4. INTERPOLATION

Given that
y="1(X), X, <X=ZX,

and assuming that f (x) is single-valued, continuous and explicitly known, then the value of
f (x) corresponding to X,,X,..., X, can easily be computed and tabulated. Suppose we want to
reverse this process, that is, given the set of tabular values (x,, Y,), (X, ¥1),---, (X,, Y,) satisfying
the relation y = f(x), where the explicit nature of f(x) is not known, we want to find a
simpler function, say ¢(x), such that f(x) and ¢(x) agree at the set of tabulated points. Such
a process is called interpolation. If ¢(x) is a polynomial, then the process is called polynomial
interpolation. One reason for approximating unknown function by means of a polynomial is

outlined in the following theorem:

Theorem 4.1.1 (Weierstrass Approximation Theorem)

Suppose that f is defined and continuous on [a,b]. For each & >0, there exists a polynomial

p(x), with the property that
|f(x)-p(x)|<e, forall xe[a,b]. O

Theorem 4.1.1 shows that given any function, defined and continuous on a closed and bounded

interval, there exists a polynomial that is as “close” to the given function as desired.

y y=f()+e

The fact that derivatives and indefinite integrals for polynomials can easily be determined is

another reason for using polynomials to approximate unknown function.



Taylor polynomial may not give a correct approximation because it is concentrated at a point

X,- Thus, moving away from x, gives inaccurate approximations.
. . . 1
Exercise: Check that using the Taylor polynomial for f(x) == expanded about x=1 to

X

approximate f(3) :% gives inaccurate value.

4.1. LAGRANGE INTERPOLATING POLYNOMIAL

Suppose we have two distinct points (x,,Y,) and (x,Y,), and would like to approximate f

for which f(x,)=Y, and f(x,)=y,. Define the functions

X0
X

L(x)=——2 and L,(x)=

0 1 Xl

X_

The linear Lagrange interpolating polynomial through (X,,Y,) and (x,,y,) is

X700 f (%) + 2 £ (x,)
Xo_x1 Xl_XO

P(¥) = Ly(x) F (%) + Li(x) T (%) =

Example 4.1.1

Determine the linear interpolating polynomial that passes through the points (2,4) and (5,1).

Solution:
_ X=X _Xx=5_ 1.~
L= T 3
X=% _x=2_1.
Lo~ X2t
P00 =L 00T 00)+ L) (x) :(—%(x—5)](4)+(§(x—2)j(1)

=—X+6 A
Questions: 1. What happens when you “swap” points?
2. What do the values p(x,) and p(x,) show?

NOTE: Two points give a linear function (polynomial of degree 1). It follows that n+1

points give a polynomial of degree at most n.



Suppose that we have n-+1 points (X,, f(X,)), (X, (X)),....(X,, F(X,)). In this case, we first

construct L,  (x), for k =0,1,2,...,n with the property that

L) 1,if i=k
A0, if ik

For example, from Example 4.1.1,

Lio(%) = Lo =~ (2-5) =1

Lis(4) = Lyo(6) =—3 (6-5) =0

() =Ly(d) =3 (2-2) =0
1

L(%)=L,,(6) =5 (6-2)=1
Tosatisfy L, (x)=0, i =k, requires that the numerator of L, (x) contain the term
(X=X )(X=X)- e (X=X )X =X, 1) (X = X)),
and L,,(x)=1 i=Kk,requires that the denominator be evaluated at x = x,. Thus,

L, (x)= (X=X ) (X=X ) oo (X = X ) (X=X, oy ) (X = X)
| (X, = %) (X, — %) (X, —X,)

for example, when n=2,

Lzo(x) — (X—Xl)(X—XZ)
’ (Xo _X1)(X0 _Xz)
L21(X): (X_XO)(X_XZ)
’ (% = %) (% —X;)
Lzyz(x) _ (X_XO)(X_Xl)

(Xz - Xo)(xz - Xl) .
The n" Lagrange interpolating polynomial is defined in the following theorem:

Theorem 4.1.2

If X,,%,....X, are n+1 distinct numbers and f is a function whose values are given at these

numbers, then a unique polynomial p(x) at most n exists with



f(x.)=p(x), foreachk=0,12,...,n.
This polynomial is given by

p(X) = f (XO) Ln,O(X) + f (Xl) Ln,l(x) +..t f (Xn—l) Ln,n—l(x) + f (Xn) Ln,n (X)

=3 F X)Ly ()

where foreach k =0,1,2,...,n,

L (x) = (X= %) (X = %,)-.(X = X 1 )(X = Xy0) - (X = X;)
| (X = %) (X = %g)-- (X = X;)
- (X_Xi)
i=0 (Xk —Xi).

i#k

The numbers x,, x,..., X, are called nodes.

