7. INITIAL-VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS

Differential equations are used to model problems in science and engineering that involve the
change of some variable with respect to another. This usually leads to Initial-Value Problems
(IVP) and Boundary-Value Problems (BVP). In this chapter, we will discuss numerical
methods for approximating solutions to such problems with special focus on I\VVPs. These
methods are helpful in situations where the problem is too complicated to solve using analytical
methods. For example, the motion of a swinging pendulum under certain simplifying

assumptions is described by the equation

2

?+gsin 0=0,
dt L

where L is the length of the pendulum, g is the gravitational constant of the Earth and 6 is

the angle the pendulum makes with the vertical. For large values of @, and initial conditions

at t =t, this leads to the IVP

2

dtf+%sin 0-0, 0t)=0, O(t)=06,

This differential equation above can be solved using numerical methods.

When we attempt to solve a differential equation, we must be sure that there really is a
solution and that this solution is unique. In addition, we need to determine whether the
problem is well-posed, that is, whether small changes in the statement of the problem

introduces correspondingly small changes in the solution.

Definition 7.1.1

A function f(t,y) is said to be satisfy a Lipschitz condition in the variable Y on a set

D < R? ifaconstant L >0 (called a Lipschitz constant for ) exists with

|f(t1 yl)_ f (t, y2)|S L|y1_y2|’

whenever (t,y;) and (t,y,) arein D.



Example 7.1.1

Determine whether f (t,y) satisfies a Lipschitz condition on D in each of the following:

(@) f(t,y)=%y+t2e‘, D={(t,y):1<t<2, —o<y<oo}

(b) f(t,y)=ty’, D={(t,y):0<t<2, —co<y<oo}
() ft,y)=t]y|, D={(t,y):1<t<2,-3<y<4}

Solutions:

(@) Suppose that (t,y,) and (t,y,) arein D. Then

2 2
| f (t, yl)_ f (t’ y2)| = ?yl +t2et _?yz +t2et

_2

—|t||Y1_y2|£2|y1_yz|

Thus, f satisfies a Lipschitz condition on D in the variable Y with Lipschitz

constant L=2.

(b) Let (t,y,) and (t,y,) arein D. Then
|f(t’ yl)_ f (t’ y2)| =|ty12 _tY22|
Ht]|y’ -,
S Yo |+ Y2 [)]Ys = Yo| <00, since |y, [+]y, <o for —co<y,,y, <o,

Therefore, f does not satisfy a Lipschitz condition on D .

(c) Exercise A

If the set D is convex, i.e. for any two points (t,,Y;) and (t,,Y,), the straight line joining
these two points lies in D, then we can determine Lipschitz condition by using the following
theorem:

Convex Not Convex

(tl’ 1) (tl’ yl) (tZ’ y2)

(%, ¥2)



Theorem 7.1.1

Suppose that f (t,y) is defined on a convex set D — R?. If a constant L >0 exists with

<L, forall (t,y)eD,

then f satisfies a Lipschitz condition on D in the variable Yy with Lipschitz constant L.
O

Exercise: Use Theorem 7.1.1 to determine whether the functions in Example 7.1.1 satisfy a

Lipschitz condition on the given set D.

Theorem 7.1.2

Suppose that D ={(t,y):a<t<b, —co<y<o}. If f iscontinuous and satisfies a Lipschitz

condition in the variable Y on the set D, then the IVP

ﬂ: f(t,y), a<t<b, y(@)=«
dt
is well-posed.
O
Example 7.1.2

Show that the VP

%:y—t2+l, 0<t<2, y(0)=0.5

is well-posed on D ={(t,y):0<t<2, —o<y <o}
Solution:

Using Theorem 7.1.2, note that f(t,y) = y—t®+1 is continuous on D and
of
‘—(t, y)‘ =|1=1,
oy

implying that f satisfies a Lipschitz condition in the variable ¥ on D with L=1. Hence,

the IVP is well-posed. A



7.1. FIRST-ORDER IVP

We now discuss numerical methods for solving IVPs for first-order ordinary differential

equations.

