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4.   INTERPOLATION 

Given that  

 0( ), ny f x x x x     

and assuming that ( )f x  is single-valued, continuous and explicitly known, then the value of 

( )f x  corresponding to 0 1, ,..., nx x x  can easily be computed and tabulated. Suppose we want to 

reverse this process, that is, given the set of tabular values 0 0 1 1( , ), ( , ),..., ( , )n nx y x y x y  satisfying 

the relation ( ),y f x  where the explicit nature of ( )f x  is not known, we want to find a 

simpler function, say ( ),x  such that ( )f x  and ( )x agree at the set of tabulated points. Such 

a process is called interpolation. If ( )x is a polynomial, then the process is called polynomial 

interpolation. One reason for approximating unknown function by means of a polynomial is 

outlined in the following theorem: 

Theorem 4.1.1 (Weierstrass Approximation Theorem) 

Suppose that f  is defined and continuous on [ , ].a b  For each 0,   there exists a polynomial 

( ),p x  with the property that 

 ( ) ( ) , for all  [ , ].f x p x x a b     

Theorem 4.1.1 shows that given any function, defined and continuous on a closed and bounded 

interval, there exists a polynomial that is as “close” to the given function as desired. 

                                       y                                                                 ( )y f x     

                                                                                                           ( )y p x  

                                                                                                         ( )y f x          

                                                                                                           ( )y f x    

                                                                                               

                                                      

                                       0       a                                                       b               x   

 

The fact that derivatives and indefinite integrals for polynomials can easily be determined is 

another reason for using polynomials to approximate unknown function. 



2 
 

Taylor polynomial may not give a correct approximation because it is concentrated at a point 

0.x  Thus, moving away from 
0x  gives inaccurate approximations. 

Exercise: Check that using the Taylor polynomial for 
1

( )f x
x

  expanded about 1x   to  

   approximate 
1

(3)
3

f   gives inaccurate value. 

 

4. 1.  LAGRANGE INTERPOLATING POLYNOMIAL 

Suppose we have two distinct points 
0 0( , )x y  and 

1 1( , ),x y  and would like to approximate f  

for which 
0 0( )f x y  and 1 1( ) .f x y  Define the functions 

 01
0 1

0 1 1 0

( )   and  ( ) .
x xx x

L x L x
x x x x


 

 
  

The linear Lagrange interpolating polynomial through 
0 0( , )x y  and 1 1( , )x y  is  

 01
0 0 1 1 0 1

0 1 1 0

( ) ( ) ( ) ( ) ( ) ( ) ( )
x xx x

p x L x f x L x f x f x f x
x x x x


   

 
  

Example 4.1.1 

Determine the linear interpolating polynomial that passes through the points (2, 4)  and (5,1).  

Solution: 

1
0

0 1

0
1

1 0

0 0 1 1

5 1
( ) ( 5)

2 5 3

2 1
( ) ( 2)

5 2 3

1 1
( ) ( ) ( ) ( ) ( ) ( 5) (4) ( 2) (1)

3 3

6

x x x
L x x

x x

x x x
L x x

x x

p x L x f x L x f x x x

x

 
    

 

 
   

 

   
          

   

  

 

Questions: 1. What happens when you “swap” points? 

       2. What do the values 0( )p x  and 1( )p x  show? 

NOTE: Two points give a linear function (polynomial of degree 1). It follows that 1n  

points give a polynomial of degree at most .n   
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Suppose that we have 1n  points 0 0 1 1( , ( )), ( , ( )),..., ( , ( )).n nx f x x f x x f x   In this case, we first 

construct , ( ),n kL x  for 0,1,2,...,k n  with the property that 

 ,

1, if  
( )

0, if  
n k i

i k
L x

i k


 


 . 

For example, from Example 4.1.1, 

 

1,0 0 1,0

1,0 1 1,0

1,1 0 1,1

1,1 1 1,1

1
( ) (2) (2 5) 1

3

1
( ) (5) (5 5) 0

3

1
( ) (2) (2 2) 0

3

1
( ) (5) (5 2) 1.

3

L x L

L x L

L x L

L x L

    

    

   

   

  

To satisfy 
, ( ) 0, ,n k iL x i k  requires that  the numerator of 

, ( )n kL x contain the term 

 0 1 1 1( )( )...( )( )...( ),k k nx x x x x x x x x x        

and , ( ) 1, ,n k iL x i k  requires that the denominator be evaluated at .kx x  Thus, 

 0 1 1 1
,

0 1

( )( )...( )( )...( )
( ) ,

( )( )...( )

k k n
n k

k k k n

x x x x x x x x x x
L x

x x x x x x

     


  
  

for example, when 2,n    

 

1 2
2,0

0 1 0 2

0 2
2,1

1 0 1 2

0 1
2,2

2 0 2 1

( )( )
( )

( )( )

( )( )
( )

( )( )

( )( )
( ) .

( )( )

x x x x
L x

x x x x

x x x x
L x

x x x x

x x x x
L x

x x x x

 


 

 


 

 


 

 

The 
thn  Lagrange interpolating polynomial is defined in the following theorem: 

Theorem 4.1.2 

If 0 1, ,..., nx x x  are 1n  distinct numbers and f  is a function whose values are given at these 

numbers, then a unique polynomial ( )p x  at most n  exists with 
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 ( ) ( ),   for each 0,1,2,..., .k kf x p x k n    

This polynomial is given by  

0 ,0 1 ,1 1 , 1 ,

,

0

( ) ( ) ( ) ( ) ( ) ... ( ) ( ) ( ) ( )

( ) ( ),

n n n n n n n n

n

k n k

k

p x f x L x f x L x f x L x f x L x

f x L x

 



    


 

where for each 0,1,2,..., ,k n  

0 1 1 1
,

0 0

0

( )( )...( )( )...( )
( )

( )( )...( )

( )
.

( )

k k n
n k

k k k n

n
i

i k i
i k

x x x x x x x x x x
L x

x x x x x x

x x

x x

 




    


  







 

The numbers 0 1, ,..., nx x x  are called nodes. 

Example 4.1.2 

Use the nodes 0 12, 2.75x x   and 2 4x   to find the second Lagrange interpolating 

polynomial for 
1

( )f x
x

  and use it to approximate 
1

(3) .
3

f    

Solution: 

1 2
2,0

0 1 0 2

0 2
2,1

1 0 1 2

0 1
2,2

2 0 2 1

( )( ) ( 2.75)( 4) 2
( ) ( 2.75)( 4)

( )( ) (2 2.75)(2 4) 3

( )( ) ( 2)( 4) 16
( ) ( 2)( 4)

( )( ) (2.75 2)(2.75 4) 15

( )( ) ( 2)( 2.7
( )

( )( )

x x x x x x
L x x x

x x x x

x x x x x x
L x x x

x x x x

x x x x x x
L x

x x x x

   
    

   

   
     

   

   
 

 

0 2,0 1 2,1 2 2,2

2

5) 2
( 2)( 2.75)

(4 2)(4 2.75) 5

( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2 4 16 1 2
. ( 2.75)( 4) . ( 2)( 4) . ( 2)( 2.75)

2 3 11 15 4 5

1 64 1
( 2.75)( 4) ( 2)( 4) ( 2)( 2.75)

3 165 10

1 35 49
.

