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7.1  The Transformed Circuit

The Transformed Circuit

❑ In lecture 5 we discussed the voltage-current relationships of system elements in 

the time domain.

❑ We can also represent these relationships in the complex frequency domain. 

❑ Thus, Ideal energy sources given in the time domain as           and          , may now 

be represented by their transforms                              and                            .  
Resistor, the v-i relationship in the time domain is given as

( ) ( )v t Ri t= (7.1)

 ( ) ( )V s v t= L  ( ) ( )I s i t= L
( )v t ( )i t

❑ Eq. (7.1) is transformed to frequency domain to be defined as

( ) ( )V s RI s= (7.2)
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7.1  The Transformed Circuit
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7.1  The Transformed Circuit

Capacitor
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Mesh and node equations on impedance and admittance basis can be written 

directly
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Fig. 7.2: 
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7.1  The Transformed Circuit

Transformer

1 2
1 1

( ) ( )
( )
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= +

1 1 1 1 1 2 2
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Fig. 7.3
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In general the use of 

transformed 

equivalent Circuits 

is considered an 

easier way to solve 

the problem
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In Fig. 7.4, the switch is thrown from position 1 to 2 at time            . Just before 

the switch is thrown, the initial conditions are                         ,                          . 

Let us find the current           after the switching action.
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7.1  The Transformed Circuit

[Example 7.1]
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Fig. 7.4

[Solution]
❑ Apply KVL to the  transformed circuit.
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Consider the network in Fig. 7.6. At           , the switch is opened. 

Let us find the current            and              for the circuit. It is given that
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7.1  The Transformed Circuit

[Example 7.2]

1fC =

0t =

1
h

2
L =

1
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Fig. 7.6

[Solution]
❑ Apply KCL to the  transformed circuit.

1 2

1 2 2
1 ( ) ( ) ( )s V s V s i
s s s

 
− = + − 

 

2
( )v t

1mhoG = 1vV =

Fig. 7.7
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Solving the simultaneous equations yields,
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7.1  The Transformed Circuit

[Example 7.2] [Solution] Cont’d

1
( ) costv t e t−=

1 2 2
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( ) ;

2 2 ( 1) 1

s s
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Thus, the inverse transforms are of the form,
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7.2  Thevenin’s and Norton’s Theorems

❑ In system analysis, the objective of a problem is often to determine a single

branch current through a given element or a single voltage across an element.

❑ It is generally not practical to write a complete set of mesh and node equations

and to solve them for this one current or voltage.

❑ It is then convenient to use two very important theorems on equivalent circuits,

known as Thevenin’s and Norton’s theorems.

Fig. 7.8

Fig. 7.9: Thevenin’s equivalent circuit.

❑ From the standpoint of determining the current I(s) through an element of

impedance Z1(s), the rest of the system S can be replaced by an equivalent

impedance ZTH(s) in series with an equivalent voltage source VTH(s).

Thevenin’s theorem
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7.2  Thevenin’s and Norton’s Theorems

❑ VTH(s) is the voltage across 1-2 when Z is removed or open circuited

❑ ZTH(s) is equivalent impedance “looking into” S from terminals of Z1(s) when all

voltage sources are short circuited and current sources are open circuited.
❑ Note: Z1(s) must note be magnetically coupled to an element in S.

Let us determine by Thevenin’s theorem the current I1(s) flowing through the 

capacitor in the system shown in Fig. 7.10.

[Example 7.3]

[Solution]
❑ Capacitor removed to find ZTH(s) and 

VTH(s).

Fig. 7.10

Fig. 7.11
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7.2  Thevenin’s and Norton’s Theorems

By the Thevenin’s theorem we have

[Example 7.3] [Solution]

Fig. 7.12

1

( ) (0 ) (0 )( )
( )

( ) ( ) 1
CTH

TH

I s R Li v sV s
I s

Z s Z s R sL sC

+ − − −
= =

+ + +

( ) ;
TH
Z s R sL = +

sL

R
( )

TH
Z s

1

2



13Department of Electrical & Electronic Engineering, School of Engineering, University of Zambia

7.2  Thevenin’s and Norton’s Theorems
Norton’s theorem
❑When it is required to find the voltage across an element whose admittance is
Y1(s), the rest of the LTIC System S can be represented by an equivalent admittance

Ye(s) in parallel with an equivalent current source Ie(s).

