 6.  Hydraulic ram,
 7. Hydraulic coupling, 
 8. Hydraulic torque converter,
 9. Air lift pump, and 10. Jet pump.
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5.2.  HYDRAULIC ACCUMULATOR

 Hydraulic accumulator is a device used to store the energy of liquid under pressure and make 
this energy available (as a quick secondary source of power) to hydraulic machines, such as presses, 
lifts and cranes. In case of hydraulic crane or lift, the liquid under pressure needs to be supplied 
during upward motion of the load only. This energy is supplied from hydraulic accumulator. But 
when the lift is moving downward, no large external energy is required and during that period the 
energy from the pump is stored in the accumulator.
 The function of hydraulic accumulator is analogous to that of the flywheel of a reciprocating 
engine and an electric storage battery. It damps out pressure surges and shocks in the hydraulic 
system, and thus it functions as a pressure regulator.

5.2.1. Simple Hydraulic accumulator
 Construction and working. Fig. 5.1 shows a simple hydraulic accumulator. It consists of a 
fixed vertical cylinder, containing a sliding ram/plunger. A load/weight is placed on the top, to create 
pressure in the cylinder chamber. One side of the cylinder is connected to the pump and the other 
side to the machine.

Chapter
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 In the beginning, the ram is at the lowermost position. During idle periods of driven machine 
(say crane or lift) high pressure liquid supplied by the pump is admitted in the hollow space of the 
cylinder, it raises the ram, on which the heavy load is placed. Flow of more liquid continues till 
the ram is at its uppermost position; at this position, the cylinder is full of water and the maximum 
amount of pressure energy is accumulated. This accumulated energy is later discharged to the driven 
machine, during its working stroke (i.e. when it requires maximum amount of energy).
 Capacity of accumulator. The maximum amount 
of energy that the accumulator can store is known as the 
capacity of the accumulator.
 Let, A = Area of the sliding ram,
  L = Stroke or lift of the ram,
  p = Intensity of pressure of liquid sup-

plied by the pump, and
  W = Total weight of the ram (including 

the weight of the load on the ram).
 Then, W = P × A
 The work done in lifting the ram = W × lift of ram
   = W × L
   = p × A × L                ( W = p × A)
 But the work done in lifting the ram = Energy stored in 
the accumulator = Capacity of the accumulator
	 ∴ Capacity of the accumulator = p × A × L
   = p × volume of accumulator ...(5.1)
     ( A × L = volume of accumulator)

5.2.2. Differential Hydraulic Accumulator
 Fig. 5.2 shows a differential 
hydraulic accumulator. The 
advantage of this accumulator is 
that liquid can be stored at a high 
pressure by a comparatively small 
load on the ram. It consists of a 
fixed vertical ram/plunger inside 
which is provided a central liquid 
passage of small diameter. This 
fixed cylindrical ram/plunger is 
surrounded by closely fitting brass 
bush, which is surrounded by an 
inverted sliding cylinder having a 
circular projected collar on which 
weights are placed. Passages for 
liquid to enter and leave the unit 
are provided in the fixed ram, and 
connected to the inlet and outlet 
pipes, as shown in the Fig. 5.2.

Load

Sliding
ram

Fixed
cylinder

Outlet to
machine

Inlet from
pump

Fig. 5.1 Simple hydraulic accumulator.

Inlet from
Pump

Outlet from
Pump

Brass bush, or,
sleeve

Collar

Load Load

Fixed ram

Sliding
cylinder

Fig. 5.2 Differential hydraulic accumulator.
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 The liquid supplied from the pump enters the cylinder through central vertical hole provided in 
the fixed ram and causes the loaded cylinder to move upwards, thus storing the hydraulic energy. 
When the liquid is drawn by the machine from the accumulator, the liquid leaves the cylinder 
through the same central hole. The liquid entering the cylinder exerts pressure on the annular area 
of the cylinder which is equal to cross-sectional area (horizontal) of the brass bush or sleeve.
 Let, D = External diameter of the bush,
  d = Diameter of fixed ram,

	 ∴  Annular area, A = 4
p  (D2 – d2),

  L = Vertical lift of the sliding cylinder,
  W = Total weight of sliding cylinder (including the weight placed 

on the cylinder), and
  p = Intensity of pressure of liquid by pump.
 Then, W = p × A

	 ∴ P = W
A  ...(5.2)

 Eqn. (5.2) indicates that by making the area of the bush small, it is possible to store liquid at a 
high pressure with a small load.
  Capacity of accumulator = W × L
   = p × A × L = p × volume ...(5.3)

 Example 5.1.   An accumulator has a ram of 200 mm diameter and a lift of 6 m. If the liquid is 
supplied at a pressure of 40 bar, find: (i) load on the ram, and (ii) capacity of the accumulator.

[Anna University]
 Solution.  Diameter of ram, D = 200 mm = 0·2 m

	 ∴   Area, A = 4
p  × 0.22 = 0.0314 m2

    Intensity of pressure,  p = 40 bar
    Lift of ram L = 6 m
  (i) Load on the ram, W :
     W = p × A = 40 × 105 × 0.0314 
      = 1.256 × 105 N, or, 125.6 kN (Ans.)
 (ii) Capacity of the accumulator:
     Capacity of the accumulator = p × A × L = 40 × 105 × 0.0314 × 6 Nm
      = 7.536 × 105 Nm
     Since 1 kWh = 1000 × 60 × 60 Nm

	 ∴    Capacity of accumulator = 
57.536 10

1000 60 60
×

=
× ×

0 209 kWh.  (Ans.)

 Example 5.2.   An accumulator is loaded with 400 kN weight. The ram has a diameter of  
300 mm and stroke of 6 m. Its friction may be taken as 5 percent. It takes two minutes to fall through 
its full stroke. Find the total work supplied and power delivered to the hydraulic appliance by the 
accumulator, when 0.0075 m3/s of liquid is being delivered by a pump, while the accumulator 
descends with the stated velocity.    [AMIE, Fluid Power Engg.]

 Solution.  Total load on the accumulator = 400 kN
  Diameter of ram, D = 300 mm = 0.3 m
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	 ∴  Area of ram, A = 4
p  × 0.32 = 0.07068 m2

  Stroke of ram, L = 6 m
  Friction = 5 percent.

 Total work supplied and power delivered:
  Net load on accumulator when it descends = 400 × 0.95 = 380 kN
  Time taken by ram to fall through full stroke, t = 2 min, or, 120 s

	 ∴  Distance moved by ram per sec. = 
1 6 0.05 m/s

120t
= =

  Liquid supplied by pump = 0.0075 m3/s (Given)
 Work done by accumulator per second
   = Net load on ram × distance moved by ram per sec.
   = 380 × 0.05 = 19 kN m/s

  Intensity of pressure of water, p = 
3

3 2Net load 380 10 5376.3 10 N/m
Area 0.07068

×
= = ×

  Pressure head, H = 
35376.3 10 548 m

9810
p
w

×
= =

  Work supplied by pump per second = Weight of water supplied per sec. × pressure head
   = wQH = 9810 × 0.0075 × 548 
   = 40319 Nm/s, or, 40.319 kN m/s
	 ∴	 Total work supplied to hydraulic machine
   = Work supplied by accumulator + work supplied by the pump
   = 19 + 40.319 = 59.319 kN m/s (Ans.)
 Power delivered to the hydraulic machine = 59.319 kW (Ans.)

 Example 5.3.   It is required to transmit 25 kW power from an accumulator through a pipeline 
100 mm diameter and 1500 m long. The ram is loaded with a weight of 1250 kN and the friction 
loss in the pipeline equals 2.5 per cent of the total power being transmitted. Determine the diameter 
of the ram.

 Take friction co-efficient = 0.01.

 Solution.  Power to be transmitted, P = 25 kW
  Diameter of the pipe, d = 100 mm = 0.1 m
  Length of the pipe, l = 1500 m
  Load on the ram, W = 1250 kN
  Friction loss in the pipeline = 2.5 percent of the total power being transmitted

   = 
2.5 25 0.625 kW
100

× =

 Diameter of the ram, D:
 The loss of head due to friction in pipeline is given by,

  hf = 
2 2

24 4 0.01 1500 30.58
2 0.1 2 9.81

flV V V
d g

× × ×
= =

× × ×

 (where, V = velocity of flow through the pipeline)
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  Power lost due to friction = kW
1000

fwQh
 (where, w = 9810 N/m3 for water)

 or, 0.625 = 
2 2

39810 ( / 4) 0.1 30.58 2.356
1000

V V V× p × × ×
=

	 ∴  = 
1/30.625 0.64 m/s

2.356
  = 
 

  Discharge in the pipeline = 2 30.1 0.64 0.005026 m /s
4
p
× × =

 The same discharge flows through the accumulator.

  Power developed by accumulator = kW
1000
wQH

 (where, H = pressure head of water in the accumulator.)

	 ∴	 25 = 
9810 0.005026

1000
× × H

,

 or, H = 
25 1000 507 m

9810 0.005026
×

=
×

of water

 Pressure intensity in the accumulator, p = wH,    or,    p = 9810 × 507 = 4973670 N/m2

 But,   Pressure intensity = 
3

2

Load on the ram 1250 10
Area of the ram

4
D

×
=

p
×

	 ∴ 4973670 = 
3 3

2

2

1250 10 1250 10, or, 0.3199
4973670

4 4

D
D

× ×
= =

p p
× ×

	 ∴ D = 0.565 m    or    565 mm (Ans.)

 Example 5.4.  The diameters of two portions of the ram of a differential accumulator are  
150 mm and 140 mm respectively, the stroke being 1·25 m. If the accumulator is supplied with 
water at pressure 1200 m of water, find load on the ram and the capacity.

 Solution. Given : D = 150 mm = 0.15 m; d = 140 mm = 0.14 m;
 Stroke length = 1.25 m; Pressure head, h = 1200 m.
 Load on the ram and the capacity:
  Pressure on the ram, p = wh = 9810 × 1200 = 117.72 × 105 N/m2

  Load on the ram = Pressure intensity × annular area

    = 117.72 × 105 × 4
p (0.152 – 0.142) = 0.268 × 105 N or 26.8 kN (Ans.)

   Capacity of ram = Load on the ram × stroke length
    = 26.8 × 1.25 = 33.5 kN m

	 ∴ Capacity in kWh = 
333.5 10

1000 60 60
×

=
× ×

0 0093 kWh.  (Ans.)

 Example 5.5.   The diameters of the two parts of the ram of a differential accumulator are  
150 mm and 120 mm, and stroke length is 1.25 m. If the pressure of water is 7850 kN/m2 when the 
load is at rest at the upper end of stroke or when the load is moving with uniform velocity, what 
will be the weight of the loaded cylinder? How much energy can be stored in the accumulator?
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 Find also the diameter of the ram of an ordinary accumulator to move the same load with the 
help of the same water pressure.

 Solution. D = 150 mm = 0.15 m; d = 120 mm = 0.12 m;
 Stroke length = 1.25 m; Pressure of water = 7850 kN/m2.
 Weight of loaded cylinder:
  Weight of loaded cylinder   =  Pressure × annular area

   = 7850 × 4
p  (0.152 – 0.122) = 49.94 kN (Ans.)

 Energy stored in accumulator:
  Energy stored in the accumulator = Load × displacement
   = 49.94 × 1.25 = 62.42 kNm (Ans.)
 Diameter of the ram of an ordinary accumulator, D´:
  Load on the ram  =  Pressure intensity × area

  49.94 = 7850 × 4
p  (D′)2

	 ∴ D′ = 
1/2

49.94 4 0.09 m or
7850

 ×
= × p 

90 mm (Ans.)

 Example 5.6.   A hydraulic accumulator has sliding ram of 400 mm diameter which slides 
through 7.5 m in 3 minutes during its working stroke, while weight on the ram including its self 
weight is equivalent to 300 kN. The pump supplies water at 0.009 m3/s rate and packing friction 
amounts to 4 percent of total load. Determine:

 (i) Pressure intensity of water,
 (ii) Power delivered to machine supplied by accumulator,
 (iii) Power required to drive the pump having efficiency 72 percent.

 Solution.  Diameter of sliding ram, D = 400 mm = 0·4 m

	 ∴    Area, A = 2 20.4 0.1256 m
4
p
× =

      Weight on ram including self weight,  W = 300 kN
     Packing friction = 4% of total load

      = 
4 300 12 kN

100
× =

	 ∴  Discharge of water supplied by pump, q = 0.009 m3/s
     Efficiency of pump, η = 72%

  (i) Pressure intensity of water, p:
     Net load on the sliding ram = 300 – 12 = 288 kN

	 ∴    Pressure intensity of water = 
288

0.1256
22293 kN / m  (Ans.)

 (ii) Power delivered to machine supplied by accumulator, P:
  Let Q = Total discharge of water supplied to the machine,
    q = Discharge of water supplied by the pump, (= 0.009 m3/s), and
    L = Stroke length of the accumulator ram, (= 7.5 m),
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  Then, AL = (Q – q) t, or, 0.1256 × 7.5 = (Q – 0.009) × (3 × 60)

  or, Q = 30.1256 7.5 0.009 0.0142 m /s
3 60

×
+ =

×

	 	 ∴ Power delivered to the machine = p × Q
     = 2293 × 0.0142 kW = 32.56 kW (Ans.)
 (iii) Power required to drive the pump:

  Power required to drive the pump = 
2293 0.009 kW

0.72
p q× ×

= =
η

28 66 kW.  (Ans.)

 Example 5.7.   An accumulator maintains a pressure of 6000 kN/m2 in a 50 mm diameter 
hydraulic main. A hydraulic crane situated at a distance of 250 m from the accumulator is supplied 
with pressure water from this main. The ram of the hydraulic crane is of 220 mm diameter. Velocity 
ratio of the crane hook to ram is 4 : 1. A pressure of 280 kN/m2 may be assumed on the ram to 
account for mechanical friction of ram, pulleys etc. Calculate the load lifted when it is raised with 
a speed of 0.6 m/s.
 Assume a co-efficient of friction for the hydraulic main as 0.01. [UPTU]

 Solution.  Pressure in the accumulator = 6000 kN/m2

  Diameter of hydraulic main, d  =  50 mm = 0.05 m
  Length of hydraulic main, l  =  250 m
  Diameter of the ram, D  =  220 mm = 0.22 m
  Velocity ratio of the crane hook to ram  =  4 : 1
  Pressure lost due to mechanical friction  =  280 kN/m2

  Velocity of crane hook  =  0·6 m/s
  Co-efficient of friction for the hydraulic main, f = 0.01
 Load lifted, W:

  Velocity of ram = 
0.6 0.15 m/s
4

=

 Let V be the velocity of water in the hydraulic main. Since the quantity of water per second 
flowing through the main is equal to the quantity per second  in the ram cylinder, therefore,

  20 05
4

Vp × ⋅ × 
 

 = 20.22 0.15, or, 2.9 m/s
4

Vp
× × =

  Head of water in accumulator = 
6000 611.6 m
9.81

= of water ( w = 9.81 kN/m3)

 Head lost in friction in main,  hf = 
2 24 4 0.01 250 2.9 85.7 m

2 0.05 2 9.81
flV

d g
× × ×

= =
× × ×

 of water

 Head lost due, to mechanical friction of ram, pulleys etc.

   = 
280 28.5 m
9.81

=  of water

  Net head available on the ram = 611.6 – (85.7 + 28.5) = 497.4 m of water
	 ∴ Net intensity of pressure on ram
   = 497.4 × 9.81 kN/m2 = 4879.5 kN/m2 ( w = 9.81 kN/m3)
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  Load on the ram = 24879.5 0.22 185.48 kN
4
p × × = 

 

	 ∴  Load lifted by the crane hook = 
185.48

4
= 46 37 kN.  (Ans.)

 Example 5.8.  A weight loaded accumulator operates certain machinery through a pipe  
100 mm in diameter and 600 m long. The accumulator has a ram 300 mm diameter and 3.5 m 
stroke, loaded with 320 kN; it is supplied with water by a three throw pump running at 45 r.p.m., 
the plungers  of pump having a diameter of 45 mm and a stroke of 360 mm. The slip of the pump 
has been estimated as 5 per cent. If the power absorbed by the machinery is 37 kW, calculate the 
longest period during which it may be operated continuously.

 Take co-efficient of friction for the pipe as 0·0075. [PTU]

 Solution.  Diameter of the pipe, d = 100 mm = 0.1 m
  Length of the pipe, l = 600 m
  Diameter of this ram, D = 300 mm = 0.3 m
  Stroke of the ram, L = 360 mm = 0.36 m
  Load on the ram, W = 320 kN
  Diameter of each plunger of the pump = 45 mm = 0.045 m
  Stroke of each plunger = 360 mm = 0.36 m
  Speed of pump = 45 r.p.m.
  Slip of the pump = 5%
  Power absorbed by the machinery, P = 37 kW
  Co-efficient of friction for the pipe, f = 0.0075.

 Longest period during which machinery can be operated continuously, t:

  Pressure head in the accumulator = 
22

320 461.5 m
0.3 9.81

44

W

D w
= =
pp  × ×× × 

 

 ( w = 9.81 kN/m3)

  Loss of head due to friction in the pipe, hf = 
24

2
flV

d g×

   = 
2

24 0.0075 600 9.17
0.1 2 9.81

V V× × ×
=

× ×

	 ∴	 Effective head at the machine, H = (461.5 – 9.17 V2)
  Power supplied to machinery = wQH

  37 = 2 29.81 0.1 (461.5 – 9.17 )
4

V Vp × × × × 
 

   = 0.077V (461.5 – 9.17V2) = 35.53 V – 0.706V 3

 or, 0.706V 3 – 35.53V + 37 = 0
 or, V 3 – 50.32V + 52.4 = 0
  Solving by trial, we get V = 1.064 m/s
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	 ∴ Discharge through the pipe, Q = 2 30.1 1.064 0.008357 m /s
4
p
× × =

 This discharge, Q is the same as the discharge leaving the accumulator.
 Also, the discharge entering the accumulator = Discharge of the three-throw pump.

  Discharge of the pump = 2 3453 0.045 0.36 0.001288 m /s
4 60
p × × × × =  

	 ∴	 Water supplied from the accumulator = 0.008357 – 0.001288 = 0.00707 m3/s

  Volume of accumulator = 2 30.3 3.5 0.247 m
4
p
× × =

	 ∴ The longest period during which machinery may be operated continuously (t) = time in 
which accumulator will be emptied

	 ∴ t = 
0.247

0.00707
= 34 94 s.  (Ans.)

5.3.  HYDRAULIC INTENSIFIER

 Hydraulic intensifier is a device which increases the intensity of pressure of a given liquid 
with the help of low pressure liquid of large quantity. It finds its application at places where a liquid 
of very high pressure is to be developed 
from available low pressure. It is located 
between the pump and the machine 
(e.g. press, crane, lift) that needs high 
pressure liquid for its operation. Its 
action is similar to that of a step-up 
electrical transformer.
 Construction and working. A 
hydraulic intensifier consists of a fixed 
ram surrounded by the sliding cylinder, 
which is itself encased in a bigger and 
fixed cylinder (Fig. 5·3). The sliding 
cylinder contains water at high pressure 
(which is supplied to the machine 
through fixed ram) whereas the fixed 
cylinder contains water from the main 
supply at a low pressure.
 — Initially when the sliding 

cylinder lies at the bottom of 
the stroke, the fixed cylinder 
is full of low pressure liquid. 
The valves V2 and V4 are then 
closed, the valve V1 is opened 
thus admitting the low pressure 
liquid into the sliding cylinder; 
the valve V3 is also opened 
which permits the low pressure 
liquid from the fixed cylinder to be discharged to the exhaust and the sliding cylinder to 
move upward. When the sliding cylinder reaches its topmost position, the inside of the 
sliding cylinder is full of low pressure liquid.

Fixed ram

Low pressure
liquid from

supply

V1

V2

Sliding ram or
cylinder

High pressure
liquid

fixed cylinder

Low pressure liquid
from supply

V4 V3

To exhaust

Low pressure
liquid

High pressure liquid to machine

Fig. 5.3. Hydraulic  intensifier.
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 — The valves V1 and V3 are then closed and the valves V2 and V4 are opened. The low pressure 
liquid (from supply) then enters the fixed cylinder, and forces the sliding cylinder to move 
downward; pressure of liquid beneath is raised and the high pressure liquid is supplied to 
the driven machine.

 The above cycle of operation is repeated.
 The intensifier described above is single-acting (which gives supply during downward stroke 
only); however, double-acting intensifiers are also made, which give continuous supply of high 
pressure liquid.
 — By means of an intensifier, it is possible to raise the intensity of pressure as high as 160 MN/m2.
 — Depending upon fluid used, intensifiers may also be of the following types:
 (i) Hydro-pneumatic intensifier—Here air is supplied to the fixed cylinder instead of low pres-

sure liquid.
 (ii) Steam intensifier—Here steam under pressure is supplied to the fixed cylinder instead of 

low pressure liquid.
 Let, p1 = Pressure intensity of low pressure liquid (from supply) in the fixed cylinder,
  A1 = Cross-sectional area of sliding cylinder,
  p2 = Intensity of high pressure liquid in the fixed ram, and
  A2 = Cross-sectional area of the fixed ram.
 The force exerted by low pressure liquid on the sliding cylinder in the downward direction = p1 × A1
 The force exerted by high pressure liquid on the sliding cylinder in the upward direction = p2 × A2
 For the equilibrium of the sliding cylinder at any position, we have
  p1A1 = p2A2

	 ∴ The intensity of high pressure liquid, p2 = 1 1

2

p A
A

 (neglecting friction effects) ...(5.4)

 Example 5.9.   A hydraulic intensifier gets the low pressure liquid at a pressure of 40 bar and 
delivers it to a machine at a pressure of 160 bar. If the intensifier has a capacity of 0.021 m3 and 
stroke 1.2 m, calculate the diameters of the fixed ram and the sliding cylinder to be used for this 
intensifier.

 Solution.  Intensity of pressure of low pressure liquid, p1 = 40 bar = 40 × 105 N/m2

  Intensity of pressure of high pressure liquid, p2  = 160 bar = 160 × 105 N/m2

  Capacity of intensifier = 0.021 m3

  Stroke length = 1.2 m

 Diameters of fixed ram (D2) and the sliding cylinder (D1):
  Capacity of intensifier = Area of fixed ram × stroke length

  0.021 = A2 × 1.2,    or,   A2 = 20.021 0.0175 m
1.2

=

	 ∴ 2
24

Dp
 = 

1/2

2
4 0.01750.0175, or, 0.149 mD × = = p 

 or 149 mm (Ans.)

 Considering equilibrium of the sliding cylinder (neglecting friction effects), we have:
  p1 A1 = p2 A2,  or,  40 × 105 × A1 = 160 × 105 × 0.0175, or,  A1 = 0.07 m2

	 ∴ 2
14

Dp
 = 

1/2

1
4 0.070.07, or, 0.298 md × = = p 

or 298 mm (Ans.)
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 Example 5.10.   An intensifier has a ram diameter of 150 mm and a sliding cylinder diameter 
of 750 mm. Calculate the pressure of water on the low pressure side of the intensifier if the pressure 
of water on high pressure side is 21000 kN/m2. The loss due to friction at each of the packings of 
the intensifier is 5% of the total force on each of the packings.

 Solution.  Sliding cylinder diameter, D1 = 750 mm = 0.75 m
  Ram diameter, D2 = 150 mm = 0.15 m
  Pressure of water on high pressure side, p2 = 21000 kN/m2

  Loss due to friction, k  = 5% of the total force on each of the packings.
 Pressure of water on low pressure side, p1:
 Considering equilibrium of the sliding cylinder, we have:

  1 1 1 –
100

kp A  
 
 

 = 2 2

1 –
100

p A
k 

 
 

 or, 2
1

50 75 1 –
4 100

p p  × × ⋅  
 

 = 2 121000 0.15
4 (1 – 5 /100)
p

× × ×

 or, p1 × 4
p  × (0.75)2 × 0.95 = 21000 × 4

p  × 0.152 × 1
0.95

 or, 0.4197p1 = 390.6 ∴ P1 = 
390.63
0.4197

= 2930 7 kN / m.  (Ans.)

 Example 5.11.  An intensifier receives water from an overhead tank through a pipeline  
60 mm in diameter and 110 m long and conveys high pressure water to a hydraulic press which 
has 250 mm ram diameter and exerts a force of 350 kN. The diameters of ram and sliding piston 
of intensifier are 0·1 m and 1 m respectively. If the level  of  water in  the  overhead tank is 15 m 
above the inlet to the low pressure side of the intensifier, calculate the speed with which the ram of 
the hydraulic press moves to exert the force.
 Take friction co-efficient, f = 0.0075 for the pipeline between the supply reservoir and the 
intensifier.
 Solution.  Diameter of sliding piston of intensifier, D1 = 1 m
  Diameter of ram of intensifier, D2 = 0.1 m
  Diameter of pipeline, dp = 60 mm = 0.06 m
  Length of pipeline, lp = 110 m
  Diameter of ram of hydraulic press, D = 250 mm = 0.25 m
  Friction co-efficient, f = 0.0075

 Velocity of the ram of hydraulic press, Vr:
 Let,  Vp = Velocity of water in the pipeline.
 Loss of head due to friction,

  hf = 
2 2

24 4 0.0075 110
2.8

2 0.06 2 9.81
p p p

p
p

fl V V
V

d g
× × ×

= =
× × ×

 Pressure head on the low pressure side of the intensifier,
  h1 = (15 – 2.8 V2

p) m of water

	 ∴  Corresponding intensity of pressure, p1 = wh1 = 9810 (15 – 2.8 V2
p) N/m2
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 Pressure intensity on the high pressure side of the intensifier,

  p2 = 

2

2 21
1

22

1
49810 (15 – 2.8 ) 9810 (1500 – 280 )

0.1
4

p p
Ap V V
A

p × 
× = × = × p × 

 

 Neglecting loss of pressure between the intensifier and hydraulic press, force on the ram of 
hydraulic press

   = 9810 (1500 – 280 V2
p) × 4

p  × 0.252 ; this force equals the load on press.

	 ∴	 9810 (1500 – 280 V2
p) × 4

p  × 0.252 = 350 × 1000

 or, 1500 – 280 V2
p = 726.8,    or,    Vp = 

1/21500 – 726.8 1.66 m
280

  = 
 

 Discharge through the pipeline = 4
p  × 0.062 × 1.66 = 0.00469 m3/s

 The same discharge flows to the low pressure side of the intensifier.
 Discharge on the high pressure side of the intensifier

   = 
2

–5 30.10.00469 4.69 10 m /s
1

 × = × 
 

	  1

2

Q
Q

 = 
2

1 1 2 2
2 1 1

2 2 1 1
, or,

A L A A DQ Q Q
A L A A D

   
= = × =   

   

 where, Q1 = Rate of discharge of low pressure liquid,
  Q2 = Rate of discharge of high pressure liquid  to machine, and
  L = Stroke length.

 From continuity considerations, we have:

  4
p  × 0.252 × Vr = 4.69 × 10–5, or, Vr = 

–5

2

4.69 10 0.000955 m/s
0.25

4

×
=

p
×

   = 0.0573 m/min (Ans.)

5.4.  HYDRAULIC PRESS

 The hydraulic press is a device used for lifting heavy loads by the application of much smaller 
force. It is based on Pascal’s law, which states that intensity of pressure is transmitted equally in all 
directions through a mass of fluid at rest.
 Working principle. The working 
principle of a hydraulic press may be explained 
with the help of Fig. 5.4. Consider a ram and 
plunger, operating in two cylinders of different 
diameters, which are inter-connected at the 
bottom, through a chamber, which is filled with 
some liquid.

 
 
 
 
 
 
 
 
  

W

Ram

p p

Plunger

F

Liquid

Fig. 5.4. Working principle of hydraulic press.
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 Let, W = Weight to be lifted,
  F = Force applied on the plunger,
  A = Area of ram, and
  a = Area of plunger.

  Pressure intensity produced by the force F, p = 
Area of plunger

F F
a

=

 As per Pascal’s law, the above intensity p will be equally transmitted in all directions.

	 ∴	 The pressure intensity on ram = 
F Wp
a A

= =

 or, W = 
AF
a

×  ...(5.5)

 Eqn. (5.5) indicates that by applying a small force F on the plunger, a large force W may be 
developed by the ram.
  Mechanical advantage of press = A

a
 If the force in the plunger is applied by a lever which has a 

mechanical advantage L
l  (Fig. 5.5), then total mechanical advantage 

of machine
   = 

L A
l a
×

 The ratio L
l  is known as leverage of press.

 Fig. 5.6 shows an ‘Elementary Inverted Hydraulic Press’.
 — It consists of a cylinder (fixed) in which the ram slides. The lower end of the ram carries 

a movable platen which 
moves up and down with 
the ram. The upper and 
lower stationary platens are 
joined by columns.

 — When liquid under high 
pressure is supplied to the 
cylinder, the ram moves 
downward and applies 
tremendous pressure (equal 
to the product of intensity of 
pressure supplied and area of 
the ram) upon any material 
placed between the movable 
platen and lower stationary 
platen.

L
l

F

Plunger

Effort P

Fig. 5.5

Lower
stationary

platen

Return
weight

Column

Return
weight

Movable
platen

Upper
stationary

platen

Ram

Cylinder
High pressure

liquid

Fig. 5.6. Elementary Inverted Hydraulic Press.
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 For bringing the ram back in position, the liquid from the cylinder is taken out, subsequently the 
ram (along with movable platen) moves up by the action of return weights.
 It may be noted that in some large presses it is possible to produce total thrust ranging from 
about 50 MN to 100 MN.
 Hydraulic presses may be employed for the following jobs:
 (i) Metal press work (to press sheet metal to any required shape).
 (ii) Drawing and pushing rods.
 (iii) Bending and straightening any metal piece.
 (iv) Packing press.
 (v) Cotton press.
 (vi) Autoclave vulcanising press.
 (vii) To prepare moulds and casting of bakelite (Bakelite press).
 (viii) Forgoing press.
 (ix) Plate press etc.

 Example 5.12.   The diameters of ram and plunger of a hydraulic press are 100 mm and  
12.5 mm respectively. Find the force required to be applied on the plunger to raise a load of 24 kN 
on the ram. If the plunger has a stroke of 200 mm, how many strokes will be required to lift the load 
by 500 mm. Also calculate the volume of additional liquid required. Further if the time taken to lift 
the load is 12 minutes, what will be power required to drive the plunger? Neglect frictional effects.

 Solution.  Diameter of ram, D = 100 mm = 0.1 m.

	 ∴  Area of ram, A = 2 20.1 0.00785 m
4
p
× =

  Diameter of plunger, d = 12.5 mm = 0.0125 m

	 ∴  Area of plunger, a = 2 20.0125 0.0001227 m
4
p
× =

  Load to be raised, W = 24 kN
  Stroke of plunger = 200 mm = 0.2 m
  Distance through which load is to be lifted = 500 mm = 0.5 m
  Time taken to lift the load = 12 minutes

 Force required to raise a load of 24 kN, F:
 Since intensity of pressure is same throughout a static mass of fluid,

 
F
a

 = 
24 24 0.0001227, or, , or,

0.0001227 0.00785 0.00785
×

= = = 0 375 kNW F F
A

.  (Ans.)

 Number of strokes, n:
 Number of strokes required to lift the load by 0.5 m,

  n = 
Total volume of liquid to be displaced

Volume of liquid displaced in one stroke of plunger
 

 or, n = 

2

2

(0.1) 0.5
4

(0.0125) 0.2
4

p
× ×

p
× ×

 = 160 (Ans.)
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  Volume of additional liquid = 2(0.1) 0.5
4
p
× × = 30 00392 m.  (Ans.)

 Power required to drive motor, P:
  Work done by the press = 24 × 0.5 = 12 kNm (in 12 minutes)

  Work done per sec. = 
12 0.01666 kNm/s

12 60
=

×

	 ∴ Power required, P = 0.01666 kW or 16.66 W (Ans.)

 Example 5.13. A hydraulic press has a ram of 180 mm diameter and plunger of 36 mm 
diameter, with stroke length of 300 mm. Weight exerted by press ram amounts to 7 kN and distance 
moved is 0·9 m in 15 minutes. Determine:

 (i) The force applied on plunger,
 (ii) The number of strokes performed by the plunger,
 (iii) Work done by the press ram, and
 (iv) Power required to drive the plunger.

 Solution.  Diameter of ram, D = 180 mm = 0.18 m

	 ∴		 		 Area of ram, A = 
4
p  × 0.182 = 0.0254 m2

     Diameter of plunger, d = 36 mm = 0.036 m

	 ∴     Area of plunger, a = 
4
p  × 0.0362 = 0.001018 m2

    Weight exerted by press ram, W  = 7 kN
     Stroke length of plunger, x  =  300 mm = 0.3 m
   Distance moved by the ram, y  =  0.9 m

 (i) The force applied on plunger, F:

  We know, F
a

 = 0.001018, or, 7
0.0254

W aF W
A A

= × = × = 0 28 kN.  (Ans.)

 (ii) The number of strokes performed by the plunger, n :

    Number of strokes, n = 0.0254 0.9 74.85
0.001018 0.3

A y
a x
× = × = 75  (Ans.)

 (iii) Work done by the press ram:
  Work done by the press ram = 7 × 0.9 = 6.3 kNm (Ans.)

 (iv) Power required to drive the plunger, P:
  Power required to drive the plunger = Work done by the ram per sec.

    = 6.3 kW 0.007 kW or
15 60

=
×

7 W  (Ans.)

 Example 5.14.   The ram and plunger of a hydraulic press are 250 mm and 30 mm respectively, 
and the leverage of handle is 12 : 1. With a plunger stroke of 250 mm, the press is able to lift  
180 kN through 1. 25 m in 2 minutes.
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Determine:
 (i) Force applied at the end of lever,
 (ii) Number of strokes to be performed by the plunger in one second, and
 (iii) Power required to drive the plunger.
 Take the packing friction of the plunger as well as the ram as 5% of the load.

 Solution.  Diameter of ram, D = 250 mm = 0.25 m

	 ∴    Area of ram, A = 
4
p  × 0.252 = 0.04908 m2

     Diameter of plunger, d  = 30 mm = 0.03 m

	 ∴    Area of plunger, a = 
4
p  × 0.032 = 0.0007068 m2

     Leverage of handle = 12 : 1
     Plunger stroke = 250 mm = 0.25 m
     Load lifted, W  = 180 kN
     Packing friction, k  = 5% of the load.
 (i) Force applied at the end of lever, F′:
  The effective force transmitted to create pressure on the liquid is reduced by the amount lost 

in overcoming friction. Also, pressure intensity in a static mass of fluid is same throughout.

	 	 ∴ p × a = 1 – , and, 1 –
100 100

k kF W p A   = ×   
   

  or,  Intensity of pressure, p = (1 – /100)
(1 – /100)

F k W
a A k

=

  or, F = 2 2
180 0.0007068 2.87 kN

51 – 0.04908 1 –
100 100

Wa
kA

×
= =

   ×   
   

  Effort to be applied at the end of lever,

    F′ = 2.87
Leverage of handle 12

F
= = 0 239 kN. (Ans.)

 (ii) Number of strokes per second:

  Number of strokes  =  
A

a

y

x
× =

Distance moved by ram

Stroke length of plunger

( )

( )

.

.

0 04908

0 00007068

1 25

0 25
348×

.

.


	 	 ∴ Strokes per second = 348
2 60×

3  (Ans.) 

 (iii) Power required to drive the plunger, P:
    Work done at plunger = 2.87 × 0.25 × 349 = 248.69 kNm  (in 2 minutes)

    Work done per second = 249.69 2.08 kNm/s
2 60

=
×

	 	 ∴  Power required, P = 2.08 kW (Ans.)

5.5.  HYDRAULIC CRANE

 Hydraulic crane is a device which is used for lifting heavy loads (upto 25 MN). It is widely used 
in docks for loading and unloading ships, warehouses, foundary workshops and heavy industries.
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 Construction. A hydraulic crane (Fig. 5.7) consists of a crane and a hydraulic jigger. The 
crane has a central mast from which a tie and a jib are fixed. The mast is fixed on a pedestal which 
can revolve. The load can be lifted and moved around the crane area depending upon the length of 
the jib. The load is suspended by a wire rope which passes over a pulley at the end of the jib and 
over the tie-rod to the hydraulic jigger. The hydraulic jigger consists of a cylinder and a ram at the 
end of which pulleys are attached. The pulleys enable to increase the velocity ratio between the wire 
rope and the ram (A four sheave pulley block system will have a velocity ratio 4 : 1, thus the load 
suspended at one end of the wire rope will move with 4 times the speed of the ram).
 Working. When the load is to be lifted by the crane, liquid under pressure is admitted to the 
cylinder of the jigger; the liquid forces the sliding ram to move vertically up. Due to the movement 
of the ram in the vertically upward direction, the movable pulley block (attached to the ram) also 
moves upward. The distance between the two pulley blocks increases, the wire or rope is pulled and 
the load is lifted up. Lowering of the load is achieved by removing the liquid from the cylinder by 
Jigger through the outlet valve. As the liquid leaves the cylinder, the distance between the two sets of 
pulleys decreases which results in releasing more length of the wire rope and the load gets lowered.

Jigger

Inlet for liquid under pressure

Fixed pulley block
fixed to cylinder

Wire rope

Cylinder

High pressure
water

Ram

Movable pulley
block fixed to ram

Mast

Tie

Ji
b

Load

Guide pulley

wire rope

Fig. 5.7. Hydraulic crane.

 The lifting speed of a modern hydraulic crane may be about 75 m per minute. However, 
hydraulic cranes have been replaced by the electric cranes these days.

 Example 5.15.   A hydraulic crane ram has a diameter of 150 mm and the ratio between the 
movement of the load and the ram is 6 to 1. Water is supplied through a 40 mm diameter pipe 
having a length of 500 m, the pressure at the inlet end of the pipe being 7550 kN/m2. The co-
efficient of friction for the pipe is 0·01. A pressure of 440 kN/m2 on the ram is required to overcome 
the mechanical losses. Determine:

 (i) The maximum speed with which a load of 11 kN can be lifted, and
 (ii) The load and speed of lifting which correspond to the maximum power obtained from the 

crane.
 Solution.  Diameter of ram, D = 150 mm = 0.15 m.
  The ratio between the movement of the load and the ram = 6 : 1
  Diameter of pipe, d = 40 mm = 0.04 m
  Length of pipe, l = 500 m
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  Pressure at inlet end of pipe = 7550 kN/m2

  The co-efficient of friction for the pipe, f = 0.01
  Pressure required on the ram to overcome mechanical losses = 440 kN/m2

  Load to be lifted, W = 11 kN
 (i) The maximum speed with which a load of 11 kN can be lifted:

  Pressure head at inlet end of pipe = 7550 769.6 m
9.81

=  ( w = 9.81 kN/m3)

 Pressure head required to overcome mechanical losses = 440 44.8 m
9.81

=

  Frictional loss in pipe = 
2 2

24 4 0.01 500 25.48
2 0.04 2 9.81

flV V V
d g

× × ×
= =

× × ×

 (where, V = velocity of water in pipe)
	 ∴ Pressure head on the ram = (769.6 – 44.8 – 25.48V2) m

  Pressure head required on the ram = 
2

11 6 380.7 m
0.15 9.81

4

×
=

p
× ×

	 ∴  769.6 – 44.8 – 25.48V2 = 380.7,  or, V2 = 769.6 – 44.8 – 380.7 13.5
25.48

=

	 ∴ V = 3.67 m/s
  Velocity of pipe × area  =  Velocity of ram × ram area

  3.67 × 
4
p  × 0.042 = Velocity of ram × 

4
p  × 0.152

 or,  Velocity of ram  = 
20.043.67 0.26 m/s

0.15
 × = 
 

	 ∴  The maximum speed of the load = 0.26 × 6 = 1.56 m/s (Ans.)
 (ii) The load and speed of lifting:

 For maximum transmission of power, the pressure losses in the pipeline should be 1
3

rd of the 

available head. Therefore,

  25.48 V2 = 
1/2

1 769.6769.6, or, 3.17 m/s
3 3 25.48

V
 

× = = × 

  Speed of lifting the head = 
20.043.17 6

0.15
 × × = 
 

1 35 m / s.  (Ans.)

  Available head at the ram = 769.6769.6 – 44.8 – 468.3 m
3

  = 
 

   = 9.81 × 468.3 kN/m2 = 4594 kN/m2

	 ∴ The load that can be lifted = 24594 0.15
6 4

p × × = 
 

13 53 kN. (Ans.)
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 Example 5.16.  In an installation of six hydraulic cranes, the working cycle of each of 
which takes 90 seconds in hoisting and lowering, each crane is fed with water at a pressure of  
4900 kN/m2 and is required to lift a load of 50 kN at a speed of 18 m/min, through a total height of  
12 m, the jigger system giving a velocity ratio of 6. Estimate the diameter and stroke of the rams 
assuming an efficiency of 60 percent.
 It is assumed that all six cranes are making the working stroke at the same time. Calculate the 
minimum capacity of the pump feeding the installation and that of the accumulator.
 [Anna University]

 Solution.  Number of hydraulic cranes = 6
  Time taken by working cycle of each of the six cranes, t = 90 s
  Pressure of water fed to each crane, p = 4900 kN/m2

  Load to be lifted, W = 50 kN
  Speed with which load is lifted, V = 18 m/min
  Total height through which load is lifted, H = 12 m
  Velocity ratio = 6
  Efficiency of each ram, η = 60%

 Diameter (D) and stroke of each ram (L):
 Load on each ram × velocity of ram × η = Load lifted × velocity of lifting the load

	 ∴	 Load on each ram  = velocity ratio 50 6 500 kN
0.6

W × ×
= =

η

  Area of arm  = 2Load on ram 500 0.102 m
Pressure ( ) 4900p

= =

	 ∴ 2
4

Dp ×  = 
1/20.102 40.102, or, 0.36 mD × = = = p 

360 mm (Ans.)

  Stroke of ram, L = Distance ( ) 12
Velocity ratio 6

H
= = 2 m (Ans.)

 Minimum capacity of the pump:
  Volume swept by ram = Area of ram × stroke
   = 0.102 × 2 = 0.204 m3

 Since there are 6 cranes, volume of water supplied by the pump = 0.204 × 6 = 1.224 m3

  Minimum capacity of the pump = Volume of water 1.224
Time taken 90

= = 30 0136 m / s.  (Ans.)

 Capacity of accumulator:

  Operating time of cranes = 12 60 40 s
18

H
V

= × =

	 ∴ Idle time of crane = 90 – 40 = 50 s
 But the accumulator is continuously fed by the pumps,
	 ∴ Accumulator volume
   = 0.0136 × 50 = 0.68 m3 (Ans.)
  Accumulator capacity = p × volume
   = 4900 × 0.68 = 3332 kNm (Ans.)
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5.6.  HYDRAULIC LIFT

 Hydraulic lift is a device used for carrying persons 
and loads from one floor to another, in a multi-storeyed 
building. The hydraulic lifts are of the following two 
types:
 1. Direct acting hydraulic lift, and
 2. Suspended hydraulic lift.
 1. Direct acting hydraulic lift. Refer to Fig. 5.8. 

It consists of a ram sliding in a cylinder. A plat-
form or a cage is fitted to the top end of ram on 
which goods may be placed or the persons may 
stand. As the liquid under pressure is admitted to 
the cylinder, the ram moves up and the cage is 
lifted. The lift of the cage is equal to the stroke 
of the ram. The cage moves in the downward 
direction when the liquid from the fixed cylinder 
is removed.

 2. Suspended hydraulic lift. Refer to Fig. 5.9.
  The suspended hydraulic lift is a modified form of the direct acting hydraulic lift. It is fitted 

with a jigger which is exactly same as in the case of a hydraulic crane (For the construction 
and operation of jigger, refer to Art. 5.5). The cage is suspended by ropes. It runs between 
guides of hard wood or round steel. In order to balance the weight of the cage, sliding balance 
weights are provided.

Cage

Sliding
ram

Fixed
cylinder

Liquid
under

pressure

2nd floor

1st floor

Ground floor

Fig. 5. 8 Direct acting hydraulic lift.
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1st floor
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Cage
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Liquid
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Fig. 5.9. Suspended hydraulic lift.
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 Modern lifts are of suspended type and have a high velocity ratio; the lifting speeds range from 
100 to 120 m per minute. 
 The hydraulic lifts have been superseded by electric lifts. However hydraulic lifts are preferred 
in places where there is danger due to fire or explosions. The hydraulic lifts are also usually provided 
as standby units along with electric lifts.
 Example 5.17.   A hydraulic lift is required to lift a load of 60 kN through a height of 12 m, 
once in every 90 seconds. If the speed of the lift is 0.6 m/s, determine:
 (i) Power required to drive the lift,
 (ii) Working period of lift, and
 (iii) Ideal period of the lift.
 Solution.  Load to be lifted by the lift, W = 60 kN
  Height, H = 12 m
  Speed of the lift, Vlift = 0.6 m/s
  Time for one operation = 90 s.

 (i) Power required to drive the lift, P:
     Work done in lifting the load in 90 s = W × H = 60 × 12 = 720 kNm

	 	 	 ∴  Work done/sec.  = 720 8 kNm/s
90

=

	 	 	 ∴  Power required to drive the lift, P = 8 kW (Ans.)

 (ii) Working period of lift:

    Working period of lift = 
lift

Height of lift ( ) 12
Velocity of lift ( ) 0.6

H
V

= = 20 s.

 (iii) Ideal period of lift:
    Ideal period of lift = Total time – working period of lift
     = 90 – 20 = 70 s (Ans.)

 Example 5.18.   In a hydraulic main of 80 mm diameter a steady pressure of 7500 kN/m2 is 
maintained by an accumulator. A hydraulic lift is supplied with pressure water from the main, and 
the point at which the  supply to lift is drawn off is at a distance of 640 m from the accumulator. 
The ram of the lift is 200 mm in diameter and the load on it, inclusive of its own weight, is 110 kN. 
Assuming the friction of the ram and cage etc. to be equivalent to an addition of 5% of the gross 
load on the ram, determine the speed with which the lift will ascend.

 Take co-efficient of friction, f = 0.008 for the hydraulic main. Neglect the minor losses.

 Solution.  Diameter of the hydraulic main, d = 80 mm = 0.08 m
  Length of main, l = 640 m
  Diameter of the ram, D = 200 mm = 0.2 m
  Total load, W = 110 kN
  Friction of the ram and cage etc. = 5% of gross load on the ram
  Pressure in the main = 7500 kN/m2

  Co-efficient of friction for the main, f = 0.008.
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 Speed with which the lift will ascend, Vlift:
 Let, V  =  Velocity of water in hydraulic main.

  Loss of head due to friction, hf  = 
2 2

24 4 0.008 640 13.05
2 0.08 2 9.81

flV V V
d g

× × ×
= =

× × ×

  Corresponding pressure intensity, p = whf = 9.81 × 13.05V2 = 128V2 kN/m2

 ( w = 9·81 kN/m3)
	 ∴  Pressure intensity at the lift = (7500 – 128V2) kN/m2

  Force on the ram of hydraulic lift = (7500 – 128V2) × 
4
p 	× 0.22 kN	

 This force equals the load to be lifted during the upward motion of the lift which is

   = 5110 110 115.5 kN
100

 + × = 
 

	 ∴	 (7500 – 128V2) ×	
4
p  × 0.22 = 115.5,  or,  7500 – 128V2 = 2

115.5 4 3676.48
0.02
×

=
p ×

 or V = 
1/27500 – 3676.48 5.46 m/s

128
  = 
 

  Discharge through the pipeline = 20.08 5.46
4
p × ×  = 0.02744 m3/s

 Since the same discharge flows to the ram of hydraulic lift, therefore, the velocity of lift,

  Vlift = 
2 2

0.02744 0.02744

0.2
4 4

= =
p p
× ×D

0 873 m / s.  (Ans.)

 Example 5.19.   A load of 120 kN is required to be lifted by a hydraulic lift through a height of 
16 metres once in every 2 minutes. The lift travels up at the rate of 1.25 m /s. During working stroke 
of the lift, the water is supplied to it from the accumulator and the pump at a pressure intensity of 
3200 kN/m2. If the efficiency of the pump is 82% and that of the lift is 77% determine:
 (i) Power required to the drive the pump, and
 (ii) Minimum capacity of the accumulator.
  Neglect friction losses in the pipe.

 Solution.  Load to be lifted, W = 120 kN
  Height, H = 16 m
  Speed of weight, V = 1.25 m/s
  Pressure intensity of water, p = 3200 kN/m2

    Efficiency of the pump, ηpump = 82%
    Efficiency of the lift, ηlift = 77%.

  (i) Power required to drive the pump, Ppump:

  Work done by water in raising the lift = Load lifted × distance moved per sec.
     = W × V = 120 × 1.25 = 150 kNm/s
    Power used at the lift = 150 kW
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  Power supplied to the lift  = 150
0.77

 = 194.8 kW

 This power has been supplied to the lift by water supplied from the pump and accumulator.

