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8.  INTRODUCTION TO THE THEORY OF FUNCTIONS OF A COMPLEX  

     VARIABLE 

8.1. COMPLEX NUMBERS AND FUNCTIONS 

Definition 8.1.1 

A complex number ,z  is an ordered pair ( , ),x y  where x  is called the real part of z

(denoted Re( ))z  and y  is called the imaginary part of z (denoted Im( ))z . 

If we define 1 (1,0)  and (0,1),i   then  

 ( , ) (1,0) (0,1) .z x y x y x iy      

The set of complex numbers is denoted by . If 1 1 1( , )z x y  and 2 2 2( , )z x y  are complex 

numbers, then the following operations on  hold: 

 1 2 1 2 1 2( , ).z z x x y y     The additive identity is (0,0).  

 1 2 1 2 1 2 1 2 2 1( , ).z z x x y y x y x y    The multiplicative identity is (1,0).  

 1 1 1( , ),z x y    for any scalar .  

Note that  

 
2 (0,1)(0,1) (0 1,0 0) ( 1,0),i        

that is, 
2 1i    implying that 1.i    

Definition 8.1.2 

If z is a complex number, then the conjugate of ,z  denoted by ,z  is .z x iy   

Using definition 8.1.2, it can be shown that 

 1 1 2 1 2 2 1 1 2

2 2 2 2

2 2 2 2 2

,
z x x y y x y x y

z x y x y

  
  

  
 

 
2 2 2 2

1
,

x y

z x y x y

 
  

  
 

 
2 2z z x y   
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8.1.1. The Complex Plane 

We can visualise every element of  by plotting it as a point on the xy  plane. Each complex 

number z x iy  corresponds to a point ( , ).p x y  

 

Definition 8.1.3 

The absolute value or modulus of a complex number ,z  denoted | |,z  is given by  

2 2| |z x y   

The absolute value of a complex number represents the distance from the point ( , )p x y  to the 

origin in the complex plane. It follows that if 1z  and 2z  are complex numbers then 1 2| |z z  

is the distance between 1z  and 2 ,z  i.e. 

2

1 2 1 2 1 2| | ( ) ( )z z x x y y     . 

Example 8.1.1 

Find and plot all complex numbers z such that  

(a) | 4 | 2z i           (b)  | 4 | 2z i          (c)  | 2 2 | | 1 | 3 2z i z i       

Solutions: 

(a)  | 4 | 2 | ( 4 ) | 2z i z i         

We consider this to be the distance between z and 4 i  . Then, z  lies on the circle centred 

at 4 i   with radius 2.  Note that  

 
2 2

2 2 2

| ( 4 ) | 2 ( 4) ( 1) 2

( 4) ( 1) 2

z i x y

x y
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(b)  z lies on and inside the circle centred at 0 4 .z i    

 

(c) Here we have a sum of two distances 1| | | ( 2 2 ) |z z z i      and 2| | | ( 1 ) |z z z i     , 

where 1 2 2z i    and 2 1z i   . Check that z lies on an ellipse with foci at 1z  and 2.z  

 

Proposition 8.1.1 

Let 1 2 3, , .z z z   Then the following inequalities hold: 

(i) | Re( ) | | |z z  

(ii) | Im( ) | | |z z  

(iii) | | | Re( ) | | Im( ) |z z z   

(iv)  1 2 1 2| | | | | |z z z z    

We now go back to figure 1.1. Suppose that OP makes an angle of   rad with the positive x 

axis and 2 2| | .r z x y    Then cos , sinx r y r    and tan
y

x
   so that 

 (cos sin )z x iy r i      (8.1) 
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Equation (8.1) is called the polar representation of a complex number 0.z   The angle   is 

called an argument of ,z  denoted arg .z  Note that   plus any multiple of 2  satisfies (8.1). If 

we restrict the choice of   to the interval ,      then there is a unique value of   that 

satisfies (8.1).  