7.1.1 EULER’S METHOD

Suppose we want to approximate the solution to a well-posed VP

‘;—1’: f(t,y), a<t<b, y(a)=c. (7.1)

Approximations of Y will be obtained at various points called mesh points, in the interval
[a,b]. We assume that the mesh points are equally distributed, i.e. t; =a+ih for each

b-a

i=0,1,2,...,N, where N issome chosen positive integer and h = N =t —t.If

i+1

y(t) € C?[a,b], then by Taylor’s theorem

y(t,) =yt) +y ), —t)+ y”;!é) (ti.. _ti)21

for some & < (t,,t,,,). Using (7.1), we have that

h2 14
y(ti+1) = y(ti) + hf (ti' yi) +E y (gl)
Euler’s method constructs w, ~ y(t,), i =1,2,...,N, by deleting the remainder term. Thus,
Euler’s method is

W, =«
w,, =W +hf (t,w), foreach, i=12,.,N-1 (7.2)

Equation (7.2) is called the difference equation associated with Euler’s method.

Example 7.1.3

Use Euler’s method to approximate the solution to

%:y—tul, 0<t<2 y(0)=05

at t=2 when h=025.



Solution:

Since h=0.5, we have that
t,=0, t, =0+1(0.5)=0.5, t, =0+2(0.5) =1, t,=0+3(0.5)=1.5 and t, =0+4(0.5) =2

=N=4, w,=Yy(0)=05
w, =W, + hf (t,,w,) = 0.5+ (0.5)(0.5—-0% +1) =1.25,

i.e. y(t)=y(0.5) ~w, =125
W, =W, +(0.5)(W, —t? +1) =1.25+ (0.5)(1.25— (0.5)? +1) = 2.25,

Le. y(t,)=y@)~w, =225

W, =W, + (0.5)(W, —t? +1) = 2.25+ (0.5)(2.25—12 +1) = 3.375,

i.e. y(t,)=y(@5)~w, =3.375.
Thus,

y(2) ~ W, =W, + (0.5)(w, —t? +1) = 3.375+(0.5)(3.375— (L.5) +1) = 4.4375
A

Exercise: Solve the IVP analytically and compare the actual values with the approximated

values when N =10, 20, 50 and so on. For each N, compare the errors as t increases.

7.1.2. HIGHER-ORDER TAYLOR METHODS

Suppose that y(t) e C™*[a,b] is a solution to the IVP
y't)=f(t,y), as<t<b, y(a)=«c.

Using n" Taylor polynomial about t. and evaluated at t,, we get

Yyt h™ y D
(t)+ D ) (&),

h?
Y(tia) = YO +hy'(E) + 3y (0) o0
for some & e(t,t.,,). Since y'(t) = f(t,y), y'(t)= f(t,y) and generally,

y® () = f“(t, y) implying that



n

Y(t.0) = y(t)+hf(t.,y(t»+“—f(t.,y(t))+ 0 f(“l)(t.'Y(t))“L(th) FO(, (&)

Thus, the difference equation for the Taylor method of order n is

W, =a
W, =W +hT™(t,w), i=0,12,..,N -1,
where
h h"t

TO(t,, W)—f(t,,w)+—f(t,,w)+ A+— f(”‘l)(t w,).

NOTE: Euler’s method is Taylor’s method of order one.

Example 7.1.4

Apply Taylor’s method of order (a) two and (b) four with N =10 to the IVP

Yy 211 0<t<2, y(0)=05

dt
at y(@2).
Solution:
_ 42
(@) Since y'=f(t,y)=y—t*+1, y”:%: y—2t=y—t?+1-2t=y—t* -2t +1,
Thus,
2 h ’ 2 h 2
T (ti’Wi)z f(ti’Wi)+5f (ti’Wi)Z\Ni _ti +1+E(\Ni _ti _2ti+1)
W, =W, +h( W -t +1)+h—2( i—ti2—2ti+1).
2
With N =10, hzb—_a:ﬂzo_z sothat t,=0,t =0.2,t,=04,...,.t,=2.0
N 1
w,=0.5

2

2
W, =W, +h(w, —t)” +1)+ hz( W, t02—2t0+1)=o.5+o.2(o.5—02+1)+%(0.5—02—2(0)+1)
=0.83



W, = W, + h(w1 ~t? +1)+h—22(wl —t2-2t, +1)

=0.83+0.2(0.83- (0.2)% +1) + g(o.%— (0.2) —2(0.2) +1)
~1.2158

W, = W, +h(w2 -t +1)+h?2(w2 —t,2-2t, +1)