  Working period of the lift  = 16
1.25

H
V

=  = 12.8 s

  Ideal period of lift = Total time – working period of lift
   = (2 × 60) – 12.8 = 107.2 s
 During idle period the energy will be stored in the accumulator and during the working period 
the energy will be supplied to the lift from the accumulator.
 Let Ppump be the output of pump in kW, then,
 Energy stored in accumulator during the idle period
   = P′pump × 107.2 kJ ...(i)
 The above energy is supplied to the lift during the working period of 12·8 s.

 Energy supplied by the accumulator per sec. = 
107.2

8.37 kJ/s
12.8

pump
pump

P
P

′ ×
′=

 Power supplied by the accumulator = 8.37 P′pump kW
	 ∴	 Total power supplied by the pump and accumulator
   = P′pump + 8.37 P′pump = 9.37 P′pump

 But power supplied to the lift  = 194.8 kW

	 ∴ 9.37 P′pump = 194.8194.8, or, 20.79 kW
9.37pumpP′ = =

	 ∴ Power required to drive the pump, Ppump = 
(output of pump)

(efficiency of pump)
pump

pump

P′
′η

   = 20.79
0.82

= 25 35 kW.  (Ans.)

 (ii) Minimum capacity of accumulator:
 From expression (i), the energy stored in accumulator during the idle period
   = P′pump × 107.2 = 20.79 × 107.2 = 2228.69 kNm
 Also, the energy stored in the accumulator = p × volume of cylinder of the accumulator
	 ∴ p × volume of cylinder of the accumulator = 2228.69

	 ∴ Volume (capacity) of the accumulator = 2228.69
3200

= 30 6965 m.  (Ans.)

5.7.  HYDRAULIC RAM

 Hydraulic ram is device with which small quantities of water can be pumped to higher levels 
from the available large quantity of water of low head. It works on the principle of water hammer.
 Construction. Fig. 5.10 shows the hydraulic ram. It consists of a valve box wherein 
low head water flows. The box contains a waste valve V1 which opens inwards, and a 
delivery valve V2, which opens outwards. Both the valves V1 and V2 are non-return valves 
that allow the flow only in one direction. Valve V2 communicates with an air vessel which 
is connected to the delivery tank through a delivery pipe as shown in the Fig. 5.10. 
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 Fig. 5.10. Hydraulic ram.

 Working. It works on the principle of ‘water hammer’. When a flowing liquid is suddenly 
brought to rest, the change in momentum of liquid mass causes a sudden rise in pressure. This rise 
in pressure is utilised to raise a portion of the liquid to higher levels.
 — Initially the water flows down the supply pipe, the valve V1 is open and water escapes 

through it to waste.
 — As the velocity of flow in the supply pipe increases, dynamic pressure on the underside of 

valve V1 becomes amply high so as to lift the valve V1 and ultimately close it.
 — Due to quick closure of valve V1 water in the supply pipe is suddenly brought to rest and 

consequently pressure in the valve box increases.
 — The increased high pressure lifts the valve V2 and a part of water enters the air vessel. Sub-

sequently air pressure inside the air vessel increases and that forces water to delivery tank 
through the delivery pipe.

 As soon as momentum of water gets destroyed in the valve box, valve V2 closes and the valve 
V1 opens (the pressure in the valve box falls below the atmospheric pressure momentarily); the flow 
of water from supply tank recommences and the cycle is repeated. The air vessel provides storage 
and helps to regulate the flow at the delivery end.

 Efficiency. The efficiency of a hydraulic ram depends upon the following:

 (i) Losses in the pipe, (ii)  losses in the valve box, and (iii) ratios l
h

 and h
H

.

  From experiments it has been observed that, for optimum performance, values of  l
H

 and h
H

 

should be about 2.5 and 5 respectively. It is possible to obtain efficiencies as high as 75% under 
these conditions.
 The performance of the hydraulic ram is influenced by the number of beats (openings of waste 
valve) which can be varied by varying the length of the travel of valve and weight of valve.
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 The efficiency of hydraulic ram is expressed in two ways:
 Let, Q = Discharge from supply tank to the valve box,
  q = Discharge from valve box to delivery tank,
  h = Height of water in the supply tank above the valve box,
  H = Height of water in the delivery tank above the valve box,

  Then, D’ Aubuisson’s efficiency = 
Energy supplied to the delivery tank

Energy supplied from the supply ttank

   = wqH qH
wQh Qh

=  ...(5.6)

  Rankine’s efficiency = ( – )
( – )
q H h

Q q h
 ...(5·7)

 Reasons for low efficiency of hydraulic ram:
 Following are the reasons due to which the efficiency of hydraulic ram is quite low:
 (i) High friction and secondary losses in the supply pipe and the valves.
 (ii) Loss of kinetic energy associated with the liquid leaving the waste valve.
 All the above mentioned losses vary as square of the mean velocity, whereas the input varies 
directly as the mean velocity.
 The efficiency of the ram can be improved by reducing the mean velocity. It can be accomplished 
by reducing the lift of the waste valve (this limits the maximum velocity in the supply pipe and hence 
the mean velocity of flow):

 Working cycle of a hydraulic ram:
 Let, Vwv = Velocity of liquid passing through waste valve just before its closure, (wv 

stands for waste valve)
  dwv = Diameter of waste valve,
  bwv = Lift of the waste valve,
  Wwv = Weight of the waste valve,
  hwv = Dynamic pressure head acting on the waste valve,
  d = Diameter of supply pipe,
  Vmax = Maximum velocity in the supply pipe just before the closure of the waste 

valve
  ls = Length of supply pipe,
  t1 = Time during which the velocity in the supply pipe builds up from zero to Vmax, 

and
  t2 = Time during which the waste valve remains closed, i.e. the time during which 

delivery valve remains open in one beat  (i.e. one complete cycle).

 The dynamic pressure head,  hwv = 
2

2
wv wvp V
w g

=  ...(5.8)

 Also, Wwv = 2
2

4
, or,

4
wv wv

wv wv wv
wv

p W
d p h

w w d
p × = =  p 

 ...(5.9)
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 Invoking continuity equation, we have:

  (p	× dwv × bwv)Vwv = 2
max4

d Vp
× ×  ...(5.10)

 The time t1 during which the velocity in the supply pipe builds up from zero to Vmax is also equal 
to the time during which the waste valve remains open in one beat for gradual closure of valve in 
rigid pipe, the rise in pressure is given by,

  h = max max
1

1
, or,s sl V l V

t
g t hg

=  ...(5.11)

 From water hammer equation, we have:

  (H – h) = max max
2

2
, or,

( – )
s sl V l V

t
g t H h g
×

=
×

 ...(5.12)

	 ∴ Total time for one cycle is given by,

  t = t1 + t2 = max max max 1 1
( – ) –

s s sl V l V l V
h g H h g g h H h

 
+ = + 

 
  ...(5.13)

 The number of beats per minute N, is equal to (60/t) where, t is the time for one beat in seconds.
 Let, q = Rate of discharge of water actually lifted by the ram, and
  Qwv = Rate of discharge of water flowing past the waste valve, then,

  q = 2 max 2

4 2
V td

t
p   

      
 ...(5.14)

  Qwv = 2 max 1

4 2
V td

t
p   

      
 ...(5.15)

 Fig. 5.11 shows the working cycle of hydraulic 
ram graphically. In Fig. 5.11 (a) is shown the 
velocity in supply pipe plotted against time, 
whereas Fig. 5.11 (b) shows the pressure head in 
the valve box plotted against time.
 Eqns. 5.11 and 5.12 have been derived on the 
assumption that the loss of head due to friction is 
negligible. However, if loss of head due to friction 
in supply pipe (hfs) and that in delivery pipe (hfd) 
are taken into account, then eqns. 5.11 and 5.12 are 
modified as follows:

  (h – hfs) = max

1

sl V
g t
×  ...(5.16)

  [(H – f) + hfd] = max

2

sl V
g t
×  ....(5.17)

 Eqn. 5.13, then, becomes:
  t = t1 + t2

 =  max 1 1
( – ) {( – ) }

s

fs fd

l V
g h h H h h

 
+ 

+  
  

 ...(5.18)
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Fig. 5.11. Graphical representation of a working
cycle of hydraulic ram.
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Performance of hydraulic ram:
 In Fig. 5.12 are shown the characteristic 
curves of hydraulic ram working under conditions 
of constant waste-valve lift, constant supply head 
and varying delivery head.
 — With the increase of delivery head the 

number of beats increases. This is owing 
to the fact that as the delivery head is 
increased, more rapid retardation is 
impressed on the liquid column in the 
supply pipe, as a consequences of which 
the time taken per beat decreases and 
hence the number of beats per minute increases.

 — Keeping the input unaltered, as the head increases the quantity of useful water per beat 
decreases. With increase in head the waste water per beat decreases slightly.

 Characteristic features of hydraulic ram:
 The characteristic features of hydraulic ram are as follows:
 1. It works automatically and requires very little maintenance.
 2. It does not need any external energy to pump water, but it works at the cost of large quantity 

of water.
 3. Negligible running cost.
 4. Due to absence of moving parts, frequent oiling is not required.
 5. It is particularly suitable for pumping water from a rivulet for irrigation purposes. It can be 

used for supplying water to remote regions where other  means of pumping water to higher 
heads are not available.

 With the increasing availability of electric power to drive pumps even at remote places, 
hydraulic ram is becoming obsolete. However, it is used in those place where plenty of water can be 
wasted.

 Example 5.21.   A hydraulic ram is receiving water at the rate of 0.022 m3/s from a height of 
3.3 m, and it raises 0.0022 m3/s to a height of 5 m from the ram. Determine D’Aubuisson’s and 
Rankine’s efficiencies of the hydraulic ram.

 Solution.  Discharge through the supply pipe, Q = 0.022 m3/s
  Supply head, h  = 3.3 m
  Discharge raised, q = 0.0022 m3/s
  Height of water raised from hydraulic ram, H = 5 m
 D’Aubuisson’s efficiency:
  D’Aubuisson’s efficiency = 0.0022 21 0.6364 or

0.022 3.3
qH
Qh

×
= =

×
63 64%.  (Ans.)

 Rankine’s efficiency:

  Rankine’s efficiency = ( – ) 0.0022 (21 – 3.3) or
( – ) (0.022 – 0.0022) 3.3
q H h
Q q h

= =
×

0 596 59 6%. .  (Ans.)

 Example 5.21.   The following test data refer to the hydraulic ram:
 Supply head 2.42 m; weight of waste water per minute 180 N; weight of water pumped per 
minute 5.4 N; and net head from the ram 44 m. Calculate D’Aubuisson’s and Rankine’s efficiencies.
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Fig. 5.12. Characteristic curves of hydraulic ram.
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 Solution.  Supply head, h = 2.42 m
  Weight of waste water per minute = 180 N
  Weight of water pumped per minute, W′ = 5.4 N
	 ∴ Total weight of water flowing per minute into the valve box, 
  W  = 180 + 5.4 = 185.4 N
  Net head pumped from ram, H = 44 m
 D’Aubuisson’s efficiency:

  D’Aubuisson’s efficiency = 5.4 44 0.529 or
185.4 2.42

qH wqH W H
Qh wQh Wh

′ ×
= = = =

×
52 9%.  (Ans.)

 [where, W′ (= wq) = weight of water pumped per minute, w being weight density of water.]

  Rankine’s efficiency = ( – ) ( – ) ( – )
( – ) ( – ) ( – )
q H h wq H h W H h
Q q h w Q q h W W h

′
= =

′

   = 5.4 (44 – 2.42) 0.515 or
(185.4 – 5.4) 2.42

=
×

51 5%.  (Ans.)

 Example 5.22.   A hydraulic ram is being supplied water at the rate of 0.05 m3/s from a 
height of 5 m, and it raises 0.005 m3/s to a height of 35 m from the ram. The length and diameter 
of the pipe are 120 m and 70 mm respectively. If the co-efficient of friction is 0.009, calculate 
D’Aubuisson’s and Rankine’s efficiencies.

 Solution.  Discharge through the supply pipe, Q = 0.05 m3/s
  Supply head, h = 5 m
  Discharge raised, q = 0.005 m3/s
  Height of water raised from hydraulic ram, H = 35 m
  Length of the pipe, l = 120 m
  Diameter of the pipe, d = 75 mm = 0.075 m
  Co-efficient of friction, f = 0.009.
 Efficiency of the ram:
 Head lost due to friction in the delivery pipe,

  hf = 
2 24 4 0.009 120

2 0.075 2 9.81
flV V

d g
× × ×

=
× × ×

 But, V = Velocity of water in delivery pipe = 
2 2

0.005 1.13 m/s
0.075

4 4

q

d
= =

p p
×

	 ∴ hf = 
24 0.009 120 1.13 3.75 m

0.075 2 9.81
× × ×

=
× ×

	 ∴ Effective head developed by the ram, He = H + hf = 35 + 3.75 = 38.75 m

  D’Aubuisson’s efficiency = 0.005 38.75 0.775 or
0.05 5

eq H
Q h
× ×

= =
× ×

77 5%.  (Ans.)

  Rankine’s efficiency = 
( – ) 0.005 (38.75 – 5) 0.75 or

( – ) (0.05 – 0.005) 5
eq H h

Q q h
= =

×
75%  (Ans.)

 Example 5.23.   Water is supplied to hydraulic  ram from  a  height of 1.5 m by a pipe 75 mm 
in diameter and 12 m long. The waste valve, which is 125 mm in diameter and of weight 15 N, lifts 
through 6.5 mm. Determine:
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 (i) The number of beats per minute, and
 (ii) The quantity of water delivered per minute to a tank 10 m above the waste valve.

 Solution.  Supply head, h = 1.5 m
    Diameter of the supply pipe, ds = 75 mm = 0.075 m
    Length of the supply pipe, ls = 12 m
    Diameter of waste valve, dwv = 125 mm = 0.125 m
    Weight of the waste valve, Wwv = 15 N
    Lift of the  waste valve, bwv = 6.5 mm = 0.0065 m
   Delivery head above the waste valve, H  = 10 m

 (i)  Number of beats per minute:

   The dynamic pressure head, hwv = 2
4 wv

wv

W
w dp

 ...[Eqn. (5.9)]

     = 2
4 15 0.1246 m of water

9810 0.125
×

=
× p ×

 Maximum velocity past waste valve just before closure,

    Vwv = 2 2 9.81 0.1246 1.56 m/swvgh = × × =

 If Vmax is the maximum velocity in the supply pipe, then from continuity consideration, we 
have:

    (p	× dwv × bwv) Vwv = 2
max4 sd Vp 

 
 

 ...[Eqn. (5.10)]

 or,   (p	× 0.125 × 0.0065) × 1.56 = 2
max1.075

4
Vp × × 

 

  or,  Vmax = 
2

( 0.125 0.0065) 1.56 0.9 m/s
0.075

4

p × × ×
=

p × 
 

 Let, t1 = The time during which the velocity in the supply pipe builds up from zero to Vmax, 
or, the time during which the waste valve remains open  in one beat, and

  t2 = The time during which the waste valve remains closed or the time during which 
the delivery valve remains open in one beat and (H – h) is the level of water in the 
delivery tank above that in the supply tank.

 Then, t1 = max 12 0.9 0.734 s
1.5 9.81

sl V
h g
× ×

= =
× ×

 ...[Eqn (5.11)]

 and, t2 = max 12 0.9 0.129 s
( – ) (10 – 1.5) 9.81

sl V
H h g
× ×

= =
×

	 ∴ Total time for one cycle (one beat), 
  t  = t1 + t2 = 0·734 + 0·129 = 0·863 s

  Number of beats per minute = 60
0.863

69  (Ans.)
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 (ii) The quantity of water delivered per second to delivery tank:
 Discharge delivered to tank per second,

     q = 2 max 2

4 2s
V td

t
p  × × 

 
 = 2 0.9 0.1290.075

4 2 0.863
p × × × 

 
      = 0.000297 m3/s 
      = 0.000297 × 60 m3/min 
      = 0.01782 m3/min. (Ans.)

5.8.  HYDRAULIC COUPLING

 Hydraulic (or fluid) coupling 
is a device which is employed for 
transmission of power from one shaft to 
another through a liquid medium. It has 
no mechanical connection or face to face 
contact. The magnitudes of input and 
output torques are equal.
 Construction. Refer to Fig. 5.13. 
It consists of the following two rotating 
elements:
 (i) Pump impeller. It is attached to a 

driving shaft of the prime mover 
which may be an I. C. engine, 
a steam engine or an electric 
motor.

 (ii) Turbine runner. It is attached to 
a driven shaft.

 Both the above units are enclosed 
in a single housing filled with a liquid, 
usually oil, because of its lubricating 
power, availability and stability. This oil 
serves to transmit torque from the pump 
impeller to the turbine runner. There is 
no direct contact between the driving 
and driven parts.
 Working. As soon as the prime mover starts rotating, the pump impeller also starts rotating 
and throws the oil outward by centrifugal action. The oil then enters the turbine runner and exerts a 
force on the runner blades. The magnitude of the torque increases with an increase in the speed of 
the driving shaft and eventually when this torque overcomes the inertia effects, the turbine runner 
and the driven shaft begin to rotate. The oil from the runner then flows back into the pump impeller, 
thus a complete hydraulic (oil) circuit is established.

 Expression for efficiency:
 In a hydraulic coupling the power is transmitted hydraulically from the driving shaft to driven 
shaft and is free from engine vibrations. The efficiency of power transmission may be as high as 98 
per cent.
 Let, Tp = Torque on the pump or driving shaft ‘1’ (i.e. input torque),
  ωp = Angular speed of the pump or the driving shaft ‘1’,

Pump impeller
Turbine runner

Driving shaft
(Angular

speed )�t

Driving shaft
(Angular

speed )�p

Casing
(Rotates

with pump)

Fig. 5.13. Hydraulic coupling.
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  Tt = Torque on the turbine or driven shaft ‘2’ (i.e. output torque), and
  ωt = Angular speed of the turbine shaft or driven shaft ‘2’.
	 ∴  Power input, Pi = Tp ωp, ...(5.19)
  Power output, Po = Tt ωt ...(5.20)
 Since the tangential momentum due to the velocity of whirl suffers no change as the oil passes 
from impeller blades to the runner blades, therefore, the torque on the driven shaft (Tt) equals that 
on the driving shaft (Tp), i.e. Tp = Tt.
 The efficiency (η) of the hydraulic coupling is defined as the ratio of power output to power 
input, i.e.

   = 0Power output ( )
Power input ( )

t t t

i p p p

P T
P T

ω ω
= =

ω ω
 ...(5.21)

   ( Tp = Tt)

 The ratio t

p

 ω
  ω 

 is known as speed ratio.

 Slip of hydraulic or fluid coupling is defined as 
follows :

 Slip, s = 
–

1 – 1 –p t t

p p

ω ω ω
= = η

ω ω
 ...(5.22)

 A typical efficiency (η) versus speed ratio t

p

 ω
  ω 

 

curve for a fluid coupling is shown in Fig. 5.14. The 
efficiency is zero when the speed ratio is zero and it 
increases uniformly till the speed ratio is about 0.95, 
and then it rapidly reduces to zero.
 Uses of hydraulic coupling:
 Although a hydraulic or fluid coupling has a low value of transmission efficiency when 
compared to mechanical coupling, yet it is widely used in the following fields:
 (i) Automobiles, marine engines, ropeway cable drive units and such other applications where 

driven shaft is required to run at a speed close to that of the driving shaft.
 (ii) These couplings are particularly useful where large initial loads are involved and smooth 

shock-free operations are required.

5.9.  HYDRAULIC TORQUE CONVERTER

 Hydraulic torque converter is a device used for transmitting increased or decreased power 
from one shaft to another. A variable torque is impressed on the driven member without the use of 
a gear train or clutch. The torque at the driven shaft may be increased about five times the torque 
available at the driving shaft with an efficiency of about 90 percent.

Construction and working:
 Refer to Fig. 5.15. The hydraulic torque converter consists of the following:
 (i) Pump impeller coupled to the driving shaft,
 (ii) Turbine runner coupled to the driven shaft, and
 (iii) Stationary/fixed guide vanes (also known as reaction members) provided between the im-

peller and the turbine runner.
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hydraulic coupling.
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 The liquid flowing from the 
pump impeller to turbine runner 
exerts a torque on the stationary 
guide vanes which change the 
direction of liquid, thereby making 
possible the transformation of 
torque and speed. Thus by suitably 
designing the stationary guide 
vanes the torque transmitted to 
the driving unit can be either 
increased or decreased. The torque 
relationship is given as :
  Tt = Tp + Tv ...(5.23)
 where, Tt = Torque transmitted 
to the turbine shaft,
  Tp = Torque of pump 

impeller, and
  Tv = Variation of torque 

caused by fixed guide 
vanes.

   Power input, Pi = Tp ωp
  Power output, Po = Tt ωt = (Tp + Tv) ωt

	 ∴	 Efficiency of torque converter, η = 
( )Power output ( )

Power input ( )
p v to

i p p

T TP
P T

+ ω
=

ω

   = 1t v

p p

T
T

 ω
+  ω  

 ...(5.24)

 From equation (5.22) we find that, when there are no guide vanes, torque converter reduces to 

flange coupling with Tv = 0 and then η	= 1 –t

p
s

ω
=

ω
.

 The torque Tv depends upon the design of the 
stationary guide vanes; in eqn. (5.23) it can be +ve or 
–ve. If the guide vanes are designed to receive a torque 
from the fluid which is in opposite direction to that 
exerted on the turbine (or driven) shaft, an increased 
output results. On the other hand if the shape of the 
guide vanes is such that they receive the torque in the 
same sense as that of driven shaft, a torque reduction 
results. Thus, since the torque in case of a hydraulic 
torque converter can be increased or decreased (in 
case of the hydraulic coupling Tp = Tt), therefore, it 
is comparable to an electric transformer. Usually the 
torque converters are used for increasing the torque.
 When a large reduction in speed (ωt << ωp), and 
a large torque is required, the hydraulic torque converters are designed which utilize two or more 
sets of turbine runners, and fixed guide vanes located between the turbine runners.

Driving shaft
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(Angular speed )�t

Pump
impeller

Turbine runnerStationary
guide vane

Fig. 5.15. Hydraulic torque converter.
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 Fig. 5.16 shows the efficiency versus speed ratio curve for a torque converter, maximum value 
of efficiency occurs where speed ratio is approximately 0·5; at higher speed ratios the efficiency 
drops. From the efficiency curve, it is apparent that the efficiency of the torque converter is better at 
smaller speed than that of hydraulic coupling. The advantages of the hydraulic coupling and the torque 
converter can be obtained by designing the system in such a way that at low speed ratios it acts as a 
converter and at high speed ratios as a coupling.

5.10.  AIR LIFT PUMP

 An air lift pump is a device used to lift water from a deep well or sump by utilizing the 
compressed air.

Construction and working. It consists 
of a source of compressed air and an air 
pipeline fitted with one or more nozzles and an 
open vertical pipe or rising main as shown in  
Fig. 5.17.
 The compressed air is introduced at the 
bottom of the rising main and it issues from set 
of air nozzles in the form of a fine spray. The 
air mixes with water in the rising main and 
reduces the density of air-water mixture. As 
soon as the pressure of the column of air-water 
mixture in the rising main of height H becomes 
less than the pressure due to the height of 
water column h in the bore well, the water 
begins to flow at the outlet of the rising main. 
The flow rate depends upon the density of the 
‘mixture’ in the rising main/delivery pipe. It 
has been observed that best results are obtained 

when the value of the ratio 
–
h

H h
 
 
 

 is in 

between 4 and 1 for the values of h between  
30 m and 100 m respectively.

Salient features. An air lift pump entails the following salient features:
 1. It has no moving parts below waterlevel and consequently no wear and tear.
 2. It can raise more water through a bore hole of given diameter than any other pump.
 3. It can pump solids without any damage to the system.
 4. It is suitable for draining water in the mines where compressor units are already installed.
The efficiency of the entire set up varies from 20 to 40%.

5.11.  JET PUMP

 Construction. Fig. 5.18 shows an arrangement of a jet pump in a bore well. A jet pump consists 
of a conventional radial flow pump with jet nozzle at the suction end. It helps to increase the suction 
lift beyond the normal limit of about 8 metres of water head. With the use of jet assembly it is 
possible to increase the suction lift upto 60 m.
 Working. The working operation of the jet pump is as follows:
 — The suction side is completely filled with water and the pump is started.

Air compressor

Compressed
air pipeline

Bore well

Air nozzle

H

Rising
main

Water outlet

h

Fig. 5. 17. Air lift pump.
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 — A stream of high pressure water from 
the delivery pipe of the pump is 
allowed to flow through the suction jet 
nozzle. The pressure energy of water 
is converted into kinetic energy due 
to which a local drop in the pressure 
takes place. Due to this pressure drop 
suction is created and water is sucked 
from the bore well. This action ensures 
a considerably large supply of low 
pressure water.

 — When the streams with different 
velocities mix (in the mixing zone), 
some pressure rise takes place in the 
mixing zone.

 — After the mixing zone, there is a 
diverging section where further rise 
of pressure occurs due to decrease in 
velocity.

Efficiency of jet pump:
The efficiency of a jet pump is defined as:

  η = 
( )
( – )

s s d

n d d

Q H H
Q H H

+
′

 ...(5.25)

 where, Qs = Discharge through the suction pipe,
  Qn = Discharge through the nozzle,
  Hs = Suction head,
  Hd = Delivery head, and
  Hd′ = Pressure head on delivery side.
 The efficiency of a jet pump is very low and is of the order of 25 percent. The major losses take 
place in the mixing zone.
 Uses. The fields of application of a jet pump are:
 1. A jet pump can be used to take out muddy water from excavation trenches.
 2. To lift water from wells of smaller bores.
 3. Employed in mining and for pumping oil.

HIGHLIGHTS

 1. The hydraulic accumulator is a device used to store the energy of fluid under pressure and 
make this energy available to hydraulic machines such as presses, lifts and cranes. Its action 
is similar to that of an electrical storage battery.

  Capacity of hydraulic accumulator = p × A × L
  where, p = Liquid pressure supplied by pump, A = area of the sliding ram, and
   L = Stroke or lift of the ram.
 2. A differential accumulator is a special type of accumulator that is used for storing energy 

at high pressure by comparatively small load on the ram.

Delivery pipe

Centrifugal
pump

Foot valve
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Qn
Ejector assembly

Water level
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Fig. 5.18. Jet pump.
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 3. Hydraulic intensifier is a device which increases the intensity of pressure of a given liquid 
with the help of low pressure liquid of large quantity.

 4. Hydraulic press is a device used for lifting heavy loads by the application of much smalller 
force. It is based on Pascal’s law.

 5. Hydraulic crane is a device which is used for lifting heavy loads (upto 25 MN).
 6. Hydraulic lift is a device used for carrying persons and loads from one floor to another.
 7. Hydraulic ram is a device with which small quantities of water can be pumped to higher 

levels from the available large quantity of water of low head. The efficiency of hydraulic 
ram is expressed in two ways:

   (i) D’ Aubuisson’ efficiency = qH
Qh

   (ii) Rankine’s efficiency = ( – )
( – )
q H h
Q q h

  where, Q = Discharge from supply tank to the valve box,
   q = Discharge from the valve box to delivery tank,
   h = Height of water in the supply tank above the valve box, and
   H = Height of water in the delivery tank above the valve box.
 8. Hydraulic (or fluid) coupling is a device which is employed for transmission of power from 

one shaft to another through a liquid medium.

  Efficiency of hydraulic coupling, η	= t

p

ω
ω

  (where ωt and ωp are the angular speeds of the turbine shaft and pump shaft respectively)
  The magnitudes of input and output torque are equal.
 9. Hydraulic torque converter is device used for transmitting increased or decreased torque 

from one shaft to another.

  Efficiency of torque converter, η	= 1t v

p p

T
T

 ω
+  ω  

  (where Tv = variation of torque caused by fixed guide vanes; Tp = torque of pump impeller).
 10. Air lift pump is a device used to lift water from a deep well or sump by utilizing the com-

pressed air.

OBJECTIVE TYPE QUESTIONS

Choose the Correct Answer:
 1. ..... is a device which increases the intensity of 

pressure of a given liquid with the help of low 
pressure liquid of large quantity.

   (a) Hydraulic press
   (b) Hydraulic crane
   (c) Hydraulic accumulator
   (d)	 Hydraulic	intensifier.
 2. Which of the following devices is used to store 

energy of liquid under pressure and make this 
energy available to hydraulic machines?

   (a) Hydraulic coupling
   (b) Hydraulic accumulator
   (c) Hydraulic ram
   (d) Hydraulic press.
 3. .... is a device which is employed for transmission 

of power from one shaft to another through a 
liquid medium.

   (a)	 Hydraulic	intensifier
   (b) Hydraulic torque converter
   (c) Hydraulic coupling
   (d) Hydraulic press.
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 4. Which of the following devices is used for 
transmitting increased or decreased torque from 
one shaft to another?

   (a) Hydraulic ram
   (b) Hydraulic coupling
   (c)	 Hydraulic	intensifier
   (d) Hydraulic torque converter.
 5.	 Efficiency	of	hydraulic	torque	converter	is	given	

by

   (a) 2t v

p p

T
T

 ω
+  ω  

 (b) 1t v

p p

T
T

 ω
+  ω  

   (c) 1p v

t p

T
T

 ω
+  ω  

 (d) 1 .pt

p v

T
T

 ω
+ 

ω  

  where, ωt = Angular speed of turbine shaft;
   ωp = Angular speed of pump shaft;
   Tv = Variation of torque caused by 

fixed	guide	vanes;
   Tp = Torque of pump impeller.
 6. ..... is a device with which small quantities of 

water can be pumped to higher levels from the 
available large quantity of water of low head.

   (a) Hydraulic accumulator
   (b)	 Hydraulic	intensifier
   (c) Hydraulic ram
   (d) Air lift pump.
 7. The function of which of the following hydraulic 

devices	is	analogous	to	that	of	the	flywheel	of	
a reciprocating engine and an electric storage 
battery?

   (a) Hydraulic ram
   (b) Hydraulic accumulator

   (c)	 Hydraulic	intensifier
   (d) Hydraulic coupling.
 8. Which of the following statements with regard 

to the purposes served by hydraulic units is 
incorrect?

   (a) Hydraulic torque converter is used for 
transmitting increased or decreased torque 
to the driven shaft.

   (b) Hydraulic ram is a pump that is used to lift 
small quantities of water to greater heights 
from large quantity of water available at 
small heights.

   (c)	 Hydraulic	intensifier	stores	the	energy	of	
fluid	in	the	form	of	pressure	energy	and	
is used for lifting heavy weights.

   (d) Hydraulic accumulator stores the energy 
of	a	fluid	in	the	form	of	pressure	energy;	
that helps to reduce the capacity of power 
house where there is intermittent demand 
for power.

 9. The working of which of the following hydraulic 
units is based on Pascal’s law?

   (a) Air lift pump
   (b) Jet pump
   (c) Hydraulic coupling
   (d) Hydraulic press.
 10. With regard to hydraulic ram, which of the fol-

lowing statements is incorrect?
   (a) It works automatically
   (b) It requires very little maintenance
   (c) Its running cost is high
   (d) It has no moving parts.

ANSWERS

 1. (d) 2. (b) 3. (c) 4. (d) 5. (b) 6. (c)
 7. (b) 8. (c) 9. (d) 10. (c).

THEORETICAL QUESTIONS

 1. Describe with sketches the working of any two 
of the following hydraulic devices:

   (i) Hydraulic crane
   (ii) Hydraulic lift
   (iii) Hydraulic press
   (iv) Hydraulic coupling. 
 2. Describe with the aid of neat sketch the working 

of	a	hydraulic	intensifier.
 3. Obtain an expression for the capacity of a 

hydraulic accumulator.

 4. What is the difference between a hydraulic 
accumulator	and	a	hydraulic	intensifier?

 5. Describe with the aid of neat sketch the 
construction and working of a hydraulic ram.

 6. What is the difference between a hydraulic 
coupling and a hydraulic torque converter?

 7. Explain with neat sketch, the working of an air 
lift pump. Mention its advantages.

 8. What is a jet pump?
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 9. What is the difference between a hydraulic ram 
and a centrifugal pump?

 10. Write short notes on the following:

   (i) Hydraulic lift,
   (ii) Hydraulic press, and
   (iii) Hydraulic coupling.

UNSOLVED EXAMPLES

 1. An accumulator has a ram of 200 mm diameter 
and a lift of 6 m. If the liquid is supplied at 60 bar, 
find	the	necessary	load	on	the	ram	and	capacity	
of the accumulator.

[Ans. 188.49 kN; 0.314 kWh]
 2. It is required to transmit 36·76 kW power from 

an accumulator through a pipeline 100 mm di-
ameter and 1500 m long. The ram is loaded with 
a weight of 1226.25 kN and the friction loss in 
the pipeline equals 2 per cent of the total power 
being transmitted. Determine the diameter of the 
ram	if	friction	co-efficient,	f = 0.01.  
 [Ans. 493 mm]

 3. The diameters of the two parts of the ram of a 
differential accumulator are 150 mm and 130 
mm respectively, and stroke is 1.2 m. If the 
pressure of water is 98.1 bar when the load is 
either at rest at the upper end of the stroke or the 
load is moving with uniform velocity, what will 
be the weight of the loaded cylinder? How much 
energy can be stored in the accumulator?

  Determine the diameter of the ram of an ordinary 
accumulator to move the same load with the help 
of the same water pressure?

 [Ans. 43.16 kN; 51.8 kNm; 74.8 mm]
 4. The pressure intensity of liquid supplied to an 

intensifier	is	50	bar	while	the	pressure	intensity	
of	liquid	leaving	the	intensifier	is	150	bar.	If	the	
intensifier	has	a	capacity	of	0.025	m3 and stroke 
1.25	m,	calculate	the	diameters	of	the	fixed	ram	
and sliding cylinder to be used for this intensi-
fier.	 [Ans. 159.6 mm; 319 mm]

 5. A hydraulic press has a ram of 165 mm diameter 
and plunger of 33 mm diameter, with stroke 
length of 250 mm. Weight exerted by press ram 
amounts to 5.5 kN and distance moved is 1.2 m 
in 20 minutes. Determine:

   (i) The force applied on plunger,
   (ii) Number of strokes performed by the 

plunger,
   (iii) Work done by the press ram, and
   (iv) Power required to drive the plunger.
  [Ans. (i) 0.22 kN; (ii) 120 (app.); 
     (iii) 6.6 kNm; (iv) 5.5 W]
 6.	 An	intensifier	receives	water	from	an	overhead	

tank through a pipeline 50 mm in diameter and 
100 long and conveys high pressure water to 

a 600 kN hydraulic press having a ram 0·2 m 
diameter.	The	intensifier	has	low	pressure	piston	
diameter 1 m and high pressure ram diameter 0.1 
m. If the static head on the low pressure side of 
the	intensifier	is	21	m,	calculate	the	rate	of	move-
ment of the ram when exerting its maximum 
force.

	 	 Take	co-efficient	of	friction,	f = 0.0075 for the 
pipeline (50 mm dia). [Ans. 0.026 m/min.]

 7. In a hydraulic crane, the diameter of crane ram = 
300 mm; length of supply pipe from accumulator 
= 150 m; diameter of the supply pipe = 50 mm; 
pressure at accumulator = 54 bar; mechanical 
friction of ram, pulleys etc. are equivalent to 
a pressure of 4.9 bar on the ram. Determine a 
relationship between the W kN lifted and the 
speed of lifting V	and	hence	find	V for W = 50 
kN.   

	 	 Take	co-efficient	of	friction	for	the	pipe	=	0.01.
[Ans. V = 0.1389 (81.83 – 1.18 W)1/2; 

0.664 m/s]
 8. A hydraulic crane is lifting a load of 11.772 kN 

through a height of 12 m with a speed of 0.3 m/s 
once in every two minutes. The crane is working 
under a pressure of 4905 kN/m2 of water and 
has	an	efficiency	of	65	percent.	The	crane	is	fed	
from an accumulator to which water is supplied 
by a pump. Determine: (i) Capacity of cylinder 
of the jigger, (ii) Capacity of accumulator, and 
(iii) Minimum power required to drive the pump.

[Ans. (i) 0.0443 m3/s; (ii) 0.0295 m3/s; 
  (iii) 1.81 kW]
 9. The following data refers to a hydraulic ram: 

Supply head 2.2 m; weight of waste water per 
minute 170 N; weight of water pumped per 
minute 5N and net head pumped from the ram 
40 m.

	 	 Calculate	D’Aubuisson’s	and	Rankine’s	efficien-
cies. [Ans. 51.8%; 50.5%]

 10. A hydraulic ram has a supply head of 2 m, the 
pipe being 60 mm in diameter and 5 m long. The 
waste valve, which is 150 mm in diameter and of 
weight 14.7 N, lifts through 6 mm. Determine:

   (i) The number of beats per minute, and
   (ii) The quantity of water delivered per minute 

to a tank 10 m above the ram.
 [Ans. (i) 175, (ii) 0.0183 m3/min.]
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6.1.  HYDROLOGY

6.1.1. Definition 

 Hydrology may be defined as the science which 
deals with the depletion and replenishment of water 
resources. It deals with the surface water as well as the 
ground water. It is also concerned with the transportation 
of water from one place to another, and from one form 
to another. It helps us in determining the occurrence and 
avilability of water.

6.1.2. The hydrologic Cycle

 The earth’s water sources such as rivers, lakes, oceans 
and underground sources etc. mostly get their supplies 
from rains while the rain water itself is the evaporation 
from these sources. Water is lost to the atmosphere 
as vapour from earth, which  is then precipitated back 
in the form of rain, snow, hail, dew, sleet or frost, etc. 
This evaporation and precipitation continues for ever, 
and thereby, a balance is maintained between the two. 
This process is known as Hydrologic cycle. It can be 
represented graphically as shown in Fig. 6.1 Hydrologic 
equation is expressed as follows:
  P = R + E  ...(6.1)
 where, P = Precipitaion,
  R = Run-off, and
  E = Evaporation.
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Fig. 6.1. Hydrologic cycle.

 Precipitation. It includes all the water that falls from atmosphere to earth surface. Precipitation 
is of two types: (i) Liquid precipitaion (rain fall). (ii) Solid precipitaion (snow, hail).
 Run-off and surface run-off. Run-off and surface run-off are two different terms. Run-off 
includes all the water flowing in the stream channel at any given section, while the surface run-off 
includes only the water that reaches the stream channel without first percolating down to the water 
table.
 Run-off can, therefore, also be named as ‘Discharge’ or ‘Stream flow’. Rainfall duration, its 
intensity and a real distribution influence the rate and volume of run-off.
 Evaporation. Transfer of water from liquid to vapour state is called evaporation.
 Transpiration. The process by which water is released to the atmosphere by the plants is called 
transpiration.

6.1.3. Measurement of Run-off
 Run-off can be measured daily, monthly, seasonal or yearly. It can be measured by the following 
methods:
 1. From rainfall records
 2. Empirical formulae
 3. Run-off curves and tables
 4. Discharge observation method.
 1. From rainfall records:
 In this method consistent rainfall record for a sufficiently long period is taken and then average 
depth of rainfall over the catchment is determined. Then considering all the factors which affect 
run-off process, a co-efficient is arrived at for that catchment. Now a simple equation can be used 
to find out the run-off over the catchment.
  Run-off = Rainfall × co-efficient. ...(6.2) 
 2. Empirical formulae:
 In this method, an attempt is made to derive a direct relationship between the rainfall and 
subsequent run-off. For this purpose some constants are established which give fairly accurate result 
for a specified region. Some important formulae are given below:
 (a) Khosla’s formula:
    R = P – 4.811 T
  where,                      R = Annual run-off in mm,
    P = Annual rainful in mm, and
    T = Mean temperature in 0°C.
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 (b) Inglis formulae for hilly and plain areas of Maharashtra:
  For Ghat region
    R = 0.88 P – 304.8
  For Plain region

    R = ( 177.8)
2540

P P− ×

 (c) Lacey’s formula: 

    R = 
30841

P
F

PS+

  where,                      R = Monsoon run-off in mm,
    P = Monsoon rainfall in mm,
    S = Catchment area factor, and
     F = Monsoon duration factor.
 Values of S for various types of catchment are given below:
  Type of catchment Value of S
  Flat, cultivated and black cotton soils 0.25
  Flat, partly cultivated, various soils 0.6
  Average catchment 1.00
  Hills and places with little cultivation 1.70
  Very hilly and steep, with hardly any cultivation 3.45
  Values of F for various duration of monsoon are given below:
  Class of monsoon  Value of F
  Very short 0.50
  Standard length 1.00
  Very long  1.50

 3. Run-off curves and tables:
 Each region has its own catchment area and rainfall characteristics. Thus formulae given above 
and co-efficients derived there in cannot be applied universally. However, for the same region the 
characteristics mostly remain unchanged. Based on this fact, the run-off co-efficients are derived 
once for all. Then a graph is plotted in which one axis represents rainfall and the other run-off. The 
curves obtained are called run-off curves. Alternatively a table can be prepared to give the run-off 
for a certain value of rainfall for a particular region.

 4. Discharge observation method:
 The run-off over a catchment can be computed by actual measurement of discharge at an outlet 
of a drainage basin. The complication in this method is that the discharge of the stream at the 
outlet comprises surface run-off as well as sub-surface flow. To find out the sub-surface run-off it 
is essential to separate the sub surface flow from the total flow. The separation can be done on an 
approximate basis but with correct analysis.

 Factors affecting the run-off:
 The following factors affect run-off :
 1. Rainfall pattern 2. Character of catchment area
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 3. Topography 4. Shape and size of the catchment area
 5. Vegetation 6. Geology of the area
 7. Weather conditions.

6.1.4. Hydrograph
 Hydrograph is defined as a graph showing discharge (run-off) of  flowing water with respect to 
time for a specified time. Discharge graphs are known as flood or run-off graphs. Each hydrograph 
has a reference to a particular river site. The time period for discharge hydrography may be hour, 
day, week or month.
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Fig. 6.2. Typical hydrograph.

 Hydrograph of stream of river will depend on the characteristics of the catchment and 
precipitation over the catchment. Hydrograph will access the flood flow of rivers hence it is essential 
that anticipated hydrograph could be drawn for river for a given storm.
 Hydrograph indicates the power available from the stream at different times of day, week  
or year.
 Typical hydrographs are shown in Figs. 6.2 and 6.3.

The unit hydrograph:
 The peak flow alone does not give sufficient 
information about the run-off since it (peak flow) 
represents a momentary value. Therefore it is necessary 
to understand the full hydrograph of flow. The basic 
concept of unit hydrograph is that the hydrographs of 
run-off from two identical storms would be the same. 
In practice identical storms occur very rarely. The 
rainfall generally varies in duration, amount and areal 
distribution. This makes it necessary to construct a 
typical hydrograph for a basin which could be used as a 
unit of measurement of run-off.
 A unit hydrograph may be defined as a hydrograph which represents unit run-off resulted from 
an intense rainfall of unit duration and specific areal distribution.
 The following steps are used for the construction of unit hydrograph:
 1. Choose an isolated intense rainfall of unit duration from past records.
 2. Plot the discharge hydrograph for outlet from the rainfall records.
 3. Deduct the base flow from stream discharge hydrograph to get hydrograph of surface  

run-off.
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Fig. 6.3. Typical hydrograph.
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 4. Find out the volume of surface run-off and convert this volume into cm of run-off over the 
catchment area.

 5. Measure the ordinates of surface run-off hydrograph.
 6. Divide these ordinates of obtained run-off 

in cm to get ordinates of unit hydrograph. 
Thus for any catchment unit hydrograph can 
be prepared once. Then whenever peak flow 
is to be found out, multiply the maximum 
ordinate of unit hydrograph by the run-off 
value expressed in cm. Similarly to obtain 
run-off hydrograph by the storm of same 
unit duration multiply the ordinates  of 
the unit hydrograph by the run-off value 
expressed in cm. If the storm is of longer 
duration calculate the run-off in each unit 
duration of the storm. Then superimpose 
the run-off hydrographs in the same 
order giving a lag of unit period between 
each of them. Finally draw a summation 
hydrograph by adding all the overlapping ordinates. Generally the computations are done 
in a tabular form before the hydrograph is plotted.

 Fig. 6.4 shows how a run-off hydrograph is constructed from a unit hydrograph.

 Limitations to the use of unit hydrograph:
 1. Its use is limited to areas about 5000 sq. kilometres since similar rainfall distribution over 

a large area from storm to storm is rarely possible.
 2. The odd-shaped basins (particularly long and narrow) have very uneven rainfall distribution. 

Therefore, unit hydrograph method is not adopted to such basins.
 3. In mountain areas, the areal distribution is very uneven, even then unit hydrograph method 

is used because the distribution pattern remains same from storm to storm.

6.1.5. Flow Duration Curve
 Refer to Fig. 6.5. Flow duration curve is another useful form to represent the run-off data for the 
given time. This curve is plotted between flow available during a period versus the fraction of time. 
If the magnitude on the ordinate is the potential power contained in the stream flow, the curve is 
known as “power duration curve.” This 
curve is a very useful tool in the analysis 
for the development of water power.
 The flow duration curve is drawn 
with the help of a hydrograph from 
the available run-off data and here it 
is necessary to find out the lengths of 
time duration for which certain flows 
are available. This information either 
from run-off data or from hydrograph is 
tabulated. Now the flow duration curve 
taking 100 percent time on X-axis  and 
run-off on Y-axis can be drawn.

Fig. 6.4. 
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Fig. 6.5. Flow duration curve.
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 The area under the flow duration curve (Fig. 6.5) gives the total quantity of run-off during 
that period as the flow duration curve is representation of graph with its flows arranged in order of 
descending magnitude.
 If the head of discharge is known, the possible power developed from water in kW can be 
determind from the following equation:

  Power (kW) = 0
1000

wQH × h

 where, Q = Discharge, m3/s,
  H = Head available, m,
  w = Weight density of water, N/m3, and
  h0 = Overall efficiency. 
 Thus the flow duration curve can be converted to a power duration with some other scale on 
the same graph.
 Flow duration curves are most useful in the following cases:
 (i) For preliminary studies.
 (ii) For comparison between streams.

 Uses of flow duration curve:
 1. A flow duration curve allows the evaluation of low level flows.
 2. It is highly useful in the planning and design of water resources projects. In particular, for 

hydropower studies, the flow duration curve serves to determine the potential for firm power 
generation. In the case of run-of the river plant, with no stroage facilities, the firm power 
is usually computed on the basis of flow available 90 to 97 precent of the time. The firm 
power is also known as the primary power. Secondary power is the power generated at the 
plant utilising water other than that used for the generation of firm power.

 3. If a sediment rating curve is available for the given stream, the flow duration curve can be 
converted into cumulative sediment transport curve by multiplying each flow rate by its 
rate sediment transport. The area under this curve represents the total amount of sediment 
transported.

 4. The flow duration curve also finds use in the design of drainage systems and in flood control 
studies.

 5. A flow duration curve plotted on a log-log  paper provides a qualitative description of the 
run-off variability in the stream. If the curve is having steep slope throughout, it indicates 
a stream with highly variable discharge. This is typical of the conditions where the flow is 
mainly from surface run-off. A flat slope indicates small variability which is a characteristic 
of the streams receiving both surface run-off and ground water run-off. A flat-portion at the 
lower end of the curve indicates substantial contribution from ground water run-off, while 
the flat portion at the upper end of the curve is characteristic of streams with large flood 
plain storage, such as lakes and swaps, or where the high flows are mainly derived from 
snowmelt.

 6. The shape of the flow duration curve may change with the length of record. This aspect of 
the flow duration curve can be utilised for extrapolation of the short records.

 Shortcomings/defects of flow duration curve:
 1. It does not present the flows in natural source of occurrence.
 2. It is also not possible to tell from flow duration curve whether the lower flows occurred in 

consecutive periods or were scattered throughout the considered period.  
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6.1.6. Mass Curve
 A mass curve is the graph of the cumulative values of water quantity (run-off) against time. A 
mass curve is an integral curve of the hydrograph which expresses the area under the hydrograph 
from one time to another.
 It is convenient device to determine storage requirement 
that is needed to produce a certain dependable flow from 
fluctuating discharge of a river by a reservoir.
 Mass curve can also be used to solve reserve problem of 
determining  the maximum demand rate that can be maintained 
by a given storage volume. However, it is a trial and error 
procedure.
 The mass curve will always have a positive shape but of 
a greater of less degree depending upon the variations in the 
quantity of inflow water available. The negative inclination of 
mass curve would show that the amount of water flowing in the 
reservoir was less than the loss due to evaporation and seepage.

