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3.1 Introduction

❑ One of the most common classes of signals encountered are periodic signals. If  

is the period of the signal, then
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❑ In addition, if            has only a finite number of discontinuities in any finite 

period and if the integral 
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is finite ( where        is an arbitrary real number), then           can be expanded 

into the infinite trigonometric series
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3.1 Introduction Cont’d

❑ Here                  . This series is known as the Fourier series. In compact form, the 

Fourier series is
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❑ Thus, when can be described completely in terms of the coefficients of its 

harmonic terms. These coefficients constitute a frequency domain description  of 

the signal. 

❑ Our task now is to derive the equations for the coefficients       ,         in terms of 

the given signal function          .

❑ Lets us first focus our energy and discussion on the mathematical basis of  Fourier 

series, the theory of orthogonal sets.

0 0
2 T =

( )s t

n
a

n
b

Department of Electrical & Electronic Engineering, School of Engineering, University of Zambia

( )s t



3.2 Orthogonal functions

❑ Consider any two functions            and            that are not identically zero. Then if
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f t f t dt

(3.5)

❑ We say that           and           are orthogonal over the interval .  For

instance, the functions            and           are orthogonal over the interval 

. Consider next a set of real functions                                     . 

If the functions obey the condition
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(3.4)

where            ,  then the set              forms an orthogonal set over             . In Eq. 

3.5 the integral is denoted by the inner product . For convenience here, we 

use the inner product notation in our discussions.
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3.2 Orthogonal functions Cont’d

❑ The set              is orthonormal over               if  
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(3.7)

❑ The norm of an element         in the set              is defined as  

(3.6)
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❑ Any orthogonal set                                     can be normalized by dividing each 

term         by its norm          .
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Example 3.1 Orthogonal functions
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[Solution]
To show that the set is orthogonal, let us consider the integral
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 Show that the Laguerre set is orthogonal over             .

The Laguerre set, which has been shown to be very useful in time domain 

approximation, has the first four terms  of as
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[Example 3.1] Orthogonal functions Cont’d

 Letting            , we have
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Example 3.1 Orthogonal functions Cont’d

It is trivial to verify that the norms of all the elements in the set are also equal to               

. Therefore, to render the Laguerre set orthonomal, we divide each   

element         by                .
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Definition 3.1 Given a function          and constant             for which 

3.3 Approx. Using Orthogonal functions

❑ We now explore some uses of orthogonal functions in linear approximation of 

functions. The key problem is approximating a function              by a sequence of 

functions            such that the mean squared error (MSE) is
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❑ When Eq. 3.13 is satisfied, we say that               converges in the mean to          .

❑ To examine the concept of convergence in the mean more closely,  we must 

consider the following definitions:
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3.3 Approx. Using Orthogonal functions 

Cont’d
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Definition 3.2 If                   in             , and                is a sequence of functions 

integrable        in            , we say that if      
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then               converges in the mean order to          . Specifically, when 

we say that               converges in the mean to          .

p

2p =

❑ The principle of least squares. Consider the case when           consists of a linear 

combination of orthonormal functions                      .      
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3.3 Approx. Using Orthogonal functions 

Cont’d

❑ Our problem is to determine the constants        such that the integral squared error
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is a minimum. The principle of least squares states that in order to attain minimum 
squared error, the constants        must have values

i
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Proof. We show that in order for                 to be minimum, we must set     
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3.3 Approx. Using Orthogonal functions 

Cont’d

Since the set          is orthonormal,                 , and by definition 

. We thus have 
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We see that in order to attain minimum  integral squared error, we must set 

. The coefficients        , defined in Eq. 3.16 are called the Fourier 

Coefficients of            with respect to orthonormal set               . 
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3.3 Approx. Using Orthogonal functions 

Cont’d

❑ Parseval’s equality. Consider            given in Eq. 3.14. We see that
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since are orthonormal functions. This result is known as Parseval’s equality, 

and is important in determining the energy of a periodic signal.

