
EEE 3121 - Signals & Systems

Lecture 1:  Signals and Systems

Instructor:  Jerry MUWAMBA

June 7, 2023

Email:  jerry.muwamba@unza.zm

jerry.muwamba@yahoo.com

University of Zambia

School of Engineering,

Department of Electrical & Electronic Engineering 



Course Requirements

2
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lab sessions. 
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Introduction

 The chief objective of this course is to bring to the fore the fundamentals of 

electric system theory. Thus, most of the time will be devoted to system analysis 

and some time on system synthesis and design.

 In system analysis we concern ourselves with determining  the response (output), 

given the excitation (input) and the system (network).

 In system synthesis we concern ourselves with designing the system given the 

excitation and the desired response.
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1.1 Signal Analysis

 For electric systems, the excitation and response are given in terms of voltage and 
currents as functions of time, t. Generally, these  functions of  time are called 

signals. 

 In  electrical engineering, signals are described using time and frequency.  Signals 

can be described equally well in terms of spectral or frequency information.   

Fig 1.1: Objects of our concern
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1.1 Signal Analysis Cont’d

 The signal translation between time and frequency domain is aided by Fourier 

series, the Fourier integral, and the Laplace transform.

 These terms shall be defined and studied in detail later in this course.

Fig 1.2: Sinusoidal signal

 Let us focus our attention on how to describe a signal in terms of both the 

frequency and time.  
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1.1 Signal Analysis Cont’d

 Consider the signal of the form 

where        is the amplitude,         is the phase shift, and         is the angular 

frequency  given by 

0 0 0
( ) sin( )s t A t   (1.1)

0
A 

0 0


0
0

2

T


  (1.2)

here is the period of the sinusoid.  Fig. 1.2 above depicts the signal plotted 

against time. 

 If we let the angular frequency           be the independent variable, an equally 

complete description of the signal is obtained as shown in Figs. 1.3a and b.  


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Fig 1.3a: Plot of amplitude A versus angular frequency      .

1.1 Signal Analysis Cont’d

Fig 1.3b: Plot of phase       versus angular frequency       .


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1.1 Signal Analysis Cont’d

 Now suppose that the signal has 2n+1 sinusoidal components, such that,

Fig 1.4a: Discrete amplitude spectrum.
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 Spectral description of the signal would have 2n+1 line spectra as depicted in 

Figs. 1.4a and b.
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1.1 Signal Analysis Cont’d

 When the number these spectral lines become infinite, the intervals              

between the lines approach zero. Thus the discrete line spectra fuse into a 

continuous spectra as depicted by Figs. 1.5a and b.

 The continuous counterpart of Eq. 1.3 is of the form

(1.4)

 



1i i

( ) ( )sin ( )s t A t d    



   

here            is known as the amplitude spectrum and              as the phase 

spectrum.

( )A  ( ) 
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Fig 1.4b: Discrete phase spectrum.
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1.1 Signal Analysis Cont’d

 A nonperiodic signal such as the 

triangular pulse in Fig. 1.6 can only be 

described in terms of continuous 

spectra using the Fourier integral 

transform.

Fig 1.5a: Continuous amplitude spectrum.

Fig 1.5b: Continuous Phase spectrum.
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 Later in this course, we shall learn that 

periodic signals can be described in 

terms  of discrete spectra using Fourier 

series.
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1.2 Complex Frequency 

 The complex frequency variable of the form 

  s j (1.5)

is a generalized frequency variable whose real part       describes growth and decay 

of the amplitudes of signals, and whose imaginary part        is angular frequency.   


j

Fig 1.6: Triangular signal.

 The concept of complex frequency is developed by examining the cisoidal signal

( ) j tt Ae S (1.6)
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1.2 Complex Frequency Cont’d

 Fig. 1.7 shows           represented as a rotating phasor.  Here, the angular frequency         

can be thought of as a velocity at the end of the phasor.  

( )tS

Fig 1.7: Rotating phasor.

