EEE 3352

Electromechanics & Electrical Machines

Lecture 1: Introductory concepts

Dr A Zulu © 2023

EEE 3352 / UNZA

1. Introductory concepts

- 1. Physical quantities, dimensions and units
- 2. Scalars, vectors, phasors
- 3. Basic laws:

DE TATA

- Faraday's
- Ampere's
- Newton's 2nd
- Conservation of mass, energy, mag. & elec. flux

1.1 Physical quantities, dimensions and units

-physical quantities in **electrical engineering** cover what happens in:

- conductors & insulators: electric
- magnetic & non mag materials: magnetic

► ■ Electrics

- mechanical engineering
- thermodynamics

Mechanics

Some of physical quantities

A TATA

Mechanical	[symbol]		
Length	[<i>l</i> or <i>x</i>]		
Force	[<i>F</i>]		
Momentum	[Γ]		
Acceleration	[<i>a</i>]		
Torque	[7]		
Angular speed	[<i>w</i>]		
Mass	[<i>m</i>]		

Electrical	[Symbol]		
Voltage	[<i>v</i> , <i>V</i>]		
Resistance	[<i>R</i>]		
Capacitance	[<i>C</i>]		
Inductance	[<i>L</i>]		
Electric charge	[<i>q</i> , <i>Q</i>]		
Current density	[<i>J</i>]		
Magnetic flux	[<i>φ</i>]		

Dimensions and Units

• used to describe physical quantities:

Dimension:

characteristic of a physical quantity

Unit:

 how the physical quantity is to be measured in terms of standard quantities

• traditionally, 3 reference dimensions in mechanics:

- length
- mass
- time

- 2 more dimensions for
 - electricity and magnetism (e.g. current)
 - thermodynamics (e.g. temperature)

- a number of independent base units
 - need to be chosen
 - carefully defined

De Carata

- the actual number being the same as that of the independent dimensions

• SI (International system) - adopted internationally

• 7 base units

SPATA TA

• 2 supplementary units

SI quantities & units

	Quantity	Unit Name	Unit
Base	Time	second	S
	Length	metre	m
	Mass	kilogram	kg
	Electric current	Ampere	А
	Thermodynamic temperature	Kelvin	К
	Luminous intensity	candela	cd
	Amount of substance	mole	mol
Supp	Plane Angle	radian	rad
	Solid angle	steradian	sr

Units

definition of units are precise

A STATA

- in EEE 3352 you need only remember for electric current see extract from
 - "IET Units and Symbols for Electrical and Electronic Engineering"

• units of all physical quantities can be expressed in terms of the base and supplementary units

- in practice, it is better to define derived units in cases where
 - 1. the quantity is used frequently
 - eg Hz derived from s⁻¹ for frequency
 - 2. the units are lengthy
 - eg N for kgm/s²

A TATA

- 3. a new physical concept is introduced
 - eg V for kgm²s⁻³A⁻¹

• the numerical values of many quantities may be many orders of magnitude away from unity (bigger or smaller)

DE CAR

• it may be convenient to either use power of 10 or to use decimal prefixes with the unit

Base 10 and their prefixes

AT AT A

Relationships

- equations are a compact and effective way of stating relationships between various quantities
- equations may arise in 4 different ways:

ELE GYATA

1. a statement of a basic law, tested and accepted e.g. Faraday's law, $v = N \frac{d\phi}{dt}$

2. a definition of a new quantity or concept e.g. electric current density, $J = \frac{di}{dA}$

3. description of material property e.g. permeability, $\mu = \frac{B}{H}$

4. derivation from other equations, using mathematical processes

EEE 3352 / UNZA

Importance of dimensions & units

- "Metric mishap caused loss of NASA orbiter"
 - http://edition.cnn.com/TECH/space/9909/30/mars.metric.02/
- "Mars Probe Lost Due to Simple Math Error"
 - https://www.latimes.com/archives/la-xpm-1999-oct-01-mn-17288-story.html

- NASA's Mars Climate Orbiter 1999
- \$ 125 million
- NASA (metric); Lockheed Martin (imperial)

EEE 3352 / UNZA

1.2 Scalars, Vectors and Phasors

Scalar

- has
 - magnitude only
 - is specified by a single numerical value together with its unit
- eg., mass

Vector

DE STATA

- has a magnitude and direction ;
- needs 2 values to specify it, if it is confined to a plane, or
- needs 3 three values, if in general space;
- quoted values depend on system: i.e
 - x,y (z) for Cartesian or;
 - *r*, θ (ω) for polar representation

Phasor

DE STATA

- is a technique for describing any sinusoidally varying quantity;
- in general $y=y_m(\cos\omega t+\phi)$ means the projection of a phasor
 - of magnitude or peak value, *y_m*;
 - rotating at angular speed ω onto a fixed reference unit;
 - angle \u00f8 from reference;
 - at time t will give the instantaneous value of y

1.3 Basic Laws

De Carlos

Newton's 2nd Law

DE CONTA

rectilinear

$$\sum F = m \frac{d^2 x}{dt^2} = ma$$

rotational

$$\sum T = J \frac{d^2 \theta}{dt^2} = J \alpha$$

EEE 3352
$$\rightarrow \sum F = m \frac{d^2 x}{dt^2} = ma = 0$$
 $\sum T = J \frac{d^2 \theta}{dt^2} = J \alpha = 0$

Law of conservation of energy

Law of conservation of mass

EEE 3352 / UNZA

Maxwell's Equations

Gauss's Laws:

A STATA

• Conservation of electric charge $\nabla \bullet D = \rho$

• Conservation of magnetic flux $\nabla \bullet B = 0$

-End of Lecture 1-