Example 4.1.2

Use the nodes x, =2, x, =2.75 and x, =4 to find the second Lagrange interpolating

polynomial for f(x) =% and use it to approximate f(3) = %

Solution:

(X=x)(X=X,) _ (x=2.75)(x-4) _2
(% —X)(%—%) (2-275)(2-4) 3
L21(X)= (X_XO)(X_XZ) — (X_Z)(X_4) :_E(X_Z)(X_“_)

’ (X —%)(X —X%,) (2.75-2)(2.75-4) 15
L2 2(X) _ (X_ XO)(X — Xl) _ (X — 2)(X — 275) _ Z(X _ 2)(X _ 275)
’ (Xz - Xo)(xz - X1) (4_ 2)(4_ 2-75) S
Sp(x)=f (Xo)l-z,o(x) +f(x) L2,1(X) +f (Xz)Lz,z(X)
4 16
11" 15

1 64 1
= g(x—2.75)(x—4) —ﬁ(x— 2)(x—4) +E(X_ 2)(x—2.75)

Lo(X)= (x=2.75)(x—4)

12 12
= §'§(X_2'75)(X_4)+ (x—2)(x—4)+Z.€(x—2)(x—2.75)

1 , 35 49

——=X+—.
22 88 44

At x=3,

f(3)=2—12(32>—§—2(3)+49 29

— =—=~0.32955.
44 88



Theorem 4.1.3

Suppose the nodes in the interval [a,b] are distinct and f e C""[a,b]. Then, for each x in
[a,b], anumber &(x) (generally unknown) between the nodes, and hence in (a,b) exists
with

f (n+1) (§(X))
(n+1)!

where p(x) is the n™ Lagrange interpolating polynomial. O

F(x) = p(x)+ (X=%)(X=%)...(X=%,),

NOTE: The error formula given in Theorem 4.1.3 is similar to that given by the Taylor

Theorem, only that this error uses information at the distinct numbers x,, X,,..., X

Example 4.1.3

Find the error formula for the second Lagrange interpolating polynomial found in Example
4.1.2 and find the maximum error when this polynomial is used to approximate f(x) for x

in [2,4].

f0) =22 F0 =20 "0 =, F ()=
Thus,
()= p(x)+%(x—xo)(x—x1)(x—xz),
where
f“)(é( )

6
(X=X, )(X=x)(X— x)_——4(x—2)(x—2.75)(x—4)
& 6(2(0))
—(cf(x))'4(x—2)(x—2.75)(x—4), for £(x) in (2,4).

The maximum value of (§(x))_4on (2,4)is 27" = % We now determine the maximum value

of the absolute value of the polynomial g(x)=(x—-2)(x—2.75)(x—4) =X —3fo2+4—; X—22
g'(x) =0= 3x* —§x+4—9:0 :>x:Z or x:Z
2 2 3 2
25 9
D=—— or g(%)=——.
9(3) 108 9(3) 16
16
Hence, the maximum error is (5( ) g(x)[< ‘ 9‘—iz0.0352.
3! 16| 16| 256
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4.2. DIVIDED DIFFERENCES

Suppose that p, (x) isthe n" Lagrange interpolating polynomial that agrees with the function

f at distinct numbers x,,x,...,x,. The divided differences of f with respect to x,,x,,..., X

are used to express p,(x) in the form

pn(X) =a, +a1(x—x0)+az(x—xo)(x—xl)+...+an(x—xo)(x—xl)_,_(x—xn,l)

for some constants a,,a,,...,a,. Note that

Pn (Xo) =q, = f(xo)
F00) - f %)

X =X

P (%) =8, +a, (X —X%)=f(x) =>a =

The zeroth divided difference of f with respect to x,, denoted f[x], is f[x]= f(x).

The first divided difference of f with respectto x, and x,,, denoted f[x,x.,,], iS

i+17

f [Xi+1] —f [Xi]

f[Xi ' Xi+1] = X
i+l N

The second divided difference is

f [Xi+1’ Xi+2] —f [Xi ) Xi+1] .

f [Xi 1 Xifgs Xi+2] =

X2 =%
- - th - - - - -
Similarly, the k™ divided difference relative to X;, X, .;, X, 5, X4 IS
f [Xi VX igs X g Xi+k] — f [Xi+l’ Xisgreen Xi+k] —f [Xi 1 Xigpr Xiggreen Xi+k—1] .
Xk =%

This process ends with a single n™ divided difference

DX Xy X, ] = f[XvXz,---,xnxl—_fX[xo,xl,---,xn1]_
n 0

Thus, p,(x) can be written as
Pn (x) = f[Xo]+ f[Xo'Xl](X_X0)+---+ f[XO,Xl """ Xn](X_XO)(X_Xl)--.(x_xn—l)
= DT+ D F D X K IO X)X = ) (X = %)

n

(4.1)



Equation (4.1) is known as Newton’s Divided-Difference formula. The table below outlines
how divided differences from tabulated data can be determined:

X f(X) 1st 2nd 3rd
X | %]
D]

5| Tl PRI

R R B X X0 X, %]
X, f [Xz](::\ f[X1 Xy, X ]

%]
X, | %]
Example 4.2.1

Suppose we have the data (1,2),(2,4),(4,3),(5,0). Then,

X, =1LX =2, X, =4, %,=5and f[x,]=2, f[x]=4, f[x,]=3, f[x,]=0

x | f(x) 1 ond -
1 f[x0]=2\\

f[Xo,Xll—i—i=2 |
2 |f[x]=4, -2

,f[xl ’ ]_4_421:_%‘{:\ /f[xo,x1 xz,xs]__ss‘_(l
4 f[X2]=3’:\\ /:f[xl,xz,xs]:_gs_f(j)z_g/

I\f[xz,xgl—g:—s
5 |f[x]=0"




ps(x) = f[Xo]+ f[X07X1](X_Xo)+ f[XO’ Xy Xz](X_XO)(X_X1)+ f[Xo,Xl,X2,X3](X—XO)(X—X1)(X—X2)
= 2+2(x—1)—g(x—1)(x—2)+0(x—1)(x—2)(x—4)

5 9 5.,
=—=—+=X—=X".
3 2 6
5 9 5 =
Sps(Q) =—=+=(3)-=(3%)=5.16.
P@=-3+- @23

5 y = ps(X)

0 1 2 3 4 i X

Example 4.2.2

Write the divided difference table for the given values of x and f(x). Hence, find p,(X).

