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4.1 Introduction

❑ In this part of the course, we will concern ourselves with a brief study of ordinary 

differential equations (ODEs). The ODEs considered have the general form 

3

( )( ), ( ), , ( ), 0nF x t x t x t t  =
 

(4.1)

where      is the independent variable and           is a function dependent upon      . 

The superscripted terms             indicate the         derivative of          with respect to        

, namely,

❑ The solution of Eq. 4.1 is          and must be obtained as an explicit function of       . 

If we substitute          into F, the equation must equal zero. 
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4.1 Introduction Cont’d

❑ If F in Eq. 4.1 is a linear ODE, it is given by the general equation

4

( ) ( 1)

1 1 0
( ) ( ) ( ) ( ) ( )n n

n n
a x t a x t a x t a x t f t−

−
+ + + + = (4.3)

❑ The order of the equation is     , the order of the highest derivative term. The term            

on the right-hand side of the equation is the forcing function or driver, and is 

independent of          . When            is identically zero, the equation is said to be 

homogeneous; otherwise, the equation is non-homogeneous.

❑ Here, we will restrict ourselves to linear ODEs with constant coefficients. 

❑ Ordinary. An ordinary differential equation is one in which there is only one 

independent variable, thus there is no need for partial derivatives.

❑ Constant coefficients. The coefficients                                  are constant, 
independent of the variable t.

n
( )f t

1 2 1 0
, , , , ,
n n
a a a a a

−
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4.1 Introduction Cont’d

the solution would be

5

1 2
( ) ( ) ( )f t af t bf t= + (4.6)

(4.7)

here a and b are arbitrary constants.

❑ It is worth noting that the superposition property is of primary importance in any 

discussion of linear DEs.

1 2
( ) ( ) ( )x t ax t bx t= +
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where      is any arbitrary constant. We check if                       is truly a solution of 

Eq. 4.8. Thus, substituting the assumed solution in Eq. 4.8, gives

4.2 Homogeneous Linear Differential 

Equations

❑ We now focus our attention on some methods to solve homogeneous linear DEs. 

First, let us find the solution to 

6

2( ) tx t Ce=

(4.8)

❑ Using intuition and/or scientific guess assume the solution to be of the form

C

( ) 2 ( ) 0x t x t − =

(4.9)

2( ) tx t Ce=

2 22 2 0t tCe Ce− = (4.10)

❑ In general, solutions of homogeneous , linear DEs consist of exponential terms of 

the form          . Thus, to obtain the solution of any DE, we substitute          for            
in the equation and determine values of p for which the equation is zero. 

ip t

i
C e ptCe

( )x t
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4.2 Homogeneous Linear Differential 

Equations Cont’d

❑ Simply put, given the general equation

7

1

1 1 0
( ) 0pt n n

n n
Ce a p a p a p a−

−
+ + + + =

we let                    , so that Eq. 4.11 becomes

❑ Since         cannot be zero except at               ,  the only nontrivial solutions for Eq. 

4.12 occur if the polynomial    

( )

1 0
( ) ( ) ( ) 0n

n
a x t a x t a x t+ + + =

pte

(4.11)

❑ Equation 4.13 is often called the characteristic equation, which is zero only at its 

roots. Thus, let us factor             to give( )H p

p = −

(4.12)

1

1 1 0
( ) 0n n

n n
H p a p a p a p a−

−
= + + + + = (4.13)

0 1 1
( ) ( )( ) ( )

n n
H p a p p p p p p

−
= − − − (4.14)

From Eq. 4.14, we note that                                            are all solutions of Eq. 4.11. 0 1 1

0 1 1
, , , np t p t p t

n
C e C e C e −

−
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4.2 Homogeneous Linear Differential 

Equations Cont’d

❑ By the superposition principle, the total solution is a linear combination of all the 
individual solutions, that is,

8

here                          are generally complex. The solution           in Eq. 4.15 is not 

unique unless the constants                             are uniquely specified.

❑ Initial conditions, are additional pieces of information needed to determine the 

constants       , i.e.,                                                                        .

❑ Note that, if the initial values are given as                                                   for              

, we must first determine the values at               .

❑ For example, in Eq. 4.9, given that                      , then we obtain the constant from 

the equation 

i
C

0 1 1
, , ,

n
C C C

−

(4.15)0 1 1

0 1 1
( ) np t p t p t

n
x t C e C e C e −

−
= + + +

( 1)(0 ), (0 ), , (0 ) for 0nx x x t−+ + + = +
( 1)(0 ), (0 ), , (0 )nx x x −− − −

0t = − 0t = +

0(0 )x Ce C+ = = (4.16)

(0 ) 4x + =
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so that           is uniquely determined to be                    .
2( ) 4 tx t e=( )x t

0 1 1
, , ,

n
C C C

−

( )x t



[Example 4.1] Homogeneous Linear Differential 

Equations
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The roots are                             . The          takes the form

(4.17)

(4.18)

( ) 5 ( ) 4 ( ) 0x t x t x t + + =

given the initial conditions                     ,                       .            (0 ) 2x + = (0 ) 1x  + = −

[Solution]
2( ) 5 4 0H p p p= + + =

which factors into ( 4)( 1) 0p p+ + = (4.19)

Find the solution for                                                        

1; 4p p= − = − ( )x t
4

1 2
( ) t tx t C e C e− −= + (4.20)
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From the initial condition                     we obtain

(4.21)

(0 ) 2x + =

1 2
(0 ) 2x C C+ = = +

We first obtain the characteristic equation



[Example 4.1] Homogeneous Linear Differential 

Equations Cont’d

10

At              ,             is                                                  

(4.22)

Using the other initial condition                       , and taking the derivative of Eq. 

