

THE UNIVERSITY OF ZAMBIA

SCHOOL OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

UNIVERSITY EXAMINATIONS

FINAL EXAM – June / July 2015

EEE 3112

ELECTRICAL ENGINEERING PRACTICE

TIME

: Three (3) hours

INSTRUCTIONS

: Answer any four (4) questions in section A and one

question in section B.

ADDITIONAL

: 1.

Submit SECTION A and SECTION B in

INFORMATION

Separate Answer Booklets.

SECTION A: ANSWER AT LEAST Four (4) QUESTIONS FROM THIS SECTION

QUESTION 1

- a) Briefly describe, giving two examples, what a standard is, and give the reason why we need to preserve it.

 [3 Marks]
- b) Give four categories of standards with their specific functions. [2 marks]
- c) Design an Aryton shunt to provide an ammeter with a current range of 0-1 mA, 5 mA, 10 mA and 20 mA. A D' Arsonval movement with an internal resistance of 60kΩ and full scale current of 50 μA is used.
 [13 Marks]

Figure Q1 Aryton Shunt

Question 2

a) Name any four classes of measuring instruments, giving one example for each.

[2 Marks]

- b) Describe briefly four performance characteristics of an instrument. [4 marks]
- c) Outline four methods of fault finding.

[4 Marks]

d) A 50µA full scale deflection current meter movement shown in figure Q5 is to be used in an Ohmmeter. The meter movement has an internal resistance $R_m = 2k\Omega$ and a 3V battery is used in the circuit. Determine R2 at full scale deflection.

[3 Marks]

- e) A 100Ω basic movement is to be used as an ohmmeter requiring a full scale deflection of 1mA and internal battery voltage of 5V. A half scale deflection marking of 2k is desired. Calculate:
 - value of R1 and R2

[4 Marks]

the maximum value of R2 to compensate for a 3% drop in battery voltage [3 Marks]

Figure Q5. Ohm meter

Question 3

- 1. A student in a laboratory was presented with three resistors and two capacitor having the following colour bands and other characteristics:
 - > Resistor 1: Red, Green, Silver and Gold;

- Resistor 2: Violet, Grey, Gold and Silver;
- > Resistor 3: Yellow, Black, Red and White;
- > Capacitor 1: Red, Black and Orange;
- Capacitor 2: Small capacitor with number code printed on it, 472K.
- i) Determine the resistance, capacitance and tolerance values of the above listed [5 Marks] components.
- ii) State at least two functions of capacitors and one of resistors in electronic engineering.
- iii) Describe briefly the four main types of diagrams used in electrical and electronic engineering
- iv) Design and draw a circuit diagram of a simple 5 V regulated power supplier system and explain the functions of the devices (components) used.
- v) Calculate for the power rating of a 480 Ω resistor with 10 V across it. [2 Marks]

Total [20 Marks]

Question 4

- 1. Figure 1 below shows a circuit diagram of a solar lamp. In the design three parallel high power white LEDs, each 2.7 V and 30 mA, are switched on in the evening and stay on for 10 hours using a 6 V 4.5 Ah rechargeable battery. During the day, the solar panel charges the battery as the white LEDs are switched off.
 - What are the functions of the following components:
 - (1) 12 V solar panel;

 - (3) Charger controller resistor connected in series with a silicon diode D1 (0.7 V);
 - (4) 1.8 V, 15 mA Red LED,

[1x5 Marks]

(5) High value 4700 μF capacitor C1

Figure 1: Solar lamp circuit diagram

- ii) Calculate the size of resistors R2, R3 and R4 needed to be connected in series with the white LEDs.
- iii) Determine the size of resistor required to be connected in series with Red LED.
- iv) What size of solar panel power is needed to charge the batter for a period of 5hours after been used for 10 hours (Assume that the battery was initially fully charged [5 Marks] before use).
- v) Briefly describe five main uses of electronic circuit diagrams. Total [20 Marks

Question 5

- 1. Draw a block diagram of a radio receiver system and explain the main functions of the
- 2. What are the three main differences between average (mean) and rms values of a time varying current on an interval? Define form factor.
- 3. Determine the colour bands for a 1.5 Ω ±5% resistor.
- State the three uses of capacitor banks and one use of recloses in electrical power
- 5. Figure 2, below, shows a solar charger monitor circuit diagram. Identify the 14 Market components making up the circuit and make a bill of quantity.

Figure 2: Solar charger monitor circuit diagram.

Total [20 Marks]

SECTION B: ANSWER AT LEAST ONE (1) QUESTION FROM THIS SECTION

Question 6

- (a) In a stone crusher at Chilanga Cement a steel shaft of 4m long, having a diameter of 60mm, is used to transmit power at a rotational speed of 600rev/min. If the maximum shear stress 2. Determine the following shear stress for the material of the shaft is limited to 75MN/m2. Determine the following
 - The maximum power that can be transmitted

(ii) The corresponding angle of twist

Assume the modulus of rigidity for steel is 95GN/m2.

(b) Define the modulus of rigidity, G.

[16+4=20 Marks]

Question 7

- (a) The mass of a gear A in **Figure Q8** (a), is 20kg and its centroidal radius of gyration, k_A is 160 mm. The mass of gear B is 8Kg and its centroidal radius of gyration k_B is 100mm.
 - (i) Determine the mass moments of inertia of the two gears
 - (ii) Write the differential equation of motion of the entire system given that the bearings have friction coefficients $C_A = 0.05 Nm. s/rad$ and $C_B = 0.07 Nm. s/rad$
 - (iii) Calculate the angular acceleration of gear B when a torque of 16 N.m is applied to the shaft of gear A. Neglect friction.
 - (iv) What is backlash in gearing systems
 - (b) Define vibration resonance in forced vibration

[16+4=20 Marks]

END OF EEE3112 – Electrical Engineering Practice