X f(x)
1.0 0.7651977
1.3 0.6200860
1.6 0.4554022
1.9 0.2818186
2.2 0.1103623
Solution:

Here x, =1.0,x, =1.3, X, =1.6, X, =1.9,x, =2.2

f[x,]=0.7651977, f[x]=0.6200860, f[x,]=0.4554022, f[x,]=0.2818186, f[x,]=0.1103623

8



f[x]-f[x] 0.6200860-0.7651977

f[x,,x]1= =—-0.4837057
Do, %] X, — X, 1.3-1.0
FIx, %] = fx,1—- fx] _ 0.4554022-0.6200860 _ 05489460
X, — X, 16-1.3
F[x,, %] = fIx]— flx,] _0.2818186—0.4554022 _ 05786120
X; =X, 19-16
FI,%,] = fix,]-fIx] _0.1103623-0.2818186 _ 0571521
X, — Xq 2.2-1.9
FI, X %] = FIx, % 1- %, ] _ ~0.5489460—(-0.4837057) _ 01087338
X, =X, 1.6-1.0
FIX, %, %] = X, %] - fIx, x,] _ —0.5786120—(-0.5489460) _ 00494433
X; — X 19-13
£, %0, ] = X, X, 1= f[%,, %] _ —0.571521-(-0.5786120) _ 0.0118183
X, — X, 2.2-1.6
FIX, %, %, ] = F1%, %, %1 = F1%0, %, %,] _ —0.0494433—(-0.1087338) _ - o0q
X — X, 1.9-1.0
FIX0 %0 X X ] = FIX X5, X, 1= FIx, X, %] 0.0118183—(-0.0494433) _ 0.0680684
X, — X, 22-13
FIX0, %0 X;, %, X, 1= 1D %, X5 Xl = P, X, X X,] _ 0.0680684-0.0698783 _ g9
X, — %, 2.2-1.0
X f(X) 1st 2nd 3rd 4th
1.0|f[x,]=0.7651977
f[x,, x,] =—0.4837057
1.3|f[x]=0.6200860 f[X,, %, %,] =—0.1087338
f[x, X,]=-0.5489460 f Xy, X, X,, X,] = 0.0658783
1.6/ f [x,]=0.4554022 f[X,X,, X,] = —0.0494433 f[X,, X, X,, X, ] =0.0018251
f[X,,X,]=0.5786120 f[X, X,, X3, X,] = 0.0680684
1.9/ f[x,]=0.2818186 f[X,,X;, X,]1=0.0118183

f[x,,X,] = —0.5715210
2.2| f[x,]=0.1103623

- P, (X) =0.7651977 — 0.4837057(x —1.0) —0.1087338(x —1.0)(x —1.3)
+0.0658783(x —1.0)(x —1.3)(x —1.6) +0.0018251(x —1.0)(x —1.3)(X —1.6)(X —1.9)

A



4.2.1. Newton Forward- and Backward-Difference

Let us try to write equation (4.1) in a simplified form when the nodes are arranged

consecutively with equal spacing. Let h=x,,, —x, and x = x, + sh. Since the nodes are equally

spaced, we have that x. = x, +ih which implies that the difference x—x; is
X=X =X, +Sh—(X, +ih) =(s—i)h.
Thus, equation (4.1) becomes

P, (X) = p, (X, +sh) = f[x,]+shf[X,, X ]+S(s—1)h* f [X,, X, X,]+... +S(S =1)...(s =N +D)h" F [X, X;,..., X ].

Since s(s-1)...(s—k+1) = k!(i],we have that

Pn (x) = Pn (Xo +sh) = f[xo]""zn:(i]k!hk f [Xo’ Xivewns Xk] (4.2)

Equation (4.2) is known as Newton Forward-Difference formula.

Newton Backward-Difference formula is obtained when the nodes are reordered from last to
first. In this case, (4.1) can be written in the form

pn(X) = f[Xn]+ f[Xn’Xn—l](X_Xn)+ f[Xn1Xn—17Xn—2](X_Xn)(X_Xn—l)
o FIX X, e X J (X=X ) (X=X, ) (X = X)).

As observed above, since the nodes are equally spaced, letting x=x,+sh and

X=X +(s+n—i)h, given

p,(X) = p,(x,+sh) = f[x,]+shf[x,,x, ,]+s(s +1)h2f[xn, X0 1) Xy o]
.+ S(5+D)..(S+HN=Dh" F[X,, X, 1, %, ]-

If we use

=S| —-s(-s-1)..(-s—k+1) ()" s(s+1)...(s+k-1)
k ) k! - k!

then the Newton Backward-Difference formula becomes

P (0 = Py (5 +5h) = f[xn]&(j](—l)kk!hk JURERTE @3

10



NOTE: The Newton Forward- Difference formula is useful for interpolation near the beginning
of a set of tabular values and the Newton Backward- Difference formula for interpolation near

the end of a set of tabular values.

Example 4.2.3
Use Example 4.2.2 to approximate f(1.1) and f(2.0).
Solution:

Since x=1.1is near the first value x, =1.0, we use The Newton Forward- Difference formula.