22 88 44

x x

p x f x L x f x L x f x L x

x x x x x x

x x x x x x

x x

  
 

   

         

        

  

2

At 3,

1 35 49 29
(3) (3 ) (3) 0.32955.

22 88 44 88

x

f
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Theorem 4.1.3 

Suppose the nodes in the interval [ , ]a b  are distinct and 1[ , ].nf C a b  Then, for each x  in 

[ , ],a b  a number ( )x  (generally unknown) between the nodes, and hence in ( , )a b  exists 

with  

 
 ( 1)

0 1

( )
( ) ( ) ( )( )...( ),

( 1)!

n

n

f x
f x p x x x x x x x

n



    


  

where ( )p x  is the thn  Lagrange interpolating polynomial.  

NOTE: The error formula given in Theorem 4.1.3 is similar to that given by the Taylor 

Theorem, only that this error uses information at the distinct numbers 0 1, ,..., .nx x x  

Example 4.1.3 

Find the error formula for the second Lagrange interpolating polynomial found in Example 

4.1.2 and find the maximum error when this polynomial is used to approximate ( )f x  for x  

in [2, 4].   

Solution: 

2 3 4

1 1 2 6
( ) ( ) , ( ) , ( ) .f x f x f x f x

x x x x
           

Thus, 

 
 (3)

0 1 2

( )
( ) ( ) ( )( )( ),

(2 1)!

f x
f x p x x x x x x x


    


  

where 

 

 

 

 

(3)

0 1 2 4

4

( ) 6
( )( )( ) ( 2)( 2.75)( 4)

3! 6 ( )

( ) ( 2)( 2.75)( 4), for  ( )   in   (2,4).

f x
x x x x x x x x x

x

x x x x x





 


       

    

  

The maximum value of  
4

( )x


on (2,4) is 
4 1

2 .
16

   We now determine the maximum value 

of the absolute value of the polynomial 
3 235 49

( ) ( 2)( 2.75)( 4) 22
4 2

g x x x x x x x         

2 35 49 7 7
( ) 0 3 0 or

2 2 3 2
g x x x x x           

   7 7
3 2

25 9
  or .

108 16
g g     

Hence, the maximum error is 
 (3) ( ) 1 9 9

( ) 0.0352.
3! 16 16 256

f x
g x
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4.2.  DIVIDED DIFFERENCES 

Suppose that ( )np x  is the thn  Lagrange interpolating polynomial that agrees with the function 

f  at distinct numbers 
0 1, ,..., .nx x x  The divided differences of f  with respect to 

0 1, ,..., nx x x

are used to express ( )np x  in the form 

 
0 1 0 2 0 1 0 1 1( ) ( ) ( )( ) ... ( )( )...( )n n np x a a x x a x x x x a x x x x x x              

for some constants 
0 1, ,..., .na a a  Note that 

 

0 0 0

1 0
1 0 1 1 0 1 1

1 0

( ) ( )

( ) ( )
( ) ( ) ( ) .

n

n

p x a f x

f x f x
p x a a x x f x a

x x

 


     



  

The zeroth divided difference of f  with respect to ,ix  denoted [ ],if x  is [ ] ( ).i if x f x  

The first divided difference of f  with respect to ix  and 1,ix   denoted 1[ , ],i if x x   is 

 1
1

1

[ ] [ ]
[ , ] .i i

i i

i i

f x f x
f x x

x x










  

The second divided difference is 

 1 2 1
1 2

2

[ , ] [ , ]
[ , , ] .i i i i

i i i

i i

f x x f x x
f x x x

x x

  
 







  

Similarly, the 
thk  divided difference relative to 1 2, , ,..., ,i i i i kx x x x    is 

 1 2 1 2 1
1 2

[ , ,..., ] [ , , ,..., ]
[ , , ,..., ] .i i i k i i i i k

i i i i k

i k i

f x x x f x x x x
f x x x x

x x

      
  







  

 

This process ends with a single 
thn  divided difference 

 1 2 0 1 1
0 1

0

[ , ,..., ] [ , ,..., ]
[ , ,..., ] .n n

n

n

f x x x f x x x
f x x x

x x





  

Thus, ( )np x  can be written as  

0 0 1 0 0 1 0 1 1

0 0 1 0 1 1

1

( ) [ ] [ , ]( ) ... [ , ,..., ]( )( )...( )

[ ] [ , ,..., ]( )( )...( ) (4.1)

n n n

n

k k

k

p x f x f x x x x f x x x x x x x x x

f x f x x x x x x x x x







       

    
 



7 
 

Equation (4.1) is known as Newton’s Divided-Difference formula. The table below outlines 

how divided differences from tabulated data can be determined: 

 

 

 

 

0 0

0 1

1 1 0 1 2

1 2 0 1 2 3

2 2 1 2 3

2 3

3 3

( ) 1 2 3

[ , ]

[ , , ]

[ , ] [ , , , ]

[ , , ]

[ , ]

st nd rdx f x

x f x

f x x

x f x f x x x

f x x f x x x x

x f x f x x x

f x x

x f x

  

 

Example 4.2.1 

Suppose we have the data (1,2), (2,4), (4,3), (5,0). Then, 

0 1 2 31, 2, 4, 5x x x x     and 0 1 2 3[ ] 2, [ ] 4, [ ] 3, [ ] 0f x f x f x f x      

 

 

 

 
 

 

0

0 1

1
2

1 0 1 2

5 5
6 6

1 2 0 1 2 3

1
2

2 1 2 3

2 3

3

( ) 1 2 3

1 2

4 2
[ , ] 2

2 1

2 5
2 4 [ , , ]

4 1 6

3 4 1
[ , ] [ , , , ] 0

4 2 2 5 1

3 5
4 3 [ , , ]

5 2 6

0 3
[ , ] 3

5 4

5 0

st nd rdx f x

f x

f x x

f x f x x x

f x x f x x x x

f x f x x x

f x x

f x
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3 0 0 1 0 0 1 2 0 1 0 1 2 3 0 1 2

2

2

3

( ) [ ] [ , ]( ) [ , , ]( )( ) [ , , , ]( )( )( )

5
2 2( 1) ( 1)( 2) 0( 1)( 2)( 4)

6

5 9 5
.

3 2 6

5 9 5
(3) (3) (3 ) 5.16.