2
=1.2158+0.2(1.2158 - (0.4)* +1) +%(1.2158— (0.4)* —2(0.4) +1)
=1.652076

w, =w; +h(w, -t +1)+h?2(w3 —t7 -2t +1)

(0.2)°

=1.652076+0.2(1.652076 — (0.6)” +1) + >

(1.652076— (0.6)% — 2(0.6) +1)

=2.132333

W, =W, +h(w4 -t +1)+h—22(w4 -t2-2t, +1)

2
=2.132333+0.2(2.132333— (0.8)° +1) + % (2.132333- (0.8)2 - 2(0.8) +1)
= 2.648646

~y(t) = y(1.0) = w, = 2.648646

(b) f(t,y)=y—-t>+1 f'(t,y)=y—-t*>—2t+1, f"(t,y)=y -2t—2=y—-t*-2t—1 and
f"(t,y)=y—t>—2t—1. Thus,

T w) = f(t,w )+ f'(t.,w.)+h—2 f"(t.,w.)+h—3 f7(t,w)
1 1 1 1 2 1 ] 3! 1 1 4! 1 ]

2

=W, —ti2+1+g(wi —t2 -2t +1)+%(Wi i _1)+2_:-(Wi —t2 -2t —1)
SoWop =W +hTA(, W)

2 3 4

h h h
=w +h(w -t +1)+?(wi —t7 -2t +1)+€(W‘ —t7 -2t —1)+£(wi ~t2 -2t -1)

. w, =05,



2 3 4

w, =, +h (W, —t, +1)+h?(wo—t02—2t0+1)+%(W0—t02—2t0—1)+%(wo—t02—2t0—1)

=05+(0.2)(05-0°+1)+ (0'22)2 (0.5-0*-2(0)+1)+ (02)° (0.5-0*-2(0)-1)+
0.2)* 2
” ~=>(05-0"-2(0)-1)

=0.8293

2 3 4

w, =w, +h(w -t +1)+%(W1_t12 —2tl+1)+%(wl—t12 —2t1—1)+%(wl—t12—2t1—1)

=0.8293+(0.2)(0.8293—(0.2)* +1) + (022) (0.8293-(0.2)* - 2(0.2) +1)+

(0.2)°

2 (0.2)*
(0.8293-(0.2)* -2(0.2) 1)+ >

7 (0.8293-(0.2)’ - 2(0.2)-1)
=1.214091

2 3 4

W, =w, +h(w, —t, +1)+h?(wz—t22—2t2+1)+%(W2—t22—2t2—1)+%(wz—t22—2t2—1)

=1.214091+ (0.2)(1.214091- (0.4)° +1)+

0'22)2 (1.214091-(0.4)° —2(0.4) +1) +

(0.2)° ame B
7 (1.214091- (0.4)* - 2(0.4)-1)

(062) (1.214091- (0.4)* - 2(0.4) -1) +
=1.648947

2 3 4

W, =i, +h(w, —t, +1)+h?(ws—t32—2t3+1)+%(w3—t32—2t3—1)+%(w3—t32—2t3—1)
=1.648947 + (0.2)(1.648947 — (0.6)" +1)+ (022) (1.648947—(0.6)° —2(0.6) +1)+

(0.2)° _, (0.2)° _
: S22 (1.648947 - (0.6)* — 2(0.6) - 1) + 7 =2 (1.648947 - (0.6)° — 2(0.6) 1)
=2.127240

2 3

©y(ts) = y(@) = w, =w, +h(w, -, +1)+ hz(W4—t42—2t4+1)+%(w4—t42—2t4—1)+

h4
Q(W“ -t,” -2t,-1)

) (0.2)?
=2.127240+(0.2)(2.127240— (0.8)* +1)+

(2127240~ (0.8)* - 2(0.8) +1)+

(0.2)°

(2.127240-(0.8)* - 2(0.8) 1) +

(0.2)° 2
oy (2.127240-(0.8)° - 2(0.8) 1)

=2.640874

Exercise: Find y(2) in each case.



7.1.3. RUNGE-KUTTA METHODS

Euler’s method is less efficient in practical problems because it requires h being small for
obtaining reasonable accuracy. The Runge-Kutta methods are designed to give greater
accuracy and they possess the advantage of requiring only function values at some selected
points on the subinterval. We start by deriving Runge-Kutta methods of order two for
approximating y(t)~w, i=12,..,N.