4.20, we get
4

1 2
( ) 4t tx t C e C e− − = − −

(0 ) 1x  + = −

1 2
(0 ) 1 4x C C + = − = − − (4.23)

0t = + ( )x t

1 2
7 3; 1 3C C= = −

(4.24)

Solving Eqns. 4.21 and 4.23 simultaneously, gives

 Thus the final solution is

47 1
( )

3 3
t tx t e e− −= −
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4.2 Homogeneous Linear Differential 

Equations Cont’d

❑ We now examine the case when the characteristic equations            has multiple 
roots, i.e., consider the case when            has a root              of multiplicity k as 

given by  

11

(4.25)

( )H p

0
p p=

0 1
( ) ( ) ( ) ( )k

n n
H p a p p p p p p= − − −

❑ Thus, the solution contains k terms involving          of the form0p te

0 0 0 0

1 2

2 1

00 01 02 0 1

1 2

( )
n

p t p t p t p tk

k
p t p t p t

n

x t C e C te C t e C t e

C e C e C e

−

−
= + + + +

+ + + +
(4.26)

here, the double-scripted terms denote the terms due to the multiple root,                .0
( )kp p−
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[Example 4.2] Homogeneous Linear 

Differential Equations

[Solution]:

12

To determine        and        , we evaluate          and            at              to get                                  

(4.28)

(4.29)

2 2( ) 8 16 ( 4)H p p p p= − + = −

Since has a double root at           , the solution take the form 

4 4

1 2
( ) t tx t C e C te= +

( )H p

1

1 2 2

(0 ) 2

(0 ) 4 4; 4

x C

x C C C

+ = =

 + = + = = −
(4.30)

4p =

( )x t

(4.31)
4 4( ) 2 4t tx t e te= −

( )x t
1
C

2
C 0t = +

Thus, the solution is                                        

Department of Electrical & Electronic Engineering, School of Engineering, University of Zambia

( ) 8 ( ) 16 ( ) 0x t x t x t − + = (4.27)

given the initial conditions                     ,                       .            (0 ) 2x + = (0 ) 4x  + =

Solve the equation

The characteristic equation is of the form



where        and        are complex conjugate roots, that is 

❑ Using Euler’s equation to expand        , we have

4.2 Homogeneous Linear Differential 

Equations Cont’d

❑ Another case is when             has complex conjugate roots. Consider the equation

13

(4.32)

( )H p

1
p

( ) ( )

1 2
( ) j t j tx t C e C e   + −= +

2 1 2
( ) ( )( )H p a p p p p= − −

1 2
,p p j =  (4.33)

2
p

1 2
( ) (cos sin ) (cos sin )t tx t C e t j t C e t j t    = + + − (4.35)

❑ The solution is of the form        

j te 

1 2 1 2
( ) ( ) cos ( ) sint tx t C C e t j C C e t  = + + −

(4.34)

which reduces to 

(4.36)
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❑ The constants          and          are determined using initial conditions.

❑ Another convenient form  for the solution can be obtained by introducing yet 

another pair of constants,        and      , defined as

4.2 Homogeneous Linear Differential 

Equations Cont’d

❑ To express           in a more convenient form, we use new constants,        and        , 
so that 

14

(4.37)

( )x t
1
M

1 1 2 2 1 2
; ( )M C C M j C C= + = − (4.38)

2
M

1 2
sin ; cosM M M M = =

❑ Using the new constants, we obtain another form 

1 2
( ) cos sint tx t M e t M e t  = +

here, the constants are related as follows

(4.39)

M 

( ) sin( )tx t Me t  = + (4.40)
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[Example 4.3] Homogeneous Linear 

Differential Equations

Solve the equation

15

 From, Eqn. 4.37, we have               and            . Then                                              

(4.41)( ) 2 ( ) 5 ( ) 0x t x t x t + + =

[Solution]
2( ) 2 5 ( 1 2)( 1 2)H p p p p j p j= + + = + + + −

2 =

(4.42)

(4.43)

0t = +

1 = −

At           

with the initial conditions                     ,                       .            (0 ) 1x + = (0 ) 0x  + =

1 2
( ) cos2 sin2t tx t M e t M e t− −= +

1
(0 ) 1x M+ = =

(4.45)

The derivative of             is           ( )x t

1 2
( ) ( cos2 2 sin2 ) ( sin2 2 cos2 )t t t tx t M e t e t M e t e t− − − − = − − + − +

(4.44)
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The characteristic equation is of the form



[Example 4.3] Homogeneous Linear 

Differential Equations Cont’d

At               we have 

16

By means of Eq. 4.40, the solution can be of the form                                   

(4.46)

Thus, the solution is

(4.47)

0t = +

Solving Eqns. 4.44 and 4.46 simultaneously, gives                               .          

1 2
(0 ) 0 2x M M + = = − +

1
( ) cos2 sin2

2
tx t e t t−  

= + 
 

1 2
1; 1 2M M= =

❑ Now, we consider an example that illustrates all that has been discussed.

(4.48)15
( ) sin 2 tan (2)

4
tx t e t− − = +

 
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[Example 4.4] Homogeneous Linear 

Differential Equations

The differential equation is

17

[Solution]

(4.49)(5) (4) (3)( ) 9 ( ) 32 ( ) 58 ( ) 56 ( ) 24 ( ) 0x t x t x t x t x t x t + + + + + =

with the initial conditions             

(4) (3)(0 ) 0; (0 ) 1

(0 ) 1; (0 ) 0; (0 ) 1

x x

x x x

+ = + =

 + = − + = + =

(4.51)

Which factors into

(4.50)5 4 3 2( ) 9 32 58 56 24 0H p p p p p p= + + + + + =

2( ) ( 1 1)( 1 1)( 2) ( 3) 0H p p j p j p p= + + + − + + =

Thus
2 2 3

1 2 0 1 2
( ) cos sint t t t tx t M e t M e t C e C te C e− − − − −= + + + + (4.52)
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The characteristic equation is of the form



[Example 4.4] Homogeneous Linear 

Differential Equations Cont’d

Since there are five coefficients, we need five equations to evaluate the unknowns. 

