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3.1 Introduction

❑ One of the most common classes of signals encountered are periodic signals. If  

is the period of the signal, then
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❑ In addition, if            has only a finite number of discontinuities in any finite 

period and if the integral 
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is finite ( where        is an arbitrary real number), then           can be expanded 

into the infinite trigonometric series
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3.1 Introduction Cont’d

❑ Here                  . This series is known as the Fourier series. In compact form, the 

Fourier series is
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❑ Thus, when can be described completely in terms of the coefficients of its 

harmonic terms. These coefficients constitute a frequency domain description  of 

the signal. 

❑ Our task now is to derive the equations for the coefficients       ,         in terms of 

the given signal function          .

❑ Lets us first focus our energy and discussion on the mathematical basis of  Fourier 

series, the theory of orthogonal sets.
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3.2 Orthogonal functions

❑ Consider any two functions            and            that are not identically zero. Then if
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❑ We say that           and           are orthogonal over the interval .  For

instance, the functions            and           are orthogonal over the interval 

. Consider next a set of real functions                                     . 

If the functions obey the condition
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where            ,  then the set              forms an orthogonal set over             . In Eq. 

3.5 the integral is denoted by the inner product . For convenience here, we 

use the inner product notation in our discussions.
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3.2 Orthogonal functions Cont’d

❑ The set              is orthonormal over               if  

6

(3.7)

❑ The norm of an element         in the set              is defined as  

(3.6)
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❑ Any orthogonal set                                     can be normalized by dividing each 

term         by its norm          .
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Example 3.1 Orthogonal functions
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[Solution]
To show that the set is orthogonal, let us consider the integral
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 Show that the Laguerre set is orthogonal over             .

The Laguerre set, which has been shown to be very useful in time domain 

approximation, has the first four terms  of as
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[Example 3.1] Orthogonal functions Cont’d

 Letting            , we have
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Example 3.1 Orthogonal functions Cont’d

It is trivial to verify that the norms of all the elements in the set are also equal to               

. Therefore, to render the Laguerre set orthonomal, we divide each   

element         by                .
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Definition 3.1 Given a function          and constant             for which 

3.3 Approx. Using Orthogonal functions

❑ We now explore some uses of orthogonal functions in linear approximation of 

functions. The key problem is approximating a function              by a sequence of 

functions            such that the mean squared error (MSE) is
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❑ When Eq. 3.13 is satisfied, we say that               converges in the mean to          .

❑ To examine the concept of convergence in the mean more closely,  we must 

consider the following definitions:
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3.3 Approx. Using Orthogonal functions 

Cont’d
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Definition 3.2 If                   in             , and                is a sequence of functions 

integrable        in            , we say that if      
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then               converges in the mean order to          . Specifically, when 

we say that               converges in the mean to          .

p
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❑ The principle of least squares. Consider the case when           consists of a linear 

combination of orthonormal functions                      .      
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3.3 Approx. Using Orthogonal functions 

Cont’d

❑ Our problem is to determine the constants        such that the integral squared error
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is a minimum. The principle of least squares states that in order to attain minimum 
squared error, the constants        must have values
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3.3 Approx. Using Orthogonal functions 

Cont’d

Since the set          is orthonormal,                 , and by definition 

. We thus have 
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We see that in order to attain minimum  integral squared error, we must set 

. The coefficients        , defined in Eq. 3.16 are called the Fourier 

Coefficients of            with respect to orthonormal set               . 
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3.3 Approx. Using Orthogonal functions 

Cont’d

❑ Parseval’s equality. Consider            given in Eq. 3.14. We see that
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since are orthonormal functions. This result is known as Parseval’s equality, 

and is important in determining the energy of a periodic signal.