Second-order Runge-Kutta methods are obtained by using weighted estimates of the change in
Yy when t advances by h, k and k, such that

y(ti+1) = Y(ti)+ akl + bkz’ (7-3)
k1 = hf (ti’ y(ti )
k, = hf (t +ah, y(t,) + Bk, ).

We need to devise a scheme of choosing the four parameters a, b, ¢ and g. Before we do

that, we need to state Taylor’s Theorem in two variables.

Theorem 7.1.3

Suppose that f(t, y) and all its partial derivatives of order less than or equal to n+1 are
continuous on D={(t,y): a<t<b,c< ysd}, and let (t,,y,)eD. For every (t,y)eD,

there exists & between t and t;, and x between y and y, with

f(ty) =P (ty)+R, (ty),

where

P.(ty)= f(to,yo){(t )& (to,yo)+(y yo)afy(to,yo)}

(t-t,)’ 82 0’ f (y—Yo)* 0°f
+_ > 01 Yo) +(t=t)(y - yo) (to’yo) Y. o,yo)}---
19 - ; of
+ n',o[ j(t t)" (Y= Y,) o ,ay,(o,yo)}

and

1 n+ln4l e ~ j arHlf
Rn(tfy)_mjo(j j(t_to) (y yO) atml_jayj (f,ﬂ)

The function P, (t,y) is called the n Taylor polynomial in two variables for the

function f about (t,,y,), and R, (t,y) is the remainder term associated with P, (t,y).



Example 7.1.5

Find the second Taylor polynomial for

ft,y)= \/4t +12y —t*—2y* -6
about (2,3).

Solution:

of of
P((t,y) = f(t, yo){(t—to)a(to,yo)+(y—yo)5(to,yo)}

(t-t,)" *f VN (y-yp) o f
+|: 5 o (ty, Yo) + (t=t,)(y YO)atay(to'YO)"‘ 5 ayg (t, Yo)
f(2,3) = /4(2) +12(3) - (2%) - 2(3)* -6 = 4
of 1 2 2 -3 of
E(t,y):§(4—2t)(4t+12y—t -2y’ -6) 35(2,3)=o
of 1 2 2 - of _
5(t,y)=§(12—4y)(4t+12y—t -2y’ -6) :»5(2,3)_0
o f 1 1 2 o2 AV
ey (t, y):E(4—2t)(—§j(12—4y)(4t+12y—t ~2y*-6)
o* f 1 Gy
jatay (2’3)=_Z(0)(0)(4 )=0
o’ f 11 2 2 o a1 s s nd
?(t,y):z(—sz—Zt) (4t+12y-t* -2y* —6) +§(—2)(4t+12y—t ~2y*-6)
azf 1 2/1-3 71__1
= (2’3):_2(0) (47)-4"= 1
o f 1

a—yz(t, y) = E(_%) (12-4y)* (4t +12y —t* - 2y? —6)_% +%(—4)(4t+12y—t2 ~2y? —6)_%

o' L ooy -t
o7 (2= 0204 ==

=

ol e-t) 1 y-v)' o, () (YY)
R(ty)=4 4" 2 2" 2 4 8 4

10



We now turn our attention to determining the four parameters a, b, « and g of (7.3). Using

T2(t, y(t)), we have that

V(6.0 = YO+ RF (Y6 + 2 16, ()

and since 9T (0Y) _FEY)  HFEY) ity it follows that
at ot oy

2

y(t.) = y(&)+hf (t, y(t))+ h?( fo(t, y () + £, (&, y (). F (4, y(ti)))
= y(t)+hf (¢, y(t) +h’ (% fo(t, y () +3 £, (6 yE)) f (. vt ))) (7.4)

