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5.1 Introduction

O Here we apply our knowledge of differential equations to analyse Linear Time-
Invariant continuous-time (LTIC) systems.

J Typically attime ¢t = 0 a switch is closed which connects an energy source
(voltage or current) source to a system as shown in Fig. 5.1.

Q This is analogous with applying the energy signal s(t) = e(t)u(t) .

1 Before the switch is closed, the .
currents and voltages in the _o{ o
systems have known values (initial Energy ‘ s

.. Source
conditions) at ¢ = 0 — .

[ Thus, we need the initial
conditions just after the switch Fig. 5.1: Switching action
closesat ¢ =0+, to solve the
network equations
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5.1 Introduction Cont’d

1 By the superposition principle, the current through any element in a linear circuit
with n voltage and m current sources is equal to the algebraic sum of currents
through the same element resulting from the sources taken one at a time, the other

sources having been suppressed.

O For the LTI system in Fig. 5.2a,

to find the current 7,.(¢) through
an element Z shown:

1 We open-circuit all current
sources and short-circuit n -1
voltage sources, to leave only

v (t) , see Fig. 5.2b.

O Let ’ivj(t) denote the current
through Zdue to v (¢) alone.
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5.1 Introduction

Q Similarly, let . (t) denote the
current through Z due to the
current source 4 (¢) acting
alone, see Fig. 5.2c.

O By the superposition principle,
the total current 7.(t) dueto
all of the sources is equal to the
algebraic sum, see Eq. 5.1.

Fig. 5.2b

Fig. 5.2¢
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5.2 System Elements

i, = Zn:ivl + iic (5.1)
=1 7 k=l

O Here, we will assume that the positive polarity for voltage is the tail of the current
arrow, see Fig. 5.3. A recap of the voltage-current relations for R, L and C.

O

+ O O
—  + — +

R§ it) o) vc(0—>‘
C——|it) o) it) ot

—— ; o ==
— » — \ > —
O O

Fig. 5.3: Resistor. (a) (b)

Fig. 5.4: (a) Capacitor; (b) Capacitor
with initial voltage.
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5.2 System Elements Cont’d

0 Resistor. The resistor relates
voltage and current as follows,
see Fig. 5.3.

Lg i(t) o)

=R 52)

— > —

O
Fig. 5.5: (a) Inductor. (b) Inductor here R is given in ohms and G
with initial current. in mhos.

] Capacitor. For the capacitor shown in Fig. 5.4a the v-i relationships are

where C is given in farads. The initial value wv,(0-) is the voltage across the
capacitor just before the switching action.
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5.2 System Elements Cont’d

v,,(0+) for all excitations except impulses and their

3 Note that, v,.(0-)
derivatives.

J Inductor. The inductor in Fig. 5.5a describes the dual relationship between
voltage and current when compared to a capacitor. Thus,

- i(t) = % " u(z)dr +i, (0-) (5.4)

where L is in henrys. The initial current ¢,(0-) can be regarded as an
independent current source, as shown in Fig. 5.5b.
1 Note once again that, 4 (0-) =1 (0+) for all excitations except for impulses and

their derivatives.
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5.2 System Elements Cont’d

O If system elements are interconnected, integrodifferential equations arise relating
the excitation to the response.

[ Kirchhoff’s voltage and current laws will be exploited to formulate equations.

1 Recall, if the number of branches in the circuit is B, and if the number of nodes is
N, the number of independent loop equations for the circuitis B—- N +1.

[Example 5.1] System Elements

¢oFor the system in Fig. 5.6,

a) Determine the number of
LT_ m ¢_T_ ‘ = | @ !

Independent loop

R
v, (t) ‘ z z § R, wu(t) equations.
0 ) b) Hence, formulate these

loop equations.

Fig. 5.6.
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|[Example 5.1] System Elements Cont’d
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[Example S5.1] System Elements Cont’d
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5.2 System Elements

O Let us use KCL for nodal analysis of a system. If the number of nodes in the
network is N, the number of independent node equations requiredis N —1.

o) L u() J Consider the network in Fig. 5.7.
T — We write a set of node equations in
» i, (0-) ae the network with the datum node
W Gé §G2 ¢ shown.
— J Since the number of nodes in the
datum == network N = 3 , we need
Fig. 5.7. N —1=2 independent equations.

O With respect to the nodes v, and v, , the node equations are

2 ]

O Node v,:

(5.8)
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5.3 Initial and Final Conditions

1 We consider some methods for obtaining initial conditions for circuit differential
equations.

] Examine ways to obtain particular integrals for systems with constant (dc) or
sinusoidal (ac) excitations.