❑ Ie(s) is current which flows through a short circuit across Y1(s).
❑ Ye(s) is the reciprocal of the Thevenin impedance.

Fig. 7.13

Fig. 7.14
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Norton’s theorem

[Example7.4]

7.2  Thevenin’s and Norton’s Theorems

FIG. 7.15

 Consider the LTIC network in FIG. 7.15. Let us find the voltage across the

capacitor by Norton’s theorem.

( )
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[SOLUTION]

By current divider rule, the current
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7.3  System Analysis

❑ In earlier discussions a linear system with excitation e(t) was related to the

response r(t) by a differential equation.

❑ When the Laplace transform is used in describing the system, the relationship
between the excitation E(s) and the response R(s) is an algebraic one. In

particular, when we discuss initially inert systems, the excitation and response are
related by the system function H(s) by the given relation

R(s)=E(s)H(s) (7.9)
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❑ It was mentioned in lecture 1 that the system function may assume many forms

and may have special names driving-point admittance, transfer impedance,

voltage or current ratio transfer function.

❑ This is because the form of the system function depends on whether the excitation

is a voltage or current source and whether the response is a specified current or

voltage.

Forms of System Functions 

7.3  System Analysis

FIG. 7.16

g
( )I s

R

sL
1

sC

0
( )V s

+

−



17Department of Electrical & Electronic Engineering, School of Engineering, University of Zambia

7.3  System Analysis

❑ If the excitation is a current source and the response is a voltage then the system

function is an impedance.

❑ When both excitation and response are measured between the same pair of

terminals, we have a driving point impedance.

For example a driving-point impedance is given in FIG. 7.17, here H(s) is of the form

Forms of System Functions: Impedance

FIG. 7.17

0

g

[1 ]( )
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sC sLV s
H s R

I s sL sC
= = +

+

(7.10)
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7.3  System Analysis

❑ When excitation is a voltage source and the response is a current, H(s) is an

admittance.
❑ In Fig. 7.18, the transfer admittance I2(s)/Vg(s) is obtained from the network as

Forms of System Functions: Admittance

FIG. 7.18
2

g 1 1

( ) 1
( )

( ) 1

I s
H s

V s R sL sC
= =

+ +

(7.11)
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7.3  System Analysis

❑ When excitation is a voltage source and the response is also a voltage, H(s) is a

voltage-ratio transfer function .

Forms of System Functions: Voltage-ratio transfer function

❑ First find the current

❑ In Fig. 7.19, the Voltage-ratio transfer function V0(s)/Vg(s) is obtained as follows:

FIG. 7.18
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7.3  System Analysis

❑ When excitation is a current source and the response is another current, H(s) is

called a current-ratio transfer function .

Forms of System Functions: Current-ratio transfer function

❑ Eliminating the variable I1, we 

find

❑ So that the current-ratio transfer function is

❑ Let us find the ratio I0(s)/Ig(s) for the LTIC system in Fig. 7.20. From the

LTIC system we know that

FIG. 7.20

g 1 0
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1 0
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=
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7.3  System Analysis

❑ From the preceding examples, we have seen that the system function is a function

of the elements of the network alone, and is obtained from the network alone, and

is obtained by applying Kirchhoff’s laws.

❑ Now let us obtain R(s), given the excitation and the system function. Consider Fig.

7.21, assume that the network is initially inert when the switch is closed at t = 0.

❑ Determine response V(s) for:

FIG. 7.21

1. ig(t)=(sinω0t)u(t).
2. ig(t) is the square pulse in Fig. 7.22.

3. ig(t) has the waveform in FIG. 7.23.