Using Taylor polynomial of degree one about (t,y), it can be shown that

f(t+ah,y+ Bk )=R(t+ah y+pk)+R (t+ah,y+ Bk),

where

P (t+ah,y+Al) = £t y){(tmh—t)%(t, y)+(y+ﬂk1—y)%(t, y)}
= f(t,y) +ahf (t,y) + Bk f, (L. y).
Thus, f(t+ah,y+pk )=~ f(t,y)+ahf(t,y)+ Bk f,(t,y) so that substituting k, and k, into
(7.3), we get
y(t.,) = y(t) +ahf (t, y(t)) + bh[ f(t, y(t)) +ahf (t, y(t)) + ghf, (t, y(t)). f (&, y(ti))}
= y(t)+(@+b)hf (t;, y(t,)) + abh®f (t,, y(t)) +bsh* f, (t,, y(t)). f (t;, y (&) (7.5)

Comparing (7.4) and (7.5), we have that a+b=1, ab= % and b = %

We can choose one value arbitrarily and get other values. Some choices can be

e a=0, b= a:%’ ﬁz% Midpoint method

1 1 - ,
. a=E, sz; a=1 =1 Modified Euler's method
° a:ll b:g; a:§,ﬂ:§

3 3 4 4

11



All these are special cases of second-order Runge-Kutta methods. Higher-order methods can

be derived in a similar way. For example, the fourth-order Runge-Kutta methods are defined
by the formulae

y(t,,) = y(t) +ak, +bk, +ck, +dk,,

k1 = hf (ti , Y(ti))

k, =hf (t; + ah, y(;) + Bok,)

ky =hf (t, + e, y(t;) + K +rk,)

k, =hf (t, + a,h, y(t;) + Bk +7,K, +5K,),

where the choice of the parameters is arbitrary. The most common and widely used fourth-

order Runge-Kutta method for approximating the solution y(t,) ~w, i=12,...,N, to the IVP

y'(t)=f(t,y), ast<b, y@)=«
Is given as follows:

w, =a,

k, = hf (t;, w)

kz = hf (ti +%’Wi +%k1)

k, =hf(t,+2,w +1k,)

Ky = (t,0, W, +K,),

i+1?

W, =W +%(kl+2k2+2k3+k4), i=012.,N-1

Example 7.1.5

Use the Runge-Kutta method of order four with h=0.2 and N =10 to obtain approximations
to the solution of the IVP

y=y-t?+1, 0<t<2, y(0)=025.

Solutions:

With h=0.2, we have t,=0, t, =0.2,t,=04,...,t, =2 and f(t,y)=y-t*+1.

w, =0.5,
k, = hf (t,,w,) =0.2(0.5—0° +1)
=03

K, =hf (t,+2,w, +1k)=0.2f(0+%2,0.5+%)=0.2f(0.1,0.65)
=0.2(0.65— (0.1) +1)
=0.328

12



Ky =hf (t, + 5w, +1k,) =0.2f (0+ 92,05+ 2322)
=0.21(0.1,0.664)
=0.2(0.664—(0.1)2 +1)
=0.3308

k, = hf (t,,w, +k,) = 0.2 (0.2,0.5+0.3308)
=0.2(0.2,0.8308)
=0.2(0.8308—(0.2)% +1)
=0.35816

SW, :WO+%(kl+2k2+2k3+k4)

- o.5+%(o.3+ 2(0.328) +2(0.3308) +0.35816)

=0.8292933.

k, = hf (t, w,) =0.2 (0.2,0.8292933)
=0.2(0.8292933—(0.2)° +1)
= 0.35785866
K, =hf (t, +2,w, +2k) =02 (0.2+%2,0.8292933 + 05185065
=0.2(0.3,1.00822263)
= 0.2(1.00822263— (0.3)’ +1)
=0.383644526
K, =hf (t, + 5, w, +1k,) =0.2f (0.2+%2,0.8292933 4 L83544526)
=0.2(0.3,1.021115563)
=0.2(1.021115563— (0.3) +1)
=0.386223112

k, = hf (t,,w, +k,) = 0.2 f (0.4,0.8292933 +0.386223112)
=0.2(0.4,1.215516412)

=0.2(1.215516412 — (0.4)% +1)
=0.411103282

W, =W1+%(k1+2k2 +2k; +k,)

—0.8292933 + % (0.3578587 + 2(0.3836445) + 2(0.3862231) + 0.4111033)

=1.2140762

13



The remaining results are shown in the table below:

ti Wi
0.0 0.5
0.2 0.8292933
0.4 1.2140762
0.6 1.6489220
0.8 2.1272027
1.0 2.6408227
1.2 3.1798942
1.4 3.7323401
1.6 4.2834095
1.8 4.8150857
2.0 5.3053630