3 2 6

p x f x f x x x x f x x x x x x x f x x x x x x x x x x

x x x x x x

x x

p

         

         

   

     

 

     

 

                    5                                          
3( )y p x   

                    4                

                    3                                   

                    2           

 

                     0          1        2          3         4 5                     x   

 

 

 

Example 4.2.2 

Write the divided difference table for the given values of x  and ( ).f x  Hence, find 4 ( ).p x   

x   ( )f x  

1.0   0.7651977   

1.3   0.6200860   

1.6   0.4554022   

1.9   0.2818186   

2.2  0.1103623  

 

Solution: 

Here 0 1 2 3 41.0, 1.3, 1.6, 1.9, 2.2x x x x x       

0 1 2 3 4[ ] 0.7651977, [ ] 0.6200860, [ ] 0.4554022, [ ] 0.2818186, [ ] 0.1103623f x f x f x f x f x       
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1 0
0 1

1 0

2 1
1 2

2 1

3 2
2 3

3 2

3 4

[ ] [ ] 0.6200860 0.7651977
[ , ] 0.4837057

1.3 1.0

[ ] [ ] 0.4554022 0.6200860
[ , ] 0.5489460

1.6 1.3

[ ] [ ] 0.2818186 0.4554022
[ , ] 0.5786120

1.9 1.6

[
[ , ]

f x f x
f x x

x x

f x f x
f x x

x x

f x f x
f x x

x x

f
f x x

 
   

 

 
   

 

 
   

 

 4 3

4 3

1 2 0 1
0 1 2

2 0

2 3 1 2
1 2 3

3 1

] [ ] 0.1103623 0.2818186
0.571521

2.2 1.9

[ , ] [ , ] 0.5489460 ( 0.4837057)
[ , , ] 0.1087338

1.6 1.0

[ , ] [ , ] 0.5786120 ( 0.5489460)
[ , , ] 0.0494

1.9 1.3

x f x

x x

f x x f x x
f x x x

x x

f x x f x x
f x x x

x x

 
  

 

   
   

 

   
   

 

3 4 2 3
2 3 4

4 2

1 2 3 0 1 2
0 1 2 3

3 0

2 3 4 1 2 3
1 2 3 4

433

[ , ] [ , ] 0.571521 ( 0.5786120)
[ , , ] 0.0118183

2.2 1.6

[ , , ] [ , , ] 0.0494433 ( 0.1087338)
[ , , , ] 0.0658783

1.9 1.0

[ , , ] [ , , ]
[ , , , ]

f x x f x x
f x x x

x x

f x x x f x x x
f x x x x

x x

f x x x f x x x
f x x x x

x

   
  

 

   
  

 




4 1

1 2 3 4 0 1 2 3
0 1 2 3 4

4 0

0.0118183 ( 0.0494433)
0.0680684

2.2 1.3

[ , , , ] [ , , , ] 0.0680684 0.0658783
[ , , , , ] 0.0018251

2.2 1.0

x

f x x x x f x x x x
f x x x x x

x x

 
 

 

 
  

 

  

 

 

 

 

0

0 1

1 0 1 2

1 2 0 1 2 3

2 1 2 3 0 1 2 3

2

( ) 1 2 3 4

1.0 0.7651977

[ , ] 0.4837057

1.3 0.6200860 [ , , ] 0.1087338

[ , ] 0.5489460 [ , , , ] 0.0658783

1.6 0.4554022 [ , , ] 0.0494433 [ , , , ] 0.0018251

[ ,

st nd rd thx f x

f x

f x x

f x f x x x

f x x f x x x x

f x f x x x f x x x x

f x



 

  

  

   

 

 

3 1 2 3 4

3 2 3 4

3 4

4

] 0.5786120 [ , , , ] 0.0680684

1.9 0.2818186 [ , , ] 0.0118183

[ , ] 0.5715210

2.2 0.1103623

x f x x x x

f x f x x x

f x x

f x

 

 

 



 

 

4 ( ) 0.7651977 0.4837057( 1.0) 0.1087338( 1.0)( 1.3)

0.0658783( 1.0)( 1.3)( 1.6) 0.0018251( 1.0)( 1.3)( 1.6)( 1.9)

p x x x x

x x x x x x x
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4.2.1.  Newton Forward- and Backward-Difference 

Let us try to write equation (4.1) in a simplified form when the nodes are arranged 

consecutively with equal spacing. Let 
1i ih x x   and 

0 .x x sh   Since the nodes are equally 

spaced, we have that 
0ix x ih   which implies that the difference 

ix x  is 

 
0 0( ) ( ) .ix x x sh x ih s i h         

Thus, equation (4.1) becomes 

2

0 0 0 1 0 1 2 0 1( ) ( ) [ ] [ , ] ( 1) [ , , ] ... ( 1)...( 1) [ , ,..., ].n

n n np x p x sh f x shf x x s s h f x x x s s s n h f x x x            

Since ( 1)...( 1) ! ,
s

s s s k k
k

 
     

 
we have that 

                    0 0 0 1

1

( ) ( ) [ ] ! [ , ,..., ]
n

k

n n k

k

s
p x p x sh f x k h f x x x

k

 
     

 
                                   (4.2) 

Equation (4.2) is known as Newton Forward-Difference formula. 

Newton Backward-Difference formula is obtained when the nodes are reordered from last to 

first. In this case, (4.1) can be written in the form  

 
1 1 2 1

1 0 1 1

( ) [ ] [ , ]( ) [ , , ]( )( )

... [ , ,..., ]( )( )...( ).

n n n n n n n n n n

n n n n

p x f x f x x x x f x x x x x x x

f x x x x x x x x x

   

 

     

    
  

As observed above, since the nodes are equally spaced, letting nx x sh   and 

( ) ,ix x s n i h     given 

 

2

1 1 2

1 0

( ) ( ) [ ] [ , ] ( 1) [ , , ]

... ( 1)...( 1) [ , ,..., ].

n n n n n n n n n

n

n n

p x p x sh f x shf x x s s h f x x x

s s s n h f x x x

  



     

    
  

If we use  

 
( 1)...( 1) ( 1)...( 1)

( 1) ,
! !

k
s s s s k s s s k

k k k

          
   

 
  

then the Newton Backward-Difference formula becomes  

                    0 1 0

1

( ) ( ) [ ] ( 1) ! [ , ,..., ]
n

k k

n n n k k

k

s
p x p x sh f x k h f x x x

k




 
     

 
                                (4.3) 
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NOTE: The Newton Forward- Difference formula is useful for interpolation near the beginning 

of a set of tabular values and the Newton Backward- Difference formula for interpolation near 

the end of a set of tabular values. 

