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Introduction

 In this part of the course we concern ourselves with characterization of signals as 

functions of time.

 The class of signals encountered in engineering practice is broader than simple AC 

or DC signals. Thus, characterization of these signals is a daunting task.

 Instead, we will deal only with those signals that can be characterized in simple 

mathematical terms which serve as building blocks for many other signals. 

 Note, that this course will only dwell on deterministic signals which do not exhibit 

random behavior.
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2.1 General Characteristics of signals 

 Signals are qualitatively describe as being periodic, symmetrical, and continuous. 

 First, signals are either periodic or aperiodic. Periodic signals are described by the 

equation of the form
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( ) ( ) 0,1,2,...s t s t kT k (2.1)

Fig. 2.1:  Square wave.

where T is the period of the signal. The sine wave, , is periodic with period               

. Fig. 2.1 shows yet another example of a periodic signal. 2T
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2.1 General Characteristics of signals Cont’d

 Signals exhibited in Fig. 2.2 however, are aperiod since  the pulse patterns do not 
repeat after an interval T. These signals may be considered periodic with an 

infinite period.
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(2.2)

Fig. 2.2:  (a) Even function.                 (b) Odd function.

 Symmetrical property. A signal function can be even or odd or neither. An even 

function obeys the relation

(2.3)For an odd function

( ) ( )s t s t 

( ) ( )s t s t  

(a) (b)
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2.1 General Characteristics of signals Cont’d 

 Examples are that, the function            is odd, whereas            is even. 

 Notice that a signal need not be even or odd.  Examples of signals of this type are 
shown in Fig. 2.3a and 2.4a.

 It is worth noting that any signal          can be resolved into even and  odd 
components, such that
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(2.4)

 For example, the signals in Figs. 2.3a and 2.4a can be decomposed into odd and 

even components as depicted in Figs. 2.3b, 2.3c, 2.4b and 2.4c.

 From Eq. 2.4 it follows that

 ( ) ( ) ( )
e o

s t s t s t
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2.1 General Characteristics of signals Cont’d

Fig. 2.4:  Decomposition into odd and even components (a) Unit step function. (b) 

Even part. (c) Odd part.
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Fig. 2.3:  Decomposition into odd and even components (a) Original function. 

(b) Even part. (c) Odd part.

(a) (b) (c)

(a) (b) (c)
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2.1 General Characteristics of signals Cont’d 

 The odd and even parts of the signal can thus be expressed as
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(2.6)

 Consider the signal         , shown in Fig. 2.5a. The function              is equal to            

reflected about the                axis and given in Fig. 2.5b. Thus the even and 

odd functions are respectively shown in Fig. 5c and d.

( )s t
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( )s t

 0t

 Let us turn our focus on the continuity property of signals. With respect to Fig. 

2.6, at          , the signal is discontinuous with heightt T

   ( ) ( )f T f T A

 
 

 
     

0 0
( ) lim ( ), ( ) lim ( )f T f T f T f T (2.8)where
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2.1 General Characteristics of signals Cont’d 

Fig. 2.5:  Decomposition into odd and even components from s(t) to s(-t).
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2.1 General Characteristics of signals Cont’d 

Fig. 2.6: Signal with discontinuity.
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and         is a real positive quantity.

Fig. 2.7: Signal two with discontinuity.

 Since of particular concern are discontinuities in the neighborhood of           , by 

Eq. 2.8, the points               and              are

 0t
(0 )f (0 )f
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2.1 General Characteristics of signals Cont’d

 The square pulse in Fig. 2.7 has two discontinuities, at         and       . The height of 

discontinuity at          is 
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 Similarly, the height of the discontinuity at         is        .
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2.2 General Descriptions of Signals 

 Time constant. In many physical problems, it is important to know how quickly a 

waveform decays. Thus, a useful measure of decay of an exponential is the time

constant . Let the exponential waveform be

12

 From a plot of          in Fig. 2.8, we see that when           ,


( ) ( )

t
r t Ke u t (2.11)



( )r t t

 ( ) 0.37 (0)r r

 (4 ) 0.02 (0)r r

(2.12)

(2.13)Also

 Clearly, the larger the time constant, the longer it requires for the waveform to 

reach             of its peak value. The common time constants in circuit analysis are           

and          .

