
2. SOLUTIONS OF EQUATIONS IN ONE VARIABLE

In scientific and engineering work, a frequently occurring problem is to find the solu-tion of equations of the form
f (x) = 0. (2.1)

Solutions of (2.1) are called roots or zeros of the function f . If f is a quadratic, cubic orbiquadratic expression, then algebraic formulae are available for expressing the rootsin terms of the coefficients. On the other hand, when f is a polynomial of higherdegree or an expression involving transcendental functions, algebraic methods arenot available. In this chapter, we will describe some numerical methods for findingthe roots of (2.1) where f is algebraic, transcendental or a combination of both.
2.1 Bisection Method

Suppose that f is a continuous function defined on the interval [a, b], with f (a) and f (b)of opposite signs. By the Intermediate Value Theorem, there exists at least one number
p ∈ (a, b) such that f (p) = 0. The Bisection method calls for a repeated halving (orbisection) of an interval [a, b], at each step, locating the half containing p.
To begin, set a1 = a and b1 = b, and let p1 be the midpoint of [a, b]. Then,

p1 = a1 + b12 .

If f (p1) = 0, then p = p1 is the root of (2.1). If f (p1) 6= o, then f (p1) has the samesign as either f (a1) or f (b1). If f (p1) has the same sign as f (a1), then p ∈ (p1, b1) andset a2 = p1 and b2 = b1. If f (p1) has the same sign as f (b1), then p ∈ (a1, p1) and set
a2 = a1 and b2 = p1. Then, reapply the process to the interval [a2, b2].
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NOTE: If we select a tolerance ε > 0, then
|pN − pN−1|
|pN |

< ε, pN 6= 0,
may be used as the stopping criterion.
Example 2. 1.

1. Find a real root of the equation

f (x) = x3 − x − 1 = 0
in the interval [1, 2].

2. Use the Bisection method to solve

f (x) = x3 + 4x2 − 10 = 0
which has a root in the interval [1, 2].

Solutions:

1. Clearly, f (1) = −1 and f (2) = 5 so that p1 = 1+22 = 1.5.

Since f (1.5) = 0.875, we have that the root lies in the interval [1, 1.5].
p2 = 1+1.52 = 1.25 and f (1.25) = −0.296875 implying that the root lies in the

interval [1.25, 1.5]
p3 = 1.25+1.52 = 1.375 and f (1.375) = 0.224609375
∴ A root lies in [1.25, 1.375] Ñ p4 = 1.3125
The procedure is repeated in the same manner to approximate a root.

2. For f (x) = x3 + 4x2− 10 = 0, we have that f (1) = −5 and f (2) = 14 implying that

there is a root in the interval [1, 2].
The table below shows other results for n = 1, 2, . . . 13:
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n an bn pn f(pn)

1 1 2 1.5 2.375

2 1 1.5 1.25 -1.79687

3 1.25 1.5 1.375 0.16211

4 1.25 1.375 1.3125 -0.84839

5 1.3125 1.375 1.34375 -0.35098

6 1.34375 1.375 1.359375 -0.09641

7 1.359375 1.375 1.3671875 0.03236

8 1.359375 1.3671875 1.36328125 -0.03215

9 1.36328125 1.3671875 1.365234375 0.000072

10 1.36328125 1.365234375 1.364257813 -0.01605

11 1.364257813 1.365234375 1.364746094 -0.00799

12 1.364746094 1.365234375 1.364990235 -0.00396

13 1.364990235 1.365234375 1.365112305 -0.00194

The correct value is p = 1.365230013, which shows that p9 is the most accurate

approximation and

|p9 − p8|
|p9| = 0.001430615165 < 0.005.

Theorem 2. 1.

Let f ∈ C[a, b] and suppose that f (a)f (b) < 0. The bisection method generates a

sequence {pn}∞n=1 approximating p with the property

|p − pn| ≤
b − a2n , n ≥ 1

NOTE: Theorem 2.1 gives only a bound for approximation error and that this boundmight be quite conservative. For example, from Example 2.1, part (2)
|p − p9| ≤ 2− 129 ≈ 0.2× 10−2.