Example 4.2.3 

Use Example 4.2.2 to approximate (1.1)f  and (2.0).f  

Solution: 

Since 1.1x   is near the first value 0 1.0,x   we use The Newton Forward- Difference formula. 

Here, 1.3 1.0 1.6 1.3 1.9 1.6 2.2 1.9 0.3.h            

      0

1
1.1 1.0 0.3 .

3
x x sh s s        

1
4 4 3

2

3 4

(1.1) (1.1) (1.0 (0.3))

1 1 1
0.7651977 (0.3)( 0.4837057) 1 (0.3) ( 0.1087338)

3 3 3

1 1 1 1 1 1 1
1 2 (0.3) (0.0658783) 1 2 3 (0.3) (0.0018251)

3 3 3 3 3 3 3

0.719646.

f p p   

 
      

 

      
            

      



  

To approximate (2.0),f  we use Newton Backward- Difference formula since 2.0x   is near 

the last value 2.2.x    

4

2
2.0 2.2 0.3

3
nx x sh x sh s s            

2
4 4 3

2

3 4

(2.0) (2.0) (2.2 (0.3))

2 2 2
0.1103623 (0.3)( 0.5715210) 1 (0.3) (0.0118183)

3 3 3

2 2 2 2 2 2 2
1 2 (0.3) (0.0680684) 1 2 3 (0.3) (0.0018251)

3 3 3 3 3 3 3

0.2238853.

f p p   

 
      

 

      
                 

      



  

 

 

 



12 
 

4.3.  SPLINE INTERPOLATION 

One disadvantage of using a single polynomial to approximate an arbitrary function on a closed 

interval is that high-degree polynomials can oscillate erratically, that is, a minor fluctuation 

over a small portion of the interval can induce large fluctuations over the entire range. An 

alternative approach is to divide the approximation interval into a collection of subintervals 

and construct a (generally) different approximating polynomial on each subinterval. This is 

called piecewise-polynomial or spline approximation. The splines, which will be denoted by 

( ),ns x  can be classified depending on the order of the polynomials. We will discuss linear, 

quadratic and cubic splines. Other high-order splines can be derived in a similar way with a 

greater increase in computational difficulty. 

4.3.1. Linear Splines 

The simplest spline is a linear spline which consists of joining a set of data points 

 0 0 1 1 0 1( , ( )), ( , ( )),..., ( , ( )), where ... ,n n nx f x x f x x f x x x x     

by a series of straight lines such that  

 

01
1 0 1 0 1

0 1 1 0

2 1
2 1 2 1 2

1 2 2 1

1
1 1

1 1

( ) ( ) ( ) , [ , ]

( ) ( ) ( ) , [ , ]
( )

( ) ( ) ( ) , [ , ]n n
n n n n n

n n n n

x xx x
s x f x f x x x x

x x x x

x x x x
s x f x f x x x x

S x x x x x

x x x x
s x f x f x x x x

x x x x


 

 

    
      

    
            

      


     

      
     

  

 

 

 

 

 

 

           0 1 2 3 4 nx x x x x x   
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Example 4.3.1 

Construct the linear spline interpolating the data below: 

1 0 1

0 1 3

x

y


  

Solution: 

 
1

2

( ), [ 1,0]
( )

( ), [0,1]

s x x
S x

s x x

 
 


  

where  

01
1 0 1

0 1 1 0

2 1
2 1 2

1 2 2 1

0 ( 1)
( ) ( ) ( ) ( 1) (0)

1 0 0 ( 1)

1
(0) (1) 1

1 1

1 0
( ) ( ) ( ) (0) (1)

0 1 1 0

1
(1) (

1

x xx x x x
s x f x f x f f

x x x x

x x
x

x x x x x x
s x f x f x f f

x x x x

x

         
          

           


   



         
          

         


 


3) 1 2

1

x
x 

  

1 , [ 1,0]
( )

1 2 , [0,1]

x x
S x

x x

  
  

 
 

 

NOTE: 

A drawback for linear splines is that ( )S x  is generally discontinuous at each interior nodes .ix  

For example, the derivative of ( )S x in Example 4.3.1 is discontinuous at 0.x    

 

4.3.2.  Quadratic Splines 

Suppose we want to join the set of data  

0 0 1 1 0 1( , ( )), ( , ( )),..., ( , ( )), where ... ,n n nx f x x f x x f x a x x x b      

by piecewise-quadratic polynomials. Then, 
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2

1 0 0 0 0 1

2

2 1 1 1 1 2

2

1 1 1 1

( ) , [ , ]

( ) , [ , ]
( )

( ) , [ , ]n n n n n n

s x a b x c x x x x

s x a b x c x x x x
S x

s x a b x c x x x x   

    


   
 

    

 

To ensure that ( )S x  interpolates the data, we set 

 
1 1( ) ( ), 1,2,...,

( ) ( ).

i i i

i i i

s x f x i n

s x f x

  


  

To ensure that ( )S x  is continuous and has continuous first-order derivative everywhere in 

[ , ],a b  we set 

 
1( ) ( ), 1,2,..., 1.i i i is x s x i n

      

 Since each is  has 3  unknown constants, ( )S x  will give a total of 3n  unknown coefficients. 

The condition 
1( ) ( )i i i is x s x

  imposes 1n  linear conditions and interpolation imposes 2n  

linear conditions giving a total of 3 1n  imposed linear conditions. This means that the 

conditions will give a system of 3 1n  linear equations in 3n  unknown coefficients, which 

may give infinite-many solutions. To get a unique solution, we need to impose another 

condition. The problem is to determine what additional condition to impose to make the 

solution unique, for example, 0 0( ) ( ) or  ( ) ( ).n nf x S x f x S x      One way to avoid this 

problem is to set the second derivative of 1s  to zero, i.e. 0 0.c    

Example 4.3.2 

Construct a quadratic spline interpolating ( 1,0), (0,1)  and (1,3).   

Solution: 

Since the interval [ 1,1]  has been divided into three intervals, we must have  

1 0 0

2

2 1 1 1

( ) , [ 1,0]
( )

( ) , [0,1]

s x a b x x
S x

s x a b x c x x

   
 

   
 

To ensure that ( )S x  interpolates the data, we have that 

 

1 0 0 1 1 2 1 1 2 2 2

1 0 0 0 0

( ) ( ), ( ) ( ) ( ) and ( ) ( )

( 1) ( 1) ( 1) 0

s x f x s x s x f x s x f x

s f a b a b
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2

1 2 0 0 1 1 1 0 1 1 0 1

2

2 1 1 1 1 1

(0) (0) (0) (0) (0 ) and (0) (0) 1

(1) (1) (1) (1 ) 3 2

s s a b a b c a a s f a a

s f a b c b c

           

       
 

To ensure that ( )S x  is continuous and has continuous first-order derivative everywhere in 

[ 1,1],  we have that 

1 1 2 1 0 1 1 1 0 1 1( ) ( ) (0)s x s x b b c x b b c         

Since 0 1,b   we get 0 1 1b b   and 1 1 12 1.b c c     

2

1 , [ 1,0]
( )

1 , [0,1]

x x
S x

x x x

  
  

  
 

Check that ( )S x interpolates the data and that 
1[ 1,1].S C   

 

4.3.3. Cubic Splines 

We consider a piecewise-polynomial approximation that uses cubic polynomials between 

each successive pair of nodes. 