37%
RC R L
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2.2 General Descriptions of Signals Cont’d

 RMS Value. The rms (root mean square) value of a periodic waveform            is 

defined as
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0

0

1 2

21
( )

t T

rms t
e e t dt

T

 
  
 
 (2.14)

Fig. 2.8: Normalized curve for time constant            .

( )e t
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 here T is the period. For non periodic waveforms, the term rms does not apply. 



[Example 2.1] RMS Value

Calculate the rms voltage for the waveform in Fig. 2.9.
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Fig. 2.9: Periodic 

waveform.
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2.2 General Descriptions of Signals Cont’d

 DC value. The dc value of a waveform has meaning only when the waveform is 

periodic.  It is the average value of the waveform over one period.
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(2.16)
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 Vividly, the squarewave in Fig. 2.1 has zero dc value, whereas the waveform in 

Fig. 2.9 has a dc value of 
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2.2 General Descriptions of Signals Cont’d
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 Duty cycle. The term duty cycle, D, is defined as the ratio of the time duration of 
the positive cycle       of a periodic waveform to the period, T, that is,

0
t

 0
t

D
T

(2.18)

 For the pulse train shown in Fig. 2.10 below, where most of the energy is 

concentrated in a narrow pulse of width , the rms voltage of the waveform in is 
0
t
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Fig. 2.10: Periodic 

waveform with 

small duty cycle.
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2.2 General Descriptions of Signals Cont’d

 Crest factor is defined as the ratio of the peak voltage of a periodic waveform to the 

rms value (with the dc component removed). Explicitly, for any waveform with 

zero dc such as the one in Fig. 2.11, crest factor, CF, is 
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 ora b

rms rms

e e
CF

e e
(2.20)

Fig. 2.11: Periodic waveform with zero dc and small duty cycle.

whichever is greater.  Thus for the waveform in Fig. 2.11, the peak-to-peak voltage 

is
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2.2 General Descriptions of Signals Cont’d

 Since the waveform has zero dc value

18

Also,

 
pp a b
e e e

 
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
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(2.23)

(2.24)

(2.21)

and
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 Thus for the waveform in Fig. 2.11, the peak-to-peak voltage is



2.2 General Descriptions of Signals Cont’d

 Since crest factor                          , we have

19

(2.25)
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 For example, if                      ,  1 100D

    
1

1 100 1 10
1 100

CF (2.27)

Department of Electrical & Electronic Engineering, School of Engineering, University of Zambia

 The rms value of the waveform in Fig. 2.11 is



2.2 General Descriptions of Signals Cont’d

 If                            , 

20

 1 10,000D

  10,000 1 100CF (2.28)

 A voltmeter with high crest factor is able to read accurately rms values of signals 

whose waveforms differ from sinusoids, that is, signals with low duty factor. It is 

worth noting that the smallest value of crest factor occurs for the maximum value 

of          , that is,                      ,   
max

0.5D

  
min max

1 1 1CF D (2.29)

D

Department of Electrical & Electronic Engineering, School of Engineering, University of Zambia



2.3 The Step Function and Associated 

Waveforms

 The unit step function            shown in Fig. 2.12 is defined as 

21

( )u t

 The physical analogy of a unit step excitation corresponds to a switch S, which 

closes at             and connects a dc battery of 1 volt to a given circuit, as shown in 

Fig. 2.13.   The unit step is zero whenever the argument within the parentheses is 

negative and unit otherwise.

  
 

 

0 0
( )

1 0

t
u t

t
(2.30)

Fig. 2.12: Unit step function. Fig. 2.13: System analogy of unit step.

