ENG 3165 LECTURE 5

THERMODYNAMICS COMPONENT

Ideal Gas Laws

Introduction

- This lecture provides a link between Classical Thermodynamics definitions and an ideal gas a working fluid.
- Gases are an easy way to introduce thermodynamic concepts because they allow for the simplified analysis.

PHYSICAL CHARACTERISTICS OF GASES

Physical Characteristics	Typical Units
Volume, V	Liters (L), Cubic Metres (cm ³⁾
Pressure, P	atmosphere
	(1 atm = 1.015x10 ⁵ N/m ²)
Temperature, T	Kelvin (K)
Number of atoms or	mole (1 mol =
molecules, <mark>n</mark>	6.022x10 ²³ atoms or molecules)

Pressure and volume are inversely related at constant temperature.

⇔PV = K

As one goes up, the other goes down.

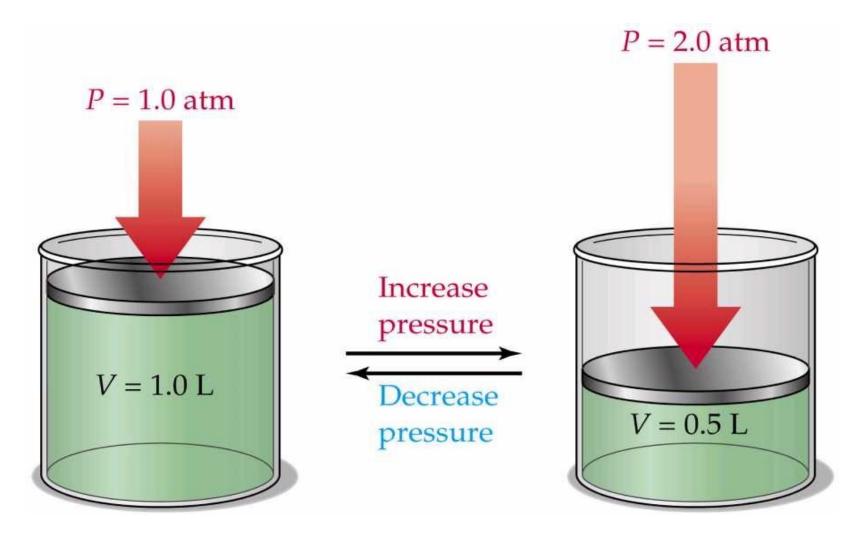
 $\mathbf{P}_1\mathbf{V}_1 = \mathbf{P}_2\mathbf{V}_2$

"Father of Modern Chemistry" Robert Boyle

Chemist & Natural Philosopher

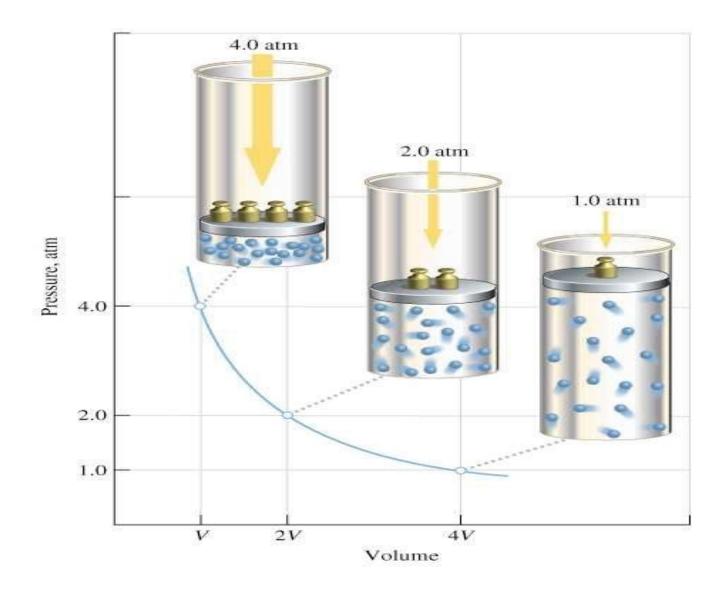
Listmore, Ireland January 25, 1627 – December 30, 1690

Boyle's Law: $P_1V_1 = P_2V_2$



CHITALU 2022

$\mathbf{P_1V_1} = \mathbf{P_2V_2}$



CHITALU 2022

Example 5.1 During an experiment on Boyle's law, the original volume of air trapped in the apparatus, with the two mercury levels of the same, as 20000 mm³. The apparatus was then modified such that the volume of air became 17000 mm³, while the temperature remained constant. If the barometer reading was 765 mm Hg, what was the new pressure exerted on the air in mm Hg? Also, what was the difference in the two mercury column levels?