Here, h=1.3-1.0=1.6-1.3=19-1.6=22-19=0.3.
1
X=%+sh=11=1.0+0.3s =5 =3

~ @)~ p,.1) = p,(L.0+1(0.3))

=0.7651977 +%(0.3)(—O.4837057)+%(%—1) (0.3)*(~0.1087338)

1(1 1 , 1(1 1 1 .
+§(§—1j(§—2j(0.3) (0.0658783)+§(§—1j(§—2j(g—sj(o.s) (0.0018251)

=0.719646.
To approximate f (2.0), we use Newton Backward- Difference formula since x=2.0 is near

the last value x=2.2.

X=X, +sh=x,+sh :>2.0:2.2+O.3s:>s=—§

- £(2.0)~ p,(2.0) = p,(2.2—-2(0.3))

= 0.1103623—%(0.3)(—0.5715210) - %(—% +1} (0.3)2(0.0118183)

2( 2 2 , 2( 2 2 2 .
—g(—§+1J(—§+2](0.3) (0.0680684)—5(—§+1)(—§+2)(—§+3j(0.3) (0.0018251)

=0.2238853.
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4.3. SPLINE INTERPOLATION

One disadvantage of using a single polynomial to approximate an arbitrary function on a closed
interval is that high-degree polynomials can oscillate erratically, that is, a minor fluctuation
over a small portion of the interval can induce large fluctuations over the entire range. An
alternative approach is to divide the approximation interval into a collection of subintervals
and construct a (generally) different approximating polynomial on each subinterval. This is
called piecewise-polynomial or spline approximation. The splines, which will be denoted by
s,(x), can be classified depending on the order of the polynomials. We will discuss linear,
quadratic and cubic splines. Other high-order splines can be derived in a similar way with a

greater increase in computational difficulty.

4.3.1. Linear Splines

The simplest spline is a linear spline which consists of joining a set of data points
(Xs T(X)), (X, (X)) (X0 T(X,)), Where x, <X, <...<X,,

by a series of straight lines such that

B X=X X=X, .
s, (x) = f(XO)(XO—Xij+f(X1)(X1—XOJ, X €[Xy, %]
B X—X, X=X .
S0 - sz(x)—f(xl)( _XJ”(X”(XZ_XJ’ xelx, %]
5,(x) = f(xn_o( . } f(xn>( s ] XX, 1 %,]
Xn—l - Xn Xn - Xn—l
:XO Xl X2 X3 X4 ):(n

12



Example 4.3.1

Construct the linear spline interpolating the data below:

x| -1 0 1
y| 0 13
S(X):{sl(x), xe[-1,0]
s,(x), xe€[0,1]
where
X, x—(-1)
S(X)_f(x)[ xlj”(x)[xl—xo}_f( 1)( 1- oj f()LO (1>j

02+ X x4

- X=X X=X%
sz(x)—f(xl)[xl_xz}f(xz)(xz_xlj—f(@[o 1) f(1)(1 0]

_(1)— (3)—_1+2x

5 _1+x xe[-1,0]
(X)_{1+2x, x €[0,1]

NOTE:

A drawback for linear splines is that S(x) is generally discontinuous at each interior nodes x

For example, the derivative of S(x) in Example 4.3.1 is discontinuous at x =0.

4.3.2. Quadratic Splines

Suppose we want to join the set of data

(Xgr T XD, (X, T(X)),-s (X, T(X,)), Where a=Xx, <X <..<X, =b,

by piecewise-quadratic polynomials. Then,

13



5,(X) =a, +by X +¢,x%, X e[X,, %]

s,(X) =a, +bx+cx?, Xe[X,X,]

S(x) =

s,(X)=a,_, +b,_x+c, _X*, xe[x, ,,X ]
To ensure that S(x) interpolates the data, we set

5(%)=F(X,), i=12..n
Si(xi) = f (Xi)'

To ensure that S(x) is continuous and has continuous first-order derivative everywhere in

[a,b], we set
s/ (x)=s.,(x), i=12,.,n-1.

Since each s; has 3 unknown constants, S(x) will give a total of 3n unknown coefficients.

The condition s(x) =s,,, (%) imposes n—1 linear conditions and interpolation imposes 2n
linear conditions giving a total of 3n—1 imposed linear conditions. This means that the
conditions will give a system of 3n—1 linear equations in 3n unknown coefficients, which

may give infinite-many solutions. To get a unique solution, we need to impose another

condition. The problem is to determine what additional condition to impose to make the

solution unique, for example, f'(x,)=S'(x,) or f'(x,)=S'(x,). One way to avoid this

problem is to set the second derivative of s, to zero, i.e. ¢, =0.

Example 4.3.2
Construct a quadratic spline interpolating (-1,0), (0,1) and (1,3).

Solution:

Since the interval [-1,1] has been divided into three intervals, we must have

S(x) s, (x)=a,+b,x, xe[-1,0]
(X)_{sz(x):a1+b1x+clx2, x €[0,1]

To ensure that S(x) interpolates the data, we have that

sl(Xo): f(X0)1 S1()(1): Sz(x1) = f(Xl) and Sz(xz): f(Xz)
=s(-)=f(-)<=a,+b(-1)=0=4a,=h,

14



5,(0)=5,(0) < a,+b,(0) =a,+b,(0) +¢,(0*) = a, =43, and s,(0)= f(0)=a,=a, =1
s,O)=fQ) < a+b@®)+c(@®)=3=b+c =2

To ensure that S(x) is continuous and has continuous first-order derivative everywhere in
[-1,1], we have that
51'()(1) = 52’(X1) = bo :bl+C1X1 :>bo = bl +Cl(0)

Since b, =1, weget by=b =1 and b +c,=2=¢ =1.