 The velocity       is always at right angles to the phasor. In general, if the velocity         

is inclined at any arbitrary angle        , it  has a component          at right angles      

to the phasor        and a component      ,  parallel to      . 



 

S  S



s
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1.2 Complex Frequency Cont’d

 Fig. 1.8 (a)  shows  that the phasor decreases in amplitude as it  spins in a 

counterclockwise fashion. Thus the signal             is made of damped sinusoids. 
S

Fig 1.8: (a) Rotating phasor with exponentially decreasing amplitude.   (b) Rotating 

phasor with exponentially increasing amplitude.

( )tS
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1.2 Complex Frequency Cont’d

 The signal            is thus of the form( )tS

Re ( ) cos

Im ( ) sin

t

t

t Ae t

t Ae t

















S

S
(1.7)

Fig 1.9: Damped sinusoids.

 The plots of Eq. 1.7 are depicted in Fig. 1.9
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1.2 Complex Frequency Cont’d

 Fig. 1.10 shows an exponentially increasing sinusoid when the real component of 

velocity is        .

Fig 1.10: Exponentially increasing sinusoid.


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1.2 Complex Frequency Cont’d

 Thus, the generalized cisoidal signal is of the form 

( )( ) st j tt Ae Ae   S (1.8)

which describes the growth and decay of amplitudes apart from angular frequency. 

If            , sinusoid is undamped, and if              , the signal is purely exponential, 

which is of the form  

( ) tt Ae S

  0   0j

(1.9)

 If                       , the signal is simply a constant.   0j
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1.3 System Analysis

 Let us focus our energy on the fundamental properties of linear networks and 

general characteristics of signal processing by linear systems.

Basic Definitions

Linear. A system is linear if and only if the principles of superposition and 

proportionality hold. Thus, for a given System,  let                             and                                                      

be excitation-response pairs, then  for an excitation                         

, the response ought to be                                  .     

Likewise, for excitation               , were       is a constant, the response ought to be               

, implying the constant is preserved by the linear system.

Passive. A linear system is passive if and only if the energy delivered to the System 

is nonnegative for any arbitrary excitation, and no voltages or currents appear 

between any two terminals before an excitation is applied.

1 1
[ ( ), ( )]e t r t

2 2
[ ( ), ( )]e t r t

 
1 2

( ) ( ) ( )e t e t e t  
1 2

( ) ( ) ( )r t r t r t

1 1
( )C e t

1
C

1 1
( )C r t
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1.3 System Analysis Cont’d 

Basic Definitions

Reciprocal. A linear time-invariant (LTI) System is reciprocal if and only if points 

of excitation and measurement of response are interchanged, the relationship 

between  excitation and response remains the same.

Fig 1.11: Linear System.

Causal. A system is causal if its response is nonanticipatory. Thus, if

  

  

( ) 0

( ) 0

e t t T

r t t T
(1.10)

then

Simply put, a system is causal if before an excitation is applied  at            , the 

response is zero for                      .

t T
  t T
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Proof: let the excitation                 for a real quantity     , by the time-invariant 

property, the response would be                . Suppose the excitation were

Basic Definitions

Time invariant. A system is time-invariant if                         implies that            

,  here the symbol          denoting “gives rise to.” It is worth 

noting that linear systems need not be time invariant. 

Derivative. By means of the time-invariant property, it follows that, if an input          

gives rise to  an output           , then for an input            ,i.e., the derivative of          , 

an output             is obtained. 

1.3 System Analysis Cont’d 

( ) ( )e t r t
  ( ) ( )e t T r t T 

( )e t
( )r t ( )e t

( )r t
( )e t

( )e t 



   
 1

1
( ) ( ) ( )e t e t e t (1.11)

it follows from the linearity and time-invariant properties, that the response is 

(1.12)
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1.3 System Analysis Cont’d 

Taking the limit as             , yields

(1.13)

 0













10

10

lim ( ) ( )

lim ( ) ( )

d
e t e t

dt
d

r t r t
dt

It is worth noting that this idea can extended to higher derivatives and the integrals 

of           and         .  ( )e t ( )r t
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1.3 System Analysis Cont’d 

22Department of Electrical & Electronic Engineering, School of Engineering, University of Zambia

Fig 1.12: Amplifier.

