5. NUMERICAL DIFFERENTIATION

Numerical differentiation can be applied to engineering problems with functions whose

derivatives cannot be computed analytically or when a set of values (x.,y;), i=0,1,2,...,n are

given.

To approximate f'(x,), suppose that x, € (a,b), where f eC?[a,b], and that x, —x, = h, for

some h=0 that is sufficiently small to ensure that x, €[a,b]. We express f in terms of the

Lagrange polynomial with its error term:

100 =R+ (1) (x-x),
where
R0 = f ()L (0+ F (L)
. .
L= ==
e P(O= f(xo)(:xo—h)+ f(x0+hh)(x—x0)
_ f(xo)_(;:—xo)+ _— f(x0+hh)(x—x0)
_ [f(x, +hr2— f(%,)] (X=x)+ f (%)
Thus,

£ = LHO D=0 () 4 1)+ E0D ey, -1

h

- f’(X) _ [f (XO +h)_ f(XO)] + 2(X_X0)_h f”(f(X))-i- (X_XO)(X_XO _h) %( f !r(g(x)))
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= 11(x) = DO B o)

Therefore, for small values of h,

F O +h) = %)

F'(%) = -

2

(5.1)



with an error bounded by w where M is the upper bound of | f"(&(x,)) | for &(x,)

between x, and x, +h.

Formula (5.1) is known as forward-difference formula if h>0 and backward-difference

formula if h<O0.

Example 5.1.1

A design engineer must make estimates of evaporation rates when the amount of needed
water to meet irrigation demands is required. One input to frequently used formula for
estimating evaporation rates is the slope of the saturation vapour pressure curve at air

temperature T. The table below shows values of saturation vapour pressure (e,) in mmHg

as a function of temperature T in °C:

T(°C) e, (mmHg)
20 17.53
21 18.65
22 19.82
23 21.05
24 22.37
25 23.75

Estimate evaporation rate at 22°C using
(a) forward-difference formula  (b) backward-difference formula
Solutions:

(&) Using forward-difference, we take x, =22 and x, =23 so that h=x, —x, =1. Then

& (Xo + h) —€ (Xo)

= e./(22) ~
. s (22)

=21.05-19.82=1.23 mmHg /° C.

' e, (23) —e (22

e/ (%)~ &) 622
1

(b) ) Using backward-difference, we take x, =22 and x, =21 sothat h=x, —x, =—1. Then

& (Xo + h) —& (Xo)
h

e,(21)—e,(22) 18.65-19.82

= e (22) ~
s (22) 1 1

=1.17 mmHg/° C.

es' (XO) ~
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If {x,,%,...,x,} are (n+1) distinct numbers in some interval I, then are (n+1)—point

formula for approximating f'(x;) is

() =3 F LX)+ a2 T -

k#]
For example, if n=2, we get the 3— point formulas as follows:
X, =% =h, % -x=h=x,=x,+h+h=X,+2h

Lo( )_ (X Xi)(x Xz) LO’(X):ZX_Xl_XZ

(X —X) (% —X;) 2h?

(X=X, )(X=X,) _2x Xo — X,
L= ey T

(X—=%)(X—x) Py 2X—Xg =X
L= oy ST

’ , ! £ ) 2
F06) = F )Ly (%) + F )L (%) + F (%)L, (xj>+yﬂ(xj -X)
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- (xo){zx"_—rfi_“} f (x{%} f (xz{%}
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(é(X ) H(

k¢J
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=%[—§ ) +2106)— (xz)}h—; £(E(0)

1

:H{_g FOu) #2106 +h) -3 101 +2h)}+“—32 £7(E (%) 52)

Doing the same for x; =X =X, +h and X; =X, = X, + 2h, we get
! ! h "
Fi(y)=f (Xo+h):_{__f(x )+ 1% +2h)} — (&%) (5.3)

£/(x,) = f'(x, +2h) = E{E f (%) =2 (% +h) +E f (%, + 2h)}uh—32 f"(£(x,)) (5.4)



Substituting x, for x,+h in (5.3), we get

h2

) =5 3 10 D=1+ 10 1) 1) |- 17(600)

1
h
! 1 h2 "
= f (Xo):%[_f(xo_h)"‘ f(Xo+h)]—Ef (£(x))
and substituting x, for x, +2h in (5.4), we get

, 11 3 h® .
f'(x, +2h) =+ Ef((xo+2h)—2h)—2f((x0+2h)—h)+E f(x, +2h) +€f (&(x,))

= f'(x,) = 2_lh[ f(x,—2h)—4f(x,—h)+3f (XO)]+%2 f"(&(x,))

Note that equation (5.4) can be obtained from (5.2) by replacing h with —h. Thus, we have

only two formulas:
’ 1 h2 n
f (x0)=ﬁ[—3f(xo)+4f(xo+h)— f(x0+2h)]+?f (E(%)), (5.5)
where &£(x,) lies between x, and x, +h and

(%) = 2_1h[ FOG+h) =06 - h)]—% f(S(x)) (5.6)

where £(x) lies between x, —h and x, +h.