SOLUTION Since both levels of mercury are the same at the beginning, then $P_1 = \text{atmospheric pressure} = 765 \text{ mm Hg}$ Now Boyle's law states that PV = C, a constant, from this $P_1V_1 = P_2V_2$ $\therefore P_2 = P_1 \frac{V_1}{V_2} = 765 \times \frac{20\,000}{17\,000}$ = 900 mm Hg The final pressure $P_2 = 900 \text{ mm Hg}$ and the atmospheric pressure = 765 mm Hg, so Difference in height of the two mercury columns = 900 - 765= 135 mm

Example 5.2 A gas whose original pressure and volume were 300 kN/m^2 and 0.14 m^3 is expanded until its new pressure is 60 kN/m^2 while its temperature remains constant. What is its new volume?

SOLUTION The temperature remains constant, so this is an expansion according to Boyle's law.

$$P_1V_1 = P_2V_2$$
 or $V_2 = V_1\frac{P_1}{P_2}$

:.
$$V_2 = 0.14 \times \frac{300}{60}$$

= 0.7 m³

CHARLES' LAW

Volume of a gas varies directly with the absolute temperature at constant pressure.

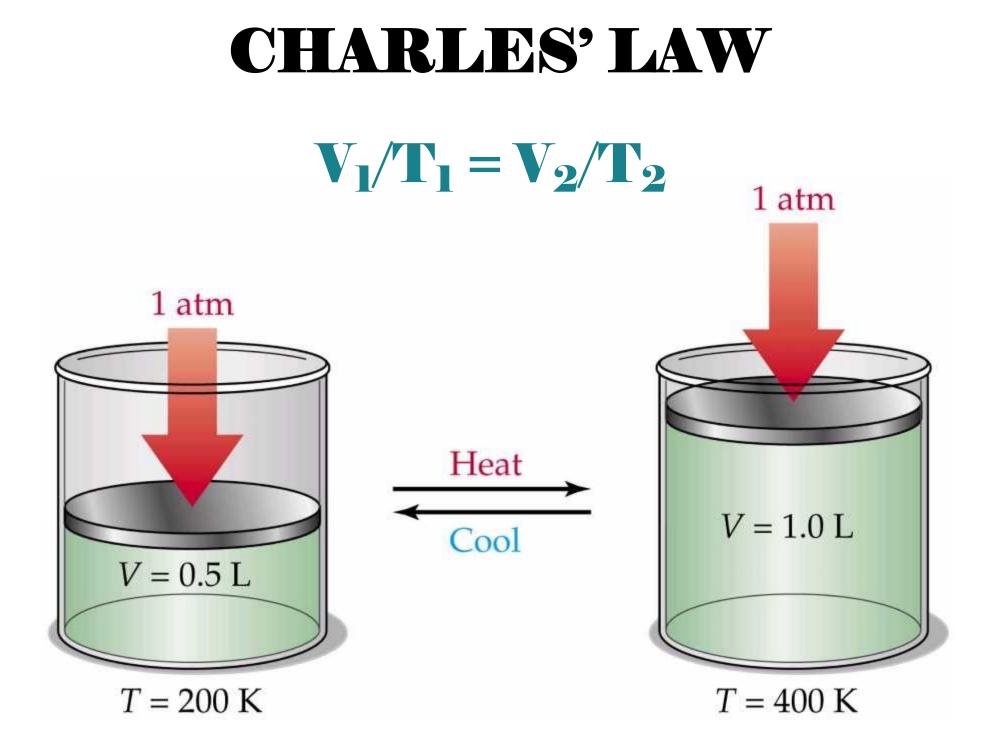
∻V = KT

 $V_1 / T_1 = V_2 / T_2$

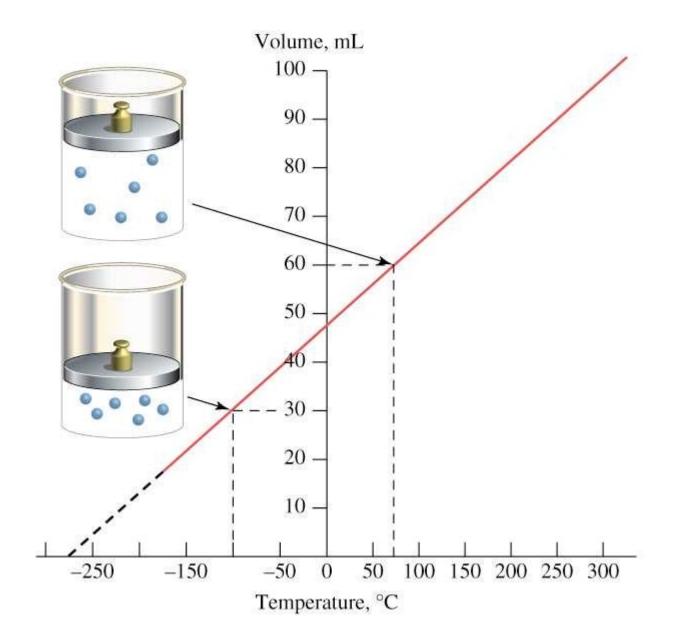
Jacques-Alexandre Charles

Mathematician, Physicist, Inventor

Beaugency, France November 12, 1746 – April 7, 1823



CHARLES' LAW $V_1/T_1 = V_2/T_2$



CHARLES' LAW