L S(x) 1+X, xe[-1,0]
' (X)_{1+x+x2, x €[0,1]

Check that S(x) interpolates the data and that S e C'[-1,1].

4.3.3. Cubic Splines

We consider a piecewise-polynomial approximation that uses cubic polynomials between

each successive pair of nodes.

Definition 4.3.1

Given a function f defined on [a,b] and a set of nodes a=x, <, <...<X, =b, a cubic

spline interpolant S for f is a function that satisfies the following conditions:

1. S(x) is acubic polynomial, denoted S;(x), on the interval [X;, x;,,] for each
j=012,...,n-1
S;(x;)=f(x;) and Sj(xm): f(xm) foreach j=0,1,2,...,n-1.
S;a(X,1) =S;(X;,,), foreach j=0,1,2,..,n-2
Si.a(Xj.1) =S(X;,,), foreach j=0,1,2,..,n-2
STa(X;,1) =S(X;,,), foreach j=0,12,..,n-2
One of the following sets of boundary conditions is satisfied:
(i) S"(x,)=S"(x,)=0 (Natural (or free) boundary)

S L

(i) S'(x,)=1"(x,) and S'(x,)= f'(x,) (Clamped boundary)

When natural boundary conditions occur, the spline is called Natural Spline and when

clamped boundary conditions occur, we have Clamped Spline.

15



Using Definition 4.3.1, we will construct cubic splines of the form
2 3
S;(X)=a; +b;(x=x;)+¢;(x=%;)" +d;(Xx—X;)

foreach j=0,1,2,...,n-1.

Example 4.3.3

1. Construct a natural cubic spline that passes through the points (1,2), (2,3) and (3,5).
2. Construct a clamped cubic spline that passes through the points (1,2), (2,3) (3,5)and
has S'(1)=2 and S'(3) =1.

Solutions:

From the given data, we have that x, =1, X, =2, x, =3, S,(X) €[1,2] and S,(x) €[2, 3] where
S, (X) =a, +b,(x—1) +¢,(x—1)* +d,(x-1)° and S,(x) =a, +b, (Xx—2) +¢,(x—2)* +d,(x—2)°
so that

S(X):{So(x), xe[1,2]

S,(x), xe[2,3]

1. S@)=f@1)=2=S,Y=4a,=2
S(2)=1(2)=3 =S,(2)=a,+b,+c,+d, =3 =Db,+c,+d, =1. (1)
Also, S5,(2)=3 =a =3
S@=1@B)=5 =S5,3)=S,(x)=a,+b +c,+d, =5 =b +c,+d, =2 (i)

S, (2)=S,(2) < b,+2¢,(2-1)+3d,(2-1) =b, +2c,(2—-2) +3d,(2-2)
= b, —b, +2¢, +3d, =0 (iii)

S, (2)=S,"(2) < 2¢,+6d,(2-1) =2c, +6d,(2-2)
=c,—C +3d,=0 (iv)

Using natural conditions, we get
S"(x,)=S"(x,)=0=S8"(1) =S"(3)=0
= 2¢,+6d,(1-1)=0=¢,=0
And 2c, +6d,(3-2)=0=¢c,+3d,=0 (v)
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Solving the system formed by equations (i) - (v), we get

b, +d, =1 10 010)(hb, 1
b+c +d =2 01 101|b 2
b,—b+3d,=0 = |1-1030(¢c |=(0
—c,+3d,=0 00-130]||d, 0
c,+3d,=0 00 103)(d 0
100100 100101 1001011
01 101)2 011012 01101)2
Lo Lo+
1-1030|0 0-1020|-1 - 001211
Lo, + r,— 3l
00-13010 00-130|0 00-130/0
00 103|0 00 033|0 00011]|0
1001001 100101
01101 |2 011012
r,>r+r, |00121|1|r—>r-%r, 1001211
000511 000511
0001110 0000 ¢ |-%
P S
5 5 4
1
5d,+d, =1=d, =~
4
3
cl+2d0+d1:1:>clzz
3
b1+c1+d1:2:>b1:5
b0+d0:l:>b0:§
4
S0 2+3(x-1)+1(x-1° xe[1,2]
s S(x) =
3+3(x-2)+2(x-2)*-1(x-2)°, xe[2,3]

2. The first five conditions are as in part 1, i.e.

Sp()=a,=2
S$,(2)=S,(2)=3=a,+b,+c,+d, =3=Db,+c,+d, =1 and S,(2)=3=4a, =3
S =5=a+b+c+d =5=Db+c +d =2

S, (2)=5,(2) < b,—b+2c,+3d,=0and S,"(2)=S,"(2) <c,—¢ +3d,=0

17



Using clamped condition, we get

S'(x,) = f'(%) < S'()=2=D, +2¢,(1-1) +3d,(1-1) =2 = b, =2

And S'(x)=f'(x) < S'(3)=1=>b +2¢,(3-2)+3d,(3-2) =1=>b, +2¢, +3d, =1.