O In the solution of system ODEs, the complementary function is called the transient
solution or free response.

 The particular integral 1s known as the forced response. In the case of constant or
periodic excitations, the forced response at + = «o IS the steady-state or final
solution.

O Initial conditions at ¢ = 0+ for a system are gotten through the ODEs describing
the system or through the knowledge of the physical behavior of the R, L, and C

elements in the system.
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5.3 Initial and Final Conditions Cont’d

O Initial conditions for a capacitor. For a capacitor, the v-i relationship at
t=0+ 1S

(5.9)

 If 4(t) contains no impulses or their derivatives, v.(0+)=wv,(0-) .If ¢ isthe
charge on the capacitor at ¢ = 0 —, the initial voltage is

(5.10)

At ¢t =0+ , we can replace the capacitor by a voltage source if the initial charge
exist, or by a short circuit if there is no initial charge.
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|[Example 5.2] Initial and Final Conditions
Cont’d

p
[SOIUtion] ihort ccf
C
1 "
65 1l i(0+) R
[ @t
0 2 -
4 t Equivalent circuit at ¢ = 0+
(b)
R-C Network
(a) Fig. 5.8.
cKVL applied to Fig. 5.8a yields,
1 ¢t
_ D [ s 5.11
Vu(t) = Ri(t) + 5 IO_ i(7)dr (5.11)

<~ The equivalent circuitat ¢ =0+ is shown in Fig. 5.8b, from which we get

i(0+) = % (5.12)
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[Example S5.2] Initial and Final Conditions
Cont’d
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5.3 Initial and Final Conditions

O Initial conditions for an inductor. For an inductor, the v-irelationship at

(5.16)

2 If wo(t) contains no impulses or their derivatives, ,(0+) =17,(0-) . If there is
no initial current, ¢ (0+) =0 , which corresponds to an open circuitat ¢ =0 +.

O Note that the current through an inductor cannot change instantaneously due to
the conservation of flux linkage.

[Example 5.3] Initial and Final Conditions
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|[Example 5.3] Initial and Final Conditions
Cont’d

L open cct
/00 ©
S ( S (
i(t) g R i(0+) § R
t v t
R-L Network Equivalent circuit at ¢ =0+
(a) (b) Fig. 5.9.

éFrom the equivalent circuit at ¢ = 0+, shown in Fig. 5.9b, we see that
i(0+) =0 (5.18)

<~\We then refer to the differential equation to obtain ¢'(0+) .

RECE N 619

o Thus §(04) = = = Zi(04) = — (5.20)

L
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[Example 5.3] Initial and Final Conditions
Cont’d

[Example 5.4] Initial and Final Conditions

\

R R, <.~ For the system of Fig. 5.10 the switch is
6S—’W\, ? VWV closed at ¢ =0 . Use the equivalent

circuit modelsat ¢t =0+ and ¢ = to
obtain the initial conditions and steady-
4 state solutions.

HN
S
~
N—
I\DS
—~
-
N—
t~

Fig. 5.10.

J
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[Example 5.4] Initial and Final Conditions
Cont’d

[Solution]
<At t =0+ the circuitis as shownin Fig.5.11aand at ¢ = as shown in Fig.
5.11b.
R2
? AAAY l
i (0+) s.cct| i (0+) o.cct s.cct
Equivalent ClI“CUIt at t =0+ Equivalent circuit at ¢ = oo

Fig. 5.11. (0) (b)
a~Vividly the initial currents are: _ (5.22)
s~ The steady-state solutions are _ (5.23)

v
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5.3 Initial and Final Conditions Cont’d

4 Final conditions for sinusoidal excitations
O For a pure sinusoidal excitation, the steady-state currents and voltages in the circuit
are also sinusoids of the same frequency as the excitation,

J If the unknown is a voltage, for example, v,(¢) , the steady-state solution would
take the form of Eq. 5.24.

v, () = [V(jo,)|sin] @t - ¢(@,)] (5.24)

where @, is the frequency of the excitation, and ‘V(ja)o) and ¢(w,) are the

magnitude and phase of v, (¢) respectively.
L Asimilar expression would hold if the unknown were a current.
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5.3 Initial and Final Conditions Cont’d

O Standard procedures in ac circuit analysis are exploited to obtain the magnitude
and the phase. For example, consider the R-C circuit in Fig. 5.12.