(3.20)
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3.4 Fourier Series

❑ Let us return to the Fourier series as defined earlier.
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❑ By the approximation using orthonormal functions just discussed, we see that a 
periodic function           with period        can be approximated by a Fourier series

such that           converges in the mean to           , that is,

(3.21)
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where      is any real number. We know, that if n is finite, the mean squared error                        

is minimized when the constants              are Fourier coefficients of              
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3.4 Fourier Series Cont’d

In explicit form the Fourier coefficients, according to the definition given earlier, 

are obtained from the equations

16

(3.23)
0

0

0

1
( )

T
a s t dt

T





+

= 

0

0

0

2
( )cos

T

k
a s t k tdt

T






+

= 

0

0

0

2
( )sin

T

k
b s t k tdt
T






+

= 

(3.24)

(3.25)
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3.4 Fourier Series Cont’d

❑ It is worth noting that because the Fourier series            only converges to    

in the mean, when          contains a jump discontinuity, for example, at 
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❑ At any point        that           is differentiable            converges to            . 1
( )
n
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1
t

Fig. 3.1: Rectified sine wave.
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[Example 3.2] Fourier Series

Determine the Fourier coefficients of the fully rectified sine wave in Fig. 3.1. The 

period is               so that the fundamental frequency is               . The signal is 

given as
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Lets us take               and evaluate between        and      . Using the formulae just 

derived, we have
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[Example 3.2] Fourier Series Cont’d

Thus the Fourier series of the rectified sine wave is 
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Use of the trigonometric identity                                                                     

yields
sin cos2 [sin(1 2 ) sin(1 2 ) ]
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3.5 Evaluation of Fourier Coefficients
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❑ We now consider two other useful forms of Fourier series. From Eqs. 3.23-3.25, let                       

and we represent the integrals as the sum of two separate parts, that is 0
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❑ Since the variable       in the above integrals is a dummy variable, let us substitute               

in the integrals with limits                  , and let                in the integrals with 

limits                    . Then we have
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3.5 Evaluation of Fourier Coefficients 

Cont’d
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❑ Suppose now the function is odd, that is,                           , then we see that 

for all n, and 0
n
a =

( ) ( )s x s x= − −
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❑ The implication is that, the Fourier series of an odd function will only contain 

sine terms. 
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❑ Suppose the function is even, that is,                         , then               and 
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3.5 Evaluation of Fourier Coefficients Cont’d
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❑ Consequently, the Fourier series of an even function will contain only cosine 

terms.

❑ Suppose next, the function           obeys the condition

Fig. 3.2
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as given by the example in Fig. 3.2. 
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3.5 Evaluation of Fourier Coefficients 

Cont’d
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❑ With knowledge of symmetry conditions, let us examine how we can 

approximate an arbitrary time function          by a Fourier series within an interval             

. Outside this interval, the Fourier series            is not required to fit          . 

and

[0, ]T

Department of Electrical & Electronic Engineering, School of Engineering, University of Zambia

❑ We show that           given in Fig. 3.2 contains only odd harmonic terms, that is, ( )s t
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3.5 Evaluation of Fourier Coefficients Cont’d

❑ Consider the signal         in Fig. 3.3. We can approximate          by any periodic 

functions shown in Fig. 3.4. Observe that each periodic waveform exhibits some 

sort of symmetry.

24

Fig. 3.3:  Signal to be approximated.

❑ Now let us consider two other useful forms of Fourier series. The first is the 

Fourier cosine series, based on trigonometric identity, 

0 0 0
cos( ) cos cos sin sin

n n n n n n
C n t C n t C n t     + = − (3.38)
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3.5 Evaluation of Fourier Coefficients Cont’d

Fig. 3.4: (a) Even function cosine terms only. (b) Odd function sine terms 

only. (c) Odd harmonics only with both sine and cosine terms.

