3. SYSTEMS OF EQUATIONS

Many engineering and scientific problems can be modelled in terms of systems of

simultaneous linear and non-linear equations.

3.1. LINEAR SYSTEMS OF EQUATIONS

Consider the electric circuit below with two separate networks, loop acdb and loop
aefb:

Applying Kirchhoff’s first law at junction c¢ yields the equation
L+1,-1,=0,
applying Kirchhoff’s second law at network loop acdb yields the equation
V, =R, +R,l,
and applying Kirchhoff’s second law at network loop aefb yields the equation
V.-V, =R, —-R,1,.

Assumingthat R =2, R, =4, R, =5,V, =6 and V, =2, we get the following system

of three linear simultaneous equations:

L+1,-1,=0
21, +51,=6
21,-41, =4,

The solution to these three equations produces the current flow in the network.



In general,

A X +apX, +...+a, X, :bl

A, X + 8%, +...+a, X =h, (3.1)

a X +a,X, +..+a X, =b

We will use two methods to solve linear systems of equations. These are direct and

iterative methods.

3.1.1. Direct Methods

Notice that system (3.1) can be written as

AX =B, (3.2)
where
a; &, &, b, X
A— a'21 a‘22 a‘2n B — 2 and X — 2
anl an2 “' a‘nn bn Xn

Then we can write the augmented matrix for system (3.1) as

a, a, - a,lb
A| B = A Ay Ay, bz
a, a, - q, bn

and apply row operations to it to find the solution. This procedure is called Gaussian
elimination with backward substitution. The three row operations we use are:

1) Multiply (or divide) the sides of an equation by a non-zero number
2) Add a multiple of one equation to another equation in the system
3) Interchange two equations in the system.

When row operations are applied, the augmented matrix is left in the form with the
following characteristics:

(@) The first no-zero number (starting from the left) in any row is called the pivot

(b) Any row (if any) consisting of zero entries appears at the bottom of the matrix

(c) If two successive rows do not consist of entirely zeros, then the pivot in the lower row

occurs farther to the right than the first pivot in the highest row.



Example 3.1.1

Represent the linear system

X, — X, +2X; — X, =—8

2%, —2X, + 3%, —3%, =20
X X, + X =—2

X, =X, + 4%, +3X, =4

as an augmented matrix and use Gaussian elimination with backward substitution to find its

solution.
Solution:

The augmented matrix is

1 -1 2 -1-8
2 -2 3 -3-20
1 1 1 0|=2
1 -1 4 3|4
Applying row operations, we get
1 -1 2 -1-8 1 -1 2 -1-8 1 -1 2 -1-8
r,—>r,-2r
2 23 -3-20| ————0 -1 -1-4|rbeorn |0 2 -1 1|6
1 1 1 0l-2(°"2 1 1o -1 1|6 |r,—>ir|0 0 -1 -1-4
rh,—r-r
1 -1 4 3|4 0 0 2 4|12 00 1 2|6
1 -1 2 -1-8
0 2 -1 1|6
LR+,

0O 0 -1 -1-4

0 0 0 1|2

SX =2 = -X—-X, =4
=X, =2

2X, —X; +X, =6 =X, =3

X, =X, +2X, =X, =—8 =X =-7

CX = (%%, % %) =(-7,3,2,2) .



Pivoting Strategies

Note that applying Gaussian elimination method to the augmented matrix involves multiplying

a number

)
_ A

(Y]
. a a .
To one row to “reduce” it. For example, m,, =2 =—-2 sothat r, —>r, —(%)rl. If a," is

a, 8y,

small in magnitude, any round-off error in the numerator will be increased. The next example

illustrates how a wrong choice of the pivot can affect the final answer.

Example 3.1.2
The exact solution to the system
0.003000x, +59.14x, =59.17
5.291x, —6.130x, = 46.78
using four-digit rounding-off is x, =10.00 and X, =1.000. Apply Gaussian elimination
method to find the solution.