Thus,

0101
1010
-1203
01-13
1020

L>nL+n
>0
n—-n-r

10101

00111
00031
00011

241

3y +d,=3=>dy =

c,+d,+d, =

c, +d,

b+c+d,=2=Db =

01010

-l=c,=-

0
1
0
0
3

b,
C

o

C
d
d

o

1

10101
0101 O
02131
001-20
0010 2

2
-1

=d=—

3

2=¢ =2

Nlw Nlo

H
|
© N

L—r—3

01010
10101
-12030
01-130
10203

rRL—>rn-2r
L—>r-r,

O O o o =

10101
01 01
0011
0003
0000

wNhy = = O

{2+2(X_1)_%(X‘1)2+%(X—1)3,
sS(X) =
3+2(x—2)+2(x—2)* -2 (x-2)°

18
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101
01 0
111
1-20
02 2

x e[l 2]
xe[2,3]

10101
01010
-12030
01-130
10203
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1
I‘5—>5I‘5




4.4. LEAST-SQUARES APPROXIMATION

Suppose that a mathematical equation is to be fitted to experimental data by plotting the data
on a graph paper and then passing a line through the data points. The method of least squares

endeavours to determine the best approximating line by minimising the sum of the squares of
error, i.e. if (x,Y,), 1=1,2,3,...,n are data points and Y = f (x) is the curve to be fitted to

this data, then the error is
e =Yy, —f(x)
and the sum of the squares of the errors is
S=[y,~ FOOI +I¥, = F () +..+ [y, — T (x)I. (4.4)

Then the method of least-squares involves minimising S.

Straight line: Let Y =a, +a,x be the straight line to be fitted to the given data. Then,
S =[y,—(ay+ax I +[y, = (3 +ax I +..+ [y, = (8 +ax,)I

and minimising S implies that

%:O:‘—Z[yl—(ao +a 1= 2y, ~ (8 +a, )] —..— 2y, (3 +ax, )] =0
- —Z_Zn:[yi —(a,+ax)1=0 (4.5)
and
%:o:>—2><1[y1—(a0 +a% )= 2%[Y, = (3 +a%, )= = 2% [y, = (3 +ax, )] =0

n
=-2> %[y, —(a,+ax)]=0. (4.6)
i=1
Simplifying (4.5) and (4.6) leads to what are known as normal equations:

230y (+ax)1=0= 3y Y2, -2 x =0

=Y y,-na,-a» x =0 4.7)
i=1 i=1

19



and

_szi[yi _(ao +a1Xi)]:OZ>ZXiyi _aozxi _alzxiz =0
i1 i1 i1 i1

:Zn:xiyi :aozn:xi+aizn:xi2 (4.8)
i=1 i=1 i=1

Solving (4.7) and (4.8) simultaneously, we get

Solig

i=1

e (3
(S8 (S 8)

n

(32
2% Zn:yi

Letting X =-=— and ¥ =-=2— we can rewrite the formulas for a, and a, as
n n

Zn:xi Yy, —NX.y
a =15

g fgm]

2 2

Clearly, P >0 and 2 S,: > 0 showing that these values of a, and a, provide a minimum
aO

of S.
Example 4.4.1

The table below gives the temperature T (in °C) and length | (inmm) of a heated rod. If
| =a+DbT, find the best values of a and b.

T, 20 30 40 50 60 70
| | 800.3 800.4 800.6 800.7 800.9 801.0

20



Solution:

T | T? TI
20  800.3 400 16006
30 8004 900 24012

40 800.6 1600 32024
50 800.7 2500 40035
60 800.9 3600 48054
70 801.0 4900 56070
Sum 270 4803.9 13900 216201

~.n=6, > T=270, > 1=4803.9, > T?=13900, > Tl=216201

o T _(ZTJ(le _ 6(216201) - (270)(4803.9) _
n[sz} —(ZTJ 6(13900) - (270)

(ZTZJ((Z@) ([ZT'ijZTj - S2S00IS6) - 1620070
n| T2 |- 3T -

-.1=800+0.0146T

0.014571428 = 0.0146

=799.9942857 ~ 800

Polynomial of the k' degree: Let Y =a,+a,X+a,X" +...+8,X" be the polynomial of the
k™ —order to be fitted to the data (X, y;), 1=12,...,n. Then, we minimise

S =y, —(ao Fax +ax’+..+ax )]2 +1y, —(ao +aX, +aX,’ +...+akx2“)]2 +

A —(ao +aX, +aX +o. A X )]2

by setting 2—8 =0, for i=0,12,...,k. This leads to the following k +1 normal equations in
a'i

k +1 unknowns:
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na, +aizn:xi +azzn:xi2 +...+akzn:xi" = Zn:yi
i=1 i=1 i=1 i=1
aoi X, + alzn: x> +azzn: x° +...+aan:xik+l - Zn:xiyi
i=1 i=1 i=1 i=1 i=1

n n n n n
k k+1 k+2 2k k
aOZXi Jraizxi +a22xi +...+akai =in Y,
i=1 i=1 i=1 i=1 i=1

Example 4.4.2
Fit a polynomial of the second degree to the data points given below:

x| 0 10 20
y| 1.0 6.0 17.0

Solution:

Let Y =a, +aX+a,x’, where n=3 and k =2. The normal equations are
na0+a12n:xi+azzn:xi2=2n:yi 3a0+a12n1:xi+azznl:xi2=2n1:yi
i=1 i=1 i=1 i= i= i=
aozn:xi +aizn:xi2 +aZZn:xi3 = Zn:xiyi = aozn:xi +a12n:xi2 +azzn:xi3 = Zn:xiyi
i=1 i=1 i=1 i=1 i=1 i=1 i=1 i=1
aozn:xi" + aizn:xi"+l + azzn:xiz" - Zn:xi"yi aozn: X + alzn:xi3 + azzn: x' = Zn:xizyi
= = = = = = = =

X y X X3 x* Xy X’y

0 1 0 0 0

1 6 1 1 6 6

2 17 4 8 16 34 68
d>: 3 24 5 9 17 40 74

Using normal equations, we get a system of linear equations
3a, +3a, +5a, =24
3a, +5a, +9a, =40
53, +9a +17a, =74

whose solution is a, =1, &, =2 and a, =3.