25Department of Electrical & Electronic Engineering, School of Engineering, University of Zambia

0

A

( )s t

t

TT−

( )a

t0

A

( )s t

( )b

T

T−

0

A

( )s t

t

( )c

T

T−
A−



3.5 Evaluation of Fourier Coefficients Cont’d

❑ We can derive the form of Fourier cosine series by setting 
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❑ We then obtain         and        in terms of         and        , as

cos
n n n
a C = (3.39)

sin
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b C =− (3.40)and
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(3.41)

❑ If we combine the cosine and sine terms of each harmonic in the original series, we 

readily obtain from Eqs. 3.38 - 3.41 the Fourier cosine series
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3.5 Evaluation of Fourier Coefficients Cont’d

❑ Note, that the coefficients          are usually taken to be positive. If however, a term 

such as                     carries a negative sign, then we can use the equivalent form
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0 1 0 1 2 0 2
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(3.42)

❑ Example, the Fourier series of the fully rectified sine wave in Fig. 3.1 was shown 

to be

n
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❑ Expressed as a Fourier cosine series,          is( )s t
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3.5 Evaluation of Fourier Coefficients Cont’d

❑ Next, consider the complex form of a Fourier series. If we express                 and                   

in terms of complex exponentials, then the Fourier series can be written 

as
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3.5 Evaluation of Fourier Coefficients Cont’d

 Thus the complex form of the Fourier series is 
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(3.48)

We can readily express the coefficients          as a function of           , since
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3.5 Evaluation of Fourier Coefficients Cont’d

❑ Equation 3.49 is sometimes called the discrete Fourier transform of          and Eq. 

3.48 is the inverse transform of                          .
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( )s t

0
( )
n n
n  =

Fig. 3.5:  Amplitude spectrum. Fig. 3.6:  Square wave.

❑ is usually complex and can be represented as.
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3.5 Evaluation of Fourier Coefficients Cont’d

❑ The real part of         is obtained from Eq. 3.49 as

31
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Re ( )cos
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n
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T
 = 

❑ Clearly,              is an even function in n, whereas            is an odd function in n. 

The amplitude spectrum of the Fourier series is defined as

n


Im
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(3.51)

and the imaginary part of         is 
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(3.54)
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and the phase spectrum is defined as
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3.5 Evaluation of Fourier Coefficients Cont’d

❑ It is easily seen that the amplitude spectrum is an even function and the phase 
spectrum is an odd function in n.

❑ The amplitude spectrum gives an insight as to where to truncate the infinite series 

and still maintain a good approximation to the original waveform.

❑ Clearly, for the amplitude spectrum in Fig. 3.5, we see that a good approximation 

can be obtained if we disregard any harmonic above the third.
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Obtain the complex Fourier coefficients for the square wave in Fig. 3.6. Also find 

the amplitude and phase spectra of the square wave. 

[Solution]

From Fig. 3.6, we note that           is an odd function. Moreover, since                               

, the series has only odd harmonics. Thus from Eq. 3.49 we 

obtain the coefficients of the complex Fourier series as

[Example 3.3] Complex Fourier Coefficients

( 2) ( )s t T s t− = −

( )s t



[Example 3.3] Complex Fourier Coefficients 

Cont’d

Since                         ,        can be simplified to
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Simplifying        one step further, we obtain
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[Example 3.3] Complex Fourier Coefficients 

Cont’d

The amplitude and phase spectra of the square wave are thus as given in Fig. 3.7.

34

Fig. 3.7:  Discrete spectra of square wave. (a) Amplitude. (b) Phase.
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3.6 Evaluation of Fourier Coefficients Using 

Unit Impulses

❑ Here, we make use of a basic property of impulse functions to simplify the 

calculation of complex Fourier coefficients. This method is applicable to functions 

consisting of straight-line components only. Thus the method applies for the square 

wave in Fig. 3.6. 