That is

18

1 0 2

1 2 0 2 1

2 0 1 2
(3)

1 2 0 1 2
(4)

1 0 2 1

(0 ) 1

(0 ) 2 3 0

(0 ) 2 4 4 9 1

(0 ) 2 2 8 12 27 1

(0 ) 4 16 81 32 0

x M C C

x M M C C C

x M C C C

x M M C C C

x M C C C

+ = + + =

 + = − + − − + =

 + = − + − + = −

+ = + − + − =

+ = − + + − =

Solving the five simultaneous equations, gives

(4.53)

1 2 0 1 2
0; 3 2; 1; 1 2; 0M M C C C= = = = =

so that the final solution is

2 23 1
( ) sin

2 2
t t tx t e t e te− − −= + + (4.54)
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❑ From Eq. 4.55, let be a particular solution and             be the solution of the 

homogeneous equation, that is, when                . Thus 

4.3 Nonhomogeneous Differential Equations

❑ A nonhomogeneous DE has a forcing function           not zero for all t. It is of the 

form

19

( )
p
x t

(4.55)

( )f t

( ) ( ) ( )
p c

x t x t x t= + (4.56)

is also a solution of Eq. 4.55. By the uniqueness theorem, the solution in Eq. 4.56 is 

unique if it satisfies the specified initial conditions at             .

❑ In Eq. 4.56,             is the particular integral;           is the complementary function; 

and            is the total solution.

❑ We now know how to find            , so we look at  how to find            . A reliable 

rule of thumb is that           usually takes the same form as the forcing function            

.

( ) ( 1)

1 1 0
( ) ( ) ( ) ( ) ( )n n

n n
a x t a x t a x t a x t f t−

−
+ + + + =

( )
c
x t

( ) 0f t =

0t = +

( )x t

( )f t
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c
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p
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p
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4.3 Nonhomogeneous Differential Equations 

Cont’d

❑ Specifically,           assumes the form of           plus its derivatives. For example, for                           

, then             takes the form

20

( ) sin cos
p
x t A t B t = +

( )f t

(4.57)

❑ The only unknowns to be determined are coefficients A and B. The method of 

obtaining             is appropriately called the method of undetermined coefficients

or unknown coefficients.

❑ Let us take          to be

( )
p
x t

( )
p
x t( ) sinf t t =

( ) tf t e=

where        and       are arbitrary constants. We assume to be of the form 

( ) t

p
x t Ae= (4.58)

here A is the unknown coefficient. We thus substitute            into the DE.
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( )
p
x t

( )f t

( )
p
x t

( )
p
x t



4.3 Nonhomogeneous Differential Equations

Cont’d

❑ Thus,

21

1

1 1 0
( )t n n t

n n
Ae a a a a e    −

−
+ + + + = (4.59)

❑ Clearly, the polynomial within the parentheses is the characteristic equation

with             . As such

( )
A
H




=

provided that                   .( ) 0H  

p =( )H p

( ) 3 ( ) 2 ( ) 4 tx t x t x t e + + =

(4.60)

with the initial conditions,                      ,                          .  (0 ) 1x + =

(4.61)

(0 ) 1x  + = −
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Determine the solution of the equation

[Example 4.5] Nonhomogeneous Linear 

Differential Equations



[Example 4.5] Nonhomogeneous Linear 

Differential Equations Cont’d

[Solution]

22

2( ) 3 2 ( 2)( 1)H p p p p p= + + = + +

So that the complementary function is

4 2

( ) (1) 3
A
H H

= = =




For the forcing function                      , the constants in Eq. 4.60 are            ,          .

Thus

2

1 2
( ) t t

c
x t C e C e− −= +

( ) 4 tf t e=

It follows that,                            , such that the total solution is  

4=

(4.62)

1=

2
( )

3
t

p
x t e=

2

1 2

2
( ) ( ) ( )

3
t t t

c p
x t x t x t C e C e e− −= + = + +
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The characteristic equation is of the form



Solving Eq. 4.63, gives                ,                 . Therefore,

[Example 4.5] Nonhomogeneous Linear 

Differential Equations Cont’d

We now evaluate the constants using the given initial conditions.

23

1 2 1 2

2 2
(0 ) 1 ; (0 ) 1 2

3 3
x C C x C C+ = = + + + = − = − − +

1
1C = −

It is worth noting that the constants are obtained using the initial conditions for the 

total solution.

(4.63)

2
4 3C =

24 2
( )

3 3
t t tx t e e e− −= − + + (4.64)

❑ Next, consider an example of a constant forcing function                   . We may use 

Eq. 4.60 if we write the function in the form

( )f t =

0( ) tf t e = = (4.65)
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4.3 Nonhomogeneous Differential Equations

Cont’d

that is,            . For the DE in Example 4.5 with                ,  we see that

24

4
( ) 2

(0)p
x t A

H
= = =

❑ If the forcing function is a sine or cosine function, we can still use the exponential 

form and exploit the method of undetermined coefficients .

