

# THE UNIVERSITY OF ZAMBIA

# SCHOOL OF ENGINEERING

# DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING

TERM TEST

TERM II – September 2019

# EEE 3352

**ELECTROMECHANICS & ELECTRICAL MACHINES** 

Model Solutions

# Question 1. [20 marks]

Select and write down the choice you think is the most appropriate response to the following.

(a) The relative permeability of vacuum is A.  $4\pi \times 10^{-7}$  H/m B. 1 H/m C. 1 D.  $1/4\pi$ E. None of these. [4 marks] (b) A capacitor that stores a charge of 0.5 C at 10 V has a capacitance in Farads of B. 20 C. 10 D. 0.05 E. None of these. A. 5 [4 marks] (c) If dielectric slab of thickness 5 mm and  $\varepsilon_r = 5$  is inserted between the plates of an air capacitor increasing the plate separation from 1 mm to 5 mm, its capacitance is C. Tripled A. Halved B. Doubled D. The Same E. None of these. [4 marks] (d) Which one of the following will not affect the iron loss of an iron-cored inductor? A. Applied voltage B. Current in coil C. Frequency D. Magnetic flux density E. No correct answer. [4 marks] (e) Which one of the following best describes the phase relationship between the applied voltage phasor  $\overline{V}$  and the magnetising flux phasor  $\overline{\Phi}$  in a coil-excited magnetic circuit? B.  $\overline{V}$  lags  $\overline{\Phi}$  by 90° C.  $\overline{V}$  and  $\overline{\Phi}$  are in phase A.  $\overline{V}$  leads  $\overline{\Phi}$  by 90° D. Depends on the phase angle of the coil current E. None of these. [4 marks] -----Solutions-----(a) C (b) D (c) D (d) B (e) A 

# Question 2. [20 marks]

(a) Given  $E = \left(\frac{V}{\ln \frac{r_2}{r_1}}\right) \frac{1}{r}$  for a concentric cable, where the variables have their usual meaning,

discuss the conditions for maximum electric field,  $E_{max}$ . Develop the conditions for reaching the minimum value of  $E_{max}$ .

- [8 marks]
   (b) The radius of the copper core of a single-core rubber-insulated cable is 2.25 mm. The rubber insulation has a relative permittivity of 4 and breakdown field strength of 18 × 10<sup>6</sup> V/m. A voltage of 10 kV may be safely applied between the core and the earthed lead sheath with a safety factor of 3. Calculate, the
  - (i) radius of the lead sheath which covers the rubber insulation;

[6 marks]

[6 marks]

(ii) cable capacitance per metre.

-----Solutions-----

(a)  

$$E = \left(\frac{V}{\ln \frac{r_2}{r_1}}\right) \frac{1}{r}$$
: with V,  $r_1$ , &  $r_2$  fixed,  $E_{max}$  occurs when r is minimum. Thus  $r = r_1$ .  
[2 marks]

$$E = \left(\frac{V}{\ln \frac{r_2}{r_1}}\right) \frac{1}{r_1}$$

To determine minimum  $E_{max}$ , find minima or maxima:

$$\frac{dE_{\max}}{dr_{1}} = 0 = \frac{-V}{\left(r_{1} \ln \frac{r_{2}}{r_{1}}\right)^{2}} \left[ \ln \frac{r_{2}}{r_{1}} + r_{1}(\frac{r_{1}}{r_{2}})(\frac{-r_{2}}{r_{1}^{2}}) \right]$$

$$\ln \frac{r_{2}}{r_{1}} - 1 = 0 \rightarrow \frac{r_{2}}{r_{1}} = e$$

$$r_{1} = \frac{r_{2}}{e}$$
[6 marks]

(b)  

$$r_1 = 2.25 \text{ mm}, \ \varepsilon_r = 4, \ E_{max} = 18 \times 10^6 \text{ V/m}, \ V = 10 \text{ kV}, \ SF = 3;$$

$$V_{safe} = SF \times V = 3 \times (10 \times 10^3) = 30 \times 10^3 \text{ V}$$

[2 marks]

(i)  

$$E_{\max} = \frac{V}{r_1 \ln \frac{r_2}{r_1}} \to \ln \frac{r_2}{r_1} = \frac{V}{r_1 E_{\max}} = \frac{30 \times 10^3}{(2.25 \times 10^{-3}) \times (18 \times 10^6)} = 0.7407$$

$$\frac{r_2}{r_1} = 2.0975 \to r_2 = 2.0975 \times 2.25 = \underline{4.72 \text{ mm}}$$
[6 marks]

(ii)  

$$C = \frac{2\pi\varepsilon}{\ln\frac{r_2}{r_1}} = \frac{2\pi\varepsilon_r\varepsilon_0}{\ln(2.0975)} = \frac{2\pi \times 4 \times 8.85 \times 10^{-12}}{0.7407} = 3 \times 10^{-10} \text{ F/m} = \underline{30 \text{ nF/m}}$$
[4 marks]

\_\_\_\_\_

### Question 3. [20 marks]

(a) From first principles, derive the expression for the energy stored in an electric field.