Formula (5.5) is known as three-point endpoint formula and (5.6) is known as three-point
midpoint formula. Thus,

f'(%,) zz—lh[—Bf (%) +4 1 (%, +h)— f(x, +2h)]

f'(xo>z2—1h[f<xo+h>—f(xo—h>]

We can use the same approach to get the following five-point formulas:

5—point endpoint formula:

4
f'(x,) :%[—ZSf (%) +48f (x, +h)—36f (x, +2h) +16 f (x, +3h) -3 f (X, +4h)]+h€ fO&)

where & lies between x, and x, +4h



= f'(x,) z%[—%f (Xo) +48f (x, +h) =36 f (x, +2h) +16 f (x, +3h) —3f (x, + 4h)]

5—point Midpoint formula:

' 1 h?
F0x6) = oo [ 0 = 20) =81 06 ~h) +81 (% +h) = £ 0+ 20)] + 2 19(&)
where & lies between x, —2h and x, +2h

= f'(xo)zﬁ[f(xo—2h)—8f(xo—h)+8f(x0+h)— f (X, +2h)]

NOTE: (1) Midpoint formula gives more accurate values than endpoint formula.
(2) Using more evaluation points produces greater accuracy.

Example 5.1.2

The table below shows values for f(x) = xe*. Use all the applicable three-point and five-

point formulas to approximate f'(2.0).

X f(x)
1.8 10.889365
1.9 12.703199
2.0 14.778112
2.1 17.148957
2.2 19.855030

Solutions:

With x, =2.0 and h=0.1, we can use 3—point endpoint formula so that

X, +h=21and x,+h=2.2 to get

(%)~ = [ _ (2.0)~ —= [ _
F0) 5 [3106) +41 00 )= (6 + 2] = 1(20) > 5 0 [-31 20) +41 (2.0~ 1(22)]

= 0—12[—3(14.778112) +4(17,148957) —19.855030] = 22.032310.

With h =-0.1, the 3—point endpoint formula becomes



1

£(2.0) ~ T

[-3f(2.0)+4f(1.9)— f(L8)]

= %[—3(14.778112) +4(12.703199) —10.889365] = 22.054525.

With h=0.1, the 3—point midpoint formula gives

£1(2.0) ~ — SIT@D-fL)= 0—12[17.148957 ~12.703199] = 22.22879.

2(0.1)

With h=0.2, the 3—point midpoint formula becomes

£(2.0) ~

1
202 [f(2.2)- f(1.8)] = 22.4141625.

(The 3—point midpoint formula gives the same values when h=-0.1 or h=-0.2)
To use the 5—point endpoint formula with h=0.1, we need
X, =20, x,+h=2.1 x,+2h=2.2, X, +3h=2.3 and x, +4h=2.4.
To use the 5—point midpoint formula with h=0.1, we need
X, —2h=1.8, x,—h=1.9, x,+h=2.1and x, +2h=2.2.

Therefore, based on the data given in the table, only the 5—point midpoint formula can be
used.

(%) z%[ £ (X, —2h) =8 F (%, —h) +8 (X, +h) — f (X, +2h)]

1
- 12(0.2)

[(L.8)—8f(L9)+8f(2.1) - f(2.2)]

= % [10.889365—8(12.703199) + 8(17.148957) —19.855030]
=22.166999.

Note that the true value is f'(2) = (2+1)e* = 22.167168 showing that the 5— point formula

gives a more accurate approximate than other formulas.
A

We can derive formulas for higher order derivatives. For example, it can be shown that the
second derivative midpoint formula is



(%) = %[f (% =h) =21 (%) + T O + h)]—;]—2 FOE)), (5.7)

where X, —h < &(X) < X, +h, so that
" 1
f (Xo)zp[f(xo_h)_Zf(Xo)"‘f(xo+h)]

Example 5.1.3

Approximate f"(2.0) from Example 5.1.2.
Solutions:
With h=0.1(or h=-0.1), we get

1
(0.2)2

£(x,) z%[f (%, —h)=2F (%) + f (%, +h)]= f"(2.0) ~ [(L.9)—2f(2.0)+ f(2.1)]

= ﬁ[12.703199 —2(14.778112) +17.148957]
= 29.5932.

