
1. INTRODUCTION TO NUMERICAL METHODS

Analytical methods are used extensively to solve many mathematical and engineeringproblems. These methods give results in terms of mathematical functions whosebehaviour and properties are often apparent. However, many practical engineeringproblems are so complex that analytical solutions cannot be obtained or the cost oreffort of performing an analytical solution would be prohibitive. For example, thelength of the curve
y = sin x

from x = 0 to x = π can be found analytically by solving the definite integral
s = ∫ π

0
√1 + cos 2x dx.

But this integral is ”not easy” to evaluate.
Numerical methods have most of the following characteristics:

1. The solution procedure is iterative, with the accuracy of the estimated solutionimproving with each iteration.
2. The solution procedure provides only the approximation to the true, but un-known, solution.
3. An initial estimate of the solution may be required.
4. The solution procedure is conceptually simple, with algorithms representing thesolution procedure that can be easily programmed on a digital computer.
5. The solution procedure may occasionally diverge from rather than converge tothe true solution.

The next example illustrates the characteristics of a numerical method.
Example 1. 1.

Suppose we wish to estimate
√
x, where x is a positive real number. Let x0+h0 = √x

and assume that h0 is ”small”. Then

x = (x0 + h0)2 = x20 + 2x0h0 + h20.
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Since h0 is small, h20 is much smaller so that

h0 ≈ x − x202x0 . (1.1.1)
Hence, we have the following approximations:

x1 = x0 + h0 . . . . . . . . . . . . . . . . . . 1st iteration

x2 = x1 + h1 . . . . . . . . . . . . . . . . . . 2nd iteration
...

xn = xn−1 + hn−1 . . . . . . . . . . . . . . . nth iteration

where each hi, i = 1, 2, . . . , n − 1, is approximated by using (1.1.1).
For example, if x = 150, then we can choose x0 = 12 so that

h0 ≈ x − x202x0 = 150− 1222(12) = 150− 14424 = 0.25
Ñ x1 = x0 + h0 = 12 + 0.25 = 12.25

h1 ≈ 150− (12.25)22(12.25) = −0.00255
Ñ x2 = x1 + h1 = 12.25− 0.00255 = 12.24745
h2 ≈ 150− (12.24745)22(12.24745) = −0.000001286

Ñ x3 = x2 + h2 = 12.24745− 0.000001286 = 12.24744871.
...

Using a calculator, the actual value is 12.24744871.

Although numerical methods have many advantages, they also have disadvantages.The main disadvantages are:
• They are solved iteratively and, thus, more computation time is required.
• An exact solution may not be found.
• Initial estimates of the solution are often required.

Thus, any numerical method is judged by how reliable it is, how fast it is and the costof doing one iteration. Since the solution to a problem by numerical methods is notexact, error analysis and error estimation are often necessary.
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1. 1 Analysis of Numerical Errors

An error in estimating or determining a quantity of interest can be defined as a de-viation from its known true value. In numerical analysis, we usually encounter thefollowing types of errors:
(i) Inherent Error: This error is caused by using data which are approximate or dueto limitations of the computing aid such as a calculator or computer.
(ii) Truncation Error: This error is caused by using approximate formulae in com-putation. For example, when a function f (x) is evaluated from an infinite seriesfor x after ’truncating’ it at a certain stage, a truncation error does arise.
(iii) Round-off Error: This is a type of error of inherent error which arises becausethe arithmetic performed in a machine (computer or calculator) involves num-bers with only a finite number of digits resulting in many calculations beingperformed with an approximate representation of the actual numbers.
(iv) Propagated Error: This is the error which arises because there was an error inthe proceeding steps of a process (cumulative).
If an error stays at one point in a process and does not aggregate further as the calcu-lation continues, then it is considered a numerically stable error. This happens whenthe error causes only a very small variation in the formula result. If the opposite oc-curs and the error propagates bigger as the calculation continues, then it is considerednumerically unstable.
The following definitions describe methods of measuring approximate error:
Definition 0.1.Suppose that P∗ is an approximation to P. The absolute error is given by

|P − P∗| ,

the relative error is given by
|P − P∗|
|P|
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and the percentage error is given by
|P − P∗|
|P| × 100%.

