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3.1 Introduction

L One of the most common classes of signals encountered are periodic signals. If T,
IS the period of the signal, then

) Inaddition, if s(t) has only a finite number of discontinuities in any finite
period and if the integral
ja+T0

Is finite (where « is an arbitrary real number), then s(¢) can be expanded
into the infinite trigonometric series

s(t)‘ dt < o

(3.2)
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3.1 Introduction Cont’d

] Here o, = 27z/T0. This series Is known as the Fourier series. In compact form, the
Fourier series Is

s(t) = a, + Z (a cosnat+b sinnwt) (3.3)
n=1
Q Thus, when s(t) can be described completely in terms of the coefficients of its
harmonic terms. These coefficients constitute a frequency domain description of
the signal.

J Our task now is to derive the equations for the coefficients «,, b interms of
the given signal function s(¢) .

O Lets us first focus our energy and discussion on the mathematical basis of Fourier
series, the theory of orthogonal sets.
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3.2 Orthogonal functions

 Consider any two functions f(t) and f,(¢) thatare not identically zero. Then if

O Wesay that f(t) and f(t) are orthogonal over the interval [T;,T,]. For
Instance, the functions sint and cost are orthogonal over the interval

n2z <t < (n+1)2z. Consider next a set of real functions 14,(t),4,(?),....,4, (1)} .
If the functions obey the condition

(3.5)

where a =0, thenthe set {¢(t)} formsan orthogonal set over [T}, T,]. In Eq.
3.5 the integral is denoted by the inner product <¢i,¢j> . For convenience here, we
use the inner product notation in our discussions.
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3.2 Orthogonal functions Cont’d

d Theset {¢(¢)} isorthonormal over [T, T,] if

d The norm of an element ¢, inthe set {4,(¢)}is defined as

@ Any orthogonal set {¢1(t),¢2(t),...,¢n(t)} can be normalized by dividing each
term ¢ by its norm H¢k” :
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Example 3.1 Orthogonal functions
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[Example 3.1] Orthogonal functions Cont’d
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Example 3.1 Orthogonal functions Cont’d
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3.3 Approx. Using Orthogonal functions

1 We now explore some uses of orthogonal functions in linear approximation of
functions. The key problem is approximating a function  f(¢) by a sequence of
functions f (¢) such that the mean squared error (MSE) is

e=1im [ *[ f(t) - £,(t)] dt =0 (3.13)

O When Eq. 3.13 is satisfied, we say that {fn(t)} converges in the mean to  f(¢) .

- To examine the concept of convergence in the mean more closely, we must
consider the following definitions:

_Definition 3.1 Given a function f(t) and constant p > 0 for which

NG

1

we say that f(¢) isintegrable [7 in [T, T)],wewrite f(¢t)e L’ in [T,T)].

17 — 2 17 72
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3.3 Approx. Using Orthogonal functions
Cont’d

sDefinition 3.2 If f(t) e I’ in [T}, 1] , and {j;L(t)} IS a sequence of functions

17 — 2

integrable 7 in [T, T}], we say that if
. T, p
lim [ *| f(6)— £,(#)]" dt =0

then { fn(t)} converges in the mean order p to f(¢) . Specifically, when
p =2 we say that { fn(t)} converges in the mean to f(¢) .

L The principle of least squares. Consider the case when f (¢) consists of a linear
combination of orthonormal functions ¢,,9,,...,¢ .

ft) = Z a.¢ (1) (3.14)
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3.3 Approx. Using Orthogonal functions
Cont’d

- Our problem is to determine the constants «a, such that the integral squared error

IS a minimum. The principle of least squares states that in order to attain minimum
squared error, the constants a. must have values

=], Fng bt (3.16)

Department of Electrical & Electronic Engineering, School of Engineering, University of Zambia



3.3 Approx. Using Orthogonal functions
Cont’d
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3.3 Approx. Using Orthogonal functions
Cont’d

L Parseval’s equality. Consider f (t) givenin Eq. 3.14. We see that

since ¢ are orthonormal functions. This result is known as Parseval s equality,
and is important in determining the energy of a periodic signal.
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3.4 Fourier Series

] Let us return to the Fourier series as defined earlier.