First, we obtain the system function as

2

1
( )

1 [ ( ) 1 ]

s
H s

sC sL G C s s G C LC
= =

+ + + + (7.14)

Obtaining R(s) given E(s) and H(s)

g
( )i t C L G ( )v t

+

−

S
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7.3  System Analysis

Obtaining R(s) given E(s) and H(s)

1. For                                     the transform is 

of the form
g 0
( ) [sin ] ( )i t t u t= 

0
g 2 2

0

( ) ;I s
s

=
+




so that

0
g 2 2 2

0

( ) ( ) ( )
[ ( ) 1 ]

s
V s I s H s

s C s s G C LC
= = 

+ + +





FIG. 7.22

2. For the square pulse in FIG. 7.22,            can be written as

g
( ) ( ) ( ).i t u t u t a= − −

g
( )i t

Its transform is of the form g

1
( ) [1 ] ;asI s e

s
−= −

❑ Thus, the response V(s) is given by
2

1
( )

[ ( ) 1 ]

ase
V s

C s s G C LC

−−
=

+ +❑ Notice that V(s) is of the form

( )
( ) [1 ]as

H s
V s e

s
−= −

Corresponds to

delay in time domain

(7.18)

(7.15)

(7.16)

(7.17)

(7.19)

t0 a

1

g
( )i t
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7.3  System Analysis

Obtaining R(s) given E(s) and H(s)

❑ Let the inverse transform of V1(s) be v1(t). It follows that v1(t) is the step 

response of the LTIC system H(s). That is, 

1

1

( )
( )

H s
v t

s

−  
=  

 
L

❑ Vividly, using the above concept we obtain inverse transform of V(s), that is the 

time response of the LTIC system to the excitation ig(t) to be of the form, 

1 1
( ) ( ) ( ) ( ) ( )v t v t u t v t a u t a= − − −

FIG. 7.23
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7.3  System Analysis

Obtaining R(s) given E(s) and H(s)

3. The waveform depicted in FIG. 7.24 can be represented as

g

( )
( ) ( ) ( ) ( )

t t a
i t u t u t u t a

a a

−
= + − −

g

1 1
( ) 1 ;

ase
I s

s as as

− 
= + − 

 
❑ Thus, its transform is of the form

❑ It follows that V(s) is of the form

1 1
( ) 1

[ ( ) 1 ]

as

s

e
V s

as as C s s G C LC

− 
= + −  

+ + 

❑ If we let v2(t) be the response of the system to a ramp excitation, we see that

❑ where  is the step response of the LTIC system given in FIG. 7.22.

 
1

1 2 2

1 1
( ) ( ) ( ) ( ) ( ) ( )v t V s v t v t v t a u t a

a a

−
= = + − − −L (7.25)

(7.22)

(7.23)

(7.24)
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7.3  System Analysis

❑ Consider the partial-fraction expansion of R(s):  

❑ The inverse transform of R(s) is

❑ Associated with the system 
H(s) and are called the free 

response terms.
❑ si are the natural frequencies 

of the system

❑ These terms are due to the 

excitation and are known as 

the forced response terms.
❑ sk are the forced frequencies

Obtaining R(s) given E(s) and H(s)

( ) i k

i ki k

A A
R s

s s s s
= +

− −
 

( ) i ks t s t

i k
i k

r t Ae Ae= + 

❑ Where si depict poles of the LTIC system H(s), and sk are poles of the excitation 

E(s).

(7.27)

(7.26)
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7.3  System Analysis

R-C differentiator and integrator

FIG. 7.24

❑ Fourier analysis of the LTIC system in FIG. 7.24 
(a)  yields the system function H(jω) of the form 

0

g

( )

( ) 1 1

V j R j RC

V j R j C j RC
= =

+ +

 

  

❑ If we let                 , this yields an approximation,

0

g

( )
;

( )

V j
j RC

V j







1RC 

❑ Thus, the inverse transform of V0(jω) yields

0 g
( ) [ ( )]V j RC j V j   

0 g
( ) ( )

d
v t RC v t

dt


(7.28)

(7.29)

(7.30)

(7.31)
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−

(a) RC Differentiator
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( )v t