 0t
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2.3 The Step Function and Associated 

Waveforms Cont’d

 Thus the function                  , where              , is defined by 

22

( )u t a

 Consider the change of amplitude and shifting properties of the step function. It 

follows that the square pulse in Fig. 2.15 can be constructed  by the sum of two 

step functions.

(2.31)

Fig. 2.14: Shifted step function. Fig. 2.15: Square pulse.

 0a

    ( ) 4 ( 1) ( 4) ( 2)s t u t u t (2.32)
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2.3 The Step Function and Associated 

Waveforms

 Eq. 2.32 is depicted by Fig. 2.16.
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 The equation of the staircase function  in Fig. 2.17, is given by

Fig. 2.16: Construction of square 

pulse by step function



 
2

0

( ) ( )
k

s t u t kT (2.33)

Fig. 2.17: Staircase function
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2.3 The Step Function and Associated 

Waveforms Cont’d

 Similarly, by the shifting property, the square wave in Fig. 2.1, for           , is given 

by the equation of the form
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 A simpler way to represent the square wave is by using the property that the step 

function is zero if and only if the argument is negative. By confining us to the 

interval            , the function 

       ( ) ( ) 2 ( ) 2 ( 2 ) 2 ( 3 )s t u t u t T u t T u t T (2.34)

( ) sin
t

s t u
T

 
  

 

(2.36)

is zero whenever                       is negative, see Fig. 2.18. Thus, the square wave in 

Fig. 2.1 can also be given by the equation of the form 

( ) sin sin
t t

s t u u
T T

    
     

   

(2.35)
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2.3 The Step Function and Associated 

Waveforms

 Consider a generalized step function called the sgn function defined as 
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 The square wave in Fig. 2.1 is thus simply expressed as

  


     
  


1 ( ) 0

sgn ( ) 0 ( ) 0

1 ( ) 0

f t

f t f t

f t

(2.37)

Fig. 2.18: The signal                          .(sin )u t T
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2.3 The Step Function and Associated 

Waveforms Cont’d

 By the shifting property of the step function, the sine pulse in Fig. 2.19 can be 

represented as 
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 
  

 
( ) sgn sin

t
s t

T
(2.38)

Fig. 2.19: Sine pulse.
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2.3 The Step Function and Associated 

Waveforms 

 The step function is also extremely useful in representing the shifted or delayed 

version of any signal. For instance, consider the unit ramp function
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 ( ) ( )t tu t (2.40)

Fig. 2.20: Unit ramp.

 Let us replace the variable t by a new variable                    . Then     t t a

Fig. 2.21: Ramp shifted by t = a .

   ( ) ( )t t u t (2.41)
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2.3 The Step Function and Associated 

Waveforms Cont’d

 When              is plotted against       , the resulting curve is identical to the plot in 

Fig. 2.20. If, however, we substitute                    in              , we then have
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 Plotting             against     , we have a the delayed version in Fig. 2.21.

 Vividly, if any signal                   is delayed by a time T, the resultant signal is 

given by             

t ( )t

(2.42)

 t a t

    ( ) ( ) ( )t t a u t a

t
( ) ( )f t u t

(2.43)

 Example. Let us delay the function                               by a period T. Then(sin ) ( )t T u t

 
    

 
( ) sin ( ) ( )s t t T u t T

T
(2.44)
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2.3 The Step Function and Associated 

Waveforms

 Example. Consider Fig. 2.23, it follows that the equation of the given function in 

terms of its components is of the form

29

Fig. 2.22: Shifted sine wave. Fig. 2.23: Triangular pulse.