#### [10 marks]

(b) Calculate the change in the stored energy of a parallel-plate capacitor if a dielectric slab of relative permittivity 5 is introduced between its two plates and the plates have been disconnected from the voltage source.

(c) [10 marks]

-----Solutions-----

(a)

Parallel plate capacitor:

| $ \begin{array}{c}                                     $ | A<br>l<br>i<br>V<br>C<br>q<br>E<br>D | = = = = = =           | plate area<br>plate separation<br>charging current<br>Plate voltage<br>capacitance of arrangement<br>charge between plates<br>Electric field intensity<br>Electric flux density |
|----------------------------------------------------------|--------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{c}                                     $ | l<br>i<br>V<br>C<br>q<br>E<br>D      | =<br>=<br>=<br>=<br>= | charging current<br>Plate voltage<br>capacitance of arrangement<br>charge between plates<br>Electric field intensity                                                            |

Charge: 
$$q = Cv$$
  
Charging current:  $i = C \frac{dv}{dt}$   
Power:  $P = vi = Cv \frac{dv}{dt}$   
Energy:  $W = \int P dt = \int_{0}^{V} cv dv = C \frac{V^2}{2} = \frac{1}{2} qV$   
Energy per unit volume:  $w = \frac{\frac{1}{2}qV}{Al} = \frac{1}{2} \frac{q}{A} \frac{V}{l} = \frac{1}{2} DE$ 

[10 marks]

# (b)

Q = CV = constant, A and l fixed, all the time: $W = \frac{1}{2}DE = \frac{1}{2}\varepsilon E; C = \varepsilon \frac{A}{l}$ Case 1:  $C_l, V_l, E_l,$  $W_l = \frac{1}{2}\varepsilon_{rl}\varepsilon_0 E_l^2 = \frac{1}{2}\varepsilon_0 \left(\frac{V_l}{l}\right)^2; C_l = \varepsilon_0 \frac{A}{l}$ 

Case 1: C<sub>2</sub>, V<sub>2</sub>, E<sub>2</sub>,

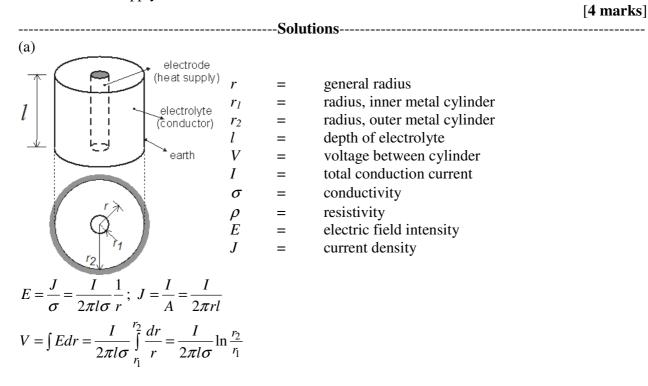
$$W_{2} = \frac{1}{2} \varepsilon_{2} \varepsilon_{0} E_{2}^{2} = \frac{1}{2} \varepsilon_{r2} \varepsilon_{0} \left(\frac{V_{2}}{l}\right)^{2}; C_{2} = \varepsilon_{r2} \varepsilon_{0} \frac{A}{l}$$

$$C_{1}V_{1} = C_{2}V_{2} \rightarrow \varepsilon_{0} \frac{A}{l} V_{1} = \varepsilon_{r2} \varepsilon_{0} \frac{A}{l} V_{2} \rightarrow V_{2} = \frac{V_{1}}{\varepsilon_{r2}}$$

$$W_{2} = \frac{1}{2} \varepsilon_{r2} \varepsilon_{0} \left(\frac{V_{1}}{\varepsilon_{r2}l}\right)^{2} = \frac{1}{2} \frac{\varepsilon_{r2} \varepsilon_{0}}{\varepsilon_{r2}^{2}} \left(\frac{V_{1}}{l}\right)^{2} = \frac{1}{2} \frac{\varepsilon_{0}}{\varepsilon_{r2}} \left(\frac{V_{1}}{l}\right)^{2}$$

$$\frac{W_{2}}{W_{1}} = \frac{1}{\varepsilon_{r2}} = \frac{1}{5} \rightarrow \underline{W_{2}} = \frac{W_{1}}{5}$$
[10 marks]