 Example 6.1.    At a particular site the mean monthly discharge is as follows:

Month Discharge m3/s Month Discharge, m3/s 
January 100 July 1000
February 225 August 1200
March 300 September 900
April 600 October 600
May 750 November 400
June 800 December 200

Draw the following :
 (i) Hydrograph; (ii) Flow duration curve.
 Solutions. (i)  The hydrogarph is plotted between discharge (m3/s) and time (months) as shown 
in Fig. 6.7.
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(ii) Flow duration curve:
In order to draw flow duration curve it is essential to find the length of time during which 

centain flows are available, e.g. 100 m3/s is available for all 12 months, flow of 200 m3/s for 11 
months, 225 m3/s for 10 months and so on. This information is indicated in the table below:

Discharge, m3/s Length of time, months %age time

100 (and more) 12 100

200 (and more)  11 91.7

225 (and more) 10 83.3

300 (and more) 9 75.0

400 (and more) 8 66.7

600 (and more) 7 58.3

750 (and more) 5 41.7

800 (and more) 4 33.3

900 (and more) 3 25.0

1000 (and more) 2 16.7

1200 (and more) 1 8.3

 The flow duration curve is then plotted as shown in Fig. 6.8
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 Note:  When selecting a suitable site for a hydropower plant the flow data for a number of years is collected 
and hydrographs and flow duration curves and the various periods are determined.
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 Example 6.2.   The run-off data of a river at a particular site is tabulated below:

Month Mean discharge per month 
(millions of m3)

Month Mean discharge per month
(millions of m3)

January 40 July 75
February 25 August 100
March 20 September 110
April 10 October 60
May 0 November 50
June 50 December 40

 (i) Draw a hydrograph and find the mean flow,
 (ii) Also draw the flow duration curve, and
 (iii) Find the power in MW available at mean flow if head available is 80 m and overall  

efficiency of  generation is 85 %. Take each month of 30 days.

 Solution. (i) Hydrograph :
 The hydrograph for the given data is drawn as shown in Fig. 6.9.
 The mean discharge for the given data

   = 40 25 20 10 0 50 75 100 110 60 50 40
12

+ + + + + + + + + + +

   = 580 48.33
12

=  millions of m3/month.
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Fig. 6.9

 (ii) Flow duration curve:
 To obtain the flow duration curve, it is necessary to find the lengths of time during which certain 
flows are available. This information is tabulated using the hydrograph in the table as under:
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Discharge per month
(millions of m3)

Total number of months
during which flow is available

Percentage time

0 12 100
10 11 91.7
20 10 83.3
25 9 75
40 8 66·7
50 6 50
60 4 33·3
75 3 25·0

100 2 16·7
110 1 8·3

 The flow duration curve can be drawn using the data tabulated as shown in Fig. 6.10

 (iii) Average MW energy available :

  Average MW energy available = 0
1000

wQHh

  
6

3 48.33 10where, (discharge in m /s)
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   = 
69810 48.33 10 80 10.85 kW

(30 24 3600) 1000
× × ×

× ×
× ×

   = 12438 kW,  or, 12.438 MW   (Ans.)
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6.2.  HYDRO-POWER PLANT

6.2.1. Introduction 
 In hydroelectric plants, energy of water is utilised to move the turbines which in turn run the 
electric generators. The energy of water utilised for power generation may be kinetic or potential. 
The kinetic energy of water is its energy in motion and is a function of mass and velocity, while 
the potential energy is a function of the difference in level/head of water between two points. In 
either case continuous availability of water is a basic necessity; to ensure this, water collected in 
natural lakes and reservoirs at high altitudes may be utilised or water may be artificially stored by 
constructing dams across flowing stream. The ideal site is one in which a good system of natural 
lakes with substantial catchment area, exists at a high altitude. Rainfall is the primary source of 
water and depends upon such factors as temperature, humidity, cloudiness, wind etc. The usefulness 
of rainfall for power purposes further depends upon several complex factors which include its 
intensity, time distribution, topography of land etc. However it has been observed that only a small 
part of the rainfall can actually be utilised for power generation. A significant part is accounted for 
by direct evaporation, while another similar quantity seeps into the soil and forms the underground 
storage. Some water is also absorbed by vegetation. Thus only a part of water falling as rain actually 
flows over the ground surface as direct run off and forms the streams which can be utilised for 
hydroschemes.
 First hydroelectric station was probably started in America in 1882 and thereafter development 
took place very rapidly. In India, the first major hydroelectric development of 4·5 MW capacity 
named as Sivasamudram Scheme in Mysore was commissioned in 1902. In 1914, a hydropower plant 
named Khopoli project of 50 MW capacity was commissioned in Maharashtra. The hydropower 
capacity, upto 1947, was nearly 500 MW.
 Hydro (water) power is a conventional renewable source of energy which is clean, free  from 
pollution and generally has a good environmental effect. However the following facts are major 
obstacles in the utilisation of hydropower resources :
 (i) Large investments
 (ii) Long gestation period
 (iii) Increased cost of power transmission.
 Next to thermal power, hydropower is important in regard to power generation. The hydroelectric 
power plants provide 30 percent of the total power of the world. The total hydropotential of the world 
is about 5000 GW. In some countries (like Norway) almost total power generation is hydrobased.

6.2.2. Application of Hydro-electric power plants

 Earlier hydro-electric plants have been used as exclusive source of power, but the trend is 
towards use of hydro-power in an inter-connected systen with thermal stations. As a self-contained 
and independent power source, a hydroplant is most effective with adequate storage capacity 
otherwise the maximum load capacity of the station has to be based on the year. This increases the 
per unit cost of installation. By interconnecting hydropower with thermal (stream) power, a great 
deal of saving in cost can be effected due to:
 (i) reduction in necessary reserve capacity,
 (ii) diversity in construction programmes,
 (iii) higher utilisation factors on hydroplants, and
 (iv) higher capacity factors on efficient steam plants.
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 In an inter-connected system the base load is supplied by hydropower when the maximum flow 
demand is less than the stream flow while steam supplies the peak. When stream flow is lower than 
the maximum demand the hydroplant supplies the peak load and steam plant the base load.

6.2.3 Advantages and Disadvantages of Hydro-electric Power Plants 

Advantages :
 1. No fuel charges.
 2. A hydroelectric plant is highly reliable.
 3. Maintenance and operation charges are very low.
 4. Running cost of the plant is low.
 5. The plant has no standby losses.
 6. The plant efficiency does not change with age.
 7. It takes a few minutes to run and synchronise the plant.
 8. Less supervising staff is required.
 9. No fuel transportation problem.
 10. No ash problem and atmosphere is not polluted since no smoke is produced in the plant.
 11. In addition to power generation, these plants are also used for flood control and irrigation 

purposes.
 12. Such a plant has comparatively a long life (100 to 125 years as against 20-45 years of a 

thermal plant.)
 13. The number of operations required is considerably small compared with thermal power 

plants.
 14. The machines used in hydro-electric plants are more robust and generally run at low speeds 

at 300 to 400 r.p.m. where as the machines used in thermal plants run at a speed 3000 to 4000 
r.p.m. Therefore, there are no specialised mechanical problems or special alloys required 
for construction.

 15. The cost of land is not a major problem since the hydroelectric stations are situated away 
from the developed areas.

Disadvantages :
 1. The initial cost of the plant is very high.
 2. It takes considerably long time for the erection of such plants.
 3. Such plants are usually located in hilly areas far away from the load centre and as such they 

require long transmission lines and losses in them will be more.
 4. Power generation by the hydro-electric plant is only dependent on the quantity of water 

available which in turn depends on the natural phenomenon of rain. So, if the rainfall is 
in time and proper and the required amount of it can be collected, the plants will function 
satisfactorily otherwise not.

6.2.4. Average Life of Hydroplant Components
 The average life (approximate) of various components of hydro-electric power plant is given  
as follows:
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 Components Average life (years)
 1. Reservoirs 70–80
 2. Dams
  (i) Earthen, concrete or masonry 150
  (ii) Loose rock 60
 3. Water ways 50–100
  (i) Canals, tunnels
  (ii) Penstocks
   (a) Steel 40–50
   (b) Concrete 25–50
 4. Power house and equipment
  (i) Building 35–50
  (ii) Generators 25
  (iii) Transformers 30
  (iv) Turbines (hydraulic) 5
  (v) Pumps 20–25

6.2.5. Hydroplant controls
 The various controls which are provided in a hydro-electric power plant are:
 1. Hydraulic controls
 2. Machine controls—starting and stopping
 3. Machine controls—loading and frequency
 4. Voltage control of generator and system
 5. Machine protection.

6.2.6. Safety measures in hydroelectric power plants
 Following safety measures need to be taken for the safe operation of a hydroelectric power 
plant:
 1. Surge tanks 2. Screens
 3. Sand traps 4. Jet dispersers
 5. Pressure regulator.
 Surge tanks.  A surge tank is used to prevent sudden increase of pressure in the supply line or 
the penstock. It is placed as near as possible to the turbine. The tank may be open at the top or closed. 
In case, it is open at the top, it must not be lower than the level of the water in the reservoir.
 Screens. These are provided to prevent logs, fishes, ice blocks and other obstructive elements 
from entering the pipelines and turbines.
 Sand traps. Sand traps are provided to  prevent the sand flowing with water in pipes since sand 
blast action of solid matter in the water causes rapid wear of nozzles, spears, blades etc. of the turbine.
 Jet dispersers. The discharged water at the bottom of the high dams possesses large amount of 
energy which is likely to cause scouring of the channel below the dam and consequent damage to 
the dam foundation unless some means are provided to dissipate it. The possible remedies for this 
are either to discharge water into a cushion pool or to provide a jet disperser at the end of outlet pipe 
so that the end of the outlet pipe is such that the jet is broken up into a conical shower of drops and 
their energy is absorbed by air.
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 Pressure regulator.  It is usually operated by a governor of the turbine. It is provided on the 
pipeline near the turbine inlet so that when the turbine gates are suddenly closed, pressure surges so 
produced are kept within the safe limits of the pipeline. The water discharge from the regulator is 
passed on to tailrace through a separate pipeline.

6.2.7. Preventive Maintenance to Hydroplant
 The purpose of preventive maintenance is to minimise breakdown and excessive depreciation 
resulting from neglect. In a hydroplant (using reaction turbines) monthly, quarterly halfyearly and 
yearly inspection and maintenance are  carried out on the following parts :

Inspection / Maintenance Parts

Monthly Turbine cover parts (e.g. leakage unit, drainage, holes, 
servomotor connections, turbine  shaft and cover, oil 
pump etc.) Operating ring of turbines. 
Guide vane mechanism.

Quarterly Servomotor 
Ejector cabinet
Feedback system.

Half-yearly Governor machanism
Gauges
Grease pumps for guide vanes and guide bearings.
Grease pipes connected to grease pumps.

Yearly Turbine auxiliaries (e.g. oil pressure tank, turbine guide 
bearing, turbine instruments)
Scroll casing runner with guide vanes 
Emergency slide valve
Pit liner
Draft tube
Runner blades checked for cavitational effects, cracks 
and wearing out.

6.2.8. Calculation of available hydro-power
 The theoretical power (Pth) available from falling water can be calculated using the following 

formula: Pth = kW
1000
wQH  ...(6.3)

 where,  w = Weight density of water in N/m3,
   Q = Flow through turbine (or quantity or water available for 

hydropower generation) in m3/s, and
   H = Head available in metres. 
 The actual useful or effective output depends upon the efficiency of the various parts of the 
installation.
 If,  h1 = Efficiency of pipelines, intake etc., and
   h2 = Efficiency of hydraulic turbine.
 Then, overall efficiency   h0  =  h1 × h2. ...(6.4)
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 Since the turbine and the genertor are directly coupled on common shaft the hydro-electrical 
power available will be given by the equation:
 or, Pactual = Pth. × h0 ...(6.5)

 or, Pactual = 0 kW
1000
wQH

× h  ...(6.5a)

6.2.9. Cost of Hydro-power Plant
 The initial cost of any hydroplant is very high but the power produced by it is the cheapest. The 
following costs are included in development of a hydroplant :
 1. Cost of land and riparian rights.
 2. Cost of railways and highways required for the construction work.
 3. Cost of construction.
 4. Cost of engineering supervision of the project.
 5. Cost of building etc.
 6. Cost of equipment.
 7. Cost of equipment used for power transmission.

6.2.10. Hydro-power Development in India 
 Hydropower is a renewable source of energy which entails many intrinsic advantages. In India, 
the scope of water power development is tremendous. The first hydropower station in India dates 
back to year 1897 when a small power station of 200 kW capacity was constructed  at Darjeeling. 
Since them many big and small hydropower stations have been installed in the country.

Important hydroplants in India
  State/Name of Power plant Installed capacity (MW)
 Andhra Pradesh
  Machkand (Stage I and II) 114
  Upper silern 120
  Lower silern 600
  Srisailam 770
  Nagarjun sagar pumped storage 100
 Assam
  Umiam 54
 Gujarat
  Ukai 300
 Himachal Pradesh
  Baira suil 200
  Jammu and Kashmir  
  Salal 270 
  Karnataka
   Tungabhadra 72
   Sharavati 890
   Kailindi 395
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 Kerala
   Parambikulam-Aliyar 185
   Sabarigiri 300
   Idikki (Stage I) 390
 Maharashtra
   Koyna (Stages I, II and III) 860
 Manipur
   Loktak 70
 Orissa
   Hirakud (Stage I and II) 270
   Balimela 480
 Punjab
   Bhakra Nangal 1084
   Beas-Sutlej Link 780
 Rajasthan
   Chambal 287
 Uttar Pradesh 
   Rihand 300
   Yamuna (Stage I and II) 424
 Tamil Nadu
   Kundah (Stages, I , II and III) 425
   Kodiar 100
 Although the present utilization of hydropower in over country is relatively small with the 
persent tempo of development and need for power resources it would not be long before the 
available potential is fully harnessed. Hydrofield  provides immense scope for sophisticated 
study requiring application of modern mathematical and operational research techniques with 
the help of computers.

6.2.11. Combined Hydro and Steam Power Plants
A electrical power system should fulfil the following objectives:

 1. To ensure an adequate and reliable electric power supply at all loads and at all times.
 2. The source of energy should be such as to give the minimum overall cost of the system as 

a whole.
 The above objectives (unless a country/region is rich either  in abundant supply of cheap fuel 
or ample water power resources which can be developed at suitable site) can be best realised by a 
judicious combination of both hydro and thermal power. Hydropower represents a renewable source 
of energy which enjoys many intrinsic advantages as compared to thermal power. Although the 
cost of construction of hydropower plant is nearly same as that of a coal based steam power plant 
in terms of  investment for MW, but hydropower plant uses water for power generation which is 
available in abundance in nature.
 It is known that hydroplant can meet the demands of load variations more rapidly and easily. 
Thus, when the rate of flow of water is low, the steam plant can work at constant load producing a 
better efficiency and the hydroplant will work most effectively as peak load plant and its output can 
be varied to meet the load fluctuations.
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 The steam and hydroplants reverse their  functions (steam plant providing the peal load and 
the hydroplant providing base load) when high rate of water flow is available. But even under this 
condition, the steam plant output will remain constant and the hydroplant output will be varied to 
meet the load fluctuations.

6.2.12. Comparison of Hydro-power Station with Thermal Power Station
 The comparison between hydropower station and thermal power station is given below:

S. No. Aspects Hydropower station Thermal power station
1. Raw material consumption, Nil. Water power is 

inexhaustible and is 
continuously replenished 
by the direct agency of sun.

Huge  quan t i ty  o f  coa l 
consumed, thereby exhausting 
“fuel reserves”

2. Cost of energy Cheaper Costlier
3. Cost of energy generation. Immune to inflation Very much influenced by the 

increase in the cost of fuel.
4. Life of plant Long  useful life. Not so long comparatively. The 

component parts deteriorate 
and become obsolete at a 
faster rate.

5. Pollution Free from problems of 
pollution.

Cause pollution and sub-
sequently create  heal th 
hazards.

6. Design, construction and 
reliability.

Simple in design, robust in 
construction and reliable in 
operation.

Comparatively more com-
plicated in design, less robust 
in construction and less 
reliable in operation .

7. Running below a certain 
minimum load factor.

Can be run. Cannot be run.

8. Reserve capacity and varia-
tion in power demands.

Particularly suited to provide 
reserve capacity as well as 
meeting the exact needs of 
daily variation in power  
demands.

Comparatively not suited for 
the mentioned requirements.

9. Employment potential. More. Affords a relatively 
high employment potential 
and better utilization of the 
available local talent and 
resources.

Less

10. Man power required Small Large

11. Labour problem Less More
12. Foreign exchange 

requirement for equipment.
Less More

13. Construction time required. Almost same as thermal 
power station.

Almost same as hydropower 
station.

14. Overall capital expenditure 
requirements.

Low High
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 Example 6.3.   At a proposed site of hydroelectric power plant the available discharge and 
head are 330 m3/s and 28 m respectively. The turbine efficiency is 86%. The generator is directly 
coupled to the turbine. The frequency of generator is 50 Hz and number of poles used are 24. Find 
the least number of machines required if,
 (i) A Francis turbine with a specific speed of 260 is used; 
 (ii) A Kaplan turbine with a specific speed of 700 is used.

 Solution.  Available discharge, Q = 330 m3/s
     Head, H = 28 m
     Turbine efficiency, h = 86 %
     Frequency of generation, f = 50 Hz
     Number of poles used, p = 24.
 As the generator is directly coupled to the turbine, the speed of turbine used must be equal to 
the synchronous speed of the generator.

  N = 120 120 50 250 r.p.m
24

f
p

×
= =

  P = h × wQH = 0.86 × 9.81 × 330 × 28 = 77954 kW
 ( w = 9.81 kN/m3)
 (i)  The power capacity of each Francis turbine (P1) can be calculated by using the following 
formula:

  Ns = 1 1
5/4 5/4

250
, or, 260

(28)
N P P
H

=

 \ P1 = 
25/4260 (28) 4487 kW

250
 ×

= 
 

 \  Number of Francis turbines required = 
1

77954
4487

= = 

P
P

17.37 18. (Ans.)

 (ii)  The power capacity of each Kaplan turbine can be calculated by using the following 
formula:

  Ns = 2 2
5/4 5/4

250
, or, 700

(28)
N P P
H

=

 \ P2 = 
25/4700 (28) 32524.5 kW

250
 ×

= 
 

 \   Number of Kaplan turbines required 

   = 
2

77954
32524·5

= = 

P
P

2.4 3.  (Ans.)

 Example 6.4.   The following data relate to a proposed hydro-electric station:
 Available head = 28 m; catchment area = 420 sq. km; rainfall = 140 cm/year; percentage 
of total rainfall utilised = 68%; penstock efficiency = 94%; turbine efficiency = 80%; generator 
efficiency = 84% and load factor = 44%.
 (i) Calculate the power developed, and
 (ii) Suggest suitable machines and specify the same.
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 Solution.  Head available, H = 28 m
  Catchment area, A = 420 sq. km ( = 420 × 106 m2)
  Rainfall  = 140 cm /year (= 1.4 m/year)
  Rainfall utilised, h = 68%  of the total rainfall 
   = (0.68 × 1.4) m per year
  Penstock efficiency hp = 94% 
  Turbine efficiency, ht = 80%
  Generator efficiency, hg = 84% 
  Load factor = 44%. 

 (i) Power developed, P:
  Quantity of water available per year = A × h
     = (420 × 106) × (0.68 × 1.4) = 399.84 × 106 m3

  Hence the quantity of water available per second,

    Q = 
6

3399.84 10 12·6 m /s.
(365 24) 3600

×
=

× ×

 \   P = h0 × wQH (where h0 = overall efficiency = hp × ht × hg)

    P = hp × ht × hg × wQH
     = 0.94 × 0.8 × 0.84 × 9.81 × 12.6 × 28 = 2186.2 kW ( w = 9.81 kN/m3)
  Hence, average output of generating units = 2186.2 kW   (Ans.)

 Example 6.5.   The following data is available for a hydropower plant : 
Available head = 140 m; catchment area = 200sq. km; annual average rainfall = 145 cm; turbine 
efficiency = 85 % ; generator efficiency = 90 % ;  Percolation and evaporation losses = 16 %.
 Determine the following :
 (i) Power developed, and
 (ii) Suggest type of turbine to be used if runner speed is to be kept below 240 r.p.m. 

 Solution.  Head available, H = 140 m
  Catchment area, A = 200 sq. km ( = 200 × 106  m2)
  Annual average rainfall, h = 145 cm ( = 1.45 m)
  Turbine efficiency, ht = 85 %
  Generator efficiency, hg = 90 %
  Percolation and evaporation losses, z = 16 % = 0.16

 (i) Power developed, P :
  Quantity of water avilable for power generation per year
     = A × h × (1 – z)
     = 200 × 106 × 1.45 × (1 – 0.16) = 2.436 × 108 m3 /year
  Hence, quantity of water available for power generation per second,

    Q = 
8

32.436 10 7.72m /s
(365 24) 3600

×
=

× ×

    P = h0 × wQH
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   = ht × hg × wQH
   = 0.85 × 0.9 × 9.81 × 7.72 × 140 = 8111 kW (w = 9.81 kN/m3)
 or,   8.111 MW   (Ans.)
 (ii) Type of turbine to be used:

    Specific speed, Ns = 5/4 5/4
240 8111
(140)

= =
N P
H

44.88 r.p.m.  (Ans.)

 Single pelton turbine with 4 jets can be used. Further since head available is large and discharge 
is low, pelton turbine will work satisfactorily.

 Example 6.6.   From the investigation of hydrosite the following data is avilable:
   Available head 45 m
   Total catchment area 60 sq. km
   Rainfall  per annum 140 cm
   Percentage of rainfall utilized 68%
   Turbine efficiency 82%
   Generator efficiency, 90%
   Penstock efficiency 74%
 Calculate the suitable capacity of a turbo- generator.

 Solution.  Head available, H = 45 m
    Catchment area, A = 60 sq. km ( = 60 × 106m2)
    Availabe  rainfall, h = (0.68 × 1.4) m
    Turbine efficiency, ht = 82 %
    Generator efficiency, hg = 90 %
    Penstock efficiency, hp = 74 %
 Quantity of water available per annum
   = A × h = 60 × 106 × 0.68 × 1.4 = 57 .12 × 106 m3/annum
 Hence, quantity of water available per second

  Q = 
6

357.12 10 1.81 m /s
(365 24) 3600

×
=

× ×

  Now overall efficiency, h0 = hp × ht × hg = 0.74 × 0.82 × 0.9 = 0.546
 \  Power developed, P = h0 × wQH
   = 0.546 × 9.81 × 1.81 × 45 = 436 kW
 If a load factor of 55 percent is assumed, then,

  Maximum kW  = 436 793 kW
0·55



 So a generator of 800 kW maximum rating can be selected.

 \ Power of the turbine  793
0.82

 = 967 kW (Ans.)

 For a head of 45 m, which is low, a vertical shaft Francis or Kaplan trubine may be employed.

 Example 6.7.   A hydro-electric power plant produces 27 MW under a head of 15 metres. If the 
overall efficiency of the plant is 72%, determine :
  (i) Type of turbine; (ii)   Synchronous speed of the generator.
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  Solution.  Power developed, P = 27 MW (= 27 × 103 kW)
     Head, H = 15 m
     Overall efficiency, h0 = 72%.
  (i) Type of turbine :
          P = h0 × wQH
      27 × 103 = 0.72 × 9.81 × Q × 15

   \                     Q = 
3

327 10 188.8 m /s
0.72 9.81 15

×
=

× ×

   As the head is low and discharge is high so a propeller type of turbine should be used (Ans.)

 (ii) Synchronous speed of the generator, Nsyn :

     Specific speed,  Ns = 1/4
1150 (approx.)
H

                      = 1/4
1150 584.3 r.p.m.

(15)
=

     Speed of rotation, N = 
5/4

sN H
P

×
 

5/4s
N PN
H

 
= 

 


                     = 
5/4

3

584.3 (15)

27 10

×

×
  105 r.p.m

     For generator, N = 120 f
p

     105 = 120 50
p
×

   [where,  f = frequency (= 50 Hz)]

   \  Number of poles, p = 120 50 57.14 60 (say)
105

×
= =

   (as the number of poles is necessarily an even number)

   Again,                      Nsyn = 
120 120 50 . . .

60
×

= =
f

p
100 r p m  (Ans.)

 Example 6.8.   Calculate the power developed in MW from a hydro-electric power plant with 
the following data :
  Available head 50 m
  Catchment area 250 sq. km
  Average annual rainfall 120 cm
  Rainfall lost due to evaporation 20%
  Turbine efficiency 82%
  Generator efficiency 84%
  Head lost in penstock 4%.

 Solution.  Head available, H = 50 m
    Catchment area, A = 250 sq. km (= 250 × 106 m2)
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    Average annual rainfall, = 120 cm (= 1.2 m)
    Evaporation,  = 20%
  \ Average annual rainfall available, h = (1 – 0.2) × 1.2 = 0.96 m
    Turbine efficiency, ht = 82%
    Generator efficiency, hg = 84%
    Penstock efficiency, hp = 100 – 4 = 96%
  Quantity of water available per annum
     = A × h = 250 × 106 × 0.96 = 2.4 × 108 m3

  Hence, quantity of water available per second,

    Q = 
8

32.4 10 7.61 m /s
(365 24) 3600

×
=

× ×

    Overall efficiency, ho = hp × ht × hg

     = 0.96 × 0.82 ×  0.84 = 0.66
    Power developed, P = h0 × wQH
     = 0.66 × 9.81 × 7.61 × 50 kW
     = 2463.6 kW or 2.463 MW
    Hence, power developed = 2.463 MW. (Ans.)

 Example 6.9.   In an hydro-electric power plant the reservoir is 225 m above the turbine 
house. The annual replenishment of reservoir is 3.5 × 1012 N. Calculate the energy available at 
the generating station bus bars if the loss of head in the hydraulic system is 25 m and the over all 
efficiency of the system is 85%.
 If maximum demand of 45 MW is to be supplied, determine the diameter of two steel penstocks.

 Solutuion. Actual head available, H = 225 – 25 = 200 m
    Overall efficiency, h0 = 85%
    Annual replenishment, W = 3.5 × 1012 N.

 (i) Energy output :
                 E = Energy available at the turbine house
     = WH = 3.5 × 1012 × 200 = 7 × 1014 Nm or J

     = 
14

8
5

7 10 1.944 10 kWh
36 10

×
= ×

×
 [1 kWh = 36 × 105 J]

    Energy output = h0  × E
          = 0.85 × 1.944 × 108 = 1.652 × 108 kWh. (Ans.)

 (ii) Diameter of steel penstock, D :
    Kinetic energy of water = Loss of potential energy

  \ 21
2

mC  = mgH

  \ C = 2 2 9.81 200 62.64 m/sgH = × × =

  (where, C = Velocity of water in each penstock, m = mass of water in kg)

  Now, 21
2

mC  = Energy to be supplied
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    21 (62.64)
2

m ×  = 45 × 106 W

  \ m = 
6

2
45 10 2 22937 kg

(62.64)
× ×

=

  Let, A = Area of two penstocks, m2,

    A1 = Area of each penstock = 
2
A  and

    D = Diameter of each penstock.
  Then, m = A × C × ρ
  (where, ρ = Mass density of water)

    22973 = A × 62.64 × 1000 39810 1000 kg/m
9.81

w
g

 ρ = = = 
 

    A = 222973 0.366 m
62.64 1000

=
×

  and, A1 = 20.366 0.183 m
2 2
A

= =

  Now, 0.183 = 2

4
Dπ

  \ D = 
/20.183 4 . .

1×  = π 
0 483 m  (Ans.)

 Example 6.10.   It is observed that a run-of-river plant operates as peak load plant with a 
weekly load factor of 25%, all this capacity being firm capacity. Determine the minimum flow 
in river so that power plant may act as a base load plant. The following data is supplied : Rated 
installed capacity of generating plant = 10 MW; operating head = 16 m; Plant efficiency = 86%.
 If the stream flow is 15 m3/s, find the daily load factor of the plant.

 Solution.  Weekly load factor = 25%
  Rated installed capacity of generating plant = 10 MW (= 10000 kW)
    Operating head H = 16 m
    Plant efficiency, h0 = 86%

 Minimum flow in river in m3/sec, Q :

  Load factor = Average load
Maximum demand

 \ Average load = Load factor × maximum demand
   = 0.25 × 10000 = 2500 kW
  E = Total energy generated in one week
   = 2500 × 24 × 7 = 42 × 104 kWh
 Now,  Power developed, P = h0wQH  kW
   = 0.86 × 9.81 × Q × 16 kW = 134.98 Q kW
 \ E1 = Total energy generated in one week
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   = 134.98 Q × 24 × 7 = 22676.6 Q kWh
 Now, E = E1

  42 × 104 = 22676.6 Q

 \ Q = 
4

342 × 10 18.52 m /s
22676.6

=

 Hence, minimum flow rate  = 18.52 m3/s. (Ans.)
 Power developed when stream flow is 15 m3/s,
  P1 = 134.98 × 15 
   =  2024.7 kW
 Energy generated per day,
  E2 = P1 × time = 2024.7 × 24 

   =  48592.8 kWh

 \ Daily load factor = Average load
Maximum load

   = 48592.8 . . %
10000 × 24

= 0 2025 or 20 25  (Ans.)

 Example 6.11.   Calculate the firm capacity of a run-of-river hydro-power plant to be used as 
8 hours peak plant assuming daily flow in a river to be constant at 15 m3/s. Also calculate pondage 
factor and pondage if the head of the plant is 11 m and overall efficienty is 85%.

 Solution.  Discharge, Q = 15 m3/s
  Plant head, H = 11 m
  Overall efficiency, h0 = 85%
  Specific weight of water, w = 9.81 kN/m3

                                                   P  = Firm capacity without pondage
                                                        = h0 × wQH = 0.85 × 9.81 × 15 × 11 
   =  1375.8 kW

                                                 PF  = Pondage factor = 1

2

t
t

 where, t1 = Total hours in one day = 24, and
  t2 = Number of hours for which plant runs = 8
 [Pondage factor is the ratio of total inflow hours in a given period to the total number of hours 
for which plant runs during the same period.]

  PF = 24
8

 = 3. (Ans.)

  Q1 = 15 × 3 = 45 m3/s
  P1 = Firm power with pondage
   = 1375.8 × 3 = 4127.4 kW
  Pondage (magnitude) = (24 – 8)  = 16 hours flow
   = 16 × 60 × 60 × 15 = 8.64 × 105 m3.  (Ans.)
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 Example 6.12.   The following data relate to a pump storage power plant :
  Gross head 280 m
  Dia. of head-race tunnel 4.0 m
  Length of head-race tunnel 620 m
  Flow velocity 6.5 m/s
  Friction factor 0.018
  Pumping efficiency 85%
  Generation efficiency 90%
 If the power plant discharges directly in the lower reservoir determine the plant efficiency.

 Solution.  Head, H = 280 m
  Dia. of head-race tunnel, D = 4.0 m
 Length of head-race tunnel, L = 620 m
  Flow velocity C = 6.5 m/s
  Friction factor f = 0.018
  Pumping efficiency hp = 85%
  Generation efficiency hg = 90%
 Plant efficiency, hplant :
 Loss of head due to friction (hf) is given by the equation :

  hf = 
2 20.018 620 6.5 6.0 m

2 2 9.81 4.0
fLC

gD
× ×

= =
× ×

 Now, hf = xH

 or, 6 = x × 280  \ x = 6 0.0214
280

=

 \ hplant = 1 – (1 – 0.0214) 0.85 0.9
1 (1 0.0214)p g

x
x

× h × h = × ×
+ +

   = 0.7329 or 73.29% (Ans.)

 Example 6.13.   The nature of load required for 24 hours and thermal efficiencies of the plant 
at the respective loads are given in the table below :

Time period Load (MW) Thermal efficiency (%age)

10 A.M. to 6 P.M. 120 32%
6 P.M. to 8 P.M. 60 24%
8 P.M. to 12 A.M. 30 15%
12 A.M. to 6 A.M. 15 10%
6 A.M. to 10 A.M. 75 25%

 (i) Find the total input to the thermal plant if the load is supplied by the single thermal plant 
only.

 (ii) If the above load is taken by combined thermal and pump storage plant, then find the per-
centage saving in the input to the plant. Thermal efficiency at full load = 32%.

 (iii) The overall efficiencies in both cases.
 In pump storage plant, the pump and turbine are separate. The efficiency of pump is 82% and 
water turbine is 92%.
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 Solu tion. The load curve, drawn as per data given, is shown in Fig. 6.11.
  Total output per day = 75 × 4 + 120 × 8 + 60 × 2 + 30 × 4 + 15 × 6
   = 300 + 960 + 120 + 120 + 90 = 1590 MWh
 (i) Total input to the thermal plant :
  The input to the thermal plant

     = 75 4 120 8 60 2 30 4 15 6
0.25 0.32 0.24 0.15 0.1

× × × × ×
+ + + +

     = 1200 + 3000 + 500 + 800 + 900 = 6400 MWh. (Ans.)
 (ii) Percentage saving in the input to plant :
  The overall efficiency of the pump storage plant
     = 0.82 × 0.92 = 0.7544, or, 75.44%.
 Assume that the capacity of the thermal plant is x MW when it is working in combination with 
pump-storage plant.
 The energy used from the thermal plant to pump the water of pump storage plant during off-
peak period must be equal to the energy supplied by the pump-storage plant during peak period.

Time period

6 P.M.6 A.M. 12 P.M. 12 A.M. 6 A.M.

L
o
ad

,
M

W

120

110

100

90

80

70

60

50

40

30

20

10

Load curve

Base load
thermal plant
of 71.67 MW capacity

Fig. 6.11



Chapter 6 : Water Power  Development         351

 From the Fig. 6.11, we have:
 [(x – 60) × 2 + (x – 30) × 4 + (x – 15) × 6] × 0.7544 = (75 – x) × 4 + (120 – x) × 8
 or,  [(2x – 120) + (4x – 120) + (6x – 90)] × 0.7544 = (300 – 4x) + (960 – 8x)
 or, (12x – 330) × 0.7544 = 1260 – 12x
 or, 9.053x – 248.95 = 1260 – 12x

 \ x = 1260 248.95 71.67 MW
(9.053 12)

+
=

+

 The energy supplied in the second case

   = 71.67 24 5375 MWh
0.32

×
=

 The percentage saving in input if the load is taken by combined thermal and pump storage plant

   = 6400 5375
6400

−  = 0.16 or 16%.  (Ans.)

 (iii) The overall efficiency in the first case :

     = 
1590 0.2484
6400

= = 24.84%.  (Ans.)

  The overall efficiency in the second case

     = 
1590 0.2958 or
5375

= 29.58%.  (Ans.)

 Example 6.14.   At a particular site of a river, the mean monthly discharge for 12 months is 
tabulated below : 

Month Discharge (millions
of m3 per month)

Month Discharge (millions
of m3 per month)

April 250 Oct. 1000
May 100 Nov. 750
June 750 Dec. 750
July 1250 Jan. 500
Aug. 1500 Feb. 400
Sep. 1200 Mar. 300

 (i) Draw hydrograph for the given discharges and find the average monthly flow.
 (ii) Also draw the flow duration curve.
 (iii) The power available at mean flow of water if available head is 90 metres at the site and 

overall efficiency of the generation is 82 percent.
 Take 30 days in a month.

 Solution. 

 (i) Hydrograph:
 The hydrograph, drawn as per data given, is shown in Fig. 6.12.
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 Fig. 6.12. Hydrograph. Fig. 6.13. Flow duration curve.

 The average monthly flow (Refer to Fig. 6.12)

   = 250 100 750 1250 1500 1200 1000 750 750 500 400 300
12

+ + + + + + + + + + +  

   = 729.2 millions of m3/month. (Ans.)

 (ii) Flow duration curve :
 In order to obtain the flow duration curve it is necessary to find the lengths of time during which 
certain flows are available. This information is tabulated, using the hydrograph, in the following 
table:

Discharge per month
millions of m3

Total number of months
during  which flow is available

Percentage time during
which flow is available

100 12 100
250 11 91.8
300 10 83.40
400 9 76.00
500 8 66.60
750 7 58.40

1000 4 33.30
1200 3 25.00
1250 2 16.65
1500 1 8.325

 By using the above tabulated data, the flow duration curve can be shown in Fig. 6.13.
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 (iii) Power available at mean flow of water :
 The mean/average flow available per second

   = 
6

3729.2 10 281.3 m /s
30 24 3600

×
=

× ×

 Average kW available at the site

   = MW
1000 g
wQH

× h      ( w = ρg = 1000 × 9.81 = 9.81 kN/m3)

   = 9.81 281.3 90 0.82 . .
1000

× ×
× = 203 6 MW  (Ans.)

 Example 6.15.   The data for a weekly flow at a particular site is given below for 12 weeks :

Week Weekly flow, m3/s Week Weekly flow, m3/s

1 3000 7 600
2 2000 8 2250
3 2700 9 4000
4 1000 10 2000
5 750 11 1500
6 500 12 1000

 With the help of mass curve, find the size of the reservoir and the possible rate of available flow 
after the reservoir has been built.

 Solution. In order to draw mass curve, we need to find the cumulative volume of water that can 
be stored week after week. This is done as tabulated in the table below:

Week
(a)

Weekly flow in m3/s
(b)

Weekly flow in
day-sec-metres

(c) = (b) × 7

Cumulative volume in
day-sec-metres

(d)
1 3000 21000 21000
2 2000 14000 35000
3 2700 18900 53900
4 1000 7000 60900
5 750 5250 66150
6 500 3500 69650
7 600 4200 73850
8 2250 15750 89600
9 4000 28000 117600

10 2000 14000 131600
11 1500 10500 142100
12 1000 7000 149100

 If the mean flow is available in the week at the given rate, the the total flow in the week =  
7 × day × m3/s = 7 × day-sec-metres.
 By using the above tabulated data, the mass curve can be drawn as shown in Fig. 6.14.
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	 l	 Draw the tangent at the highest point on the mass curve  from ‘p’ and measure the highest 
distance between the tangent drawn  and mass curve which gives the capacity of the reservoir.
 In this case, capacity of the reservoir = 18 × 103 day-sec-metres (Ans.)
	 l	 The slope of the line ‘pq’ gives the flow rate available for the given capacity reservoir.

 \ Flow rate available = 
354 10 (day-sec-metres) . .

5.5 × 7 (days)
qr
pr

×
= = 31402 6 m / s  (Ans.)

 Example 6.16.   The following run-off data is collected for twelve months at a particular site :

Month Flow per month,
millions of m3

Month Flow per month,
millions of m3

1 50 7 95
2 25 8 20
3 10 9 15
4 40 10 100
5 5 11 85
6 5 12 40

 Determine the following :
 (i) The required capacity for the uniform flow of 25 millions m3 per month throughout the year.
 (ii) Spill-way capacity.
 (iii) Average flow capacity if whole water is used  and required capacity of the reservoir for this 

condition.

 Solution. In order to draw the mass curve, we need to find the cumulative volume of water that 
can be stored month after month. This is done as shown in the following table :

Month Flow per month
(millions of m3)

Cumulative volume,
(millions of m3)

1 50 50
2 25 75
3 10 85
4 40 125
5 5 130
6 5 135
7 95 230
8 20 250
9 15 265

10 100 365
11 85 450
12 40 490
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By using the above tabulated data, the mass curve can be drawn as shown in Fig. 6.15.

 (i) Required capacity for the uniform flow of 25 millions–m3 per month :
 l For finding the capacity of the reservoir for uniform flow of 25 millions–m3 per month, 

construct the ∆pqr as shown in Fig. 6.15. qr represents one month and pr represents 25 
millions–m3.

 l Now draw the parallel lines to the line pq through the points e and g which are apex of mass 
curve. The greatest departure of the mass curve from these lines represents the storage 
capacity.

 \  Storage capacity = 35 × 106 m3. (Ans.)
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 (ii) Spillway capacity :
  Spillway capacity required (Fig. 6.15)
     = 36 × 103 m3. (Ans.)
 (iii) Average flow capacity
 l Join points a and b, then the slope of the line ab represents the uniform discharge throughout 

the year
     = 6490 10

12
× = 6 340.83 10 m / month.×  (Ans.)

 l Draw the line cd parallel to ab which touches the mass curve to its lowest point ‘j’. The 
maximum departure of the line cd from the mass curve represents the required storage capac-
ity for the uniform supply of 40.83 × 106 m3/month. In this case, storage capacity required

 = 107.5 × 106 m3.  (Ans.)

HIGHLIGHTS

 1. A dam is a barrier to confine or rise water for storage or diversion to create a hydraulic head.
 2. A canal is an open waterway excavated in natural ground. A flume is an open channel ex-

cavated on the surface or supported above ground on a trestle. A tunnel is a closed channel 
excavated through a natural obstruction such as ridge of higher land between the dam and 
the power house.
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 3. A surge tank is a small reservoir or tank in which the water level rises or falls to reduce the 
pressure swing so that they are not transmitted in full to a closed curcuit.

 4. A draft tube serves the following two purposes :
  (i) It allows the turbine to set above tail-water level without loss of head, to facilitate 

inspection and maintenance.
  (ii) It regains, by diffuser action, the major portion of the kinetic energy delivered to it from 

the runner.

 5. The plants which cater for the base load of the system are called ‘base load plants’ whereas 
the plants which can supply the power during peak loads are known as ‘peak load plants’.

 6. Microhydel plants (microstations) make use of standardized bulb sets with unit output 
rainging from 100 to 1000 kW working under heads between 1.5 to 10 metres.

 7. The specific speed of a turbine is defined as the speed of a geometrically similar turbine 
that would develop one brake power under a head of one metre.

 8. The Pelton turbine is a tangential flow impulse turbine. The pressure over the pelton wheel 
is constant and equal to atmosphere, so that energy transfer occurs due to purely impulse 
action.

 9. The modern Francis water turbine is an inward mixed flow reaction turbine. It operates 
under medium heads and also requires medium quantity of water.

 10. In the propeller turbine the runner blades are fixed and not-adjustable. In Kaplan turbine, 
which is a modification of propeller turbine the runner blades are adjustable and can be 
rotated about the pivots fixed to the boss of runner.

 11. Cavitation may be defined as the phenomenon which manifests itself in the pitting of the 
metallic surfaces of turbine parts because of formation of cavitites.

 12. Hydrology may be defined as the science which deal with the depletion and replenishment 
of water resources.

 13. Run-off includes all the water flowing in the stream channel at any given section. It can be 
measured by the following methods:

  (i) From rainfall records  (ii)  Empirical formulae
  (iii) Run-off curve and tables (iv) Discharge observation method.
 14. Hydrograph is defined as a graph showing discharge (run-off) of flowing water with respect 

to time for a specified time. It indicates the power available from the stream at different time 
of day, week or year.

 15. Flow duration curve represents the run-off data for the given time. It is plotted between 
flow available during a period versus the fraction of time.

THEORETICAL QUESTIONS

 1. Define hydrology.
 2. Draw and explain the hydrologic cycle.
 3. Define run-off. How is it measured ?
 4. List the factors which affect run-off.
 5. What is a hydrograph ?

 6. What is a unit hydrograph ? What are the 
limitations to the use of unit hydrograph ?

 7. What is a flow duration curve ?
 8. What is a mass curve ?
 9. Write a short note on hydropower development 

in India.
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UNSOLVED EXAMPLES

 1. The following data is available for a hydropower 
plant:

  Available head = 130 m; catchment area = 
220 sq. km; annual average rainfall = 150 cm ; 
turbine efficiency = 86%; generator efficiency = 
91% ; percolation and evaporation losses = 18%.

  Determine power developed in MW taking load 
factor as unity. [Ans. 8.563 MW]

 2. From the investigation of a hydrosite the 
following data is available :

  Available head = 50 m; catchment area = 50 sq. 
km; rainfall = 150 cm per year; 70% of rainfall 
can be utilised; turbine efficiency 80%, generater 
efficiency = 91%; penstock efficiency = 75%; 
load factor = 60%.

  Determine the suitable capacity of a turbo-
generator.

  [Ans. 750 kW (maximum rating). 
  Francis or Kaplan turbine]
 3. At a particular site the mean discharge (in 

millions of m3) of a river in 12 months from 
January to December is respectively 80, 50, 40, 
20, 0, 100, 150, 200, 220, 120, 100, 80.

   (i) Draw a hydrograph and find the mean flow.
   (ii) Also draw the flow duration curve.
   (iii) Find the power in MW available at mean 

flow if the head available is 100 m and 
overall efficiency of generation is 100 
m and overall efficiency of generation is 
80%.

    Take the each month of 30 days.
  [Ans. (i) 96.67 millions of m

(ii) 29.2 MW]
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7.1.  INTRODUCTION

 The term fluidics relates to the combination of the 
two functions namely fluid amplification and fluid logic.
 Fluidics is defined as a control technology which 
makes use of fluids interaction to produce useful signals.
  The “field of fluidics” is the study of the perfor-

mance and response characteristics of control 
systems, computing devices and logical switch 
gears based on the fluidic elements.

  In finer control engineering, non-moving  logic 
elements find a prominent place. Irrespective 
of the development of electronics, low pressure 
pneumatics and fluidic elements have certain 
specific characteristics which put them at par 
with electronic controls even for modern sophis-
ticated machines. Various fluidic elements have 
been developed conforming to the need of logic 
functions in the industrial automation.

359

 7.1. Introduction. 
 7.2. Advantages, disadvantages 

and applications of fluidic 
divices/fluidics; 

 7.3. Fluidic (or fluid logic) elements 
– General aspects – Coanda 
effect – Classification of 
fluidic devices – Fluid logic 
devices – Fluidic sensors – 
Fluidic amplifiers;

 7.4. Comparison among different 
switching elements. 

  Highlights
  Objective Type Questions
  Theoretical Questions.

  — The basic principle is derived from the “Tesla’s fluid-diode” and theory of “wall at-
tachment” discovered by Coanda.

  — More and more fluid-logic elements in the form of logic gates like OR, NOR, etc. are 
being used along with power pneumatic circuits to offer better control and feedback 
to the pneumatic system. One of the major areas of their application is in the field of 
sensors. The present day state of art of pneumatic sensors is quite competitive with 
other form of sensors e.g., fine mechanical, opto-electrical, inductive, hydraulic, ultra 
sound and magnetic devices etc. and are therefore widely used in various engineering 
tools and instruments.

 History of fluidics :
  1904 : L. Prandtl (German aerodynamist) suggested that in a wide angled diffuser the 

flow separation could be controlled by applying suction to the boundary layer.
  1916 :  — Nikola Tesla filed a patent for a “Valvular Conduit” for fluids in which 

there was an easy direction of flow and a difficult direction, owing to the 
interference caused by the divided branch flow opposing the intended flow-
direction as can be seen in Fig. 7.1 which was granted in 1920. 
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    — Whill Tesla claimed to have invented the first fluid device having no moving 
parts. 

Easy flow direction

Difficult flow direction

Fig. 7.1. Tesla’s tube.

  1930 : Henri Coanda (a Rumanian engineer) discovered that a free jet would follow 
an adjacent curved or inclined surface. Coanda’s theory of “wall attachment” 
was a major stepping stone in the development of this field. Later this effect 
was used for the development of fluidic logic components.

  1958 : Moore and Klive, working with wide angled diffusers, discovered that a jet 
could have two or three stable stages, depending on the angle of diffuser through 
which the jet was flowing.

  1962 : Ray Auger discovered a fluidic logic element called “Turbulence amplifier”.

7.2. ADVANTAGES, DISADVANTAGES AND APPLICATIONS OF 
FLUIDIC DEVICES/FLUIDICS

 During the last few decades, the technology of electronic control system has leapt through 
milestones of innovations with various forms of transistors, ICs and the like, production costs have 
drastically reduced, and reliability has increased many a fold. Inspite of these developments, fluidic 
devices are finding wide applications and claim the following advantages :
 Advantages :
 1. More reliable.
 2. Simpler in construction.
 3. Smaller in size, mass or weight.
 4. Offer exceptional physical and thermal stability and ruggedness.
 5. Noise free.
 6. Hazard free.
 7. Mode of energy feeding to a fluidic system is very simple.
 8. Fuidic elements are easily adaptable to logic functions in engineering applications.
 9. Have good response and performance characterisitics (0.001 second).
 10. Since they contain no moving parts, not much maintenance problems are encountered.
 Disadvantages :
 1. Unsuitable for incompressible fluids.
 2. Slow speeds and low power outputs.
 3. Complex systems are impracticable.
 4. Inefficient in operation; they cannot be used in high-speed switching operations.
 5. Not suitable for intermittent operation control systems.
 6. Limited development of the field.
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  The working pressure used for pneumatic fluid devices is very less within 0.05 to 0.1 bar 
but need not always be so. They are quite sensitive to load and position which can be easily 
sensed with the help of instrumentation.