       ( ) 2( 1) ( 1) 2( 2) ( 2) 2 ( 2)s t t u t t u t u t (2.45)

 The plot of the components is shown in Fig. 2.24.
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2.3 The Step Function and Associated 

Waveforms Cont’d

Fig. 2.24: Decomposition of triangular pulse in Fig. 2.23.
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2.4 The Unit Impulse

 The unit impulse, or delta function, is a mathematical anomaly, P.A.M. Dirac 

defined the delta function             by the equations
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



 ( ) 1t dt (2.46)

 Its most important property is the shifting property, expressed by   

  ( ) 0 for 0t t (2.47)





 ( ) ( ) (0)f t t dt f (2.48)

 From theory, the unit impulse is the derivative of the unit step

 ( ) ( )t u t (2.49)

 The above statement is doubtful at first glance. Consider  the function       

in Fig. 2.25. Clearly, 

( )g t

( )t

Department of Electrical & Electronic Engineering, School of Engineering, University of Zambia



Fig. 2.26: Derivative of               in Fig. 2.25.   

2.4 The Unit Impulse Cont’d

 Taking the derivative of              , we obtain              shown in Fig. 2.26, which is 

given as

32




0
lim ( ) ( )g t u t (2.50)


( )g t

(2.51)

Fig. 2.25: Unit step when .    
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2.4 The Unit Impulse Cont’d

 Now let         take on a sequence of values          such that                 . Consider the 

sequence of functions                 for decreasing values of         , shown in Fig. 2.27. 

The sequence has the following property:

33




{ ( )}
i
g t


i

 



1i i

Fig. 2.27: The sequence                   .   
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2.4 The Unit Impulse Cont’d

where      and      are arbitrary real numbers. For every nonzero value of       there 

corresponds a well-behaved function (i.e., it does not blow up)            . As           

approaches zero
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1
t

i

 ( )
i
g t






 

2

1

0

00
lim ( ) 1

i

t

t
g t dt (2.52)

2
t

  

   
0

(0 )
i

i

g (2.53)

 Another sequence of functions which obeys the property given in Eq. 2.52 is                   

in Fig. 2.28. Thus, we define the unit impulse as the class of all

sequences of functions which obey Eq. 2.52. In particular, defined as

{ ( )}

i
f t ( )t
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2.4 The Unit Impulse Cont’d

 It is worth noting that the this is not a rigorous definition, it is as a matter of fact a 

heuristic one. A more rigorous approach is found in Appendix B of our reference 

book.

 From the previous definition we can think of the delta function as having the 

additional properties,
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(2.54)
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 

(0)

( ) 0 for 0t t
(2.55)

Department of Electrical & Electronic Engineering, School of Engineering, University of Zambia



2.4 The Unit Impulse Cont’d

 Continuing with the heuristic approach, we say that the area under the impulse is 

unity, and, since the impulse is zero for             , we have
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Fig. 2.28: The sequence                 .   

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2.4 The Unit Impulse Cont’d

 Thus the entire area of the impulse is concentrated at            . Thus, any integral 

that does not integrate through             is zero,  as seen by
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 
 

 
  

0

0
( ) ( ) 1t dt t dt (2.56)

 0t

(2.57) 
 

 
  

0

0
( ) ( ) 0t dt t dt

 The change of scale and time shift properties discussed earlier also apply for the 

impulse function. The derivative of a step function yields an impulse function. For 

Example, given

 ( ) ( )s t Au t a (2.58)

  ( ) ( )s t A t a (2.59)
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2.4 The Unit Impulse Cont’d

 Graphically, we represent an impulse function by an arrowhead pointing upward, 
with the constant multiplier A written next to the arrowhead. Note that A is the 

area under the impulse                     .

 From Eqs. 2.58 and 2.59, the derivative of the step at the jump discontinuity of 

height A yields an impulse of area A at the same point             . 