Example 5.3 During an experiment on Charles' law, the volume of gas trapped in the apparatus was 10 000 mm³ when the temperature was 18 °C. The temperature of the gas was then raised to 85 °C. Determine the new volume of gas trapped in the apparatus if the pressure exerted on the gas remained constant.

SOLUTION Now according to Charles' law

 $\frac{T}{T} = C$, a constant From this

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$
[1]

In order to use this equation the temperatures T_1 and T_2 must be absolute temperatures.

 \therefore $T_1 = 18 + 273 = 291 \text{ K}$

and similar and he searce areas of a sol here a page 1 sol for a solution of the searce of the solution of the

 $T_2 = 85 + 273 = 358 \text{ K}$ From equation [1] $V_2 = V_1 \frac{T_2}{V_1}$ [2]

$$V_2 = 10\ 000 \times \frac{358}{291}$$

CHITALU 2022 = 12 302 mm³

CHARLES' LAW

Example 5.4 A quantity of gas whose original volume and temperature are 0.2 m^3 and 303 °C, respectively, is cooled at constant pressure until its volume becomes 0.1 m^3 . What will be the final temperature of the gas?

SOLUTION

Again, this is a change according to Charles' law.

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$
$$T_2 = T_1 \frac{V_2}{V_1}$$

The temperature is in degrees Celsius this time.

$$T_1 = 303 + 273 = 576 \text{ K}$$

and from equation [1]

