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❑ Thus, we need the initial 

conditions just after the switch 

closes at               , to solve the 

network equations

5.1 Introduction

❑ Here we apply our knowledge of differential equations to analyse Linear Time-

Invariant continuous-time (LTIC) systems. 

❑ Typically at time            a switch is closed which connects an energy source 

(voltage or current) source to a system as shown in Fig. 5.1.  

❑ This is analogous with applying the energy signal                          .
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❑ Before the switch is closed, the 

currents and voltages in the 

systems have known values (initial 

conditions) at             . 

Fig. 5.1: Switching action

( ) ( ) ( )s t e t u t=
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5.1 Introduction Cont’d

❑ By the superposition principle, the current through any element in a linear circuit 

with  n  voltage and  m current sources is equal to the algebraic sum of currents 

through the same element resulting from the sources taken one at a time, the other 

sources having been suppressed.
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Fig. 5.2a

❑ For the LTI system in Fig. 5.2a, 

to find the current          through 
an element Z shown:

❑ We open-circuit all current 

sources and short-circuit

voltage sources, to leave only          

, see Fig. 5.2b.

❑ Let           denote the current 
through Z due to            alone.
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5.1 Introduction

❑ Similarly, let            denote the 

current through Z due to the 

current source acting 

alone, see Fig. 5.2c.

❑ By the superposition principle, 

the total current          due to 

all of the sources is equal to the 

algebraic sum, see Eq. 5.1.
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Fig. 5.2b
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5.2 System Elements

❑ Here, we will assume that the positive polarity for voltage is the tail of the current 
arrow, see Fig. 5.3. A recap of the voltage-current relations for R, L and C.
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(5.1)

Fig. 5.3: Resistor.

Fig. 5.4: (a) Capacitor;  (b) Capacitor 

with initial voltage.

Department of Electrical & Electronic Engineering, School of Engineering, University of Zambia

1 1
j k

n m

T v c
j k

i i i
= =

= + 

( )i tR ( )v t

+

−
( )i tC ( )v t

+

−

C

( )i t

−

+

( )v t

−

+
(0 )
C
v −

( )a ( )b



5.2 System Elements Cont’d

❑ Capacitor. For the capacitor shown in Fig. 5.4a the v-i relationships are
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Fig. 5.5: (a) Inductor.   (b) Inductor 

with initial current.

❑ Resistor. The resistor relates 

voltage and current as follows, 

see Fig. 5.3.

( ) ( )v t Ri t= (5.2)

here R is given in ohms and G
in mhos.

( )
( )

dv t
i t C

dt
= (5.3)
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where C is given in farads. The initial value               is the voltage across the 
capacitor just before the switching action.
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5.2 System Elements Cont’d

❑ Note that,                                for all excitations except impulses and their 
derivatives.
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❑ Inductor. The inductor in Fig. 5.5a describes the dual relationship between 

voltage and current when compared to a capacitor. Thus,

0

1
( ) ( ) (0 )

t

L
i t v d i

L
 

−
= + − (5.4)

(0 ) (0 )
C C
v v− = +

where L is in henrys. The initial current              can be regarded as an 

independent current source, as shown in Fig. 5.5b.

❑ Note once again that,                             for all excitations except for impulses and 

their derivatives.
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[Example 5.1] System Elements

❑ If system elements are interconnected, integrodifferential equations arise relating 

the excitation to the response.

❑ Kirchhoff’s voltage and current laws will be exploited to formulate equations.

❑ Recall, if the number of branches in the circuit is B, and if the number of nodes is

N, the number of independent loop equations for the circuit is                   . 
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For the system in Fig. 5.6, 

a) Determine the number of 

independent loop 

equations.

b) Hence, formulate these 

loop equations.

1B N− +
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5.2 System Elements Cont’d

Fig. 5.6.

+

− +

−

+

−

−+
1
R L

2
R

2
( )v t

1
( )v t

1
(0 )

C
v −

2
(0 )

C
v −

1
C

2
C

1
( )i t 2

( )i t
3
( )i t

2
( )

C
i t

1
( )

C
i t

3
( )v t

−

+



[Example 5.1] System Elements Cont’d

Mesh i1 : KVL yields
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[Solution]
(a) Clearly the circuit of Fig. 5.6 has seven branches and five nodes. Thus, there     

are                       independent mesh equations.