 Applications : The fluidic devices are used :
 1. To measure flow rates;
 2. To provide on-off controls;
 3. To check weights;
 4. To operate various types of machinery, etc.
  If used with a chemically inert gas such as nitrogen or helium, these devices are especially 

advantageous in cases where fire or electrical hazards are present, as in the manufacture of 
explosives.

7.3.  FLUIDIC (OR FLUID LOGIC) ELEMENTS

7.3.1. General Aspects

 The fluidic elements (also called fuid logic elements) were developed in the early sixties. The 
primary merit of these elements over all other forms of control elements is that they have a minimum 
number of mechanical moving parts; because of this, these elements are also known as “non-moving 
logic” controllers.
 These element claim the following advantages :
 1. Quite insensitive to temperature, vibration, shock, electric noise and  radiation.
 2. Insensitive to electromagnetic interferences etc. 
 3. Need no actuating force.
 4. No wear and tear of elements.
 5. Need very little space for mounting.

7.3.2. Coanda Effect
 Physically a fluidic device is a block of material having an internal network of passages. One of 
the basic underlying principle of the functioning of these flow passages was given by Henri Marie 
Coanda (a Ramanian engineer) and is known as “Coanda effect” or “Wall attachment effect”.
 This effect is explained below : Refer to Fig. 7.2.
  Fig. 7.2. (i) : A free jet of air is emitted into a confined region or orifice at a velocity high 

enough to produce turbulent flow.
  Fig. 7.2. (ii) : The free jet of air will continue in a given direction, pulling in with it the 

available air from its surroundings as it leaves the orifice. If there is greater availability of 
this entraining air from one side, a small vortex area (low pressure area/region) is created 
near the nozzle exit. This low pressure area then tends to attract the free jet, distorting it 
and pulling it towards the wall, because the atmospheric pressure on the other side forces 
the jet to cling to the surface. 

  Fig. 7.3. (iii) : The free jet attachment continues until a small air supply is fed to the low 
pressure area, thus relieving the attraction of the jet to the wall. When this signal is injected, 
the free jet then detaches itself from the wall and resumes its normal uninterrupted flow 
path.
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Free jet of air

Vortex

More available
air in upper side

Wall

( )i

Vortex

Direction of
flow with wall

Wall attachment

( )iii

Vortex

Low pressure
area/region

( )ii

Fig. 7.2. Coanda/Wall attachment effect.

7.3.3 Classification of Fluidic Devices
 Fluidic devices may be classified as follows :
 A. 1. Digital fluidic devices :
  (i) Wall attachment. (ii) Turbulence.
  (iii) Vortex feedback.
   A digital element has two outputs, and flow takes place from one or other output 

depending upon the presence or absence of control signal. The flow never splits between 
two outputs; it is either fully out of one or other. It can be compared to a simple “ON-
OFF” switch.

   The digital devices are of the following two categories :
  (a) Monostable :
  — In the absence of a signal the device always selects one of its two output states. The 

other state can only be selected by applying and maintaining  the signal i.e., when the 
applied signal is removed the device returns to its former state.

   These devices do not have any memory.
   Example : 3/2 normally operated, spring return D.C. valve.
  (b) Bistable :
  — The output of this device in any direction is stable, irrespective of the fact whether 

applied signal is present or absent.
  — These devices are equipped with memory.
   Example : 4/2 pilot operated D.C. valve. 
   Examples of digital fluidic devices :
   (i)  Bistable flip-flops;   (ii) Logic gates, etc.
 2. Analogue fluidic devices :
 (i) Stream or beam deflection. (ii) Impact modulator.
 (iii) Vortex.
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  An “Analogue element” varies its output continuously as a function of the control output 
signal and gives proportional control (similar to an accelerator pedal of a car)

  Examples of analogue fluidic devices :
  (i) Fluidic position sensors; (ii) Fluidic vortex amplifier;
  (iii) Wall attachment amplifier; (iv) Fluidic oscillator, etc.
 B. 1. Active fluidic devices :
  — In an active fluidic device, the power nozzle of the device is continuously supplied with 

an air pressure source.
  2. Passive fluidic devices :
  — These devices intermittently receive pressure signals at the power nozzle, and this signal 

usually comes from the output of preceding element in the circuit. In other words the 
air only passes momentarily through the device.

 C. 1. Fluid logic devices :
  (i) Bi-stable flip-flop; (ii) AND gate;
  (iii) OR-NOR gate, etc.
  2. Fluidic sensors :
  (i) Interruptible jet sensor; (ii) Reflex sensor;
  (iii) Back pressure sensor.
  3. Fluidic amplifiers :
  (i) Turbulence amplifier; (ii) Vortex amplifiers.

7.3.4. Fluid Logic Devices
 The following terms are frequently used in connection with fluid logic devices :
 1. Logic function or gate. It is defined as an assembly of one or more logic elements which 

produce a desired effect on satisfying certain conditions, i.e., if we apply correct input 
signals, we will get the required output.

 2. Input signal. It is the pressure or flow which is directed into the input part to control the 
logic function or an element.

 3. Output signal. It is the pressure or flow which is leaving the output part of a logic function 
or an element.

7.3.4.1. Bi-stable flip-flop
 A bi-stable flip-flop is the most 
common fluid logic device. It works 
on the principle of Coanda effect. 
 Fig. 7.3. shows this device :

Supply or input port

4 (Input air)

Control jet
port

(Control jet)
3

Output
port

Output
port

Outputs

1 2

5 (Reset
control jet)

Control jet
port

Fig. 7.3. Bi-stable flip-flop.
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 — In general, it consist of five ports, out of which one is supply port; two control jet ports and 
two output ports.

 — Supply is always present on the input port (4) whereas output is dependent on the control jets 
(3, 5), i.e., when fluid is passed from control jet 3 there will be an output – 1 and similarly 
when there is a supply at control jet–5 the output will be an output – 2.

   The device is suited for binary logic functions, as the output either exists or does not. 
The output from this device can be used as “pilot signal” for actuating various valves 
with low pressure actuating element.

   This device can be manufactured easily out of glass or plastic, not much larger than the 
size of a coin, the orifice size in such devices is of the order of 0.25 mm in diameter 
and the working pressure is about 0.05 to 0.1 bar. The operational speed is about 1000 
cycles per second.

7.3.4.2. AND gate
 Fig. 7.4. shows a fluidic AND 
gate/element; its operation is based 
on Coanda’s wall attachment 
theory.
 (i) Under no-control con-

dition, output is at 0  
(output–0).

 (ii) When control jet C1 is on, 
output is at 1 (output–1).

 (iii) When both the control jets 
C1 and C2 are on, only 
then there is an output at 
the AND gate, i.e., output 
is at 2 (output–2).

7.3.4.3. OR–NOR gate
 Fig. 7.5 shows fluidic OR–NOR gate.
 — It consists of supply port S from which the fluid is supplied all the time. There are two control 

ports C1 and C2 and two output ports X and X1. X represents the OR gate output while X1 
represent NOR gate output.

Control ports

C1 C2

Supply port S

X [output (NOR)]1

X [output (OR)]

C , C = Control ports/jets1 2

Output
ports

Fig. 7.5. OR–NOR gate.

 — When the control jets C1 and C2 are absent, supply S is passed through the gate via output 
X1. It implies that when there is no control input, there is an output. This is the characteristics 
of NOR gate and X1 is considered as NOR output.

C1

C2

0(output-0)

1 (Output-1)

2 (Output-2)

Output-1

VentC1

AND output
port

Output-2
Stage 1 Stage 2

(i)

(ii)

(iii)

Input
energy

C ,C = Control jets1 2

C1
C2

Vents

Fig. 7.4. AND gate.
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 — When fluid stream is present at either of control jet C1 or C2 or both at C1 and C2, there will 
be output at X. It implies that even with one control input there is an output. This is the logic 
characteristic of OR gate and X output is considered as OR output.

  The complete device is called as OR–NOR gate.
  Fig. 7.6 shows a circuit diagram illustrating the application of fluidic pressure for actuating 

a low pressure diaphragm valve.
Turbulence
amplifier

Fluidic
NOR gate

Flow control
valve

Pressure
reducer

Pressure
source

3/2 D.C.
valve

Z

Single acting
cylinder

Fig. 7.6. Application of fluidic elements in pneumatic circuit.

7.3.5. Fluidic Sensors
 These sensors (generally of very small size) are mainly used to detect the presence of objects. 
They are designed to provide a signal in the form of fluid jet, to indicate the presence of an object.
  The output of these sensors can be directly used as a control signal for pneumatic logic 

circuits. These control signals, however, need to be amplified when employed in pneumatic 
and hydraulic devices.

  A few important fluidic sensors are described in the following subarticles.

7.3.5.1. Interruptible jet sensor
 Fig. 7.7 shows an interruptible jet sensor :

Gap

Jets of air

B

A
Inner
nozzle

Object

(b) Symbol

A

BC

Object Air jets

Jet

Supply

B

A

C

(a) Construction

 Fig. 7.7. Interruptible jet sensor. Fig. 7.8. Reflex sensor-symbol.

 — Low pressure air is permitted to pass from A to B uninterrupted. But if a mechanical object 
comes between C and B, the air jets are blocked after leaving the port C and the signal at B 
disappears. 
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 — The pressure at A ranges between 0.1 bar to 2 bar, but normal air-line pressure may also be 
used. However, in that case, it is better to throttle the air before it enters at inlet A.

 — Sensing gap is limited to 5 mm.

7.3.5.2. Reflex sensor
 Fig. 7.8. shows the symbol of a reflex sensor :
 — It works on the principle of creating a back pressure when the pressure flowing out to the 

atmosphere is blocked.
 — Two jets of air flow out through an annular opening. If an object disrupts the jets,  a back 

pressure is created which flows back into the inner nozzle and controls other valves.
 — Here, the inlet pressure is limited to 0.1 to 0.2 bar (gauge).

7.3.5.3. Back pressure sensor
 Fig. 7.9 shows a back pressure sensor :
 — It consists of a small nozzle exhausting air to the atmosphere.
 — When nozzle is blocked, the pressure backs up and this increased back pressure signals the 

presence of an object.

Nozzle

Restriction
Object

(Supply
pressure) Air

inlet
pO

pS

(a) Output pressure lowOp

pO

pS

(b) Output pressure HighOp    (c) Symbol

 Fig. 7.9. Back pressure sensor.

 — A restriction must be placed between the supply pressure inlet and nozzle. This restriction 
could be a short length capillary tubing or a small hole drilled into a plug inserted in the 
tube. Its purpose is to produce sufficient pressure drop so as to get a low output pressure 
po, when the nozzle is open. The reason for this is that sensitivity of sensing will be better 
if the pressure is low.

 — When the sensed object blocks the nozzle outlet, the restriction has no effect, and output 
pressure po almost equals pressure ps. Thus the object can be sensed only if practically 
touches the nozzle.

7.3.6. Fluidic amplifiers
 If a device gives a large change in output either pressure, flow or both, as a result of a small 
change in control input, the device is said to have “gain” or in other words it is an amplifier. 
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 An amplifier can be either electric, hydraulic, pneumatic, or fluidic.
  “Fluidic amplifiers” not only control but also provide certain amplification to the fluid 

signals.

7.3.6.1. Turbulence amplifier
 Fig. 7.10. Illustrates a turbulence amplifier (T.A.)
 — Low pressure fluid is conducted 

through a long, small bore pipe 
to achieve laminar flow.

 — This laminar flow issued from 
the inlet pipe transits the space 
of about 20 mm and is then col-
lected by the outlet pipe. The 
space between input pipe and 
output pipe is protected by a 
cylindrical shield of diameter 20 
to 30 times that of input/output 
pipe. This shield houses the 
‘control inputs’ and it is vented 
to atmosphere as shown in the 
figure.

 — When there is no control input 
or signal, the laminar flow 
proceeds from input to output 
through the open space within the turbulence amplifier. However, if there is an input control 
signal, this will create a turbulence between the input and output pipes; thus the output will 
not collect any flow, hence there is No output.

 — When the control signal is removed, the laminar flow is reestablished and there will be an 
output.

 — There can be several control inputs and the logic function is NOR. 
  In these devices, the switch off time is about 4 ms (milli seconds) and the total cycle time may 
not exceed 6 to 7 ms.
  Following are the examples of the application of the “turbulence amplifier” to some industrial 

problems :
 (i) Sensing; (ii) Counting;
 (iii) Discrimination; (iv) Timing;
 (v) Dispensing; (vi) Liquid level sensing.

7.3.6.2. Vortex amplifier
 This fluidic device is used to regulate the flow of fluid by utilising the properties of a vortex.
 Fig. 7.11. shows a vortex amplifier :
 — It consists of a cylindrical disc like container, which is divided by a cylindrical porous ele-

ment into two chambers : Outer chamber and vortex chamber.
 — Supply port S is provided for fluid inlet to the cylindrical disc.
 — Control jet C is provided to generate vortex in the vortex chamber. Several control jets along 

the circumference can be provided depending upon capacity, which throw streams of fluid 
in tangential direction and generate vortex motion in fluid.

Cylindrical
shield

Output

Output
pipe

Laminar
flow

About
20 mm

Fluid input

Input pipe
(small bore)

(a) Vent

Vent

No
output

To atmosphereTurbulence

Signal

Control inputs

Fig. 7.10. Turbulence amplifier.
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 — At the centre there 
is an output port X 
from where signal is 
transmitted.

 Working :
 — When a fluid element 

en te r s  the  vor tex 
c h a m b e r  t h r o u g h 
the porous coupling 
element and it flows 
towards the output 
port its radial velocity 
must increase. Again, 
when the same fluid 
element enters through 
the porous coupling 
w i t h  t a n g e n t i a l 
velocity imparted to 
it as it leaves coupling 
to conserve angular 
m o m e n t u m ,  t h e 
angular velocity of 
fluid must increase as it 
approaches the output 
port X. Thus there 
are two amplifying 
properties of vortex 
amplifier : (i) Increase 
in radial velocity; (ii) Increase in angular velocity.

 — When the supply pressure is regulated, if the vortex motion of the fluid produces a centrifugal 
pressure drop across the vortex chamber, there is less pressure at the exit to expel the liquid, 
thus less fluid flows from the exit. The introduction of vortex motion into the chamber 
effectively throttles the fluid through the chamber.

  It has been observed from the curves of output flow as function of the control pressure applied 
to vortex chamber that, the flow is reduced with the increase of control pressure.
 — When the control pressures are sufficiently high, the flow from supply is zero or even slightly 

reversed. Centrifugal pressure increases the pressure at the inside surface of the porous cou-
pling element so that the total pressure is equal to or slightly higher than the supply pressure. 
As a result, the control flow can cut-off completely the flow from the supply chamber.

  The flow versus control pessure curves, for high control pressures, become tangent to the time 
of zero supply flow.
  In any case, the control pressure should not be less than the supply pressure.

7.4.  COMPARISON AMONG DIFFERENT SWITCHING ELEMENTS

 The comparison among different switching elements (Pneumatic valves, moving part logic 
elements and fluidics) is given in tabular form on the next page : 
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container

Supply
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Output Vortex
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(b)

(a)

Outer (pressurised)
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Control
jet, C

Supply tube/
port S (for fluid
inlet)

Porous coupling
element

Output port X

Vortex
chamber

Fig. 7.11. Vortex amplifier.
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S.No.  Aspects  Pneumatic
valves

Moving part
logic elements

Fluidics

1. Air consumption Low Low High
2. Supply air pressure High Intermediate

to high
Low

3. Relative size Large Intermediate Intermediate
4. Response time 10 to 20 ms 5 to 10 ms 1-2 ms
5. Sensitivity to dirt

and conversion
Good Good Poor

6. Sensitivity to shock
and vibration

Excellent Intermediate Excellent

7. Sensitivity to 
electric noise and
radiation

Excellent Excellent Excellent

8. Sensitivity to high
temperatures

Good Good Excellent

9. Life expectancy 107 to 108 
cycles

107 to 108 
cycles

Unlimited
(with clean air)

HIGHLIGHTS

 1. Fluidics is defined as a control technology which makes use of fluids interaction to produce 
useful signals.

 2. Fluid devices may be of following types :
  (i) Digital; Analogue; (ii) Active; passive; (iii) Logic devices; sensor; amplifiers.
 3. Fluidics amplifiers not only control but also provide certain amplification to the fluid signals.

OBJECTIVE TYPE QUESTIONS

Fill in the Blank or Say “Yes” or “No”.
 1. ‘Valvular conduit’ was patented by ..........................
 2. The control circuit element has a limited life.
 3. A digital element has one output.
 4. .......................... element varies its output continuously as a function of the control output signal and 

gives proportional control.
 5. The digital devices are least important for industrial applications.
 6. A device having bistable properties is also said to have ..........................
 7. In .......................... device the air only passes momentarily.
 8. A logic gate is a device which has inputs and outputs.
 9. .......................... devised the first NOT gate.
 10. Coanda effect was discovered in 1930 by ..........................
 11. Bi-stable flip-flop works on the principle of .......................... effect.
 12. The output from Bi-stable flip-flop can be used as a pilot signal for actuating various valves with low 

pressure actuating element.
 13. Fluidic sensors are primarily used for detecting the presence of objects.
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 14. Vortex amplifier is used to regulate the flow of fluid by utilizing properties of a vortex.
 15. The power required to turn off the turbulence amplifier is much more than the power in the output

ANSWERS

 1. Nikola Tesla   2. No 3. No 4. Analogue 
 5. No 6. Memory 7. passive 8. Yes 9. Prandtl 
 10. Henri Coanda   11. Coanda 12. Yes 13. Yes 
 14. Yes. 15. No

THEORETICAL QUESTIONS

 1. Define the term ‘Fluidics’.
 2. Enlist the advantages, disadvantages and applications of fluidic devices/fluidics.
 3. Explain briefly “Coanda effect”.
 4. Give the classification of fluidic devices.
 5. Differentiate between the following fluidic devices :
   (i) Digital and analogue.   (ii) Active and passive.
   (iii) Mono-stable and bi-stable.
 6. Define the following terms :
   (i) Logic function or gate.  (ii) Input signal.
   (iii) Output signal.
 7. Explain briefly any two of the following fluid logic devices :
   (i)	 Bi-stable	flip-flop.	 	 	 	 (ii) AND gate.
   (iii) OR-NOR gate.
 8. Describe briefly the following fluidic sensors :
   (i) Interruptible jet sensor.  (ii) Back pressure sensor.
 9. Explain briefly air following fluidic amplifiers :
   (i)	 Turbulence	amplifier.	 (ii)	 Vortex	amplifier.
 10. Give the comparison among pneumatic valves, moving part logic elements and fluidics.



SECTION A: SHORT ANSWER QUESTIONS
 Q. 1. What is a “fluid jet”?
 Ans. A fluid jet is a stream of fluid issuing from a nozzle with a  high velocity and hence a high 

kinetic energy. When it impinges on a plate or vane, it exerts a force on it (due to change 
in momentum). This force ( hydrodynamic) can be evaluated by using Impulse-momentum 
principle.

 Q. 2. Write down the formulae for the force exerted by a jet of water at a stationary plate (Fx ) in 
the following cases: (i) Vertical plates; (ii) Inclined  plate; (iii) Curved plate and jet strikes 
at one of tips of the jet.

 Ans. (i) Fx = raV2 ; (ii) raV2 sin q ; (iii) 2raV2 cos q
  where, V = Velocity of the jet;  q = Angle between the jet and plate for inclined plate, and 

angle made by the jet with the direction of for curved plate. 
 Q. 3. In case of jet propulsion of ships, what is the efficiency of propulsion when the inlet orifices 

face the direction of motion of the ship?

 Ans. Efficiency of propulsion, h = 2
2

u
V u+

  where, u = Velocity of the moving ship; V = Absolute velocity of the moving jet.
 Q. 4. Point out the significance of word ‘Free’ in impact of free jets.
 Ans. ‘Free’ in impact of free jets means ‘constant pressure throughout’ when the jet impinges 

upon stationary or moving objects such as flat plates and vanes of different shapes and 
orientations in the study of ‘impact of jets’.

 Q. 5. Explain impulse-momentum equation.
 Ans. When a force (push or pull) is applied on body it tries to change the state of rest or state of 

motion of that body. The amount of force applied is equal to the rate of change of momentum, 
where momentum is the product of mass and velocity.

  Mathematically, F = ma = ( )dv dm mv
dt dt

  = 
 

  or, F = 2 1( )m v v
t

−

  or, Ft = m(v2 – v1)
  where, product Ft is the ‘impulse’ and is equal to the change in momentum.
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 Q. 6. What do you mean by ‘jet propulsion’?
 Ans. Jet propulsion is one of the applications of the ‘impulse-moment equation’ where in the 

reaction of high velocity jet issuing from a nozzle provides the necessary thrust. The principle 
is employed in propelling the ships, aircrafts and missiles.

 Q. 7. What is a dynamic machine?
 Ans. The term dynamic means power. A dynamic machine is a power machine, which receives 

energy from the flowing fluid in the form of momentum and converts the change in 
momentum into useful work.

 Q. 8. What is an impulse turbine?
 Ans. In ‘impulse turbine’ a high velocity jet issued from nozzle strikes a series of suitably shaped 

buckets fixed on the periphery of a wheel. The wheel gets resulting momentum and it gets 
rotated and thus we get the mechanical energy from the turbine.

 Q. 9. Classify turbines on the basis of direction of flow.
 Ans. The turbines are classified on the basis of direction of flow through the runner as follows:
  (i) Tangential flow turbine;
  (ii) Radial flow turbine;
  (iii) Axial flow turbine;
  (iv) Mixed flow turbine.
 Q. 10. What is ‘scale effect’?
 Ans. However a smooth a model is made, the geometric similarity between the prototype and 

model cannot be extended to surface roughness. This variation of surfaceness with respect 
to the size of turbine will cause a small but appreciable variation in the proportion of the 
effective head lost due to hydraulic friction. Thus the efficiency of prototype will be different 
from the corresponding model efficiency. This aspect is referred to as scale effect.

 Q. 11. List down some advantages of centrifugal pump over displacement pump.
 Ans. Some of the advantages claimed by centrifugal pump over displacement (reciprocating) 

pump are:
  (i) The cost of a centrifugal pump is less as it has fewer parts.
  (ii) Installation and maintenance are easier and cheaper.
  (iii) Its discharging capacity is much greater than that of a reciprocating pump.
  (iv) Its performance characteristics are superior.
  (v) It can be directly coupled to an electric motor or an oil engine.
  l However, because of higher efficiency the reciprocating pumps are still employed for 

high heads and small discharges. A reciprocating pump can build up very high pressures 
(as high as 700 bar or even more) and as such these pumps are made for lifting oils 
from very deep oil wells.

 Q. 12. What do you understand by ‘specific speed’ of a centrifugal pump?
 Ans. The ‘specific speed’ of a centrifugal pump is defined as the speed of a geometrically similar 

pump which would deliver unit quantity (one cubic metre of liquid per second) against a 
unit head (one metre).

  It is denoted by Ns. The specific speed of is a characteristic of pumps which can be used as 
a basis for comparing the performance of different pumps.

 Q. 13. Explain the term ‘negative slip’ as referred to reciprocating pumps.
 Ans. In most of the reciprocating pumps Qact. (actual discharge) is less than Qth. (theoretical 
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discharge); in such a case the value of Cd (coefficient of discharge) is less than unity and 
the slip of the pump is ‘positive’. However, in some cases Qact

. may be ‘more’ than Qth ; in 
such a case Cd is more than unity and the slip will be ‘negative’. The slip will be negative 
when there is direct connection between the suction and delivery sides before the end of 
the suction stroke. This happens if the momentum of liquid in the suction is large enough to 
open the delivery valve before the beginning of delivery stroke. The negative slip is possible 
in case of pumps having long suction pipe and a short delivery pipe, especially when these 
are operating at high speeds.

 Q. 14. Explain the term Net Positive Suction Head (NPSH).
 Ans. NPSH is defined as the absolute pressure head at the inlet to the pump, minus the vapour 

pressure head (in absolute units) plus the velocity head.
  or, NPSH = Absolute pressure head at the inlet of the pump – vapour pressure 

head (absolute units) + velocity head.
  This term is frequently used in pump industry and has significance only when cavitating 

liquids are used.  NPSH is a parameter (dimensional) that can be used to check cavitation 
in pump.

  The minimum NPSH depends upon the pump design, its speed and the discharge.
 Q. 15. List the various functions of surge tanks.
 Ans. Surge tank has the following functions:
  (i) To control the pressure variations, due to rapid changes in the pipeline flow, thus 

eliminating water hammer possibilities.
  (ii) To regulate the flow of water to the turbines.
  (iii) To reduce the distance between the free water surface and turbine, thereby reducing the 

water hammer effect on penstock.
 Q. 16. What is a ‘hydraulic ram’?
 Ans. Hydraulic ram is a device with which small quantities of water can be pumped to higher 

levels from the available large quantity of water of low head.
 Q. 17. What is the function of notch in Pelton turbine?
 Ans. A notch made near the edge of the outer rim of each bucket is carefully sharpened to ensure a 

loss-free entry of the jet into the buckets i.e. the path of the jet is not obstructed by incoming 
buckets.

 Q. 18. What are the materials used for the buckets of Pelton wheel?
 Ans. The buckets are the most important part of the Pelton turbine, they have to be designed to 

withstand the full force of the jet. Thus, they are made of special bronze or steel alloys with 
nickel, chromium or stainless steel.

 Q. 19. What is a ‘draft tube’?
 Ans. A draft tube is an expanding device which has an expanding pressure conduit hermetically 

fixed at the runner outlet and having the other end below the minimum tail water level, that 
helps to convert the velocity head into pressure or potential head.

  It is an integral part of mixed and axial flow turbines. Because of the draft tube it is possible 
to have the pressure at runner outlet much below the atmospheric level.

 Q. 20. What is ‘priming’ and why is it necessary?
 Ans. The operation of filling the suction pipe, casing of the pump and a portion of the delivery 

pipe completely from outside source with the liquid to be raised, before starting the pump, the 
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remove any air, gas or vapour from these parts of the pump is called priming of a centrifugal 
pump.

  If a centrifugal pump is not primed before starting, air pockets inside the impeller may give 
rise to vortices and cause discontinuity of flow. Further, dry running of the pump may result 
in rubbing and seizing of the wearing rings and cause serious damage.

 Q. 21. What is meant by ‘degree of reaction’?
 Ans. The degree of reaction (R) is defined as the ratio of change of pressure energy in the runner 

to the change of total energy in the runner per kg of water.

  i.e. R = Change in pressure energy
Change in total energy

 Q. 22. Explain ‘runaway speed’?
 Ans. The runaway speed is the maximum speed, governor being disengaged, at which a turbine 

would run when there is no external load but operating under design head and discharge. 
All the moving parts including the rotor of alternator should be designed for the centrifugal 
stresses caused by this maximum speed.

  The practical values of runaway speed for various turbines with respect to their rated speed 
N are as follows:

  Pelton wheel = 1.8 to 1.9 N; Francis turbine (mixed flow) = 2.0 to 2.2 N; Kaplan turbine 
(axial flow) = 2.5 to 3.0 N.

 Q. 23. What is a submersible pump?
 Ans. A submersible pump is a device which has a motor closely coupled to a pump body. The 

whole assembly is submerged in the fluid to be pumped. This pump pushes fluid to the 
surface as opposed to jet pumps having pull fluids.

  The submersible pumps are more efficient than jet pumps.
 Q. 24. List the factors which influence the speed of reciprocating pump.
 Ans. Speed of reciprocating pump is influenced by:
  (i) Asolute pressure inside the cylinder; (ii) Cavitation produced; (iii) Acceleration of piston; 

(iv) Friction in the pipes.
 Q. 25. What is a ‘fluid coupling’?
 Ans. A fluid coupling is a device which is employed for transmission of power from one shaft to 

another through a liquid medium. It has no mechanical connection or face to face contact. 
The magnitudes of input and output torques are equal.

 Q. 26. Define ‘Thoma‘s cavitation parameter’.
 Ans. Prof. Dietrich Thomas of Munich (Germany) suggested a ‘cavitation factor (sigma)’ to 

determine the zone where turbine can work without being affected from cavitation. The 
critical value cavitation factor (sc) is given by:

   sc = ( )a v sH H H
H

− −

  where, Ha = Atmospheric pressure head in meters of water; Hv = Vapour pressure in metres 
of water corresponding to the water temperature, H = Working head of turbine (difference 
between head race and tail race level in metres), and Hs = Suction pressure head (or height 
of turbine outlet above tail race level in metres).

 Q. 27. What is meant by speed ratio of a Pelton wheel?
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 Ans. Speed ratio (Ku) = The peripheral velocity of wheel ( )
The theoretical velocity of jet ( 2 )

u
gH

 Q. 28. What is the utility of an ‘Air lift pump’?
 Ans. An air lift pump is a device used to lift water from a deep well or sump by utilising the 

compressed air.
 Q. 29. What are the salient features of an ‘Air lift pump’?
 Ans. The salient features of an air lift pump are:
  (i) It has no moving parts below water level and consequently no wear and tear.
  (ii) It can raise more water through a bore hole of given diameter than any other pump.
  (iii) It can pump solids without any damage to the system.
  (iv) It is suitable for draining water in the mines where compressor units are already installed.
 Q. 30. Define the term Net or Effective head.
 Ans. The head available at the inlet of the turbine is known as net or effective head. It is denoted 

by H and is given by:
   H = Hg – hf – h
  where, hf = Total loss of head between the head race and entrance of the turbine

    = 
24

2
fLV

D g×
   (f = coefficient of friction, L = length of penstock, 

      D = diameter of penstock, 
      V = Velocity of flow in penstock), and
   h = Height of nozzle above the tail race.
 Q. 31. What is the function of scroll casing in reaction turbines?
 Ans. A scroll casing constitutes a close passage whose cross-sectional area gradually decreases 

along the flow direction, area is maximum at inlet and nearly zero at exit. It provides the 
limited area around the runner to maintain the constant velocity of water flow around the 
runner.

 Q. 32. What do you mean by the capacity of Hydraulic accumulator?
 Ans. Hydraulic accumulator is a device used to store the energy of liquid under pressure and 

make this energy available (as a quick secondary source of power) to hydraulic machines, 
such as presses, lifts and cranes.

  The maximum amount of energy that the accumulator can store is known as the ‘capacity 
of the accumulator’.

 Q. 33. What are air vessels?
 Ans. An air vessel is a closed chamber containing compressed air in the upper part and liquid 

being pumped in the lower part. One air vessel is fixed on the suction pipe near the suction 
valve and one is fixed on the delivery pipe near the delivery valve.

  The air vessels are used for the following purposes:
  (i) To get continuous supply of liquid at a uniform rate (whatever fluctuations take place, 

they occur between the air vessels and the pump).
  (ii) To save the power required to drive the pump (By the use of air vessels the acceleration 

and friction heads are considerably reduced, thereby the work is also reduced).
  (iii) To run the pump at much higher speed without any danger of separation (By fitting the 

air vessels as close to the pump as possible, the length of the pipe in which acceleration 
takes place is reduced due to which acceleration head is reduced, and pump can run at 
a high speed without separation.
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 Q. 34. What do you understand by a ‘reciprocating pump’?
 Ans. A reciprocating pump is a positive displacement pump as it sucks and raises the liquid by 

actually displacing it with a piston/plunger that executes a reciprocating motion in a closely 
fitting cylinder. The amount of liquid pumped with disc pistons create pressures upto 25 
bar  and the plunger pumps built up still higher pressures. Discharge from these pumps is 
almost wholly dependent on the pump speed.

  The total efficiency of a reciprocating pump is about 10 to 20 per cent higher than a 
comparable centrifugal pump.

  The reciprocating is generally employed for:
  (i) Light oil pumping; (ii) Feeding small boilers, and
  (iii) Pneumatic pressure systems.
 Q. 35. Define the draft tube efficiency.
 Ans. The ‘efficiency of a draft tube (hd)’ is defined as the ratio of net gain in pressure head to the 

velocity head at entrance of draft tube. Thus,

   hd = Net gain in pressure head
Velocity head at entrance of draft tube

    = 

2 2
2 3

2
2

2

2

f
V V h

g

V
g

 − − 
 

  where, V2 = Velocity of water at inlet of the draft tube, and
   V3 = Velocity of water at outlet of the draft tube.

  
2 2 2

2 3 2
2 2f d

V V Vh
g g

 −
= − h × 

 
 Q. 36. Why the draft tube is not used for Pelton turbine?
 Ans. In case of Pelton all the K.E. is lost; and draft tube is not used because the pressure value 

is just the atmospheric so that there is no requirement of draft tube.
 Q. 37. Define the term ‘Impact of jet’.
 Ans. A fluid jet is a stream of fluid obtained from nozzle. When this jet strikes on flat or curved 

plate the momentum is changed and a hydrodynamic force is exerted. So ‘Impact of jet’ 
terms refer to the study of the effect when a jet strikes on the plate or vane under the various 
conditions.

 Q. 38. What are the functions of a draft tube?
 Ans. A draft tube performs the following functions:
  (i) It allows the turbine to be set above tail-water level without loss of head to facilitate 

inspection and maintenance.
  (ii) It regains by diffusion action, the major portion of the kinetic energy delivered to it 

from the runner.
 Q. 39. Define the term ‘Gross head’.
 Ans. The ‘Gross head’ or Total head is the difference between the water level at the reservoir 

(also known as head race) and the level at the tail race.
 Q. 40. List the advantages of Kaplan turbine over Francis turbine.
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 Ans. Kaplan turbine claims the following advantages over Francis turbine:
  (i) For the same power developed Kaplan turbine is more compact in construction and 

smaller in size.
  (ii) Part-load efficiency is considerably high.
  (iii) Low frictional losses (because of small number of blades used).
 Q. 41. What are the bases on which hydraulic turbines are classified?
 Ans. The hydraulic turbines are classified on the following bases:
  (i) According to the head and quantity of water available.
  (ii) According to the name of the originator.
  (iii) According to the action of water on moving blades.
  (iv) According to the direction of flow of water in the runner.
  (v) According to the disposition of the turbine shaft.
  (vi) According to the specific speed Ns.
 Q. 42. What is the principle of working of a centrifugal pump?
 Ans. A centrifugal pump works on the principle that when a certain mass of fluid is rotated by an 

external source, it is thrown away from the central axis of rotation and a centrifugal head 
is impressed which enables it to rise to a higher level.

 Q. 43. What are the functions of a multi-stage pump?
 Ans. A multi-stage centrifugal pump is one which has two or more identical impellers mounted 

on the same shaft or on different shafts. The important functions performed by a multi-stage 
pump are:

  (i) To produce greater heads than that permissible with a single impeller, discharge 
remaining constant. The task can be achieved by ‘series arrangement’ where in the 
impellers are mounted on the same shaft and enclosed in the same casing.

  (ii) To discharge a large quantity of liquid, head remaining same. This task is accomplished 
by ‘parallel arrangement’ where in impellers are mounted on separate shafts.

 Q. 44. What is cavitation and how can it be avoided in reaction turbines?
 Ans. The formation, growth, and collapse of vapour filled cavities or bubbles in a flowing liquid due 

to local fall in fluid pressure is called cavitation. When the cavities collapse (the collapsing 
pressure is of order of 100 times the atmospheric pressure) on the surface of a body, due 
to repeated ‘hammering’ action, the metal particles give way ultimately due to fatigue and 
indentations are formed; this erosion of material is called pitting.

  The following methods may be used to avoid cavitation:
  (i) Runner turbine may be kept under water. But it is not advisable as the inspection and 

repair of the turbine is difficult. Alternatively, the runner of low specific speed may be 
used.

  (ii) It is possible to reduce the cavitation effect by selecting materials which resist better 
the cavitation effect. The cast steel is better than cast iron and stainless steel or alloy 
steel is still better than cast steel.

  (iii) The cavitation effect can be reduced by polishing the surface. That is why the cast steel 
runners and blades are coated with stainless steel.

  (iv) The cavitation may be avoided by selecting a runner of proper specific speed for given 
head.
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 Q. 45. How are hydraulic turbines classified according to specific speed?
 Ans. The specific speed of a turbine is defined as the speed of a geometrically similar turbine 

that would develop 1 kW under 1 m head. All geometrically similar turbines (irrespective 
of the sizes) will have the same specific speeds when operating under the same head.

   Specific speed, Ns = 5/4
N P
H

  where, N = The normal speed, P = Power output of the turbine, and H = The net or effective 
head in metres.

  Turbines with low specific speeds work under high head and low discharge conditions, while 
high specific speed turbines work under low head and high discharge conditions.

 Q. 46. Distinguish between an impulse turbine and a reaction turbine.
 Ans. 

S.No. Impulse turbine Reaction turbine
1. The available energy is converted 

into K.E. by a nozzle.
The energy of the fluid is partly 
transformed into K.E. before it (fluid) 
enters the runner of the turbine.

2. The pressure remains same 
(atmospheric) throughout the action 
of water on the runner.

After entering the runner with an excess 
pressure, water undergoes changes both 
in velocity and pressure while passing 
through the runner.

3. Always installed above the tail race. 
No draft tube is used.

Unit may be installed above or below 
the tail race, use of a draft tube is made.

4. Water may be allowed to enter a part 
or whole of the wheel circumference.

Water is admitted over the circumference 
of the wheel.

 Q. 47. What are the functions of a surge tank?
 Ans. A surge tank is a small reservoir or tank in which the water level rises or falls to reduce the 

pressure swings so that they are not transmitted in full to a closed circuit. In general a surge 
tank is employed to serve the following purposes:

  (i) To reduce the distance between the free water surface and turbine thereby reducing the 
water hammer effect (the water hammer is defined as the change in pressure rapidly 
above or below normal pressure caused by sudden changes in rate of flow through the 
pipe according to the demand of the prime mover) on penstock and also protect upstream 
tunnel from high pressure rises.

  (ii) To serve as supply tank to the turbine when water in the pipe is accelerating during 
increased load conditions and storage tank when the water is decreasing during reduced 
load conditions.

 Q. 48. What do you understand by governing of hydraulic turbines?
 Ans. Governing of hydraulic turbine means speed regulation. Governing of a turbine is necessary 

as a turbine is directly coupled to an electric generator, which is required to run at constant 
speed under all fluctuating load conditions. This is achieved by a governor called oil pressure 
governor.

  The power produced by water turbine is directly proportional to the available head and 
discharge through the turbine. The quantity of water flowing can be controlled by varying 
the area of flow at the turbine inlet.
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  In Pelton turbine, the flow area is changed by moving the spear inside the nozzle and in 
reaction turbine, the area of flow is varied by rotating the guide vanes with the help of 
governor in a controlling unit.

 Q. 49. How does a Kaplan turbine differ from a propeller turbine?
 Ans. A propeller turbine is quite suitable when the load on the turbine remains constant. At part 

load its efficiency is very low, since the blades are fixed, the water enters with shock (at 
part load) and eddies are formed which reduce the efficiency. This defect of the propeller 
turbine is removed in Kaplan turbine.

  In a Kaplan turbine the runner blades are adjustable and can be rotated about pivots fixed 
to the boss of the runner. The blades are adjusted automatically by servomechanism so that 
at all loads the flow enters them without shock. Thus, a high efficiency is maintained even 
at part loads. It behaves like a propeller turbine at full-load conditions.

 Q. 50. Differentiate between Francis and Kaplan turbines.
 Ans. 

S. No. Francis Turbine Kaplan turbine
1. Radially inward or mixed flow. Partially axial flow.
2. Horizontal or vertical shaft. Only vertical shaft.
3. Runner vanes are not adjustable (16 to 

24 blades)
Runner vanes are adjustable (3 to 8 
blades)

4. Medium head: 60 m to 250 m. Low head: upto 30 m.
5. Medium flow rate. Large flow rate.
6. Specific speed: 50–250 Specific speed: 250–850

 Q. 51. Define specific speed of turbine and write down its expression.
 Ans. The specific speed of a turbine is defined as the speed of a turbine which is identical in 

shape, geometrical dimensions, blade angles, gate opening, etc. which would develop unit 
power when working under a unit head.

  Specific speed (Ns) is given by:

   Ns = 5/4
N P
H

  where, N = Speed of the runner in r.p.m., H = Head of water, and P = Power developed.
 Q. 52. What is priming of centrifugal pump?
 Ans. Priming of centrifugal pump is the operation of filling the suction pipe, casing of the pump 

and a portion of the delivery pipe completely from outside source with the liquid to be raised, 
before starting the pump, to remove any air, gas or vapour from these parts of the pump.

 Q. 53. How are various types of centrifugal pumps primed?
 Ans. Small pumps are usually primed by pouring liquid into the funnel provided for the purpose.
  Large pumps are primed by evacuating the casing and the suction by a vacuum pump or 

by an ejector; the liquid is thus drawn up the suction pipe from the sump and the pump is 
filled with liquid.

  The internal construction of some pumps is such that special arrangements containing a 
supply of liquid are provided in the suction pipe due to which automatic priming of the 
pump occurs; such pumps are known as self priming pumps.
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 Q. 54. Distinguish between the positive and non-positive displacement pumps.
 Ans. Positive displacement pump: It causes a liquid to move by trapping a fixed amount of it, 

then forcing (displacing) that trapped volume into the discharge pipe, e.g. tube, gear, screw 
pump etc.

  Non-positive displacement pump (rotodynamic type): It is pump in which the dynamic 
motion of a fluid is increased by pump action, e.g. centrifugal, turbine, propeller etc.

 Q. 55. Define slip for reciprocating pumps. When does negative slip occur?
 Ans. The difference between the theoretical discharge and actual discharge is called the slip of 

the pump
  i.e., Slip = Qth. – Qact.

  But the slip is oftenly expressed in percentage which is given by:

   % slip = th. act. act.

th. th.
100 1 100 (1 ) 100d

Q Q Q C
Q Q
−  

× = − × = − × 
 

   where, Cd = Coefficient of discharge.
  The percentage of slip for the pumps maintained in good condition is of the order of 2% or 

even less.
  Negative slip. In most of the reciprocating pumps Qact. is less than Qth.; in such a case 

the value of Cd is less than unity and the slip of the pump is ‘positive’. However, in some 
cases Qact. may be more than Qth.; in such a case Cd is more than unity and the slip will be 
‘negative’. The slip will be negative when there is a direct connection between the suction 
and delivery sides before the end of the suction stroke. This happens if the momentum of 
liquid in the suction pipe, is large enough to open the delivery valve before the beginning 
of delivery stroke. The negative slip is possible in case of pumps having long suction pipe 
and a short delivery pipe, especially when these are operating at high speeds.

 Q. 56. Why is the efficiency of Kaplan turbine nearly constant irrespective of speed variation under 
load?

 Ans. Kaplan turbine has the concept of adjusting the runner vanes in face of changing load 
conditions on the turbine. With proper adjustment of blades during its running the Kaplan 
turbine is capable of giving a constant and high efficiency for a wide range of load conditions. 
The pitch of the blades is also automatically adjusted by the governor through the action of 
a servomotor.

 Q. 57. What is a hydraulic intensifier?
 Ans. Hydraulic intensifier is a device which increases the pressure of a given liquid with the 

help of low pressure liquid of large quantity.
 Q. 58. How are hydraulic pumps classified?
 Ans. Pumps may be placed in one of the two general categories:
  (i) Dynamic pressure pumps: Centrifugal pump, jet pump, propeller, turbine.
  (ii) Positive displacement pump: Piston plunger, gear, vane, screw pump etc.
 Q. 59. Define manometric head of a pump.
 Ans. The manometric head is defined as the head against which a centrifugal pump has to work. 

It is the head measured across the pump inlet and outlet flanges. It is denoted by Hmano.
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 Q. 60. What is manometric efficiency?
 Ans. The ratio of the manometric head developed by the pump to the head imparted by the impeller 

to the liquid is known as ‘manometric efficiency’.

  i.e. hmano = Manometric head
Head imparted by impeller to the liquid

SECTION B: QUESTIONS WITH SOLUTIONS

 Q. 1.   A jet of water strikes with a velocity of 30 m/s a flat plate inclined at 45° with the axis 
of the jet. If the cross-sectional area of the jet is 20 cm2, determine the following:

 (i) The force exerted by the jet on the plate,
 (ii) The components of the force in the direction of the jet, and
 (iii) The ratio in which the discharge gets divided after striking the plate.
 Solution. Given: Velocity of the jet, V = 30 m/s, Inclination of the plate with the jet axis,  
q = 45°; Area of the jet, a = 20 cm2 = 20 × 10–4 m2 = 0.002 m2.
 (i) The force exerted by the jet, F:
  F = raV2 sin q [Eqn. (1.3)]
   = 1000 × 0.002 × 302 × sin 45° = 1272.8 N (Ans.)
 (ii) The components of the force, F:
  Fx = F sin q = 1272.8 × sin 45° = 900 N (Ans.)
  Fy = F cos q = 1272.8 × cos 45° = 900 N (Ans.)
 (iii) The ratio in which the discharge gets divided:

  1

2

Q
Q

 = 1 cos
1 cos
+ q
− q

 [Eqn. (1.7)]

 or, 1

2

Q
Q

 = 1 cos 45
1 cos 45
+ °
− °

 = 5.83 (Ans.)

 Q. 2.   A jet of water of 50 mm diameter strikes a curved vane at its centre with a velocity of 20 
m/s. The curved vane is moving with a velocity of 5 m/s in the direction of the jet. The jet is deflected 
through an angle of 160°. Assuming the plate to be smooth, calculate:
 (i) Thrust on the plate in the direction of the jet,
 (ii) Power of the jet; and 
 (iii) Efficiency of the jet.
 Solution. Given: Diameter of the jet, d = 50 mm = 0.05 m; Velocity of the jet, V = 20 m/s; 
Velocity of the vane, u = 5 m/s; Angle of deflection of the jet = 160°; Angle made by the relative 
velocity at the outlet of the vane = 180 – 160 = 20°.
 (i) Thrust on the plate:
   Area of the jet, a = 2 20.05

4 4
dπ π= ×  = 0.001963 m2

  Thrust on the plate in the direction of the jet,
   Fx = ra (V – u)2 (1 + cos q)
    = 1000 × 0.001963 (20 – 5)2 (1 + cos 20°) = 856.7 N (Ans.)
 (ii) Power of the jet:
  Work done by the jet on the vane per second
    = Fx × u = 856.7 × 5 = 4283.5 Nm/s
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   Power of the jet = 4283.5 Nm/s = 4283.5 W or 4.283 kW (Ans.)
 (iii) Efficiency of the jet, hjet:

   hjet = Work done by the jet/sec.
Kinetic energy of the jet/sec.

    = 
2 2

4283.5 4283.5
1 1( ) (1000 0.001963 20) 20
2 2

aV V
=

r × × × ×

    = 0.5455 or 54.55% (Ans.)

 Q. 3.   The following data relate to a Pelton wheel:
 Heat = 80 m; Speed of wheel = 280 r.p.m.; Shaft power of wheel = 130 kW; Speed ratio = 0.48; 
Co-efficient of velocity = 0.97; Overall efficiency = 82%.
 Design the Pelton wheel.  
 Solution. Given: Effective head, H = 80 m; Speed of wheel, N = 280 r.p.m.; Shaft power, P = 
130 kW; Speed ratio, Ku = 0.48; Co-efficient of velocity, Cv = 0.97; Overall efficiency, h0 = 82%.
 Design of the Pelton wheel means to find diameter of the wheel (D), diameter of the jet (d), 
width and depth of buckets and number of buckets on the wheel.
 (i) Diameter of wheel, D:

   Velocity of jet, V1 = 2 0.97 2 9.81 80vC gH = × ×

    = 38.4 m/s
  \ Bucket velocity, u(= u1 = u2) = Ku × V1 = 0.48 × 38.4 = 18.4 m/s

  But, u = ,
60 18.460,

60 280
DDN uor

N
=

×π =
π π ×

 = 1.255 m (Ans.)

 (ii) Diameter of the jet, d:

   Overall efficiency, h0 = Shaft power
Water power

P
wQH

=

  or, 0.82 = 130
9.81 80Q× ×

 ( w = 9.81 kN/m3)

  or, Discharge, Q = 130
0.82 9.81 80× ×

 = 0.202 m3/s

  But, Q = Area of jet × velocity of jet

   0.202 = 2 38.4
4

dπ ×

  or, d = 
1/20.202 4

38.4
× 

 π × 
 = 0.0818 m or 81.8 mm (Ans.)