1 The current generator is

0=t =

O If the steady-state voltage takes the form
shown in Eq. 5.24,

(5.26)

— datum node

Fig. 5.12.
J and
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5.4 Step and Impulse Response

AAA, Q If the excitation is a step voltage, the
( A physical analogy is that of a switch-closing
attime t =0, which connects a 1V battery

to a CIrcuit.

— < 1 The physical analogy of an impulse
excitation is that of a very short pulse
_ (compared to the time constants of the
Fig. 5.13. circuit) with large amplitude.

S,
—
<~
~—r
.
~
~—

Q
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[Example 5.5] Step and Impulse Response
Cont’d

Department of Electrical & Electronic Engineering, School of Engineering, University of Zambia



¢

\

[Example 5.5] Step and Impulse Response Cont’d

. 1 1 ~t/RC
t)=—| 8(t) - — t 5.34
& Thus i) R{ (1)~ e u<>} (5.34)
<~ This Is shown in Fig. 5.14a.
i(t) z(t)A
Ila@
R 1
_ R
0/ t \
_ 4 0 ;
RC (a) (b)

Fig. 5.14. (a) Impulse response of R-C circuit. (b) Step response
of R-C circuit.

1 We arrived at the current impulse response i(¢) as the result of an impulse voltage
excitation. In the process we obtained the step response z(¢) in Fig. 5.14b.
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[Example 5.6] Step and Impulse Response
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[Example 5.6] Step and Impulse Response Cont’d

y

s~From the initial condition v(0+) = 0, we obtain K =—-I R so that

s Differentiating Eq. 5.39 gives us the voltage impulse response

v (t) = %e_t/ 0 (5.40)

o’\c
=

 J
Q-

(a) (b)

Fig. 5.15. (a) Step response of parallel R-C circuit. (b) Impulse

! response of parallel R-C circulit.
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5.4 Step and Impulse Response Cont’d

O Suppose the excitation in Fig. 5.12 were a pulse shown in Fig. 5.16.

01 fu-we] o

1 Then by the superposition and time-invariant
postulates of linear systems, the response would be

| =R - -1 |
Fig. 5.16. Pulse excitation. - (5.42)
Avu(t

I Rfpememmmmmnnnceeemmmneenncee ooz ar e s e ee

==

————
p—_—
-
-
-
-
-
-
-

B 5 e T

0

Fig. 5.17. Response of pulse excitation.
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5.5 Solution of System Equations

O System equations are made up of mesh, node, or mixed basis.

1 The choice between mesh and node equations depends largely upon the unknown
quantities.

[Example 5.7] Solution of System Equations

.~Find the current i(t) for the network in Fig. P-10
5.18, when the voltage source is ” VW -
e(t) = 2¢'u(t) and v,(0-)=0 . 1
° e 7 —_ C =—f
[Solution] Y % >
¢ The DE IS

e(t) = Ri(t) + % [ i(z)dr +v,(0-)
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[Example 5.7] Solution of System Equations
Cont’d
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|[Example 5.7] Solution of System Equations
Cont’d

1 As noted earlier, in the solution of system ODEs, the complementary function is
called the free response, where as the forced response is a particular integral, and

in the case of constant or periodic excitation, the forced responseat ¢ = oo 1S the
steady-state solution.

O Note, the free response is a function of the system elements alone.
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5.5 Solution of System Equations Cont’d

1 Whereas, the forced response depends on both the system and excitation.

Q If the roots of the characteristic equation H(p) all have negative or zero real
parts, the free response is made up of only damped exponential and/or sinusoids.
That is, given p, = o + jo the rootof H(p),then Re(p,)=0c<0.

1 Note that if a characteristic eq. contains only roots whose real parts are zero or
negative, and if the jo axis roots are simple, then the network it describes is said
to be stable; otherwise, it is unstable.

[Example 5.8] Solution of System Equations

v(t)

g(t)’ 3

=

datum node

¢For the R-C network in Fig. 5.19 with the
excitation given by Eq. 5.25, I.e.,
i, (t) = (I, sin@t)u(t) , find the voltage w(t)
across the capacitor; given that
v,.(0+) =v,(0-) =0

Fig. 5.19.
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[Example 5.8] Solution of System Equations Cont’d

¢

[Solution]

<-~\We have already obtained the particular integral in Eq. 5.28. Now let us find the
complementary function. The ODE on a node basis is