O By the approximation using orthonormal functions just discussed, we see that a
periodic function s(t) with period T can be approximated by a Fourier series

s,(t) suchthat s (¢) converges in the meanto s(t) , thatis,

where ¢ is any real number. We know, that if » is finite, the mean squared error

[s(t)~ 5,8 is minimized when the constants a,, b, are Fourier coefficients of
s(t) with respect to the orthonormal set
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3.4 Fourier Series Cont’d

<~ In explicit form the Fourier coefficients, according to the definition given earlier, )
are obtained from the equations
J
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3.4 Fourier Series Cont’d

d Itis worth noting that because the Fourier series s (¢) only converges to
s(t) inthe mean, when s(f) contains a jump discontinuity, for example, at ¢

5, (1) = 2ot ; ) (3.26)

>

37 27 - 0| 7 27 3r ¢

Fig. 3.1: Rectified sine wave.
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|[Example 3.2] Fourier Series
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[Example 3.2] Fourier Series Cont’d
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3.5 Evaluation of Fourier Coefficients

O We now consider two other useful forms of Fourier series. From Eqs. 3.23-3.25, let
a=-T / 2 and we represent the integrals as the sum of two separate parts, that is

(3.32)

J Since the variable (¢) in the above integrals is a dummy variable, let us substitute
z =t inthe integrals with limits (0; TO/2), and let = = —t in the integrals with
limits (—T; /2; 0). Then we have

(3.33)
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3.5 Evaluation of Fourier Coefficients
Cont’d

' Suppose now the function is odd, thatis, s(z) = —s(—z) , then we see that
a =0 foralln, and

O The implication is that, the Fourier series of an odd function will only contain
sine terms.

) Suppose the function is even, thatis, s(z) = s(—z) ,then 5 =0 and
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3.5 Evaluation of Fourier Coefficients Cont’d

1 Consequently, the Fourier series of an even function will contain only cosine
terms.

Fig. 3.2
 Suppose next, the function s(¢) obeys the condition

s(t + g) = —s(t) (3.36)

as given by the example in Fig. 3.2.
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3.5 Evaluation of Fourier Coefficients
Cont’d

O We show that s(¢) given in Fig. 3.2 contains only odd harmonic terms, that is,

(3.37)

and

- With knowledge of symmetry conditions, let us examine how we can
approximate an arbitrary time function s(t) by a Fourier series within an interval

0, T'] . Outside this interval, the Fourier series s (t) is not required to fit s(t) .
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3.5 Evaluation of Fourier Coefficients Cont’d

O Consider the signal s(t) in Fig. 3.3. We can approximate s(¢) by any periodic
functions shown in Fig. 3.4. Observe that each periodic waveform exhibits some
sort of symmetry.

s(t)h
A
\ »
0 T t

Fig. 3.3: Signal to be approximated.

J Now let us consider two other useful forms of Fourier series. The first is the
Fourier cosine series, based on trigonometric identity,

C cos(nwt+6)=C cosnatcosd —C sinnwitsing (3.38)
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3.5 Evaluation of Fourier Coefficients Cont’d

s(t)A s(t)4
A A
_T”/,, \T\ _ . \ \]1 : .
= 0 Te~et -7 "~ 0 =~
(a) (b)
st
A
- \T
\j P ) P >
- =770 T
_AL’ L
(c)

Fig. 3.4: (a) Even function cosine terms only. (b) Odd function sine terms
only. (c) Odd harmonics only with both sine and cosine terms.