 (iii) Size of buckets:
   Width of the bucket, B j 3 to 4 times jet diameter (d)
    = 3.5d = 3.5 × 81.8 = 286.3 mm (Ans.)
  Radial length of bucket, L = 2 to 3 times jet diameter (d)
    j 2.5d = 2.5 × 81.8 = 204.5 mm (Ans.)
   Depth of bucket, T = 0.8 to 1.2 times jet diameter (d)
    j 1.0d = 81.8 mm (Ans.)
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 Q. 4.   A conical draft tube having inlet and outlet diameters 1.1 m and 1.7 m discharges water 
at outlet with a velocity of 2.8 m/s. The total length of the draft tube is 7.0 m and 1.4 m of the length 
of draft tube is immersed in water. If the atmospheric pressure head is 10.3 m of water and loss of 
head due to friction in the draft tube is equal to 0.18 × velocity head at outlet of the tube.
 Determine: (i) Pressure head at inlet, and (ii) Efficiency of the draft tube.
 Solution. Refer to Fig. 1. Given: Inlet diameter of the draft tube, di = 1.1 m; Outlet diameter,  
do = 1.7 m; Velocity at outlet, V3 = 2.8 m/s; Total length of draft tube, Hs + y = 7.0 m; Length of draft 

tube in water, y = 1.4 m; Atmospheric pressure head, ap
w

 = 10.3 m; Loss of head due to friction,  

hf = 0.18 × velocity head at outlet = 0.18 × 
2

1
2
V

g

In t of
draft tube

le

Draft tube

pa

V3

Outlet of
draft tube

3

Hs

2
V2

y = (1.4 m)

7.0 m

di

d0
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Fig. 1

 (i) Pressure head at inlet, 2p
w

:

  Discharge through the draft tube,

   Q = A3V3 = 2 2
3 1.7 2.8

4 4
π π× × = × ×od V  = 6.36 m/s

   Velocity of inlet, V2 = 
2 22

6.36 6.36

1.1
4 4

= =
π π× ×i

Q
A d

 = 6.69 m/s

  We know that,

   2p
w

 = 
2 2

2 3
2

 −
− − −  

 
a

s f
p V VH h
w g

 [Eqn. (2.32)]

    = 
2 2 2

2 3 30.18
2 2

 −
− − −  

 
a

s
p V V VH
w g g

    = 
2 2 26.69 2.8 2.810.3 (7.0 1.4) 0.18

2 9.81 2 9.81
 −− − − − × × × 

    = 4.7 – (1.88 – 0.072) = 2.892 m (abs.) (Ans.)
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 (ii) Efficiency of the draft tube, hd:
  We know that,

   hd = 

2 2
2 3

2
2

2

2

 − − 
 

f
V V h

g

V
g

 [Eqn. (2.33)]

    = 

2 2 2
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2 2 2

2

 
− + 
 

V VV
g g g

V
g

    = 
2 2

3

2

2.81 1.18 1 1.18
6.69

   − = −      

V
V

 = 0.793 or 79.3% (Ans.)

 Q. 5.   A centrifugal impeller runs at 90 r.p.m. and has outlet vane angle of 62°. The velocity 
of flow is 2.7 m/s throughout and diameter of the impeller at exit is twice that at inlet. If the 
manometric head is 18 m and manometric efficiency is 74 percent, determine:
 (i) The diameter of the impeller at the exit, and (ii) Inlet vane angle.
 Solution. Refer to Fig. 2.
 Given: Speed, N = 90 r.p.m.; Outlet vane angle,  
f = 62°; Velocity of flow, Vf 1 = Vf 2 = 2.7 m/s; 
Manometric head, Hmano = 18 m; Manometric 
efficiency, hmano = 74%. Diameter of the impeller at 
outlet, D2 = 2D1 (diameter at inlet).
 (i) Diameter of the impeller at the exit, D2:

   hmano = 
2 2

mano

w

gH
V u

 [Eqn. (3.9)]

  or, 0.74 = 
2 2

9.81 18×

wV u

  or, Vw2u2 = 9.81 18
0.74
×  = 238.6 ...(i)

  From velocity triangle at outlet (Fig. 2), we 
get,

  tan f = 2

2 2−
f

w

V
u V

  or, u2 – Vw2 = 2 ,
tan f

fV
 or, Vw2 = 2

2 tan
−

f
fV

u

  or, Vw2 = 2
2.7

tan 62
−

°
u  = u2 – 1.436

� = 62º

Outlet

Vr2

V2

� �

� = 90º

Vane

V Vf1 1=Vr1

u1

�
�

Inlet � = ?

Vw2

u2

Vf2

Fig. 2
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  Inserting this value of Vw2 in (i), we have:
   (u2 – 1.436)u2 = 238.6
  or, u2

2 – 1.436u2 – 238.6 = 0

  or, u2 = 
21.436 1.436 4 238.6

2
± + ×

    = 1.436 30.927
2
±  = 16.18 m/s (ignoring –ve sign)

  Also, tangential velocity of impeller at outlet,

   u2 = 2 ,
60

πD N  or, D2 = 260
π

u
N

  \ D2 = 60 16.18
90

×
π ×

 = 3.43 m (Ans.)

 (iii) Inlet vane angle, q:
  Tangential velocity of the impeller at inlet

   u1 = 2 16.18
2 2
=

u  = 8.09 m/s (Ans.) 2
1 2

 = 
 


DD

  From velocity triangle at inlet, we get,

   tan q = 1

1

2.7
8.09

=fV
u

 = 0.3337

  or, q = tan–1 (0.3337) = 18.45° (Ans.)
 Q. 6.   A centrifugal pump impeller has diameters at inlet and outlet as 350 mm and 700 mm 
respectively. The flow velocity at outlet is 2.3 m/s and vanes are set back at an angle of 45° at the 
outlet. If the manometric efficiency is 75 per cent, calculate the minimum starting speed of the 
pump.
 Solution. Given: Diameter of impeller at inlet, D1 = 350 mm = 0.35 m; Diameter of impeller at 
outlet, D2 = 700 mm = 0.7 m; The flow velocity at outlet, Vf 2 = 2.3 m/s; Outlet vane angle, f = 45°; 
Manometric efficiency, hmano = 75%.
 Minimum starting speed of the pump, Nmin.:
 Refer to Fig. 3. From velocity triangle at outlet, we have:

  tan f = 2

2 2
,

−
f

w

V
u V

 

 or,  u2 – Vw2 = 2 2.3
tan tan 45

=
f °

fV
 = 2.3 m/s

 or, Vw2 = u2 – 2.3

 But, u2 = 2 min. min.0.7
60 60

π π ×
=

D N N

   = 0.0366 Nmin. 
 \ Vw2 = 0.0366 Nmin. – 2.3
 For minimum speed, we have:

  Nmin = mano 2 2
2 2
2 1

120
( )

× h × ×
π −

wV D
D D

     ...[Eqn. (3.15)]

Vr2
V2

Vf2

� �
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�
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u2
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   = min
2 2

120 0.75 (0.0366 2.3)
(0.7 0.35 )

× × −
π −

N

 or, Nmin. = 77.95 (0.0366 Nmin – 2.3)
   = 2.853 Nmin – 179.285
 or, 1.853 Nmin = 179.285

 or, Nmin = 179.285
1.853

  97 r.p.m (Ans.)

 Q. 7.   A single acting reciprocating pump, running at 60 r.p.m., delivers 0.01518 m3/s of water. 
The diameter of the piston is 240 mm and stroke length 360 mm. The suction and delivery heads 
are 3.4 m and 11.4 m respectively. Determine:
 (i) Theoretical discharge, (ii) Coefficient of discharge,
 (iii) Percentage slip of the pump, and  (iv) Power required to run the pump.

 Solution. Given: Speed of the pump, N = 60 r.p.m.; Actual discharge, Qact. = 0.01518 m3/s; 
Diameter of the piston, D = 240 mm = 0.24 m; Stroke length, L = 360 mm = 0.36 m; Suction head, 
hs = 3.4 m; Delivery head, hd = 11.4 m.
 (i) Theoretical discharge, Qth:

   Qth = 

20.24 0.36 60
4

60 60
ALN

π × × × 
 =  = 0.01629 m3/s (Ans.)

 (ii) Coefficient of discharge, Cd:

   Cd = act.

th.

0.01518
0.01629

Q
Q

=  = 0.932 (Ans.)

 (iii) Percentage slip of the pump:

   % slip = th. act.

th.
100

Q Q
Q
−

×

    = 0.01629 0.01518 100
0.01629

−
×  = 6.8% (Ans.)

 (iv) Power required to run the pump, P:

   P = 
60 1000
w A L N
×

 (hs + hd) k.W

    = ( )
29810 0.24 0.36 60

4 3.4 11.4
60 1000

π × × × × 
  +

×

    = 2.36 kW (Ans.)
 Q. 8.   The diameter and stroke of a single-acting reciprocating pump are 250 mm and 450 mm 
respectively. The pump takes in supply of water from sump 2.9 m below the pump and through a pipe 
8 m long and 100 mm diameter. If separation occurs at 2.4 m of water absolute, determine:
 (i) The speed at which separation may take place at the beginning of suction of stroke, and
 (ii) The speed of the pump if an air vessel is fitted on the suction side 2 m above the sump water 

level.
  Take atmospheric pressure head = 10.3 m of water, and friction coefficient, f = 0.01.
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 Solution. Given: Diameter of piston, D = 250 mm = 0.25 m; Stroke length, L = 450 mm =  

0.45 m; Crank radius, r = 0.45
2

 = 0.225 m; Suction head, hs = 2.9 m; Diameter of the suction pipe, 

ds = 200 mm = 0.2 m; Length of suction pipe, ls = 8 m; Separation head = 2.4 m of water absolute; 
Atmospheric pressure head, Hatm. = 10.3 m of water; Friction coefficient, f = 0.01.

  Area of piston, A = 2 20.25
4 4

Dπ π× = ×  = 0.049 m2

  Area of suction pipe, as = 20.2
4
π ×  = 0.0314 m2

 (i) The speed at which separation may take place (no air vessel fitted), N:
 The pressure head due to acceleration in the suction pipe, is given by:

  has = s

s

l A
g a
×  ω2 r cos q

 At the beginning of the suction stroke, q = 0°, we have:

  has = 2 2 28 0.049 0.225 0.286
9.81 0.0314

s

s

l A r
g a
× ω = × × ω × = ω

 Pressure head at the beginning of suction stroke
   = (hs + has) = (2.9 + 0.286 ω2) below atmospheric head
 Limiting condition for no separation gives,
  Hatm – (hs + has) = hsep.

 or, 10.3 – (2.9 + 0.286 ω2) = 2.4

 or, ω = 
1/210.3 2.4 2.9

0.286
− − 

 
 

 = 4.18 rad./s

 But, ω = 2 ,
60

Nπ  or, N = 60 60 4.18
2 2
ω ×

=
π π

 = 39.9 r.p.m (Ans.)

 (ii) The speed of pump when an air vessel is fitted on suction side, N:
 Since the air vessel is installed 2 m above the sump water level, therefore:

 (a) There will be a loss of head due to friction in the suction pipe for the length of 2.48
2.9

×  = 

6.62 m; (ii) the acceleration pressure head will be restricted in the remaining (8 – 6.62) m = 1.38 m 
length of suction pipe.
 The pressure head due to acceleration (has) in the suction pipe at the beginning of suction stroke 
(q = 0°) is given by:

  has = 2 2 21.38 0.049 0.225 0.049
9.81 0.0314

s

s

l A r
g a
× × ω = × × ω × = ω

 The velocity of water in the suction pipe fitted with air vessel.

  vs = 0.2250.049 0.112
0.0314s

A r
a

ω×ω× = × = ω
π π

  Loss of head due to friction, hfs = 
24

2
s s

s

f l v
d g×
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   = 
( )24 0.01 6.62 0.112

0.2 2 9.81
× × × ω

× ×
 = 8.46 × 10–4 ω2

 Limiting condition for no separation gives:
  Hatm – (hs + has + hfs) = hsep.

 or,  10.3 – (2.9 + 0.049 ω2 + 8.46 × 10–4 ω2) = 2.4
 or, 10.3 – 2.9 – 0.0498 ω2 = 2.4

 or, ω = 
1/210.3 2.9 2.4

0.0498
− − 

 
 

 = 10.02 rad/s

 But, ω = 2
60

Nπ  or N = 60 60 10.02
2 2
ω ×

=
π π

 = 95.7 r.p.m. (Ans.)

 Q. 9.   A hydroelectric power plant produces 30 MW under a head of 18 m. If the overall 
efficiency of the plant is 75%, determine:
 (i) Type of turbine; (ii) Synchronous speed of generator.
 Solution. Given: Power developed, P = 30 MW (= 30 × 103 kW); Head, H = 18 m; Overall 
efficiency, h0 = 75%.
 (i) Type of turbine:
  P = h0 × w Q H
  25 × 103 = 0.75 × 9.81 × Q × 18

	 \ Q = 
330 10

0.75 9.81 18
×

× ×
 = 226.5 m3/s

 As the head is low and discharge is high so “propeller type of turbine” should be used. (Ans.)
 (ii) Synchronous speed of the generator, Nsyn.:

  Specific speed, Ns = 
( )1/4
1150
H

 (approx.)

   = 
( )1/4
1150
18

 = 558.3 r.p.m.

  Speed of rotation, N = 
5/4

sN H
P

×
 5/4s

N PN
H

 
= 

 


   = 
( )5/4

3

558.3 18

30 10

×

×
 = 119.5 r.p.m.

 For generator, N = 120 f
p

 [where, f = frequency (= 50 Hz)]

	 \ Number of poles, p = 120 50
119.5
×  = 50 (Ans.)

 (Number of poles is necessarily an even number).
Q. 10.   A jet of water 24 mm diameter and moving at 12 m/s, strikes upon the centre of a 

symmetrical vane. After impingement, the jet gets deflected through 165° by the vane. Presuming 
vane to be smooth, determine:
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 (i) The force exerted by jet on the vane, and
 (ii) The ratio of velocity at outlet to that at inlet if actual reaction of the vane is 121 N.
 Solution. Given: Diameter of the jet, d = 24 mm = 0.024 m; Velocity of jet, V = 12 m/s; Angle 
of deflection = 165°; Actual reaction of the vane = 121 N.
 (i) The force exerted by the jet on the vane F:
Refer to Fig. 4.
  165° = 180 – q, or, q = 180 – 165 = 15°
 For smooth vane, the theoretical force (or thrust) 
exerted by the jet on the vane is, given by:
  F = r a V2 (1 + cos q) ...(i)

   = 21000 0.024
4
π × × 

 
 × 122 (1 + cos 15°) 

   = 128 N (Ans.)

 (ii) 2

1

V
V

:

 Actual reaction of the vane = 121 N (Given)
 If the vane is not smooth, then outgoing velocity at the vane tip is less than the incoming 
velocity,
 i.e., 2

1

V
V

 = K, where, K < 1. Then,

 Eqn. (i) gets modified to:
  F = r a V2 (1 + K cos q)

  121 = 21000 0.024
4
π × × 

 
 × 122 (1 + K cos 15°)

 or 1 + K cos 15° = 
2 2

121 1.857
1000 0.024 12

4

=
π × × × 

 

 or, \ K = 1.857 1
cos 15

−
°

 = 0.887 (Ans.)

 Q. 11. A jet of 60 mm diameter 
impinges on a curved vane and is 
deflected through an angle of 165°. The 
vane moves in the same direction as that 
of jet with a velocity of 25 m/s. If the rate 
of flow is 180 litres per second, determine 
the component of force on the vane in the 
direction of motion. How much would be 
the power developed by the vane and what 
would be the water efficiency?
 Solution. Given: Diameter of the jet,  
d = 60 mm = 0.06 m; Angle of deflection 
= 165°; Velocity of the vane, u1 = u2 (= u) 
= 25 m/s; Rate of flow, Q = 180 litres p/s 
= 0.18 m3/s. 

Fig. 4
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  Area of the jet, a = 2
4
π d

   = 20.06
4
π ×

   = 0.002827 m2

 Since the jet of water moves in the same direction as that of vane, α = q = 0 and, therefore, the 
inlet velocity triangle will be a straight line with

  V1 = 0.18
0.002827

Q
a

=  = 63.67 m/s

  Vr1 = V1 – u1 = 63.67 – 25 = 38.67 m/s
 and Vw1 = V1 = 63.67 m/s
 Corresponding to outlet triangle,
  q = 180° – 165° = 15°
 Further, since the vane is smooth, therefore,
  Vr2 = Vr1 = 38.67 m/s
  Vw2 = Vr2 cos f – u2

   = 38.67 cos 15° – 25 = 12.35 m/s ( u1 = u2 = 25 m/s)
 Power developed by the vane:
 Force exerted by the jet on the vane in the direction of motion,
  F = r a Vr1 (Vw1 + Vw2)
   = 1000 × 0.002827 × 38.67 × (63.67 + 12.35) = 8310.5 N
  Work done = Force × Velocity
   = 8310.3 × 25 = 207762 Nm/s or J/s or W
 Hence, power developed = 207762 W or 207.8 kW (Ans.)
 Water efficiency (Efficiency of vane):
 Efficiency of vane (water efficiency)

   = Work done on the vane
Kinetic energy supplied by the jet

   = 
2 2

1

207762 207762
1 1 1000 0.18 63.67
2 2

Q V
=

r × × ×

   = 0.569 or 56.9% (Ans.)
 Q. 12.   In an inward flow reaction turbine the head on the turbine is 31 m. The external and 
internal diameters are 1.4 m and 0.7 m respectively. The velocity of flow through the remner is 
constant and is equal to 3.3 m/s. The guide blade angle is 11° and the runner vanes are rigid at 
inlet. If the discharge at outlet is rodial, determine:
 (i) The speed of the turbine, (ii) The vane angle at outlet of the runner, and (iii) Hydraulic 
efficiency.
 Solution. Given: Head on the turbine = 31 m; External diameter, D1 = 1.4 m; Internal diameter, 
D2 = 0.7 m; Velocity of flow, Vf = constant, Vf1 = Vf2 = 3.3 m/s; Guide blade angle = 11°.
 Refer to Fig. 6.
 Runner vanes are radial at inlet,
	 \ q = 90°; Vw1 = u1
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 Discharge is radial,
	 	 	 \ Vw2 = 0, V2 = Vf2 = 3.3 m/s
  (i) The speed of the turbine, N:
   From inlet velocity triangle, we have:

    tan α = 1

1

fV
u

 

   or,  u1 = 1 3.3
tan tan 11

fV
=

α °

   or, u1 = 16.98 m/s

   Also, u1 = 1
60
D Nπ

 

   or, N = 1

1

60 u
Dπ

   or, N = 60 16.98
1.4

×
π ×

 = 231.6 r.p.m. (Ans.)

 (ii) The vane angle at the outlet of the runner, f:

    u2 = 2 0.7 231.6 8.49 m s
60 60
D Nπ π × ×

= =

   From outlet velocity triangle, we have:

    tan f = 2

2

3.3 0.3887
8.49

fV
u

= =

    f = tan–1 (0.3887) = 21.2° (Ans.)
  (iii) Hydraulic efficiency, hHG:

    hh = 1 1wV u
g H

 (Vw2 = 0, the discharge being radial at outlet)

     = 16.98 16.98
9.81 31

×
×

 = 0.948 or 94.8% (Ans.)

 Q. 13.   A turbine is to operate under a head of 24 m at 180 r.p.m. The discharge is 8.5 m3/s. If 
the efficiency is 92 per cent, determine the performance of turbine under a head of 18 m.
 Solution. Given: Head under which turbine works, H1 = 24 m; speed of the turbine, N1 = 180 
r.p.m; Discharge through the turbine, Q1 = 8.5 m3/s; Efficiency (overall), h0 = 91%.
 Performance of the turbine under a head, H2 = 18 m means to find speed (N2), discharge (Q2) 
and power generated (P2) by the turbine when working under a head of 18 m.

  Overall efficiency, h0 = 1

1 1

Shaft power
Water power

PP
w Q H w Q H

= =

  P1 = h0 × w Q1 H1 = 0.92 × 9.81 × 8.5 × 24 = 1841 kW

 Now, 1

1

N
H

 = 2

2

N
H

	 \ N2 = 2

1

180 18
24

N H
H

×
=  = 155.88 r.p.m. (Ans.)

�
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�
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Runner
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�

= 90°
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Fig. 6
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 and, 1

1

Q
H

 = 2

2

Q
H

	 \ Q2 = 1 2

1

8.5 18
24

Q H
H

×
=  = 7.36 m3/s (Ans.)

 and, 1
3/2
1

P
H

 = 
( )

2
3/2

2

P

H

	 \ P2 = 
( )
( )

( )
( )

3/2 3/2
1 2

3/2 3/2
1

1841 18

24

P H

H

×
=  = 1195.8 kW (Ans.)

 Q. 14.   The following data relate to a centrifugal pump:
 The diameters of the impeller at inlet and outlet = 170 mm and 340 mm respectively; The width 
of the impeller at inlet and outlet = 14 mm and 7 mm respectively; The rate of flow through the 
pump = 16.9 litres/sec; Speed of the impeller = 1400 r.p.m. Vane angle at the outlet = 45°. 
 The water enters the impeller radially at inlet. 
 Neglecting losses through the impeller, find the pressure rise in the impeller.
 Solution. Given: D1 = 170 mm = 0.17 m; D2 = 340 mm = 0.34 m; B1 = 14 mm = 0.014 m;  
B2 = 7 mm = 0.007 m; Q = 16.9 litres/s = 0.0169 m3/s; N = 1400 r.p.m; f = 45°.
 Pressure rise in the impeller:
 Velocity of flow at inlet,
  Vf1 = 

1 1

Q
D Bπ

   = 0.0169 2.26 m s
0.17 0.014

=
π × ×

 Velocity of flow at outlet,

  Vf2 = 
2 2

Q
D Bπ

   = 0.0169
0.34 0.007π × ×

 = 2.26 m/s

 Tangential velocity of impeller at outlet,

  u2 = 2 0.34 1400
60 60
D Nπ π × ×

=  = 24.92 m/s

 Pressure rise in the impeller
   = ( )2 2 2 2

1 2 2
1 cosec

2 f fV u V
g

+ − f  ...[Eqn. (3.165)]

   = 1
2 9.81×

 (2.262 + 24.922 – 2.262 × cosec2 45°)

   = 1
2 9.81×

 (5.108 + 621.006 – 10.215) = 31.39 m (Ans.)

 Q. 15.   Tests on a pump model indicate a cavitation parameter sc = 0.11. A homologous unit 
is to be installed at a location when atmospheric pressure, pa = 0.89 bar and vapour pressure pv = 
0.034 bar absolute and is to pump water against a head of 22 m. 
 Calculate the maximum permissible suction head.
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 Solution. Given: Cavitation parameter, sc = 0.11; Atmospheric pressure, pa = 0.89 bar or Ha = 
50.89 10

9810
×  = 9.07 m of water; Vapour pressure, pu = 0.034 bar or Hv = 

50.034 10
9810

×  = 0.346 m of 

water; Manometric head, Hmano = 22 m.
 Maximum permissible suction head, hs:

 We know that, s = 
mano.

a s vH H H
H
− −

 or, sc = 
mano.

,c s vH H H
H
− −

 neglecting head lost due to friction

 or, 0.11 = 
9.07 0.346

22
sh− −

 
2

2
2s s fs
VH h h

g
 

= + +  
 


 or, 0.11 × 22 = 8.724 – hs

 or, hs = 6.304 m (Ans.)
 Q. 16.   A single-acting reciprocating pump has a diameter (piston) of 120 mm and stroke 
length 240 mm. The length and diameter of the suction pipe are 7.0 m and 60 mm respectively. If 
the suction lift of the pump is 3.3 m and separation occurs when pressure in the pump falls below  
2.6 m of water absolute and the manometer reads 762 mm of mercury, determine the maximum 
speed at which pump can be run without separation in the suction pipe.

 Solution. Given: Piston diameter, D = 120 mm = 0.12 m, \ Area, A = 20.12
4
π ×  = 0.01131 m2; 

Stroke length, L = 240 mm = 0.24 m; Crank radius, r = 
2
L  = 0.24/2 = 0.12 m; Length of suction pipe, 

ls = 7.0 m; Diameter of suction pipe, ds = 60 mm = 0.06 m, \ Area of suction pipe, as = 20.06
4
π ×  

= 0.002827 m2; The suction lift of the pump, hs = 3.3 m; Separation pressure head, hsep. = 2.6 m.
 Maximum speed at which pump can run without separation, N:

 Atmospheric head, Hatm. = 762 13.6
1000

×  = 10.363 m of water during suction stroke, the 

possibility of separation is only at the beginning of the stroke. At the beginning of suction stroke,  
q = 0° and cos q = 1, that gives:

  has = 2 2 27.0 0.01131 0.12 0.342
9.81 0.002827

s

s

l A r
g a
× × ω = × × ω × = ω

 Pressure head in the cylinder at the beginning of suction stroke
   = (hs + has) vacuum
   = Hatm. – (hs + has) absolute
 This absolute pressure (at the beginning of suction stroke) should not fall below the vapour 
pressure head (hsep.) to avoid separation, thus in the limiting condition,
  Hatm. – (hs + has) = hsep.

 or 10.363 – (3.3 + 0.342 ω2) = 2.6

 or ω2 = 10.363 2.6 3.3
0.342
− −

 or Angular velocity, ω = 3.6 rad/s
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 But, ω = 2
60

Nπ  or N = 60 60 3.6
2 2
ω ×

=
π × π

 = 34.38 r.p.m. (Ans.)

 Q. 17.   The diameters of ram and plunger of a hydraulic press are 120 mm and 15 mm respectively.
 (i) Find the force required to be applied on the plunger to raise a load of 30 kN on the ram.
 (ii) If the plunger has a stroke of 220 mm, how many strokes will be required to lift the load by 

450 mm. Also calculate the volume of additional liquid required.
 (iii) Further, if the time taken to lift the load is 11 minutes, what will be power required to drive 

the plunger.

 Solution. Given: Diameter of the ram, D = 120 mm = 0.12 m, \ Area of the ram = 20.12
4
π ×  

= 0.01131 m2; Diameter of the plunger, d = 15 mm = 0.015, \ Area of the plunger = 20.015
4
π ×  = 

0.0001767 m2; Load to be raised, W = 30 kN; Stroke of the plunger = 220 mm = 0.22 m; Distance 
through which load is to be lifted = 450 mm = 0.45 m; Time taken to lift the load = 11 minutes.
 (i) Force required to raise a load of 30 kN, F:
 Since pressure intensity is same throughout a static mass of fluid, therefore,

  F
a

 = W
A

 or 
0.0001767

F  = 30
0.01131

 or, F = 30 0.0001767
0.01131
×  = 0.468 kN (Ans.)

 (ii) Number of strokes required, n:
 Number of strokes required to lift the load by 0.45 m,

  n = Total volume of liquid to be displaced
Volume of liquid displaced in one stroke of the plunger

   = 
( )

( )

2

2

0.12 0.45
4

0.015 0.22
4

π × ×

π × ×
 = 131 (Ans.)

  Volume of additional liquid = 
4
π  × 0.122 × 0.45 = 0.00509 m3 (Ans.)

 (iii) Power required to drive motor, P:
  Work done by the press = 30 × 0.45 = 13.5 kNm (in 11 minutes)

  Work done per second = 13.5
11 60×

 = 0.02045 kNm/s

	 \ Power required, r = 0.02045 kW = 20.45 W (Ans.)
 Q. 18.   A 80 mm diameter jet having a velocity of 28 m/s strikes a flat plate, the normal of 
which is inclined at 40° to the axis of the jet. Determine the normal force on the plate:
 (i) When the plate is stationary; (ii) When the plate is moving with a velocity of 12 m/s in the 
direction of jet, away from the jet.
 What is the power and efficiency of the jet when the plate is moving?

 Solution. Diameter of the jet, d = 80 mm = 0.08 m, \ Area of the jet, a = 20.08
4
π ×  = 0.00503 m2; 

Angle between the jet and the plate, q = 90° – 40° = 50°; Velocity of the jet, V = 28 m/s; Velocity of 
the plate, u = 12 m/s.
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 Normal force on the plate:
 (i) When the plate is stationary, the normal force on the plate is given by:
  Fx = r a V2 sin q ...[Eqn. (3.2)]
   = 1000 × 0.00503 × 282 × sin 50° = 3020.9 N (Ans.)
 (ii) When the plate is moving with a velocity of 12 m/s and moving away from the jet, the normal 
force on the plate is given by the relation:
  Fn = r a (v – u)2 sin q
   = 1000 × 0.00503 × (28 – 12)2 sin 50° = 986.4 N (Ans.)
 Power and efficiency of the jet when the plate is moving:
 Work done per second by the jet
   = Force in the direction of the jet × distance moved by the plate 

in the direction of the jet/sec.
   = Fx × u
 where, Fx = Fn × sin q = 986.4 × sin 50° = 755.6 N (Ans.)
	 \ Work done = 755.6 × 12 = 9067.2 Nm/s
 Hence, power of the jet = 9067.2 J/s = 9067.2 W = 9.067 kW (Ans.)

  Efficiency of the jet = Work done on the plate
Kinetic energy supplied by the jet

   = 
( ) ( )2 2

9067.2 9067.2
1 1 1000 0.00503 28 28
2 2

aV V
=

r × × × × ×

   = 0.1642 or 16.42% (Ans.)
 Q. 19.   A single jet Pelton wheel runs at 280 r.p.m under a head of 480 m. The jet diameter is 
190 mm, its deflection inside the bucket is 160° and its relative velocity is reduced by 12 percent 
due to friction. Determine:
 (i) Water power; (ii) R esultant force on the bucket; and (iii) Overall efficiency.
 Assume: Mechanical losses = 2.6 per cent, coefficient of velocity = 0.97; and speed ratio = 0.45.

 Solution. Given: Speed of the wheel, N = 280 r.p.m.; Diameter of the jet; d = 190 mm = 0.19 m; 
Net head, H = 480 m; Angle of deflection of jet = 160°; Reduction of relative velocity due to friction 
= 12%; Mechanical losses = 2.6%; Coefficient of velocity, Cv = 0.97; Speed ratio, Ku = 0.45.
 (i) Water power:

  Velocity of jet, V1 = 2 gH 0.97 2 9.81 480 94 m svC = × × =

 Discharge through the Pelton wheel,
  Q = Area of jet (a) × velocity (V1)

   = 
4
π  × 0.192 × 94 = 2.66 m3/s

  Water power = w Q H = 9.81 × 2.66 × 480 = 12525 kW (Ans.)
 (ii) Resultant force on the bucket:

 Peripheral speed of the wheel, u = 2 gH 0.45 2 9.81 480uK = × ×  = 43.67 m/s

 Refer to Fig. 7.
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 At inlet to turbine:
  Vw1 = V1 = 94 m/s
  Vr1 = (V1 – u1) = 94 – 43.67 = 50.33 m/s
 At exit from the turbine:
 The blade angle at exit,
  f = 180° – 160° = 20°

  Vr2 = 1
12100
100 rV − × 

 
 or, Vr2 = 0.88 × 50.33 = 44.3 m/s
 As Vr2 cos q is less than blade speed u, the velocity triangle at outlet will be as shown in Fig. 7. 
(β > 90°)
  Vw2 = u2 – Vr2 cos f = 43.67 – 44.3 cos 20° = 2.04 m/s 

( u1 = u2 = u)
 Resultant force on the bucket,
  F = rQ (Vw1 – Vw2)
   = 1000 × 2.66 (94 – 2.04) = 244614 N (Ans.)
 (iii) Brake power, P:
 Power developed by the wheel
   = F × u
   = 244614 × 43.67 Nm/s or W
   = 244614 × 43.67 × 10–3 kW
   = 10682 kW (Ans.)
 (iv) Overall efficiency, h0:

  h0 = Brake power
Water power

   = 10682
12525

 = 0.853 or 85.3% (Ans.)
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 Q. 20. A Kaplan turbine develops 20 MW at average head of 32 m. Assuming a speed ratio of 2, 
flow ratio of 0.58, diameter of the boss equal to 0.34 times the diameter of the runner and an overall 
efficiency of 85 per cent, determine the diameter, speed and specific speed of the turbine.
 Solution. Given: Shaft power, P = 20 MW = 20 × 103 = 20,000 kW; Head, H = 32 m; Speed 
ratio, Ku = 2, Flow ratio Kf = 0.58; Diameter of boss (Db) = 0.34 × diameter of the runner (D0), i.e., 
Db = 0.34 D0; Overall efficiency, h0 = 85%.
 Refer to Fig. 8.
 Diameter of the runner, D0:

  Ku = 1 2,
2gH
u

=  u1 = 2 2gH 2 2 9.81 32× = × × ×  = 50.11 m/s

  Kf = 1 0.58
2gH

fV
=

 or, Vf1 = 0.58 2gH 0.58 2 9.81 32× = × × ×  = 14.5 m/s

 Overall efficiency,

  h0 = 
( )Shafter power 20000

Water power
P

w Q H
=

  0.85 = 20000
9.81 32Q× ×

 or, Q = 20000
0.85 9.81 32× ×

 = 74.9 m/s

 Also, Q = Area of flow × velocity of flow

  74.9 = ( )2 2
0 14 b fD D Vπ − ×

 or, 74.9 = ( )22
0 00.34 14.5

4
D Dπ  − × 

   = ( )22 2
0 01 0.34 14.5 10.07

4
D Dπ  − × = 

 or, D0 = 
1 274.9

10.07
 
 
 

 = 2.73 m (Ans.)

 Speed of the turbine, N:

  u1 = 0
60
D Nπ

, or, N = 1

0

60 60 50.11
2.73

u
D

×
−

π π ×
 = 350.6 r.p.m. (Ans.)

 Specific speed of the turbine, Ns:

  Ns = 
( )5 4 5 4

350.6 20000
32

N P
H

×
=  = 651.5 (Ans.)

 Q. 21.   A hydro-turbine is required to give 22 MW at 45 m head and 90 r.p.m runner speed. The 
laboratory facilities available permit testing of 16 kW model at 4.5 m head. What should be model 
runner speed and model to prototype scale ratio?
 Solution. Given: Pp = 22 MW; Hp = 45 m; Np = 90 r.p.m.; Pm = 16 kW; Hm = 4.5 m.

Nm; p

m

D
D

 (= Lr):

Fig. 8

Boss

Runner

Db

Do



398            Hydraulic Machines

 Prototype specific speed, (Ns)p = 
( )5 4

p p

p

N P

H
 (where P is in kW)

   = 
( )

3

5 4
90 22 10

114.5
45

× ×
=

 For model, 114.5 = 
( )5 4
m m

m

N P

H

×
 [ (Ns)p = (Ns)m]

 or, Nm = 
( ) ( )5 4 5 4114.5 114.5 4.5

16
m

m

H
P

× ×
=  = 187.6 r.p.m. (Ans.)

 For similar turbines 3 2 2
P

H D
 should be equal.

 Then, 3 2 2
p

p p

P

H D
 = 3 2 2

m

m m

P
H D

 or, p

m

D
D

 (= Lr) = 
3 2

p m

m p

P H
P H

 
×   
 

 

   = 
3 2322 10 4.5

16 45
×  ×  

 
 = 6.594 (Ans.)

 Q. 22.   A centrifugal pump running at 1450 r.p.m. delivers 0.18 m3/s at a head of 12 m. 
Calculate the specific speed of the pump and the power input. Assume overall efficiency of the 
pump as 65 per cent. If this pump were to operate at 800 r.p.m. what would be the head, discharge 
and power required for homologous conditions? Assume overall efficiency remains unchanged at 
new r.p.m.
 Solution. Given: Speed, N = 1450 r.p.m.; Dischange, Q = 0.18 m3/s; Head, H = 12 m; Overall 
efficiency, h0 = 65%; New speed, N = 800 r.p.m.
 At 1450 r.p.m:

  Specific speed, Ns = 
( )3 4
N Q

H
 ...[Eqn. (3.25)]

   = 
( )3 4

1450 0.18
12
×  = 95.4 (Ans.)

  Power input = 
0

9.81 0.18 12
0.65

w Q H × ×
=

h
 = 32.6 kW (Ans.)

 At 800 r.p.m:

  Nu = N
H

 i.e., 800
H

 = 1450
12
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 or,  Head, H = 
2800 12

1450
  × 
 

 = 3.65 m (Ans.)

  Qu = Q
H

 i.e., 
3.65
Q  = 0.18

12

 or,  Discharge, Q = 3.65 0.18
12

×  = 0.09927 m3/s (Ans.)

  Pu = 
( )3 2

P
H

 i.e., 
( )3 23.65

P  = 
( )3 2
32.6
12

 or Power input, P = 
3 23.65 32.6

12
  × 
 

 = 5.469 kW (Ans.)

 Q. 23.   A single-stage centrifugal pump runs at 550 r.p.m. and delivers 290 m3/min of water 
against a head of 135 m. The pump impeller is 2.2 m in diameter and it has a positive suction lift 
(including the velocity head and friction) of 3.3 m. Laboratory tests are to be conducted on a model 
with 0.5 m diameter impeller and on a reduced head of 105 m. Determine the speed, discharge and 
suction lift for the laboratory tests.
 Assume atmospheric head = 10.15 m of water, and vapour head = 0.3 m of water.

 Solution.  Prototype pump: Model pump:
  Speed, Np = 550 r.p.m Speed, Nm = ?
  Discharge, Qp = 290 m3/s Discharge, Qm = ?
  Manometric head, (Hmano)p = 135 m Manometric head, (Hmano)m = 105 m
  Diameter of impeller, Dp = 2.2 m Diameter of impeller, Dm = 0.5 m
  Positive suction lift = 3.3 m Positive suction lift, hs = ?
  Vapour head, Hv = 0.3 m of water Atmospheric head, Ha = 10.15 m
 (i) Speed of the model pump, Nm:

 We know that: mano

m

H
DN

 
  
 

 = mano

p

H
DN

 
  
 

 ...[Eqn. (3.27)]

  
( )mano m

m m

H
D N

 = 
( )mano p

p p

H

D N

 or, Nm = 
( )
( )

mano

mano

pm
p

mp

H D
N

DH
× ×

 or, Nm = 105 2.2 550
135 0.5

× ×  = 2134 r.p.m. (Ans.)

 (ii) Discharge for the model pump, Qm:

 We know that: 3
m

Q
D N

 
 
 

 = 3
p

Q
D N

 
 
 

 ...Eqn. (3.28)
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 i.e., 3
m

m m

Q
D N

 = 3
p

p p

Q

D N

 or, Qm = 
3

m m
p

p p

D N
Q

D N
 

×  
 

 or, Qm = 
30.5 2134290

2.2 550
  × 
 

 = 13.21 m3/min. (Ans.)

 (iii) Positive suction lift with which model should be tested, hs:
Cavitation factor for the prototype,

  sp = 
( )mano

10.15 3.3 0.3 0.0485
135

a s v

p

H H H
H
− − − −

= =

 For cavitation similarity, sm = sp

  sm = 
10.15 0.3

0.0485
105

sH− −
=

 or, Hs = (10.15 – 0.3) – 105 × 0.0485
   = 4.75 m (including velocity head and friction) (Ans.)
 Q. 24.   The plunger diameter and stroke length of a single-acting reciprocating pump are  
250 mm and 420 mm respectively. The speed of the pump is 60 r.p.m. The diameter and length 
delivery pipe are 125 mm and 50 m respectively. If the pump is equipped with an air vessel on 
the delivery side at the centre line of the pump, find the power saved in overcoming friction in the 
delivery pipe. Assume coefficient of friction, f = 0.01.

 Solution. Diameter of plunger, D = 250 mm = 0.25 m, \ Area A = 20.25
4
π ×  = 0.04909 m2; 

Stroke length, L = 420 mm = 0.42 m; Crank radius, r = 0.42
2

 = 0.21 m; Speed of the pump, N = 60 

r.p.m, \ Angular velocity, ω = 2 2 60
60 60

Nπ π ×
=  = 6.283 rad/s; Diameter of delivery pipe, dd = 125 

mm = 0.125 m, \ Area of delivery pipe, ad = 20.125
4
π ×  = 0.01227 m2; Length of delivery pipe, ld 

= 50 m; Coefficient of friction, f = 0.01.

 Power saved in overcoming friction in the delivery pipe:
 Maximum velocity of water in delivery pipe,

  vd = 0.04909 6.283 0.21
0.01227d

A r
a

ω = × ×  = 5.28 m/s

 Maximum loss of head due to friction,

  hfd = 
( )24 0.01 50 5.284

22.7 m
2 2 9.81 0.125

d d

d

f l v
g d

× × ×
= =

× × ×

 Power required to overcome friction

   = 9810 0.04909 0.42 602 2 22.7
60 3 60 3fd

A L N hω × × ×   × = × ×   
   

   = 3060 W or 3.06 kW
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 “With air vessel filled”, the velocity in the delivery pipe becomes constant and is given by:

  vd = 6.283 0.210.04909
0.01227d

A r
a

×ω× = ×
π π

 = 1.68 m/s.

 Loss of head due to friction,

  hfd = 
2 24 4 0.01 50 1.68 2.3 m

2 2 9.81 0.125
d d

d

f l v
g d

× × ×
= =

× × ×

 Power required to overcome friction

   = 9810 0.04909 0.42 60 2.3
60 60fd

A L N hω × × ×
× = ×  = 465 W or 0.465 kW

 Hence power saved by fitting an air vessel
   = 3.06 – 0.465 = 2.595 kW (Ans.)
 Q. 25.   A hydraulic ram is being supplied water at the rate of 0.045 m3/s from a height of  
4.9 m and it raises 0.0045 m3/s to a height of 32 m from the ram. The length and diameter of the 
pipe are 110 m and 65 mm respectively. If the coefficient of friction is 0.01, calculate D’ Aubuisson’s 
and Rankine’s efficiencies.
 Solution. Given: Disharge through the supply pipe, Q = 0.045 m3/s; Supply head, h = 4.9 m; 
Discharge raised, q = 0.0045 m3/s; Height of water raised from hydraulic ram, H = 32 m; Length of 
pipe, l = 110 m; Diameter of the pipe, d = 65 mm = 0.065 m; Coefficient of friction, f = 0.01.
 Efficiency of the ram:
 Head lost due to friction in the delivery pipe,

  hf = 
2 2

24 4 0.01 110 3.45 V
2 0.065 2 9.81

f l V V
d g

× × ×
= =

× × ×

 But, V = Velocity of water in delivery pipe

   = 
2 2

0.0045

0.065
4 4

q

d
=

π π ×
 = 1.356 m/s

	 \ hf = 3.45 V2 = 3.45 × 1.3562 = 6.34 m

Effective head developed by the ram,
 He = H + hf = 32 + 6.34 = 38.34 m

 D’ Aubuisson’s efficiency = 0.0045 38.34
0.045 4.9

eq H
Q h
× ×

=
× ×

 = 0.7824 or 78.24% (Ans.)

 Rankine’s efficiency = 
( )
( )

eq H h
Q q h

−
−

  = 
( )

( )
0.0045 38.34 4.9

0.758
0.045 0.0045 4.9

−
=

− ×
 or 75.8% (Ans.)
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Choose the Correct Answer:
 1. The unit speed (Nu) is given by the expression

  (a) Nu = 3 2
N

H
 (b) Nu = 3 4

N
H

  (c) Nu = N
H

 (d) Nu = 5 4
N

H
.

 2. The unit discharge (Qu) is given by the expres-
sion

 (a) Qu = Q
H

 (b) Qu = 3 2
Q

H

 (c) Qu = 3 4
Q

H
 (d) Qu = 5 4

Q
H

.

 3. Draft tube is used for discharging water from 
the exit of 

 (a) an impulse turbine 
 (b) a Francis turbine
 (c) a Kaplan turbine
 (d) a Pelton wheel.
 4.	 Specific	speed	of	a	turbine	is	defined	as	the	speed	

at which the turbine runs when
 (a)  working under unit head and discharging 

one litre per second
 (b)  working under unit head and develops unit  

horse power
 (c)  develops unit horse power and discharges 

one litre per second 
 (d) none of the above.
 5. Surge tank in a pipeline is used to
 (a) reduce the loss of head due to friction in pipe
 (b)	 make	the	flow	uniform	in	pipe
 (c) relieve the pressure due to water hammer
 (d) none of the above.
 6. Hydraulic ram is a device used for
 (a) storing energy of a water in the form of 

pressure energy
 (b) increasing pressure intensity of water
 (c) lifting small quantity of water to a greater 

height by means of large quantity of water 
falling through small height 

 (d) none of the above.
 7. The net head (H) on the turbine is given by
 (a) H = Gross Head + head lost due to friction
 (b) H = Gross Head – head lost due to  

friction

 (c) H = Gross Head + 
2

2
V

g
 – head lost due to 

friction.

 8.	 Hydraulic	efficiency	of	a	turbine	is	defined	as	
the ratio of 

 (a) Power available at the inlet of turbine to 
power given by water to the runner

 (b) Power at the shaft of the turbine to power 
given by water to the runner

 (c) Power at the shaft of the turbine to the power 
at the inlet of turbine

 (d) none of the above.
 9. A turbine is called reaction turbine if at the inlet 

of the turbine the total energy is 
 (a) kinetic energy only
 (b) kinetic energy and pressure energy
 (c) pressure energy only
 (d) none of the above.
 10. Tick mark the correct statement:
 (a) Pelton wheel is a reaction turbine
 (b)	 Pelton	wheel	is	a	radial	flow	turbine
 (c) Pelton wheel is an impulse turbine
 (d) none of the above.
 11. Governing of a turbine means
 (a) the head is kept constant under all conditions 

of working
 (b) the speed is kept constant under all condi-

tions
 (c) the discharge is kept constant under all 

conditions
 (d) none of the above.
 12. The work done by impeller of a centrifugal pump 

on water per second per unit weight of water is 
given by

 (a) 1 1
1 Vw u
g

 

 (b) 2 2
1 Vw u
g

 (c) 1 2 2 1
1 ( )Vw u Vw u
g

−    

 (d) none of the above.
 13.	 Efficiency	of	the	jet	of	water	having	velocity	V 

and striking a series of vertical plates moving 
with a velocity u, is maximum when 

 (a) u = 2V (b) u = 
2
V

 (c) u = 3
2
V  (d) u = 4

3
V .
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 14. Air vessel in a reciprocating pump is used 
 (a) to obtain a continuous supply of water at 

uniform rate
 (b) to reduce suction head
 (c) to increase the delivery head
 (d) none of the above.
 15.	 The	work	saved	by	fitting	an	air	vessel	to	a	single	

acting reciprocating pump is
 (a) 39.2%  (b) 84.4%
 (c) 48.8% (d) 92.3%.
 16. Jet ratio (m)	is	defined	as	the	ratio	of
 (a)	 diameter	of	jet	of	water	to	diameter	of	Pelton	

wheel
 (b)	 velocity	of	vane	to	the	velocity	of	jet	of	water
 (c)	 velocity	of	flow	to	the	velocity	of	jet	of	water
 (d) diameter of Pelton wheel to diameter of the 

jet	of	water.
 17.	 Flow	ratio	is	defined	as	the	ratio	of	
 (a) velocity of flow at inlet to the velocity 

given by 2gH

 (b) velocity of runner at inlet to the velocity of 
flow	at	inlet

 (c) velocity of runner to the velocity given by 
2gH

 (d) none of the above.
 18.	 The	force	exerted	by	a	jet	of	water	on	a	stationary	

curved	plate	in	the	direction	of	jet	is	equal	to	
 (a) ρAV2 (b) ρAV2 sin2 θ
 (c) ρAV2 (1 + cos θ) (d) ρAV2 (1 + sin θ).
 19.	 The	force	exerted	by	a	jet	of	water	having	veloc-

ity V on a vertical plate, moving with a velocity 
u is given by

 (a) Fx = ρA(V – u)2 sin2 θ
 (b) Fx = ρA(V – u)2

 (c) Fx = ρA(V – u)2 [1 + cos θ]
 (d) none of the above.
 20. The discharge through Pelton turbine is given 

by
 (a) Q = pDBVf 

 (b) Q = 2 2
4

d gHp ×

 (c) Q = 2 2
0[ ]

4
p − ×b fD D V  

 (d) none of the above.
 21. The discharge through Francis turbine is given 

by 
 (a) Q = pDBVf

 (b) Q = 2 2
4

d gHp ×

 (c) Q = 2 2
0[ ]

4 b fD D Vp − ×  

 (d) none of the above.
 22. The pressure head due to acceleration (ha) in 

reciprocating pump is given by

 (a) ha = 2 sinl a r
g A

× × ω θ

 (b) ha = 2 sinl a r
g A

× × ω θ

 (c) ha = 2 cosl A r
g a

× × ω θ

 (d) ha =  2 sinA r
a

× ω θ  

  where, A = area of cylinder, a = area of pipe and 
r = radius of crank.

 23. Indicator diagram shows for one complete 
revolution of crank the

 (a)  variation of kinetic head in the cylinder
 (b) variation of pressure head in the cylinder
 (c) variation of kinetic and pressure heads in 

the cylinder
 (d) none of the above.
 24. Unit power (Pu) is given by the expression

 (a) Pu = P
H

 (b) Pu = 3 2
P

H

 (c) Pu = 3 4
P

H
 (d) Pu = 5 4

P
H

. 