### ·····


### Question 4. [20 marks]

- (a) Derive the expression for the resistance R that subsists between two electrolyte-filled concentric metal cylinders of diameters  $d_1$  and  $d_2$ . The electrolyte has resistivity  $\rho$  and fills to a depth l.
- (b) A liquid resistor consists of two concentric metal cylinders of diameters  $d_1 = 20$  and  $d_2 = 35$  cm, respectively, and is filled with water of resistivity  $\rho = 8000 \ \Omega$ -cm between them. The length of both cylinders is  $l = 60 \ \text{cm}$ .
  - (i) Calculate the resistance of the liquid resistor.

# (ii) What is the heating power available when the cylinders are connected to a 240-V ac supply?

[10 marks]

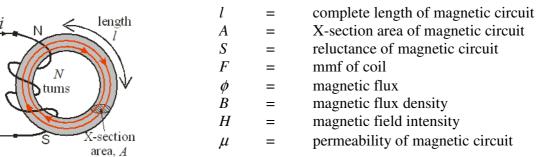
[6 marks]



With 
$$\rho = \frac{1}{\sigma}$$
,  $R = \frac{V}{I} = \rho \frac{\ln \frac{r_2}{r_1}}{2\pi l}$  [10 marks]  
(b)  
 $d_1 = 20 \text{ cm}, d_2 = 35 \text{ cm}, l = 60 \text{ cm}, \rho = 8000 \Omega.\text{cm}$   
(i)  
 $R = \rho \frac{\ln \frac{r_2}{r_1}}{2\pi l} = 80 \times \frac{\ln \frac{35}{20}}{2\pi \times 0.6} = \underline{11.875 \Omega}$  [6 marks]  
(ii)  
 $P = \frac{V^2}{R} = \frac{240^2}{11.875} = 4850 \text{ W} = \underline{4.85 \text{ kW}}$  [4 marks]

# Question 5. [20 marks]

(a) From first principles, derive the expression for the permeance of a uniform magnetic circuit composed of material of permeability  $\mu$ , length *l* and having a constant cross-sectional area *A*.


\_\_\_\_\_

- [6 marks]
- (b) A soft-iron ring with relative permeability 1000 has a mean circumference of 800 mm and a cross-sectional area of 500 mm<sup>2</sup> and is wound with coil of 1000 turns. A radial air-gap of 1 mm is cut in the ring.
  - (i) Calculate the current in the coil required to produce an air-gap flux of 0.5 mWb.
    - [10 marks]

(ii) What is inductance presented by the coil?

[4 marks]





-Solutions----

Permeance: 
$$\Lambda = \frac{\phi}{F} = \frac{BA}{Hl} = \frac{B}{H} \frac{A}{l} = \mu \frac{A}{l}$$
  
 $S = \frac{1}{\Lambda} = \frac{I}{\mu A}$ 
  
(b)
  
 $I_{FE} = 800 \text{ mm}, I_g = 1 \text{ mm}, \mu_e = 1000, A = 500 \text{ mm}^2, N = 1000;$ 
  
(i)
  
 $S = \frac{I}{\mu A}$ 
  
 $S_{Fe} = \frac{I_{Fe}}{\mu_{Fe}\mu_0A_{Fe}} = \frac{800 \times 10^{-3}}{1000 \times 4\pi \times 10^{-7} \times 500 \times 10^{-6}} = 1,273,239 \text{ A/Wb}$ 
  
 $S_g = \frac{I_g}{\mu_0A_{Fe}} = \frac{1 \times 10^{-3}}{4\pi \times 10^{-7} \times 500 \times 10^{-6}} = 1,593,149 \text{ A/Wb}$ 
  
[2 marks]
  
 $S_g = \frac{I_g}{\mu_0A_{Fe}} = \frac{1 \times 10^{-3}}{S_{fe}} = 1,593,149 \text{ A/Wb}$ 
  
 $F = \frac{1}{S_{Fe}} + S_g = 1,273,239 + 1,591,549 = 2,864,788 \text{ A/Wb}$ 
  
 $F = \phi S_T = 0.5 \times 10^{-3} \times 2864788 = 1432 \text{ A}$ 
  
 $NI = 1432 \text{ A} \rightarrow I = \frac{1432}{1000} = 1.423 \text{ A}$ 
  
(ii)
  
 $L = \frac{N^2}{S} = \frac{1000^2}{2864788} = 0.35 \text{ A}}$ 
  
[4 marks]

DR A ZULU