(b) Noting that capacitors in the circuit have associated initial voltages, the mesh    

equations are:

7 5 1 3− + =

Mesh i2 : KVL yields
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[Example 5.1] System Elements Cont’d
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22 2 3 2 30 0
2 2

1 1
( ) (0 ) ( ) ( ) ( )

t t

C
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− −
− + − = − + +  (5.5)

Upon determining  i1, i2 and i3 , we can determine branch currents and voltages 

across the elements, for instance,

1

2

1 2
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( ) ( ) ( )
C

C

i t i t i t

i t i t i t

= −

= −

(5.6)
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Mesh i3 : KVL yields

If the voltage             in Fig. 5.6 is our objective, we see that

3 3 2
( ) ( )v t i t R= (5.7)

3
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2
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5.2 System Elements
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❑ Let us use KCL for nodal analysis of a system. If the number of nodes in the 

network is N, the number of independent node equations required is           .

Fig. 5.7.

❑ Consider the network in Fig. 5.7. 

We write a set of node equations in 

the network with the datum node 

shown.

❑ Since the number of nodes in the 
network  N = 3 , we need

independent equations.1 2N − =

❑ With respect to the nodes         and         , the node equations are
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5.3 Initial and Final Conditions

❑ We consider some methods for obtaining initial conditions for circuit differential 

equations.

❑ Examine ways to obtain particular integrals for systems with constant (dc) or 

sinusoidal (ac) excitations.

❑ In the solution of system ODEs, the complementary function is called the transient 

solution or free response.

❑ The particular integral is known as the forced response. In the case of constant or 

periodic excitations, the forced response at              is the steady-state or final

solution.

❑ Initial conditions at                for a system are gotten through the ODEs describing 
the system or through the knowledge of the physical behavior of the R, L, and C
elements in the system. 
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t = 

0t = +
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5.3 Initial and Final Conditions Cont’d

❑ Initial conditions for a capacitor. For a capacitor, the v-i relationship at 

is 

14

0t = + 0

0

1
(0 ) ( ) (0 )
C C
v i d v

C
 

+

−
+ = + − (5.9)

❑ If          contains no impulses or their derivatives,                              . If  q is the 

charge on the capacitor at              , the initial voltage is

( )i t (0 ) (0 )
C C
v v+ = −

0t = −

(0 ) (0 )
C C

q
v v

C
+ = − =

❑ At , we can replace the capacitor by a voltage source if the initial charge 

exist, or by a short circuit if there is no initial charge.

Consider the R-C network in Fig. 5.8a. The switch is closed at            , and we 

assume there is no initial charge in the capacitor. Let us find the initial conditions               

and                for the ODE of the circuit.(0 )i + (0 )i +

(5.10)
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0t = +

[Example 5.2] Initial and Final Conditions

0t =



[Example 5.2] Initial and Final Conditions 

Cont’d

The equivalent circuit at               is shown in Fig. 5.8b, from which we get
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0t = +

0
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( ) ( ) ( )

t
Vu t Ri t i d

C
 

−
= + 

Fig. 5.8.

(5.11)
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[Solution]

KVL applied to Fig. 5.8a yields,
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At               we have

[Example 5.2] Initial and Final Conditions 

Cont’d

To obtain              , we must refer to the ODE
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0t = +

( )
( ) ( )

i t
V t Ri t

C
 = +

2

(0 )
(0 )

i V
i

RC R C

+
 + = − = −

(5.13)

(0 )i +

(0 )
0 (0 )

i
Ri

C

+
= + + (5.14)

We the obtain (5.15)

The final condition, or steady-state solution, for the current in Fig. 5.8a is obtained 

from our knowledge of dc circuits. For a dc excitation, a capacitor is an open 

circuit for dc current. Thus the steady-state current is

( ) ( ) 0
p
i t i=  =
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5.3 Initial and Final Conditions

❑ Initial conditions for an inductor. For an inductor, the v-i relationship at 

is 
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0t = +
0

0

1
(0 ) ( ) (0 )
L L
i v d i

L
 

+

−
+ = + −

❑ If           contains no impulses or their derivatives,                              . If there is 
no initial current,                    , which corresponds to an open circuit at .

❑ Note that the current through an inductor cannot change instantaneously due to 
the conservation of flux linkage.

( )v t (0 ) (0 )
L L
i i+ = −

(0 ) 0
L
i + =

In Fig. 5.9a, the switch closes at           . Let us find the initial conditions              

and              for the differential equation

(5.16)

0t = +

( )
( ) ( )

di t
Vu t L Ri t

dt
= + (5.17)
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[Example 5.3] Initial and Final Conditions

(0 )i +

(0 )i +

0t =



[Example 5.3] Initial and Final Conditions 

Cont’d

From the equivalent circuit at             , shown in Fig. 5.9b, we see that
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0t = +

Fig. 5.9.