$$T_2 = 576 \times \frac{0.1}{0.2}$$

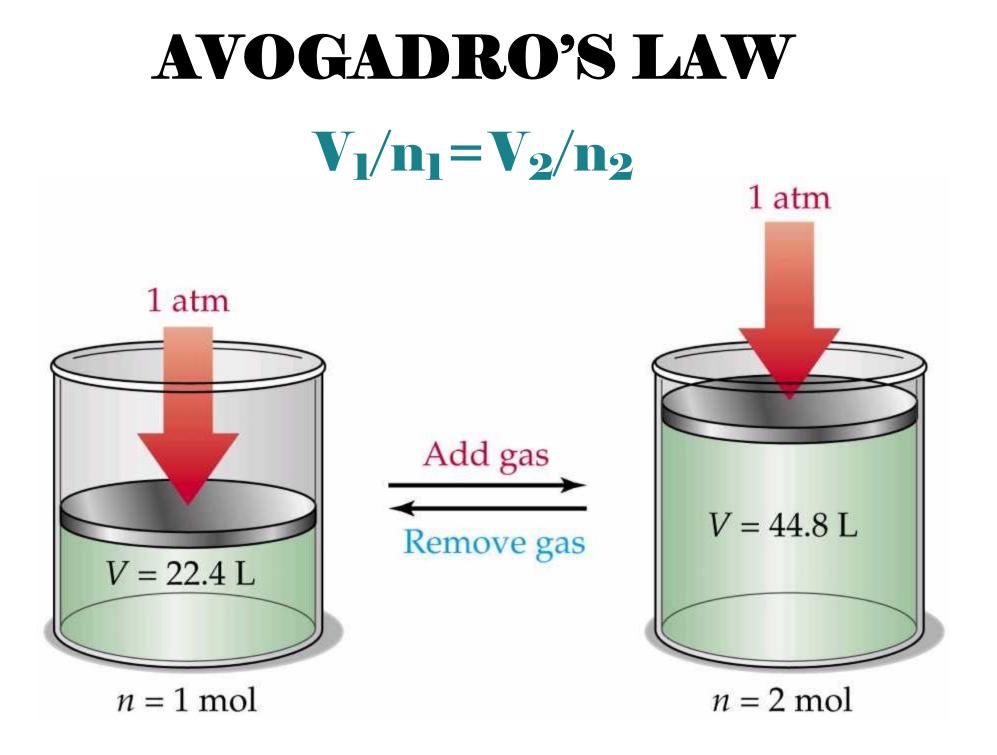
= 288 K
:. $t_2 = 288 - 273 = 15 \ ^{\circ}C$

AVOGADRO'S LAW

Amedeo Avogadro Physicist Turin, Italy August 9, 1776 – July 9, 1856 *At constant temperature and pressure, the volume of a gas is directly related to the number of moles.

 $\mathbf{O} \mathbf{V} = \mathbf{K} \mathbf{n}$

 $\mathbf{\mathbf{v}}_{1} / \mathbf{n}_{1} = \mathbf{V}_{2} / \mathbf{n}_{2}$



GAY-LUSSAC LAW

- At constant volume, pressure and absolute temperature are directly related.
 - ✤ P = k T
 - $P_1 / T_1 = P_2 / T_2$

Joseph-Louis Gay-Lussac
 Experimentalist

• Limoges, France

• December 6, 1778 – May 9, 1850

DALTON'S LAW

The total pressure in a container is the sum of the pressure each gas would exert if it were alone in the container.

The total pressure is the sum of the partial pressures.

 $P_{\text{Total}} = P_1 + P_2 + P_3 + P_4 + P_5 \dots$

(For each gas P = nRT/V)

John Dalton Chemist & Physicist Eaglesfield, Cumberland, England September 6, 1766 – July 27, 1844

THE CHARACTERISTIC EQUATION OF A PERFECT GAS

Consider the Boyle's Law change from 1 to A. In this case the temperature remains constant at T_{1} Also:

 $P_1V_1 = P_AV_A$(1) All the pressure change must take place during this process because there will be no change in pressure during the Charles's Law process which follows. In this case, $P_A = P_2$

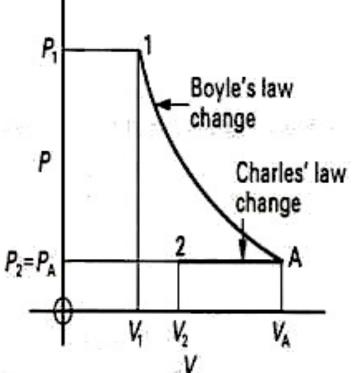
 $\therefore Equation (1) becomes P_1V_1 = P_AV_A$

Or

$$V_A = \frac{P_1 V_1}{P_2}$$
.....(2)

Consider now the Charle's Law change from A to 2. In this case the pressure remains constant at P_2 . Also:

$$\frac{V_A}{T_A} = \frac{V_2}{T_2}$$
.....(3)



THE CHARACTERISTIC EQUATION OF A PERFECT GAS

During the boyle's Law change from 1 to A, the temperature remained constant

 $\therefore T_A = T_1$

From which equation (3) becomes:

 $\frac{V_A}{T_1} = \frac{V_2}{T_2}$(4)

 $V_A = \frac{P_1 V_1}{P_2}$

But:

From equation (2) and substituting this in equation (4):

 $\frac{P_1V_1}{P_2T_1} = \frac{V_2}{T_2}$

From which:

CHITALU 2022

THE CHARACTERISTIC EQUATION OF A PERFECT GAS

Equation (5) can be extended:

 $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2} = \frac{P_3V_3}{T_3} = \frac{P_4V_4}{T_4} \dots \text{, etc} \dots \text{, etc} \dots \text{, (6)}$ Where 3 and 4 represent other new conditions of state of the same mass of gas. From equation (6) it follows that for any fixed mass of gas , changes of state are connected by the equation: $\frac{PV}{T} = \text{constant} \dots \dots \text{, (7)}$ Taking into account the actual mass of the gas during any particular process and consifering the specific volume v of the gas, this equation becomes: $\frac{Pv}{T} = \frac{Pv}{T}$

$$\frac{Pv}{T} = R \dots (9)$$

THE CHARACTERISTIC EQUATION OF A PERFECT GAS

Now consider a case when there are m kg of gas, multiply both sides of equation (9) by m, then:

 $\frac{P(mv)}{T} = mR$

But *mv* is the total volume of the gas being used, *V*, so for *m* of of gas it follows that:

$$\frac{PV}{T} = mR$$

or

This is known as the Characteristic Equation of a Perfect Gas. The units of R can be obtained from equation (9). If pressure is N/m^2 , specific volume is m^3/kg and temperature K, then the units for R are $J/_{kg\cdot K}$.

For Air the value is of R is usually of the order of 0.287 kJ/kg.K

THE UNIVERSAL GAS CONSTANT \overline{R}

□ For any **1 mole of gas**, the mass of that mole is equal to the gases Molecular Weight. Therefore dividing by the molecular weight, M, throughout:

 $\frac{Pv}{M} = \frac{mRT}{M}$ $\implies P\overline{v} = m\overline{R}T$

□ Where \overline{v} is the volume per mole and \overline{R} is the Universal Gas constant.

□ The value has been determined experimentally as 8.314 $\frac{kJ}{kmol.K}$

THE CHARACTERISTIC EQUATION OF A PERFECT GAS

Example 5.5 A gas whose original pressure, volume and temperature were 140 kN/m^2 , 0.1 m³ and 25 °C, respectively, is compressed such that its new pressure is 700 kN/m² and its new temperature is 60 °C. Determine the new volume of the gas.

SOLUTION By the characteristic equation

 $\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \text{ and } T_1 = 25 + 273 = 298 \text{ K}$ also $T_2 = 60 + 273 = 333 \text{ K}$ $\therefore \quad V_2 = \frac{P_1}{P_2} \frac{T_2}{T_1} V_1 = \frac{140}{700} \times \frac{333}{298} \times 0.1 = 0.022 \text{ 3 m}^3$

THE CHARACTERISTIC EQUATION OF A PERFECT GAS

Example 5.6 A quantity of gas has a pressure of 350 kN/m^2 when its volume is 0.03 m^3 and its temperature is 35 °C. If the value of $\mathbf{R} = 0.29 \text{ kJ/kg K}$, determine the mass of gas present. If the pressure of this gas is now increased to 1.05 MN/m^2 while the volume remains constant, what will be the new temperature of the gas?

SOLUTION By the characteristic equation

$$PV = mRT$$

 $\therefore \quad m = \frac{PV}{RT} = \frac{350 \times 10^3 \times 0.3}{0.29 \times 10^3 \times 308} = 0.118 \text{ kg}$

For the second part of the problem

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2} \text{ and in this case, } V_1 = V_2$$

$$\therefore \quad \frac{P_1}{T_1} = \frac{P_2}{T_2} \text{ or } T_2 = T_1 \frac{P_2}{P_1} = 308 \times \frac{1.05 \times 10^6}{0.35 \times 10^6}$$