Solution:

_a,”Y 5201

m,, = = =
2 a,“ 0.003000

0.003000 59.14 (59.17 0.003000 59.14 | 59.17
L, —> 1L —Myh

5291  -6.130/46.78 0 —104300{—104400
X, R M ~1.001
-104400
X = 59.17-59.14(1.001) __10.00.
0.003000
Comparing with the exact solution, we notice serious errors. A

Example 3.1.2 shows that serious errors may arise when pivoting element a,* is small
relative to the entries a,"’, for k <i<n and k < j <n.To avoid this problem, we use scaled

partial pivoting. The first step in this procedure is to define a scale factor s; for each row as

_ Max
Si TI<j<n

aﬁ‘.



Assuming that s; # 0, the appropriate row interchange to place zeros in the first column is
determined by choosing the least integer p with

‘apl‘ _ Max [|akl|j
— IKj<n
Sp Sk

and then interchange row 1 and row p. In a similar manner, before eliminating the variable
X:, we select the smallest integer p>i with

‘api‘ _ Max [|aki|j
T1<j<n
Sp Sy

and perform row interchange. The scale factors s,,s, ,...,s, are computed only once at the

start of the procedure. They are row dependent, so they must be interchanged when row

interchanges are performed.
Example 3.1.3
Apply Gaussian elimination with scaled partial pivoting to find the solution to the system

2.11x, —4.21x, +0.921x, = 2.01
4.01x, +10.2x, -1.12x, =-3.09
1.09x, +0.987x, +0.832x, =4.21

using three-digit rounding.
Solution:

s, = Max{| 2.11|,| -4.21],| 0.921[} = 4.21
s, = Max{| 4.01|,10.2|,| ~1.12 [} =10.2
s, = Max{|1.09,|0.987],|0.832 [} =1.09

Clag] 211

21 o501
s, 421

o B
s, 10.2

13l _1 g9—1.

S3



Since Max{ la“', |6121|1 |a31|}: Max{0.501, 0.393,1}:1:|a31 , we interchange row 1

S, S S3 S3

and row 3. Thus, we have the augmented matrix

1.09 0987 0.832] 4.21 Lol -

401 102 -1.12-3.09| m, =——-~3.68 m, =——-~1.94
09 1.09

211 —4.21 0.921] 2.01

1.09 0.987 0.832| 4.21 1.09 0.987 0.832]| 4.21
r,—> 1L —Myh
401 10.2 -1.12|-3.09 0 6.57 -4.18|-18.6

;> —Myh
211 -4.21 0.921] 2.01 0 -6.21 -0.693|-6.16

o))

|ay, | _6.57

s, 10.2
s, 421
Since Max{ |2 | , M} = Max{0.644, 1.45}=1.45 _ 8| , We interchange row 2 and
S, S, S,
row 3.
1.09 0.987 0.832|4.21 6.57
0 -6.12 -0.693-6.16 | m,, = 6 Th -1.07
0 6.57 -4.18|-18.6 '
1.09 0987 0.832|4.21 1.09 0.987 0.832]4.21
0 -6.12 -0.693-6.16|r,—>r—-m,r,| 0 -6.12 -0.693-6.16
0 6.57 -4.18|-18.6 0 0 —4.92|-25.2
-.—4.92x, =-25.2 = X, #5.12
—6.12x, —0.693x, = —6.16 = X, #0.426

1.09x, +0.987x, +0.832x, = 4.21 = X, ~ —0.431

A X = (X, X, %) =(-0.431, 0.426, 5.12)'

Exercise: Use scaled partial pivoting to solve the system in Example 3.1.2.



3.1.2. lterative Methods

Iterative or indirect methods use trial-and-error procedure to solve large systems of linear

equations with high percentage of zero entries. An iterative method to solve the (nxn) linear
system (3.2) starts with an initial approximation X © to the solution X and generate a

sequence of vectors {X (k)}io that converges to X. We will discuss two of the common

methods, the Jacobi and Gauss-Siedel iteration techniques. To determine the difference
between the approximations and the exact solution, we will define the norm of a vector which

will help us to determine the distance between n— dimensional column vectors.