(0 ) 0i + = (5.18)

We then refer to the differential equation to obtain              .(0 )i +

(0 ) (0 )V Li Ri= + + + (5.19)

Thus (0 ) (0 )
V R V

i i
L L L

 + = − + = (5.20)
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[Example 5.3] Initial and Final Conditions 

Cont’d

The steady-state solution for the circuit in Fig. 5.9a is obtained through the 

knowledge that for a dc source, an inductor is a short circuit. 
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(5.21)

For the system of Fig. 5.10 the switch is 

closed at            . Use the equivalent 

circuit models at               and             to 

obtain the initial conditions and steady-

state solutions. 

0t =

( ) ( )
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V
i t i
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[Example 5.4] Initial and Final Conditions

0t = + t = 

Fig. 5.10.
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[Example 5.4] Initial and Final Conditions 

Cont’d
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[Solution]
At                the circuit is as shown in Fig. 5.11a and at              as shown in Fig. 

5.11b.

1 2

1

(0 ) ; (0 ) 0
V

i i
R

+ = + = (5.22)

The steady-state solutions are (5.23)

t = 

1 2

1 2

( ) ( )
V

i i
R R

 = = 
+

Department of Electrical & Electronic Engineering, School of Engineering, University of Zambia

0t = +

Fig. 5.11.

Vividly the initial currents are:
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5.3 Initial and Final Conditions Cont’d

❑ Final conditions for sinusoidal excitations

❑ For a pure sinusoidal excitation, the steady-state currents and voltages in the circuit 

are also sinusoids of the same frequency as the excitation.
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❑ If the unknown is a voltage, for example,          , the steady-state solution would 

take the form of Eq. 5.24.
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1
( )v t

1 0 0 0
( ) ( ) sin ( )
p
v t V j t    = −  (5.24)

where        is the frequency of the excitation, and                  and are the 

magnitude and phase  of             respectively.

❑ A similar expression would hold if the unknown were a current.

0
( ) 

0
( )V j

1
( )
p
v t

0




5.3 Initial and Final Conditions Cont’d

❑ Standard procedures in ac circuit analysis are exploited to obtain the magnitude  

and the phase. For example, consider the R-C circuit in Fig. 5.12. 

❑ The current generator is 
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❑ If the steady-state voltage takes the form 

shown in Eq. 5.24, 

0 0
( ) ( sin ) ( )
g
i t I t u t= (5.25)

( )
0 0

0 1 2
2 2 2

0 0

( )
( )

I I
V j

Y j G C


 

= =

+
(5.26)
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Fig. 5.12.

❑ and 1 0
0

( ) tan
C

G
−= −


 
(5.27)

❑ so that
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I C
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GG C
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−
  
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  +
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5.4 Step and Impulse Response

❑ If the excitation is a step voltage, the 

physical analogy is that of a switch-closing

at time          , which connects a 1 V battery 

to a circuit.

❑ The physical analogy of an impulse 

excitation is that of a very short pulse

(compared to the time constants of the 

circuit) with large amplitude.
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Fig. 5.13.

0t =

For the series R-C circuit in Fig. 5.13 find the impulse response. 

[Solution]
The ODE of the circuit is

0

1
( ) ( ) ( ) ( )

t
v t t Ri t i d

C
  

−
= = +  (5.29)
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Assuming                      . ( )0 0
C
v − =

[Example 5.5] Step and Impulse Response
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[Example 5.5] Step and Impulse Response 

Cont’d

Since Eq. 5.29 contains an integral, we substitute             for          in the equation, 

which yields
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Integrating both sides between           and          gives

(5.30)

( )x t ( )i t

1
( ) ( ) ( )t Rx t x t

C
 = +

1
(0 )x

R
+ = (5.31)

The characteristic equation is
1

( )H p Rp
C

= + (5.32)

and with little effort we have

1
( ) ( )

t RC
x t e u t

R

−
= (5.33)

Department of Electrical & Electronic Engineering, School of Engineering, University of Zambia

0 − 0 +



[Example 5.5] Step and Impulse Response Cont’d

Thus, 
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This is shown in Fig. 5.14a.

(5.34)

❑ We arrived at the current impulse response          as the result of an impulse voltage 

excitation. In the process we obtained the step response          in Fig. 5.14b.

1 1
( ) ( ) ( )

t RC
i t t e u t

R RC


− 
= − 

 

Fig. 5.14. (a) Impulse response of R-C circuit. (b) Step response 

of R-C circuit.
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[Example 5.6] Step and Impulse Response

Consider the parallel R-C circuit in Fig. 5.12. Let it be driven by a step current 

source                        , where        is a constant.