❑ The method is based on the relation

35

1 1
( ) ( ) ( )f t t T dt f T



−
− = (3.58)

❑ Let us use Eq. 3.58 to evaluate the complex Fourier coefficients for the impulse 

train in Fig. 3.8. For                       , we have0( ) jn tf t e −
=

0 0 00
( 2)0

0
0 0

2

T jn Tjn t

n

TA A
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 
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 

 (3.59)
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3.6 Evaluation of Fourier Coefficients Using 

Unit Impulses Cont’d

❑ The complex Fourier coefficients for the impulse functions are obtained by simply 

substituting the time at which the impulses occur into the expression

. 

❑ In the evaluation of Fourier coefficients, we must remember that the limits for the           

integral are taken over one period only, i.e., we consider only a single period                             

of the signal in the analysis.

❑ Consider, as an example, the square wave in Fig. 3.6. To evaluate          , we 

consider only a single period of the square wave as shown in Fig. 3.9a. 
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Fig. 3.8: 

Impulse train.
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3.6 Evaluation of Fourier Coefficients Using 

Unit Impulses Cont’d

❑ Since the square wave is not made up of impulses, let us differentiate the single 

period of the square wave to give           as shown in Fig. 3.9b.

❑ We can now evaluate the complex Fourier coefficients for          , which clearly is 

made up of impulses alone. Analytically, if          is given as  

37

Fig. 3.9: (a) Square wave over period             . (b) Derivative of 

square wave over period            .
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3.6 Evaluation of Fourier Coefficients Using 

Unit Impulses Cont’d

then the derivative of            is

38
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=  (3.60)

(3.61)
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❑ Here, we define a new complex coefficient
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(3.63)or

❑ If the derivative          is a function which consists of impulse components alone, 

then we simply evaluate          first and then obtain         from Eq. 3.63.
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( )0 0 0 0

0

( 2)

0 0
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

3.6 Evaluation of Fourier Coefficients Using 

Unit Impulses Cont’d

❑ For example, the derivative of the square wave yields the impulse train in Fig. 

3.9b. In the interval            , the signal          is given as

39

(3.64)

❑ Then the complex coefficients are 

(3.65)

0
0

( ) ( ) 2 ( )
2

T
s t A t A t A t T  

 
 = − − + −  

 

( )

0
0

0 0 0

0
0

( 2)

0

1
( )

1 2

T jn t

n

jn T jn T

s t e dt
T
A

e e
T



 


−

− −

=

= − +



[0, ]T ( )s t

❑ The Fourier coefficients of the square wave are 

(3.66)
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3.6 Evaluation of Fourier Coefficients Using 

Unit Impulses Cont’d

❑ The solution obtained in Eq. 3.66 checks with that obtained earlier by the standard 

way in Eq. 3.55.

❑ Note,  if the first derivative,         , does not contain impulses, then we must 

differentiate again to yield
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( )s t

❑ For the triangular pulse in Fig. 3.10, the second derivative over the period

is
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3.6 Evaluation of Fourier Coefficients Using 

Unit Impulses Cont’d

❑ The coefficients           are now obtained as 
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Fig. 3.10: The triangular 

wave and its derivatives.
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3.6 Evaluation of Fourier Coefficients Using 

Unit Impulses Cont’d

❑ Eq. 3.70 simplifies to give

42

(3.71)

From         we obtain

(3.72)
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❑ A slight difficulty arises if the expression for           contains an impulse in addition 

to other straight-line terms.
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3.6 Evaluation of Fourier Coefficients Using 

Unit Impulses Cont’d

❑ Nonetheless, we know that

43

Thus, doublets or even higher derivatives of impulses can be tolerated.

❑ Consider the signal          given in Fig. 3.11a. Its derivative , shown in Fig. 