Definition 3.1.1

A vector norm on R" is a function |||, from R" to R with the following properties:
(i) [|X[=0 ¥X eR"
(ii) [[X|=0< X =0
(iii)[laX|d || X, Va R and X eR"

V) [[X Y[ <[ X]+[Y], ¥X.Y eR" o

Definition 3.1.2

The 1, and 1, norms for the vector X =(x,%,,...,x,) are defined by

X

n %
pel=(Ex] g -

Example 3.1.4

The |, and I, norms for the vector X :(—1,L5, —20)t are

n %
X1, =($5x° | = e e ooy =

_ Max
X1, = &

x| = Max{| 1], |1], |5], [-20} = 20



Definition 3.1.3

If X =(%,%,%) and Y =(¥;,¥,,-,) arevectorsin R", then |, and |, distances

between X and Y are defined by

Max

n %
) =S| a0 XYL Sl
i=1

Jacobi’s Method

The Jacobi’s iterative method is obtained by solving the i" equation in the system (3.2) for

X; to obtain
n(—a.X. ) b
X = —2 L+ for i=12,..,n

provided that a, = 0. For each k >1, generate the components x,“of X® from the
components of X *™ py

=L Z“:(_ai_xj«_l))mi Cfor i=12,...n.

i
& | j21

Example 3.1.5
The following system

10x, — X, +2X, =6

=X +11X, =X, + 3%, =25

2%, — X, +10x, —x, =-11
3X, —X; +8x, =15

has the unique solution X =(1,2,-1,1)'. Use Jacobi’s iterative method with four-decimal

places rounding-off to find approximations X® to X with X =(0,0,0,0)" until

-

-3
HX W Hw <107,




Solution:
We first check that a, =0 for i=1,2,3,4. a, =10, a,, =11, a,, =10, a,, =8. Thus,

1

0 (6, =2x,%Y +6)

%) =

X, = 1 (x D + %, —3x,4Y +25)
11

x, = %(—in(“) + 3,07 4 x, 6P —11)

x,! = %(—3X2(k1) +x,*P +15).

Starting with X© =(0,0,0,0)", we obtain

1 3
W= = (x.©_2x® 1 6)="==0.6000
X1 10( 2 3 ) 5
1 25
x @ © 4 x @ _3x @4 25)="2=22727
2 11 (Xl 3 4 ) 11

1 -11
P = (=2x@ £ x @ L x ©O _11)=——"=-1.1000
3 10( X1 2 4 ) 10

) = % (3%, + x.© +15) = % —1.8750.

Thus, X® =(0.6000,2.2727,—1.1000,1.8750)"

[X© =X Mmax{]0.60001,] 2.27271,|-1.1000],/1.8750 } ~1>107

= = =
|x| Max{| 0.6000|,| 2.2727,| -1.1000,|1.8750 [}

Using X®, we get

1

@ _
% 10

(%, —2x,% +6) = %(2.2727 —2(~1.1000) +6) =1.0473

X, = 1—11 (x® +x," —3x,Y +25) = 1—11 (0.6000-1.1000—3(1.8750) + 25) =1.7159
x,? = % (2% +x,® +x,M -11) = %(—2(0.6000) +2.2727 +1.8750) = -0.8052
x,? = %(—3x2(” +x,® +15) = % (-3(2.2727) —1.1000 +15) = 0.8852.

Thus, X® =(1.0473,1.7159,—0.8052,0.8852)"

X® =X Max{|1.0473-0.6000], |1.7159 - 2.2727], | ~0.8052 +1.1000|, | 0.8852—1.8750}
X Max{|1.0473|,|1.7159],| -0.8052|,| 0.8852 [}

~0.9898
1.7159

=0.5768>10",



Continuing in this manner, we get the following values:

k |0 1 2 3 4 5 6 7 8 9 10
x| 0] 0.6000 | 1.0473 | 0.9326 | 1.0152 | 0.9890 | 1.0032 | 0.9981 | 1.0006 | 0.9997 | 1.0001
x,0 0] 22727 | 1.7159 | 2.0530 | 1.9537 | 2.0114 | 1.9922 | 2.0023 | 1.9987 | 2.0004 | 1.9998
x| 0| —1.1000 —0.8052 —1.0493 —0.9681 —1.0103 —0.9945 —1.0020 —0.9990 —1.0004 —0.999¢
x,%| 0| 1.8750 | 0.8852 | 1.1309 | 0.9739| 1.0214 | 0.9944 | 1.0036 | 0.9989 | 1.0006 | 0.9998

xe=xe] _ Max{|1.0001-0.9997 |, |1.9998— 2.0004 |, | -0.9998+1.0004 , |0.9998—1.0006 [}
x| Max{|1.0001],|1.9998 |,| —0.9998 |,| 0.9998 [}