S Y =1+ 2x+3x3
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Exponential function: Let the curve y =a,e®* be fitted to the data (x;,y;), i=12,...,n.

Then, taking natural logarithms on both sides, we get
Iny =In(ae*)=Ina,+ax,
which can be written as
Y =A +AX,
where Y =Iny, A =Ina,, A =a, and this can be treated as a straight line problem.

Example 4.4.3
Fit an exponential function to the data given in the table below:

x{1.00 125 150 1.75 2.00
y| 5.10 579 6.53 7.45 8.46

Solution:

We transform y = a,e™* into Y = Aj+ AX, where Y =Iny, A =Ina,, A =aand n=5.
5A+AY X =2Y, =2 Iny,
Aozxi + Alzxiz :ZXiYi :in Iny,

2

X y Iny X xiny
1.00 510 1629 1.00 1.629
125 579 1756 15625 2.195
150 653 1876 2.2500 2.814
175 745 2008 3.0625 3.514
200 846 2135 4.0000 4.270

> 15 9.404 11.875 14.422

5A+AY X =>Iny, 5A, +7.5A =9.404

=
A K+ AY x2=TxIny, O TILBHA =144
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9.404 —5A,

A= oz = 71.5A, +1l.875(9'403—;5'%) =14.422 = A, =1.1224

Since A, =Ina,, we have that a, = e"**** =3.072

A -3 - 9.404 —75;1.1224) _ 05056

y — 3'07260.5056x

4.4.1. Weighted Least-Squares Approximation

If the given data is not of equal quality, the fit by minimising the sum of squares of the errors
may not be very accurate. To improve the fit, a more general approach is to minimise the

weighted sum of squares of the errors taken over all data points

S =wly, — fO)I + WLy, — O+t W[y, — T (x)T°
=we’ +W,e,” +...+we ’.

The w,'s are prescribed positive numbers and are called weights. A weight is prescribed

according to the relative accuracy of a data point. If all the data points are accurate, we set

w, =1 forall I.

Example 4.4.4

In Example 4.4.1 we got the linear fit | =800+ 0.0146T . Suppose that the point (60,800.9)
is known to be more reliable than the others. Then we prescribe a weight (say 10)

corresponding to this point only and set w, =1, for all other points so that

aojilvw *‘aﬁjisz11 :::iszl
i-1 i=1 i=1

aojilvw1} +'a&:§:VW1}2 :::§:VW11L
i-1 i=1 i-1
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T I w T wTl wl T wT?
20 800.3 1 400 20 800.3 16006 400
30 8004 1 900 30 800.4 24012 900
40 800.6 1 1600 40 800.6 32024 1600
50 800.7 1 2500 50 800.7 40035 2500

60 800.9 10 3600 600 8009.0 48054 36000
70 8010 1 4900 70 801.0 56070 4900

z: 270  4803.9 15 13900 810 12012 216201 46300

B2+ 2 ) Wl = 2wl 154, +810a, =12012

" " " 10a, +4 — 648687
A ST +a 3w~ STl 810a, + 463003, = 64868
i=1 i=1 i=1
12012 -15a,
% 810

= 810a, + 46300

(—120121_0156‘0 j 648687 = a, =800

12012 —15(800)
=a, =

810
-1 =800+0.0148T

=0.0148

Note that the first fit gives

1(60) =800+ 0.0146(60) = 800.876
and the weighted fit gives

1(60) =800+ 0.0148(60) = 800.888

Note that the approximation becomes better when the weight is increased.

4.4.2. Least-Squares for Continuous Functions

wTl
16006
24012
32024
40035
480540
56070

648687

We discuss the least squares approximation of a continuous function on an interval [a, b].

Let Y(X) =a, +aX+...+a X" be chosen to minimise

S = j:w(x)[y(x) — (3, +ax+.+ anx")]zdx

25



The necessary conditions for a minimum yield
b
—ZJ W(x)[y(x) —(aO +aX+..+ anx”)}dx =0

—ZI: x.w(x)[y(x) —(ay +ax+..+a,x" )}dx =0

—Zj: x“w(x)[y(x) —(ag +ax+..+a X" )]dx =0

Rearrangement of terms gives the following normal equations:

a, Lb w(x)dx + a, j: X.w(x)dx +a, j : X2 W(X)dX +...+a_ j: X" w(x)dx = j: w(Xx)y(x)dx

a, .[: x.w(x)dx + al.[: x> W(X)dx + a, .[ ; X2 W(X)dX +...+a, j: X" w(x)dx = _[ : X.w(x) y(x)dx

a, I: X" w(X)dx + %I: X" w(x)dx + a, J': X" w(x)dX +...+a, Lb X2 W(X)dx = Lb X" W(X)y(x)dx

Example 4.4.5

Find the least-squares approximating polynomial of degree two for the function f (X) =sin zx
on the interval [0,1] with respect to the weight function w(x) =1.