Fig 1.14: Integrator. Fig 1.15 Time-delay System.

Ideal models

 Some of the idealized models of linear systems are shown below whose properties

renders them useful in signal processing.

Fig 1.13: Differentiator.

Amplifier
( )e t ( )Ke t d

K
dt

( )f t ( )
d

K f t
dt

0
t

K
( )f t 0

( )
t

K f d  ( )f t ( )f t T
( )D T



1.3 System Analysis Cont’d 

 Let the triangular pulse in Fig. 1.16 be the excitation to each of the four systems  

just described.  Their respective responses are as shown in Fig. 1.17. 

Fig 1.16: Excitation function.
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1.3 System Analysis Cont’d 

Fig. 1.17: (a) Amplifier output.    (b) Differentiator output.  (c) Integrator output.  (d) 
Delayed  output.

(a)

(d)

(b)

(c)
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1.3 System Analysis Cont’d 

Ideal elements 

 Idealized linear mathematical models of physical circuits elements are used to 

analyse electric networks and/or systems. 

 The most common elements are resistor R, [ohms], capacitor C, [farads], and 

inductor L, [henrys]. Any pair of two terminals into which energy is supplied or 

withdrawn is know as a port.

Fig 1.18: Two-port System.

 Fig. 1.18 shows an example of a two-port System. The energy sources for 

excitation functions are ideal current and voltage sources, see Figs. 1.19a and b.
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1.3 System Analysis Cont’d

 An ideal voltage source is an energy source that provides, at a given port, a voltage 

signal independent of the current at that port. Interchanging the words “current” 

and “voltage” in the last definition, defines an ideal current source.

 The key problem in system analysis, is to find the relationships that exist between 

the currents and voltages at the ports of the system.

Fig 1.19a: Voltage source. Fig 1.19b: Current source.

 Consider the R, L and C elements shown in Fig.1.20. Since the currents and 

voltages are expressed as functions of time, the equations defining them are of the 

form
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1.3 System Analysis Cont’d 

27

Fig 1.20: (a) Resistor.    (b) Inductor.     (c) Capacitor.

(b)(a) (c)

 

  

  





0

0

1
( ) ( ) or ( ) ( )

( ) 1
( ) or ( ) ( ) (0)

1 ( )
( ) ( ) (0) or ( )

t

t

v t Ri t i t v t
R

di t
v t L i t v x dx i

dt L
dv t

v t i x dx v i t C
C dt

Department of Electrical & Electronic Engineering, School of Engineering, University of Zambia

(1.14)





R

( )i t

( )v t





L

( )i t

( )v t





( )i t

( )v t C



1.3 System Analysis Cont’d 

here, the constants of integration and            are initial conditions. 

 In complex frequency domain, using the variable     , ignoring initial conditions for 

now, the above equations are of the form

(0)i (0)v

 

 

 

1
( ) ( ) or ( ) ( )

1
( ) ( ) or ( ) ( )

1
( ) ( ) or ( ) ( )

V s RI s I s V s
R

V s sLI s I s V s
sL

V s I s I s sCV s
sC

(1.15)

s

 Notice that in the time-domain, the voltage-current relationships are given in terms 

of differential equations. However, in the complex-frequency domain, they are 

expressed in algebraic equations, much simpler to solve.
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1.3 System Analysis Cont’d 

Fig 1.21: (a) Resistor.    (b) Inductor.     (c) Capacitor.

(b)(a) (c)

 If a System consists of an interconnection of linear circuit elements, it is described 

by a transfer function .  Thus the response           and excitation           are 

related by the equation of the form  

( )H s ( )E s( )R s

( ) ( ) ( )R s H s E s (1.16)

 In System analysis,           is given,              is directly obtained from the System. 

Thus, the task is to determine           .