~0.0008
1.9998

=0.0004 <10,

. weendat k=10

Gauss-Seidel Method

The Gauss-Seidel method is an improvement of the Jacobi’s iterative method where we use the

first approximation in the first iteration to approximate other values. For example, in Example

3.1.5, we can use the first approximation x,® =0.6000 to approximate x,% and so on. Thus,

Xi<k>:i{bi_izl:(aijxj(k’)—Zn:(aijxj(k‘l))}, for i=12,..,n.

& =1 j=i

Example 3.1.6

Solve the system in Example 3.1.5 using Gauss-Seidel method.

Solution:

For X =(0,0,0,0)", we got x” =0.6000. We now use this value to approximate x,".

X, = 1—11 (%® +x,7 -3x,® +25) = 1—11(0.6000 +0-3(0)+25)=2.3273
X" = % (2% + %, + %, -11) = %(—2(0.6000) +2.3273+0-11)=-0.9873

x,0 = % (=3%,% + x,” +15) = %(—3(2.3273) —0.9873+15) = 0.8789. A

Exercise: Show that five iterations are required to achieve the required stopping criterion.



3.2. NON-LINEAR SYSTEMS

We consider a system of non-linear equations of the form

(% X1 %,) =0
fz(xp Xgyees Xn) =0

f (X, %0y X, ) =0.

The number of equations should be equal to the number of variables.

3.2.1. Fixed Point Method for Non-linear systems

Theorem 3.2.1
Let D={X =(X,%,...%,)" :& <X <b, i=12,...,n} be some collection of constants a, and

bi. Suppose G(X) = (G, (%, Xpreees o)y Gy (Kis Xgyees X )seves G (X, X X)) IS @ CONtiNUIOUS
function from D < R" into R" with the property that G(X) € D whenever X € D. Then, G

has a fixed point in D.

Moreover, suppose that each g, has continuous partial derivatives and a constant M <1 exists
with

9(g,(X))
OX;

]

M
n

<—, whenever X eD

for each j=1,2,...,n. Then the sequence {X(")}:;O defined by an arbitrarily selected X© in

D and generated by
X® =G(X*Y), k=1

converges to the unique fixed point p € D and

X p], <M x® - x ]



Example 3.2.1
Show that the system

3x, —C0S(X,X;) —% =0
x,° —81(x, +0.2)* +sin x, +1.06 = 0,

107{—320

e % +20x, +

has a unique solution on D = {X = (X, %, %) 1 -1<x <1, i=12, 3} and iterate starting with
X© =(0.1,0.1,-0.1)" until

-t

H w0 Hw <10

Solution:

For each equation, we solve for x,

1 1
% = 2008 X%+ 2

X, :%\/xi2 +sinx, +1.06 - 0.1

1 e _ 107 -3
20 60

Xy =—
Then, G(X) =(g,(X),9,(X),9;(X)) , where

1 1
9,(X) =§cos X, Xq +€

9,(X) =%\/x12 +sinx, +1.06 0.1

1 107 -3
X)=——geg e " —,
95(X)=-25 50
If each g, € D, then G eD.

1 1] 1
|9,(X)| = 308X+ <2

19,(X)|= %in2 +5sinx, +1.06 -o# < %\/1+ sin1+1.06 —0.1<0.09

1 107 -3
X) =|—— XX, YT
19,(X) \ Lo 107

<L 10738 400
20 60

Thus, —1<g; <1, fori=12,3 and G € D implying that G has a fixed point.



Also,

‘% _o,

X
09| _ ‘—1 X5 SIN X, X,| < 1.1.sin1< 0.281
x| | 3 3
%W, ‘—1 X, SIN X, X, | < 1.1.sin1< 0.281
0%, 3 3
G| _|L a |< E <0.1006
ox | |9 [xZ+sinx, +1.06| 9.41-sin1+1.06
92| _q
OX,
a9, COS X, | 1

- < ~0.050

0% | |18.4/%% +sinx, +1.06‘ 18.4/1.219
%s/_| %o g | < L gt £ 0.1350
x| |20 20
%) _| % g < L et 01359
x| |20 20
9| _ g
0%,

199t <0281, foreach i, j=12,3.