Assuming zero initial conditions, determine the step response.
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Thus, we obtain the characteristic equation

0
( ) ( )i t I u t=

0
I

0

( )
( ) ( )

dv t
I u t Gv t C

dt
= + (5.35)

( )H p Cp G= + (5.36)
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[Solution] 
The ODE is

The steady-state value of           is( )v t

0 0
0

( )
(0)p

I I
v t I R

H G
= = = (5.37)

Thus the complete solution for the voltage step response is

(5.38)
0

( ) ( ) ( )
t RC

v t Ke I R u t
−

= +



From the initial condition                   , we obtain                    so that

[Example 5.6] Step and Impulse Response Cont’d
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0
K I R= −(0 ) 0v + =

0
( ) (1 ) ( )

t RC
v t I R e u t

−
= − (5.39)

Differentiating Eq. 5.39 gives us the voltage impulse response

0( ) ( )
t RCI

v t e u t
C

−
=



(5.40)
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Fig. 5.15. (a) Step response of parallel R-C circuit. (b) Impulse 

response of parallel R-C circuit.
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5.4 Step and Impulse Response Cont’d

❑ Suppose the excitation in Fig. 5.12 were a pulse shown in Fig. 5.16. 
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(5.41)0
( ) ( ) ( )i t I u t u t T = − − 

(5.42)

❑ Then by the superposition and time-invariant 

postulates of linear systems, the response would be

( )

0
( ) (1 ) ( ) (1 ) ( )

t RC t T RC
v t I R e u t e u t T

− − − = − − − −
 

Fig. 5.17. Response of pulse excitation.
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Fig. 5.16. Pulse excitation.
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5.5 Solution of System Equations

❑ System equations are made up of mesh, node, or mixed basis. 

❑ The choice between mesh and node equations depends largely upon the unknown 

quantities.
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(5.43)

Find the current         for the network in Fig. 

5.18, when the voltage source is                                 

and .

[Solution]
The DE is 

0

1
( ) ( ) ( ) (0 )

t

C
e t Ri t i d v

C
 

−
= + + −

( )i t

0.5( ) 2 ( )te t e u t−= (0 ) 0
C
v − =

Fig. 5.18.
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[Example 5.7] Solution of System Equations
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−
( )i t( )e t

1R = 

1
f

2
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To obtain the initial condition            , we must integrate Eq. 5.45 between the 

limits              and              to give                  . From the characteristic eq.

[Example 5.7] Solution of System Equations 

Cont’d

Or, in terms of the numerical values, we have

30

(5.44)

Differentiating both sides of Eq. 5.44, we obtain

0t = −

0.5

0
2 ( ) ( ) 2 ( )

tte u t i t i d −

−
= + 

(0 )i +

0.5 ( )
2 ( ) ( ) 2 ( )t di t
t e u t i t

dt
 −− = + (5.45)

0t = + (0 ) 2i + =

( ) 2 0H p p= + = (5.46)

The complementary function is thus
2( ) t

C
i t Ke−= (5.47)

Assume the particular integral to be                        , then we obtain
0.5( ) t

p
i t Ae−=

Department of Electrical & Electronic Engineering, School of Engineering, University of Zambia
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The complete solution is

31

(5.48)1 2

( 0.5) 3
A

H
= − = −

−

2 0.52
( )

3
t ti t Ke e− −= − (5.49)

From the initial condition                   , we obtain the final solution,(0 ) 2i + =

(5.50)

❑ As noted earlier, in the solution of system ODEs, the complementary function is 

called the free response, where as the forced response is a particular integral, and 

in the case of constant or periodic excitation, the forced response at               is the 

steady-state solution.

❑ Note, the free response is a function of the system elements alone.

2 0.58 2
( ) ( )

3 3
t ti t e e u t− − 

= − 
 

t = 

Department of Electrical & Electronic Engineering, School of Engineering, University of Zambia
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❑ Whereas, the forced response depends on both the system and excitation.

❑ If  the roots of the characteristic equation             all have negative or zero real 

parts, the free response is made up of only damped exponential and/or sinusoids. 

That is, given                      the root of            , then                            .

❑ Note that if a characteristic eq. contains only roots whose real parts are zero or 

negative, and if the        axis roots are simple, then the network it describes is said 

to be stable; otherwise, it is unstable.   

32

j

( )H p
1
p j = 

1
Re( ) 0p = 

For the R-C network in Fig. 5.19 with the 

excitation given by Eq. 5.25, i.e.,                  

, find the voltage            

across the capacitor;  given that                                     

.