3.11b, can be expressed as

So that

❑ It follows that the second derivative           is given by Eq. 3.76

( ) ( ) ( )s t t T dt s T


−
 − = −

( ) jn t jn Tt T e dt jn e  


− −

−
 − =

(3.75)

(3.73)

( )s t( )s t

2
( ) ( ) ( ) 2

2 2

T T
s t u t u t t t

T
 

    
 = − − + − −    

    

(3.74)

( )s t

Department of Electrical & Electronic Engineering, School of Engineering, University of Zambia



3.6 Evaluation of Fourier Coefficients Using 

Unit Impulses Cont’d

❑ This is depicted in Fig. 3.11c. We therefore evaluate          as

44
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3.6 Evaluation of Fourier Coefficients Using 

Unit Impulses Cont’d

❑ The  complex coefficients           are now obtained as 
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Fig. 3.11
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3.6 Evaluation of Fourier Coefficients Using 

Unit Impulses Cont’d

❑ Simplifying, we get

46
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❑ In conclusion,  it is worth noting that the impulse method to evaluate Fourier 

coefficients does not give the dc component,                     . Thus, this is obtain 

through standard means as given by Eq. 3.23.
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3.7 The Fourier Integral

❑ We now extend our signal analysis to the aperiodic case. Generally, aperiodic

signals have continuous amplitude and phase spectra.

❑ In our discussion of Fourier series, the complex coefficient         for periodic 

signals was also called the discrete Fourier transform

47
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❑ From the discrete Fourier transform we obtain amplitude and phase spectra which 

consist of discrete lines. The spacing between adjacent lines is
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3.7 The Fourier Integral Cont’d

❑ As the period T becomes larger, the spacing between the harmonic lines in the 

spectrum becomes smaller. For aperiodic signals, we let T approach infinity so 

that, in the limit, the discrete spectrum becomes continuous.

❑ We now define the Fourier integral or transform as
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and the inverse transform is
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❑ Eqs. 3.83 and 3.84 are sometimes called the Fourier transform pair. If we let        

denote the operation of Fourier transformation and             denote inverse       

transformation, then

F 1−F
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3.7 The Fourier Integral Cont’d

❑ In general, the Fourier transform            is complex and can be denoted as

49

(3.85)
1

( ) ( )

( ) ( )

S f s t

s t S f−

= 

= 

F

F

❑ The real part of             is obtained through the formula

( )S f

(3.86)

and the imaginary part through 

( ) Re ( ) Im ( )S f S f j S f= +

1
Re ( ) ( ) ( )

2
( )cos2

S f S f S f

s t ftdt


−

 = + − 

= 

(3.87)

Department of Electrical & Electronic Engineering, School of Engineering, University of Zambia

( )S f



3.7 The Fourier Integral Cont’d

❑ The amplitude spectrum of             is defined as
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(3.88)

❑ By means of the amplitude and phase definition of the Fourier transform, the 

inverse transform can be expressed as 
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3.7 The Fourier Integral Cont’d

❑ Let us examine some examples.
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Fig. 3.12: Amplitude and phase spectrum of                    .  
0

( )A t t −

Department of Electrical & Electronic Engineering, School of Engineering, University of Zambia

0f− f+

( )A f

A

( ) Amlitude spectruma

0f− f+

( )f

0
slope 2 t= −

( ) Phase spectrumb



Example 3.4 The Fourier Integral

Its amplitude spectrum is
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Obtain Fig. 3.12 by finding the Fourier transform of                               .

( )A f A= (3.93)

while its phase spectrum is 

0
( ) 2f ft = − (3.94)
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Example 3.5 The Fourier Integral

The inverse transform of              is defined as             (pronounced as sink),
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Consider the rectangular function in Fig. 3.13. If formally, we define the function 

as the rect function given by  



3.7 The Fourier Integral Cont’d

Fig. 3.13: Plot of a rect function.

54

Fig. 3.14: The sinc t curve.

Department of Electrical & Electronic Engineering, School of Engineering, University of Zambia

ff− 0
2

W
+

2

W
−

1

rect( )f



3.7 The Fourier Integral Cont’d

Fig. 3.15: Illustration of the reciprocity relationships between time 

duration and bandwidth.

55Department of Electrical & Electronic Engineering, School of Engineering, University of Zambia



3.7 The Fourier Integral Cont’d

❑ From the plot of            in Fig. 3.14 we see that            falls as does        , with zeros 

at                 ,                        Note that most of the energy of the signal is 

concentrated between the points                              .