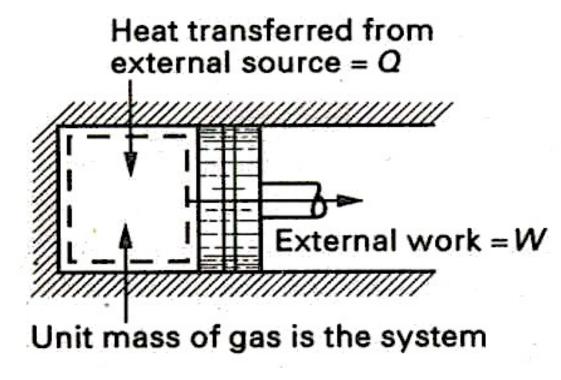
$$= 308 \times 3 \quad (T_1 = 35 + 273 = 308 \text{ K})$$

$$= 924 \text{ K}$$

$$\therefore \quad t_2 = 924 - 273 = 651 \text{ °C}$$

SPECIFIC HEAT CAPACITIES OF A GAS

- A specific heat capacity may be defined as the amount of heat transfer required to raise a unit mass of substance through 1 degree difference in temperature.
- The following figure shows how a piston can be used to determine specific heat of a gas



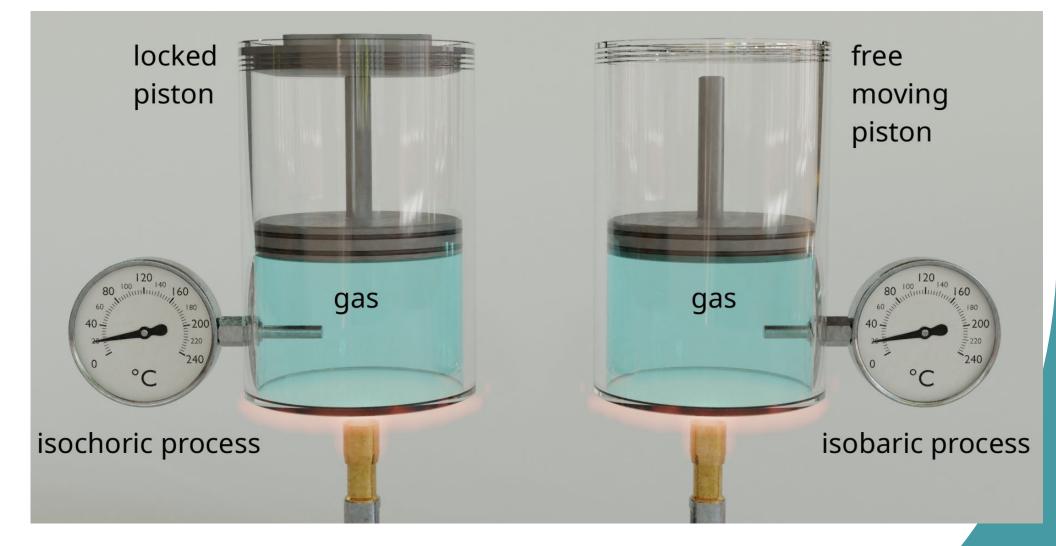
SPECIFIC HEAT CAPACITIES OF A GAS

- □ If the **specific heat capacity** of a gas is quoted, it is necessary to define the conditions under which that specific heat capacity is being measured.
- Two important cases are called the Principle Specific Heat Capacities.
- **1. The specific heat capacity at constant volume:** This is defines as the amount of heat which transfers to or from a unit mass of gas while the temperature changes by 1 degree and the volume remains constant. It is written as c_v .
- 2. The specific heat capacity at constant pressure: This is defines as the amount of heat which transfers to or from a unit mass of gas while the temperature changes by 1 degree and the pressure remains constant. It is written as c_p .

The specific heat capacities at constant volume or pressure rise in value with temperature so for calculations an average value if assumed within the temperature range being considered.