( )v t

(0 ) (0 ) 0
C C
v v+ = − =

Department of Electrical & Electronic Engineering, School of Engineering, University of Zambia

[Example 5.8] Solution of System Equations

Fig. 5.19.

0 0
( ) ( sin ) ( )
g
i t I t u t= 

( )H p

( )
g
i t

( )v t

R C

datum node
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from which we obtain the characteristic equation as   

33

0
sin ( )

dv
C Gv I t u t
dt

+ = (5.51)

( )H p Cp G= + (5.52)

so that ( )
Gt C

C
v t Ke

−
= (5.53)

Department of Electrical & Electronic Engineering, School of Engineering, University of Zambia

[Solution]  
We have already obtained the particular integral in Eq. 5.28. Now let us find the 

complementary function. The ODE on a node basis is 

and the incomplete solution is

10
1 22 2 2

( ) ( ) sin tan ( )
( )

Gt C I C
v t Ke u t t u t

GG C

− − 
= + − 

+  





(5.54)

From initial condition                   , we obtain(0 ) 0v − =
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(5.55)

(5.56)

10
1 22 2 2

(0 ) (0 ) sin tan 0
( )

I C
v v K

GG C

− 
+ = − = − = 

+  





❑ From the argand diagram in Fig. 5.20 we see that,

1

1 22 2 2
sin tan

( )

C C

G G C

− 
= 

+ 

 



Department of Electrical & Electronic Engineering, School of Engineering, University of Zambia

Fig. 5.20.

❑ Consequently,

(5.57)

From the complementary function in Eq. 5.53, we see that the time constant of

the circuit is                            .C G RC= =

10
1 2 1 22 2 2 2 2 2

( )
( ) sin tan

( ) ( )

Gt CI u t Ce C
v t t

GG C G C

−

−
  

= + −  
 + +   

 


 



0

Im

Re

C

G
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❑ Next, we examine an example of 
different kinds of free responses of a 
second-order system equation that 
depend on relative values of the 
system elements.

❑ Suppose we are given the system in 
Fig. 5.21; let us find the free response    

for the ODE ( )
C
v t

0

1
( ) ( ) (0 )

t

g L

dv
i t C Gv v d i

dt L
 

−
= + + + − (5.58)

Department of Electrical & Electronic Engineering, School of Engineering, University of Zambia

Fig. 5.21.

❑ Differentiating both sides of Eq. 5.58, we have 

1
( ) ( ) ( ) ( )
g
i t Cv t Gv t v t

L
  = + + (5.59)

2 21 1
( )

G
H p Cp Gp C p p

L C LC

 
= + + = + + 

 

(5.60)

❑ The characteristic equation is then

S

LC G
( )
g
i t

( )v t

(0 )
L
i −
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❑ In factored form,              is

36

1 2
( ) ( )( )H p C p p p p= − − (5.61)( )H p

(5.62)

❑ There are three different kinds of responses depending upon whether B is real, 

zero, or imaginary.

❑ CASE 1. B is real, that is,

❑ where
1 2

2

1

2

1 4

2 2

p G G
A B

p C C LC

   
 = −  − = −   
    

2
4G

C LC

 
 

 

❑ Then the free response is

Department of Electrical & Electronic Engineering, School of Engineering, University of Zambia

(5.63)
( ) ( )

1 2
( ) A B t A B t

C
v t K e K e− − − += +

❑ which is a sum of damped exponentials. 

Here the response is said to be 

overdamped, see Fig. 5.22.

Fig. 5.22. 

Overdamped response.
0 t

1 2
K K+

( )v t
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❑ CASE 2. B = 0, that is,

37

❑ Then 

❑ so that

2
4G

C LC

 
= 

 

1 2
p p A= = −

1 2
( ) ( ) At

C
v t K K t e−= + (5.64)

❑ When B = 0, the response is critically damped, as shown in Fig. 5.23.

Department of Electrical & Electronic Engineering, School of Engineering, University of Zambia

Fig. 5.23. Critically 

damped response.
t0

1
K

( )v t
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❑ CASE 3.  B is imaginary, that is,

38

2
4G

C LC

 
 

 

❑ Letting               , we have

Fig. 5.24. 

underdamped

response.