7.2. SYSTEMS OF ODEs AND HIGHER-ORDER EQUATIONS

We consider an m"™ — order system of first-order I\VP

d—utlz f,(t,u,u,,...,u.)
du,
—2=f (t
t 2( ’ul’u2’ ’un) (76)
du,
prale f,(tu,u,,..,u,)
for a <t <b, with the initial conditions
u(a)=a, u,(a)=a,,..,u,(a) =a,. (7.7)

Definition 7.2.1

The function f(t,vy,,¥,,....Y,,), defined on the set

D={(t,u,,u,,...,u,):ast<band —co<u; <o, i=12,..,m}

14



is said to satisfy Lipschitz condition on D in the variables (u,,u,,...,u,)if a constant L >0

exists with
|f(tu,u,,.nu,) - f(tz,2,,..,2,)| < Li|ui -z
=1

forall (t,u,u,,...,u )and (t,u,u,,..,u.)in D.

Theorem 7.2.1
Suppose that

D={(t,u,,u,,...,u,):a<t<band —co<u; <o, i=12,..,m}

and let f.(t,u,u,,...,u_), foreach i =1,2,...,m, be continuous and satisfy a Lipschitz condition
on D. The system (7.6), subject to the initial condition (7.7), has a unique solution

u, (t),u,(t),...,u, (t), a<t<h.
m|

Methods to solve systems of first-order I\VVPs are generalisations of the methods for a single

first-order equation discussed earlier. For example, if w; ; approximates the i" solution u, (t)

atthe j™ mesh point j, for i=1,2,...,m and j=1,2,...,N =1, then the difference equations

associated with Euler’s method with initial conditions
u(t,) =, Uy(t) =a,,....u,(t) =,
can be written as follows:

Wio=0a, Wy =0,y W g = Oy

Wy g =W, +hfl(tj,wlyj,wzyj,...,wm'j)
W, g =W, ; +hfz(tj,wlyj,wzyj,...,Wm'j)
Wi i = W+ W Wy e W)

Fourth-order Runge-Kutta method can be written as

15



Ky, = hf (t, Wy, Wy (e W)

Koy = E(t + 5wy + 5Ky, Wy + 5Ky Wo  + 5K )
Ky = hf(t + 5, W +5Ko0, Wy + 5Ky o0 Wo  +3K, )
K, =hfi(t; +h,wp ; +Kg W, 5+ Ky Wy + Ky )

m,j

Wi =W ; +%(k1,i +2kz,i +2k3,i + k4,i)’

foreach i=12,...,m.

Example 7.2.1

The current I,(t) and 1,(t) in the left and right loop of the circuit shown below satisfy the
system of equations

|, =—41,+3l,+86, 1,(0)=0
|, =-2.41,+161,+3.6, 1,(0)=0

290 0.5 F
|
IN

-

- k
I(n)

f ;_I||:?:I
12V — gﬂ!l g-'l!l

Use (a) Euler’s method (b) Runge-Kutta of order four to this system with h=0.1.

Solution:

(a) W = 0= W, 0

(W, W, ) =—4w ; +3w, ; +6 and f,(t;,w ;,W,;)=-2.4w,; +1.6w,; +3.6
1,(0.1) = W, =W, , +h(-4w,, +3w, , +6) = 0+0.1(-4(0) + 3(0) + 6) = 0.6

1,(0.1) = w,, =W, , +h(-2.4w, , +1.6W, , +3.6) = 0+0.1(-2.4(0) +1.6(0) + 3.6) = 0.36
1,(0.2) = w,, =w,, +h(-4w,, +3w,, +6) = 0.6 +0.1(-4(0.6) + 3(0.36) + 6) =1.068

1,(0.2) =w,, =w,, +h(-2.4w,, +1.6w,, +3.6) = 0.36 +0.1(-2.4(0.6) +1.6(0.36) + 3.6) = 0.6336
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Other results are shown in the table below:

tj Wl,j W2,j

0.0 0 0

0.1 0.6 0.36

0.2 1.068 0.6336

0.3 1.43088 0.838656
0.4 1.7101248  0.98942976
0.5 1.922903808 1.09730857

(b) ki, =hf,(t;, W5, W, ) =0.1(-4w, , +3w, ; +6) = 0.1(-4(0) +3(0) +6) = 0.6

k., = hf,(ty, W, 5, W, o) = 0.1(-2.4w, , +1.6wW, , +3.6) = 0.1(-2.4(0) +1.6(0) + 3.6) = 0.36