Department of Electrical & Electronic Engineering, School of Engineering, University of Zambia



3.5 Evaluation of Fourier Coefficients Cont’d

1 We can derive the form of Fourier cosine series by setting

d Wethenobtain C and 6 intermsof a and b ,as

1 If we combine the cosine and sine terms of each harmonic in the original series, we
readily obtain from Egs. 3.38 - 3.41 the Fourier cosine series
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3.5 Evaluation of Fourier Coefficients Cont’d

1 Note, that the coefficients C  are usually taken to be positive. If however, a term
such as —3cos2a@,t carries a negative sign, then we can use the equivalent form

 Example, the Fourier series of the fully rectified sine wave in Fig. 3.1 was shown

to be

O Expressed as a Fourier cosine series, s(t) Is
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3.5 Evaluation of Fourier Coefficients Cont’d

J Next, consider the complex form of a Fourier series. If we express cosnaw,t and
sinna,t interms of complex exponentials, then the Fourier series can be written
as

(3.46)

J If we define

an+jbn
B =t B = B =q, (3.47)
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3.5 Evaluation of Fourier Coefficients Cont’d
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3.5 Evaluation of Fourier Coefficients Cont’d

 Equation 3.49 is sometimes called the discrete Fourier transform of s(¢) and Eq.
3.48 is the inverse transform of B (nw )= B .

. A
C 1 ?C, A
=2T -
02‘ ‘CZ | =1 | oo Z| 7| 3| 21 t
c o ’ 1 |° 2
Gl | | 17,6
4o -30,-20,-0, |0 O, 20,30, 4, W -A
Fig. 3.5: Amplitude spectrum. Fig. 3.6: Square wave.

- B isusually complex and can be represented as.
n

B =Rep +jlmp (3.50)
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3.5 Evaluation of Fourier Coefficients Cont’d

4 The real part of g is obtained from Eq. 3.49 as

and the imaginary partof g i

) Clearly, Re i IS an even function in n, whereas Im B, IS an odd function in n.
The amplltude spectrum of the Fourier series is defined as

and the phase spectrum is defined as
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3.5 Evaluation of Fourier Coefficients Cont’d

U It is easily seen that the amplitude spectrum is an even function and the phase
spectrum is an odd function in n.

L The amplitude spectrum gives an insight as to where to truncate the infinite series
and still maintain a good approximation to the original waveform.

1 Clearly, for the amplitude spectrum in Fig. 3.5, we see that a good approximation
can be obtained if we disregard any harmonic above the third.

r[Example 3.3] Complex Fourier Coefficients
¢0btain the complex Fourier coefficients for the square wave in Fig. 3.6. Also find
the amplitude and phase spectra of the square wave.
s [Solution]
sFrom Fig. 3.6, we note that s(¢) is an odd function. Moreover, since
s(t — T/2) = —s(t) , the series has only odd harmonics. Thus from Eq. 3.49 we

_obtain the coefficients of the complex Fourier series as
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[Example 3.3] Complex Fourier Coefficients
Cont’d
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[Example 3.3] Complex Fourier Coefficients
Cont’d

(

s~ The amplitude and phase spectra of the square wave are thus as given in Fig. 3.7.

4 Amplitude * Phase

n LI,
L Ll RN

5 3 1] 1 3 5 o _z

w|k\

Fig. 3.7: Discrete spectra of square wave. (a) Amplitude. (b) Phase.
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3.6 Evaluation of Fourier Coefficients Using
Unit Impulses

1 Here, we make use of a basic property of impulse functions to simplify the
calculation of complex Fourier coefficients. This method is applicable to functions
consisting of straight-line components only. Thus the method applies for the square
wave in Fig. 3.6.

J The method is based on the relation

IZ f(t)o(t = T))dt = f(T)) (3.58)

O Let us use Eq. 3.58 to evaluate the complex Fourier coefficients for the impulse
train in Fig. 3.8. For  f(t) = e ™', we have

=—I (t-‘) oty — A a2 (3.59)
T

0
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3.6 Evaluation of Fourier Coefficients Using
Unit Impulses Cont’d

A
37
2

A T T
r |0 T
2
1 The complex Fourier coefficients for the impulse functions are obtained by simply
substituting the time at which the impulses occur into the expression

—Jnayt

2

T Fig. 3.8:

~| Impulse train.
57 ¢
2

O In the evaluation of Fourier coefficients, we must remember that the limits for the
B Integral are taken over one period only, i.e., we consider only a single period
of the signal in the analysis.