B j=

1 2
( ) ( sin cos )At

C
v t e K t K t −= + (5.63)

Department of Electrical & Electronic Engineering, School of Engineering, University of Zambia

❑ Here, the response is said to be underdamped, and is shown by the damped 

oscillatory curve in Fig. 5.24. 
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A look at simultaneous system equations. We once again rely upon physical 

reasoning rather than formal mathematical operations to obtain the initial currents 

and voltages as well as the steady-state solutions. In the system of Fig. 5.25, the 
switch S is thrown from position 1 to position 2 at t = 0. it is known that prior to

, the circuit had been in steady state. We make the idealized assumption that 

the switch closes instantaneously at t = 0.

Our task is to find           and           after the switch position changes. The values of 

the batteries       and        are               ,                   ; and the element values are 

given as 

1
( )i t

2
( )i t

1
V

2
V

1
2vV = 2

3vV =

1

2

1h, 0.5

1
f, 2.0

3

L R

C R

= = 

= = 
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Fig. 5.25. 

0t =

+

− +

−

0t =

1
V

2
V 1

( )i t
2
( )i t

2
R

L C (0 )
C
v −

1
R

1

2

S
+ −
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The mesh equations for           and            after            are

40

2 1 1 1 1 2
( ) ( ) ( )V Li t R i t R i t= + −

Since Eq. 5.65 contains an integral, we differentiate it to give

1
( )i t

1 1 2 1 2 20

1
(0 ) ( ) ( ) ( ) ( )

t

C
v R i t i d R R i t

C
 

−
− − = − + + +

(5.64)

2
( )i t 0t =

(5.65)

1 1 2 1 2 2

1
0 ( ) ( ) ( ) ( )R i t i t R R i t

C
 = − + + + (5.66)

Department of Electrical & Electronic Engineering, School of Engineering, University of Zambia

Using Eqs. 5.64 and 5.66 as our system of equations, we obtain the characteristic 

equation 

1 1
2 1

1 2 1 2

1 1 2

( ) ( )1
( )

Lp R R RL
H p L R R p RR p

C CR p R R p
C

+ −
 

= = + + + + 
− + +  

(5.67)
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Substituting the element values into             , we have

2( ) 2.5 4 1.5 2.5( 1)( 0.6)H p p p p p= + + = + + (5.68)

(5.69)

The free response are then

0.6

1 1 2
0.6

2 3 4

( ) ( ) ( )

( ) ( ) ( )

t t

C
t t

C

i t K e K e u t

i t K e K e u t

− −

− −

= +

= +

Department of Electrical & Electronic Engineering, School of Engineering, University of Zambia

( )H p

The steady-state solutions for the mesh currents are obtained at              by 

considering the circuit from a dc viewpoint. The inductor is then a short circuit and 

the capacitor is an open circuit; thus we have

2
1

1

2

( ) 6 amp

( ) 0

p

p

V
i t

R
i t

= =

=
(5.70)

t = 
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Now let us determine the initial currents and voltages, which incidentally,  have the 

same values at              and             because the voltage sources are not impulses.

Before the switch is thrown at          , the circuit with          as the voltage source 

was at steady state. Consequently, 

(5.71)1
1 1 2

1

(0 ) 2v; (0 ) 4 amp; (0 ) 0
C

V
v V i i

R
− = = − = = − =

0t = − 0t = +

0t =
1
V

Department of Electrical & Electronic Engineering, School of Engineering, University of Zambia

We next find             from Eq. 5.64 at            .

Substituting numerical values into Eq. 5.74, we find

2 1 1 1 1 2
(0 ) (0 ) (0 )V Li R i R i= + + + − + (5.72)

1
(0 )i +

1
(0 ) 1 amp seci + =

0t = +
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(5.73)

From Eq. 5.68 at             , we obtain similarly0t = +

1
2 1

1 2

(0 ) (0 ) 0.2 amp sec
R

i i
R R

 + = + =
+

With these initial values of           and          , we can quickly arrive at the final 

solutions 
1
( )i t

2
( )i t

0.6

1

0.6

2

( ) 0.5 2.5 6 ( )

( ) 0.5 0.5 ( )

t t

t t

i t e e u t

i t e e u t

− −

− −

 = − +
 
 = − +
 

(5.74)

Department of Electrical & Electronic Engineering, School of Engineering, University of Zambia

❑ The two functions are plotted in Fig. 

5.26.

Fig. 5.26. 



5.6 Analysis of Transformers

❑ By Faraday’s law of induction, a current      flowing in a coil        may induce a 

current      in a closed loop containing a second coil      .

44

Fig. 5.27. Transformer.

1
i 1

L

2
i

2
L

❑ To induce the current      , (a) part of the flux        

in the coil      must be coupled 

magnetically to the coil      , (b) the flux     

must be changing with time.