K,, =hf (t, +5, W, + 3K, W,, +3k,) =0.1f,(0.05,0.3,0.18)
=0.1(-4(0.3) +3(0.18) + 6)
=0.534

Ko, =hf,(t; +5, W, +5k,,, W, + 3k, ,) =0.11,(0.05,0.3,0.18)
=0.1(-2.4(0.3) +1.6(0.18) + 3.6)
=0.3168

Ky, = hfy(ty + 5, W, o + 3K, W, o + 3K, ,) =0.11,(0.05,0.267,0.1584)
=0.1(-4(0.267) + 3(0.1584) + 6)
=0.54072

Ky, = hf, (t + 5, W, o + 3Ky, W, o + 3k, ,) =0.1f,(0.05,0.267,0.1584)
=0.1(-2.4(0.267) +1.6(0.1584) + 3.6)
=0.321264

K,, = hf(t, +h,w o +K; 1, W, 0 +K;,) =0.11,(0.1,0.54072,0.321264)
=0.1(—4(0.54072) + 3(0.321264) + 6)
=0.4800912

K, , = hf, (t, + N, W, o +K;,, W, , +k; ,) =0.1f,(0.1,0.54072,0.321264)
= 0.1(~2.4(0.54072) +1.6(0.321264) +3.6)
= 0.28162944

1
S LOD)=w, =w,+ 5 (kyy +2ky, +2ky, +k, ;)

=0+ % (0.6 + 2(0.534) + 2(0.54072) +0.4800912)
= 0.5382552
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1
Iz 0.)= Wy =W, + E (k1,2 + 2k2,2 + 2k3,2 + k4,2)

=0 +%(0.36+ 2(0.3168) + 2(0.321264) + 0.28162944)

=0.31962624

k,, = hf, (t,, w,,,w,,) =0.1f,(0.1,0.5382552,0.31962624)
= 0.1(~4(0.5382552) + 3(0.31962624) + 6)
= 0.480585792
K, , = hf, (t,, W, W,,) = 0.1f,(0.1,0.5382552, 0.31962624)
= 0.1(~2.4(0.5382552) +1.6(0.31962624) + 3.6)
= 0.28195895
K,y = hf,(t, +2,w,, + 1k ,,W,, +1k,,) = 0.1f,(0.15,0.778548096, 0.460605715)
= 0.1(-4(0.778548096) + 3(0.460605715) + 6)
= 0.426762476
k,, = hf,(t, +2,w,, + 3k, w,, + 1k, ,) =0.1f,(0.15,0.778548096,0.460605715)
= 0.1(~2.4(0.778548096) + 1.6(0.460605715) + 3.6)
=0.246845371
Ky, = hf,(t, +2, W, +3K,,,W,, +1k,,) = 0.1f,(0.15,0.751636438,0.443048925)
= 0.1(~4(0.751636438) + 3(0.443048925) + 6)
= 0.432260102
Ky, = hfy(t + 2, W, +1k,,,W,, + 1k, ,) = 0.1f,(0.15,0.751636438,0.443048925)
= 0.1(~2.4(0.751636438) +1.6(0.443048925) + 3.6)
= 0.250495082
K, = hf,(t, +h,w,, +K,,,W,, +k,,) =0.1f,(0.2,0.970515302, 0.570121322)
= 0.1(~4(0.970515302) + 3(0.570121322) + 6)
= 0.382830275
K,, = hf, (t, +h, W, +k,,, W, +k,,) = 0.1f,(0.2,0.970515302,0.570121322)
= 0.1(~2.4(0.970515302) +1.6(0.570121322) + 3.6)
=0.218295739

1
S L 02) = w, =w, + 6 (kyy +2K,, + 2Ky, +K, )
=0.5382552 + % (0.480585792 + 2(0.426762476) + 2(0.432260102) + 0.382830275)

=0.968498737
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1
I2 (0.2) = Wy, =W, + E (k1,2 + 2k2,2 + 2k3,2 + k4,2)

=0.31962624 + % (0.28195895 + 2(0.246845371) + 2(0.250495082) + 0.218295739)
= 0.568782172

Other values are given in the table below:

t.