(3.20)
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3.4 Fourier Series

❑ Let us return to the Fourier series as defined earlier.
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❑ By the approximation using orthonormal functions just discussed, we see that a 
periodic function           with period        can be approximated by a Fourier series

such that           converges in the mean to           , that is,

(3.21)
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where      is any real number. We know, that if n is finite, the mean squared error                        

is minimized when the constants              are Fourier coefficients of              

with respect to the orthonormal set  
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3.4 Fourier Series Cont’d

In explicit form the Fourier coefficients, according to the definition given earlier, 

are obtained from the equations
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3.4 Fourier Series Cont’d

❑ It is worth noting that because the Fourier series            only converges to    

in the mean, when          contains a jump discontinuity, for example, at 
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❑ At any point        that           is differentiable            converges to            . 1
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Fig. 3.1: Rectified sine wave.
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[Example 3.2] Fourier Series

Determine the Fourier coefficients of the fully rectified sine wave in Fig. 3.1. The 

period is               so that the fundamental frequency is               . The signal is 

given as
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Lets us take               and evaluate between        and      . Using the formulae just 

derived, we have

0
2 =

0
T =

00 =

0 0

2 2
( )sin2 sin sin2 0

n

A
b s t ntdt t ntdt

 

 
= = =  (3.28)

0 00

2
sin cos

A A A
a tdt t

 

  
= = − =

0 0

2 2
( )cos2 sin cos2

n
a s t ntdt A t ntdt

 

 
= = 

(3.29)

Department of Electrical & Electronic Engineering, School of Engineering, University of Zambia

[Solution]




[Example 3.2] Fourier Series Cont’d

Thus the Fourier series of the rectified sine wave is 
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Use of the trigonometric identity                                                                     

yields
sin cos2 [sin(1 2 ) sin(1 2 ) ]
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3.5 Evaluation of Fourier Coefficients
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❑ We now consider two other useful forms of Fourier series. From Eqs. 3.23-3.25, let                       

and we represent the integrals as the sum of two separate parts, that is 0
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❑ Since the variable       in the above integrals is a dummy variable, let us substitute               

in the integrals with limits                  , and let                in the integrals with 

limits                    . Then we have
0
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3.5 Evaluation of Fourier Coefficients 

Cont’d

21

❑ Suppose now the function is odd, that is,                           , then we see that 

for all n, and 0
n
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❑ The implication is that, the Fourier series of an odd function will only contain 

sine terms. 
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❑ Suppose the function is even, that is,                         , then               and 
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3.5 Evaluation of Fourier Coefficients Cont’d
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❑ Consequently, the Fourier series of an even function will contain only cosine 

terms.

❑ Suppose next, the function           obeys the condition

Fig. 3.2
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as given by the example in Fig. 3.2. 
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3.5 Evaluation of Fourier Coefficients 

Cont’d
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❑ With knowledge of symmetry conditions, let us examine how we can 

approximate an arbitrary time function          by a Fourier series within an interval             

. Outside this interval, the Fourier series            is not required to fit          . 

and

[0, ]T
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❑ We show that           given in Fig. 3.2 contains only odd harmonic terms, that is, ( )s t
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3.5 Evaluation of Fourier Coefficients Cont’d

❑ Consider the signal         in Fig. 3.3. We can approximate          by any periodic 

functions shown in Fig. 3.4. Observe that each periodic waveform exhibits some 

sort of symmetry.
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Fig. 3.3:  Signal to be approximated.

❑ Now let us consider two other useful forms of Fourier series. The first is the 

Fourier cosine series, based on trigonometric identity, 

0 0 0
cos( ) cos cos sin sin

n n n n n n
C n t C n t C n t     + = − (3.38)
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3.5 Evaluation of Fourier Coefficients Cont’d

Fig. 3.4: (a) Even function cosine terms only. (b) Odd function sine terms 

only. (c) Odd harmonics only with both sine and cosine terms.
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3.5 Evaluation of Fourier Coefficients Cont’d

❑ We can derive the form of Fourier cosine series by setting 
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❑ We then obtain         and        in terms of         and        , as
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(3.41)

❑ If we combine the cosine and sine terms of each harmonic in the original series, we 

readily obtain from Eqs. 3.38 - 3.41 the Fourier cosine series
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3.5 Evaluation of Fourier Coefficients Cont’d

❑ Note, that the coefficients          are usually taken to be positive. If however, a term 

such as                     carries a negative sign, then we can use the equivalent form
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❑ Example, the Fourier series of the fully rectified sine wave in Fig. 3.1 was shown 

to be
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❑ Expressed as a Fourier cosine series,          is( )s t
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3.5 Evaluation of Fourier Coefficients Cont’d

❑ Next, consider the complex form of a Fourier series. If we express                 and                   

in terms of complex exponentials, then the Fourier series can be written 

as
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3.5 Evaluation of Fourier Coefficients Cont’d

 Thus the complex form of the Fourier series is 
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(3.48)

We can readily express the coefficients          as a function of           , since

(3.49)
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3.5 Evaluation of Fourier Coefficients Cont’d

❑ Equation 3.49 is sometimes called the discrete Fourier transform of          and Eq. 