❑ Here we will analyze circuits having a 

transformer. A schematic of a transformer is 

shown in Fig. 5.27.

1


❑ The       side is usually referred to as the primary coil and       side called as the 

secondary coil. The energy source is generally at the primary. Mathematically the 

transformer in Fig. 5.27 is described as

1 2 1 2
1 1 2 2
( ) ; ( )

di di di di
v t L M v t M L

dt dt dt dt
= + = + (5.75)
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2
i

1


1
L

2
L

1
L 2

L

1
( )i t

1
( )v t

+

−

2
( )v t

2
( )i t

+

−

1
L

2
L

M
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❑ Where M is the mutual inductance associated with the flux linking       to       , and is 

related to       and       by 

45

❑ Here K is called the coefficient of coupling. It is bounded by the limits                   . 

If       , then all  of flux        in coil       is linked magnetically to      .

❑ If             , the coils may be regarded as two separate coils having no effect upon 

one another.

❑ For circuits with transformers, reference polarities for mutually induced voltages               

, are given by small dots painted on the input and output leads of a 

transformer.

❑ If both currents            and            flow into  the dots or away from the dots,                 

is positive. If one current flows into the dot and the other away from the 

second dot, the sign of                  is negative.

1
L

2
L

1 2
M K L L=

(5.76)

0 1K 

1K =
1



0K =

1
( )i t

2
( )i t

Department of Electrical & Electronic Engineering, School of Engineering, University of Zambia

1
L 2

L

1
L

2
L

M di dt

M di dt
M di dt
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❑ If        and          are the number of turns of coils       and      , then the flux linkages

of       and       are given by           and           , respectively.

❑ If both currents flow into the dots, sum of flux linkages is

46

1
L

2
L

❑ If, however, one of the currents, for example,     , flows into the dot, and the other       

flows out of the other dot, then

2
N

1 1 1 1 2

1 2 2 2 2

( ) ( ) ( ) ( )

0 ( ) ( ) ( )

Vu t L i t R i t Mi t

Mi t R i t L i t

 = + +

 = + +

(5.77)1 1 2 2
linkages N N =  + 

2
i

1 1
N 

1
N

1
i

2 2
N 

1 1 2 2
linkages N N =  −  (5.78)

❑ Note, the sum of flux linkages is continuous with time.

❑ The differential equations for the transformer in Fig. 5.28 are

(5.79)

Department of Electrical & Electronic Engineering, School of Engineering, University of Zambia

1
L

2
L
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❑ Integrating this set of equations between              and              results in the 

determinant

47

(5.80)

0t = − 0t = +

1 1 1 2 2

1 1 2 2 2

(0 ) (0 ) (0 ) (0 )

(0 ) (0 ) (0 ) (0 )

L i i M i i

M i i L i i

   + − − + − −   
   + − − + − −   

❑ Evaluating the determinant we get

2

1 2 1 1 2 2
( ) (0 ) (0 ) (0 ) (0 ) 0L L M i i i i   − + − − + − − =    (5.81)
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❑ If                     , that is,            , then the currents must be continuous at              in 

order for the determinant in Eq. 5.82 to be equal to zero. Thus

(5.82)

2

1 2
L L M 1K 

1 1
(0 ) (0 ), 1i i K+ = − 

(5.83)2 2
(0 ) (0 ), 1i i K+ = − and

0t =



[Example 5.9] Analysis of Transformers

48

For the transformer circuit in Fig. 5.28,                

,                 ,                ,                

and              . The excitation 

is                  .  Let us find

and         , assuming that                                  

.

1
1L h=

2
2L h= 1

3R = 

2
8R =  1M h=

6 ( )V u t=

1
( )i t

2
( )i t

1 2
(0 ) (0 ) 0i i− = − =

1 1 2

1 2 2

( ) 3 ( ) ( ) 6 ( )

( ) 2 ( ) 8 ( ) 0

i t i t i t u t

i t i t i t

 + + =

 + + =
(5.84)
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Fig. 5.28. 

The differential equations for the circuit are                   

[Solution]

The characteristic equation is given by the determinant

2 2
3

( ) ( 3)(2 8) ( 14 24)
2 8

( 2)( 12)

p p
H p p p p p p

p p

p p

+
= = + + − = + +

+

= + +
(5.85)

1
L

2
L

M

+

−

1
R

2
R

S

V
1
( )i t

2
( )i t



[Example 5.9] Analysis of Transformers 

Cont’d

49

Thus the complementary functions are
2 12

1 1 2
2 12

2 3 4

( )

( )

t t

c
t t

c

i t K e K e

i t K e K e

− −

− −

= +

= +
(5.86)

To obtain the particular integral, or steady-state solution, we rely upon physical 

reasoning to arrive at

Department of Electrical & Electronic Engineering, School of Engineering, University of Zambia

Since the excitation does not contain an impulse (and since                         ), we can 

assume that             and             are also zero. Then using Eq. 5.86 we can find              

and             .    

