Rotating Machines

Quick Selection Notes:

- Use $u=2\pi Rn$ when you need the speed of a moving conductor.
- Use e=Blu for induced voltage in a single conductor.
- Use $e_{\mathrm{coil}} = N \cdot e$ for total induced voltage in a coil.
- Use $e_{
 m avg}=rac{pZ\phi n}{60}$ for average DC machine voltage.
- Use $T=rac{pZ\phi I}{2\pi c}$ for torque in a rotating machine.

Miscellaneous

1. Voltage with Winding Factors (RMS):

$$e_{\rm rms} = 2.22 \cdot f \cdot Z_s \cdot k \cdot \phi$$

Use when:

- Calculating RMS voltage in an AC machine with sinusoidal output.
- Given the frequency f, series conductors Z_s , winding factor k, and flux per pole ϕ .
- 2. Effect of Poles or Pole Pairs on Speed:
 - · Doubling the number of poles: Halves the speed.
 - Doubling the frequency of applied or induced voltage: Doubles the speed.

General Relationships

1. Speed of Conductor:

$$u = 2\pi Rn$$

Use when:

- · You need the linear speed of a conductor in a rotating system.
- Given the radius R and rotational speed n in revolutions per second.
- 2. Frequency of Induced Voltage:

$$f = p \cdot n$$

Use when:

- · You need to calculate the frequency of induced voltage.
- Given the number of pole pairs p and rotational speed n in revolutions per second.

Induced Voltage

1. Voltage Induced in a Conductor:

$$e = Blu$$

Use when:

- · You need the voltage induced in a single conductor moving in a magnetic field.
- Given the flux density B, conductor length l, and speed u.
- 2. Voltage Induced in a Coil (Multiple Turns):

$$e_{\mathrm{coil}} = N \cdot e$$

Use when:

- ullet You have a coil with multiple turns, and you know the induced voltage per turn e.
- Multiply e by the number of turns N.
- 3. Average Voltage for a DC Machine:

$$e_{ ext{avg}} = rac{pZ\phi n}{60}$$

Use when:

- · Calculating the average voltage for a DC machine.
- Given the number of poles p, conductors Z, flux per pole ϕ , and speed in revolutions per minute n.

Torque and Force

1. Force on a Conductor in a Magnetic Field:

$$F = BlI$$

Use when:

- · You need the force acting on a current-carrying conductor in a magnetic field.
- Given flux density B, conductor length l, and current I.

2. Torque in a Rotating Machine:

$$T=rac{pZ\phi I}{2\pi c}$$

Use when:

- Calculating torque in a rotating machine.
- Given the number of poles p, total conductors Z, flux per pole ϕ , current I, and the number of parallel paths c.