OX;
M 0281 = M =3(0.281) = 0.843<1.
n

Therefore, G has a unique fixed point in D.

Starting with X© =(0.1,0.1,-0.1)", we have that

x® = L cos X, 0%, +% = %cos(o.lx (-0.1)) +% =0.49998333

3
X, = %\/(xf ) +sinx,® +1.06 ~0.1= %\/(0.1)2 —sin0.1+1.06 —0.1= 0.00944115

X3(1) _ _ie,xl(o)xz(m _ 107 -3 _ 1 e—(O.lxo.l) _ 107 -3

—— =-0.52310127
20 60 20 60

X@ =X 042310127

[x®| 052310127 =0.8088>10".




Other values are given the table below:

k x, 1) X, X, HX () _ x (kD) H
e

0 0.10000000 0.10000000 —0.10000000

1 0.49998333 0.00944115 —0.52310127 0.8088

2 0.49999593 0.00002557 —0.52336331 0.018

3 0.50000000 0.00001234 —0.52359814 0.00044

4 0.50000000 0.00000003 —0.52359847 0.000023

5 0.50000000 0.00000002 —0.52359877 0.00000059

3.2.1. Newton’s Method for Non-linear systems

Newton’s method for non-linear systems involves selecting the initial point X® in R" and

generating
X (0 G(X (k—l)) — X (kD) —[J (X (k-1) )]71 = (X (k-1) )’ (3.3)

where J(X) is the Jacobian matrix defined by

of (X) ah(X) . of(X)
oX, OX, oX,
o, (X)  f,(X) af,(X)
IX)=| ox ox,  ox
of,(X)  of, (X) of, (X)
o, OX, oX,

- _l - - - - -
Computing [J (X k) )] at each stage can be avoided by finding a vector Y “™ that satisfies

[J (X(kfl))}Y(kfl) = —F (X ®D)

so that the new approximation is given by

X 0 — y kD) vy kD (3.4)

Example 3.2.2

Use Newton’s method to solve the system in Example 3.2.1




Solution:
Here X =(x,X%,,%;)" and F(X)=(f(X), f,(X), f3(X))t, where

f,(X) =3x, —C0S X, X, —%

f,(X) = x> —81(x, +0.1)* +sin x, +1.06

F(X) = e 420, + 07 =3
The Jacobian matrix is
3 X5 SIN X, X, X, SIN X, X,
J(X)=| 2x -162(x, +0.1) COS X,
—X e % —x,e 20

and using the initial point X© =(0.1,0.1,-0.1)', we get

F(X @) = (-0.199995, — 2.269833417,8.462025346 )

3 0.0009999833334 0.0009999833334
J(XO) = 0.2 -32.4 0.9950041653
—0.9900498337  —0.9900498337 20

We can find [ J(X “”)T and use (3.3) to approximate X ©. If we want to use (3.4), then we

let Y@ =(y,*(0), y,(0), y, (0))t s0 that [J (X <°>)]Y<°> =—F(X©) gives the linear

system

3y, +0.0009999833334y,” +0.0009999833334y,” =0.199995
0.2y, —32.4y, +0.9950041653y,” =2.269833417
~0.9900498337y,” —0.9900498337y,” + 20y, = -8.462025346

Solving this system, we get Y =(0.3998696728, —0.08053315147, —0.4215204718)t :

X® = X@1Y©® =(0.4998696728, 0.01946684853, —0.5215204718)"

Other values for k =2,3,..., are given in the table below:



k Xl(k) Xz(k) Xs(k) Hx(k) . x(k—l) Hw
% “I.

0 0.1 0.1 -0.1

1 0.4998696728 0.0194668485 | —0.5215204718 0.8083

2 0.5000142403 0.0015885914 | —0.5235569638 0.0342

3 0.5000000113 0.0000124448 | —0.5235984500 3.0099x10°°

4 0.5 8.516x107* —0.5235987755 2.376x10°°

5 0.5 ~1.375x101 —0.5235987756 1.653x107°

THE END!