But the actual absolute error is much smaller
|p − p9| = |1.365230013− 1.365234375| = 0.000004362
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Example 2. 2. Determine the number of iterations necessary to solve

f (x) = x3 + 4x2 − 10 = 0
with accuracy within 10−3 in the interval [1, 2].
Solution:

We need to find n that satisfies

|p − pn| ≤
b − a2n = 2−n < 10−3

Ñ −n log 2 < −3 log 10
Ñ n > 3log 2 ≈ 9.96.

Hence, about 10 iterations are needed to obtain the required accuracy.

Although the bisection method always converges, one disadvantage is that it con-

verges slowly, i.e. n may become quite large before |p − pn| is sufficiently small.

2. 2 Fixed-Point Iteration

To describe this method, we notice that (2.1) can be written in the form
x = g(x).

For example,
x3 + x2 − 1 = 0

can be written as
• x = (1 + x)− 12
• x = (1− x3) 12
• x = (1− x2) 13
• x = (x + x2)−1

and so on.
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Definition 2. 1.A fixed point for a function is a number at which the value of the function does notchange when the function is applied.For example, p is a fixed point for a function g if
g(p) = p.

Example 2. 3.

The function

g(x) = x − sin πx

has two fixed points x = 0 and x = 1
A fixed point problem can be used to solve root problem in that if g has a fixed pointat p, then f defined as

f (x) = x − g(x)
has a zero at p. Conversely, if f (p) = 0, then g can be defined as

g(x) = x − f (x) or g(x) = x + 10f (x), etc
has a fixed point p.To begin, let p0 be an approximate value of the desired root p. Then, the first approx-imation is

p1 = g(p0).
Successive approximations are then given by

p2 = g(p1)
p3 = g(p2)...

pn = g(pn−1) n ≥ 1.
Thus, a sequence {pn}∞n=0 is formed. We may ask the following questions:
• Does the sequence {pn}∞n=0 always converge?
• How should we choose g so that {pn}∞n=0 converges to p?
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To answer the first question, we give a counter example. If
x = 10x + 1, i.e. g(x) = 10x + 1,

then taking p0 = 0 gives
p1 = 2, p2 = 101, p3 = 10101 + 1, etc.

Clearly, as n increases, {pn}∞n=0 diverges.The second question is answered by the following theorem, which gives sufficientconditions for the existence and uniqueness of a fixed point:
Theorem 2. 2.

(a) Let g ∈ C[a, b] and g(x) ∈ [a, b] for all x, then g has a fixed point in [a, b].
(b) If, in addition, a positive constant k < 1 exists with

|g ′(x)| ≤ k < 1, for all x ∈ (a, b),
then g has a unique fixed point on [a, b].

Example 2. 4.

1. Show that

g(x) = x2 − 13
has a fixed point on [−1, 1]

2. Show that Theorem 2.2 does not ensure unique fixed point of

g(x) = 3−x
on the interval [0, 1], even though a unique fixed point on this interval does

exist.

6



Solutions:

1 (a) Clearly, g(x) is differentiable and continuous on [−1, 1] as the graph shows

Also, g(x) ∈ [−1, 1]. For example,

g(−1) = 0 = g(1) ∈ [−1, 1], g (12
) = −0.25 ∈ [−1, 1]

∴ g has a fixed point.

(b) |g ′(x)| = ∣∣2x3 ∣∣ ≤ 23 < 1 for all x ∈ (−1, 1)
∴ g has a unique fixed point.

This value can be determined explicitly.

g(p) = p Ñ p = p2 − 13
Ñ p2 − 3p − 1 = 0
Ñ p = 3−√132 or p = 3+√132 .

Clearly, only p = 3−√132 lies in [−1, 1].
NOTE: p = 3+√132 is a fixed point of g on the interval [3, 4], but

• g(4) = 5 /∈ [3, 4]
• |g ′(4)| = ∣∣∣2(4)3

∣∣∣ = 83 > 1
Therefore, the conditions of Theorem 2.2 are satisfied to guarantee a unique

fixed point but are not necessary.
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2 (a) Clearly, g(x) is differentiable on [0, 1] and g ∈ [0, 1].

Therefore, g has a fixed point.

(b) g ′(x) = −3−x ln 3 Ñ |g ′(0)| = | − ln 3| = 1.098612289 > 1.

Since |g ′(x)| ≮ 1 on (0, 1), Theorem 2.2 cannot be used to determine uniqueness.

Example 2. 4 part (2) shows that we cannot always determine the fixed point explicitly.We can, however, choose an initial approximation p0 in the given interval and generatethe sequence {Pn}∞n=0 using
pn = g(pn−1), n ≥ 1.