W,

W.

i L] 2]

0.0 0 0

0.1 0.538255 0.319626
0.2 0.968499 0.568782
0.3 1.310717 0.760733
0.4 1.581263 0.906321
0.5 1.793505 1.014402

We now consider a general m" — order initial-value problem

YU = fy.y. ...y ), a=st=b,

with initial conditions
Y@ = ey (@ = en.....y" ) = a

Letting

() = y(0),uz(1) = Y (1), ..., and (1) = Y=V (1)

we can convert the IVP to a first-order system

duy dy diis dy’ dity,_ dhyim—2)
—_— = = U, —_— = — =3, e, —_ = i,
dr — dr dr — drt dr i
and
it d"l,"m_]' ) .
d:r I o =}.|rr|l — f'u,}‘._\‘ _.___},u.rrl—lil} = .f-“,”]~H2,--..M,r|fl,

with initial conditions

wi(a) =yla) = a1, wa) =y(a) =az, um(a) =y "(a) = an.
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Example 7.2.2

Transform the second-order initial-value problem
v — 2y 4+ 2y = ¢ sint, forO =t =1, with y(0) = —04, v'(0) = —0.6

into a system of first order initial-value problems, and use the Runge-Kutta method with

h=0.1 to approximate the solution.

Solutions:

Let u,(t) = y(t) and u,(t) = y'(t) so that

uy () = u2(1),

us(t) = e sint — 2w, (1) + 2ua (1),

with initial conditions u,(0) =-0.4 and u, (0) =-0.6. Using the Runge-Kutta method, we get

W = —0.4 and wsq = —0.6

ki = hfilto, wio,wep) = hwzog = —0.06,

kiz = hfalto, wip, wap) =h [-:?1”’ sinfp — 2w o + sz.n] = —0.04,

. h 1 1 1
kyy = hf (fo + 5 wy o+ Eku, Wap T+ _kl.i) =h [wz.n ay ;k1_1:| = —0.062,

s

]

h 1 1
ky» = hf> (fo + s wyg + k. wag + _kl.i)

2 2 2
5 . _ 1 1
=h [f‘””‘“'m sin(fp + 0.05) — 2 (U--‘l_ﬂ + ;ku) +2 (wz.ﬂ + ;fﬂ.z)}
= —0.03247644757,

1
ksg=h |:L!-‘3_[] + ;k:_::l = —0.06162832238,

. - 1 1
ks> =h [{?_[rﬂ_“'ﬂﬂ sin(ty + 0.05) — 2 (wl_i] + ;kz_l) +2 (wz_ﬂ + ;JE:_:):|

&

= —0.03152409237,
kai = h[wio+ ksa2] = —0.06315240924,

and

ksz = h [V sin(to +0.1) — 2(wio + ka1) + 2(w20 + k32)] = —0.02178637298.
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Therefore,

and

Other values of

1
wry | = wy g+ g{k|_| + Zkz,[ -+ 2k3‘| -+ k4_'1] = —0.4617333423

1
T.L'l[ = lL'Q‘O. =+ g{kl‘z -+ zkg‘g —+ Ek:{_} -+ k_q_‘]) = —053163]242]

w, ; and w, ; for j=0,12,..,10 are given in the following table:

£ yit) = wi (1) un ¥t = ualt;) wa
0.0 — 040000000 — 0. 40000000 —0.6000000 — 060000000
0.1 —0.46173297 —0.46173334 —0.6316304 —0.63163124
0.2 —0.52555905 —0.52555988 —0.6401478 —0.64014895
03 —0. 58860005 —0.55860144 —0.6136630 —0.61366381
04 —0.64661028 —0.64661231 —0.5365821 —0.533658203
0.5 —0.69356395 —0.693566606 —0.3887305 —0.38873810
0.6 —0.72114849 —0.72115190 —0.1443834 —0. 14438087
0.7 —0. 71814890 —0.71815295 0.2289917 0.22800702
0.8 —0.66970677 —0.66971133 0.7719815 0.77199180
09 —0.55643814 —0.55644200 1.534764 1.5347815
1.0 —0.35330436 —0.35339886 2.578741 25787663
THE END!

21