C’% +Gu = I sin wt u(t) (5.51)
c~from which we obtain the characteristic equation as
H(p)=Cp+G (5.52)
<80 that v, (t) = 7 SO (5.53)
<~and the incomplete solution is
. I , , oC'
o(t) = Ke Gi/C ult) + o ;202)1/2 sin {a)t — tan” ?} u(t) (5.54)

g~From initial condition v(0-) =0, we obtain
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|[Example 5.8] Solution of System Equations
Cont’d

I
v(0+) = v(0-) = K — ————sin {tam1 ﬁ} =0 (5.55)
- (G2 + 0?C?)! G
Im
- 1 From the argand diagram in Fig. 5.20 we see that,
wC . -1 a)O a)O
sin < ta = 5.56
O« —» e
¢ fe o Consequently,
Fig. 5.20.
L u(t) wCe ° : L, oC
u(t) = - - | e o sin ot — tan 1? (5.57)
(G"+0°C*)" | (G" + 0 C7)

cFrom the complementary function in Eg. 5.53, we see that the time constant of
the circuitis 7 = C/G - RC.
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5.5 Solution of System Equations Cont’d

. v(t) ] Next, we examine an example of
o g different kinds of free responses of a
| second-order system equation that
| T ¢ G L depend on relative values of the
i,(t) y system elements.

i, (0—
. 1 O Suppose we are given the system in
Fig. 5.21; let us find the free response

Fig. 5.21. v.(t) for the ODE

O Differentiating both sides of Eq. 5.58, we have

1 The characteristic equation iIs then
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5.5 Solution of System Equations Cont’d

J In factored form, H(p) s (5.61)

d where
(5.62)

1 There are three different kinds of responses depending upon whether B is real,
Zero, or imaginary.

d CASE 1.Bisreal, thatis,

1 Then the free response is _ (5.63)

u(t)
K + K

1 2

1 which is a sum of damped exponentials.
Here the response is said to be
overdamped, see Fig. 5.22.

5 t Fig. 5.22.

Overdamped response.
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5.5 Solution of System Equations Cont’d
0 CASE 2.B =0, that i,

O Then

] so that (5.64)

L When B =0, the response is critically damped, as shown in Fig. 5.23.

u(t)d
. f\
0 | Fig.5.23. Critically
damped response.
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5.5 Solution of System Equations Cont’d

0 CASE 3. Bisimaginary, that is, -

 Letting B = 58, we have

= Koo ) 059

O Here, the response is said to be underdamped, and is shown by the damped
oscillatory curve in Fig. 5.24.

vt}

\ f\ N‘Hhh;
0 }‘__‘(,._-- t ]
U ﬂ\jf*” Fig. 5.24.

underdamped
response.
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[Example 5.8] Solution of System Equations

A look at simultaneous system equations. We once again rely upon physical
reasoning rather than formal mathematical operations to obtain the initial currents

and voltages as well as the steady-state solutions. In the system of Fig. 5.25, the
switch S is thrown from position 1 to position 2 at ¢ = 0. it is known that prior to

t = 0, the circuit had been in steady state. We make the idealized assumption that
the switch closes instantaneously at t = 0.

c~Our task is to find #(t) and 4,(¢) after the switch position changes. The values of
the batteries V, and V, are V. =2v, V, =3v ;and the element values are
given as

L=1h, R =050

c=1f R =200
3

Fig. 5.25.

\
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|[Example 5.8] Solution of System Equations

Cont’d
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[Example S5.8] Solution of System Equations

Cont’d
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[Example 5.8] Solution of System Equations
Cont’d
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[Example 5.8] Solution of System Equations
Cont’d

_ﬂ
55
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l#
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5.6 Analysis of Transformers

1 By Faraday’s law of induction, a current  flowing ina coil L may induce a
current i, in a closed loop containing a second coil L, .

il
18 B

Fig. 5.27. Transformer.

J To induce the current 4, , (a) part of the flux
O
+ 08

In the coil L must be coupled

1,(t) magnetically to the coil , (b) the flux
@ must be changing with time.

O Here we will analyze circuits having a
transformer. A schematic of a transformer is
shown in Fig. 5.27.

J The L, side is usually referred to as the primary coil and L, side called as the
secondary coil. The energy source is generally at the primary. Mathematically the
transformer in Fig. 5.27 is described as

v, (1)

di, di,
=L —+M—=;
dt dt

v, (t)

di di
M—+L —=
dt dt

(5.75)

Department of Electrical & Electronic Engineering, School of Engineering, University of Zambia



5.6 Analysis of Transformers Cont’d

O Where M is the mutual inductance associated with the flux linking L oL, and is
relatedto L and L, by

M=KJLL (5.76)

2 Here K is called the coefficient of coupling. It is bounded by the limits 0 < ‘K‘ <1.
If ‘K‘ =1, thenall of flux @ incoil L is linked magneticallyto L, .