❑ Suppose 

(4.66)

0 =

2

1 2
( ) 2t tx t C e C e− −= + + (4.67)

( ) 4f t =

( ) (cos sin )j tf t e t j t   = = +

and

(4.68)

then the particular integral             can be written as1
( )

p
x t

1 1 1
( ) Re ( ) Im ( )

p p p
x t x t j x t= + (4.69)
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4.3 Nonhomogeneous Differential Equations

Cont’d

❑ By the superposition principle, we can show that

25

1
( ) cos then ( ) Re ( )

p p
f t t x t x t = =

❑ Thus, whether the excitation is a cosine or sine function, we can still use the 

exponential driver                         , then take the real or imaginary part of the 

resulting particular integral.
( ) j tf t e =

if

Find the particular integral for the equation

( ) 5 ( ) 4 ( ) 2 sin 3x t x t x t t + + = (4.70)

1
( ) sin then ( ) Im ( )

p p
f t t x t x t = =if

[Solution]
3( ) 2 j tf t e= (4.71)
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[Example 4.6] Nonhomogeneous Linear 

Differential Equations

We, let the excitation be of the form



It follows that the particular integral             is of the form 

26

From the characteristic equation

1
( )

p
x t

we determine the coefficient A to be
1[tan (3) ]2 2 2

( 3) 5 15 5 10

jA e
H j j

− −= = =
− +

(4.72)
3

1
( ) j t

p
x t Ae=

Then
1[tan (3) 3 ]

1

2
( )

5 10

j t

p
x t e − + −=

(4.73)

2( ) 5 4H p p p= + +

(4.74)
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[Example 4.6] Nonhomogeneous Linear 

Differential Equations Cont’d

so that the particular integral              for                           is ( )
p
x t

(4.75)

( ) 2 sin 3f t t=

1

1

2
( ) Im ( ) sin[3 tan (3) ]

5 10
p p
x t x t t −= = + − 



4.3 Nonhomogeneous Differential 

Equations Cont’d

27

❑ Note that the method of undetermined coefficients has certain limitations .

❑ For example, if           were a Bessel function            , we could not assume 

to be a Bessel function of the same form. 

❑ For the purpose of linear network analysis, the method is more than adequate.

❑ Suppose the forcing function were

( )f t
0
( )J t

(4.76)

( )
p
x t

( ) ;k ptf t At e p j = = +

❑ The particular integral can be written as

1

1 1 0
( ) [ ]k k pt

p k k
x t A t A t At A e−

−
= + + + +

where the coefficients                                are to be determined.
1 1 0

, , , ,
k k
A A A A

−
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4.4 Step & Impulse Response

❑ We now discuss solutions of differential equations with step or impulse forcing 

functions. 

❑ As physical quantities, the step and impulse responses of a linear system are highly 

significant measures of system performance. 

❑ Thus, a reliable measure of the transient behavior of the system is given by its step 

and impulse response.

❑ Here, we concern ourselves with the mathematical problem of solving for impulse 

and step response, given a linear DE with initial conditions at             , 

28

❑ Recall that the unit step function is given by

1 0
( )

0 0

t
u t

t

  
= 

 

0t = −
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4.4 Step & Impulse Response Cont’d

and the unit impulse was shown to have the properties: 

29

❑ Furthermore, we have the relationship 

0
( )

0 0

t
t

t


  =
= 

 

and
0

0
( ) 1t dt

+

−
=

( )
( )

du t
t

dt
 =

❑ Definitions of            and           indicate that both functions have discontinuities at           

. In dealing with initial conditions, the following may be the prevailing 

conditions

( )t ( )u t
0t =

( ) ( ) ( 1) ( 1)(0 ) (0 ); (0 ) (0 ); (0 ) (0 )n n n nx x x x x x− −−  + −  + −  +
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4.4 Step & Impulse Response Cont’d

❑ In many physical problems, the initial  conditions are given at              . However, 

to evaluate the unknown constants of the total solution, we must have the initial 

conditions at               . 

❑ To do this, we use a method called “integrating through a Green’s function.”  

❑ Consider the differential equation with an impulse forcing function

30

❑ By inspection, to ensure the RHS of Eq. 4.77 equals the LHS,  the highest 

derivative                must contain the impulse. Thus,                would contain a step 

and                  , a ramp.

❑ We conclude that, for an impulse forcing function,  the two highest derivative 

terms are discontinuous at           .

0t = −

0t = +

( )( )nx t

(4.77)

( 1)( )nx t−

( 2)( )nx t−

0t =

( ) ( 1)

1 0
( ) ( ) ( ) ( )n n

n n
a x t a x t a x t A t−

−
+ + + =
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4.4 Step & Impulse Response Cont’d

❑ For a step forcing function, only the highest derivative term is discontinuous at           

.

❑ Since initial conditions are usually given at             , our task is to determine the 

values                    and                   for an impulse forcing function. Let us integrate 

Eq. 4.77 between              and              , namely

31

0 0 0 0( ) ( 1)

1 00 0 0 0
( ) ( ) ( ) ( )n n

n n
a x t dt a x t dt a x t dt A t dt

+ + + +
−

−− − − −
+ + + =   

following integration, we obtain

0t =

( )(0 )nx +

(4.78)

( 1)(0 )nx − +

0t = − 0t = +

0t = −

( ) ( )2 2( 1) ( 1)

1
(0 ) (0 ) (0 ) (0 )

n nn n

n n
a x x a x x A

− −− −

−

  + − − + + − − + =
    

(4.79)

since all derivative terms below             are continuous at          , Eq. 4.79 simplifies 

to 

( 1)n − 0t =

( 1) ( 1)(0 ) (0 )n n

n
a x x A− − + − − =

 
(4.80)
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4.4 Step & Impulse Response Cont’d

❑ Thus.