(] Consider, as an example, the square wave in Fig. 3.6. To evaluate S , we
consider only a single period of the square wave as shown in Fig. 3.9a.
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3.6 Evaluation of Fourier Coefficients Using
Unit Impulses Cont’d

A (1) 13’(t)
A A A
0 T T t> 0 T T t
2 2
—A
24
(a) (b)

Fig. 3.9: (a) Square wave over period [0, T'] . (b) Derivative of
square wave over period [0, T'].

] Since the square wave is not made up of impulses, let us differentiate the single
period of the square wave to give s'(t) as shown in Fig. 3.9b.

3 We can now evaluate the complex Fourier coefficients for s'(t) , which clearly is
made up of impulses alone. Analytically, if s(¢) is given as
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3.6 Evaluation of Fourier Coefficients Using
Unit Impulses Cont’d

then the derivative of s(t)

1 Here, we define a new complex coefficient

(3.62)

o=,

O If the derivative s'(t) is a function which consists of impulse components alone,
then we simply evaluate y. firstand then obtain S from Eq. 3.63.
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3.6 Evaluation of Fourier Coefficients Using
Unit Impulses Cont’d

O For example, the derivative of the square wave yields the impulse train in Fig.
3.9b. In the interval [0, T'], the signal s'(¢) is given as

1 Then the complex coefficients are

(3.65)

(d The Fourier coeffici

(3.66)
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3.6 Evaluation of Fourier Coefficients Using
Unit Impulses Cont’d

J The solution obtained in Eq. 3.66 checks with that obtained earlier by the standard
way in Eq. 3.55.

1 Note, if the first derivative, s'(t) , does not contain impulses, then we must
differentiate again to yield

i iy, = 5, 0%

O For the triangular pulse in Fig. 3.10, the second derivative over the period

0, T] is
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3.6 Evaluation of Fourier Coefficients Using
Unit Impulses Cont’d

$s(t)
Al----5 st
2A
- T
0 T T 3T ¢
2 2 - ls”(t)
(a) 0 5 T t
24 24 24
T T T
Fig. 3.10: The triangular (b) A T .
wave and its derivatives. 0 7 T t
J The coefficients A are now obtained as A
! 7 ()
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3.6 Evaluation of Fourier Coefficients Using
Unit Impulses Cont’d

O Eqg. 3.70 simplifies to give

(3.71)

From , we obtain

(3.72)

1 Aslight difficulty arises if the expression for s'(t) contains an impulse in addition
to other straight-line terms.
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3.6 Evaluation of Fourier Coefficients Using
Unit Impulses Cont’d

] Nonetheless, we know that

Thus, doublets or even higher derivatives of impulses can be tolerated.

1 Consider the signal s(t) givenin Fig. 3.11a. Its derivative s'(t), shown in Fig.
3.11b, can be expressed as

(3.75)

O It follows that the second derivative s’(¢) is given by Eq. 3.76
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3.6 Evaluation of Fourier Coefficients Using
Unit Impulses Cont’d

1 This is depicted in Fig. 3.11c. We therefore evaluate 4 as

(3.77)
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3.6 Evaluation of Fourier Coefficients Using
Unit Impulses Cont’d

g s'(4) I
K 5(t)
2
_ - T
T t
)

4

b 5(t)
5 |
1/\
(

0

a

o
o |3
~

Fig. 3.11 V-2s(t-1) 0 l t

d The complex coefficients S are now obtained as | |
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3.6 Evaluation of Fourier Coefficients Using
Unit Impulses Cont’d

O Simplifying, we get

(3.79)