- If K =0, the coils may be regarded as two separate coils having no effect upon
one another.

O For circuits with transformers, reference polarities for mutually induced voltages
M dz'/ dt , are given by small dots painted on the input and output leads of a
transformer.

) If both currents 4(¢) and 4,(¢) flow into the dots or away from the dots,
M di/dt 1S positive. If one current flows into the dot and the other away from the
second dot, the sign of M dz’/ dt is negative.
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5.6 Analysis of Transformers Cont’d

Q If N and N, arethe number of turns of coils L and L, , then the flux linkages
of L and L, aregivenby N @ and N @ , respectively.
1 If both currents flow into the dots, sum of flux linkages is

0 ks~ 0,0, 67

O If, however, one of the currents, for example, ¢ , flows into the dot, and the other
i,  flows out of the other dot, then

ZCD linkages = N1CI)1 — ]\72CI)2 (5.78)

1 Note, the sum of flux linkages is continuous with time.
O The differential equations for the transformer in Fig. 5.28 are

Vu(t) = Li(t) + Ry, (£) + Mi!(t)
0 = Mi'(t) + Ryi (t) + Li(t)
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5.6 Analysis of Transformers Cont’d

) Integrating this set of equations between ¢ = 0 — and ¢ = 0 + results in the

determinant

O Evaluating the determinant we get

O RS (TS R

4 If LL >M* , thatis, K <1,then the currents must be continuousat ¢ =0 in
order for the determinant in Eq. 5.82 to be equal to zero. Thus

o0 Kt 5o
=i, K<1 6
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|[Example 5.9] Analysis of Transformers

¢

g R, v ¢~For the transformer circuit in Fig. 5.28,
°—'\/\/V) : L =1h, L, =2h,R =3Q,
R, =8Q and M =1h, The excitation

4 4, (t) Lé §L2 1,(t) ng IS V =6u(t). Letus find
i(t) and 4,(t), assuming that
i (0-) =i,(0-)=0 -

[Solution] Fig. 5.28.

<~ The differential equations for the circuit are
i (t) + 33 (t) + 4, (t) = 6u(t)

| . . (5.84)
i (t) + 24 (t) + 8iy(t) = 0
&~ The characteristic equation is given by the determinant
D+ 3 P ) )
H(p) = =(p+3)2p+8)—p = (p +14p +24)

D 2p + 8
(5.85)

=(p+2)(p+12)

|
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[Example 5.9] Analysis of Transformers
Cont’d
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[Example 5.9] Analysis of Transformers
Cont’d

5.6 Analysis of Transformers Cont’d

O Suppose, now, L L, = M;thatis, K =1, then i(t)and %,(t) need not be
continuous at ¢ = 0. In fact, we will show that the currents are discontinuous at
t =0 for a unity-coupled transformer.

2 Assuming that K =1, consider the mesh eq for the secondaryat ¢ =0+

(5.90)
(5.91)
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5.6 Analysis of Transformers Cont’d

O The mesh equation of the primary side then becomes

1 We need an additional equation to solve for 4 (0+) and 4,(0+) . This is provided
by the equation

1 f509-50]- Wiom -509]-0. 6%

3 Which is obtained from Eq. 5.80. Since 4 (0-) = 4,(0-) =0 , we solve Eqs. 5.92
and 5.93 directly to give

(5.94)
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5.6 Analysis of Transformers Cont’d

L Consider the following example. For the transformer in Fig. 5.28 the element values
are

1 Assuming that the circuit is at steady-state before the switch is closed at ¢ = 0, let
us find 7 (¢) and 4 (¢t) . The DEs written on mesh basis are

(5.95)

 The characteristic equation is

(5.96)
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5.6 Analysis of Transformers Cont’d

1 which yields

O The complementary functions are

L The particular integrals that we obtain by inspection are

] The initial conditions are

(5.97)

(5.98)

(5.99)

(5.100)
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5.6 Analysis of Transformers Cont’d

1 We thus find K =-0.75 and K,=-1.0,50 that
i (t) = (=0.75¢™"*" +1.25) u(t)

1

i (t) = —e " u(t)

2

(5.101)

 Notice thatas ¢ approaches infinity i (t) - 0, while 4 (¢) goes to its steady-state
value of 1.25.

Department of Electrical & Electronic Engineering, School of Engineering, University of Zambia -



End of Lecture 5

Thank you for your attention!
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