If the sufficient conditions for existence and uniqueness of g(x) on [a, b] are met, then
p = lim

n→∞
pn

is the solution of (2.1).
Example 2. 5.

Find the unique root of the equation

x3 + 4x2 − 10 = 0
in the interval [1, 2] with p0 = 1.5 as the initial approximation.

Solution:

f (x) = x3 + 4x2 − 10 = 0 can be written as x = g(x) in many ways:
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(a) x = g1(x) = x − x3 − 4x2 + 10
(b) x = g2(x) = (10

x − 4x) 12

(c) x = g3(x) = 12 (10− x3) 12

(d) x = g4(x) = ( 104+x ) 12

(e) x = g5(x) = x − x3+4x−103x2+8x
The table below shows the results for all gi(x), i = 1, 2, 3, 4, 5:

n (a) (b) (c) (d) (e)

0 1.5 1.5 1.5 1.5 1.5

1 -0.875 0.8165 1.286953768 1.348399725 1.373333333

2 -469.7 2.9969 1.402540804 1.367376372 1.365262015

3 1.08 × 108 −(8.65) 12 1.345458374 1.364957015 1.365230014

4 6.732 1.375170253 1.365264748 1.365230013

5 1.360094193 1.365225594

6 1.367846968 1.365230576

7 1.363887004 1.365229942

8 1.365916734 1.365230022

9 1.364878217 1.365230012

10 1.365410062 1.365230014

15 1.365223680 1.3652300013

20 1.365230236

25 1.365230006

30 1.365230013

This method converges faster than Bisection method which required more iterationsto get the same accuracy. However, sequences for g1(x) and g2(x) diverge. Theorem2.2 can be used to determine the correct choice of g(x). The following Corollary alsohelps to determine how fast the sequence will converge:
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Corollary 2. 1.

If g satisfies hypotheses for Theorem 2.2, then the bound for the error involved in

using pn to approximate p is given by

|p − pn| ≤
kn1− k|p1 − p0|, for all n ≥ 1.

NOTE: The convergence of {pn}∞n=0 to p depends on the factor kn. The smaller thevalue of k, the faster the convergence implying that values of k closer to 1 wouldconverge slower.
Example 2. 6.

Apply Theorem 2.2 and Corollary 2.1 to example 2.5 to determine which gi(x)’s
converge and compare how fast they converge.

Solutions:

(a) g1(x) = x − x3 − 4x2 + 10
• g1(x) is differentiable on [1, 2].
• g1(x) 6∈ [1, 2], since g1(1) = 6 and g1(2) = −12
• g ′1(x) = 1− 3x2 − 8x
Ñ |g ′1| > 1, ∀x ∈ (1, 2)
∴ There is no reason to expect the sequence to converge.

(b) g2(x) = (10
x − 4x) 12
• g2(x) 6∈ [1, 2] because g2(1) = 2.4495 and g2(2) gives a complex number

∴ There is no reason to expect the sequence to converge.

(c) g3(x) = 12 (10− x3) 12
• g3(x) is differentiable on [1, 2].
• g3(x) ∈ [1, 2]
• g ′3(x) = −34x2 (10− x2)− 12
Ñ |g ′3(2)| ≈ 2.12.

But it can be shown that g3(x) satisfies conditions of Theorem 2.2 in the interval[1, 1.5] and that

|g ′3(1.5) ≈ 0.66 < 1
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Therefore, the sequence will converge but will converge slowly because k = 0.66
is closer to 1.

(d) Check that other conditions are satisfied and that

|g4(x)| = ∣∣∣∣ 1
√10(4+x) 32

∣∣∣∣ ≤ 5
√10(5) 32 < 0.15, ∀x ∈ [1, 2].

Therefore, we expect the sequence to converge faster than g3(x) since k = 0.15.

2. 3 Newton-Raphson Method

One way of deriving the Newton-Raphson method is by using the Taylor polynomial.Suppose that f ∈ C2[a, b]. Let p0 ∈ [a, b] be an approximation to p such that f ′(p0) 6= 0and |p − p0| is ”small”. Then, expanding f about p0 and evaluating it at x = p yields
f (p) = f (p0) + (p − p0)f ′(p0) + (p − p0)22! f ′′(ξ(p)),

where p0 < ξ(p) < p. Since f (p) = 0, we have that
0 = f (p0) + (p − p0)f ′(p0) + (p − p0)22! f ′′(ξ(p)).