1

1

( ) 2amp
p

V
i t

R
= =

(5.87)

1
(0 )i + 2

(0 )i +

2

1 2
0L L M− 

1
(0 )i +

2
(0 )i +

2
( ) 0 amp
p
i t =

(5.88)1 2

1 2

(0 ) (0 ) 6

(0 ) 2 (0 ) 0

i i

i i

 + + + =

 + + + =



[Example 5.9] Analysis of Transformers 

Cont’d

50

2 12 2 12

1 2

6 4 3 3
( ) 2 ( ); ( ) ( )

5 5 5 5
t t t ti t e e u t i t e e u t− − − −   

= − − = − +   
   

Solving, we find                       and                   . With these initial conditions, we 

obtain the final solutions of             and            .
1
(0 ) 12i + =

2
(0 ) 6i + =

( )1
i t ( )2i t

(5.89)
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5.6 Analysis of Transformers Cont’d

❑ Suppose, now,                  , that is,           , then          and          need not be 

continuous at           . In fact, we will show that the currents are discontinuous at

for a unity-coupled transformer. 

❑ Assuming that            , consider the mesh eq for the secondary at               

(5.90)

2

1 2
L L M=

2 2 1 2 2

1 1 2

1

(0 ) (0 ) (0 )

(0 ) (0 )

R i Mi L i

M
L i Mi

L

 + = − + − +

  = − + + + 

1
( )i t

2
( )i t

(5.91)

0t = +

1K =

0t =

0t =

1K =
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1
1 1 1 1 2 1 1 2 2

(0 ) (0 ) (0 ) (0 ) (0 )
L

V R i L i Mi R i R i
M

  = + + + + + = + − + 

❑ The mesh equation of the primary side then becomes

(5.92)

❑ We need an additional equation to solve for               and               . This is provided 

by the equation
1
(0 )i +

2
(0 )i +

1 1 1 2 2
(0 ) (0 ) (0 ) (0 ) 0L i i M i i   + − − − + − − =   

(5.93)
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❑ Which is obtained from Eq. 5.80. Since                                    , we solve Eqs. 5.92 

and 5.93 directly to give

(5.94)

2
1

1 2 2 1

2

1 2 2 1

(0 )

(0 )

VL
i

R L R L
VM

i
R L R L

+ =
+

−
+ =

+

1 2
(0 ) (0 ) 0i i− = − =



❑ Assuming that the circuit is at steady-state before the switch is closed at          , let 

us find           and          . The DEs   written on mesh basis are

5.6 Analysis of Transformers Cont’d
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1 2

1 2

4 , 1

8 , 3

2 , 10v

L h L h

R R

M h V

= =

=  = 

= =

❑ Consider the following example. For the transformer in Fig. 5.28 the element values 

are

1
( )i t

2
( )i t

0t =
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❑ The characteristic equation is

4( 2) 2
( ) 0

2 ( 3)

p p
H p

p p

+
= =

+

(5.95)
1 2

1

1 2
2

4 8 2 10

2 3 0

di di
i

dt dt
di di

i
dt dt

+ + =

+ + =

(5.96)
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❑ The complementary functions are

6
( ) 20 24 20

5
H p p p

 
= + = + 

 

(5.98)

❑ which yields

1.2

1 1
1.2

2 2

( )

( )

t

C
t

C

i t K e

i t K e

−

−

=

=

(5.97)
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❑ The particular integrals that we obtain by inspection are

1 2

1

10 5
( ) ; ( ) 0

8 4p p

V
i t i t

R
= = = =

❑ The initial conditions are

(5.99)

2
1

1 2 2 1

2

1 2 2 1
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i
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+ = = =
+

−
+ = = −

+
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5.6 Analysis of Transformers Cont’d
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❑ We thus find                     and                   , so that
1

0.75K = −
2

1.0K = −

1.2

1
1.2

2

( ) ( 0.75 1.25) ( )

( ) ( )

t

t

i t e u t

i t e u t

−

−

= − +

= −
(5.101)

❑ Notice that as      approaches infinity                 , while          goes to its steady-state 

value of 1.25.

t
2
( ) 0i t →

1
( )i t
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End of Lecture 5

Thank you for your attention!
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