3.48 is the inverse transform of                          .
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Fig. 3.5:  Amplitude spectrum. Fig. 3.6:  Square wave.

❑ is usually complex and can be represented as.
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3.5 Evaluation of Fourier Coefficients Cont’d

❑ The real part of         is obtained from Eq. 3.49 as
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❑ Clearly,              is an even function in n, whereas            is an odd function in n. 

The amplitude spectrum of the Fourier series is defined as
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and the imaginary part of         is 
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and the phase spectrum is defined as
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3.5 Evaluation of Fourier Coefficients Cont’d

❑ It is easily seen that the amplitude spectrum is an even function and the phase 
spectrum is an odd function in n.

❑ The amplitude spectrum gives an insight as to where to truncate the infinite series 

and still maintain a good approximation to the original waveform.

❑ Clearly, for the amplitude spectrum in Fig. 3.5, we see that a good approximation 

can be obtained if we disregard any harmonic above the third.
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Obtain the complex Fourier coefficients for the square wave in Fig. 3.6. Also find 

the amplitude and phase spectra of the square wave. 

[Solution]

From Fig. 3.6, we note that           is an odd function. Moreover, since                               

, the series has only odd harmonics. Thus from Eq. 3.49 we 

obtain the coefficients of the complex Fourier series as

[Example 3.3] Complex Fourier Coefficients

( 2) ( )s t T s t− = −

( )s t



[Example 3.3] Complex Fourier Coefficients 

Cont’d

Since                         ,        can be simplified to

33
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Simplifying        one step further, we obtain
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[Example 3.3] Complex Fourier Coefficients 

Cont’d

The amplitude and phase spectra of the square wave are thus as given in Fig. 3.7.

34

Fig. 3.7:  Discrete spectra of square wave. (a) Amplitude. (b) Phase.
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3.6 Evaluation of Fourier Coefficients Using 

Unit Impulses

❑ Here, we make use of a basic property of impulse functions to simplify the 

calculation of complex Fourier coefficients. This method is applicable to functions 

consisting of straight-line components only. Thus the method applies for the square 

wave in Fig. 3.6. 

❑ The method is based on the relation

35

1 1
( ) ( ) ( )f t t T dt f T



−
− = (3.58)

❑ Let us use Eq. 3.58 to evaluate the complex Fourier coefficients for the impulse 

train in Fig. 3.8. For                       , we have0( ) jn tf t e −
=

0 0 00
( 2)0

0
0 0

2

T jn Tjn t

n

TA A
t e dt e

T T


 

−−
 

= − =  
 

 (3.59)
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3.6 Evaluation of Fourier Coefficients Using 

Unit Impulses Cont’d

❑ The complex Fourier coefficients for the impulse functions are obtained by simply 

substituting the time at which the impulses occur into the expression

. 

❑ In the evaluation of Fourier coefficients, we must remember that the limits for the           

integral are taken over one period only, i.e., we consider only a single period                             

of the signal in the analysis.

❑ Consider, as an example, the square wave in Fig. 3.6. To evaluate          , we 

consider only a single period of the square wave as shown in Fig. 3.9a. 
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Fig. 3.8: 

Impulse train.
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3.6 Evaluation of Fourier Coefficients Using 

Unit Impulses Cont’d

❑ Since the square wave is not made up of impulses, let us differentiate the single 

period of the square wave to give           as shown in Fig. 3.9b.