In real world applications, true value is generally not known in which case the valueis replaced by the best available estimate of the true value, i.e.
Relative = |Present Approximation − Previous Aproximation||Present Approximation| .

NOTE: The relative error is generally a better measure of accuracy than the absoluteerror because it takes into consideration the size of the number being approximated.
Example 1. 2.

1. Determine the absolute error, relative error and percentage error when ap-

proximating P by P∗ when

(a) P = 0.3000× 101 and P∗ = 0.3100× 101
(b) P = 0.3000× 10−3 and P∗ = 0.3100× 10−3
(c) P = 0.3000× 104 and P∗ = 0.3100× 104

2. Three approximate values of P = 13 are given as 0.30, 0.33 and 0.34. Which of

these is the best approximation?

Solutions

1. (a) Absolute Error = |P − P∗| = ∣∣0.3000× 101 − 0.3100× 101∣∣ = 0.1
Relative Error = |P − P∗||P| = ∣∣0.3000× 101 − 0.3100× 101∣∣

|0.3000| = 0.3× 10−1
and

Percentage Error = |P − P∗||P| × 100% = 0.3× 10−1 × 100% = 3.3%
(b) Absolute Error = |P − P∗| = ∣∣0.3000× 10−3 − 0.3100× 10−3∣∣ = 0.00001

4



Relative Error = |P − P∗||P| = 0.000010.3000× 10−3 = 0.03
and

Percentage Error = |P − P∗||P| × 100% = 0.03× 100% = 3.3%
(c) Exercise

2. Using relative error, we get

|P − P∗|
|P| = ∣∣13 − 0.30∣∣∣∣13 ∣∣ = 0.1

|P − P∗|
|P| = ∣∣13 − 0.33∣∣∣∣13 ∣∣ = 0.01

and
|P − P∗|
|P| = ∣∣13 − 0.34∣∣∣∣13 ∣∣ = 0.02

Therefore, we conclude that 0.33 with the smallest relative error is the best

approximation.

Definition 0.2.The number P∗ is said to approximate P to t significant digits (or figures) if t is thelargest non-negative integer for which
|P − P∗|
|P| ≤ 5 × 10−t .

Example 1. 3.

1. The following numbers are accurate to t significant figures. Find t in each

case.

(a) 1036.52± 0.01
(b) 9.321± 0.1
(c) 0.05± 0.01

2. Estimate e0.5 to 3 significant figures using

ex = 1 + x + x22! + · · ·+ xn
n!
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Solutions:

1. (a) The absolute error is 0.01 implying that

|P − P∗|
|P| = 0.011036.52 = 0.000009647667194 < 0.00005

∴ t = 5
(b) |P − P

∗|
|P| = 0.19.321 = 0.010728462 < 0.05

∴ t = 2
(c) Exercise

2. We require Pn such that

Relative Error ≤ 5× 10−3 = 0.005
P0 = 1, P1 = 1 + 0.5 = 1.5
∴ Relative Error = |Present Approximation − Previous Aproximation||Present Approximation|

= |1.5− 1|
|1.5| = 0.33 > 0.005.

P2 = 1 + 0.5 + (0.5)22 = 1.625
Ñ Relative Error = |1.625− 1.5|

|1.625| = 0.083 > 0.005.
P3 = 1 + 0.5 + (0.5)22 + (0.5)33! = 1.6458
Ñ Relative Error = |1.6458 − 1.625|

|1.6458| = 0.012 > 0.005.
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P4 = 1 + 0.5 + (0.5)22 + (0.5)33! + (0.5)44! = 1.64844
Ñ Relative Error = |1.64844− 1.6458|

|1.64844| = 0.0015 < 0.005.
e0.5 ≈ P4 = 1.64844

to 3 significant figures.

1. 2 Taylor Series Expansion

A Taylor series is commonly used as a basis of approximation in numerical analysis.
Theorem 1. 1.