Definition 4.3.1 

Given a function f  defined on [ , ]a b  and a set of nodes 0 1 ... ,na x x x b      a cubic 

spline interpolant S  for f  is a function that satisfies the following conditions: 

1. ( )S x  is a cubic polynomial, denoted ( ),jS x  on the interval 1[ , ]j jx x   for each 

0,1,2,..., 1j n    

2. ( ) ( )j j jS x f x  and 1 1( ) ( )j j jS x f x   for each 0,1,2,..., 1.j n    

3. 1 1 1( ) ( ),j j j jS x S x    for each 0,1,2,..., 2j n   

4. 1 1 1( ) ( ),j j j jS x S x  
   for each 0,1,2,..., 2j n   

5. 1 1 1( ) ( ),j j j jS x S x  
   for each 0,1,2,..., 2j n   

6. One of the following sets of boundary conditions is satisfied: 

(i) 0( ) ( ) 0 (Natural (or free) boundary)nS x S x    

(ii)  0 0( ) ( ) and ( ) ( ) (Clamped boundary)n nS x f x S x f x       

When natural boundary conditions occur, the spline is called Natural Spline and when 

clamped boundary conditions occur, we have Clamped Spline. 
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Using Definition 4.3.1, we will construct cubic splines of the form 

 
2 3( ) ( ) ( ) ( )j j j j j j j jS x a b x x c x x d x x         

for each 0,1,2,..., 1.j n   

 

Example 4.3.3 

1. Construct a natural cubic spline that passes through the points (1,2),  (2,3)  and (3,5).   

2. Construct a clamped cubic spline that passes through the points (1,2),  (2,3)  (3,5) and 

has (1) 2S   and (3) 1.S    

Solutions: 

From the given data, we have that 0 1 21, 2, 3x x x   , 0 ( ) [1,2]S x   and 1( ) [2,3]S x   where 

 2 3

0 0 0 0 0( ) ( 1) ( 1) ( 1)S x a b x c x d x        and 2 3

1 1 1 1 1( ) ( 2) ( 2) ( 2)S x a b x c x d x        

so that 

 
0

1

( ), [1,2]
( )

( ), [2,3]

S x x
S x

S x x


 


  

1. 0 0(1) (1) 2 (1) 2S f S a      

0 0 0 0 0 0 0 0

1 1

(2) (2) 3 (2) 3 1. (i)

Also, (2) 3 3

S f S a b c d b c d

S a

           

  
 

1 1 1 1 1 1 1 1 1(3) (3) 5 (3) ( ) 5 2 (ii)S f S S x a b c d b c d              

0 1 0 0 0 1 1 1

0 1 0 0

(2) (2) 2 (2 1) 3 (2 1) 2 (2 2) 3 (2 2)

2 3 0 (iii)

S S b c d b c d

b b c d

           

    
   

0 1 0 0 1 1

0 1 0

(2) (2) 2 6 (2 1) 2 6 (2 2)

3 0 (iv)

S S c d c d

c c d

       

   
 

 

Using natural conditions, we get 

0

0 0 0

1 1 1 1

( ) ( ) 0 (1) (3) 0

2 6 (1 1) 0 0

And  2 6 (3 2) 0 3 0 (v)

nS x S x S S

c d c

c d c d
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Solving the system formed by equations (i) - (v), we get 

0 0

1 1 1

0 1 0

1 0

1 1

1

2

3 0

3 0

3 0

b d

b c d

b b d

c d

c d

 

  

   

  

 

 

0

1

1

0

1

11 0 0 1 0

20 1 1 0 1

01 1 0 3 0

00 0 1 3 0

00 0 1 0 3

b

b

c

d

d

    
    
    
     
    

     
    
    

  

11 0 0 1 0

20 1 1 0 1

01 1 0 3 0

00 0 1 3 0

00 0 1 0 3

 
 
 
 
 

 
 
 

3 3 1

5 4 5

r r r

r r r

 

 
 

11 0 0 1 0

20 1 1 0 1

10 1 0 2 0

00 0 1 3 0

00 0 0 3 3

 
 
 
 
 

 
 
 

3 2 3

1
5 53

r r r

r r

 


 

11 0 0 1 0

20 1 1 0 1

10 0 1 2 1

00 0 1 3 0

00 0 0 1 1

 
 
 
 
 

 
 
 

4 3 4r r r   

11 0 0 1 0

20 1 1 0 1

10 0 1 2 1

10 0 0 5 1

00 0 0 1 1

 
 
 
 
 
 
 
 

1
5 5 45

r r r   

4 1
5 5

0 11 0 0 1

1 20 1 1 0

1 10 0 1 2

1 10 0 0 5

0 0 0 0

 
 
 
 
 
 
  

 

1 1

0 1 0

4 1 1

5 5 4

1
5 1

4

d d

d d d

     

   

  

1 0 1 1

3
2 1

4
c d d c      

1 1 1 1

3
2

2
b c d b      

0 0 0

3
1

4
b d b     

33 1
4 4

2 33 3 1
2 4 4

2 ( 1) ( 1) , [1,2]
( )

3 ( 2) ( 2) ( 2) , [2,3]

x x x
S x

x x x x

     
  

      

  

 

2. The first five conditions are as in part 1, i.e. 

0 0

0 1 0 0 0 0 0 0 0 1 1

1 1 1 1 1 1 1 1

(1) 2

(2) (2) 3 3 1 and (2) 3 3

(3) 5 5 2

S a

S S a b c d b c d S a

S a b c d b c d

 

             

         

  

0 1 0 1 0 0(2) (2) 2 3 0S S b b c d        and 
0 1 0 1 0(2) (2) 3 0S S c c d       
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Using clamped condition, we get 

0 0 0 0 0 0( ) ( ) (1) 2 2 (1 1) 3 (1 1) 2 2S x f x S b c d b              

1 1 1 1 1 1And ( ) ( ) (3) 1 2 (3 2) 3 (3 2) 1 2 3 1.n nS x f x S b c d b c d                

Thus, 

1

0

1

0

1

10 1 0 1 0

21 0 1 0 1

21 2 0 3 0

00 1 1 3 0

11 0 2 0 3

b

c

c

d

d

    
    
    
      
    

     
    
    

  

10 1 0 1 0

21 0 1 0 1

21 2 0 3 0

00 1 1 3 0

11 0 2 0 3

 
 