 25. Which of the following turbines has purely axial 
flow?

 (a) Francis turbine (b) Kaplan turbine
 (c) Pelton turbine (d) None of these.
 26. Tick mark the correct statement:
 (a) Centrifugal pump converts mechanical 

energy into hydraulic energy by sucking 
liquid into chamber.

 (b) Reciprocating pump converts mechanical 
energy into hydraulic energy by means of 
centrifugal force.

 (c) Centrifugal pumps convert mechanical 
energy into hydraulic energy by means of 
centrifugal force.

 (d) Reciprocating pumps convert hydraulic 
energy into mechanical energy.

 27. The discharge through a single acting recipro-
  cating pump is

 (a) Q = 
60

ALN   (b) Q = 2
60
ALN

 (c) Q = ALN (d) Q = 2ALN.
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 28. Cavitation will take place if the pressure of the 
flowing	fluid	at	any	point	is

 (a)	 more	than	vapour	pressure	of	the	fluid
 (b)	 equal	to	vapour	pressure	of	the	fluid
 (c)	 is	less	than	vapour	pressure	of	the	fluid
 (d) none of the above.  
 29. Cavitation can take place in case of
 (a) Pelton wheel 
 (b) Francis turbine
 (c) Reciprocating pump
 (d) Centrifugal pump.
 30. The discharge through Kaplan turbine is given 

by
 (a) Q = pDBVf 

 (b) Q  =  2 2
4

d gHp ×  

 (c) Q = 2 2
0[ ]

4 b fD D Vp −    

 (d)  Q = 0.9p DBVf 
.

 31. The relation between hydraulic efficiency 
(ηh),	mechanical	 efficiency	 (ηm) and overall 
efficiency	(η0), is 

 (a) ηh = η0 × ηm (b) η0 = ηh × ηm

 (c) η0 = m

h

η
η

 (d) none of the above.

 32. A turbine is called impulse if at the inlet of the 
turbine

 (a) total energy is only kinetic energy
 (b) total energy is only pressure energy
 (c) total energy is the sum of kinetic energy     

and pressure energy
 (d) none of the above.
 33.	 Maximum	efficiency	of	a	series	of	vertical	plates	

is
 (a) 66.67% (b) 33.33%
 (c) 50% (d) 80%.
 34. For a series of curved radial vanes, the work 

done per second per unit weight is equal to

 (a) 1 1 2 2
1 Vw u Vw u
g

+

 (b)  1 1 2 2
1 [ ]V u V u
g

+

 (c) 1 1 2 2
1 [ ]Vw u Vw u
g

±

 (d) none of the above.
 35. Tick mark the correct statement:
 (a) Curves at constant speed are called main 

characteristic curves

 (b) Curves at constant head are called main 
characteristics curves

 (c) Curves at constant efficiency are called 
operating characteristic curves

 (d)	 Curves	at	constant	efficiency	are	called	main	
characteristic curves.

 36. Main characteristic curves of a turbine means
 (a) curves at constant speed
 (b)	 curves	at	constant	efficiency
 (c) curves at constant head
 (d) none of the above.
 37.	 The	specific	speed	(Ns) of a turbine is given by

 (a) Ns = 3 4
N P
H

 (b) Ns = 3 4
N Q
H

 

 (c) Ns = 5 4
N P
H

  (d) Ns = 
5 4NP
H

. 

 38. Unit speed is the speed of a turbine when it is 
working

 (a) under unit head and develops unit power
 (b) under unit head and discharges one m3/sec
 (c) under unit head
 (d) none of the above.
 39.	 Mechanical	efficiency	of	a	turbine	is	the	ratio	

of 
 (a) Power at the inlet to the power at the shaft 

of turbine
 (b) Power at the shaft to the power given to the 

runner
 (c) Power at the shaft to the power at the inlet 

of turbine
 (d) none of the above.
 40.	 The	overall	efficiency	of	a	tubrine	is	the	ratio	of
  (a) Power at the inlet to the power at the shaft 
  (b) Power at the shaft to the power given to the 

runner
 (c) Power at the shaft to the power at the inlet 

of turbine
 (d) none of the above.
 41.	 The	 force	 exerted	 by	 a	 jet	 of	water	 having	

velocity V on a series of vertical plates moving 
with velocity u is given by

 (a) Fx = ρAV2 (b) Fx =  ρA(V – u)2

 (c) Fx = ρAVu  (d) none of the above.
 42.	 Efficiency	of	the	jet	of	water	having	velocity	V 

striking a series of vertical plates moving with 
a velocity u is given by

 (a) η = 2
2 ( )V V u

u
−  (b) η = 2

2 ( )u V u
V

−
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 (c) η = 
2

2( )
u

V V u−
 (d) none of the above.

 43. Speed ratio is given by 

 (a) 
2
u
gH

 (b) 
2

fV

gH

 (c) 
2

f

gh
V

 (d) 
2

wV
gH

.

 44. The speed ratio for Pelton wheel varies from
 (a) 0.45 to 0.50 (b) 0.6 to 0.7
 (c) 0.3 to 0.4 (d) 0.8 to 0.9
 45. Francis turbine is
 (a) an impulse turbine 
 (b)	 a	radial	flow	impulse	turbine	
 (c)	 an	axial	flow	turbine
 (d)	 a	reaction	radial	flow	turbine.
 46. Kaplan turbine is 
 (a) an impulse turbine
 (b)	 a	radial	flow	impulse	turbine
 (c)	 an	axial	flow	reaction	turbine
 (d)	 a	radial	flow	reaction	turbine.
 47.	 The	work	 saved	 by	fitting	 an	 air	 vessel	 to	 a	

double acting reciprocating pump is
 (a) 39.2% (b) 84.8%
 (c) 48.8% (d) 92.3%
 48. The pressure, at which separation takes place, 

is known separation pressure or separation 
pressure head. For water, the limiting value of 
separation pressure head is

 (a) 2.5 m (abs.) (b) 7.5 m (abs.)
 (c) 10.3 m (abs.) (d) 5 m (abs.) 
 49. For low head and high discharge, the suitable 

turbine is
 (a) Pelton (b) Francis
 (c) Kaplan (d) none of the above.
 50. For high head and low discharge, the suitable 

turbine is 
 (a) Pelton (b) Francis
 (c) Kaplan (d) none of the above.
 51.	 Specific	speed	of	a	pump	is	the	speed	at	which	

a pump runs when
 (a) head developed is unity and discharge is one 

cubic metre 
 (b) head developed is unity and shaft horse 

power is also unity 
 (c) discharge is one cubic metre and shaft horse 

power is unity
 (d) none of the above.

 52.	 The	specific	speed	(Ns) of pump is given by the 
expression 

 (a) Ns = 5 4
m

N Q
H

 (b) Ns = 3 4
m

N P
H

 (c) Ns = 3 4
m

N Q
H

 (d) Ns = 5 4
m

N P
H

.

 53.	 A	pump	is	defined	as	a	device	which	converts	
 (a) hydraulic energy into mechanical energy
 (b) mechanical energy into hydraulic energy
 (c) kinetic energy into mechanical energy
 (d) none of the above.
 54. A turbine is a device which converts
 (a) hydraulic energy into mechanical energy
 (b) mechanical energy into hydraulic energy
 (c) kinetic energy into mechanical energy
 (d) electrical energy into mechanical energy.
 55. The manometer head (Hm) of a centrifugal pump 

is given by
 (a) Pressure head at outlet of pump — pressure 

head at inlet
 (b) Total head at inlet — total head at outlet
 (c) Total head at outlet — total head at inlet
 (d) none of the above.
 56. A current meter is a device used for measuring
 (a) velocity (b) viscosity  
 (c) current (d) pressure.
 57. A hot wire anemometer is a device used for 

measuring
 (a) viscosity (b) velocity of gases
 (c) pressure of gases (d) pressure.
 58. Unit discharge is the discharge of a turbine when
 (a) the head on turbine is unity and it develops 

unit power
 (b) the head on turbine is unity and it moves at 

unit speed
 (c) the head on the turbine is unity
 (d) none of the above.  
 59. Unit power is the power developed by a turbine 

when
 (a) head on turbine is unity and discharge is also 

unity
 (b) head is one metre and speed is unity
 (c) head on turbine is unity
 (d) none of the above.
 60.	 The	flow	of	water,	 leaving	 the	 impeller,	 in	 a	

centrifugal pump casing is
 (a)	 forced	vortex	flow
 (b)	 free	vortex	flow
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 (c)	 centrifugal	flow
 (d) none of the above.
 61. Rotameter is used for measuring
 (a)	 density	of	fluids
 (b)	 velocity	of	fluids	in	pipes
 (c)	 discharge	of	fluids
 (d)	 viscosity	of	fluids.
 62. Spouting velocity means
 (a)	 actual	velocity	of	jet
 (b)	 ideal	velocity	of	jet
 (c)	 half	of	ideal	velocity	of	jet
 (d) none of the above.
 63.	 The	force	exerted	by	a	jet	of	water	on	a	stationary	

vertical	plate	in	the	direction	of	jet	is	given	by
 (a) Fx = ρAV2 sin2 θ
 (b) Fx = ρAV2 [1 + cos θ]
 (c) Fx = ρAV2

 (d) none of the above.
 64.	 The	force	exerted	by	a	jet	of	water	on	a	stationary	

inclined	plate	in	the	direction	of	jet	is	given	by
 (a) Fx = ρAV2

 (b) Fx = ρAV2 sin2 θ
 (c) Fx = ρAV2 [1 + cos θ]
 (d) Fx = ρAV2 [1 + sin θ].
 65. Operating characteristic curves of a turbine 

means
 (a) curves drawn at constant speed
 (b)	 curves	drawn	at	constant	efficiency
 (c) curves drawn at constant head
 (d) none of the above.
 66. Muschel curves means
 (a) curves at constant head
 (b) curves at constant speed
 (c)	 curves	at	constant	efficiency
 (d) none of the above.
 67.	 Specific	speed	of	a	turbine	is	defined	as	the	speed	

of the turbine which
 (a) produces unit power at unit head
 (b) produces unit horse power at unit discharge
 (c) delivers unit discharge at unit head
 (d) delivers unit discharge at unit power.
 68. Hydraulic accumulator is a device used for
 (a) lifting heavy weights
 (b)	 storing	the	energy	of	a	fluid	in	the	form	of	

pressure energy
 (c)	 increasing	the	pressure	intensity	of	a	fluid
 (d) none of the above.

 69.	 Hydraulic	intensifier	is	a	device	used for 
 (a)	 storing	 energy	 of	 a	 fluid	 in	 the	 form	 of	

pressure energy
 (b) increasing pressure intensity of a liquid
 (c) transmitting power from one shaft to another
 (d) none of the above.
 70.	 If	 the	 specific	 speed	of	 a	 turbine	 is	more	 than	

300, the type of turbine is 
 (a) Pelton  
 (b) Kaplan
 (c) Francis 
 (d)	 Pelton	with	more	jets.
 71. Run-away speed of a Pelton wheel means
 (a) full load speed
 (b) no load speed
 (c) no load speed with no governor mechanism
 (d) none of the above.
 72.	 The	manometric	efficiency	(ηman) of centrifugal 

pump is given 

 (a) 
2 2

m

w u

H
gV

 (b) 
2 2

m

w u

gH
V

 (c) 2 2w u

m

V
gH

 (d) 2 2w u

m

g V
H

×

 73.	 Mechanical	efficiency	(ηmech) of a centrifugal 
pump is given by

 (a) Power at the impeller/S.H.P.
 (b) S.H.P./Power at the impeller
 (c) Power possessed by water/power at the 

impeller
 (d) Power possessed by water/S.H.P.
 74. Torque converter is a device used for
 (a) transmitting same torque to the driven shaft
 (b) transmitting increased torque to the driven 

shaft
 (c) transmitting decreased torque to the driven 

shaft
 (d) transmitting increased or decreased torque 

to the driven shaft.  
 75. Capacity of a hydraulic accumulator is given as 

equal to 
 (a) pressure of water supplied by pump × vol-

ume of accumulator
 (b) pressure of water × area of accumulator
 (c) pressure of water × stroke of the ram of 

accumulator
 (d) none of the above.
 76. During suction stroke of a reciprocating pump, 

the separation may take place
 (a) at the end of suction stroke
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 (b) in the middle of suction stroke
 (c) in the beginning of the suction stroke
 (d) none of the above.
 77. During delivery stroke of a reciprocating pump, 

the separation may take place
 (a) at the end of delivery stroke
 (b) in the middle of delivery stroke
 (c) in the beginning of the delivery stroke
 (d) none of the above.
 78. Kaplan turbine is a propeller turbine in which 

the	vanes	fixed	on	the	hub	are	
 (a)	 non-adjustable	 (b)	 adjustable
 (c)	 fixed	 (d) none of the above.
 79. If the head on the turbine is more than 300 m, 

the type of turbine used should be 
 (a) Kaplan  (b) Francis
 (c) Pelton  (d) Propeller.
 80. To produce a high head by multi-stage centrifu-

gal pumps, the impellers are connected 
 (a) in parallel 
 (b) in series
 (c) in parallel and series both   
 (d) none of the above.
 81. To discharge a large quantity of liquid by  

multi-stage centrifugal pump, the impellers are 
connected 

 (a) in parallel  
 (b) in series    
 (c) in parallel and in series
 (d) none of the above.
 82. Hydraulic ram is a pump which works
 (a) on the principle of water-hammer
 (b) on the principle of centrifugal action
 (c) on the principle of reciprocating action 
 (d) none of the above.
 83. Hydraulic coupling is a device used for 
 (a) transmitting same torque to the driven shaft
 (b) transmitting increased torque to the driven 

shaft
 (c) transmitting decreased torque to the driven 

shaft 
 (d) none of the above.
 84.	 The	impact	or	thrust	of	a	water	jet	on	a	plate	or	

blade is due to 
 (a)	 change	in	the	original	direction	of	jet	
 (b) change in the magnitude of velocity in the 

direction	of	jet
 (c) (a) or (b)
 (d) all of them.

 85. Given sp. mass of water as 1000 kg/m3,  cross 
section	of	jet	as	2	×	10–3m2 and	velocity	of	jet	 
20	m/s.	If	jet	impinges	normally	onto	a	fixed	ver-
tical plate, the force experienced by the plate is

 (a) 800 N (b) 40 N
 (c) 1600 N (d) 800 kN.
 86.	 In	the	above	question	if	the	jet	is	inclined	at	30°	

to the horizontal, the force is
 (a) 400 N (b) 692.8 N
 (c) 400 kN (d) 692.8 kN.
 87. In Q.85 if the plate moves at 5 m/s in the direc-

tion	of	jet,	the	force	is	
 (a) 50 N (b) 450 N
 (c)  1350 N (d) 50 kN.
 88.	 If	a	jet	of	water	is	discharging	under	a	head	of	

7.2	m,	and	coefficient	of	velocity	of	0.80,	the	
actual	velocity	of	jet	is,	(g = 10 m/s2) 

 (a) 12 m/s (b) 15 m/s
 (c) 9.6 m/s (d) 7.2 m/s.
 89.	 For	the	configuration	shown	in	Fig.1	assuming	it	

to	be	a	fixed	vane,	and	‘a’ is the   cross-section 
of	 jet	 (mm2) the normal force experienced by 
vane is

V

�

�

                     Fig. 1

 (a) Fn = ρaV2 (cos θ – cos f)
 (b) Fn = ρaV2 (cos θ + cos f) 
 (c) Fn = ρaV2 (sin θ – sin f)
 (d) Fn = aV2 (sin θ – sin f).
 90. In Q.89 tangential force is given by

 (a) Ft = aV2 (cos θ – cos f)

 (b) Ft = aV2 (cos θ + cos f)

 (c) Ft = aV2 (sin θ + sin f)

 (d) Ft = aV2 (sin θ – sin f).
 91.	 In	case	of	a	jet	impinging	on	a	moving	curved	

blade, component of absolute velocity which is 
along the direction of motion is called 

 (a)	 velocity	of	flow
 (b) axial velocity
 (c) velocity of whirl
 (d) relative velocity.
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 92. In Q.91 component of absolute velocity normal 
to the direction of motion is called

 (a)	 velocity	of	flow
 (b) axial velocity
 (c) radial velocity
 (d) any of them.
 93. If ∆Vw is change in velocity of whirl, v = blade 

velocity, ∆Vf =	change	in	velocity	of	flow	in	case	
of	moving	curved	blade	on	impact	of	jet,	work	
done per unit mass is given by

 (a) v × ∆Vf (b) v × ∆Vw
 (c) v × (∆w – ∆Vf) (d) v × (Vw + ∆Vf) 
 94. In Q.93 axial force or thrust per unit mass is 

given by
 (a) ∆ Vf (b) ∆ Vw
 (c) v × ∆f (d) v × ∆w.
 95. In Q.93 if V1 and V2 are absolute velocities at 

inlet	and	exit,	efficiency	is	given	by	

 (a) 
2

1

2
1 V

V
 −  
 

 (b) 
2

2

1
1 V

V
 −  
 

 (c) 2
1 2

wv V
V
⋅ ∆  (d) 2

2 2
fv V

V

⋅ ∆
.

 96. A water turbine converts
 (a) mechanical energy into electrical energy
 (b) hydraulic energy into electrical energy
 (c) hydraulic energy into mechanical energy
 (d) all of them.
 97. Motive force for a turbine rotor is
 (a) resultant of centrifugal  force
 (b) effect of change in velocity
 (c) (a) and (b)
 (d) all of them. 
 98. Example of an impulse turbine is
 (a) Pelton wheel (b) Francis turbine
 (c) Kaplan runner (d) Propeller turbine.
 99. Example of a reaction turbine is
 (a) Pelton wheel (b) Turgo wheel
 (c) Francis runner (d) none of them.
 100. This turbine must be always installed above 

water level in tail race
 (a) impulse turbine (b) reaction turbine
 (c) (a) and (b) (d) none.
 101. A draft tube is a must for
 (a) impulse turbine (b) reaction turbine
 (c) (a) and (b) (d) none.
 102. Reaction turbines are also called
 (a)	 free	jet	turbines	
 (b)	 mixed	flow	turbines

 (c) axial turbines 
 (d) pressure turbines.
 103.	 For	maximum		efficiency	of	a	pelton	wheel	blade	

velocity is
 (a)	 2	×	jet	velocity

 (b) 1
2
	×	jet	velocity

 (c)	 equal	to	jet	velocity	
 (d) no such relation.
 104.	 Ratio	of	blade	velocity	to	jet-velocity	is	called
 (a) velocity ratio
 (b)	 flow	ratio
 (c) speed ratio
 (d)	 jet	ratio.
 105. The driving or motive force in a Francis turbine 

may be attributed to
 (a) change in velocity 
 (b) change in pressure
 (c) change in momentum
 (d) change in angular momentum.
 106. Ratio of shaft power to brake power is called
 (a)	 mechanical	efficiency	 	
 (b)	 hydraulic	efficiency
 (c)	 overall	efficiency
 (d)	 turbine	efficiency.
 107.	 Ratio	of	axial	velocity	to	jet-velocity	is	called
 (a) velocity ratio
  (b)	 flow	ratio
 (c) speed ratio
 (d)	 jet	ratio.
 108.	 In	a	Kalpan	turbine	direction	of	flow	of	water	

through the runner is
 (a) parallel to axis of rotation 
 (b) normal to axis of rotation
 (c) radial 
 (d) any of them.
 109.	 Compared	 to	 Francis	 turbine,	 hydraulic	 effi-

ciency of Kalpan turbine is
 (a) less (b) higher
 (c) equal (d) can’t say.
 110. Speed at which turbine runs under unit head and 

develops unit power is called
 (a) unit speed (b) standard speed
 (c)	 specific	speed	 (d) absolute speed.
 111.	 Specific	speed	of	Francis	turbine	against	that	of	

Kaplan turbine is 
 (a) less (b) higher
 (c) equal (d) can’t say.
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 112. Ratio of change in pressure head in the runner 
to the change in total energy head is called  

 (a) pressure drop per unit head
 (b)	 specific	energy	change
 (c)  degree of reaction
 (d) none of these.
 113.	 For	a	specific	speed	ranging	from	300	to	1000	

and head below 30 m suitable turbine is
 (a) Kaplan  (b) Francis
 (c) Pelton (d) Propeller.
 114. In a reaction turbine, function of a draft tube is 

to
 (a) provide safety to turbine
 (b) prevent air from entering
 (c)	 reconvert	K.E.	to	flow	energy
 (d)	 increase	the	rate	of	flow.
 115.	 Specific	speed	of	pelton	wheel	ranges	from
 (a) 12 to 70 (b) 80 to 400
 (c) 300 to 1000 (d) 1000 to 1200.
 116. A Kaplan turbine is
 (a)	 an	inward	flow	impulse	turbine
 (b)	 low	head	axial	flow	turbine
 (c)	 high	speed	axial	flow	turbine
 (d)	 high	head	mixed	flow	turbine.
 117. If, P0 = Power developed by runner, and
       Ps =	Power	supplied	by	jet	at	entry	to		 	

    turbine;  
  Then P0 /Ps is called 
 (a) η hyd (b)  ηmech
 (c) ηvol (d) ηoverall.
 118.	 Jet	ratio	(dia.	of	wheel/dia.	of	jet)	of	a	pelton	

wheel lies between
 (a) 3 – 5 (b) 6 – 10
 (c) 11 – 14 (d) 20 – 25
 119. If β = Outlet bucket angle of a pelton wheel, 

maximum	theoretical	efficiency	is	given	by

 (a) cos1 / 2 1
2

β + 
 

 (b) cos1 / 2 1
2

β − 
 

 (c) 1/2(1 + cos2 β) (d) 1/2(1 + cos β).
 120. Governing (regulation of speed) in a Pelton 

turbine is done by changing
 (a) the head available at nozzle
 (b) the annular area of nozzle
 (c)	 the	velocity	of	flow	form	of	nozzle
 (d) the blade angle.
 121. The modern Francis turbine is essentially   
 (a)	 a	mixed	flow	turbine
 (b)	 an	axial	flow	turbine
 (c)	 a	tangential	flow	turbine
 (d)	 a	radial	flow	turbine.

 122. A Kaplan turbine is suitable for
 (a) low head and low discharge
 (b) low head and high discharge
 (c) high head and low discharge
 (d) high head and high discharge.
 123.	 An	adjustable	blade	propeller	turbine	is	called
 (a) Pelton wheel (b) Francis runner
 (c) Kaplan turbine (d) Turgo wheel.
 124. A machine that increases pressure energy of a 

liquid is called 
 (a) turbine (b) engine
 (c) pump (d) motor.
 125. In a reciprocating pump, if Q = theoretical 

discharge and Qa = actual discharge, the ratio, 
aQ Q

Q
−  is called

 (a)	 coefficient	of	discharge
 (b) slip
 (c)	 pump	efficiency
 (d) all of these.
 126. Slip in case of reciprocating pump may be
 (a) +ve (b) –ve
 (c) zero (d)  (a) or (b).
 127. Limiting value of separation (of water) pressure 

head is
 (a) 2.5 m abs. (b) 7.5 m abs.
 (c) 10.3 m abs. (d) 13.3 m abs.
 128. Air vessel in a reciprocating pump
 (a) increases pump head
 (b)	 increases	pump	efficiency
 (c) reduces acceleration head
 (d)	 smoothens	the	flow.
 129. If Hs = Suction head (lift), and
      Hd = Delivery head;
  Then work supplied to pump per unit mass is 
 (a) g (Hs – Hd) (b) g (Hd – HS)
 (c) g (Hs + Hd) (d) g (Hs × Hd).
 130. In general vanes of a centrifugal pump are
 (a) curved forward (b) curved backward
 (c) radial (d) twisted.
 131.	 The	flow	in	a	volute	casting	outside	the	impeller	

of a centrifugal pump is
 (a) radial (b) axial  
 (c) free vortex (d) forced vortex.
 132. If P = power, Q = discharge, H = head,  

N = speed, then for a given centrifugal pump 

 (a) 2
1H

N
α  (b) P α N5

 (c) Q α N2 (d) Q α N.
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 133. Cavitation in centrifugal pump can be reduced 
by

 (a) reducing the discharge
 (b) reducing the suction head
 (c) increasing the discharge
 (d)	 increasing	the	flow	velocity.
 134. If diameter of a centrifugal pump impeller is 

doubled but discharge is to remain same, then 
the head needs to be reduced by

 (a)  2 times (b) 4 times
 (c) 8 times (d) 16 times.
 135. In a centrifugal pump sum of suction head and 

delivery head is called
 (a) manometric head
 (b) total head
 (c) static head
 (d) none.
 136. In a centrifugal pump, Hs = static head, hl = 

losses in pipe, vd = velocity of water in delivery 

pipe, then, 
2

2
d

s l
vH h

g
+ +  is called 

 (a) total head  (b) manometric head
 (c) available head (d) none.
 137.	 Manometric	efficiency	of	a	centrifugal	pump	is	

the ratio of manometric head to
 (a) head imparted by impeller to liquid
 (b) work supplied to shaft 
 (c) available head 
 (d) none of the above.
 138.	 Efficiency	of	centrifugal	pump	compared	to	that	

of reciprocating pump is 
 (a) low  (b) high
 (c) same (d) can’t say.
 139. Air vessel is essential with
 (a) centrifugal pump 
 (b) reciprocating pump
 (c) (a) and (b)
 (d) none of these.
 140. Function of a hydraulic motor is
 (a)	 to	convert	pressure	energy	in	fluid	available	

from pump into mechanical energy
 (b) to convert mechanical energy into hydraulic 

energy
 (c) to convert velocity head into pressure head
 (d) all of them.
 141. Relief valve is
 (a) direction control valve
 (b) discharge control valve
 (c) pressure control valve
 (d) none of these.

 142. Relief valve protects the following from being 
overloaded:  

 (a) Pump 
 (b) Electric motor
 (c) Fluid lines
 (d) All of these.
 143. Solenoid valve is a type of
 (a) pressure control valve
 (b) directional control valve  
 (c)	 flow	control	valve
 (d) none of these. 
 144. Solenoid valve is 
 (a) a mechanical device
 (b) an electrical device
 (c) an electromagnetic device
 (d) all of them.
 145.	 Butterfly	valve	is
 (a)	 a	low	pressure	flow	control	valve
 (b) a velocity control valve
 (c) a type of stop valve
 (d) none of these.
 146.	 Hydraulic	intensifier	is	used	to
 (a) store liquid
 (b) increase pressure intensity
 (c) increase velocity
 (d) none of them.
 147.	 A	hydraulic	intensifier	is	rated	by
 (a) size of sliding cylinder
 (b) stroke volume of high pressure cylinder
 (c) highest output of pressure
 (d) all of them.
 148. Hydraulic accumulator stores energy of liquid 

temporarily and is used 
 (a) as shock absorber
 (b) to provide oil make up
 (c) to compensate for leakage 
 (d) all of them.

 149. The symbol  represents 

 (a) air compressor
 (b) pump
 (c) switch 
 (d) valve.
 150. If two cylinders with respective pistons are 

arranged coaxially with a common connecting 
rod, they are called
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 (a) woolf cylinders
 (b) twin cylinders
 (c) tandem cylinders 
 (d) none.
 151. Air cylinders are largely used in
 (a) press work
 (b) automotive brakes
 (c)	 injections	&	press	moulding	
 (d) all of them.
 152.	 Pump	used	 in	 pumping	 highly	 viscous	fluids	

belong to the category of
 (a) screw pumps
 (b) centrifugal pump
 (c) turbine pump
 (d) plunger pump.
 153. Hydraulic ram is a pump which works on the 

principle of
 (a) centrifugal action
 (b) reciprocating action
 (c) positive displacement
 (d) inertia force of liquid.
 154. Which one of the following pairs of formulae 

represents	 the	 specific	 speeds	 of	 turbine	 and	
pump	respectively	?	(Notations	have	their	usual	
meanings)

 (a) 
1/2 1/2

3/4 5/4andNQ NP
H H

 

 (b) 
1/2 1/2

3/4 3/4andNQ NP
H H

 (c) 
1/2 1/2

3/4 5/4andNP NQ
H H

 

 (d) 
1/2 1/2

5/4 3/4andNP NQ
H H

 155. Consider the following turbines/wheels :
 1. Francis turbine 
	 2.	 Pelton	wheel	with	two	or	more	jets
	 3.	 Pelton	wheel	with	a	single	jet	
 4. Kaplan turbine
  The correct sequence of these turbines/wheels 

in	increasing	order	of	their	specific	speeds	is
 (a) 2, 3, 1, 4 (b) 3, 2, 1, 4 
 (c) 2, 3, 4, 1 (d) 3, 2, 4, 1.
 156. The gross head available to a hydraulic power 

plant is 100 m. The utilised head in the runner 
of the hydraulic turbine is 72 m. If the hydraulic 
efficiency	of	the	turbine	is	90%,	the	pipe	friction	
head is estimated to be

 (a) 20 m (b) 18 m 
 (c) 16.2 m (d) 1.8 m.
 157. Match List I (Outlet vane angle β2) with List II 

(Curves	labelled	1,	2	and	3	in	the	given	figure)	
for a pump and select the correct answer using 
the codes given below the Lists :

  List I List II
 A. β2	<	90°
 B. β2	=	90°	
 C. β2	>	90°

3

2

1

H
ea

d
,

H

Discharge, Q

  Codes :
   A B C   A B C
 (a)  1 2 3 (b)  1 3 2
 (c)  2 1 3 (d)  3 2 1.
 158. Consider the following statements regarding the 

volute casing of a centrifugal pump :
 1. Loss of head due to change in velocity is 

eliminated.
	 2.	 Efficiency	of	the	pump	is	increased.
 3. Water from the periphery of the inpeller is 

collected and transmitted to the delivery pipe 
at constant velocity.

  Which of these statements are correct	?
 (a) 1, 2 and 3 (b) 1 and 2
 (c) 2 and 3 (d) 1 and 3.
 159.	 The	cavitation	number	of	any	fluid	machinery	

is defined as 2
–

/ 2
p p
V

′
σ =

ρ
 (p is absolute 

pressure, ρ is density and V is free stream 
velocity).

  The symbol p′ denotes
 (a)	 static	pressure	of	fluid	
 (b)	 dynamic	pressure	of	fluid
 (c)	 vapour	pressure	of	fluid	
 (d)	 shear	stress	of	fluid.
 160. Consider the following statements :
  A water turbine governor
 1. helps in starting and shutting down the turbo 

unit
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 2. controls the speed of turbine set to match it 
with the hydroelectric system

 3. sets the amount of load which a turbine unit 
has to carry

  Which of these statements are correct ?
 (a) 1, 2 and 3 (b) 1 and 2
 (c) 2 and 3 (d) 1 and 3.
 161. Consider the following statements regarding a 

torque converter :
	 1.	 Its	maximum	efficiency	is	less	than	that	of	

the	fluid	coupling.
 2. It has two runners and a set of stationary 

vanes interposed between them.
 3. It has two runners.
 4. The ratio of secondary to primary torque is 

zero for the zero value of angular velocity 
of secondary.

  Which of these statements are correct	?
 (a) 1 and 2 (b) 3 and 4
 (c) 1 and 4 (d) 2 and 4.
 162.	 Consider	 the	specific	speed	ranges	of	 the	fol-

lowing types of turbines :
 1. Francis 2. Kaplan 
 3. Pelton
	 	 The	sequence	of	their	specific	speed	in	increas-

ing order is
 (a) 1, 2, 3 (b) 3, 1, 2
 (c) 3, 2, 1 (d) 2, 3, 1.
 163. A symmetrical stationary vane experiences a 

force	‘F’	of	100	N	as	shown	in	the	given	figure,	
when	the	mass	flow	rate	of	water	over	the	vane	
is	5	kg/s	with	a	velocity	‘V’	20	m/s	without	
friction. The angle	‘α’ of the vane is

�

�

V

V

F = 100 N

 (a) zero (b)	 30°
 (c)	 45°	 (d)	 60°.
 164. In	a	fluid	coupling,	the	torque	transmitted	is	50	

kNm, when the speeds of the driving and driven 
shafts are 900 rpm and 720 rpm respectively. 
The	efficiency	of	the	fluid	coupling	will	be

 (a) 20% (b) 25%
 (c) 80% (d) 90%.
 165. Consider the following statements regarding the 

fluid	coupling	:
	 1.	 Efficiency	increases	with	increase	in	speed	

ratio.
 2. Neglecting friction the output torque is equal 

to input torque.
 3. At the same input speed, higher slip requires 

higher input torque.
  Which of these statements are correct	?
 (a) 1, 2 and 3 (b) 1 and 2
 (c) 2 and 3 (d) 1 and 3.
 166. The level of runner exit is 5 m above the tail 

race, and atmospheric pressure is 10.3 m. The 
pressure at the exit of the runner for a divergent 
draft tube can be

 (a) 5 m (b) 5.3 m
 (c) 10 m (d) 10.3 m.
 167. Consider the following statements :
  A surge tank provided on the penstock connected 

to a water turbine
 1. helps in reducing the water hammer 
 2. stores extra water when not needed
 3. provides increased demand of water
  Which of these statements are correct	?
 (a) 1 and 3 (b) 2 and 3
 (c) 1 and 2 (d) 1, 2 and 3.
 168. If a reciprocating pump having a mechanical 

efficiency	of	80%	delivers	water	at	the	rate	of	
80 kg/s with a head of 30 m, the brake power 
of the pump is

 (a) 29.4 kW (b) 20.8 kW
 (c) 15.4 kW (d) 10.8 kW.
 169. The gross head on a turbine is 300 m. The length 

of penstock supplying water from reservoir 
to the turbine is 400 m. The diameter of the 
penstock is 1 m and velocity of water through 
penstock	 is	5	m/s.	 If	 coefficient	of	 friction	 is	
0.0098, the net head on the turbine would be 
nearly

 (a) 310 m (b) 295 m
 (c) 200 m (d) 150 m.
 170. Consider the following statements pertaining to 

a centrifugal pump :
 1. The manometric head is the head developed 

by the pump.
 2. The suction pipe has, generally, a larger 

diameter as compared to the discharge pipe.
 3. The suction pipe is provided with a foot 

valve and a strainer.
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 4. The delivery pipe is provided with a foot 
valve and a strainer.

  Of these statements
 (a) 1, 2, 3 and 4 are correct 
 (b) 1 and 2 are correct
 (c) 2 and 3 are correct
 (d) 1 and 3 are correct.
 171. For a water turbine, running at constant head and 

speed, the operating characteristic curves in the 
given	figure	show	that	upto	a	certain	discharge	
‘q’	 both	 output	 power	 and	 efficiency	 remain	
zero.	The	discharge	‘q’ is required to

O q
Discharge at Constant
Head and Speed

Efficiency

( )�

Output Power
(P)

�

P

 (a) overcome initial inertia
 (b) overcome initial friction

 (c) keep the hydraulic circuit full
 (d) keep the turbine running at no load.
 172.	 In	 fluid	machinery,	 the	 relationship	 between	

saturation temperature and pressure decides the 
process of

 (a)	 flow	separation	 (b) turbulent mixing
 (c) cavitation (d) water hammer.
 173. A centrifugal blower delivering Q m3/s against a 

heat of H m is driven at half the original speed. 
The new head and discharge would be

 (a) and
2
QH  (b) and

4 2
H Q

 (c) and
2 8
H Q  (d) and .

4
QH

 174.	 The	 maximum	 number	 of	 jets	 generally	
employed	 in	 an	 impulse	 turbine	without	 jet	
interference is

 (a) 4 (b) 6
 (c) 8 (d) 12.
 175. A hydraulic coupling transmits 1 kW of power 

at an input speed of 200 rpm, with a slip of 2%. 
If the input speed is changed to 400 rpm, the 
power transmitted with the same slip is

 (a) 2 kW (b) 1/2 kW
 (c) 4 kW (d) 8 kW.

ANSWERS

Choose the Correct Answer.
 1. (c) 2. (a) 3. (b, c) 4. (b) 5. (c) 6. (c) 7. (b) 8. (d) 9. (b)
 10. (c) 11. (b) 12. (b) 13. (b) 14. (a) 15. (b) 16. (d) 17. (a) 18. (c)
 19. (b) 20. (d) 21. (a) 22. (c) 23. (b) 24. (b) 25. (b) 26. (c) 27. (a)
 28. (c) 29. (b, d) 30. (c) 31. (b) 32. (a) 33. (c) 34. (c) 35. (b) 36. (c)
 37. (c) 38. (c) 39. (b) 40. (c) 41. (b) 42. (b) 43. (a) 44. (a) 45. (d)
 46. (c) 47. (a) 48. (a) 49. (c) 50. (a) 51. (a) 52. (c) 53. (b) 54. (a)
 55. (c) 56. (a) 57. (b) 58. (c) 59. (c) 60. (b) 61. (c) 62. (b) 63. (c)
 64. (b) 65. (a) 66. (c) 67. (a) 68. (b) 69. (b) 70. (b) 71. (c) 72. (b)
 73. (a) 74. (d) 75. (a) 76. (c) 77. (a) 78. (b) 79. (c) 80. (b) 81. (a)
 82. (a) 83. (a) 84. (d) 85. (a) 86. (a) 87. (b) 88. (c) 89. (b) 90. (d)
 91. (c) 92. (d) 93. (b) 94. (a) 95. (b & c) 96. (c) 97. (d) 98. (a) 99. (c)
 100. (a) 101. (b) 102. (d) 103. (b) 104. (c) 105. (d) 106. (a) 107. (b) 108. (a)
 109. (b) 110. (c) 111. (a) 112. (c) 113. (a) 114. (c) 115. (a) 116. (b) 117. (a)
 118. (c) 119. (d) 120. (b) 121. (a) 122. (b) 123. (c) 124. (c) 125. (b) 126. (d)
 127. (a) 128. (d) 129. (c) 130. (b) 131. (c) 132. (d) 133. (b) 134. (d) 135. (c)
 136. (b) 137. (a) 138. (b) 139. (b) 140. (a) 141. (c) 142. (d) 143. (b) 144. (c)
 145. (a) 146. (b) 147. (d) 148. (d) 149. (a) 150. (c) 151. (d) 152. (a)     153. (d)
 154. (d) 155. (b) 156. (a) 157. (a) 158. (a) 159. (c) 160. (c) 161. (c) 162. (b)
 163. (d) 164. (c) 165. (b) 166. (b) 167. (d) 168. (a) 169. (b) 170. (c) 171. (b)
 172. (c) 173. (b) 174. (b) 175. (a).
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LABORATORY EXPERIMENTS

A. FLUID MECHANICS

 Experiment No. 1. To measure the pressure head of water in a pipeline by means of a piezo-
meter tube.

 Experiment No. 2. To measure the pressure head of water in a pipeline by means of a U-tube.
 Experiment No. 3. To measure the difference of pressure between the two points of a pipeline by 

using an inverted U-tube.
 Experiment No. 4. To determine the metacentric height of a ship.
 Experiment No. 5. To verify Bernoulli’s theorem.
 Experiment No. 6. To find the coefficient ‘k’ for a given venturimeter.
 Experiment No. 7. To calibrate the given orificemeter.
 Experiment No. 8. To find the value of velocity head or to find the coefficient of pitot tube.
 Experiment No. 9. To determine Cc (coefficient of contraction), Cv (coefficient of  velocity) and 

Cd (coefficient of discharge) for flow through a circular/round orifice.
 Experiment No. 10. To verify time for the level in a rectangular tank to fall from height H1 to H2 

when the flow takes place through an orifice.
 Experiment No. 11. To find the  coefficient of discharge in an external mouthpiece.
 Experiment No. 12. To find the value of k and hence coefficient of discharge in the equation  

Q = kH5/2 in right angled triangular notch.
 Experiment No. 13. To find the value of k and hence coefficient of discharge in the equation  

Q = kH3/2 for a rectangular notch.
 Experiment No. 14. To plot the flow profile over a broad crested weir and calibrate it.
 Experiment No. 15. To determine different requires of flow by Reynolds experiment.
 Experiment No. 16. To find the value of critical velocity in pipes by Reynolds experiments.
 Experiment No. 17. To determine the friction factor for pipes of different sizes.
 Experiment No. 18. To determine the velocity distribution in a given pipeline and obtain the 

energy and momentum correction factors.
 Experiment No. 29. To obtain the velocity distribution in an open channel with the help of 

current meter.
 Experiment No. 20. To verify impulse momentum principle for impact of jet on a stationary 

vane.
 Experiment No. 21. To verify experimentally the theoretical relationship between the conjugate 

depths of a hydraulic jump and to determine its various elements.
 Experiment No. 22. To visualize and plot the pattern of flow around an object in a fluid stream 

using Hele-Shaw apparatus.

B. HYDRAULIC MACHINES

 Experiment No. 23. To study the operation and performance of a Pelton wheel.
 Experiment No. 24. To study the performance of a Francis turbine.
 Experiment No. 25. To study the performance characteristics of a single-stage centrifugal 

pump.
 Experiment No. 26. To obtain the performance characteristics of a reciprocating pump.
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EXPERIMENTS

A. FLUID MECHANICS

 EXPERIMENT NO. 1. To measure the pressure head of water in a pipeline by means of a 
piezometer tube.
 Apparatus. A horizontal pipe running full with water and fitted with a piezometer tube.
 Brief theory. A piezometer tube is a simple glass tube used for measuring moderate pressures 
of liquids. It is inserted in the wall of a vessel or of a pipe,  containing liquid whose pressure is to 
be measured. The tube extends vertically upwards to such a height that liquid can freely rise in it 
without overflowing. The pressure at any point in the liquid is indicated by the height of the liquid 
in the tube above that point, which can be read on the scale attached to it. Thus, if ‘w’ is the specific 
weight of the liquid, then pressure (p) at point A (Fig. 1) is given by the 
relation
  p = wh
 where, h = Height of the liquid in the tube above the point A.
 Note. A piezometer tube is not suitable for measuring negative pressure; as in 

such a case the air will enter in pipe through the tube.
 Procedure : 1. Connect the piezometer tube into pipe.
 2. Adjust the supply of water in the pipe in such a way that the 

water rises to a permissible height in the pipe.
 3. Measure the height of water with respect to the longitudinal axis 

of the pipe.
 4. Vary the discharge through the pipe, note down four readings 

(say) and tabulate as shown in Table 1.
Observations : As tabulated (Table 1).

Table 1. Piezometer tube – Observations

S. No. Pressure head, h Intensity of pressure, p = wh
(w for water = 9810 N/m3)

Remarks

1.
2.
3.
4.

  Mean pressure, p = . . . . . . . . .  

Specimen calculations : (i)   (ii)

Conclusion :

 Precautions. 1. The piezometer tube should be so inserted in the pipe that it is at right angles to 
the motion of the flow.

 2. The end of the piezometer tube which is to be connected with the pipe should flush with its 
(pipe) inner surface and should not be rough.

 3. To reduce fluctuations of water level it may be worthwhile to insert a short length of capillary 
tube between the pipe connection and the atmosphere surface.

Pipe

Liquid

Piezometer
tube

h

A

4

Fig. 1. Piezometer tube.
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 EXPERIMENT NO. 2. To measure the pressure head of water in a pipeline by means of a 
U-tube.
 Brief theory. Piezometer tubes cannot be employed 
when pressures in the lighter liquids are to be measured, 
since this would require very long tubes, which cannot be 
handled conveniently. Furthermore gas pressures cannot 
be measured by the piezometers because a gas forms 
no free atmospheric surface. These limitations can be 
overcome by the use of U-tube manometer.

A U-tube consists of a glass tube bent in U-shape, 
one end of which is connected to a point at which 
pressure is to be measured and other end remains open to 
the atmosphere as shown in Fig. 2. It contains a liquid 
(generally mercury) heavier than the liquid of which 
the pressure is to be measured.

The pressure head of liquid (h) in a pipe is found 
from the relation :
  h + (h′+ h′′ ) S1 = h′′S2

 or h = h′′ (S2 – S1) – h′S1 
     ...(General equation)
 where, S1 = Sp. gr. of flowing liquid in the pipe, and
  S2 = Sp. gr. of heavier liquid in the U-tube.
 If water (S1 = 1) is flowing through the pipe then the above eqn. reduces to :
  h = h′′ (S2 – 1) – h′
Procedure :
 1. Connect the U-tube to the pipe carrying liquid (whose pressure is to be measured).
 2. Note down the readings of h′ and h′′.
 3. Take number of readings by varying the discharge (say four) and tabulate as shown in the 

Table 2.
Table 2. U-tube – Observations

S. No. h′ h′′ Pressure head  
h = h′′ (S2 – S1)

– h′ S1

Intensity of pressure p = wh 
(w = sp. wt. of liquid)

Remarks

1.
2.
3.
4.

     Mean pressure, p = . . . . . . .  
 Specimen calculations : (i)
  (ii)
 Conclusions :
 Precautions :
 1. U-tube should enter the pipe at right angles to the direction in which the fluid flows.

Liquid

h'

Pipe

h''

A

Fig. 2. U-tube.
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 2. The end of the U-tube which is to be connected with the pipe should flush with its (pipe) 
inner surface and should not be rough.

 3. If large pressures are to be measured, then in U-tube heavier liquids, generally mercury, should 
be used; for small pressures a liquid a little heavier than that in the pipe should be used.

 EXPERIMENT NO. 3. To measure the difference of pressure between the two points of a 
pipeline by using an inverted U-tube.
 Apparatus :
 1. A horizontal pipe with two pet-cocks (at some distance apart).
 2. An inverted U-tube with two rubber or plastic leads.
 Brief theory. An inverted U-tube is employed for the measurement of difference of pressure 
between two points/sections of a pipe line carrying liquid (say water). The connections are made as 
shown in Fig. 3. The upper part of inverted U-tube contains air. The water enters into the two limbs 
of the tube through the two sections of the pipe. The height of the water columns in the tube may be 
adjusted by letting the air through the valve at the top. As air (trapped in the upper part) exerts equal 
pressure in both the limbs the difference of pressure head is equal to the difference in the height of 
the two water columns.

Pipeline

h1

h

h2

Valve

Inverted U-tube

Rubber or plastic lead

Fig. 3. Inverted U-tube.

Procedure :
 1. Connect the two limbs of the inverted U-tube with the pet-cocks by means of two rubber/

plastic leads.
 2. Set the pet-cocks on the ‘on’ position and allow the water to rise in two limbs of the tube.
 3. Adjust the supply of water in such a way that the rise of water in the  tube is within permis-

sible limits.
 4. Carry out minor adjustments of height of water by adjusting the air valve.
 5. Note the reading on each of the two limbs.
 6. Take number of reading (say four) by varying the discharge and tabulate them as given in 

Table 3.
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Table 3. Inverted U-tube – Observations
S. No.

1p
w

 = h1
2p

w
 = h2

Difference of
pressure head
h = (h1 – h2)

Difference of 
intensity of

pressure, p = wh 

Remarks

1.
2.
3.
4.

Mean difference of pressure = . . . . . . . . 
 Specimen calculations : (i)
  (ii)
 Conclusion :
 Precautions :
 1. Make sure that the rubber/plastic leads are properly connected to pet-cocks.
 2. While taking readings, the pet-cock levers should be put to “off” position simultaneously, 

so that water columns do not fluctuate and thus remain steady.
 EXPERIMENT NO. 4. To determine metacentric height of a ship.
 Apparatus. Model of a ship.    2. Tank (containing water).  3. Weights.
 Brief theory. 1. A ship model (with known c.g.) is floated in still water. A known weight (W1) 
is moved across the deck (of the ship) through a certain distance (z) measured from O, consequently 
the ship gets tilted through a certain angle (θ) which is measured on the scale. The metacentric 
height (MG) is found (equating tilting and restoring moments) from the following relation.

10 5 0 5 10

Scale

Strip Pointer

Model
of ship Deck

0

�

S

Pendulum

W1

W

G

S
M

Water

  MG = 1
tan

W z
W

⋅
θ

  S = Screws with adjustable weights (for zero adjustment)
  W1 = Known weight (hooked-movable)
  W = Weight of the ship.

Fig. 4. Determination of metacentric height.
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Procedure

 1. Find the weight ‘W ’ of the model of ship outside water.

 2. Place the ship model in water and with movable weight (W1) at any position adjust the 
screws S to get zero reading on the scale.

 3. Move the weight W1 across the deck through a certain distance (z); it will result in tilting of 
the ship model.

 4. Note down the angle of tilt ‘θ’.

 5. Note down more readings, by either

 (i) varying the load W1 and keeping the distance ‘z’ constant or

 (ii) keeping the load W1 constant and varying the distance ‘z’.

 Tabulate the readings as shown in Table 4.
Table 4. Metacentric height – Observations

S. No. W W1 z θ (degrees)
MG = 1

tan
W z

W
⋅
θ

Remarks

1.
2.
3.
4.