32

We must next determine                  . At              , the differential equation in Eq. 

4.77 is

( 1) ( 1)(0 ) (0 )n n

n

A
x x

a
− −+ = + −

( )(0 )nx +

(4.82)

❑ Since all derivative terms below             are continuous, and since we already have 

solved for                     , we find that 

0t = +

( ) ( 1)

1 0
(0 ) (0 ) (0 ) 0n n

n n
a x a x a x−

−
+ + + + + + =

(4.81)

( 1)n −
( 1)(0 )nx − +

( ) ( 1)

1 1 0

1
(0 ) (0 ) (0 ) (0 )n n

n
n

x a x a x a x
a

−

−
 + = − + + + + + +
 

(4.83)

❑ For a step forcing function             , all derivative terms except              , are 

continuous at          . To determine                   , we derive in a manner similar to 

Eq. 4.83, the expression

( )Au t ( )( )nx t
( )(0 )nx +0t =
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4.4 Step & Impulse Response Cont’d

❑ The process of determining initial conditions when the forcing function is an 

impulse or one of its higher derivatives can be simplified by the visual process in 

Eqs. 4.85 and 4.86.

33

(4.84)
( ) ( 1)

1 0

1
(0 ) (0 ) (0 )n n

n
n n

A
x a x a x

a a
−

−
 + = − + + + +
 

(4.85)
( ) ( 1) ( 2)

1 2 0
( ) ( ) ( ) ( ) ( )n n n

n n n
a x t a x t a x t a x t t− −

− −
+ + + + =

( ) ( 1) ( 2)

1 2 0
( ) ( ) ( ) ( ) ( )n n n

n n n
a x t a x t a x t a x t t− −

− −
+ + + + = (4.86)

Department of Electrical & Electronic Engineering, School of Engineering, University of Zambia



4.4 Step & Impulse Response Cont’d

❑ It is worth noting that, if a derivative term contains  a certain singularity- for 

instance, a doublet, it also contains all lower derivative terms. For example, in the 

Equation.

34

(4.87)( ) 3 ( ) 2 ( ) 4 ( )x t x t x t t  + + =

(4.88)

we assume the following forms for the derivative terms at           :0t =

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

x t A t B t Cu t

x t A t Bu t

x t Au t

 



 = + +

 = +

=

❑ Substituting Eq. 4.88 into Eq. 4.87, we obtain
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4.4 Step & Impulse Response Cont’d

or in a more convenient form, we have

35

(4.89)

(4.90)

( ) ( ) ( ) 3 ( ) 3 ( ) 2 ( ) 4 ( )A t B t Cu t A t Bu t Au t t    + + + + + =

❑ Equating like coefficients on both sides of Eq. 3.90 gives

( ) ( 3 ) ( ) ( 3 2 ) ( ) 4 ( )A t B A t C B A u t t   + + + + + =

4

3 0

3 2 0

A

B A

C B A

=

+ =

+ + =

(4.91)

from which we obtain                   and               . Therefore, at           , it is  true that12B = − 28C = 0t =

( ) 4 ( ) 12 ( ) 28 ( )

( ) 4 ( ) 12 ( )

( ) 4 ( )

x t t t u t

x t t u t

x t u t

 



 = − +

 = −

=
(4.92)
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4.4 Step & Impulse Response Cont’d

❑ The           terms in Eq. 4.92 give rise to the discontinuities in the initial conditions 
at          .  We are given the initial conditions at              . Upon evaluating A, B, C 
in Eq. 4.88, we can obtain initial conditions at             . by referring to coefficients 

of the step terms.

❑ For example, given

36

0t = +

Then from Eq. 4.92 we obtain

( )u t
0t = −0t =

(0 ) 2

(0 ) 1

(0 ) 7

x

x

x

− = −

 − = −

 − =

(4.93)

(0 ) 2 4 2

(0 ) 1 12 13

(0 ) 7 28 35

x

x

x

+ = − + =

 + = − − = −

 + = + =
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4.4 Step & Impulse Response Cont’d

❑ The total solution of Eq. 4.87 is obtained as though it were a homogeneous 

equation, since                   for          .

❑ The only influence the doublet driver has is to produce discontinuities in the initial 

conditions at          . Having evaluated the initial conditions at             , we can 

obtain the total solution with ease. Thus,  

37

0t = +

From Eq. 4.93 we readily obtain

( ) 0t  =

0t =

0t 

2

1 2
( ) t tx t C e C e− −= + (4.94)

2( ) [ 9 11 ] ( )t tx t e e u t− −= − + (4.95)

❑ For a step forcing function, only the highest derivative term has a discontinuity at           

. Thus, no need for the initial condition for this term. Hence solve it like a 

standard nonhomogeneous equation with a constant forcing function.

❑ For an impulse driver, once we determine the initial conditions at               , the 

equation is solved in the same manner as a homogeneous equation.

0t =
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[Example 4.7] Step & Impulse Response

Find the step and impulse response for the equation

38

where                        and                        , respectively. The initial conditions at              

are                                                    . 

2 ( ) 4 ( ) 10 ( ) ( )x t x t x t f t + + =

( ) ( )f t u t=

(4.96)

[Solution]
Let us first find the impulse response. We note that the           term has an impulse; 

the          term has a step; the term        contains a ramp, and is therefore continuous 
at            . Thus                                  . To obtain          

, we use Eq. 4.81   

0t = −

( ) ( )f t t=

(0 ) (0 ) (0 ) 0x x x − = − = − =

( )x t
( )x t ( )x t
0t = (0 ) (0 ) 0x x+ = − =

(0 )x  +

2

1 1
(0 ) (0 ) 0

2 2

K
x x

a
 + = + − = + =

Note, need only               and                to evaluate the constants for the second-

order DE.