Solution:

The normal equations for Y (X) = a, +a,X +a,X* are

1 2
aoj.:dx+a1.[;xdx+azj.:x2 dx :I:sin zxdx o r38 ="
1 1, N S 1 1 1 2
aojoxdx+a1j0x dx+a2j0x dx__[oxsmzxdx = Ea0+§ai+za2=—
12 13 Yoagy (to2e: 2
aOJ'Ox dx+aijox dx+a2.[0x dx_jox sin rxdx 1a0+1a1+1a2x:7[ 34
3 45 r
Solving this system gives
2
a, = 227 120 050465
T
2
a, = 1207007 410051
7
2_
a, =007 120 _ 419051
T

. Y (X) = —0.050465 + 4.12251x — 4.12251x°
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4.5. CHEBYSHEV POLYNOMIALS AND ECONOMISATION OF POWER SERIES

Let f,f,,..., f, be values of the given function and ¢,4,,...,¢, be the corresponding values
of the approximating function. Then the error vector e, where the components of e are given
by e = f,—¢. The approximation may be chosen using least-squares method or may be
chosen in such a way that the maximum component of e is minimised. The later method leads
to Chebyshev polynomials.
4.5.1. Chebyshev Polynomials
The Chebyshev polynomial of degree n over the interval [—1,1] is defined by

T (X) =cos(ncos™ x)
from which we get the relation

T, () =T, (x).

Letting cos™ X =6 implies that cos@ = X so that

T,(x) =cosné.
Hence, T,(x) =1 and T,(x) = x. Using the trigonometric identity
cos[(n—1)8]+cos[(n+1)0] = 2cos(nd)cos

we have that

Tn—l(x) +Tn+1(x) = ZXTn (X)

= Tn+1(X) = 2XTn (X) _Tn—l(x)

which is the recurrence relation that can be used to complete successively all T, (x) since we
know T,(x) and T,(X).

T,(x)=1

T.(xX)=x

T,(X) = 2XT,(X) =T, (X) = 2x* -1

T,(X) = 2xT,(X) - T,(x) = 2x(2x2 —1)— X =4x° - 3x
T,(X) =8x* —8x*+1

T, (x) =16x° — 20%° + 5x

T, (x) =32x° —48x* +18x* -1
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The graphs of the first four Chebyshev polynomials are:

¥ = T4ix) o
: ./’J__\'\-\.". — i glx)

/ _\l\x_ F + .

L
-':':.\"\. T N
\ \ i

Note that the coefficient of X" in T,(x) is always 2"* and [T, (x)|<1, forn>1, -1<x <1
If P,(x) is a monic polynomial such that P,(x) =2""T (x), then P,(x) has the least upper

bound 2'™" since |Tn (x)| <1. Thus, in Chebyshev approximation, the maximum error is kept

down to a minimum.
It is possible to express powers of X in terms of Chebyshev polynomials. Then

1=To(x)
X :Tl(x)

=~ [T,00+T, ()]
X = %[BTl(x) +T,(0]
x* = %[BTO (X) +4T,(x) +T4(X)]
x° = %[1OT1(X) +5T,(x) +T5(X)]

X = 3—12[10T0(x) 15T, (X) + 6T, (x) + T, (X)]

Chebyshev polynomials can be used to reduce the degree of an approximating polynomial

with a minimal loss of accuracy. This is known as economisation of power series.
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Example 4.5.1
Economise the power series

3 X5 X7

a) sinx= x—X— ——
6 120 5040

while keeping the error less than 0.005.

2 3 4
X

b) e —1+x+x—+—+—
21 31 41

while keeping the error less than 0.05.

Solution:

1
a) Since 5 ~ 0.000198... is the first value which is numerically less than 0.005,

we have that

3 X5

SINX~ X——+—.
6 120

We now express P,(x) in terms of Chebyshev polynomials.

P.(X) =T,(X) —l.l[STl(x) +T,(0)]+ %.%[mﬂ(x) +5T,(X) + Ty(X)]

169 1
=To7 1)~ T 3(X) + 7505 Ts(¥)

Since ﬁ ~ 0.00052083 < 0.005, the economised power series is

R0 =T 00~ Ty () =X (4 ~3)

383 S5 3

384 32

b) Remember that the upper bound of the error is

~0.023 for —1<x<1.

f <5>(§(x» x| _ e
_120

R.(0)|=

We now express P,(x) in terms of Chebyshev polynomials.
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P,(X) =T, (X) +T,(x) + T(x)+ T(x)+ T(x)+ 1T(x)+ 1T(x)+

:%T (x)+ T(x)+ 3T(x)+ 1T(x)+ ;L T,(%)

1

<——=0.0053. Thus,
192

But iT 4 (X)

192

|R4(x)|+ <0.023+0.0053 = 0.0283 < 0.05.

1
—T,(x
192 4(X)

Also,

R, (x)|+ T L(X)|<0.023+0.04173 = 0.0647 > 0.05.

Therefore,
81
P(x)_—T( )+ T(x)+—T (x)+ T(x)
is the lowest-degree polynomial possible, i.e.

P,(x) = Bl Bl
192 24 6

THE END!
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