    Mean value of MG = . . . . . . . . 
 Specimen calculations : (i)
  (ii)
 Conclusion :
 Precautions :
 1. Free movement of pendulum must be ensured.
 2. Readings to be noted down only when the water in the tank becomes standstill.
 3. Note down the reading of the tilt angle only when the pendulum becomes steady.

 EXPERIMENT NO. 5. To verify Bernoulli’s Theorem.
 Apparatus :
 1. A tapered inclined pipe (piezometer tubes fitted at different points/sections)
 2. A supply tank of water.
 3. A measuring tank.
 4. A stop watch.
 5. A scale.
 Brief theory. Bernoulli’s theorem states that in a steady flow of an ideal fluid the total energy 
per unit mass of fluid (at any section) remains constant along a stream line flow. Neglecting losses, 
the total energy at sections 1 and 2 will have the following relation :

  
2

1 1
12

p V z
w g

+ +  = 
2

2 2
22

p V z
w g

+ +
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 where, p
w

 = Pressure head

  
2

2
V

g
 = Velocity head, and

  z = Datum head.
Procedure :
 1. By slowly opening the inlet valve allow the water to flow from the supply tank.
 2. Adjust the flow in such a manner that a constant head of water is available in the supply 

tank (i.e. inflow = outflow)
 3. Note down the quantity of water collected (Q) in the measuring tank for a given interval of 

time using a stop watch.
 4. Compute the areas of cross-section (A1 and A2) under the piezometer tubes.
 5. Use the continuity equation to get V1 and V2 as follows :
  Q = A1V1 = A2V2

	 	 ∴ V1 = 
1

Q
A

  and, V2 = 
2

Q
A

 6. Read the pressure head p
w

 
 
 

 directly from the piezometer tubes at the concerned sections.

 7. Note down the datum head (z) at different sections (for horizontal pipe line ‘z’ will be con-
stant).

 8. Tabulate the various values as shown in Table 5.
Observations :
 Area at section 1, A1 = . . . . . . . . . . 
 Area at section 2, A2 = . . . . . . . . . . 

Table 5. Bernoulli’s theorem – Observations

S. 
No.

Datum 
head

Pressure 
head

Measuring tank readings 
(m3)

Ti
m

e 
't'

 (s
ec

.)
D

is
ch

ar
ge

, Q
 (m

3 /s
ec

.)

Velocity, 

V = Q
A

 

Velocity
head, 

2

2
V

g

Total head, = 
2

2
p V z
w g
+ +

z1 z2
1p

w
2p

w

Initial
reading

(a)

Final
reading

(b)

Quantity
(m3)

(b) – (a)

V1 

= 
1

Q
A

V2 

= 
2

Q
A

2
1

2
V

g

2
2

2
V

g
 1

2
1

1

2

p
V

g
z

+

+

2
2

2

2

2

p
V

g
z

+

+

1.
2.
3.
4.
5.
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 Conclusion : 
2

1 1
12

p V z
w g

+ +  = 
2

2 2
22

p V z
w g

+ +  

 Hence Bernoulli’s theorem is verified.
 EXPERIMENT NO.  6. To find the co-efficient ‘k’ for a given venturimeter.
 Apparatus :
 1. A venturimeter (with known diameters at mouth and throat) fitted with stop cocks at mouth 

and throat.
 2. Watermain connected to the mouth of the venturimeter through a supply valve.
 3. A U-tube manometer containing mercury.
 4. Water measuring tank.
 5. A stop watch.
 Brief theory. A venturimeter is an instrument used to measure the rate of discharge on a pipeline 
and is often fixed permanently at different sections of the pipeline to know the discharge there. The 
discharge (Q) through a venturimeter is given by the relation :

  Q = 1 2
2 2
1 2

2
A A gh

A A−
 ...(i)

  (neglecting losses between the mouth and the throat)
 where, A1 = Area at the inlet,
  A2 = Area at the outlet, and
  h = Difference of head (theoretical) between the two points.
 The eqn. (i) may be written as:

  Q = C h

 where, C = 1 2
2 2
1 2

2 constant for the venturimeter.
A A g

A A
=

−

 The eqn. (i) gives the discharge under ideal conditions and is called the theoretical discharge. 
Actual discharge (Qact.)  is less than the theoretical discharge (Qth.) because in actual practice some 
loss of head takes place due to friction and shock caused by the change of section of the pipe and 
subsequently the venturi head (actual difference of pressure head) becomes k h  and Q(act.) is given 
by

  Q(act.) = C k h×  ...(ii)

 or k = Q
C h

where, k is known as venturi constant or coefficient of discharge. Its value varies from 0.96 to 0.98.
 It may be noted that if liquid flowing in the venturimeter is water and the liquid in manometer 
is mercury (sp. gravity = 13.6), then
  h = 12.6 y
 where, h = difference of head, and
  y = manometer reading.
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Procedure
 1. Using plastic leads, connect the two limbs of the differential manometer to the mouth and 

throat of the venturimeter.
 2. Put the stop cocks in the ‘on’ position and adjust the water supply valve slowly so as to get 

a suitable reading on the manometer.
 3. Collect the quantity of water, flowing through the venturimeter, in the measuring tank and 

measure the discharge in time ‘t’ (usually ranging from 2 min. to 5 min.)
 4. Note down the corresponding reading of the difference of mercury level (y) in the two limbs 

of the manometer.
 5. Repeat the experiment for different values of discharge (Q) and tabulate the results as shown 

in Table 6.
Observations :

 Area at the inlet (mouth),  A1 = 2 2
1 ...cm

4
Dp

=  

 Area at the throat, A2 = 2 2
2 ...cm

4
Dp

=

  C = 1 2
2 2
1 2

· 2
A A g

A A−

Table 6. Venturimeter – Observations

S. 
No.

Manometer
reading ‘y’
(cm of Hg)

h = 12.6 y 
(cm of
water)

Reading-measuring tank (cm3) Time 
‘t’

(sec.)

Discharge 
Q

cm3/sec

k = Q
C h

Remarks

Initial
reading

(a)

Final
reading

(b)

Quantity
(cm3)

(b) – (a)

        Mean value of k = . . . . . . .
 Specimen calculations : (i)
  (ii)
 Conclusion :
 Precautions :
 1. Before connecting the plastic leads with the manometer these should be flooded with water 

so that air present in them is removed.

 2. All readings/measurements should be taken carefully and accurately.

 EXPERIMENT NO. 7. To calibrate the given orifice meter
 Apparatus :  (i) A long pipeline fitted with a sharp edged concentric circular orifice plate and 
having inlet and outlet valves for flow regulation.

 (ii) A U-tube differential manometer connected to pressure tops at one diameter upstream and 
half diameter downstream) of the orifice plate.
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 (iii) A discharge measuring tank.
 (iv) Stop watch.
 Theory. Orificemeter or orifice plate is a device (cheaper than a venturimeter) employed for 
measuring the discharge of fluid through a pipe. It also works on the same principle of a venturimeter.

 It consists of a flat circular plate (Fig. 5.) having a circular sharp edged hole (called orifice) 
concentric with the pipe. The diameter of the orifice may vary from 0.4 to 0.8 times the diameter 
of the pipe but its value is generally chosen as 0.5. A differential manometer is connected at section 
(1) which is at a distance of 1.5 to 2 times the pipe diameter upstream from the orifice plate, and at 
section (2) which is at a distance of about half the diameter of the orifice from the orifice plate on 
the downstream side.

 Let, A1 = Area of pipe at section (1),

  V1 = Velocity at section (1),

  p1 = Pressure at section (1), and

   A2, V2 and p2 = Corresponding values at section (2).

 Applying Bernoulli’s equation at section (1) and (2) we get:

  
2

1 1
12

p V z
w g

+ +  = 
2

2 2
22

p V z
w g

+ +

 or, 1 2
1 2

p pz z
w w

   + − +   
   

 = 
2 2

2 1

2 2
V V

g g
−

Differential
manometer

1 2 C A Ac 2 0= /

y

Upstrem

Flow in

V1

A0

A2

V2

Vena
Contracta

Flat circular plate

1 2

Flow out

Dounstream

Pipe

Fig. 5. Orifice meter.

 or, h = 
2 2

2 1

2 2
V V

g g
−

   1 2
1 2 differential head

p ph z z
w w

    = + − + =        
  

 or, 
2

2

2
V

g
 = 

2
1

2
Vh

g
+  ...(i)
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 or, V2 = 
2

21
12 2

2
Vg h gh V

g
 

+ = + 
 

 Now section (2) is at vena-contracta and A2 represents the area at vena-contracta. If A0 is the 
area of orifice then, we have

  Cc = 2

0

A
A

 (where, Cc = co-efficient of contraction)
	 ∴ A2 = A0 Cc ...(ii)
 Using continuity equation, we get:

  A1V1 = A2V2, or, V1 = 2 2

1

A V
A

 or, V1 = 0 2

1

cA C V
A

 ...(iii)

 Substituting the value of V1 in eqn. (i) we get:

  V2 = 
2 2 2
0 2

2
1

·
2 cA C V

gh
A

+

 or, V2
2 = 

2
2 20

2
1

2 · ·c
A

gh C V
A

 +  
 

 or, 
2

2 20
2

1
1 c

A
V C

A

  −  
   

 = 2gh

	 ∴ V2 = 
2 2

0 1

2

1 ( / ) c

gh

A A C−

	 ∴ The discharge Q = A2V2 = A0 . Cc . V2

  [ A2 = A0 . Cc ... as above eqn.(ii)]

   = 0 2 2
0 1

2

1 ( / )
c

c

gh
A C

A A C−
 ...(iv)

 The above expression is simplified by using,

  Cd = 
2

0 1
2 2

0 1

1 ( / )

1 ( / )
c

c

A A
C

A A C

−

−

  (where,  Cd = co-efficient of discharge)

  Cc = 
2 2

0 1
2

0 1

1 ( / )

1 ( / )
c

d
A A C

C
A A

−

−

 Substituting this value of Cc in eqn. (iv), we get:
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  Q = 
2 2

0 1
0 2 2 2

0 1 0 1

1 ( / ) 2
·

1 ( / ) 1 ( / )
c

d
c

A A C gh
A C

A A A A C

−
×

− −

   = 0 0 1
2 2 2

0 1 1 0

· · 2 · · 2

1 ( / )
d dC A gh C A A gh

A A A A
=

− −

 i.e. Q = 0 1
2 2
1 0

· · 2
d

A A gh
C

A A−

 It may be noted that Cd (co-efficient of discharge) of an orifice meter is much smaller than that 
of a venturimeter.
 Procedure :
 1. Note the pipe diameter ‘D1’, the orifice diameter ‘D0’ and dimensions of the discharge 

measurement tank.
 2. Adjust the inlet and outlet values for maximum discharge.
 3. Allow the flow to stabilize and then note the readings in both the limbs (h1 and h2) of the 

differential manometer.
 4. Determine the discharge by measuring the level rise (z) in the discharge measurement tank 

for a particular time (t).
 5. Reduce the flow rate by closing the outlet valve slightly.
 6. Repeat the steps 3 to 5 for several different discharges. Take more readings in the lower 

range of the discharge.
 Observations :
 Pipe diameter = D1 = . . . . . . .
 Orifice diameter = D0 = . . . . . . .
 Area of cross-section of pipe = A1 = . . . . . . 
 Area of cross-section of orifice = A0 = . . . . . . 
 Cross-sectional area of discharge measuring tank = At = . . . . . 
 Specific gravity of manometeric fluid = Sm = . . . . . 
 Specific gravity of fluid flowing through the pipe = S = . . . . . 

Table 7. Orifice meter – Observations

S. No. Discharge measurement Manometer readings
Rise of 

water level
in

the tank
z (cm)

t
(sec.)

Qactual

(m3/s)
h1 (cm) h2 (cm)

Diff. (y)

h = 1mSy
S

 − 
 
(cm)

Qth. (m
3/s)

Cd = 
.

actual

th

Q
Q
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 Calculations : For each setting of the discharge make the following set of calculations :

 1.  Qactual = Volume of water collected in discharge tank
Time of collection

tA Z
t

=  

 2.  Qth = 0 1
2 2
1 0

2A A gh

A A−

 3.  Cd = 
.

actual

th

Q
Q

 Conclusions :
 Precautions :
 1. Ensure that there are no air bubbles in the manometer.
 2. After each change in the valve opening wait for some time for the flow to stabilize before 

taking readings.
 3. Time interval for collection of water for discharge measurement should be large.
 EXPERIMENT NO. 8. To find the value of velocity head or to find the coefficient of a pitot 
tube.
 Apparatus :
 1. A pitot tube.
 2. A small rectangular channel (or a pipe) with water flowing through it.
 Brief theory. A pitot tube is a small open tube bent at right angle and is placed in flow such that 
one leg is vertical and the other leg is horizontal (Fig. 6). It is used to measure the velocity of flow 
at any point in a pipe or channel. It works on the principle that if the velocity of flow at any point 
becomes zero, the pressure there is increased due to conversion of the kinetic energy into pressure 
energy. The velocity of flow (V) is determined by measuring the rise of liquid (h) in the tube from 
the equation :

  h = 
2

, or, 2
2
V V gh

g
=

 In actual practice, the velocity head is multiplied by a constant k the value of which depends 
upon the quality of the tube.

Water

Free water
surface

Pitot tube

h

Fig. 6. Pitot tube.
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	 ∴ kh = 
2

2
V

g

 (The value of k is determined by actually measuring the velocity and the velocity head ‘h’)
 Procedure :
 1. Place the pitot tube in the moving water properly.
 2. Note down the reading of ‘h’.
 3. Repeat the experiment by placing the pitot tube at different depths, find the mean value of 

‘h’ and hence determine the velocity.
 4. To find the value of ‘k’, measure the actual velocity of flow (V) with the help of a “current 

meter” and use the following relation :

  
2

2
Vk

g
 = 

2

2
meanV

g

 The value of ‘k’ varies from 0.9 to 0.99.
 Precautions :
 1. Note down the readings accurately.
 2. A pitot tube should be used preferably in pipes or channels with shallow water moving at 

high velocity (as good results are obtained under these conditions).
Table 8. Pitot tube/Current meter – Observations

S. No. Velocity head reading ‘h’ Current meter reading
1.
2.
3.
4.

 Mean value, ‘h’ = . . . . . . . .     Mean value, current meter = . . . . . . . 

 Now, mean velocity head,  h = 
2

mean

2
V

g

  Vmean = . . . . . . .
 Again, mean velocity as obtained from current meter reading
  V = · · · · ·
	 ∴ Coefficient of the meter,

  k = mean
2

V
V

 Conclusion :
 EXPERIMENT NO. 9. To determine Cc (co-efficient of contraction), Cv (co-efficient of 
velocity) and Cd (co-efficient of discharge) for flow through a circular/round orifice.
 Apparatus :
 Orifice apparatus comprises the following :
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 1. Supply tank provided with;
   (a) circular orifice
   (b) water inlet pipe
   (c) scale and sliding apparatus and
   (d) meter rod.
 2. Measuring tank.
 3. Stop watch.
 4. Micrometer contraction gauge.
 5. Stand for mounting the supply tank.
 Brief theory. It has been observed that when a jet of water leaves an orifice it gets contracted, 
the maximum contraction takes place at a section slightly on the downstream side of the orifice, 
where the jet is more or less horizontal. Such a section is known as vena-contracta. The ratio of area 
of the jet at vena-contracta to the area of the orifice is known as co-efficient of contraction (Cc).

Contraction gauge

Micrometer
screws Jet

cross-section
Water

Measuring tank (L B)�

I.L (Initial level)

O
dc at

vena-contracta
P

( )x, y

y

x

Hook

y2

x1

Vertical scale

Horizontal scale
x2

y1

Supply tank

h = Constant

Water inlet
pipe

� h (F.L.–I.L.)

d

Water

F.L. (Final level)

Fig. 7. Determination of co-efficients.

 The ratio of actual velocity of the jet at vena-contracta to the theoretical velocity is known as 
co-efficient of velocity (Cv).
 For a vertical orifice Cv can be found out by measuring the horizontal and vertical co-ordinates 
of a point in the jet (Refer Fig. 7.)
 If, x = Horizontal ordinate of a point (say P) in the jet, in metres,
  y = Vertical ordinate of the same point, in metres, and
  h = Head of liquid, in metres;

x = x2 – x1
y = y2 – y1

Cc = 
2

 =  
 

c ca d
a d

Cv = 
2

4
x
yh

Cd = Cc × Cv
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 then, Cv = 
2

4
x
yh

 The ratio of actual discharge to the theoretical discharge is known as co-efficient of discharge 
(Cd).
 The actual discharge may be determined by measuring the water in the measuring tank for a 
certain period of time ‘t’.
 If, Q = quantity of water collected, in m3, and
  t = time, in seconds;

 Then,  actual discharge   = 3m /sec.Q
t

 Again, if, a = Area of the orifice,

 then , theoretical discharge  = 2a gh×

 Data : Diameter of the orifice,             d = . . . . . . 
 Area of the orifice,              a = . . . . . . . 
 Dimensions of the measuring tank :   L (length) = . . . . . . . . 
  B (breadth) = . . . . . . 
	 ∴ Cd = /

2
Q t

a gh×

 The value of Cd can also be found out by finding out Cc and Cv and using the following relation:
  Cd = Cc × Cv

 Procedure :
 1. Fill the supply tank with water and allow it flow through the orifice.
 2. Maintain a constant head of water in the supply tank by adjusting the supply of water.
 3. Measure the diameter of the jet at vena-contracta (dc) with the help of a micrometer contrac-

tion gauge.
 4. Note down the initial readings of the scales (horizontal and vertical).
 5. Slide the vertical scale on the horizontal scale through a reasonable distance and adjust its 

vertical scale so that point of the hook just touches the centre line of the jet of water.
 6. Measure the co-ordinates of the point (say P) in the jet at this position.
 7. Note down the time taken for rise of water through a certain height in the measuring tank.
 8. Repeat the experiment for different constant heads and tabulate as shown in Table 9.

Table 9. Orifice co-efficients – Observations

S.
No.

Head 
'h'

Jet
dia.
‘dc’ 

Jet
area
‘ac’

Cc = ca
a

 
x2 – x1 

= x
y2 – y1 

= y
Cv = 

2

4
x

yh

Water 
level

rise D	h 
in t sec. 

Q = 
L × B × 
D	h

Q
t

Cd =

/
2

Q t
a gh

Cc =

d

v

C
C

Re-
marks

1.

2.

3.

4.

5.
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 Specimen calculations : (i)

  (ii)

 Conclusion :

 Precautions :

 1. In each reading head must remain constant.

 2. The orifice should be completely opened.

 3. The position of vena-contracta should be found out accurately.

 4. Note down all the readings carefully.

 EXPERIMENT NO. 10. To verify time for the level in a rectangular tank to fall from 
height H1 to H2 when the flow takes place through an orifice.

 Apparatus :

 1. A rectangular tank fitted with an orifice and a metre-rod (i.e., graduated scale to observe 
the readings H1 and H2).

 2. Callipers—to measure the orifice diameter.

 3. Stop watch—to record the timings.

 4. Measuring or collecting tank.

 Brief theory. When water is discharged from the rectangular tank then the level of water in tank 
falls from height H1 to H2 in T seconds; this time ‘T’ (theoretical) is given by the relation :

  T = 1 22 ( – )
2d

A H H
a C g× ×

 where, A = Cross-sectional (uniform) area of the supply tank,
  H1 = Initial height of water in the tank from centre of the orifice,

  H2 = Final height of water in the tank from the centre of orifice after ‘T’ seconds,

  a = Area of the orifice, and

  Cd = Co-efficient of discharge of the orifice.

 Procedure :

 1. Fill the tank with water to a height H1 measured from the centre of the orifice.

 2. Allow the water to discharge and press the stop watch instantaneously.

 3. Note down the time taken to lower the level to H2.

 4. Similarly note down the time for different initial and final heads of water and tabulate as 
shown in Table 10.

 Observations :

 Cross-sectional area of the tank, A = . . . . . .

 Diameter of the orifice, d = . . . . . . 

 Area of the orifice, a = 2

4
dp . . . . . . .
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Table 10. Time of emptying a tank – Observations

S.
No.

Initial
reading H1 

Final
reading H2 

Actual time 
recorded T'

Theoretical 
time T

Error
(T' – T)

% Error
T T 100

T
′ −

×
′

Remarks

1.
2.
3.
4.
5.

 Specimen calculations : (i)
  (ii)
 Conclusion :
 Precautions :
 1. The orifice should be opened completely.
 2. The opening of the orifice and starting of the stop watch should be done simultaneously.
 3. All readings should be noted carefully.
 EXPERIMENT NO. 11. To find the co-efficient of discharge in an external mouthpiece.
 Apparatus :
 1. Supply tank (with stand) fitted with an external mouthpiece, water inlet pipe and a metre 

rod.
 2. Collecting/measuring tank.
 3. Stop watch (to record time).
 Brief theory. When water flows into the plain external mouthpiece (from the supply tank), 
the flow of water is contracted due to change in the direction of water (while entering into the 
mouthpiece) and it suddenly expands to fill the mouthpiece resulting in loss of head due to sudden 
expansion. As a result of this loss the actual velocity of water issuing from the mouthpiece becomes 
less than the theoretical velocity and hence actual discharge becomes less than the theoretical 
discharge. The co-efficient of discharge (Cd) is given by the relation :

  Cd = Actual discharge
Theoretical discharge 2

Q
a gH

=
×

 where, Q = Actual discharge collected,
  H = Head of water, and
  a = Area of the plain external mouthpiece.
 Procedure
 1. Fill the supply tank with water and allow it flow through an external mouthpiece (fitted to 

the tank).
 2. Adjust the supply of water to the tank in such a way that a constant head is maintained.
 3. Collect the water from the mouthpiece in the collecting/measuring tank.
 4. Note the rise of water level in the tank in a certain period of time.
 5. Repeat the experiment for different constant heads and the tabulate the same as shown in 

Table 11.
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Observations :
 Length of the measuring tank,  L = . . . . . 
 Breadth of the measuring tank, B = . . . . .
 Area of the external mouthpiece, a = . . . . . 

Table 11. External mouthpiece – Observations

S. No. Head H Rise of water
level in the 

measuring tank
Z

Time taken, 
t

Discharge
collected

Q = L B Z
t

× ×  

Cd = 
2

Q
a gH×

1.
2.
3.
4.
5.

     Mean value of Cd = . . . . . . 
 Specimen calculations : (i)
  (ii)
 Conclusion :
 Precautions :
 1. The external mouthpiece should be opened completely.
 2. Throughout a reading the head must not change.
 3. All readings must be taken and recorded carefully.
 EXPERIMENT NO. 12. To find the value of k and hence coefficient of discharge in the 
equation Q = kH5/2 in right-angled triangular notch.
 Apparatus :
 1. A weir tank with baffle plates (to reduce the velocity of approach) fitted with a right-angled 

triangular notch and a hook-gauge.
 2. A collecting/measuring tank.
 3. A stop watch (to record time).
 Brief theory. The discharge of water through a triangular notch under a constant static head H 
is given by the relation :

  Q = 5/28 2 tan
15 2dC g Hθ

 or, Q = kH5/2

 where, k = 8 2 tan
15 2dC g θ

   Coefficient of discharge, and
90 for a right-angled notch.

dC = 
 θ = ° 

   8 2
15 dC g  is almost constant for a given notch.
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 Procedure :
 1. Open the valve (delivery) and allow the water to fill the weir tank till it first touches the 

apex of the notch.
 2. Stop the inflow of water and adjust the pointer of the hook gauge so that it just breaks through 

the water surface. Note down the reading (initial) on the hook gauge (say H1).
 3. Open the valve and allow the water to pass over the notch for some time (say 2 or 3 minutes) 

when the head over the notch becomes constant. Note down the reading (final) on the hook 
gauge (say H2).

 4. Note down the time required to collect a known amount of water is the measuring tank.
 5. Repeat the experiment by changing the constant head H2 and take several readings and 

tabulate them as shown in the Table 12.
 Observations :
 Length of the measuring tank, L = . . . . . 
 Breadth of the measuring tank, B = . . . . .
 Angle of the notch θ = 90°
 Initial reading of hook gauge  = H1

Table 12. Right-angled triangular notch – Observations

S. No. Final hook
gauge

reading
H2

Static head
H = H2 – H1

Rise of
water level 

in the
measuring 

tank, 'Z'

Time taken,
t

Discharge
collected 

Q = L B Z
t

× ×      

k = 5/2
Q

H
Cd = k

8 2g
15

1.

2.

3.

4.

     Mean value of k = . . . . . .  .
     Mean value of Cd = . . . . . . . .
 Specimen calculations : (i)
  (ii)
 Conclusion :
 Precautions :
 1. The head should remain constant throughout a reading.
 2. Initial reading of the hook gauge should be taken when water becomes still.
 3. While taking the final reading of the hook gauge it may be ensured that water surface is free 

from eddies or waves.
 4. All the readings must be taken and recorded carefully.
 EXPERIMENT NO. 13. To find the value of ‘k’ and hence coefficient of discharge in the 
equation Q = kH3/2 for a rectangular notch.
 Apparatus :
 1. A weir tank with baffles.
 2. Hook gauge.
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 3. Rectangular notch.
 4. Collecting/measuring tank.
 5. Stop watch.
 Brief theory. The external discharge (which is always less than the theoretical discharge due to 
losses) through a rectangular notch is given by the relation :

  Q = 3/22 2
3 dC L gH

   = k H3/2

 where, k = 2 2
3 dC L g  which is almost constant for a given notch.

  (Cd = Co-efficient of discharge)
 Procedure :
 1. Open the valve (delivery) and allow the water level to coincide with the sill of the  weir.
 2. Close the valve and adjust the pointer of the hook gauge in such a way that it touches the 

water level. Note down the reading (initial) on the hook gauge (say H1).
 3. Open the valve and allow the water to pass over the notch for sometime till the head over 

the notch becomes constant. Note down the reading (final) on the hook gauge (say H2).
 4. Note down the time required to collect a known amount of water in the collection/measuring 

tank.
 5. Repeat the experiment by changing the constant head H2 and take several readings and 

tabulate them as shown in Table 13.
 Observations :
 Area of the measuring tank, A = . . . . .  .
 Width of the rectangular notch, L = . . . . . . .
 Initial reading of the hook gauge, H1 = . . . . . 

Table 13. Rectangular notch – Observations

S. No. Final hook
gauge

reading
H2

Static head 
H = H2 – H1

Rise of
water level

in the
measuring
tank, ‘Z’

Time taken,
t

Discharge
collected,

Q = 
A Z

t
×

     

k = 3/2
Q

H
Cd = 2 2

3

k

L g

1.
2.
3.
4.
5.

     Mean value of k = . . . . . .  .
     Mean value of Cd = . . . . . . . .
 Specimen calculations : (i)
  (ii)
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 Conclusion :
 Precautions :
 1. The head should remain constant throughout a reading.
 2. Initial reading of the hook gauge should be taken when water becomes still.
 3. While taking the final reading of the hook gauge it may be ensured that water surface is free 

from eddies or waves.
 4. All the readings must be taken and recorded carefully.
 EXPERIMENT NO. 14. To plot the flow profile over a broad crested weir and calibrate it.
 Apparatus :
 1. A glass walled rectangular channel of sufficient length having a broad crested weir con-

structed sufficiently upstream of the channel outlet.
 2. A pointer gauge which can be moved along the length of the channel on top rails provided 

on the side walls.
 3. A regulated water supply.
 4. A discharge measurement tank or an orifice meter in the supply line.
 Theory. A weir is a device used for measurement of flow in open channels and rivers. It is 
nothing but a partial obstruction placed across the flow in the channel causing the liquid to backup, 
upstream of the obstruction, and then flows over it. When  the liquid flows over the weir the depth 
of flow above the crest level of the weir bears a relationship with the  discharge over it. Thus the 
discharge through an open channel can be obtained by measurement of  a single parameter i.e., the 
head of liquid above the crest of the weir.
 A weir is said to be “broad crested” if its crest spans all the way across the width of the channel 
and has substantial crest length along the direction of flow. The length of the crest should be greater 
than three times the maximum head under which the weir is to operate, so as to ensure that the 
streamlines become parallel to the surface of the crest and the underside of the nappe adheres to 
the weir even throughout its length. The upstream edge of the weir is well rounded to prevent the 
separation of flow and eddy formation so as to minimise the loss of energy.
 Fig. 8 shows a broad-crested weir. Let 1 and 2 be the upstream and downstream ends of the weir 
respectively.

h
H

Z

v 0�

L > 3Hmax

Fig. 8. Broad-crested weir.

 Let, H = Head of water in the upstream side of the weir,
  h = Head of water on the downstream side of the weir,
  v = Velocity of the water on the downstream side of the weir,
  L = Length of the weir, and
  Cd = Co-efficient of discharge.



Laboratory Practicals         25

 Applying Bernoulli’s equation at 1 and 2, we get:

  0 + 0 + H = 
2

0
2
v h
g

+ +

	 ∴ 
2

2
v
g

 = H – h

 or, v = 2 ( )g H h−

	 ∴ The discharge over weir,
  Q = Cd × area of flow × velocity
   = Cd × L × h × v

   = 2 ( )dC L h g H h× × × −

   = 2 32dC L g Hh h× × −  ...(i)

 The discharge will be maximum, if (Hh2 – h3) is maximum,

 or, 2 3( )d Hh h
dh

−  = 0

 or, 2hH – 3h2 = 0
 or, 2H = 3h

	 ∴ h = 2
3

H

 Substituting the value of h in eqn. (i)

  Qmax = 2 32 (2 / 3 ) – (2 / 3 )dC L g H H H× × ×

   = 3 34 82
9 27

× × −dC L g H H

   = 342
27dC L g H× ×

   = 22
3 3d

HC L g H× × ×

   = 3/22 2
3 3 dC L g H× × ×

   = 3/20.3849 2 9·81dC L H× × × × ×

   = 1.705 × Cd × L × H3/2

 The above equation is not accurate due to the varied assumptions and approximations made 
while deriving it. Therefore it is necessary to establish experimentally a calibration equations for the 
weir, having the general form,
  Q = kH n

 where,  k and n are constants for a given weir.
 This equation can be linearlised by taking logarithm on either side so that.
  log Q = log k + n log H
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 A plot of log Q vs log H will yield a straight line whose intercept on the log Q axis will be equal 
to k and whose slope corresponds to the exponent n.
 Procedure :
 1. Measure the length (L), width (B) and height (Z) of the broad crested weir.
 2. Take the pointer readings corresponding to the bed level of the channel (Y0) and the crest 

level of the weir (H0).
 3. Open the supply valve fully and allow the water to flow in the channel. Let the flow stabilize 

and allow the water level to become constant.
 4. Starting from a section slightly upstream of the weir, move along the length of the weir in 

the downstream direction measuring the water surface (Y’x) and corresponding distance from 
the upstream section (x) at different points right upto a section some distance downstream 
of the weir. Keep the interval between successive points sufficiently small so as to obtain 
the correct water surface profile.

 5. Measure the discharge (Qactual), with the help of orifice meter or discharge measurement 
tank.

 6. Locate a section upstream of the weir (4 to 5 times the head) where the water surface level 
has no curvature, and take the water surface level reading (H’).

 7. Repeat steps 5 and 6 at least eight to ten different openings of the inlet valve, allowing the 
flow to stabilize before taking the readings.

 Observations :
 Length of the broad crested weir,  L = . . . . . 
 Width of the broad crested weir, B = . . . . 
 Height of the broad crested weir, Z = . . .  . .
 Pointer gauge reading corresponding to the bed level of the channel = Y0
 Pointer gauge reading corresponding to the crest level of the weir = H0
 A. Observations water surface profile :

Table 14. (A) Broad crested weir – Observations

S. No. Distance
x (cm) 

Water surface level
Y ′x  (cm)

Depth above the bed level
Yx = Y ′x – Y0 (cm)

Yx

 B. Observations for calibration of weir :
Table 14. (B) Broad crested weir – Observations

S. No. Actual
discharge

Qactual (m
3/s)

Water level
reading
H′ (cm)

Head above
the weir
H (cm)

Theoretical
discharge
Qth. (m

3/S)

Cd = 
.

actual

th

Q
Q
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 Calculations :
 1. For  the first opening of the valve calculate the depth of water (Yx) above the bed level at 

each section as
   Yx = Y’x – Y0

 2. For all the subsequent value openings perform the following set of calculations :
   (i) Head above the weir, H = H′ – H0

   (ii) Theoretical discharge, Qth = 1.705 BH3/2

   (iii)  Cd = 
.

actual

th

Q
Q

 Conclusion :
 Precautions :
 1. Before measuring the head and discharge allow the head to become constant.
 2. Measure the water surface level at a section sufficiently upstream of the weir so that the 

water surface is horizontal.
 3. Take the pointer gauge readings when the tip of the gauge just touches the water surface. 

To ensure this adjust the gauge such that the tip and its image just coincide on the gauge 
touching the water surface.

 EXPERIMENT NO. 15. To determine different regimes of flow by Reynolds’ experiment.
 Apparatus :
 1. Reynolds apparatus consisting of :
   (i) Water tank having a glass tube leading out of it; the glass tube has a bell mouth at 

entrance and a regulating valve at outlet:
   (ii) A dye container with an arrangement for injecting a fine element of dye at the entrance 

of the glass tube.
 2. A graduated cylinder.
 3. A stop watch.
 Theory :
 Osborne Reynolds in 1883, with the help of a simple experiment discussed below demonstrated 
the existence of the following two types of flows :

Tank containing dye

Constant head tank

Glass tube

Dye filament

Regulating valve

Fig. 9. Reynolds apparatus.

 1. Laminar flow (Reynolds number, Re < 2000)
 2. Turbulent flow (Reynolds number, Re > 4000)
  (Re between 2000 and 4000 indicates transition from laminar to turbulent flow).
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 Reynolds experiment :
 Apparatus :
 Refer Fig. 9, Reynolds experiment apparatus consisted essentially of the following :
 1. A constant head tank filled with water.
 2. A small tank containing dye (sp. weight of dye same as that of water).
 3. A horizontal glass tube provided with a bell mouthed entrance.
 4. A regulating valve.
 Procedure followed :
 The water was made to flow from the tank through the glass tube into the atmosphere. The 
velocity of flow was varied by adjusting valve. The liquid dye was introduced into the bell mouth 
through a small tube as shown in Fig. 9.
 Observations made:
 1. When the velocity of flow was low, the dye remained 

in the form of a straight and stable filament passing 
through the glass tube so steadily that it scarcely 
seemed to be in motion. This was a case of laminar 
flow as shown in Fig. 10 (a).

 2. With the increase of velocity a critical state was 
reached at which the dye filament showed irregulari-
ties and began to waver [See Fig. 10 (b)]. This shows 
that the flow is no longer a laminar one. This was a 
transitional state.

 3. With further increase in velocity of flow the 
fluctuations in the filament of dye became more 
intense and ultimately the dye diffused over the entire 
cross-section of the tube, due to the intermingling of 
the particles of the flowing fluid. This was the case 
of a turbulent flow as shown in Fig. 10 (c).

 On the basis of his experiment Reynolds discovered that :
 (i) In case of laminar flow : The loss of pressure head ∝ velocity.
 (ii) In case of turbulent flow : The loss of head is approximately ∝ V2.
  [More exactly the loss of head ∝ V n where n varies from 1.75 to 2.0]
 Procedure :
 1. Fill the water tank with water and allow it to stand for some time so that the water comes 

to rest.
 2. Note the temperature of water.
 3. Partially open the outlet valve of the glass tube and allow the flow to take place at a very 

low rate.
 4. Allow the flow to stabilize, then open the valve at the inlet of the dye injector and allow the 

dye to move through the tube. Observe the nature of the filament.
 5. Measure the discharge by collecting water in the graduated cylinder for a certain interval 

of time.
 6. Repeat the steps 3 and 5 for different discharges (at least three readings for each regime of 

flow i.e., laminar, transition and turbulent).
 7. Again note the temperature of water.

( )a

( )b

( )c

Dye filament

Wavy filament

Diffused filament

Fig. 10. Appearance of dye filament:
 (a) laminar flow,
 (b) transition flow, and
 (c) turbulent flow.
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Observations :
 Mean temperature of water, θ = . . . . . . . °C
 Kinematic viscosity of water, ν = . . . . . . . . 
 Diameter of glass tube, D = . . . . . . . .

Table 15. Flow regimes – Observations

Discharge measurement
S. No. Rise of water

level in the
graduated

cylinder, h(m)

 t 
(sec.)

Q
(m3/s) 

Velocity
V (m/s) 

Reynolds 
No. 
Re

Observed flow
regimes 

(Laminar, transition,
turbulent)

 Calculations : Perform the following calculations for each set of readings :

 (i) Discharge,  Q = Volume of water collected in discharge tank
Time of collection

Ah
t

=

  where, A = Cross-sectional area of the graduated cylinder, m2.

 (ii) Velocity,  V  = 22

4

4

Q Q
DD

=
p p×

 (iii) Reynolds number,  Re = VD
γ

	 •	 Plot V vs Re
 Conclusion :
 Precautions :
 1. Before starting the experiment allow the water in the tank to stand for some time.
 2. After each change in the valve opening allow the flow to stabilize before taking the readings.
 3. Change in velocity for each consecutive reading should be very gradual.
 4. The glass pipe should run full.
 EXPERI MENT NO. 16. To find the value of critical velocity in pipes by Reynolds 
experiments.
 Apparatus :
 1. Reynolds apparatus consisting of piping system.
 2. Measuring/collecting tank.
 3. Differential manometer.
 4. Stop watch.
 Brief theory. The loss of head (hf) in a pipe is obtained by measuring the fall in pressure (by 
using a manometer) over a known length of pipe. The velocity of flow is obtained by collecting the 
discharge in a measuring tank over a known time; by using the relation :
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  Velocity (v) = Discharge per sec. ( )
Cross-sectional area of the pipe ( )

Q
A

 The loss of head is obtained of several velocities starting from exceedingly small value. The 
result obtained is plotted with velocity v as the base and hf as the ordinate (Fig. 11). The point where 
the graph changes from straight line curve will give the critical velocity.
 Procedure:
 1. Open the supply valve and allow the water to flow 

through one pipe of which the diameter is measured/
noted.

 2. Connect the two rubber pipe leads from the manom-
eter to pad-locks on the pipe at certain distance apart 
(distance actually measured).

 3. Admit water through pipe to the rubber leads and 
adjust the supply of water by the supply valve till a 
suitable reading is available on the manometer.

 4. Read the loss of head on the manometer. Collect the 
water discharging from the pipe in the measuring 
tank and note the rise of water level in tank.

 5. Repeat the experiment at different velocities by varying the rate of flow of water in the pipe 
and tabulate the readings shown in the Table 16. Use these results to plot a curve (between 
hf and v) as shown in Fig. 11. The point where the graph changes from straight line to curve 
will give the critical velocity.

 Observations:
 Length of pipe, l = . . . . . 
 Diameter of the pipe, D = . . . . . 

 Area of the pipe, A = 2

4
Dp  = . . . . .

 Length of the measuring tank, L = . . . . 
 Width of the measuring tank, B = . . . . .

Table 16. Critical velocity in pipes – Observations

S. No. Loss of head
(manometer
reading), hf

Rise of water
level in the 
measuring 

tank, h

Time taken,
t

Discharge,

Q = L B h
t

× × Velocity = Q
A

1.
2.
3.
4.
5.

 Specimen calculations : (i) Critical velocity = . . . . . 
  (ii)
 Precautions : All readings must be taken and recorded carefully.

Velocity ( )v

Critical
velocityh f

�
v

h f
�

v
n

h
f

Fig. 11
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 EXPERIMENT NO. 17. To determine the friction factor for pipes of different sizes.

 Apparatus :

 1. Pipes of different sizes with rectangular valves at their ends, fed by the mainline through a 
common inlet valve at one end and outflow at the other end.

 2. An inverted U-tube manometer (with water as manometric liquid) which can be connected 
between the two ends of any pipe.

 3. Discharge measuring tank.

 4. Measuring flask.

 5. Stop watch.

 Theory :

 In case of flow through pipes, the head loss due to pipe friction is a major loss. Based on 
experimental observations it has been found that the loss due to friction :

 (i) depends on pipe roughness in case of turbulent flows;

 (ii) is directly proportional to the wetted area;

 (iii) varies inversely as some power of the pipe diameter;

 (iv) varies as some power of the velocity.

 Combining these factors, the equation for frictional loss (hf) is given by :

  hf = 
2

2
fLV

D g×

 where, f = Darcy-Weisbach friction factor,
  L = Length of the pipe,
  V = Velocity of flow, and
  D = Diameter of pipe.
 Procedure:
 1. Note the length of each pipe between manometer tappings, diameters of all the pipes and 

the size of the collecting tank.

 2. Check the manometer for bubbles and remove if any.

 3. Keeping the outlet valves closed, open the main inlet valve fully.

 4. Open the outlet valve of one of the pipes partially, wait for a few seconds so that the  flow 
becomes steady.

 5. Note the manometer reading in both the limbs of the manometers (h1 and h2).

 6. Make discharge measurements by measuring the level rise (z) in the discharge measurement 
tank for a particular interval of time (t) or if the rate of flow is very less, collect the water 
in the measuring flask for a particular interval of time.

 7. Repeat the process for atleast six to eights different openings of the outlet valve.

 8. Repeat steps 4 to 7 for all the pipes.



32         Laboratory Practicals

Manometer
tappings

Pipes of
different sizes

Valves

Collecting
tank

Rubber
tubing

Inverted
U-tube

manometer

Fig. 12. Apparatus for determining friction factors.

 Observations :

  Length of pipelines : L1 = . . . ; L2 = . . . ; L3 = . . .  ; L4 = . . . 

  Areas of cross-section of pipes : A1 = . . . ; A2 = . . .  ; A3 = . . . ; A4 = . . . 

  Area of cross-section of the discharge measurement tank, At = . . . 

  Temperature of water, θ = . . .  °C

  Kinematic viscosity of water, v = . . . 
Table 17. Friction factor for pipes – Observations

Manometer readings Head loss
hf (cm)

Discharge measurement

S. No. Pipe
No.

h1 (cm) h2 (cm)  Z (cm) t (sec.) Qactual 
(m3/s)

Velocity V 
(m/s)

Friction
factor, f 

1.
2.
3.
4.
5.
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 Calculations : For each pipe make the following calculations :

 1. Discharge, Q = Volume collected in the discharge measuring tank
Time of collection

tA Z
t
×

=

 2. Velocity,  V = Q
A

 , where A is the cross-sectional area of the pipe

 3. Friction factor, f = 2
2

f
D gh

LV
×

×

  If the manometric liquid used is not water, then convert the manometric difference in terms of 
head of water to get the head loss hf.

 4. Reynolds number, Re = VD
v

 5. Repeat the calculations of steps 1 to 4 for all values of discharges.
	 • Plot the following for each pipe :
 (i) hf / L  vs V on log-log graph paper.
 (ii) hf  vs D on log-log graph paper.
 (iii) hf  vs Re on log-log graph paper.
 Conclusions :
 Precautions :
 1. Ensure that no air bubble is present in the manometer.
 2. Ensure that there is no leakage from any pipe fitting.
 3. Use a sensitive manometer.
 4. Keep the time for discharge measurement sufficiently large especially for low flows.
 EXPERIMENT NO. 18. To determine the velocity distribution in a given pipeline and 
obtain the energy and momentum connection factors.
 Apparatus :
 1. A straight pipeline having a graduated scale connected at the section where velocity distri-

bution is to be obtained.
 2. A Prandtl-Pitot tube with a differential manometer connected to it inserted in the pipeline 

at the section where the velocity distribution is to be obtained.
 3. A pointer connected to Prandtl-Pitot tube such that it moves along the graduated scale on 

moving the tube.
 4. A regulated water supply.
 5. A discharge measurement unit in the pipeline (viz. venturimeter with manometer).
 Theory :
 While deriving Bernoulli’s equation it is assumed that the velocity distribution across a single 
stream tube is uniform. But if there is an appreciable variation in the velocity distribution (on 
account of viscous and boundary resistance) correction factors α and β have to be applied to obtain 
the exact amount of kinetic energy or momentum available at a given cross-section.
	 •	 Kinetic energy correction factor (α) :
 ‘Kinetic energy correction  factor’ is defined as the ratio of the kinetic energy of flow per second 
basd on actual velocity across a section to the kinetic energy of flow per second based on average 
velocity across the same section. It is denoted by α. Mathematically,
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  α = Kinetic energy per second based on  actual velocity
Kinetic energy per second based on average velocity

 Refer to Fig. 13.

  α = 
31  

 
 ∫

V dA
A V

 ...(1)

 where,  V  = Average velocity at the section LL,
  V = Local or point or actual velocity,
  dA = Elementary area, and
  A = Area of cross-section of the pipe.
	 α = 1 for uniform velocity distribution and 
tends to become greater than 1 as the distribution 
of velocity becomes less and less uniform.
	 α = 1.02 to 1.15 for turbulent flows.
	 α = 2 for laminar flow.
 It may be noted that in most of the fluid 
mechanics computations, α is taken as 1 without 
introducing much error, since the velocity is a small 
percentage of the total head.
	 • Momentum correction factor (β)
 ‘Momentum correction factor’ is defined as the ratio of momentum of the flow per second 
based on actual velocity to the momentum of the flow per second based on average velocity across 
a  section. It is denoted by β. Mathematically,

  β = Momentum per second based on actual velocity
Momentum per second based on average velocity

 Refer to Fig. 13.

  β = 
21  

 
 ∫

V dA
A V

 ...(2)

  β = 1 for uniform flow,
  β = 1.01 to 1.07 for turbulent flow in pipes, and

  β = 4
3

 = 1.33 for laminar flow in pipes.

 The value of β may be greater for open channel flow.
 In most cases, β is taken as 1.
 Since majority of the flow situations are turbulent in character, the usual practice is to assign 
unit value to α and β.

	 •  The velocity distribution across a section can be obtained with the help of a Pitot-tube, 
which is one of the most accurate devices for velocity measurement. It consists of a glass tube in 
the form of a 90° bend of short length open at both its ends. It is placed in the flow with its bent leg 
directed upstream so that a stagnation point is created immediately in front of the opening (Fig. 14). 
The kinetic energy at this point gets converted into pressure energy causing the liquid to rise in the 
vertical limb, to a height equal to the stagnation pressure.

V

L
V

L

Stream line

Elementary
area dA

Velocity
profile

Fig. 13
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Liquid in V

P

Piezometer

Pipe

Pitot
tube

Liquid
out

S

h =0 w

p0

h =s w

ps

V
2

2g

Fig. 14. Pitot tube.

 Applying Bernoulli’s equation between stagnation point (S) and a point (P) in the undistributed 
flow at the same horizontal plane, we get :

  
2

0

2
p V
w g

+  = sp
w

,   or, 
2

0 2 s
Vh h

g
+ =

 or, V  = 02 ( )sg h h− ,   or,  2g hD  ...(3)

 where, p0 = Pressure at point ‘P’ i.e., static pressure,
  V = Velocity at point ‘P’ i.e., free flow velocity,
  ps = Stagnation pressure at point ‘S’, and
  Dh = Dynamic pressure
   = Difference between stagnation pressure head (hs) and static 

pressure head (h0).
The height of liquid rise in the Pitot tube indicates the stagnation pressure head. The static pressure 
head may be measured separately with a piezometer (Fig. 14).
 Both the static pressure as well as stagnation pressure can be measured in a device known as 
Pitot-static tube (Fig. 15).
 It consists of two concentric Pitot-tubes with an annular space in between as shown in the 
figure. The outer tube has additional two or more holes drilled perpendicular to the direction of flow 
and thus the liquid level in it gives the static head, while the inner tube works as a normal Pitot-
tube. If a differential manometer is connected to the tubes of a Pitot-static tube it will measure the 
dynamic pressure head.
 If y is the manometric difference, then

  Dh = 1mS
y

S
 − 
 

 where, Sm = Specific gravity of manometric liquid, and
  S = Specific gravity of the liquid flowing through the pipe.
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Manometric
liquid

Static pressure
tube

y

Stagnation pressure
tube

Fig. 15. Pitot-static tube.

 When a Pitot-tube is placed in the fluid stream the flow along its outer surface gets accelerated 
and causes the static pressure to decrease. Also the stem, which is perpendicular to the flow direction, 
tends to produce an excess pressure head. In order to take these effects into account eqn. (3) is 
modified to give the actual velocity as;

  V = 2C g hD  ...(4)

where, C = A corrective co-efficient which takes into account the effect of stem and bent leg.
 The most commonly used form of Pitot-static tube known as the Prandtl-Pitot tube is so 
designed that the effect of stem and bent leg cancel each other i.e., C = 1.
 Procedure :
 1. Lower the Prandtl tube until it touches the lower wall of the pipe and note the pointer read-

ing on the scale (G1). Then raise it until it touches the upper wall of the pipe and note the 
reading (G2).

