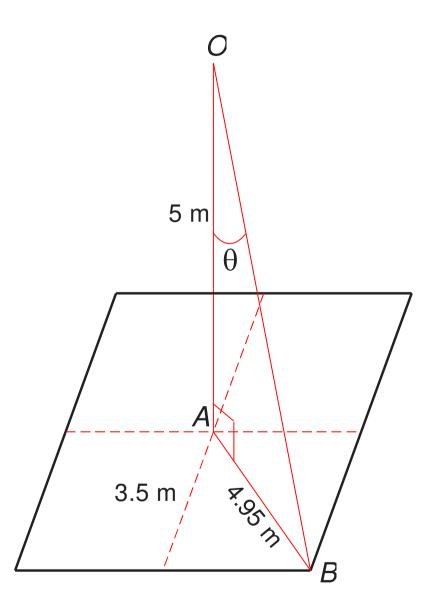
EEE 3352

Electromechanics & Electrical Machines


Lecture 9: Examples

Examples 9:

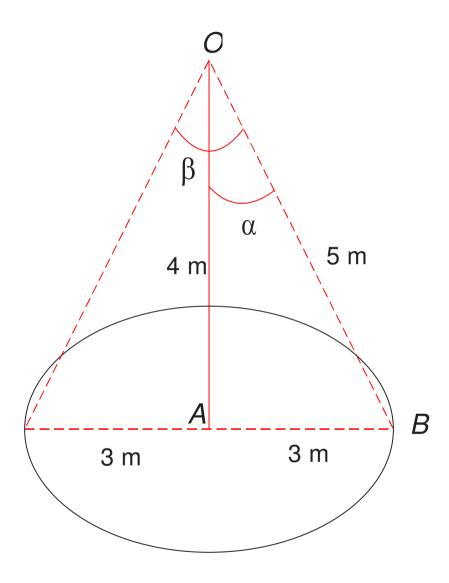
1) A 500-cd lamp emits light uniformly in all directions and is suspended 5 m above the centre of a working plane which is 7 m square. Find the illuminance below the lamp and also at each corner of the square.

• below lamp:
$$E_A = \frac{I}{d^2} = \frac{50}{5^2} = \underline{20 \text{ lx}}$$

at each corner:

$$E_B = E_A \cos^3 \theta$$

$$\cos\theta = \frac{5}{\sqrt{5^2 + 4.95^2}} = 0.71$$


$$E_B = 20 \times \cos^3 0.71 = \underline{7.18 \text{ lx}}$$

2) A lamp having a luminous intensity of 500 lumens per steradian is hung 4 m above a circular area of 6 m diameter.

Calculate the illuminance at

- a. centre of area
- b. periphery of the area
- c. average illuminance on the area

a. centre of area

$$E_A = \frac{I}{h^2} = \frac{500}{4^2} = \underline{31.25 \text{ lx}}$$

b. periphery of the area

$$\alpha = \cos^{-1}\left(\frac{4}{5}\right) = 0.8$$

$$E_B = E_A \cos^3 \alpha$$

$$E_B = 31.25 \times \cos^3 0.8 = \underline{16 \text{ lx}}$$

c. average illuminance on the area

$$\omega = 2\pi(1 - \cos \alpha) = 2\pi \times (1 - 0.8) = 0.4\pi$$

$$\phi = I\omega = 500 \times 0.4\pi = 200\pi$$

$$A = \pi r^2 = 3^2 \pi = 9\pi$$

$$E_{av} = \frac{\phi}{A} = \frac{200\pi}{9\pi} = \underline{22.2 \text{ lx}}$$

- 1) A drawing hall 30 m x 15 m with a ceiling height of 5 m is provided with general illumination of 120 lx. Taking U.F. = 0.5, M.F. = 0.71, determine
 - a) the number of fluorescent tubes required
 - b) their spacing
 - c) mounting height and total wattage.

The luminous efficacy of a fluorescent tube is 40 lm/W for an 80-W tube.

a) the number of fluorescent tubes required

$$A = 30 \times 15 = 450 \text{ m}^2$$

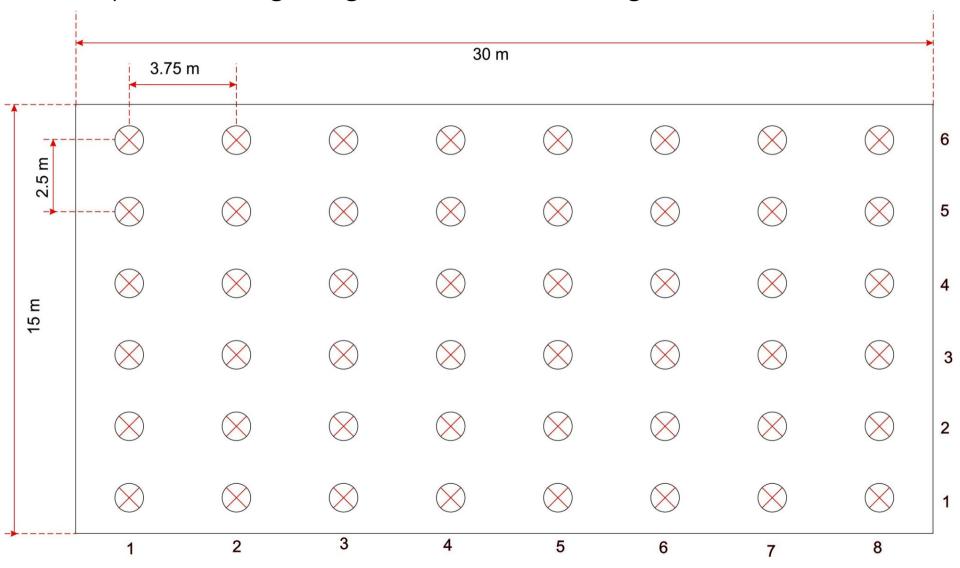
total lumens =
$$\frac{EA}{U.F.\times M.F.}$$
 = $\frac{450\times120}{0.5\times0.71}$ = 151200 lm

wattage_(80-W bulbs) =
$$\frac{EA}{U.F.\times M.F.}$$
 = $\frac{151200}{40}$ = 3780 W

of bulbs_(80-W) =
$$\frac{3780}{80}$$
 = $47.25 \approx 48$

b) lamp spacing

30 m x 15 m


$$48 = 48 \times 1$$

$$= 24 \times 2$$

$$= 12 \times 4$$

$$= 16 \times 3$$

a) mounting height and total wattage

 Assume a mounting height of 2.5 m above working surface

Ass 9 illumination								
	Α	В	С	D	E	F	G	Н
1								
2	number	n 48		3				
3	width	w 15 m						
4	length	I 30 m						
5	height	h 2.5 m						
6					width-spacing	lenth-spacing	ratio_width	ratio_length
7		# width	# length		d_w (m)	d_l (m)	(d_w)/h	(d_l)/h
8		1	48		15	0.625	6	0.25
9		2	24		7.5	1.25	3	0.5
10		3	16		5	1.875	2	0.75
11	*	4	12		3.75	2.5	1.5	1
12	*	6	8		2.5	3.75	1	1.5
13								

 Assume a mounting height of 2.5 m above working surface

• width
$$d/h = \frac{15/6}{2.5} = 1.0$$

• length
$$d/h = \frac{30/8}{2.5} = 1.5$$

Total wattage = 3.78 kW