Suppose that f ∈ Cn[a, b], that f (n+1) exists on [a, b] and x0 ∈ [a, b]. For every

x0 ∈ [a, b], there exists a number ξ(x) between x0 and x with

f (x) = Pn(x) + Rn(x),
where

Pn(x) = f (x0) + f ′(x0)(x − x0) + f ′′(x0)2! (x − x0)2 + · · ·+ f (n)(x0)
n! (x − x0)n

= n∑
k=0 f (k)(x0)

k! (x − x0)k
and

Rn(x) = f (n+1)(ξ(x))(n + 1)! (x − x0)n+1.
In Theorem 1.1, Pn(x) is called the nth Taylor polynomial for f at x0 and Rn(x) iscalled the remainder term associated with Pn(x). The number ξ(x) depends on thevalue of x at which the polynomial is being evaluated. It cannot be evaluated explicitlybut it lies between x and x0. The infinite series obtained by taking the limit of Pn(x)as n → ∞ is called the Taylor series of f at x0. In a case where x0 = 0, the series iscalled Maclaurin series.
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Example 1. 4.

(a) Find the second Taylor polynomial for f (x) = ex cos x about x0 = 0
(b) Use part (a) to approximate

(i) f (0.5) (ii)
∫ 1

0 f (x)dx
(c) Find upper bounds of the errors in part (b).

Solutions

(a) f (x) = ex cos x Ñ f (0) = 1
f ′(x) = ex cos x − ex sin x Ñ f ′(0) = 1
f ′′(x) = ex cos x − ex sin x − (ex sin x + ex cos x) = −2ex sin x Ñ f ′′(0) = 0
f ′′′(x) = −2(ex sin x + ex cos x)
∴ f (x) = f (x0) + f ′(x0)(x − x0) + f ′′(x0)2! (x − x0)2 + R2(x)= f (0) + f ′(0)(x − 0) + f ′′(0)2! (x − 0)2 + R2(x)= 1 + 1(x) + 02 (x)2 + R2(x),
where

R2(x) = −2eξ(x) (sin ξ(x) + cos ξ(x))3! x3, 0 < ξ(x) < x.

∴ P2(x) = 1 + x

(b) (i) f (0.5) ≈ P2(0.5) = 1 + 0.5 = 1.5
(ii)

∫ 1
0 f (x)dx = ∫ 1

0 (1 + x)dx = (
x + x22

)∣∣∣∣10 = 1.5
(c) (i) The truncation error associated with Pn(x) is

Rn(x) = f (x)− Pn(x) = −2eξ(x) (sin ξ(x) + cos ξ(x))3! x3.
Therefore, an upper bound, for 0 < ξ(x) < 0.5, is

|Rn(x)| = ∣∣∣∣∣−2eξ(x) (sin ξ(x) + cos ξ(x))3! x3∣∣∣∣∣ ≤ 13(0.5)3 max
ξ(x)∈[0,0.5] |eξ(x) (sin ξ(x) + cos ξ(x)) |.
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To maximise g(x) = eξ(x) (sin ξ(x) + cos ξ(x)), we notice that

g ′ = eξ(x) (sin ξ(x) + cos ξ(x)) + eξ(x) (cos ξ(x)− sin ξ(x))
= 2eξ(x) cos ξ(x) > 0, for ξ(x) ∈ [0, 0.5].

Thus, g(0) = 1 and g(0.5) = e0.5 (sin 0.5 + cos 0.5) ≈ 2.24
∴ |Rn(x)| ≤ 13(0.5)3(2.24) ≈ 0.0932.

(ii) An upper bound of the error is∣∣∣∣∣∫ 1
0 R2(x)dx∣∣∣∣∣ = ∣∣∣∣∣∫ 1

0 f (x)dx − ∫ 1
0 P2(x)dx∣∣∣∣∣

≤
∫ 1

0 |R2(x)| dx
≤
∫ 1

0
13e1 (sin 1 + cos 1)x3 dx, since 0 < ξ(x) < 1

≤ 1.252 ∫ 1
0 x3 dx = (1.252) (x44

)∣∣∣∣10 = 0.313

THE END!
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