❑ We can now evaluate the complex Fourier coefficients for          , which clearly is 

made up of impulses alone. Analytically, if          is given as  

37

Fig. 3.9: (a) Square wave over period             . (b) Derivative of 

square wave over period            .
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3.6 Evaluation of Fourier Coefficients Using 

Unit Impulses Cont’d

then the derivative of            is
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0( ) jn t

n
n

s t e 




=−

=  (3.60)

(3.61)

( )s t

❑ Here, we define a new complex coefficient

0

n
n jn





=

(3.62)

0

0
( ) jn t

n
n

s t jn e 
 



=−

 = 

0n n
jn  =

(3.63)or

❑ If the derivative          is a function which consists of impulse components alone, 

then we simply evaluate          first and then obtain         from Eq. 3.63.

( )s t
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1 2
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3.6 Evaluation of Fourier Coefficients Using 

Unit Impulses Cont’d

❑ For example, the derivative of the square wave yields the impulse train in Fig. 

3.9b. In the interval            , the signal          is given as

39

(3.64)

❑ Then the complex coefficients are 

(3.65)

0
0

( ) ( ) 2 ( )
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− −

=

= − +



[0, ]T ( )s t

❑ The Fourier coefficients of the square wave are 

(3.66)
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3.6 Evaluation of Fourier Coefficients Using 

Unit Impulses Cont’d

❑ The solution obtained in Eq. 3.66 checks with that obtained earlier by the standard 

way in Eq. 3.55.

❑ Note,  if the first derivative,         , does not contain impulses, then we must 

differentiate again to yield
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(3.67)0( ) jn t

n
n

s t e 




=−

 = 

( )s t

❑ For the triangular pulse in Fig. 3.10, the second derivative over the period

is

0
0
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2
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s t t t t T
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 = − − + −   
   

(3.68)2

0 0
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n n n
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(3.69)
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3.6 Evaluation of Fourier Coefficients Using 

Unit Impulses Cont’d

❑ The coefficients           are now obtained as 

41

Fig. 3.10: The triangular 

wave and its derivatives.

n


( )

0
0

0 0 0 0

0
0

( 2)

2

0

1
( )

2
1 2

T jn t

n

jn T jn T

s t e dt
T
A

e e
T

−

− −

=

= − +




 



(3.70)
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3.6 Evaluation of Fourier Coefficients Using 

Unit Impulses Cont’d

❑ Eq. 3.70 simplifies to give

42

(3.71)

From         we obtain

(3.72)
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❑ A slight difficulty arises if the expression for           contains an impulse in addition 

to other straight-line terms.
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3.6 Evaluation of Fourier Coefficients Using 

Unit Impulses Cont’d

❑ Nonetheless, we know that

43

Thus, doublets or even higher derivatives of impulses can be tolerated.

❑ Consider the signal          given in Fig. 3.11a. Its derivative , shown in Fig. 

3.11b, can be expressed as

So that

❑ It follows that the second derivative           is given by Eq. 3.76

( ) ( ) ( )s t t T dt s T


−
 − = −

( ) jn t jn Tt T e dt jn e  


− −
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(3.75)
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(3.74)
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3.6 Evaluation of Fourier Coefficients Using 

Unit Impulses Cont’d

❑ This is depicted in Fig. 3.11c. We therefore evaluate          as

44

(3.77)

(3.76)
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3.6 Evaluation of Fourier Coefficients Using 

Unit Impulses Cont’d

❑ The  complex coefficients           are now obtained as 

45

Fig. 3.11
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3.6 Evaluation of Fourier Coefficients Using 

Unit Impulses Cont’d

❑ Simplifying, we get

46

(3.79)
2 2

1 3
odd

2
1
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2

n
n

j nn

n
j n






= − + 

= − 

❑ In conclusion,  it is worth noting that the impulse method to evaluate Fourier 

coefficients does not give the dc component,                     . Thus, this is obtain 

through standard means as given by Eq. 3.23.
0 0
ora 
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3.7 The Fourier Integral

❑ We now extend our signal analysis to the aperiodic case. Generally, aperiodic

signals have continuous amplitude and phase spectra.