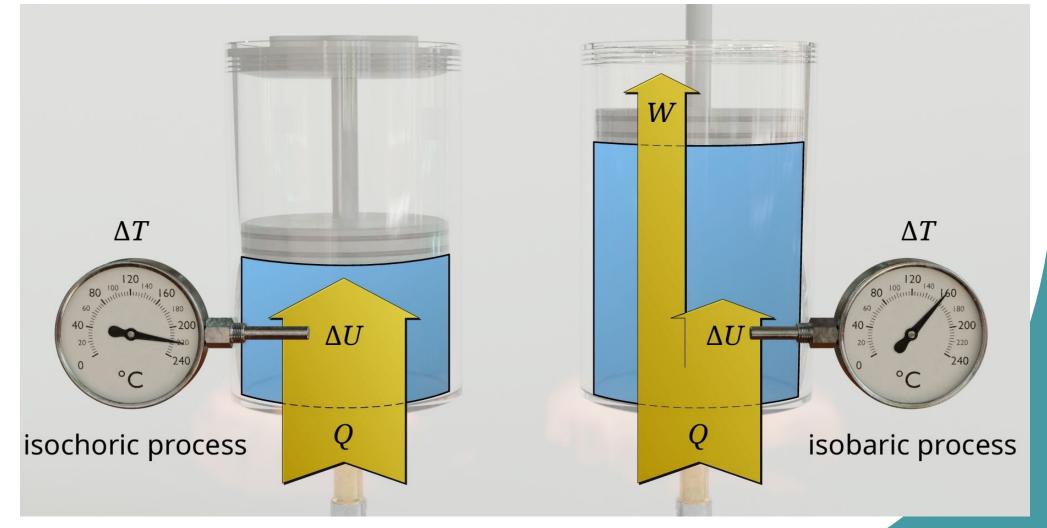
SPECIFIC HEAT CAPACITIES OF A GAS

Gas	$c_p(kJ/kg K)$	c _v (kJ/kg K)
Air and believe to added to	1.006	0.718
Carbon dioxide	0.87	0.67
Carbon monoxide	1.04	0.74
Hydrogen	14.4	10.2
Nitrogen	1.04	0.74
Oxygen	· 0.92	0.66
Methane	2.29	1.74
Sulphur dioxide	0.65	0.52



29

For an ideal gas at constant pressure, it **takes more heat to achieve the same temperature change than it does at constant volume**. At constant volume all the heat added goes into raising the temperature. At constant pressure some of the heat goes to doing work.



THE CONSTANT VOLUME HEATING OF A GAS

□ Let a mass of gas m be heated at constant volume such that its temperature rises from T_1 to T_2 and its pressure rises from P_1 to P_2 , then:

Heat received by the gas

= mass × specific heat capacity at constant volume ×rise in temperature

 $= mc_v(T_2 - T_1)$

Constant volume heating is a particular cas of a nonflow process carried out on a gas.

 $Q = \Delta U + W$, where W = 0

□ No external work is done during the process

 $\therefore \Delta \boldsymbol{U} = \boldsymbol{U}_2 - \boldsymbol{U}_1 = \boldsymbol{m}\boldsymbol{c}_{\boldsymbol{v}}(\boldsymbol{T}_2 - \boldsymbol{T}_1)$

THE CONSTANT VOLUME HEATING OF A GAS

Example 5.7 2 kg of gas, occupying 0.7 m^3 , had an original temperature of 15 °C. It was then heated at constant volume until its temperature became 135 °C. Determine the heat transferred to the gas and its final pressure. Take $c_v = 0.72 \text{ kJ/kg K}$ and R = 0.29 kJ/kg K.

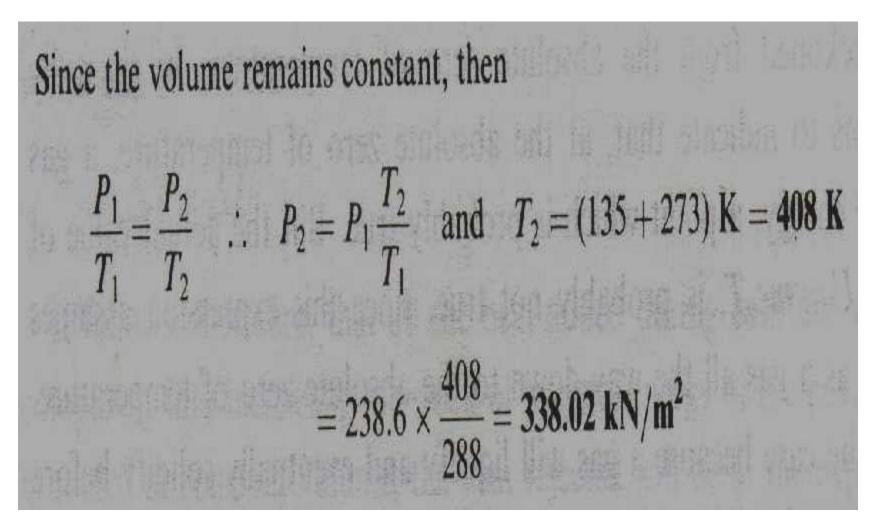
SOLUTION

Heat transferred at constant volume = $mc_v(T_2 - T_1)$ = 2 × 0.72 × (135 - 15) = 2 × 0.72 × 120 = 172.8 kJ Now $P_1V_1 = mRT_1$ and $T_1 = (15 + 273)$ K = 288 K