 
  
 

 
 
 

1 2r r

21 0 1 0 1

10 1 0 1 0

21 2 0 3 0

00 1 1 3 0

11 0 2 0 3

 
 

 
  
 

 
 
 

 

3 3 1

5 5 1

4 2 4

r r r

r r r

r r r

 

 

 

 

21 0 1 0 1

10 1 0 1 0

00 2 1 3 1

10 0 1 2 0

10 0 1 0 2

 
 

 
 
 

 
  

3 3 2

5 5 4

2r r r

r r r

 

 
 

21 0 1 0 1

10 1 0 1 0

20 0 1 1 1

10 0 1 2 0

00 0 0 2 2

 
 

 
 
 

 
 
 

4 3 4

1
5 52

r r r

r r

 


  

21 0 1 0 1

10 1 0 1 0

20 0 1 1 1

30 0 0 3 1

00 0 0 1 1

 
 

 
 
 
 
 
 

1
5 5 43

r r r   

2
3

1 21 0 1 0

0 10 1 0 1

1 20 0 1 1

1 30 0 0 3

10 0 0 0

 
 

 
 
 
 
  

         

 

1 1

2 3
1

3 2
d d        

0 1 0

1 0 1 1

3
3 3

2

2 2

d d d

c d d c

   

    

  

0 0 0

1 1 1 1

5
1

2

3
2

2

c d c

b c d b

     

    

 

 

2 35 3
2 2

2 33 3
2 2

2 2( 1) ( 1) ( 1) , [1,2]
( )

3 ( 2) 2( 2) ( 2) , [2,3]

x x x x
S x

x x x x
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4.4.  LEAST-SQUARES APPROXIMATION 

Suppose that a mathematical equation is to be fitted to experimental data by plotting the data 

on a graph paper and then passing a line through the data points. The method of least squares 

endeavours to determine the best approximating line by minimising the sum of the squares of 

error, i.e. if ( , ), 1,2,3,...,i ix y i n   are data points and ( )Y f x  is the curve to be fitted to 

this data, then the error is  

 ( )i i ie y f x    

and the sum of the squares of the errors is 

                        
2 2 2

1 1 2 2[ ( )] [ ( )] ... [ ( )] .n nS y f x y f x y f x                                      (4.4) 

Then the method of least-squares involves minimising .S   

Straight line: Let 0 1Y a a x   be the straight line to be fitted to the given data. Then, 

      2 2 2

1 0 1 1 2 0 1 2 0 1[ ] [ ] ... [ ]n nS y a a x y a a x y a a x            

and minimising S  implies that 

      1 0 1 1 2 0 1 2 0 1

0

0 2[ ] 2[ ] ... 2[ ] 0n n

S
y a a x y a a x y a a x

a


            


  

        0 1

1

2 [ ] 0
n

i i

i

y a a x


                                                                            (4.5) 

and  

     1 1 0 1 1 2 2 0 1 2 0 1

1

0 2 [ ] 2 [ ] ... 2 [ ] 0n n n

S
x y a a x x y a a x x y a a x

a


            


 

        0 1

1

2 [ ] 0.
n

i i i

i

x y a a x


                                                                            (4.6) 

Simplifying (4.5) and (4.6) leads to what are known as normal equations: 

 0 1 0 1

1 1 1 1

2 [ ] 0 0
n n n n

i i i i

i i i i

y a a x y a a x
   

            

                        0 1

1 1

0
n n

i i

i i

y na a x
 

                                                             (4.7) 
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and  

  2

0 1 0 1

1 1 1 1

2 [ ] 0 0
n n n n

i i i i i i i

i i i i

x y a a x x y a x a x
   

            

                                  
2

0 1

1 1 1

n n n

i i i i

i i i

x y a x a x
  

                                                          (4.8) 

Solving (4.7) and (4.8) simultaneously, we get 

 

1 1 1

1 2

2

1 1

2

1 1 1 1

0 2

2

1 1

.

n n n

i i i i

i i i

n n

i i

i i

n n n n

i i i i i

i i i i

n n

i i

i i

n x y x y

a

n x x

x y x y x

a

n x x

  

 

   

 

  
   
  

   
   

   

     
     

     
   

   
   

  

 

   

 

  

Letting 1

n

i

i

x

x
n




 and 1 ,

n

i

i

y

y
n




we can rewrite the formulas for 0a  and 1a  as 

1
1

2 2

1

2

1 1

0
2 2

1

. .

.

.

.

n

i i

i

n

i

i

n n

i i i

i i

n

i

i

x y n x y

a

x n x

y x x x y

a

x n x





 









   
   

   







 



 

Clearly, 

2

2

0

0
S

a





 and  

2

2

1

0
S

a





 showing that these values of 0a  and 1a  provide a minimum 

of .S   

Example 4.4.1 

The table below gives the temperature (in )oT C  and length (in )l mm  of a heated rod. If 

,l a bT   find the best values of a  and .b   

20 30 40 50 60 70

800.3 800.4 800.6 800.7 800.9 801.0

T

l
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Solution: 

2

2

20 800.3 400 16006

30 800.4 900 24012

40 800.6 1600 32024

50 800.7 2500 40035

60 800.9 3600 48054

70 801.0 4900 56070

Sum 270 4803.9 13900 216201

6, 270, 4803.9, 13900, 216201

T l T Tl

n T l T Tl        

  

2 2

2

2

2

2

6(216201) (270)(4803.9)
0.014571428 0.0146

6(13900) (270)

(13900)(4803.9) (216201)(270)

6(13900) (27

n Tl T l

b

n T T

T l Tl T

a

n T T

  
   

     
   

   
   

     
     

      
   

   
   

  

 

   

 
2

799.9942857 800
0)

800 0.0146l T

 

  

 

 

Polynomial of the 
thk degree:  Let 

2

0 1 2 ... k

kY a a x a x a x      be the polynomial of the 

thk order to be fitted to the data ( , ), 1,2,..., .i ix y i n  Then, we minimise 

   

 

2 2 2 2

1 0 1 1 2 1 1 2 0 1 2 2 2 2

2 2

0 1 2

[ ... ] [ ... ]

... [ ... ]

k k

k k

k

n k k k k

S y a a x a x a x y a a x a x a x

y a a x a x a x

            

     
 

by setting 0, for 0,1,2,..., .
i

S
i k

a


 


 This leads to the following 1k   normal equations in 

1k   unknowns: 
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2

0 1 2

1 1 1 1

2 3 1

0 1 2

1 1 1 1 1

1 2 2

0 1 2

1 1 1 1 1

...

...