. In conclusion, itis worth noting that the impulse method to evaluate Fourier
coefficients does not give the dc component, @ or g, . Thus, this is obtain
through standard means as given by Eq. 3.23.
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3.7 The Fourier Integral

1 We now extend our signal analysis to the aperiodic case. Generally, aperiodic
signals have continuous amplitude and phase spectra.

d In our discussion of Fourier series, the complex coefficient g for periodic
signals was also called the discrete Fourier transform

(3.80)

and the inverse (discrete) transform was

(3.81)

1 From the discrete Fourier transform we obtain amplitude and phase spectra which
consist of discrete lines. The spacing between adjacent lines is

(3.82)
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3.7 The Fourier Integral Cont’d

L As the period T becomes larger, the spacing between the harmonic lines in the
spectrum becomes smaller. For aperiodic signals, we let T approach infinity so
that, in the limit, the discrete spectrum becomes continuous.

J We now define the Fourier integral or transform as

and the inverse transform is

O Eqgs. 3.83 and 3.84 are sometimes called the Fourier transform pair. If we let
Z denote the operation of Fourier transformationand %! denote inverse
transformation, then
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3.7 The Fourier Integral Cont’d

A In general, the Fourier transform S(f) is complex and can be denoted as

U= ReS(p)+ms(s) 0on

 The real part of S(f) is obtained through the formula

(3.87)

and the imaginary part through
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3.7 The Fourier Integral Cont’d

(3.88)
( The amplitude spectrum of S(f) is defined as
(3.89)
and the phase spectrum is
(3.90)

O By means of the amplitude and phase definition of the Fourier transform, the
inverse transform can be expressed as
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3.7 The Fourier Integral Cont’d

O Let us examine some examples.

A
A
~f ! o

(@) Amlitude spectrum

Fig. 3.12: Amplitude and phase spectrum of A5(t —t,) .

slope = =27t

—f 0

(b) Phase spectrum

(3.91)
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Example 3.4 The Fourier Integral
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Example 3.5 The Fourier Integral
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3.7 The Fourier Integral Cont’d

A rect(f)

W
—f _% 0 +7 f

Fig. 3.13: Plot of a rect function.

1.0 /\

08 \I

g
a
s
~~
#,i

4 2 3 L3 5
W w w W w

Fig. 3.14: The sinc ¢ curve.
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3.7 The Fourier Integral Cont’d

eft) r{e)
Excitation System Response
” _— BW= % —_— 71
h,ll___ t ]
Marrow pulse Wide band Marrow pulsa
e(t) r(t)
Excitation System Response
Bw.-;? ﬂ 1071
SRETY ) P ¢
Wide pulse Marrower band Wide pulse

Fig. 3.15: Hlustration of the reciprocity relationships between time

duration and bandwidth.
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3.7 The Fourier Integral Cont’d

-1
) From the plot of sinct in Fig. 3.14 we see that sinct falls as does |¢| , with zeros
at ¢t =n/W,n =12, 3,... Note that most of the energy of the signal is
concentrated between the points —1/ W <t <1/ W

1 Let us define time duration of a signal as that point, ¢ , beyond which the
amplitude Is never greater than a specified value, for example, €, .

O For the sinc function, the effective time duration is givenas ¢, = + 1/W. The value
W, as seen from Fig. 3.13, is the spectral bandwith of the rect function.
O Clearly, if Wincreases, t, decreases. The preceding example illustrates the

reciprocal relationship between the time duration of a signal and spectral bandwith
of it Fourier transform.

1 This concept is quite fundamental. It shows why in pulse transmission, narrow
pulses, can only be transmitted through filters with larger bandwidths; whereas,
wide pulses do not require wide bandwidths. See Fig. 3.15.
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3.8 Properties of Fourier Transforms

O We now focus our energy on some important properties of Fourier transforms.