0
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+

−

(b) RC Integrator
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7.3  System Analysis

R-C differentiator and integrator

❑ Under the above stated conditions it follows that the inverse transform of V0(jω)

0 g0

1
( ) ( )

t
v t v d

RC
   

0 g

1
( ) ( )V j V j

j RC
 



❑ yields,

❑ Similarly, Fourier analysis of FIG. 7.24(b) yields,

0

g

( ) 1 1

( ) 1 1

V j j C

V j R j C j RC
= =

+ +

 

  

❑ Assuming                    yields1RC 
0 g

1
( ) ( )V j V j

j RC
 



(7.32)

(7.33)

(7.34)
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7.4  The Step and Impulse Response

❑We know that the transform for unit impulse δ(t) is unity. Suppose that the system 

excitation were a unit impulse, then the response R(s) would be

R(s)=E(s)H(s)=1•H(s)=H(s)

❑ We see that the impulse response h(t) and the system function H(s) constitute a 

transform pair

Since the system function is usually easy to obtain, it is apparent that we can find 

the impulse response of a system by taking the inverse transform of H(s). 

❑ In this section we will show that the impulse response h(t) and the system

function H(s) constitute a transform pair. So that we can obtain step and impulse

responses directly from the system function.

 
1

( ) ( )H s h t
−

=L

 ( ) ( )h t H s=L

(7.35)

(7.36)
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7.4  The Step and Impulse Response

[Example7.5]
 Let us find the impulse response of the current i(t) in the RC LTIC circuit of FIG.

7.25.

 Vividly, the system function is of the form

[SOLUTION]

( ) 1
( )

( ) 1 [ 1 ]
g

I s s
H s

V s R sC R s RC
= = =

+ +
FIG. 7.25

FIG. 7.26

 
1 1 1

( ) ( ) ( ) ( )
t RC

h t H s t e u t
R RC


− − 

= = − 
 

L

 Simplifying H(s) further yields,

1 1
( ) 1 ;

1

RC
H s

R s RC

 
 = −

+  

so that,

+

− ( )i t R

C

( )t

t0

1
( )t

R


2

1

R C
− 2

1 t RC
e

R C

−
−

( )i t
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7.4  The Step and Impulse Response

❑ Since the step response is the integral of the impulse response, we can use the

integral property of the Laplace transforms to obtain the step response as

1. If we know the impulse response of an initially inert linear system, we can obtain

all transient response data that are needed to characterize the system.

2. the Impulse response alone is sufficient to characterize the system from the

standpoint of excitation and response.

1 ( )
( )

H s
t

s


−  
=  

 
L

❑ Similarly, we obtain the unit ramp response from the equation

1

2

( )
( )

H s
t

s


−  
=  

 
L

(7.37)

(7.38)
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7.4  The Step and Impulse Response

FIG. 7.27

[Example7.6]
Let us find the current step response of the current I(s) in the RL LTIC circuit of

FIG. 7.27. [SOLUTION]
 Vividly, the system function H(s) is of the form

g

( ) 1
( ) ;

( )

I s
H s

V s R sL
= =

+

( ) 1 1 1 1
;

( )

H s

s s R sL R s s R L

 
  = = −

+ +  
 Thus, the step response is of the form

  ( )1 1
( ) ( ) [1 ] ( )

R L t
t H s s e u t

R

−−
= = − L

 To prove this result, recall that impulse of the RL circuit of FIG. 7.27 is

( )1
( ) ( ) ;

R L t
h t e u t

L

−
= 

( )

0

1
( ) ( ) [1 ] ( )

t R L t
t h d e u t

R

−
= = −  

❑ Hence the proof for the step response of the LTIC given.