...

n n n n
k

i i k i i

i i i i

n n n n n
k

i i i k i i i

i i i i i

n n n n n
k k k k k

i i i k i i i

i i i i i

na a x a x a x y

a x a x a x a x x y

a x a x a x a x x y

   



    

 

    

    

    

    

   

    

    

  

 

Example 4.4.2 

Fit a polynomial of the second degree to the data points given below: 

0 1.0 2.0

1.0 6.0 17.0

x

y
  

Solution: 

Let 
2

0 1 2 ,Y a a x a x    where 3n   and 2k  . The normal equations are 

2

0 1 2

1 1 1

2 3

0 1 2

1 1 1 1

1 2

0 1 2

1 1 1 1

n n n

i i i

i i i

n n n n

i i i i i

i i i i

n n n n
k k k k

i i i i i

i i i i

na a x a x y

a x a x a x x y

a x a x a x x y

  

   



   

  

  

  

  

   

   

  

2

0 1 2

1 1 1

2 3

0 1 2

1 1 1 1

2 3 4 2

0 1 2

1 1 1 1

3
n n n

i i i

i i i

n n n n

i i i i i

i i i i

n n n n

i i i i i

i i i i

a a x a x y

a x a x a x x y

a x a x a x x y

  

   

   

  

  

  

  

   

   

 

2 3 4 2

0 1 0 0 0 0 0

1 6 1 1 1 6 6

2 17 4 8 16 34 68

: 3 24 5 9 17 40 74

x y x x x xy x y



  

Using normal equations, we get a system of linear equations 

0 1 2

0 1 2

0 1 2

3 3 5 24

3 5 9 40

5 9 17 74

a a a

a a a

a a a

  

  

  

 

whose solution is 0 11, 2a a   and 2 3.a   

21 2 3Y x x      
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Exponential function:  Let the curve 1

0

a x
y a e  be fitted  to the data ( , ), 1,2,..., .i ix y i n  

Then, taking natural logarithms on both sides, we get 

 1

0 0 1ln ln ln ,
a x

y a e a a x    

which can be written as  

 
0 1 ,Y A A x    

where 0 0ln , lnY y A a  , 
1 1A a  and this can be treated as a straight line problem. 

Example 4.4.3 

Fit an exponential function to the data given in the table below: 

1.00 1.25 1.50 1.75 2.00

5.10 5.79 6.53 7.45 8.46

x

y
  

Solution: 

We transform 1

0

a x
y a e  into 0 1 ,Y A A x   where 0 0ln , lnY y A a  , 1 1A a and 5.n    

0 1

2

0 1

5 ln

ln

i i i

i i i i i i

A A x Y y

A x A x x Y x y

  

  

  

   
  

2ln ln

1.00 5.10 1.629 1.00 1.629

1.25 5.79 1.756 1.5625 2.195

1.50 6.53 1.876 2.2500 2.814

1.75 7.45 2.008 3.0625 3.514

2.00 8.46 2.135 4.0000 4.270

: 7.5 9.404 11.875 14.422

x y y x x y



  

 

0 1

2

0 1

5 ln

ln

i i

i i i i

A A x y

A x A x x y

 

 

 

  
       

0 1

0 1

5 7.5 9.404

7.5 11.875 14.422

A A

A A
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0 0
1 0 0

9.404 5 9.404 5
7.5 11.875 14.422 1.1224

7.5 7.5

A A
A A A

  
      

 
 

Since 
0 0ln ,A a  we have that 

1.1224

0 3.072a e    

              
1 1

0.5056

9.404 5(1.1224)
0.5056

7.5

3.072 x

A a

y e


   

 

  

 

 

4.4.1.  Weighted Least-Squares Approximation 

If the given data is not of equal quality, the fit by minimising the sum of squares of the errors 

may not be very accurate. To improve the fit, a more general approach is to minimise the 

weighted sum of squares of the errors taken over all data points 

 

2 2 2

1 1 1 2 2 2

2 2 2

1 1 2 2

[ ( )] [ ( )] ... [ ( )]

... .

n n n

n n

S w y f x w y f x w y f x

w e w e w e

      

   
  

The 'siw  are prescribed positive numbers and are called weights. A weight is prescribed 

according to the relative accuracy of a data point. If all the data points are accurate, we set 

1iw   for all .i   

 

Example 4.4.4 

In Example 4.4.1 we got the linear fit 800 0.0146l T  . Suppose that the point (60,800.9)  

is  known to be more reliable than the others. Then we prescribe a weight (say 10)  

corresponding to this point only and set 1,iw   for all other points so that 

 

0 1

1 1 1

2

0 1

1 1 1

n n n

i i i i i

i i i

n n n

i i i i i i i

i i i

a w a wT w l

a wT a wT wTl
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2 2

20 800.3 1 400 20 800.3 16006 400 16006

30 800.4 1 900 30 800.4 24012 900 24012

40 800.6 1 1600 40 800.6 32024 1600 32024

50 800.7 1 2500 50 800.7 40035 2500 40035

60 800.9 10 3600 600 8009.0 48054 36000 480540

70 801.0 1 4900 70 801

T l w T wT wl Tl wT wTl

.0 56070 4900 56070

: 270 4803.9 15 13900 810 12012 216201 46300 648687

  

0 1

1 1 1

2

0 1

1 1 1

n n n

i i i i i

i i i

n n n

i i i i i i i

i i i

a w a wT w l

a wT a wT wTl

  

  

 

 

  

  
     

0 1

0 1

15 810 12012

810 46300 648687

a a

a a

 

 
  

0
1

0
0 0

1

12012 15

810

12012 15
810 46300 648687 800

810

12012 15(800)
0.0148

810

800 0.0148

a
a

a
a a

a

l T




 
     

 


  

  

 

Note that the first fit gives  

 (60) 800 0.0146(60) 800.876l      

and the weighted fit gives 

(60) 800 0.0148(60) 800.888l     

Note that the approximation becomes better when the weight is increased.  