:.
$$P_1 = \frac{mRT_1}{V_1} = \frac{2 \times 0.29 \times 288}{0.7} = \frac{167.04}{0.7} = 238.6 \text{ kN/m}^2$$

THE CONSTANT VOLUME HEATING OF A GAS

Example continued...



□ Let a mass of gas m be heated at constant pressure such that its temperature rises from T_1 to T_2 and its pressure rises from V_1 to V_2 , then:

Heat received by the gas

= mass × specific heat capacity at constant pressure × rise in temperature

 $= mc_p(T_2 - T_1)$

□ Also

$$\Delta U = Q - W$$
or.
$$\Delta U = U_2 - U_1 = mc_p(T_2 - T_1) - P(V_2 - V_1)$$

$$U_2 - U_1 = mc_p(T_2 - T_1) - mR(T_2 - T_1)$$

Or applying the characteristic gas equation:

$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}, \qquad \text{where } P_2 = P_1$$
$$\Rightarrow \frac{V_1}{T_1} = \frac{V_2}{T_2} \quad \text{or} \quad V_2 = V_1\frac{V_2}{T_2}$$

Example 5.8 A gas whose pressure, volume and temperature are 275 kN/m^2 , 0.09 m³ and 185 °C, respectively, has its state changed at constant pressure until its temperature becomes 15 °C. Determine the heat transferred from the gas and the work done on the gas during the process. Take R = 0.29 kJ/kg K, $c_p = 1.005 \text{ kJ/kg K}$.

Now $P_1V_1 = mRT_1$ and $T_1 = (185 + 273) \text{ K} = 458 \text{ K}$ $\dots \qquad m = \frac{P_1V_1}{P_1} = \frac{275 \times 10^3 \times 0.09}{P_1V_1} = 0.186 \text{ kg}$

$$RT_1 \quad 0.29 \times 10^3 \times 458$$

Heat transferred = $mc_p(T_2 - T_1)$

:. Heat transferred = $0.186 \times 1.005 \times (15-185)$ = $0.186 \times 1.005 \times (-170)$ = -31.78 kJ

Example continued....

Notice the negative sign, indicating that the heat has been transferred from the gas. Since the pressure remains constant, then $\frac{V_1}{T_1} = \frac{V_2}{T_2}$:. $V_2 = V_1 \frac{T_2}{T_1} = 0.09 \times \frac{288}{458} = 0.056 \ 6 \ m^3$ Work done = $P(V_2 - V_1)$ = 275 × (0.056 6 - 0.009) $= 275 \times (-0.0334)$ = -9.19 kJ

THE DIFFERENCE OF THE SPECIFIC HEAT CAPACITIES OF A GAS

□ It has been shown that if a mass of gas m has its temperature changed from T_1 to T_2 then the change in its internal energy can be determined by the expressions:

And

 $U_2 - U_1 = mc_p(T_2 - T_1) - mR(T_2 - T_1)....(2)$

□ If the temperature change is the same for both expressions, then it follows that equation (1) quals equation (2) because the change in internal energy is a function of temperature alone by Joule's Law:

 $\therefore mc_{v}(T_{2} - T_{1}) = mc_{p}(T_{2} - T_{1}) - mR(T_{2} - T_{1})$

Since $(T_2 - T_1)$ is common throughout, we get:

$$c_{v} = c_{p} - R$$

$$\therefore c_{p} - c_{v} = R \dots (3)$$

$$= \frac{Pv}{T} \left(since \frac{Pv}{T} = R \right) \dots (4)$$

$$\frac{c_{p}}{c_{v}} = \gamma \dots (5)$$

And.

CHITALU 2022

"The Second Law of Thermodynamics: if you think things are a in a mess now, just wait!!"

Jim Warner

Thank You

Eng. Flora Chitalu The University of Zambia School of Engineering Department of Mechanical Engineering flora.chitalu@unza.zm