(0 )x + (0 )x  +
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[Example 4.7] Step & Impulse Response 

Cont’d

Next, we proceed to the complementary function             . The characteristic 

equation is 

39

( )
c
x t

Thus, the complementary function is of the form 

2( ) 2( 2 5) 2( 1 2)( 1 2)H p p p p j p j= + + = + + + − (4.97)

Substituting the initial conditions at              , we obtain

( ) sin(2 )t

c
x t Me t −= + (4.98)

0t = +

1
(0 ) 0 sin ; (0 ) 2 cos sin

2
x M x M M  + = = + = = − (4.99)

we thus find           and                   . Thus the impulse response which we denote

here as             is 

0 = 1 4M =

( )x t


1
( ) sin2 ( )

4
tx t e tu t



−= (4.100)
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[Example 4.7] Step & Impulse Response 

Cont’d

Next, we  solve the step response           . Let us write the complementary function 

as

40

( )
u
x t

The particular integral is evaluated taking the driver as a constant                  , so 

that

1 2
( ) ( sin2 cos2 )t

c
x t e A t A t−= +

1 1
( )

(0) 10p
x t

H
= =

( ) 1f t =

The total solution is then

1 2

1
( ) ( sin2 cos2 )

10
tx t A t A t e−= + +

(4.101)

(4.102)

(4.103)

Since            and            must be continuous for a step forcing function( )x t ( )x t

(0 ) (0 ) 0; (0 ) (0 ) 0x x x x + = − = + = − = (4.104)
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[Example 4.7] Step & Impulse Response 

Cont’d

Substituting these initial conditions into            and           

, we find that                      ,                   . 

Therefore, the step response is

41

It is worth noting that the impulse and step responses are related by the eqn.

( ) 0.1[1 (0.5 sin2 cos2 )] ( )t

u
x t e t t u t−= − + (4.105)

Fig. 4.1.

Let us demonstrate Eq. 4.106, by substituting             into the original eq.   

( )x t
( )x t

1
0.05A = −

(4.106)

0 0

( ) ( ) ( )

( ) ( ) ( )

t t

d dt d dt

u

u

x t x t x t

x t x t x t

 

 

− −

→ →

 
→ →

2
0.1A = −

( ) ( )
u

d
x t x t

dt
=

( )
u
x t

2

2
2 ( ) 4 ( ) 10 ( ) ( )

u u u

d d
x t x t x t u t

dtdt
+ + = (4.107)
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[Example 4.7] Step & Impulse Response 

Cont’d

Differentiating both sides, we have

42

from which Eq. 4.106 follows.

Generalizing, we see that, if we have a step response for a DE, we can obtain the 

impulse response to by differentiating the step response.

In like manner we can obtain the response to a ramp function                          

(where A is the height of the step) by integrating the step response. Fig. 4.1 

summarizes the relationships discussed.

( ) ( )f t A t=

2

2
2 ( ) 4 ( ) 10 ( ) ( )

u u u

d d d d d
x t x t x t t

dt dt dt dtdt


     
+ + =     

     
(4.108)
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4.5 Integrodifferential Equations

❑ Consider an integrodifferential equation of the form

43

where the coefficients                            are constants. In solving an equation of the 

form of Eq. 4.109 we use two very similar methods.

❑ The first method is to differentiate both sides of Eq. 4.109 to give

 1 1
, , ,
n n
a a a

− −

( ) ( 1)

1 0 1 0
( ) ( ) ( ) ( ) ( )

tn n

n n
a x t a x t a x t a x d f t −

− −
+ + + + = (4.109)

( 1) ( )

1 0 1
( ) ( ) ( ) ( ) ( )n n

n n
a x t a x t a x t a x t f t+

− −
 + + + + = (4.110)

❑ The second method consists of a change of variables. We let                     ; Eq. 

4.109 then becomes

( ) ( )y t x t =

( 1) ( )

1 0 1
( ) ( ) ( ) ( ) ( )n n

n n
a y t a y t a y t a y t f t+

− −
+ + + + = (4.111)

❑ From Eq. 4.110 we obtain          directly. From Eq. 4.111, we obtain           , which 

we must then differentiate to obtain           .

( )x t
( )x t

( )y t
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[Solution]
Since the characteristic equation of Eq. 4.112 is of second degree, we need an 

additional initial condition . We obtain               from the given equation at              

;          

[Example 4.8] Integrodifferential Equations

Solve the integrodifferential equation

44

with initial condition                  .(0 ) 1x − =

0
( ) 3 ( ) 2 ( ) 5 ( )

t
x t x t x d u t  + + = (4.112)

(4.113)

Since           is continuous at             ,

(0 )x  +

0t = +

(0 )x  +

0

0
(0 ) 3 (0 ) 2 ( ) 5x x x d 

+

 + + + + =
0t =( )x t
0

0
( ) 0x d 

+

= (4.114)

and (0 ) (0 ) 1x x+ = − = (4.115)
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[Example 4.8] Integrodifferential Equations 

Cont’d

Therefore,

45

(4.116)

(4.118)

Method 1. Differentiating both sides of Eq. 4.112, we obtain

2

1 2
( ) t t

c
x t C e C e− −= +

(4.119)

(0 ) 5 3 (0 ) 2x x + = − + =

(4.120)

( ) 3 ( ) 2 ( ) 5 ( )x t x t x t t + + = (4.117)

The complementary function is then

Using the initial conditions for              and             , we obtain the total solution