Since we are assuming that |p − p0| is small, the term involving (p − p0)2 is muchsmaller, so that 0 ≈ f (p0) + (p − p0)f ′(p0)
and making p the subject gives

p ≈ p0 − f (p0)
f ′(p0) ≡ p1.

This generates a sequence {pn}∞n=0 given by
pn = pn−1 − f (pn−1)

f ′(pn−1) , n ≥ 1
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NOTE: 1. Newton-Raphson’s method cannot be applied if f ′(p) = 0 for some n. Thus,we require that f ′ be bounded bounded away from zero near p.2. Newton-Raphson’s method can be considered as the fixed-point iterationmethod with pn = g(pn−1), for which
g(pn−1) = pn = pn−1 − f (pn−1)

f ′(pn−1) , n ≥ 1
(See Example 2.2.3 (e))3.The method always converges provided that a sufficiently accurate initialapproximation is chosen.

Example 2. 7.

Use the Newton-Raphson’s method to approximate a root of f (x) = cos x − x = 0
starting with p0 = π4 .

Solution:

f ′(x) = − sin x − 1. Starting with p0 = π4 = 0.7853981635,

p1 = π4 − cos (π4 )− π4
− sin (π4 )− 1 ≈ 0.7395361337.

The table below shows the other results:

n pn

0 0.7853981635

1 0.7395361337

2 0.7390851781

3 0.7390851332

4 0.7390851332
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Exercise: Use fixed- point iteration to solve the same problem and compare the rateof convergence.

2. 4 Secant Method

This is an extension of Newton-Raphson’s method to avoid the use of the derivative ofthe function.
By definition of the derivative,

f ′(pn−1) = lim
x→pn−1

f (x)− f (pn−1)
x − pn−1 .

If pn−2 is close to pn−1, then
f ′(pn−1) ≈ f (pn−2)− f (pn−1)

pn−2 − pn−1 = f (pn−1)− f (pn−2)
pn−1 − pn−2 .

Using this approximation for f ′(pn−1) in Newton-Raphson’s method, we get
pn = pn−1 − f (pn−1) (pn−1 − pn−2)

f (pn−1)− f (pn−2)

NOTE: Secant method requires two approximations p0 and p1. Then, p2 is the x−interceptof the line joining (p0, f (p0)) and (p1, f (p1)), i.e.0− f (p0)
x − p0 = f (p1)− f (p0)

p1 − p0
Ñ x (f (p1)− f (p0))− p0 (f (p1)− f (p0)) = −f (p0)(p1 − p0)

Ñ x = p0 [f (p1)− f (p0)]− f (p0)(p1 − p0)
f (p1)− f (p0) = p0 − f (p0) (p1 − p0)

f (p1)− f (p0) .Similarly, p3 is the x−intercept of the line joining (p1, f (p1)) and (p2, f (p2)), and so on.
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Example 2. 8.

Find a zero of f (x) = cos x − x = 0 given the initial approximations p0 = 0.5 and

p 1 = π4 .

Solution:

Using

pn = pn−1 − f (pn−1) (pn−1 − pn−2)
f (pn−1)− f (pn−2) ,

we have that

p2 = p1 − f (p1) (p1 − p0)
f (p1)− f (p0)= π4 −
(cos(π4 )− π4 ) (π4 − 0.5)(cos(π4 )− π4 )− (cos(0.5)− 0.5) ≈ 0.73638413880

The table below shows the other results:

n pn

0 0.5

1 0.7833981635

2 0.7336841388

3 0.7390581392

4 0.7390851493

5 0.7390851332

NOTE: Generally, secant method converges slightly slower than Newton-Raphson’smethod.

2. 5 Error Analysis for Iterative Methods

We have seen that Newton-Raphson’s method converges faster than other functionaliteration techniques we have considered. We now consider the order of convergenceof functional iteration techniques in a general sense, and deduce why the Newton-Raphson’s method converges faster than others.
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Definition 2. 2. (Order of convergence)Suppose that {pn}∞n=0 is a sequence that converges to p, with pn 6= p for all n. Ifpositive constants λ and α exist with
lim
n→∞

|pn+1 − p|
|pn − p|α

= λ,

then {pn}∞n=0 converges to p of order α, with asymptotic error constant λ.
Definition 2.2 implies that an iterative technique of the form pn = g(pn−1) is of order
α if {pn}∞n=0 converges to p = g(p). Two cases of order are given special names:
1. If α = 1 (and λ < 1), the sequence is linearly convergent.
2. If α = 2, the sequence is quadratically convergent.
The next example uses linear and quadratic convergence to show that higher-order ofconvergence converges more rapidly than lower-order of convergence.
Example 2. 9.