❑ Let us define time duration of a signal as that point,       , beyond which the 

amplitude is never greater than a specified value, for example,       . 

❑ For the sinc function, the effective time duration is given as                    . The value             

, as seen from Fig. 3.13, is the spectral bandwith of the rect function.

❑ Clearly, if  W increases,       decreases. The preceding example illustrates the 

reciprocal relationship between the time duration of  a signal and spectral bandwith

of it Fourier transform.

❑ This concept is quite fundamental. It shows why in pulse transmission, narrow 

pulses, can only be transmitted through filters with larger bandwidths; whereas, 

wide pulses do not require wide bandwidths. See Fig. 3.15.
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sinct
1, 2, 3,n =

1

t
−

t n W=

1 1W t W−  

0
t

0
1t W= 

W

0

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3.8 Properties of Fourier Transforms

❑ We now focus our energy on some important properties of Fourier transforms.

❑ Linearity. The linearity property of Fourier transforms states that the Fourier 

transform of a sum of two signals is the sum of their individual Fourier transforms, 

that is, 
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1 1 2 2 1 1 2 2
( ) ( ) ( ) ( )c s t c s t c S f c S f + = + F (3.97)

❑ Differentiation. This property states that the Fourier transform of the derivative of 

a signal is            times the Fourier transform of the signal itself:2j f

( ) 2 ( )s t j f S f =F (3.98)

( )( ) ( 2 ) ( )n ns t j f S f =F (3.99)

more generally,
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❑ Similarly, it is easily shown that the transform of the integral of               is 

3.8 Properties of Fourier Transforms Cont’d

Proof, is obtained by taking the derivative of both sides of the inverse transform 

definition, 
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2

2

( ) ( )

2 ( )

j ft

j ft

d
s t S f e df

dt
j f S f e df







−



−

 =

=





(3.100)

( )s t

1
( ) ( )

2

t
s d S f

j f
 

−

  =
  F

(3.102)

(3.101)

[Example 3.6] Properties of F-Transforms
Consider the following

( ) ( )ats t e u t−=
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The derivative of           is

[Example 3.6] Properties of F-Transforms 

Cont’d

Its Fourier transform is
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2

2

0

( ) ( )

1

2

at j ft

at j ft

S f e u t e dt

e e dt
a j f








− −

−


− −

=

= =
+





(3.103)

( )s t

2
( ) 1

2 2
2 ( )

a j f
s t

a j f a j f
j f S f



 


  = − =  + +

=

F (3.105)

(3.104)

Its Fourier transform is

( ) ( ) ( )ats t t ae u t − = −
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3.8 Properties of Fourier Transforms Cont’d

❑ Symmetry. The symmetry property of Fourier transforms states that if

60

(3.106)( ) ( )x t X f =F

(3.108)
We now know that

(3.107)

It is then trivial to show that

( ) ( )X t x f = −Fthen

sinc rectt f =F

rect sinc( ) sinct f f = − =F (3.109)

which conforms to the statement of the symmetry property.
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❑ This property follows directly from the symmetrical nature of the Fourier 

transform pair in Eqs. 3.83 and 3.84. 

[Example 3.7] Properties of F-Transforms



[Example 3.8] Properties of F-Transforms

Consider next the Fourier transform of the unit impulse,                      . From the 

symmetry property we can show that                    

61

(3.110)

as shown in Fig. 3.16. 

The foregoing example is also an extreme illustration of the time-duration and 

bandwidth reciprocity relationship. It says that zero time duration,          , gives rise 

to infinite bandwidth in the frequency domain; while zero bandwidth,             

corresponds to infinite time duration.

( ) 1t =F

Fig. 3.16: Fourier transform of                    .