 Generalizing this argument, consider any function            with a jump discontinuity 

at             .
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Fig. 2.29: Step and Impulse functions
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t T
( )f t
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2.4 The Unit Impulse Cont’d

 Then the derivative,              must have an impulse at            . As an example, 

consider            in Fig. 2.30. At             ,           has a discontinuity of height A, 

which is given as
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Fig. 2.30: Function with discontinuity at T.

t T( )f t
( )f t

   ( ) ( )A f T f T (2.60)

 Let us define            as being equal to            for           , and having the same shape 

as the latter, but without the discontinuity for             , that is,
1
( )f t t T
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 Example, to illustrate this point more clearly. In Fig. 2.31a, the function     

is  

2.4 The Unit Impulse Cont’d

 The derivative              is then
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( )f t

( )f t

  
1
( ) ( ) ( )f t f t Au t T (2.61)

   
1

( ) ( ) ( )f t f t A t T (2.62)

   ( ) ( ) ( )f t Au t a Au t b (2.63)

(2.64)Its derivative is 

and is shown in Fig. 2.31b. Since            has two discontinuities, at              and               

its derivative must have impulses at those points. The coefficient of the 

impulse at             is negative because

t a
t b
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2.4 The Unit Impulse Cont’d

Fig. 2.31: (a) Square pulse.   (b) Derivative of the square pulse.
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(2.65)

(a) (b)

 As a second example, consider the function            shown in Fig. 2.32a. We obtain                

by inspection, and note that the discontinuity at              produces the impulse 

in              of area           
   (1 ) (1 ) 2g g (2.66)

 1t
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2.4 The Unit Impulse Cont’d

Fig. 2.32: (a) Signal.   (b) Derivative.
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 Another property of the impulse function is expressed by the integral





  ( ) ( ) ( )f t t T dt f T (2.67)
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2.4 The Unit Impulse Cont’d

 This integral is easily evaluated if we consider that                         for all   . 

Therefore, the product 
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  ( ) 0t T t T

    ( ) ( ) 0f t t T t T (2.68)

 If             is single-valued at            ,            can be factored from the integral so 

that we obtain

( )f t





 ( ) ( ) ( )f T t T dt f T (2.69)

 Figure 2.33 shows             and                 , where           is continuous at           . 

If             has a discontinuity at              , the integral  





 ( ) ( )f t t T dt

is not defined because the value of             is not uniquely given.
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Evaluate the integral having an exponential function                     ;

[Solution]

Eqn. 2.67 yields

2.4 The Unit Impulse Cont’d

[Example 2.2]  Evaluation of Integral Using Impulse

44

( ) j tf t e

(2.70)

Fig. 2.33 Fig. 2.34: Impulse scanning.
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[Example 2.3] Evaluation of Integral 

Using Impulse

Evaluate the given integral having                        ;

[Solution]

Vividly Eqn. 2.67 yields
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(2.72)

 Consider next the case where            is continuous for                       . Let us direct 

our attention to the integral

1
sin sin

4 4 2
t t dt

 






   
     

   


( )f t    t





  ( ) ( ) ( )f t t T dt f T

(2.71)

which holds for all        in this case. If   T were varied from                       , then          

would be reproduced in its entirety. An operation of this sort  corresponds to 

scanning the function          by  moving a sheet of paper with a thin slit across a 

plot of the function, shown in Fig. 2.34. 

t  to
( )f t
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2.4 The Unit Impulse Cont’d

 We examine higher order derivatives of the unit impulse function. Here we let the 

unit impulse function be             in Fig. 2.28, which as              , becomes the unit 

impulse.  Fig. 2.35 shows the derivative           . 

 Thus, as              ,              approaches the derivative of the unit impulse 

, which consists of a pair of impulses as seen in Fig. 2.36. The area under the 

doublet   , is equal to zero. Thus,  
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(2.73)



  ( ) 0t dt

 The other significant property of the doublet is 

 0

( )f t


( )f t

 ( )t





    ( ) ( ) ( )f t t T dt f T (2.74)
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where            is the derivative of           evaluated at             where, again, we 

assume that            is continuous. 
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Fig. 2.35: Unit doubles as            . Fig. 2.36: The doublet.0

( )f t( )f T t T
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 In general
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(2.76)

where          and           denote nth derivatives. The higher order derivatives of               

can be evaluated in similar fashion.

  
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f t t T dt f t t T f t t T dt
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(2.75)
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Proof of Eqn. 2.74 using integration by parts 



End of Lecture 2 

Thank you for your attention!
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