( )E s ( )H s
( )R s

29Department of Electrical & Electronic Engineering, School of Engineering, University of Zambia





R

( )I s

( )V s





sL

( )I s

( )V s
1

sC





( )I s

( )V s



1.4 System Synthesis 

 In System synthesis, the response           and excitation             are given, thus we 

are required to synthesize the System from the system function

( )E s( )R s


( )

( )
( )

R s
H s

E s
(1.17)

 A driving-point immittance is defined to be a function for which the variables are 

measured at the same port. Thus a driving-point impedance    is of the form  ( )Z s

Fig 1.22: Driving-point impedance Fig 1.23: Black box.


( )

( )
( )

V s
Z s

I s
(1.18)
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1.4 System Synthesis Cont’d

here, the excitation is a current           and the response is a voltage          , as shown 

in Fig. 1.22. 

 In Fig. 1.22 driving-point impedance is obtained as

( )V s( )I s

 
( )

( )
( )

V s
Z s R

I s
(1.19)

 Let the resistor in Fig. 1.22 be enclosed in a “black box.”  Assume we have no 

access to this box, except at the terminals           in Fig.1.23. There is need to 

determine the System in the black box.

 Let excitation           , the voltage response           is proportional to            by the 

equation

1-1

( ) ( )V s KI s (1.20)

( )I s ( )V s ( )I s

 The trivial solution, though not unique, is that the black box consists of a resistor 

of value                    .   R K
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1.4 System Synthesis Cont’d

 Suppose the excitation is a voltage           , the response is a current           , and 

that 
( )V s ( )I s

  
( )

( ) 3 3
( )

I s
Y s s

V s
(1.21)

 Our task is to synthesize a System equivalent to the System in the black box. It 

follows that a possible solution is shown in Fig. 1.24.

Fig 1.24: System realization for  
Y(s).

Fig 1.25: Two-port System.
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1.4 System Synthesis Cont’d

 The previous example has shown that the problem of driving-point synthesis, 

consists of  decomposing a given immittance function into basic recognizable parts 
(such as 3 + 3s).

 Realizable  driving-point immittances belong to a class of functions called positive 

real functions. Properties of p.r. functions can be used to test a given driving-point 

function for realizability.

 A transfer function or transmittance takes many different forms. For example, 

consider the two-port System in Fig. 1.25.  For excitation           and response           

, the transfer function is a transfer impedance
2
( )V s

1
( )I s

 2
21

1

( )
( )

( )

V s
Z s

I s
(1.22)

 Similarly, if            were the excitation and            the response, then a voltage-ratio 

transfer function is obtained.
2
( )V s

1
( )V s
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1.4 System Synthesis Cont’d

 As for driving-point functions, there are certain properties which a transfer 

function must satisfy in order to be realizable.

 The filter design is critical in transfer function synthesis. A filter is defined as a 

System which passes a certain portion of a frequency spectrum and blocks the rest 

of the spectrum.

2

1

( )
( )

( )

V s
H s

V s
 (1.23)

Fig 1.26: Ideal amplitude spectrum for low-pass filter.
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1.4 System Synthesis Cont’d

 One aspect of filter design is to synthesize the System from the transfer function            

. The other aspect deals with the problem of obtaining a realizable  

transmittance            given the specification of, for example, the magnitude 

characteristic in Fig. 1.26. This part of synthesis is generally referred to as the 

approximation problem. 

 It is approximate because the frequency response characteristics of the R, L and C
elements are continuous, except at resonance points. As such a System with these 

elements cannot be made to cut off abruptly at the cutoff frequency .
C

( )H s

( )H s

Fig 1.27: Realizable low-pass filter characteristics.
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1.4 System Synthesis Cont’d

 Fig. 1.27 shows the magnitude characteristics of low-pass filters that can 

practically be realized.

 In filter design problems, certain problems in magnitude and frequency 

normalization will be discussed. This allows us to deal with element values such as  
R = 0.5ohm and C = 2farads instead of “practical” element  values of, for 

example, R = 500,000 ohms and C = 2 picofarads .                                
 12(pico 10 )
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End of Lecture 1 

Thank you for your attention! 
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