❑ In our discussion of Fourier series, the complex coefficient         for periodic 

signals was also called the discrete Fourier transform

47

(3.80)0
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T
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and the inverse (discrete) transform  was
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=−

=  (3.81)

❑ From the discrete Fourier transform we obtain amplitude and phase spectra which 

consist of discrete lines. The spacing between adjacent lines is

0 0

1
( 1)f n f nf

T
 = + − = (3.82)
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3.7 The Fourier Integral Cont’d

❑ As the period T becomes larger, the spacing between the harmonic lines in the 

spectrum becomes smaller. For aperiodic signals, we let T approach infinity so 

that, in the limit, the discrete spectrum becomes continuous.

❑ We now define the Fourier integral or transform as

48

(3.83)20
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T
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nf
S f s t e dt

f
 

−

−→
 →

= = 

and the inverse transform is

2( ) ( ) j fts t S f e df




−
=  (3.84)

❑ Eqs. 3.83 and 3.84 are sometimes called the Fourier transform pair. If we let        

denote the operation of Fourier transformation and             denote inverse       

transformation, then

F 1−F
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3.7 The Fourier Integral Cont’d

❑ In general, the Fourier transform            is complex and can be denoted as

49

(3.85)
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❑ The real part of             is obtained through the formula
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and the imaginary part through 
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3.7 The Fourier Integral Cont’d

❑ The amplitude spectrum of             is defined as

50

(3.88)

❑ By means of the amplitude and phase definition of the Fourier transform, the 

inverse transform can be expressed as 

( )S f

and the phase spectrum is

1 2
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(3.89)
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3.7 The Fourier Integral Cont’d

❑ Let us examine some examples.
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Fig. 3.12: Amplitude and phase spectrum of                    .  
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Example 3.4 The Fourier Integral

Its amplitude spectrum is

52

(3.92)
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Obtain Fig. 3.12 by finding the Fourier transform of                               .

( )A f A= (3.93)

while its phase spectrum is 

0
( ) 2f ft = − (3.94)
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[SOLUTION]



Example 3.5 The Fourier Integral

The inverse transform of              is defined as             (pronounced as sink),
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Consider the rectangular function in Fig. 3.13. If formally, we define the function 

as the rect function given by  



3.7 The Fourier Integral Cont’d

Fig. 3.13: Plot of a rect function.
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Fig. 3.14: The sinc t curve.
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3.7 The Fourier Integral Cont’d

Fig. 3.15: Illustration of the reciprocity relationships between time 

duration and bandwidth.
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3.7 The Fourier Integral Cont’d

❑ From the plot of            in Fig. 3.14 we see that            falls as does        , with zeros 

at                 ,                        Note that most of the energy of the signal is 

concentrated between the points                              .

❑ Let us define time duration of a signal as that point,       , beyond which the 

amplitude is never greater than a specified value, for example,       . 

❑ For the sinc function, the effective time duration is given as                    . The value             

, as seen from Fig. 3.13, is the spectral bandwith of the rect function.

❑ Clearly, if  W increases,       decreases. The preceding example illustrates the 

reciprocal relationship between the time duration of  a signal and spectral bandwith

of it Fourier transform.

❑ This concept is quite fundamental. It shows why in pulse transmission, narrow 

pulses, can only be transmitted through filters with larger bandwidths; whereas, 

wide pulses do not require wide bandwidths. See Fig. 3.15.
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3.8 Properties of Fourier Transforms

❑ We now focus our energy on some important properties of Fourier transforms.

❑ Linearity. The linearity property of Fourier transforms states that the Fourier 

transform of a sum of two signals is the sum of their individual Fourier transforms, 

that is, 

57

1 1 2 2 1 1 2 2
( ) ( ) ( ) ( )c s t c s t c S f c S f + = + F (3.97)

❑ Differentiation. This property states that the Fourier transform of the derivative of 

a signal is            times the Fourier transform of the signal itself:2j f

( ) 2 ( )s t j f S f =F (3.98)

( )( ) ( 2 ) ( )n ns t j f S f =F (3.99)

more generally,
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❑ Similarly, it is easily shown that the transform of the integral of               is 

3.8 Properties of Fourier Transforms Cont’d

Proof, is obtained by taking the derivative of both sides of the inverse transform 

definition, 
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[Example 3.6] Properties of F-Transforms
Consider the following