 

4.4.2.  Least-Squares for Continuous Functions 

We discuss the least squares approximation of a continuous function on an interval [ , ].a b  

Let 0 1( ) ... n

nY x a a x a x     be chosen to minimise

  
2

0 1( ) ( ) ...
b

n

n
a

S w x y x a a x a x dx     
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The necessary conditions for a minimum yield 

 

 

 

0 1

0 1

0 1

2 ( ) ( ) ... 0

2 . ( ) ( ) ... 0

2 ( ) ( ) ... 0

b
n

n
a

b
n

n
a

b
n n

n
a

w x y x a a x a x dx

x w x y x a a x a x dx

x w x y x a a x a x dx

      
 

      
 

      
 







 

Rearrangement of terms gives the following normal equations: 

 

2

0 1 2

2 3 1

0 1 2

1 2

0 1 2

( ) . ( ) . ( ) ... . ( ) ( ) ( )

. ( ) . ( ) . ( ) ... . ( ) . ( ) ( )

. ( ) . ( ) . ( )

b b b b b
n

n
a a a a a

b b b b b
n

n
a a a a a

b b b
n n n

a a a

a w x dx a x w x dx a x w x dx a x w x dx w x y x dx

a x w x dx a x w x dx a x w x dx a x w x dx x w x y x dx

a x w x dx a x w x dx a x w x



 

    

    

 

    

    

  
2... . ( ) . ( ) ( )

b b
n n

n
a a

dx a x w x dx x w x y x dx   

  

 

Example 4.4.5 

Find the least-squares approximating polynomial of degree two for the function ( ) sinf x x  

on the interval [0,1]  with respect to the weight function ( ) 1.w x    

Solution: 

The normal equations for 
2

0 1 2( )Y x a a x a x    are  

1 1 1 1
2

0 1 2
0 0 0 0

1 1 1 1
2 3

0 1 2
0 0 0 0

1 1 1 1
2 3 4 2

0 1 2
0 0 0 0

sin

sin

sin

a dx a x dx a x dx xdx

a x dx a x dx a x dx x xdx

a x dx a x dx a x dx x xdx







  

  

  

   

   

   

        

0 1 2

0 1 2

2

0 1 2 3

1 1 2

2 3

1 1 1 2

2 3 4

1 1 1 4

3 4 5

a a a

a a a

a a a x









  

  


  

 

Solving this system gives 

 

2

0 3

2

1 3

2

2 3

2

12 120
0.050465

720 60
4.12251

60 720
4.12251

( ) 0.050465 4.12251 4.12251

a

a

a

Y x x x
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4.5.   CHEBYSHEV POLYNOMIALS AND ECONOMISATION OF POWER SERIES 

Let 
1 2, ,..., nf f f  be values of the given function and 

1 2, ,..., n    be the corresponding values 

of the approximating function. Then the error vector ,e  where the components of e  are given 

by .i i ie f    The approximation may be chosen using least-squares method or may be 

chosen in such a way that the maximum component of e  is minimised. The later method leads 

to Chebyshev polynomials. 

4.5.1.  Chebyshev Polynomials 

The Chebyshev polynomial of degree n  over the interval [ 1,1]  is defined by 

 
1( ) cos( cos )nT x n x   

from which we get the relation 

 ( ) ( ).n nT x T x   

Letting 
1cos x    implies that cos x   so that  

 ( ) cos .nT x n   

Hence, 0 ( ) 1T x   and 1( ) .T x x  Using the trigonometric identity 

      cos ( 1) cos ( 1) 2cos cosn n n         

we have that 

 
1 1

1 1

( ) ( ) 2 ( )

( ) 2 ( ) ( )

n n n

n n n

T x T x xT x

T x xT x T x

 

 

 

  
  

which is the recurrence relation that can be used to complete successively all ( )nT x  since we 

know 0 ( )T x  and 1( ).T x  

 

0

1

2

2 1 0

2 3

3 2 1

4 2

4

5 3

5

6 4 2

6

( ) 1

( )

( ) 2 ( ) ( ) 2 1

( ) 2 ( ) ( ) 2 2 1 4 3

( ) 8 8 1

( ) 16 20 5

( ) 32 48 18 1

T x

T x x

T x xT x T x x

T x xT x T x x x x x x

T x x x

T x x x x

T x x x x
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The graphs of the first four Chebyshev polynomials are: 

 

 

Note that the coefficient of 
nx  in ( )nT x  is always 

12n
 and ( ) 1, for 1, 1 1.nT x n x      

If ( )nP x  is a monic polynomial such that 
1( ) 2 ( ),n

n nP x T x  then ( )nP x  has the least upper 

bound 
12 n

 since ( ) 1nT x  . Thus, in Chebyshev approximation, the maximum error is kept 

down to a minimum. 

It is possible to express powers of x  in terms of Chebyshev polynomials. Then 

  

 

 

 

0

1

2

0 2

3

1 3

4

0 2 4

5

1 3 5

6

0 1 4 6

1 ( )

( )

1
[ ( ) ( )]

2

1
3 ( ) ( )

4

1
3 ( ) 4 ( ) ( )

8

1
10 ( ) 5 ( ) ( )

16

1
10 ( ) 15 ( ) 6 ( ) ( )

32

T x

x T x

x T x T x

x T x T x

x T x T x T x

x T x T x T x

x T x T x T x T x





 

 

  

  

   

  

Chebyshev polynomials can be used to reduce the degree of an approximating polynomial 

with a minimal loss of accuracy. This is known as economisation of power series. 
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Example 4.5.1 

Economise the power series 

a) 
3 5 7

sin
6 120 5040

x x x
x x      

while keeping the error less than 0.005.  

b) 
2 3 4

1
2! 3! 4!

x x x x
e x       

while keeping the error less than 0.05.   

Solution: 

a) Since 
1

0.000198...
5040

  is the first value which is numerically less than 0.005,  

we have that 

3 5

sin .
6 120

x x
x x    

We now express 5( )P x  in terms of Chebyshev polynomials. 

   1 1 3 1 3 5

1 3 5

1 1 1 1
( ) ( ) . 3 ( ) ( ) . 10 ( ) 5 ( ) ( )

6 4 120 16

169 5 1
( ) ( ) ( ).

192 128 1920

nP x T x T x T x T x T x T x

T x T x T x

     

  

  

Since 
1

0.00052083 0.005,
1920

  the economised power series is  

 

 3

3 1 3

3

169 5 169 5
( ) ( ) ( ) 4 3

192 128 192 128

383 5
.

384 32

P x T x T x x x x

x x

    

 

  

 

b) Remember that the upper bound of the error is 

 

(5) 5

4

( ( ))
( ) 0.023

5! 120

f x x e
R x


    for 1 1.x    

 We now express 4 ( )P x  in terms of Chebyshev polynomials. 
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4 0 1 0 2 1 3 0 2 4

0 1 2 3 4

1 1 1 1 1 1 1
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

4 4 8 24 64 48 192

81 9 13 1 1
( ) ( ) ( ) ( ) ( )

64 8 48 24 192

P x T x T x T x T x T x T x T x T x T x

T x T x T x T x T x

        

    

  

But 
4

1 1
( ) 0.0053.

192 192
T x    Thus, 

4 4

1
( ) ( ) 0.023 0.0053 0.0283 0.05.

192
R x T x      

Also, 

 
4 3

1
( ) ( ) 0.023 0.04173 0.0647 0.05.

24
R x T x       

Therefore,  

 3 0 1 2 3

81 9 13 1
( ) ( ) ( ) ( ) ( )

64 8 48 24
P x T x T x T x T x      

is the lowest-degree polynomial possible, i.e. 

 
2 3

3

191 13 1
( )

192 24 6
P x x x x      

 

THE END! 