Suppose that {pn}∞n=0 is linearly convergent to 0 with

lim
n→∞

|pn+1 − p|
|pn − p|

= lim
n→∞

|pn+1|
|pn|

= 0.75
and that {pn}∞n=0 is quadratically convergent to 0 with

lim
n→∞

|pn+1 − p|
|pn − p|2 = lim

n→∞
|pn+1|
|pn|2 = 0.75

For simplicity, suppose also that |pn+1|
|pn|

≈ 0.75 and |pn+1|
|pn|2 ≈ 0.75. This means that

|pn − p| = |pn| ≈ (0.75)|pn−1| ≈ 0.75(0.75|pn−2|) = (0.75)2|pn−2|
≈ (0.75)2(0.75|pn−3|) = (0.75)3|pn−3|

...

≈ (0.75)n|p0|
and

|pn − p| = |pn| ≈ (0.75) |pn−1|2 ≈ 0.75 [(0.75) |pn−2|2]2 = (0.75)3|pn−2|4
≈ (0.75)3 [0.75|pn−3|2]4 = (0.75)7|pn−3|8

...
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≈ (0.75)2n−1|p0|2n .
Now, assume that |p0| = |p0| = 0.5 and that the error does not exceed 10−8. Then,

the above estimates imply that

|pn| ≈ (0.75)n(0.5) ≤ 10−8
Ñ n ≥ (log 2)− 8log(0.75) ≈ 62.

and

|pn| ≈ (0.75)2n−1(0.5)2n ≤ 10−8
Ñ (0.75)−1(0.75)2n )(0.5)2n ≤ 10−8
Ñ (0.75)−1(0.75× 0.5)2n ≤ 10−8
Ñ (0.75)−1(0.375)2n ≤ 10−8
Ñ log(0.75)−1 + log(0.375)2n ≤ log 10−8
Ñ 2n log(0.375) ≤ −8 − (−1) log(0.75)
Ñ 2n ≥ −8 + log(0.75)log(0.375) ≈ 19
Ñ n ≥ 5

Therefore, quadratic convergence requiring only 5 iterations is vastly superior to

the linear convergence requiring 62 iterations.

Theorem 2. 3.

Let g ∈ C[a, b] be such that g(x) ∈ [a, b], for all x ∈ [a, b]. Suppose, in addition, that

g ′ is continuous on (a, b) and a positive constant k < 1 exists with

g ′(x) ≤ k, for all x ∈ (a, b).
If g ′(p) 6= 0, then for any number p0 6= p in [a, b] the sequence

pn = g(pn−1), n ≥ 1
converges only linearly to the fixed point p ∈ [a, b].
Theorem 2.3 shows that the conditions for existence and uniqueness of the fixed point
p imply that the sequence {pn}∞n=0 will converge slowly. We can only ensure rapidconvergence if the order is higher, say if it is quadratic, and this can only happen if
g ′(p) = 0 as the next theorem shows:
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Theorem 2. 4.

Let p be a solution of the equation x = g(x). Suppose that g ′(p) = 0 and g ′′ is

continuous with g ′′(x) < M on an open interval I containing p. Then, there exists

δ > 0 such that, for p0 ∈ [p − δ, p + δ], the sequence defined by

pn = g(pn−1), n ≥ 1
converges at least quadratically to p.

Moreover, for sufficiently large value of n,

|pn+1 − p| < M2 |pn − p|2.
Theorem 2.3 and 2.4 show that the functional iteration technique will converge quadrat-ically if g(p) = p and g ′(p) = p. To achieve that, remember that functional iterationmethod for solving equation (2.1) will imply writing g(x) in the form

g(x) = x − φ(x)f (x),
where φ is a differentiable function. Then,

g ′(x) = 1− φ′(x)f (x)− φ(x)f ′(x).
Since f (p) = 0, we have that

g ′(p) = 1− φ(p)f ′(p).
Thus, g ′(p) = 0 if and only if

φ(p) = 1
f ′(p) .