 2. Open the inlet valve fully, keeping the outlet valve closed and remove air bubbles, if any, 
from the manometric tube.

 3. Open the outlet valve and allow the flow to take place for some time.
 4. Measure the discharge (Q) through the pipeline.
 5. Note the manometric readings (h1 and h2) and the pointer reading (G) at different positions 

of the Prandtl tube along the pipe diameters; the interval between successive poritions of 
the Prandtl tube must be kept small i.e., 2–5 mm.

 6. Repeat steps 3 to 5 for different openings of the valve.
 Observations:
  Diameter of the Pitot-static tube, d = . . . . .
  Diameter of the pipe, D = . . . . 
  Pointer reading corresponding to the lower wall of the pipe, G1 = . . . . . .
  Pointer reading corresponding to the upper wall of the pipe, G2 = . . . .  .
  Specific gravity of manometric liquid, Sm = . . . . 
  Specific gravity of liquid flowing in the pipe, S = . . . . . 
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Table 18. Velocity distribution in a pipeline – Observations

Mamometer readings
S. No. Set. No.  Pointer reading, 

G (cm)
h1 

(cm)
h2 

(cm)
y (diff.). 

(cm)
Velocity 
u  (cm/s)

 Calculations :

 1. Calculate the pointer reading corresponding to the pipe, G0 = 1 2

2
G G+

 2. Corresponding to each pointer reading (G) calculate the distance of the stagnation point 
from the centre of the pipe, z = G – G0 (negative values being below the centre point).

 3. Calculate velocity (V) using eqn. (3) for all readings and plot the graph of z  vs V.
 4. Divide the whole cross-sectional area of the pipe into a number of parts as shown in  

Fig. 16.

 5. Calculate the area of each part dA = p(r2
2 – r1

2).

 6. Determine the mean velocity (V ) for each elemental area dA i.e.,corresponding to  

z = 
( )1 2

2
r r+

 from the graph and then calculate VdA, V2dA, V3dA.

 7. Calculate ΣV3dA and ΣV2dA and hence α and β using eqns. (1) and (2).

 8. Calculate the average velocity of flow for the pipe section, V  = Q
A

 Precautions :
 1. Before taking the reading, check that there is no air 

bubble in the Pitot-tube or manometer.
 2. The Pitot-tube should be placed at a sufficient distance 

from the regulating valve to avoid turbulence.
 3. Check that the holes of the Pitot-tube are not blocked.
 EXPERIMENT NO. 19. To obtain the velocity 
distribution in an open channel with the help of current 
meter.
 Apparatus :
 1. A glass walled flume of rectangular section having 

honeycombed walls at entrance.
 2. A regulated water supply.
 3. A miniature current meter.
 4. A stop watch and a scale.

dA

r1

r2

Fig. 16
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Theory :
 In open channels (as in the case of pipe flow) velocity does not remain constant throughout the 
section. Here in addition to the retardation of velocity at the boundaries there is retardation at the 
free surface also. This is due to the effects of surface tension and air resistance. In the vertical plane 
the velocity is minimum at the bottom and increases as we move towards the free surface, attaining 
a maximum value at a certain distance below the free surface (at 0.05 to 0.25 times the flow depth) 
after which it decreases upto the free surface (Fig. 17).

y

v

( ) In vertical planea ( ) In horizontal planeb

Fig. 17.  Velocity distribution in a rectangular channel.

 

Electric cable

Tail piece

flow

Conical cups

Balancing weight

Fig. 18. Cup type current meter.
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 A current meter is an instrument used to measure the velocity of flow at a required point in the 
flowing stream. In general it consists of a wheel or revolving element containing blades or cups, and 
a tail on which flat vanes or fins are fixed. The current meters according to the shape of the revolving 
element, may be classified as follows :
 (i)  Cup type   (ii)  Screw type or propeller type.
 In a Cup type current meter (Fig. 18) the wheel or revolving element has the form of a series 
of conical cups, mounted on a spindle. The spindle is held vertical at right angle to the direction of 
flow.
 In a screw or propeller current meter (Fig. 19) the revolving element consists of a shaft, with its 
axis parallel to the direction of flow, which carries a number of curved vanes (or propeller blades) 
mounted on the periphery of the shaft. This type of meter is more sensitive than cup because it gives 
higher r.p.m. for the same velocity of flow.
 In order to measure the velocity of flow, meter is 
submerged under water and motion of water in the stream 
activates it, driving the wheel (or rotatory elements) at a speed 
proportional to the velocity of flow. An electric current is 
passed from the battery to the wheel by means of wire. The 
rotation of wheel makes and breaks the electric circuit, which 
causes an electric bell to ring. Thus by  counting the ringing 
of bell, the rotations of the wheel and hence the velocity of 
flowing water is obtained.
 Procedure :
 1. Open the supply valve fully and allow the maximum discharge to take place. Let the flow 

stabilize for some time.
 2. Divide the channel along its width into three (or more) sections.
 3. Lower the current meter along the centre line of any one section right-up to the bottom of 

the channel with its rotating element facing the upstream. Switch on the revolution counter 
and note the number of the revolutions (N) for a certain time (t).

 4. Take a number of readings by placing the current meter at different suitably spaced level 
along the centre line of the section.

 5. Repeat steps 3 and 4 for all the sections.
 Observations :

Table 19. Velocity distribution in an open channel – Observations

S. No.
 

Section-I Section-II Section-III
Rev.,

N
Time, t
(secs.)

Vel. 
(m/s)

Rev.,
N

Time, 
t (secs.)

Vel.
(m/s) 

Rev.
(N)

Time, 
t (secs.)

Vel.
(m/s)

	 • Plot the velocity vs depth graph of flow for all three sections.

Fig. 19. Screw or propeller type 
current meter.
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 Result/Conclusion :
 Precautions :
 1. While immersing the current meter in water the rotating element (i.e., propeller/cups) should 

face upstream.
 2. Readings should be 

taken after the flow be-
comes steady.

 3. Readings should be 
taken at suitably spaced 
points along the vertical 
direction so that the cor-
rect velocity profile may 
be obtained.

 4. Check that there are no 
loose electrical connec-
tions.

 EXPERIMENT NO. 20. 
To verify Impulse-momentum 
principle for impact of jet on  a 
stationary vane.
 Apparatus : Refer to Fig. 20.
 The apparatus consists of a 
pipe with nozzle at one end and 
a regulating valve at the other 
end, a vane with an arrangement 
for measuring the force of jet 
coming on it (either a lever arm with a hanger for weight at one end or a platform for directly putting 
weight on it). The vane and nozzle are enclosed in a transparent container such that the jet strikes the 
vane centrally. The container has an outlet leading to a discharge measurement tank.
 Theory :
 The impulse-momentum equation is one of the basic tools (other being Continuity and 
Bernoulli’s equations) for the solution of flow problems. Its application leads to the solution of 
problems in fluid mechanics which cannot be solved by energy principles alone. Sometimes it is 
used in conjunction with the energy equation to obtain complete solution of engineering problems.
 The momentum equation is based on the law of conservation of momentum or momentum 
principle which states as follows :
 “The net force acting on a mass of fluid is equal to the change in momentum of flow per unit 
time in that direction.”

As per Newton’s second law of motion,
  F = ma
 where, m = Mass of fluid,
  F = Force acting on the fluid, and
  a = Acceleration (acting in the same direction as F)

 But acceleration,  a = dv
dt

Lever
balancing

weight

Lever

Weight

Jet

Curved
vane

Regulated
water supply

Collecting
tank

            Fig. 20.    Schematic arrangement of apparatus for
             verification of impulse-momentum principle.
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	 ∴ F = ( )· dv d mvm
dt dt

=

 (‘m’ is taken inside the differential, being constant)
 This equation is known as momentum 
principle. It can also be written as :
  F . dt = d (mv)
 This equation is known as Impulse-
momentum equation. It may be stated as 
follows:
 “The impulse of a force F acting on a fluid 
mass ‘m’ in a short interval of time dt is equal to 
the change of momentum d (mv) in the direction 
of force.”
 The impulse-momentum equation are often 
called simply momentum equations.
 Consider a fluid jet striking a stationary 
curved plate (smooth) at the centre as shown in 
Fig. 20. The jet after striking the plate comes out 
with the same velocity, in the tangential direction 
of the curved plate.
 Component of velocity V in the direction of 
jet = – V cos θ
 (– ve sign indicates that the velocity at the 
outlet is in a direction opposite to that of the fluid 
jet).
 Applying impulse-momentum equation, we 
have :
 Force exerted by the jet (in the direction of 
jet),
  Fy = ρaV (V1y – V2y)
 where, ρ = Mass density of the fluid,

  a = Cross-sectional area of the jet = 2

4
dp  (d = diameter of the jet),

  V = Velocity of the jet,
  V1y = Initial velocity in the direction of jet = V
  V2y = Final velocity in the direction of jet = – V cos θ
  Fy = ρaV [V – (– V cos θ)] = ρaV (V + V cos θ)
 or Fy = Fth. = ρaV2 (1 + cos θ)
 Procedure :
 1. Note the jet diameter (d), vane angle (θ), constants of force measuring device and  dimen-

sions of the discharge measurement tank.
 2. Open the regulating valve and allow a low flow jet to impinge on the vane displacing it from 

its position.

Nozzle

Pipe

d

V

V

Fluid
jet

� �

Tangent to the curved
plate at outlet tip

Stationary
curved plate

V

Vsin �

V
co

s
�

�

Fig. 21
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 3. Apply external weights to bring back the vane to equilibrium position and note the total 
weight.

 4. Measure the discharge by measuring the water level rise (h) in the discharge measurement 
tank for a particular time (t).

 5. Repeat steps 2 to 4 for different flow rates.
 Observations :
 Jet diameter, d = . . . .
 Vane angle, θ = . . . .
 Area of discharge measuring tank, Α = . . . . 
 Constants of force measuring device, (i)
     (ii)

Table 20. Impulse-momentum Principle – Observations

Discharge measurements Weights applied,
(kgf )

Actual force,
Factual (kgf )

Theoretical force,
Fth. (kgf ) 

% Error
S. No. h (cm) t (sec.) Q (m3/s)

 Calculations : Perform the following calculations for each set of reading :

 1. Discharge,  Q = Volume of water collected in discharge tank
Time of collection

A h
t
×

=  

 2. Velocity of flow through the jet, V = 
2

4

Q

dp
×

 3. Fth.= ρAV2 (1 + cos θ)
 4. Calculate the actual force Factual using the weights applied.

 5. Calculate the % error = .

.
100th actual

th

F F
F
−

×

 Result/Conclusion :
	 • Plot the graph of Fth. vs Factual.
 Precautions :
 1. The discharge should be changed gradually so as not to imbalance the vane suddenly.
 2. Before taking the readings ensure that the vane is perfectly and freely balanced.
 EXPERIMENT NO. 21. To verify experimentally the theoretical relationship between the 
conjugate depths of a hydraulic jump and to determine the various elements.
 Apparatus :
 1. A glass walled rectangular channel of sufficient length equipped with head and tail gates.
 2. A pointer gauge which can be moved along the length of the channel on top rails provided 

on the side walls.
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 3. A regulated water supply with a discharge measurement unit (i.e., orifice meter or venturim-
eter) in the supply line.

 Theory :
 In an open channel when rapidly flowing stream abruptly changes to slowly flowing stream, 
a distinct rise or jump in the elevation of liquid surface takes place, this phenomenon is known as 
‘hydraulic jump’ (which is analogous to shock wave in compressible fluids). The hydraulic jump 
converts kinetic energy of stream rapidly flowing into potential energy. Due to this there is a loss 
of kinetic energy. At the place where hydraulic jump occurs rollers of turbulent water (eddying 
turbulences) form, which cause dissipation of energy. A hydraulic jump occurs in practice at the toe 
of spillways or below a sluice gate where the velocity is very high.
 The hydraulic jump is also known as a ‘standing wave’ because it is, in essence, a wave which 
is stationary (i.e., at stand-still) at one place. Such a standing wave is shown in Fig. 22.
 The hydraulic jump can be analysed by the continuity and momentum equations between 
the pre-jump and post-jump sections. On analysing the hydraulic jump in a rectangular channel 
with horizontal bed (Fig. 22) a relationship between pre-jump (or initial) depth y1 and the post (or 
sequent) depth y2 is obtained as follows :

V1 P1

Supercritical
flow

Transition

Lj

Subcritical
flow

H y yj = ( – )2 1

1 2

1

2

y2
V2

P2

yc

45º
E

y

Static
energy
head

Specific
energy
curve

Energy lost
in jump

y1

H

L
j = height of jump

j = length of jump

Fig. 22. Hydraulic jump.

  1

2

y
y

 = 2
1

1 1 8 ( ) 1
2 rF + −   ...(1)

 where, Fr1 = 1

1

V
gy

 = Froude’s number corresponding to the pre-jump depth.

 The other elements of the jump are :
 Height of jump, Hj = y2 – y1 ...(2)
 Length of jump, Lj  5Hj ...(3)

 Loss of energy head occurring in the jump,  EL = 
3

2 1

1 2

( )
4

y y
y y
−

 ...(4)

 Procedure :
 1. Take pointer gauge reading corresponding to the bed level of the channel (y0).
 2. Open the supply valves fully and allow the water to flow in the channel. Allow the flow to 

stabilize, and measure the discharge Qactual with the help of orifice meter.



44         Laboratory Practicals

 3. Adjust the depth of flow with the help of head gate such that it is less than the critical depth 
i.e., Fr1 > 1.

 4. Adjust the height of the tail gate to set up a  hydraulic jump approximately midway along 
the channel.

 5. Let the jump stabilize and take the pointer readings corresponding to the water surface just 
upstream (y1′) and downstream (y2′) of the jump.

 6. Measure the length of the jump Lj.
 7. Repeat steps 3 to 6 for different values of Fr1 always keeping it greater than one by adjusting 

the opening of the head gate.
Observations :
 Width of the channel, B = . . . . 
 Pointer gauge reading corresponding to bed level, y0 = . . . . 

Table 21. Hydraulic jump – Observations

S.
 N

o.

D
is

ch
ar

ge
Q

 (m
3 /s

)

Pointer gauge readings
In

iti
al

 d
ep

th
y 1 

(c
m

)

Se
qu

en
t d

ep
th

y 2 (
cm

)

H
ei

gh
t o

f j
um

p
H

j =
 (y

2 –
 y

1)

Le
ng

th
 o

f j
um

p
L j (

cm
)

(y
2/y

1)
ac

tu
al

(y
2/y

1)
th

.y1′

(cm)

y2′

(cm)

 Calculations : Calculate the following for each set of readings :
 1. Initial depth, y1 = y1′ – y0, and
  Final depth, y2 = y2′ – y0

 2. 2

1 actual

y
y

 
 
 

 using y1 and y2 calculated above.

 3. Fr1 = 
3
1( )

Q

B g y

 4. Calculate 2

1 .th

y
y

 
 
 

 using eqn. (1) and compare with the actual value obtained in step 2.

 5. Hj = y2 – y1

 6. EL = 
3

2 1

1 2

( )
4

y y
y y
−

	 • Plot the following curves :
 (i) y2 /y1 vs Fr1

 (ii) L /y2 vs Fr1

 (iii) EL vs Fr1
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 Conclusions :
 Precautions :
 1. Pointer gauge readings must be taken only after the jump stabilizes.
 2. Pointer gauge readings upstream and downstream of the jump should be taken at the sections 

where the water surface is tranquil.
 EXPERIMENT NO. 22. To visualize and plot the pattern of flow around an object in a 
fluid stream using Hele-Shaw apparatus.
 Apparatus :
 1. Hele-Shaw apparatus.
 2. The object around which the flow pattern is to be determined.
 3. Dye, tracing paper and water supply.
 The Hele-Shaw apparatus consists of two closely spaced parallel, transparent, flat plates. The 
narrow gap is of the order of 1.5 mm. They are connected to small transparent reservoirs at two 
opposite ends (Fig. 23), one being the inlet reservoir and the other outlet reservoir. At the other two 
sides the gap is sealed at the edges by means of clamps to prevent outflow. The level of liquid in 
both the inlet and outlet reservoirs is maintained as steady during the experiment. An arrangement 
for injection of dye is provided at various equally spaced points on the inlet side. The object around 
which the flow pattern is to be determined is placed centrally in the gap between the plates. When 
the dye is injected in the flow between the plates, the dye filaments form streamlines depicting the 
flow pattern around the object.

Dye container

Fluid
inlet

Outlet
reservoir

Dye
filaments

Outlet
reservoir

Narrow
gap (1.5mm)

Traseparent
plate

Inlet
reservoir

Object

Dye
tube

Fig. 23. Hele-Shaw apparatus.
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 Theory :
 In order to understand flows of complex nature it is often necessary to have a mental picture of 
the qualitative pattern of the flow (especially for the cases which are too complex to handle through 
conformal transformation); this can be obtained by means of flow visualisation techniques. One such 
technique, developed by Hele-Shaw, stimulates the streamline patterns of two-dimensional flow 
based on the principle of viscous flow between parallel plates. It is well known that any potential 
flow pattern depends solely upon the geometrical form of the boundaries regardless of the acting 
forces. The apparatus developed by Hele-Shaw takes advantage of this fact to trace streamlines in two  
dimensional flows.
 Procedure :
 1. Insert the object between the plates centrally.
 2. Put water in the inlet reservoir and let it flow through the gap between the parallel plates 

until the inlet and outlet reservoirs attain steady levels.
 3. Introduce dye into the flow and wait until a well defined pattern of streamlines is observed.
 4. Fix a tracing  paper over the glass  plate, between the inlet and outlet reservoir and trace the 

pattern of the streamlines and the geometry of the given object.
 Result/Conclusion :
 Precautions :
 1. Ensure that the levels of the liquid in the inlet and outlet reservoirs remain steady while 

plotting the flow of pattern.
 2. Keep the rate of flow between the plates, very low.

B.  HYDRAULIC MACHINES

 EXPERIMENT NO. 23. To study the operation and performance of a Pelton wheel.
 A. Operation of a Pelton Wheel

 Object : To operate a Pelton-wheel turbine and understand its construction and working.

 Apparatus : Pelton wheel/turbine connected to a high head water tank. A centrifugal pump to 
supply water to the tank.

 Theory : A Pelton wheel is a special type of axial flow impulse type turbine. It is employed 
where very high head of water is available. It converts pressure energy of water into kinetic energy 
which further rotates the wheel/runner of turbine.

 The wheel/runner essentially consists of a disc made of cast-iron or steel fitted to the shaft. 
On the periphery of the wheel are attached the blades or buckets. The buckets are made of cast-
iron or hard bronze and are in the form of a double hemispherical cup. The water to the wheel is 
delivered by one or more nozzles. The water after passing through the nozzle strikes the bucket at 
its centre in tangential direction and flows axially in both directions over the two cups. Usually the 
total deflections of jet is 160°. Due to impulse of water the wheel rotates. The turbine rotates most 
efficiently when runner rotates at half the velocity of jet.

 The governing of medium and large powered Pelton wheel is usually carried out by an oil 
pressure governor. The shaft type governor is restricted to turbines of relatively low output.
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 Operating procedure : Refer to Fig. 24.

Tail race

Nozzle

Needle
or spear

Deflector

Runner

Blades

Casing

Fig. 24. Pelton wheel.

 The procedure of operating a Pelton wheel includes the following steps :

 1. To run the turbine;  2. To slow down the turbine;  3. To stop the turbine.

 1. To run the turbine. (i) In  case high head water tank receives water from a centrifugal 
pump, then ensure first that tank is adequately filled before running the turbine.

  (ii) Open the supply valve of the tank slowly.

  (iii) Open the nozzle slowly by operating the spear valve and further adjust the spear valve 
till required speed of the runner is obtained.

 2. To slow down the turbine. (i) For reducing the speed of runner (i.e. slowing down) sud-
denly, deflector is used to divert the jet by the required amount.

  (ii) Close the spear valve slowly to the required extent.

  (iii) Remove the deflector away from jet.

 3. To stop the turbine. (i) In order to stop the turbine, divert the jet completely with the help 
of a jet deflector and employ a braking device, if any, to bring the runner to stand still.

  (ii) Close the supply valve of the tank slowly.

  (iii) Close spear valve of the nozzle.

 Precautions :

  (i) Locate the runner/wheel in such a way that when it revolves the buckets do not splash 
into the tail race.

  (ii) Do not close the main jet instantaneously as it can burst the pipe line due to ‘water  
hammer’ effect.
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 Fig. 25 shows a typical layout of a Pelton wheel/turbine.
 B. Performance of a Pelton Wheel
 Object. To draw operating characteristics of Pelton wheel.
 Apparatus.  Pelton wheel, Scale, weights, tachometer etc.
 Brief theory. A constant speed is maintained by varying the discharge (by changing spear 
position) as the load changes. From the measured discharge (Q), head (almost constant), power 
developed (P) and overall efficiency (η0) are calculated and curves are plotted between efficiency 
(η0) power (P) and the discharge (Q).
 The operating characteristic  curves are also known as constant speed characteristic curves. 
Fig. 26 shows the variation of efficiency and power with respect to discharge.

Discharge (Q)

Discharge for overcoming friction

(Speed and head
kept constant)

�0
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(P

)

Fig. 26. Operating characteristic curves.

 Formulae:
 1. Discharge, Q = 1.84 Lh3/2 (app.)
  where, L = Length of the weir, and
   h = Head over the weir.
 2. Shaft power developed (S.P.)
   P = (W – S) × D/2 × 2 p	N
    = (W – S) p DN watts

    = ( – ) kW
60 1000

W S DNp
×

  where, W = Load applied on the brake drum (N),
   S = Spring balance reading (N),
   D = Mean diameter of the brake drum (m), and
   N = Speed in r.p.m.

 3. Water power (W.P.)   = kW
1000
wQH

          where, w = Specific weight of water (= 9810 N/m3),
   Q = Discharge in m3/s (as calculated at 1), and
   H = Head (of water) acting on Pelton wheel, m.
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 4. Overall efficiency, η0 = . .
. .

S P
W P

 Procedure :
 1. Change the load on the hanger (W) and note the reading of the spring balance (S).
 2. Adjust the delivery valve of centrifugal pump to keep head (H) same and adjust spear posi-

tion to keep the speed (r.p.m.) same.
 3. With constant speed and almost constant head note sill level reading (hook gauge reading).
 4. By using the above mentioned procedure change the loads from no load to full load and 

tabulate the readings as given in Table 22.
 5. Plot the operating characteristics with the data detained.
Observations :
 Mean diameter of the brake drum, D (= Dd + dr) = . . . . m
 [Dd = diameter of the drum, dr = dia. of rope]
 Sill level (initial hook gauge reading), h1 = . . . . m
 Length of the weir, L = . . . . m
 Speed, (r.p.m.), N = . . . . 

Table 22. Performance of a Pelton wheel – Observations

S.
No

W S H Final
hook
gauge

reading
(h2 )

h
(= h2 – h1)

(m)

Q =
1·84 Lh3/2

(m3/s)

S.P. = 
( ) kW

60 1000
W S DN− p

×

W.P. =

kW
1000
wQH η0 = . .

. .
S P
W P

Remarks

1.
2.
3.
4.
5.
6.

 Note :  The constency of units shall be maintained carefully.

 Specimen calculations : (i)
  (ii)
 Conclusions :
 Precautions :
 1. Head over the Pelton wheel should be kept constant
 2. All the readings must be taken and recorded accurately.
 EXPERIMENT NO. 24. To study the performance of a Francis turbine.
 Apparatus :
 1. A Francis turbine with an arrangement for adjusting the guide vane positions (hand wheel 

with suitable link mechanisms).
 2. Supply pump unit.
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 3. Flow measurement unit (viz. venturimeter with manometer.)
 4. Tachometer.
 5. Pressure gauges at the inlet and outlet of turbine.
 6. Rope brake dynamometer with spring balance connected to the turbine shaft.
 Theory :
 Fig. 27 shows a schematic diagram of a Francis turbine.

0.5 to 1 D

Draft tube
Tail race

Runner

Shaft
Guide blades

Spiral casing

D2.5 to
3 D

Guide wheel

From penstock

Guide
blades/vanes

Runner blade

Fig. 27. Schematic diagram of a Francis turbine.

 The main parts of a Francis turbine are:
 1. Penstock ... It is a large size conduit which conveys water from the up-

stream of the dam/reservoir to the turbine runner.
 2. Spiral/scroll casing  ... It constitutes a closed passage whose cross-sectional area 

gradually decreases along the flow direction, area is maxi-
mum at inlet and nearly zero at exit.

 3. Guide vanes/wicket gates ... These vanes direct the water onto the runner at an angle 
appropriate to the design. The motion to them is given by 
means of a hand wheel or automatically by a governor.

 4. Governing mechanism ... It changes the position of the guide blades/vanes to affect a 
variation in water flow rate, when the load conditions on the 
turbine change.

 5. Runner and runner blades ... The driving force on the runner is both due to impulse reac-
    tions effects;
    The number of runner blades usually varies between 16 to 

24.
 6. Draft tube ... It is a gradually expanding tube which discharges water, 

passing through the runner, to the tail race.
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 The modern Francis turbine is an inward mixed flow reaction turbine (in the earlier stages of 
development, Francis turbine had a purely radial flow runner) i.e., water under pressure, enters the 
runner from the guide vanes towards the centre in radial direction and discharges out of the runner 
axially. The Francis turbine operates under medium heads and also requires medium quantity of 
water. It is employed in the medium head power plants. This type of turbine covers a wide range 
of heads. Water is brought down to the turbine through a penstock and directed to a number of 
stationary orifices fixed all around the circumference of the runner. These stationary orifices are 
commonly called as guide vanes or wicket gates.

 The head acting on the turbine is partly transformed into kinetic energy and the rest remains 
as pressure head. There is a difference of pressure between the guide vanes and the runner which is 
called the reaction pressure and is responsible for the motion of the runner. That is why a Francis 
turbine is also known as reaction turbine.

 In Francis turbine  the pressure at inlet is more than that at the outlet. This means that the water 
in the turbine must flow in a closed conduit. Unlike the Pelton type, where the water strikes only 
a few of the runner buckets at a time, in the Francis turbine the runner is always full of water. The 
moment of runner is affected by the change of both the potential and kinetic energies of water. After 
doing the work the water is discharged to the tail race through a closed tube of gradually enlarging 
section. This is known as draft tube. It does not allow water to fall freely to tail race level as in the 
Pelton turbine. The free end of the draft tube is submerged deep in tail water making, thus, the entire 
water passage, right from the head race upto the tail race, totally enclosed.

 Fig. 28 shows the typical layout of a Francis turbine.

 Procedure :

 1. Note the inlet and outlet pipe diameters and measure the brake drum diameter and z1 and 
z2 i.e., the distances of inlet and outlet pressure gauge tappings from the centreline of the 
turbine.

 2. Start the supply pump, keeping the guide vanes completely closed.

 3. Open the guide vanes partially (e.g. 1 1or
4 2

th  of total opening), simultaneously adjusting 

the load on the brake drum so that the speed of turbine  is within limits.
 4. Measure the discharge (Q).
 5. Note the readings of the pressure gauges (p1, p2).
 6. Note the readings of W (load on the hanger) and S (spring balance) and the shaft speed N.
 7. Vary the speed of the turbine by varying the load (i.e., W and S) on the brake drum and take 

six to seven readings in the allowable range of speed.
 8. Change the guide vane opening and repeat steps 4 to 7.
Observations :
  Brake drum diameter (mean), D = . . . . 
  Distance of inlet pressure gauge from turbine axis, z1 = . . . .
  Distance of outlet pressure gauge from turbine axis, z2 = . . . 

  Diameter of inlet pipe, d1 = . . . .

  Diameter of outlet pipe, d2 = . . . .
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Table 23. Performance of a Francis turbine – Observations.

S.
No.

G.V.
opening

Discharge
Q (m3/s)

Pressure gauge
readings

Speed Rope tension Input Output
η

p1

(kg/cm2)
p2

(kg/cm2)
N

(r.p.m.)
W

(kgf)
S

(kgf)
Pi

(H.P.)
Po

(H.P.)
 
%

 Note :  The consistency of units shall be maintained carefully.

 Calculations :
 For each opening of the guide vane perform the following calculations :

 1. V1 = 2
1( / 4)

Q
dp

, and  V2 = 2
2( / 4)

Q
dp

 

 2. H = 
2 2

1 2 1 2
1 2( )

2
p p V V z z
w w g

 − − + + −  
   

 3. Input power, Pi = 
75

wQH

 4. Output power (B.H.P.), P0 = ( )
4500

W S DN− p  

 5. η = 0 100
i

P
P

×

	 • Plot the curves of :
  (i) η vs N ;
  (ii) B.H.P. vs N.
 Result/Conclusion :
 Precautions :
 1. Keep the guide vanes completely closed until the supply pump develops the rated head.
 2. The turbine should be loaded gradually.
 3. Always keep the speed of the turbine within limits.
 4. Before switching off the supply pump remove the load on the dynamometer.
 EXPERIMENT NO. 25. To study the performance characteristics of a single stage 
centrifugal pump.
 Apparatus :
 1. A centrifugal pump (or a working model of centrifugal pump) with all the necessary com-

ponents (e.g., suction pipe, delivery pipe, foot valve, strainer etc.) 
 2. An electronic motor coupled to the pump shaft; wattmeter.
 3. Pressure gauges connected to the delivery and suction pipes as near to pump as possible.
 4. Discharge measuring unit (viz. venturimeter with manometer).








MKS system (may be calculated using 
S.I. Units, keeping the consistency of 
the units).
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 Brief theory :
	 • The centrifugal pump is a rotodynamic machine, which increases the pressure energy of a 

liquid with the help of centrifugal action. In this type of pump the liquid is imparted a whirl-
ing motion due to the rotation of the impeller which creates a centrifugal head or dynamic 
pressure. This pressure head enables the lifting of liquid from a lower level to a higher level.

 The main parts of a centrifugal pump are : Refer to Fig. 29.
 1. Impeller. It is a rotating element which is provided with a number of vanes.
 2. Casing or chamber. It surrounds the impeller and forms a passage for flow of water. 
 3. Suction pipe. It connects the inlet of the pump to the sump from which the water is to be 

pumped.
 4. Strainer. It is provided at the lower end of the suction pipe which prevents the solid bodies and 

debris from entering the pump which if not prevented will result in damaging the impeller.
 5. Foot valve. It is a one way valve provided above the strainer. It keeps the suction pipe filled 

with water when the pump is stopped. Such an arrangement helps the pump in starting which 
otherwise will not be possible without priming (i.e., filling the pipe and pump with liquid.)

 6. Delivery pipe. It leads water from the outlet of the pump to the desired point.
 7. Delivery valve. It is provided on the delivery pipe just near the outlet of the pump. Its  

purpose is to control the flow into the delivery pipe.
 8. Prime mover. It drives the shaft of an impeller. It may be an I.C. engine or electric motor.
 Operation of a centrifugal pump :
 The operation of a centrifugal pump involves the following steps :
 (i) Prime the pump. Priming means filling the suction pipe, casing of the pump and a portion 

of the delivery pipe upto the delivery valve with the liquid to be pumped so that the air is 
completely driven out of these elements.

 (ii) After priming, keeping the delivery valve still closed, start an electric motor or an engine 
to rotate the impeller. The rotation of the impeller inside the casing, which is full of liquid, 
will produce a vortex which is a responsible for imparting a centrifugal head to the water. 
It will also cause a reduction of pressure at the centre of the impeller and thus liquid will 
rush through the suction pipe.

 (iii) When the impeller attains a normal speed, the delivery valve is opened to give a continuous 
supply of water through the delivery pipe.

	 l Troubles and their causes :
 The common troubles and their causes experienced in a centrifugal pump are given as under :
 1. Trouble. Insufficient capacity or pressure and failure to deliver water/liquid.
 Causes. (i)  Improper priming of the pump.
  (ii) Too low a speed.
  (iii) Too high a discharge head.
  (iv) Too high a suction lift.
  (v) Wrong direction of rotation.
  (vi) Air leakage in the inlet pipe.
  (vii) Foot valve clogged with foreign matter.
  (viii) Mechanical defects.
  (ix) Foot valve too small.
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  (x) Foot valve not immersed deep enough.
 2. Trouble. Pump loses water/liquid after starting.
 Causes. (i) Leaky suction.
  (ii) Lift too high.
  (iii) Excess amount of air or gases in water/liquid.
 3. Trouble. Pump takes too much power.
 Causes. (i) Speed too high.
  (ii) Pumping too much water/liquid.
  (iii) Liquids pumped of different specific gravities and viscosities than those for which the 

pump is designed.
  (iv) Mechanical defects.
 4. Trouble. Pump vibrates and produces noise.
 Causes. (i) Misalignment.
  (ii) Cavitation.
  (iii) Mechanical defects (e.g., bent shaft; worn out bearings etc.).

Overhead tank

Discharge level

Vd

Delivery pipe

Delivery valve

Delivery flange

Pressure gauge

Impeller

S = shaft driven by
electric motor or oil engine

Centre line of
the pump

Casing
Eye of the impeller

S

Vacuum gauge

Suction flange

Suction
pipe

Vs

Foot valve

Strainer

sump

hs

hd

Fig. 29. Volute type centrifugal pump–component parts.
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	 • The output power delivered by the pump is given by :

  Po = 
75

mwQH

 where, Po = Output power in H.P.
  w = Specific weight of liquid, being pumped, kgf/m

3,
  Q = Discharge of the pump, m3/s,
  Hm = Manometric head of the pump

   = 
2 2

,
2 2

d d s s
d s

p V p V
z z

w g w g
   

+ + − + +   
   

 ...(1)

 where, pd = Pressure on the delivery side,
  ps = Pressure on the suction side,
  Vd = Velocity of flow on the delivery side,
  Vs = Velocity of flow on the suction side,
  zd = Distance of the pressure gauge tapping on the delivery side from the pump 

axis, and
  zs = Distance of the pressure gauge tapping on the suction side from the pump 

axis.
 If the net power input to the pump (i.e., after taking into account all the losses) from the prime 
mover is Pi then, the overall efficiency is given by :

  % η = 100o

i

P
P

×

 Procedure :
 1. Note down the diameters of the suction and delivery pipes, wattmeter constant, overall  

efficiency of the prime mover, distances of the pressure gauge tappings from the pump axis. 
 2. Keeping the delivery valve closed prime the pump so that the suction pipe, casing and the 

portion of the delivery pipe upto the delivery valve are completely filled with liquid.
 3. Start the motor and then open the delivery valve fully.
 4. Allow the flow to stabilize and then measure the discharge (Q).
 5. Note down the pressure gauge readings (pd and ps) and the wattmeter reading (X)
 6. Change the opening of the delivery pipe.
 7. Repeat steps 4 to 6 for at least ten openings of the delivery valve ranging from maximum 

to minimum discharge.
 Observations :
  Diameter of the suction pipe, ds = . . . . . 
  Diameter of the delivery pipe, dd = . . . . . 
  Distance of the pressure gauge on delivery side from the pump axis, zd = . . . . 
  Distance of the pressure gauge on suction side from the pump axis, zs = . . . . 
  Wattmeter constant, k = . . . . .
  Overall efficiency of the prime mover, ηp = . . . . 
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 Table 24. Performance of a single stage pump – Observations 
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 Note :  The consistency of units shall be maintained carefully.

 Calculations : Perform the following calculations for each opening of the delivery valve.

 1. Vd = 2( / 4) d

Q
dp

;  Vs = 2( / 4) s

Q
dp

 2. Hd = dp
w

;   Hs = sp
w

 3. Hm from eqn. (1).

 4. Po = H.P.
75

mwQH

 5. Pi = H.P.
0·736
p k Xη

 6. ηo = 100o

i

P
P

×

	 • Plot the following graphs on the same axes :
  (i) Hm vs Q;
  (ii) ηo vs Q;
  (iii) Pi vs Q.
 Precautions :
 1. Prime the pump to remove the air completely before starting the pump.
 2. After each change in the valve opening let the flow stabilize before taking readings.
 EXPERIMENT NO. 26. To obtain the performance characteristics of a reciprocating 
pump.
 Apparatus :
 1. A double-acting reciprocating pump with all the necessary components (i.e., suction and 

delivery pipes, no return valves, foot valves etc.).
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 2. An electric motor coupled to the pump shaft; wattmeter connected to the driving motor.
 3. A vacuum gauge (or U-tube manometer) and a pressure gauge connected to the suction and 

delivery pipes respectively as near to the pump as possible.
 4. A discharge measurement unit (viz. venturimeter with manometer) connected to the delivery 

pipe.

L

hd

Delivery pipe

Delivery
valve

Cylinder

Piston rod

Connecting
rod

Crank
�

�

O.D.CI.D.C

r

x Piston

Suction valve

suction pipe

Suction stroke

Delivery stroke

Sump well

hs

x

L r= 2

O.D.C

I.D.C = inner dead centre

= outer dead centre

Fig. 30. Schematic view of single-acting reciprocating pump.

 Theory :
	 l The reciprocating pump is a positive displacement pump as it sucks and raises the liquid by 
actually displacing it with the piston/plunger that executes a reciprocating motion in a closely fitting 
cylinder. The amount of liquids pumped is equal to the volume displaced by the piston. The total 
efficiency of a reciprocating pump is about 10 to 20% higher than a comparable centrifugal pump.
 Refer to Fig. 30. The main parts of a reciprocating pump are :
 1.  Cylinder 2. Piston
 3. Suction valve 4. Delivery valve
 5. Suction pipe 6. Delivery pipe
 7. Crank and connecting rod mechanism operated by a power source e.g. steam engine, internal 

combustion engine or an electric motor.
 Working of a single-acting reciprocating pump :
 As shown in Fig. 30 a single-acting reciprocating pump has one suction pipe and one delivery 
pipe. It is usually placed above the liquid level in the pump. When the crank rotates the piston moves 
backward and forward inside the cylinder. The pump operates as follows :
 —  Let us suppose that initially the crank is at the inner dead centre (I.D.C.) and crank rotates 

in the clockwise direction. As the crank rotates, the piston moves towards right and  a 
vacuum is created on the left side of the piston. This vacuum causes suction valve to open 
and consequently the liquid is forced from the sump into the left side of the piston. When 
the crank is at the outer dead centre (O.D.C.) the suction stroke is completed and the left 
side of the cylinder is full of liquid.
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 — When the crank further turns from O.D.C. to I.D.C., the piston moves inward to the left and 
high pressure is built up in the cylinder. The delivery valve opens and the liquid is forced 
into the delivery pipe. The liquid is carried to the discharge tank through the delivery pipe. 
At the end of delivery stroke the crank comes to the I.D.C. and the piston is at the extreme 
left position.

 Working of a double-acting reciprocating pump :
 Refer Fig. 31. In a double-acting reciprocat-
ing pump, suction and delivery strokes occur 
simultaneously. When the crank rotates from 
I.D.C. in the clockwise direction, a vacuum is 
created on the left side of piston and the liquid 
is sucked in from the sump through value S1. At 
the same time, the liquid on the right side of the 
piston is pressed and a high pressure causes the 
delivery valve D2 to open and the liquid is passed 
on to the discharge tank. This operation contin-
ues till the crank reaches O.D.C.
 With further rotation of the crank, the liquid 
is sucked in from the sump through the suction 
valve S2 and is delivered to the discharge tank 
through the delivery valve D1. When the crank 
reaches I.D.C., the piston is in the extreme left position. Thus one cycle is completed and as the 
crank further rotates, cycles are repeated.
 Because of continuous delivery strokes, a double-acting reciprocating pump gives more uniform 
discharge (as compared to a single-acting pump which pumps the liquid intermittently). To get a 
still more uniform feed, invariably a multi-cylinder arrangement having two or more cylinders is 
employed.
 Fig. 32 and 33 show the variations of discharge through delivery pipe (Qd) with crank angle (θ) 
for single-acting and double-acting pumps respectively.

Qd

0º 90º 180º 270º 360º
� (Crank angle)

Suction Delivery

360º270º180º90º0º

Qd

� (Crank angle)

Suction Delivery

 Fig. 32. Qd v/s θ variations for single-acting pump.    Fig. 33. Qd v/s θ variations for double-acting pump. 

 Under ideal conditions the discharge in case of a double-acting reciprocating pump is given by:

  Qth. = ( )
60 60

ALN LNA a+ −

    2
60
ALN  since a << A ...(1)

 where, Qth. = Theoretical discharge,
  A = Cross-sectional area of the piston,

Delivery
pipes

Piston rodD2D1

S2
S1

Piston Cylinder
sump level

Suction
pipes

Fig. 31. Double-acting reciprocating pump.
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    a = Cross-sectional area of the piston rod,
    N = Speed of the crank pin in r.p.m., and
    L = Length  of stroke of the piston.
	 	 • Co-efficient of discharge :
 In a reciprocating pump, the actual discharge (Qact.) is always slightly different from the 
theoretical discharge (Qth.) due to following reasons :
  (i) Leakage through the valves, glands and piston packing,
 (ii) Imperfect operation of the valves (suction and discharge), and
 (iii) Partial filling of cylinder by the fluid.
 The ratio between actual discharge and theoretical discharge is known as the co-efficient of 
discharge (Cd) of the pump. That is 

    Cd = .

.

Actual discharge
Theoretical discharge

act

th

Q
Q

=  ...(2)

 When the valve of Cd  is expressed in percentage, it is known as ‘volumetric efficiency’ of the 
pump. Volumetric efficiency depends upon the dimensions of the pump and its value ranges from 
85-98%.
	 	 • Slip :
 The difference between the theoretical discharge and actual discharge is called the ‘slip’ of the 
pump. That is
    Slip = Qth. – Qact.

 But the slip is often expressed in percentage which is given by,

    % Slip = . . .

. .

–
100 1 100 (1 ) 100th act act

d
th th

Q Q Q
C

Q Q
 × = − × = − × 
 

 ...(3)

 The percentage of slip for the pumps maintained in good condition is of the order of 2% or even 
less.
	 l	 The power generated by the pump is given by :

    P = 75
actual mw Q H

 ...(4)

 where, w = Specific weight of the liquid being pumped,
    Hm = Manometric head of the pump

     = 
2 2

2 2
   

+ + − + + + +   
   

d d s s
d s fs fd

p V p V
z z h h

w g w g
 ...(5)

 where, pd = Pressure on the delivery side,
    ps = Pressure on the suction side, 
    Vd = Velocity of flow on the delivery side,
    Vs = Velocity of flow on the suction side,
    zd = Distance of pressure gauge tapping on the delivery side from the pump axis,
    zs = Distance of pressure gauge tapping on the suction side from the pump axis,

    hfd = Head loss due to friction on delivery side = 
2

2
d d

d

fz V
d g×

 ...(6)
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    hfs = Head loss due to friction on suction side = 
2

2
s s

s

fz V
d g×

 ...(7)

 Here, f = Friction factor,
    dd = Diameter of delivery pipe, and
    ds = Delivery of suction pipe.
 Procedure :
 1. Note down the diameter (D) and stroke length (L) of the piston, wattmeter constant k, 

distances zd and zs of the pressure gauges from the pump axis.
 2. Start the motor and open the delivery valve fully.
 3. Measure the discharge Qactual.
 4. Note down the pressure gauge readings pd and ps and also wattmeter reading (X).
 5. Measure the number of strokes occurring in a given time and hence obtain the speed of the 

piston in r.p.m.
 6. Change the opening of the delivery valve.
 7. Repeat steps 3 to 6 for at least ten different openings of the delivery valve.
 Observations :
  Diameter of the piston, D = . . . . 
  Stroke length of the piston, L = . . . . 
  Diameter of the suction pipe, ds = . . . . 
  Diameter of the delivery pipe, dd = . . . 
  Distance of the pressure gauge on delivery side from the pump axis, zd = . . . . 
  Distance of the vacuum gauge on suction side from the pump axis, zs = . . . . 
  Wattmeter constant, k = . . . . 
  Overall efficiency of the prime mover , ηp = . . . .

Table 25. Performance of reciprocating pump – Observations
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 Note :  Consistency of units shall be maintained carefully.
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 Calculations : Perform the following calculations for each opening of the delivery valve :

 1. Vs = 2( / 4)
actual

s

Q
dp

 ;  Vd = 2( / 4)
actual

d

Q
dp

 2. Calculate hfs and hfd using eqns. (6) and (7).

 3. Calculate Hm using eqn. (5).

 4. Pi = 
0.736

p kXη

 5. Calculate Po from eqn. (4).

 6. η	= 100o

i

P
P

×

 7. Calculate Qth. from eqn. (1).
 8. Calculate slip from eqn. (3).
	 • Plot the following curves:
  (i) Hm vs Q
  (ii) Hm vs S.H.P. (Po)
  (iii) Hm vs η.

 Result/Conclusion :
 Precautions :
 1. Do not run the pump with the delivery valve completely closed.
 2. After each change in the valve opening let the flow stabilize before taking readings. 
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R
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S
Shock waves, 865
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Specific energy and specific energy curve, 917
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Steam tube, 198
Streak line, 199
Stream function, 228
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Stagnation properties, 844
Surface tension, 25
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T
Terminal velocity of a body, 799
Thermodynamic properties, 23
Turbulent flow, 605
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 shear stresses in, 609
  – Boussinesq's theory, 609
  – Prandtl's mixing length theory, 610
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  – Reynolds theory, 610
Turbulent boundary layer, 766

V
Vapour pressure, 37
Velocity potential, 227
Velocity head or kinetic energy, 259
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Viscosity, 4
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W
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 submerged or drowned, 523
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HYDRAULIC MACHINES

A
Air lift pump, 320
Air vessels, 275

B
Bulb turbines, 130

C
Cavitation, 159
Cavitation factor, 160
Centrifugal pump, 177
 advantages, 178
 classification of, 177
 component parts of a, 179
 characteristics of, 233
  – constant efficiency curves, 234
  – constant head and constant 
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  – mechanical, 187
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  – static head, 185
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  – hydraulic losses, 186
  – leakage loss, 186
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 operational difficulties in, 240
 priming of a, 239
 selection of, 239
 work done by the impeller, 182
 working of a, 182
 working proportions of, 222

D
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 theory of, 132
 types of, 133

F
Flow duration curve, 329
Fluidics, 359
 fluidic elements, 361
Force exterted by jet on 
 a series of radial curved vanes, 24
 moving curved plate, 15
 moving flat plate, 11
  – held normal to the jet, 11
  – inclined to the jet, 12
 stationary curved plate, 3
 stationary flat plate, 1
       – held inclined to the jet, 2
  – held normal to the jet, 1
Francis turbine, 81
 advantages and disadvantages of, 87
 design of runner of, 86
 work done and efficiency of, 84
 working proportions of, 85
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 specific speed, 138

I
Impact of free jet, 1
Impulse turbines, 55
Indicator diagrams, 258

J
Jet pump, 320
Jet propulsion of ships, 40

K
Kaplan turbine, 122
 versus Francis turbine, 124

M
Mass curve, 331
Multistage centrifugal pumps, 224
pumps in parallel, 224
pumps in series, 224
Muschel curves, 157

N
Negative slip, 252

P
Pelton wheel, 55
 construction and working of, 55
 design aspects of, 61
 work done and efficiency of a, 57
Performance characteristics of turbines, 154
 constant efficiency, 157
 main or constant head, 154
 operating or constant speed, 156
Pitting, 160
Precipitation, 326
Propeller turbine, 122

R
Reaction turbines, 81
Reciprocating pumps, 248

H
Hydrograph, 328
Hydrology, 325
Hydraulic accumulator, 288
 differential, 289
 simple, 288
Hydraulic coupling, 317
Hydrologic cycle, 325
Hydraulic crane, 303
Hydraulic intensifier, 296
Hydraulic lift, 307
 direct acting, 307
 suspended, 307
Hydraulic press, 299
Hydro-power plant, 335
 advantages and disadvantages of, 336
 application of, 325
 average life of plant components, 336
 controls, 337
 cost of, 339
 preventive maintenance, 338
 safety measures in, 337
Hydraulic turbines, 52
 cavitation, 159
 cavitation factor, 160
 classification of, 53
 definitions, 59
  – efficiencies, 60
  – gross head, 59
  – net or effective head, 59
 governing of, 157
  – impulse turbine, 157
  – reaction turbine, 158
  model relationship, 145
 performance characteristics of, 154
 run away speed, 131
 scale effect, 153
 selection of, 162
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 air vessels, 275
 classification of, 248
 co-efficient of discharge, 252
 discharge, work done and power required  
 to drive, 251
 indicator diagrams, 258
 main components and woking, 249
 negative slip, 252
Runaway speed, 131
Run off, 326
 measurement of, 326
  – discharge observation method, 327
  – empirical formulae, 326

  – from rainfall records, 326
  – run off curves and tables, 327

S
Scale effect, 153
 slip, 252
Specific speed, 138
Surge tanks, 164

T
Tanspiration, 326
Tubular turbines, 130
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