2( ) 4 3t tx t e e− −= −

(0 )x  +(0 )x +

Method 2.   Letting                      , the original DE then becomes( ) ( )y t x t =

( ) 3 ( ) 2 ( ) 5 ( )y t y t y t u t + + =

(4.121)We know that (0 ) (0 ) 1; (0 ) (0 ) 2y x y x  + = + = + = + =
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[Example 4.8] Integrodifferential Equations 

Cont’d

From Eq. 4.120, at               , we obtain

46

(4.123)
23 5

( ) 4
2 2

t ty t e e− −= − + +

(4.124)

(4.122)

Eliminating the detailed working, the total solution can be determined as

Differentiating            , we have

2( ) ( ) 4 3t tx t y t e e− −= = −

( )y t

0t = +

1
(0 ) 5 (0 ) 3 (0 ) 0

2
y y y  + = − + − + = 
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4.6 Simultaneous Differential Equations

❑ All this time we considered only DEs with a single dependent variable         . We 

now discuss equations in more than one variable.

❑ We shall limit us to equations in two unknowns,           and          . Nevertheless, the 

methods described here are applicable to any number of unknowns.

❑ First, consider the system of homogeneous equations

47

(4.125)

where are arbitrary constants. The complementary function is 

obtained by assuming that

1 0 1 0

1 0 1 0

( ) ( ) ( ) ( ) 0

( ) ( ) ( ) ( ) 0

x t x t y t y t

x t x t y t y t

   

   

 + + + =

 + + + =

( )x t

( )x t ( )y t

, , ,
i i i i

   

1 2
( ) ; ( )pt ptx t C e y t C e= =
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4.6 Simultaneous Differential Equations 

Cont’d

so the characteristic equation is given by the determinant

48

(4.126)

❑ The roots of              are found by setting the determinant equal to zero, that is,

1 0 1 0 1 0 1 0
( )( ) ( )( ) 0p p p p       + + − + + =

( )H p

(4.127)

❑ It is seen that a nontrivial solution of                       exists only if( ) 0H p =

1 0 1 0 1 0 1 0
( )( ) ( )( )p p p p       + +  + +

(4.129)

❑ Assuming the above condition holds, we see that             is a second-degree 
polynomial in p and can be expressed in factored form as

1 0 1 0

1 0 1 0

( ) ( )
( )

( ) ( )

p p
H p

p p

   

   

+ +
=

+ +

( )H p

0 1
( ) ( )( )H p C p p p p= − −

(4.128)
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4.6 Simultaneous Differential Equations 

Cont’d

❑ where C is a constant multiplier. The complementary functions are

49

(4.130)

and the constants                           are determined from initial conditions. As in the 

case of a single unknown, if             has a pair of double roots; i.e., if 

, then

1 2 3 4
, , ,K K K K

0 1
p p=

(4.132)

❑ If              has a pair of conjugate roots,

0 1

0 1

1 2

3 4

( )

( )

p t p t

p t p t

x t K e K e

y t K e K e

= +

= +

( )H p

( )H p

(4.131)

0

0

1 2

3 4

( ) ( )

( ) ( )

p t

p t

x t K K t e

y t K K t e

= +

= +

1 1

2 2

( ) sin( )

( ) sin( )

t

t

x t M e t

y t M e t





 

 

= +

= +

1 1
;p j p j   = + = −

then
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[Example 4.9] Simultaneous Differential 

Equations

Consider the system of equations

50

(4.133)

with initial conditions

(4.135)

[Solution]
The characteristic equation is

2 ( ) 4 ( ) ( ) ( ) 0

( ) 2 ( ) ( ) ( ) 0

x t x t y t y t

x t x t y t y t

 + + − =

 + + + =

(4.134)
(0 ) 2, (0 ) 3

(0 ) 0, (0 ) 1

x y

x y

 + = + = −

+ = + =

2 4 1
( ) 0

2 1

p p
H p

p p

+ −
= =

+ +

Evaluating the determinant, we find that

2( ) 5 6 ( 2)( 3)H p p p p p= + + = + + (4.136)
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[Example 4.9] Simultaneous Differential 

Equations Cont’d

so that

51

(4.137)

From the initial conditions                                        ,                              .

From the conditions                                         ,                            .         

(4.138)

2 3

1 2
2 3

3 4

( )

( )

t t

t t

y t K e K e

x t K e K e

− −

− −

= +

= +

(0 ) 2, (0 ) 0x x + = + = 3 4
2, 2K K= = −

(0 ) 3, (0 ) 1y y + = − + = 1 2
0, 1K K= =

2 3

3

( ) 2 2

( )

t t

t

x t e e

y t e

− −

−

= −

=
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4.6 Simultaneous Differential Equations 

Cont’d

Then Eq. 4.139 becomes

52

(4.139)

❑ We first assume that
(4.140)

1 0 1 0

1 0 1 0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 0

tx t x t y t y t Ne

x t x t y t y t

   

   

 + + + =

 + + + =

❑ The determinant for the set of Eqs. 4.141 is

( )

( )

t

p
t

p

x t Ae

y t Be





=

=

1 0 1 0

1 0 1 0

( ) ( )

( ) ( ) 0

A B N

A B

     

     

+ + + =

+ + + =
(4.141)

1 0 1 0

1 0 1 0

( ) ( )H
+ +

=  =
+ +

     
 

     
(4.142)
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❑ Let us now determine the solutions for a set of nonhomogeneous DEs, using 

undetermined coefficients.

❑ Consider first an exponential forcing function given by the set of equations



4.6 Simultaneous Differential Equations 

Cont’d

where         is the cofactor of           .