With h=0.2,

1 1
f"(2.0) » — [ (1.8) -2 (2.0) + f (2.2)] = ——[12.703199 - 2(14.778112) +19.855030
(2.0) (0_2)2[ (L.8)-2f(2.0)+ F(2.2]= 1 ( ) ]

=29.704275.
A

5. 1 RICHARDSON’S EXTRAPOLATION

Extrapolation can be applied whenever it is known that an approximation technique has an

error that depends on the step size h. Suppose that for h=0, a formula N,(h) approximates

an unknown constant M and that the truncation error has the form
M—N,(h)= klh+k2h2 +k3h3 +...

for some collection of unknown constants k;,k,,ks,.... The truncation error is O(h) and



M — N, (h) ~ kh,

i.e. M —N,(h) =kh+0O(h).
h -
If we replace h by 3 and eliminate k;, we get

M =N, (h) = kh+k,h? +k,n® +... -1

RO RORE

2 3
M +N,(h)-2N, (gj = (_kzhz +k, 22i2)+(_k3h3 +k 22i3j+

ORI

Defining N,(h) as N,(h) =2N1(g]— N, (h), we have that

2
M — N, (h) = —% k, +O(h?).

Note that combining N, (h) formulas produce N,(h) with truncation error O(h*). We can

combine N, (h) formulas to get N,(h) with truncation error O(h®) and so on. Many
formulas used for extrapolation have truncation errors that contain only even powers of h,

that is, have the form

M =N, (h) +k h* +k,h* +k;h® +.... (5.8)

As done before, replacing h with g gives the O(h?) approximation formula

M :Nl(hj+kl(h—zj+kz(h—4]+k3(h—6]+.... (5.9
2 4 16 64

Combining (5.8) and (5.9) and eliminating k, gives

M =1{4Nl(ﬂj—Nl(h)}k2 (h—j—k{@}....
3 2 4 16

8



h
w(?)-no

Defining N,(h) as N,(h) = , We get

M — N, (h) = -k, [h:j+0(h )

with truncation error O(h®). Continuing this procedure, we get the recursive formula

. h
4N (Zj— N, ()

N, (h) = i

j=2.34,.

with truncation error O(h?"). Thus, we have the following extrapolation table showing the
order in which the approximations are generated:

o(h?) o(h") o(h®) o(h?)

1. N, (h)

) Nl(ﬂ) 3. N,(h)

a. Nl(ﬂj 5, Nz(gj 6. N, (h)

7. Nl(g] 8. NZGJ 9. Ns[gj 10. N, (h)

Example 5.1.4

1. Taylor’s theorem can be used to express the 3— point midpoint formula as

f (Xo)——[f(x +h) = (% —h)]——f'”( o)—@f@(x)

Find approximations of order O(h?), O(h*), O(h®) and O(h®) for f’(2.0) when
f(x)=xe* and h=0.2,

2. Using the formula

f"(xo>=h—12[f<x ~h)- 2f(xo>+f(x+h)]— f(“)(x)



find an approximation of order O(h*) for f”(2.0) with h=0.1.

Solutions:

1. Letting M = f'(2.0) and N,(h) = 2_1h[ f(x, +h)—f(x, —h)], we have the constants

h? h* . :
K, =5 f"(x,)and K, =150 f©(x,)—... exist.
Thus, the O(h*) approximation is

1

202 [f(2.2) - f(1.8)] = 22.414160.

F(20)=M = N,(h) = [ £ (4 +h)— £ (4, ~)] -

0.2 1 ~
N, (7J =N,(0.1) = m[ f(2.0)- f(1.9)] = 22.228786

Thus, the O(h*) approximation is

0.2
4N, (j ~N,(0.2)
4N, (0.1)- N, (0.2
£/(2.0) = N, (0.2) = 2 _AN(0.)-N(02)
4-1 3
| 4(22.228786) — 22.414160
3
= 22.1669950.

N[ Z)-n[9%2) 4] - L [f(205)- t(1.95)]|-22.228786
N0.2_12 2 ) 12005" ' '
2 ) 4-1 - 3

| 4(22.182564) — 22.228786

3

=22.167157

. the O(h®) approximation is
0.2
42N, ()— N,(0.2)
£1(2.0) ~ N,(0.2) = 22 _16(22.167157) - 22.166995
4?1 15
=22.167168.
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2y (0.2 0.2
N (0.2) ~ N, (4)‘ N (zj _ 16N, (0.05)-N, (0.)
? 42 -1 15

4N1(@}N1(o.os)
16 % -N,(0.1)

15

1
64{2(0.025) [ (2.025) f (1.975)]} —~16(22.182564)

- 3

—22.167157

15
~ 64(22.17102) —16(22.182564) — 22.167157

15

=22.167173.

. the O(h®) approximation is

4N, (0.1) —N;(0.2) 64(22.167157)-22.167168
_ =

f'(2.0)~ N,(0.2) =
(20)~ N,(02) e =

=22.167173.

. Taking N,(h) :%[f (%, —h)—2f(x,)+ f (%, +h)], we get O(h*) approximation

1
(0.2)2

f7(2.0)=M ~ N,(0.1) = [f(1.9)-2f(2.0)+ f(2.1)] = 29.5932.

0.1 1
N, (7j =N, (0.05)= 05 [(1.95)—2f(2.0)+ f (2.05)]

=400(13.705941) — 2(14.778112) +15.924197
= 29.5656.

Thus, the O(h*) approximation is

0.1
4N, (j - Nl(o'l)
, 2 4N, (0.05)— N, (0.1)
£7(2.0) ~ N,(0.1) = o _ AN ; :
 4(29.5656) — 29.5632
3
— 29.5564.

THE END!
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