( ) ( )ats t e u t−=
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The derivative of           is

[Example 3.6] Properties of F-Transforms 

Cont’d

Its Fourier transform is
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(3.103)
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(3.104)

Its Fourier transform is

( ) ( ) ( )ats t t ae u t − = −
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3.8 Properties of Fourier Transforms Cont’d

❑ Symmetry. The symmetry property of Fourier transforms states that if

60

(3.106)( ) ( )x t X f =F

(3.108)
We now know that

(3.107)

It is then trivial to show that

( ) ( )X t x f = −Fthen

sinc rectt f =F

rect sinc( ) sinct f f = − =F (3.109)

which conforms to the statement of the symmetry property.
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❑ This property follows directly from the symmetrical nature of the Fourier 

transform pair in Eqs. 3.83 and 3.84. 

[Example 3.7] Properties of F-Transforms



[Example 3.8] Properties of F-Transforms

Consider next the Fourier transform of the unit impulse,                      . From the 

symmetry property we can show that                    
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(3.110)

as shown in Fig. 3.16. 

The foregoing example is also an extreme illustration of the time-duration and 

bandwidth reciprocity relationship. It says that zero time duration,          , gives rise 

to infinite bandwidth in the frequency domain; while zero bandwidth,             

corresponds to infinite time duration.

( ) 1t =F

Fig. 3.16: Fourier transform of                    .
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3.8 Properties of Fourier Transforms Cont’d

❑ Scale change. The scale-change property describes the time-duration and 

bandwidth reciprocity relationship. It states that 
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(3.112)

Proof. We prove this property most easily through the inverse transform 

(3.111)

Let                 , then
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[Example 3.9] Properties of F-Transforms

Consider
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(3.115)

then

(3.114)
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❑ Folding. The folding property states that

 ( ) ( )s t S f− = −F (3.116)
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3.8 Properties of Fourier Transforms Cont’d

❑ The proof follows directly from the definition of the Fourier transform. An 

example is

64

(3.118)

❑ Delay. If a signal is delayed by an amount       in the time domain, the 

corresponding effect in the frequency domain is to multiply the transform of the 

undelayed signal by               , that is, 

(3.117)

❑ For example,
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3.8 Properties of Fourier Transforms Cont’d

❑ Modulation. The modulation or frequency shift property of Fourier transforms 

states that if a Fourier transform is shifted in frequency by an amount        , the 

corresponding effect in time is described by multiplying the original signal by            

, that is, 
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(3.120)

Given            in Fig. 3.17a, let us find the inverse transform of              in Fig. 

3.17b in terms of                              . We know that

021

0
( ) ( )j f tS f f e s t−  − = F

02j f te 

 1( ) ( )s t S f−= F
(3.121)

0
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( )S f 1
( )S f

1 0 0
( ) ( ) ( )S f S f f S f f= − + +

Fig. 3.17: Demonstration of amplitude modulation.
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[Example 3.9] Properties of F-Transforms
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Thus we see that multiplying a signal by a cosine or sine wave in the time domain 

corresponds to shifting its spectrum by an amount         . In transmission 

terminology is the carrier frequency, and the process of multiplying           by                       

is called amplitude modulation. 

[Example 3.9] Properties of F-Transforms 

Cont’d

Then
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(3.122)

❑ Parseval’s theorem. An important theorem which relates energy in the time and 

frequency domains is Parseval’s theorem, which states that
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(3.124)

Department of Electrical & Electronic Engineering, School of Engineering, University of Zambia



3.8 Properties of Fourier Transforms Cont’d

❑ In particular, when                        , we have a corollary of Parseval’s theorem

known as Plancheral’s theorem.
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(3.125)

1 2
( ) ( )s t s t=

2
2( ) ( )s t dt S f df

 

− −
= 

❑ If is equal to the current through, or the voltage across a 1-ohm resistor, the 

total energy is

( )s t

2( )s t dt


−
❑ We see from Eq. 3.125 that the total energy is also equal to the area under the 

curve of                . Thus               is sometimes called an energy density or energy 

spectrum.
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End of Lecture 3

Thank you for your attention!
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