53

here              is characteristic equation with             .

❑ We now determine A and B from             and its cofactors, that is

(4.143)

[Example 4.10] Simultaneous ODEs

( )H 

11 12
( ) ( )
;

( ) ( )

N N
A B

 

 

 
= =

 

42 ( ) 4 ( ) ( ) ( ) 3

( ) 2 ( ) ( ) ( ) 0

tx t x t y t y t e

x t x t y t y t

 + + − =

 + + + =
(4.144)

p =

( )

ij
 ( )thij

given conditions                                                                                  .(0 ) 1, (0 ) 0, (0 ) 0, (0 ) 1x x y y + = + = + = + = −

[Solution] complementary functions              and            , as well as 

the characteristic equation              , were determined in Example 4.9.   ( )H p
( )
c
x t ( )

c
y t
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Solve the set of equations

The



[Example 4.10] Simultaneous ODEs Cont’d

The characteristic equation with            is

54

We  must find A and B in the equations

4 4( ) ; ( )t t

p p
x t Ae y t Be= = (4.145)

From Eq. 4.143 we obtain  the constants as

2(4) 4 (4) 1
( ) 42

(4) 2 (4) 1
H p

+ −
= =

+ +

4p =

5 3
;

14 7
A B= = −

(4.146)

The incomplete solutions are 

2 3 4

1 2

2 3 4

3 4

5
( )

14
3

( )
7

t t t

t t t

x t K e K e e

y t K e K e e

− −

− −

= + +

= + −

(4.147)
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[Example 4.10] Simultaneous ODEs Cont’d

Substituting for the initial conditions gives 

55

(4.148)
3 4

2 3 4

1
( ) [ 4 3 ]

7
1

( ) [ 6 5 ]
14

t t

t t t

y t e e

x t e e e

−

− −

= − −

= − + +

Solve the system of equations

2 ( ) 4 ( ) ( ) 7 ( ) 5 ( )

( ) ( ) ( ) 3 ( ) 5 ( )

x t x t y t y t u t

x t x t y t y t t

 + + + =

 + + + =
(4.149)

given initial conditions                                                                 .(0 ) (0 ) (0 ) (0 ) 0x x y y − = − = − = − =
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[Example 4.11] Simultaneous ODEs



[Example 4.11] Simultaneous ODEs Cont’d

which simplifies to give

56

[Solution]  
First we find the characteristic equation

(4.150)

The complementary functions             and             are then

(4.151)

2 4 7
( ) ( )

1 3

p p
H p p

p p

+ +
=  =

+ +

2( ) [ 2 5] ( 1 2)( 1 2)H p p p p j p j= + + = + + + −

( )
c
x t ( )

c
y t

1 2

1 2

( ) cos2 sin2

( ) cos2 sin2

t t

c
t t

c

x t Ae t Ae t

y t B e t B e t

− −

− −

= +

= +
(4.152)

The particular solutions are obtained for the set of equations with           ,0t 

2 ( ) 4 ( ) ( ) 7 ( ) 5

( ) ( ) ( ) 3 ( ) 0

x t x t y t y t

x t x t y t y t

 + + + =

 + + + =
(4.153)
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[Example 4.11] Simultaneous ODEs Cont’d

Using the method of undetermined coefficients, we assume that             and

are constants:                    ;                    .

Let                    , so that we solve for the constants using              with            .

57

and

(4.154)

( )H p

( )
p
x t

( )
p
y t

4 7
(0) (0) 5

1 3
H =  = =

(4.155)

The general solution is then

0p =

11
1 2

5 (0) 5(3) (5)1
3; 1

(0) 5 5
C C


= = = = − = −



(4.156)

1
( )
p
x t C=

2
( )
p
y t C=

05 5 te=

1 2

1 2

( ) cos2 sin2 3

( ) cos2 sin2 1

t t

t t

x t Ae t Ae t

y t B e t B e t

− −

− −

= + +

= + −
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[Example 4.11] Simultaneous ODEs Cont’d

We now obtain the initial conditions at              . The values               and 

are obtained as follows.

58

Only the highest derivative terms in both equations contain impulses at           . 

Moreover, both          and         contain, at most, step discontinuities at           . 

Therefore, 

(4.157)

0t = + (0 )y +

0 0

0 0
0 0

0 0

[2 4 7 ] 5 ( )

[ 3 ] 5 ( )

x x y y dt u t dt

x x y y dt t dt

+ +

− −
+ +

− −

 + + + =

 + + + =

 

 

(4.158)

(0 )x +

0t =
0t =

( )x t ( )y t

0

0
0

0

(4 7 ) 0

( 3 ) 0

x y dt

x y dt

+

−
+

−

+ =

+ =




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[Example 4.11] Simultaneous ODEs Cont’d

We now substitute              and               into the original equations, we get

59

(4.159)2 (0 ) (0 ) 0, (0 ) (0 ) 5x y x y+ + + = + + + =

Solving gives
(4.160)

(0 )x +

(0 ) 5, (0 ) 10x y+ = − + =

(0 )y +

2 (0 ) 20 (0 ) 70 5

(0 ) 5 (0 ) 30 0

x y

x y

 + − + + + =

 + − + + + =
(4.161)

so that (0 ) 20, (0 ) 5x y + = − + = − (4.162)

Substituting the initial values into Eq. 4.156, gives the final solutions

( ) [ 8 cos2 14 sin2 3] ( )

( ) [11 cos2 3 sin2 1] ( )

t t

t t

x t e t e t u t

y t e t e t u t

− −

− −

= − + − +

= + −
(4.163)
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After integrating, we obtain



End of Lecture 4

Thank you for your attention!
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