+

−

R

sLg
( )V s ( )I s
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7.5  The Convolution Integral

❑ Given two functions f1(t) and f2(t), which are zero for t < 0, the convolution

theory states that if the transform of f1(t) is F1(s), for f2(t) is F2(s), the transform

of the convolution of f1(t) and f2(t) is the product of the individual transforms

F1(s)F2(s), that is

 1 2 1 20
( ) ( ) ( ) ( )

t
f t f d F s F s  

−
− =L

❑ where the integral is the convolutional integral or folding

integral, and is denoted operationally as
1 20
( ) ( )

t
f t f d  

−
−

1 2 1 20
( ) ( ) ( ) ( )

t
f t f d f t f t  

−
− = 

❑ Proof:

 1 2 1 2
( ) ( ) ( ) ( )f t f t F s F s  =L

 1 2 1 20 0
( ) ( ) [ ( ) ( ) ] ;

tstf t f t e f t f d dt


− = −    L by shifted the step function we have

 1 2 1 20 0
( ) ( ) [ ( ) ( ) ( ) ] ;stf t f t e f t u t f d dt

 
− = − −     L let                 , so thatx t = −

 1 2 1 2 1 20 0 0 0
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )s sx sx sf t f t f x u x f e e d dx f x u x e dx f e d    

   
− − − − = =   L

(7.39)

(7.40)
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7.5  The Convolution Integral

[Example7.7]
 Let us evaluate the convolution of the functions f1(t)=e−2tu(t) and f2(t)=tu(t)

, and then compare the results with the inverse transform of F1(s)F2(s).

 1 1

1
( ) ( ) ;

2
F s f t

s
= =

+
L

2 2

1
( )F s

s
=and[SOLUTION]  Vividly,

 The convolution f1(t)*f2(t) is obtained by first substituting the dummy variable

for t in f1(t), so thatt −
2( )

1
( ) ( );tf t e u t − −− = −

2( ) 2 2

1 2 1 20 0 0
( ) ( ) ( ) ( )

t t tt tf t f t f t f d e d e e d       − − − = − = =  
 Integration by parts yields

2

1 2

1 1
( ) ( ) ( )

2 4 4
tt

f t f t e u t− 
 = − + 

 
 Next we evaluate

 
1

1 1 2
( ) ( ) ( ) ;F s F s F s

−
=L

1 2 2 2

1 2 1 4 1 41
( ) ( ) ;

2( 2)
F s F s

s ss s s
= = − +

++

 
1 2

1 2

1 1
( ) ( ) ( )

2 4 4
tt

F s F s e u t
− − 

 = − + 
 

L

i.e.,

 Hence the proof.
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7.5  The Convolution Integral

FIG. 7.28

0  0 

0  0 

0  0 

0  0 

0 t 0 t

t

t

t

t

1

1

1

−

−

−

1 2
f f

2 1
f f

( ) ( )1 2
f t f − ( ) ( )1 2

f f t −

( )2
f t −( )1

f t −

( )1
f − ( )2

f −

( )1
f  ( )2

f 

( )a

( )b

( )c

( )d

( )e

( )a

( )b

( )c

( )d

( )e
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7.5  The Convolution Integral

❑ Let us now examine the role of the convolution integral in system analysis.
❑ From the familiar equation R(s)=E(s)H(s)

❑ We obtain the time response as 

❑ Given that the impulse response of a system is known the convolution integral can

be used to obtain the response of the system directly in the time domain.

 
1

0
( ) ( ) ( ) ( ) ( )

t
r t E s H s e h t d  

−
= = −L

❑ where e(τ) is the excitation and h(τ) is the impulse response of the system.

(7.41)
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7.5  The Convolution Integral

Which is the free response ?

FIG. 7.29

[Example7.8]
 Let us find the response i(t) ,of the RL LTIC system in FIG. 7.29 due to the

excitation .( ) 2 ( )tv t e u t−=

[SOLUTION]  Vividly, the impulse response for the current

is of the form

( )1
( ) ( )

R L t
h t e u t

L

−
=

 For the RL LTIC system under discussion

2( ) 2[ ] ( )t ti t e e u t− − = −

2( ) ( )th t e u t−=

 Using the convolution integral, we have

( ) 2

0 0 0
( ) ( ) ( ) 2 2 ;

t t tt ti t v t h d e e d e e d      − − − − −= − = =  

+

−
( )i t( )v t 1H

2



End of Lecture 7

Thank you for your attention!
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