If we let φ(x) = 1
f ′(x) , then we will ensure that φ(p) = 1

f ′(p) and produce the quadrati-cally convergent procedure
pn = g(pn−1) = pn−1 − f (pn−1)

f (pn−1) ,
which is simply the Newton-Raphson’s method. Hence, if f (p) = 0 and f ′(p) 6= 0, thenfor starting values sufficiently close to p, Newton-Raphson’s method will converge atleast quadratically.
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Definition 2. 3.A solution p of equation (2.1) is a zero of multiplicity m of f if for x 6= p, we can write
f (x) = (x − p)mq(x), where lim

x→p
q(x) 6= 0.

Theorem 2. 5.

The function f ∈ C1[a, b] has a simple zero at p in (a, b) if and only if f (p) = 0 and

f ′(p) 6= 0.

Theorem 2.5 implies that Newton-Raphson’s method will only converge quadraticallyif f has a simple zero.
Theorem 2. 6.

The function f ∈ Cm[a, b] has a zero of multiplicity m at p in (a, b) if and only if

0 = f (p) = f ′(p) = f ′′(p) = · · · = f (m−1)(p),
but f (m)(p) 6= 0.

Newton-Raphson’s method may not converge quadratically if f has a zero of multiplicity
m, as the next example shows:
Example 2. 10.

Show that f (x) = ex−x−1 has a zero of multiplicity 2 at x = 0 but Newton-Raphson’s

method with p0 = 1 does not converge quadratically to this zero.

Solution:

We expect0 = f (0) = f ′(0), but f ′′(0) 6= 0.

f (x) = ex − x − 1 Ñ f ′(x) = ex − 1 and f ′′(x) = ex

Ñ f (0) = e0 − 0− 1 = 0, f ′(0) = e0 − 1 = 0 and f ′′(0) = e0 = 1 6= 0.

Therefore, f has a zero of multiplicity 2 at x = 0.

With p0 = 1,

p1 = 1− e − 2
e − 1 ≈ 0.58198

p2 = 0.58198 − e0.58198 − 0.58198 − 1
e0.58198 − 1 ≈ 0.31906
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The table below shows other values:

n pn

0 1.0

1 0.5819

2 0.31906

3 0.16800

4 0.08635

5 0.04380

6 0.02206

7 0.01107

8 0.005545

9 2.7750× 10−3
10 1.3881× 10−3
11 6.9411× 10−4
12 3.4703× 10−4
13 1.7416× 10−4
14 8.8041× 10−5
15 4.2610× 10−5
16 1.9142× 10−5

Clearly, the sequence {pn}∞n=0 does not converge quadratically (it converges slowly).

One way of accelerating convergence of Newton-Raphson’s method when the zero of
f is not simple is to define a function µ as µ(x) = f (x)

f ′(x) . If p is a zero of multiplicity m,then f (x) = (x − p)mq(x) and
µ(x) = (x − p)mq(x)

m(x − p)m−1q(x) + (x − p)mq ′(x) = (x − p)T(x),
where

T(x) = q(x)
mq(x) + (x − p)q ′(x) .If T(p) 6= 0, then we conclude that µ(x) has a simple zero at p. Since q(x) 6= 0, we have
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that
T(p) = q(p)

mq(p) + (p − p)q ′(p) = 1
m.

Thus, µ has a simple zero at p and Newton-Raphson’s method can be applied giving
g(x) = x − µ(x)

µ′(x)= x − f (x)
f ′(x) ÷

[[f ′(x)]2 − f (x)f ′′(x)[f ′(x)]2
]

= x − f (x)f ′(x)[f ′(x)]2 − f (x)f ′′(x)
Example 2. 11.

Repeat Example 2.10 using the modified Newton-Raphson’s method.

Solution:

With p0 = 1,

p1 = p0 − f (p0)f ′(p0)[f ′(p0)]2 − f (p0)f ′′(p0) = 1− (e − 2)(e − 1)(e − 1)2 − (e − 2)e ≈ −2.3421061× 10−1.
More results are shown in the table below:

n pn

0 1.0

1 −2.3421061× 10−1
2 −8.4582788 × 10−3
3 −1.1889524× 10−5
4 −6.8638230× 10−6
5 −2.8085217× 10−7

THE END!
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