1 ( )f =F

( )f
( )t

( ) 1.0f t =
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ff− 0

( )f
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3.8 Properties of Fourier Transforms Cont’d

❑ Scale change. The scale-change property describes the time-duration and 

bandwidth reciprocity relationship. It states that 
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(3.112)

Proof. We prove this property most easily through the inverse transform 

(3.111)

Let                 , then

( )
t

s a S af
a

  
=  

  
F

1 2( ) ( ) j fta S af a S af e df


−

−

  =
  F

f af =

(3.113)2 ( )1 ( ) ( )
j f t a df

a S f a S f e
a

t
s
a

 −

−


  =
 

 
=  

 

F
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[Example 3.9] Properties of F-Transforms

Consider

63

(3.115)

then

(3.114)

if .

1
( )

2
ate u t

j f a

−  =
  +

F

0a 

( )
2
1

2 1

t
a

e u t
j af a

j f





−  =
  +

=
+

F

❑ Folding. The folding property states that

 ( ) ( )s t S f− = −F (3.116)
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3.8 Properties of Fourier Transforms Cont’d

❑ The proof follows directly from the definition of the Fourier transform. An 

example is

64

(3.118)

❑ Delay. If a signal is delayed by an amount       in the time domain, the 

corresponding effect in the frequency domain is to multiply the transform of the 

undelayed signal by               , that is, 

(3.117)

❑ For example,

 
1

( )
1 2

te u t
j f

− =
−

F

0
t

  02

0
( ) ( )j fts t t e S f−
− =F

02j fte −

 
0

0

2
( )

0
( )

2

j ft
a t t e
e u t t

a j f





−
− −

− =
+

F (3.119)
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3.8 Properties of Fourier Transforms Cont’d

❑ Modulation. The modulation or frequency shift property of Fourier transforms 

states that if a Fourier transform is shifted in frequency by an amount        , the 

corresponding effect in time is described by multiplying the original signal by            

, that is, 

65

(3.120)

Given            in Fig. 3.17a, let us find the inverse transform of              in Fig. 

3.17b in terms of                              . We know that

021

0
( ) ( )j f tS f f e s t−  − = F

02j f te 

 1( ) ( )s t S f−= F
(3.121)

0
f

( )S f 1
( )S f

1 0 0
( ) ( ) ( )S f S f f S f f= − + +

Fig. 3.17: Demonstration of amplitude modulation.
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[Example 3.9] Properties of F-Transforms

( )S f

A

f+f− 0

( )a

f+f−
0
f−

0
f+

A

1
( )S f

( )b

0



Thus we see that multiplying a signal by a cosine or sine wave in the time domain 

corresponds to shifting its spectrum by an amount         . In transmission 

terminology is the carrier frequency, and the process of multiplying           by                       

is called amplitude modulation. 

[Example 3.9] Properties of F-Transforms 

Cont’d

Then
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(3.122)

❑ Parseval’s theorem. An important theorem which relates energy in the time and 

frequency domains is Parseval’s theorem, which states that

0 02 21

1 0
( ) ( ) ( ) 2 ( )cos2j f t j f tS f e s t e s t s t f t 


−− = + =F

0
f

Proof

0
f

(3.123)

( )s t

0
cos2 f t

1 2 1 2
( ) ( ) ( ) ( )s t s t dt S f S f df

 

− −
= − 

2

1 2 2 1

2

1 2

1 2

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

j ft

j ft

s t s t dt s t dt S f e df

S f df s t e dt

S f S f df





  

− − −
 

− −


−

=

=

= −

  

 



(3.124)
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3.8 Properties of Fourier Transforms Cont’d

❑ In particular, when                        , we have a corollary of Parseval’s theorem

known as Plancheral’s theorem.

67

(3.125)

1 2
( ) ( )s t s t=

2
2( ) ( )s t dt S f df

 

− −
= 

❑ If is equal to the current through, or the voltage across a 1-ohm resistor, the 

total energy is

( )s t

2( )s t dt


−
❑ We see from Eq. 3.125 that the total energy is also equal to the area under the 

curve of                . Thus               is sometimes called an energy density or energy 

spectrum.
( )

2

S f ( )
2

S f
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End of Lecture 3

Thank you for your attention!
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