) Linearity. The linearity property of Fourier transforms states that the Fourier
transform of a sum of two signals is the sum of their individual Fourier transforms,
that is,

ff[clsl(t) + 6282(t):| =¢85, (f) +¢,5,(f) (3.97)

1 Differentiation. This property states that the Fourier transform of the derivative of
asignal is 527 f times the Fourier transform of the signal itself:

Fe- e =

F - s"(t) = (22)"S(f) (3.99)
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3.8 Properties of Fourier Transforms Cont’d

2 Similarly, it is easily shown that the transform of the integral of  s(¢) s
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[Example 3.6| Properties of F-Transforms
Cont’d
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3.8 Properties of Fourier Transforms Cont’d

O Symmetry. The symmetry property of Fourier transforms states that if

) This property follows directly from the symmetrical nature of the Fourier
transform pair in Egs. 3.83 and 3.84.

(3.106)

(3.107)
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[Example 3.8] Properties of F-Transforms

5.~Consider next the Fourier transform of the unit impulse, & - o(t) =1.Fromthe

symmetry property we can show that
7 -1=5(f)

as shown in Fig. 3.16.

(3.110)

<.~ The foregoing example is also an extreme illustration of the time-duration and
bandwidth reciprocity relationship. It says that zero time duration, §(¢) , gives rise
to infinite bandwidth in the frequency domain; while zero bandwidth, &(f)

corresponds to infinite time duration.

b 1)

i

0

i

>

Fig. 3.16: Fourier transform of f (t)=1.0 .
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3.8 Properties of Fourier Transforms Cont’d

1 Scale change. The scale-change property describes the time-duration and
bandwidth reciprocity relationship. It states that
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[Example 3.9] Properties of F-Transforms

1 Folding. The folding property states that
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3.8 Properties of Fourier Transforms Cont’d

O The proof follows directly from the definition of the Fourier transform. An

example is

1 Delay. If asignal is delayed by an amount ¢, in the time domain, the

corresponding effect in the frequency domain is to multiply the transform of the
undelayed signal by =727/ | that s,
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(3.119)




3.8 Properties of Fourier Transforms Cont’d

1 Modulation. The modulation or frequency shift property of Fourier transforms
states that if a Fourier transform is shifted in frequency by an amount £ the
corresponding effect in time is described by multiplying the original signal by

270t that |
p , that is, [ (f - f)] 27 (1) (3.120)

[Example 3.9] Properties of F-Transforms
a~Given S(f) inFig.3.17a, let us find the inverse transform of S, (f) in Fig.
3.17bin terms of s(t) = # {S(f)}. We know that

S,(f)=8(f = f)+S(f + 1) G122
S(f) 5.
4 A
| LA /\
—f |0 +f —f ~f, 0 +£ +}
(a) (b)

Fig. 3.17: Demonstration of amplitude modulation.
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[Example 3.9] Properties of F-Transforms
Cont’d

<~ Then F8(f) = e’ s(t) + e s(t) = 2s(t) cos 27 fit (3.122)

s~ Thus we see that multiplying a signal by a cosine or sine wave in the time domain
corresponds to shifting its spectrum by an amount %J . In transmission
terminology f, is the carrier frequency, and the process of multiplying s(¢) by

cos2z it is called amplitude modulation.

) Parseval’s theorem. An important theorem which relates energy in the time and
frequency domains is Parseval’s theorem, which states that

["sws,dt =" 8,(H)S,(-Hdf (3.123)

g
sProof

ji 5,(t)s,()dt = j dtj e df
_ J_w S (f deD s, (1 () dt (3.124)

= [ S.(NS,(-Pdf
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3.8 Properties of Fourier Transforms Cont’d

J In particular, when s (t) = s,(t) , we have a corollary of Parseval’s theorem
known as Plancheral’s theorem.

Q If s(t) isequal to the current through, or the voltage across a 1-ohm resistor, the

total energy is

] We see from Eqg. 3.125 that the total energy is also equal to the area under the
curve of |s( f )|2 Thus |s( f )|2 is sometimes called an energy density or energy
spectrum.
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End of Lecture 3

Thank you for your attention!
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