Definition 8.1.4 

The principle value of the argument of a complex number ,z  denoted by ,Arg z  is the unique 

number with the following properties: 

 , tan ( ) .
y

Arg z Arg z
x

      

Using Definition 8.1.4, we have that 

 arg { 2 : }z Arg z k k    

Example 8.1.2 

Find the polar representation of z in each of the following and state the value of ,r Arg z  and 

arg :z  

(a)  1z i          (b)  3z i         (c)  3z   

Solutions: 

(a) 2 21 | | ( 1) 1 2z i r z          and 
1 1

1
tan ( )

4


      

  
3

4 4
Arg z

 
      and  

3
arg 2 ,

4
z k k


    

    3 3
4 4

2 cos sinz i     

(b)  
1 1

3
3 2, tan ( )

6
z i r


        

  
6

Arg z


    and  arg 2 ,
6

z k k


    

    6 6
2 cos sinz i     

(c)  3 3, 0z r Arg z     and arg 2 ,z k k   implying that 3(cos 0 sin 0)z i   
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When 1 2,z z   are in the form(8.1), i.e. 1 1 1 1(cos sin )z r i    and 2 2 2 2(cos sin )z r i   , 

then 

 1 2 1 2 1 2 1 2(cos( ) sin ( ))z z r r i        

 1 2 1 2| |z z r r  

 1 2 1 2arg ( ) arg argz z z z   

    11 1 1
cos ( ) sin ( ) cos sinz i i

z r r
           

  1 1
1 2 1 2

2 2

cos( ) sin ( )
z r

i
z r

        

If 1,r   then cos sinz i    and by induction  

 cos ( ) sin ( )nz n i n    (8.2) 

Equation (8.2) is called the De Moivre’s identity and in general 

  cos( ) sin ( ) .n nz r n i n    

Definition 8.1.5 

Let 0w  be a complex number and .n   A number z  is called an 
thn  root of w  if .nz w  

 

Using Definition 8.1.5, let  cos sinw i     and  cos sin .z r i    Then by De 

Moivre’s identity 

    cos( ) sin ( ) cos sin .n nz w r n i n i          

Thus, 
1
nnr r      and when two complex numbers are equal, their arguments must differ 

by 2 ,k i.e. 
2

2 , 0,1, 2,..., 1.
k

n k k n
n

 
   


       

Therefore, the 
thn  root of a complex number z  is given by 

     
1

2 2
1 cos sin , 0,1,2,..., 1,n k k

k n n
z i k n     

      (8.3) 

where .Arg w    
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Example 8.1.3 

1. Calculate  
11

1 i  

2. Find all numbers z  such that  

(a)  6 1z          (b)   
3

1 2 2z i    

Solutions: 

1. Let 1 .z i   Then 
12, tan (1)

4
r Arg z

    

        
1111 11 11

4 4
1 2 cos sini i      

2. (a)  
1
66 1 1 .z z    Let 1w  and using (8.3), we have that 1   and 0Arg w    

so that 

     
1
6 0 2 0 2

1 6 6
1 cos sin , 0,1,2,3,4,5k k

kz i k  
     

When   10, 1k z   

                       

   

   

   

   

   

2 3 3

2 2
3 3 3

3 3
4 3 3

4 4
5 3 3

6 6
6 3 3

1 3
1, cos sin

2 2

1 3
2, cos sin

2 2

3, cos sin 1

1 3
4, cos sin

2 2

1 3
5, cos sin

2 2

k z i i

k z i i

k z i

k z i i

k z i i

 

 

 

 

 

    

     

    

     

    

 

 

 (b)  Let 2 2w i   so that 
2 22 2 8     and 

4
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1
3

1
4 46

1 1
6 2

1 1
2 2

1
2

3

2 2

1 3 3

8(0) 8(0)

1 12 12 12 12

9 9 3 3
2 12 12 4 4

17 17
3 12 12

1 2 2 1 2 2

1 8 cos sin , 0,1,2

0, 1 8 cos sin 2 cos sin 1

1, 2 cos sin 1 2 cos sin 1

2, 2 cos sin 1

k k

k

z i z i

z i k

k z i i

k z i i

k z i

  

     

   

 

 



 

       

    

       

      

   

 

        Expressing , 1,2,3iz i   in the form , , ,iz a ib a b    we have that 

                               3 3
1 212 12 4 4

2 cos 1 2 sin , 2 cos 1 2 sinz i z i          and  

                          17 17
3 12 12

2 cos 1 2 sinz i     

 

8. 1. 2. Complex Functions 

A complex-valued function f  is a relation that assigns to each complex number z  in a set S  

a unique complex number ( ).f z  The set S  is called the domain of definition of f  and the 

unique number ( )f z  (sometimes written ( )w f z ) is called the value of f at .z  If we view 

f  as a mapping from z plane to wplane, then [ ]f S  is called the image (or range) of S  

under .f   

 

Example 8.1.3 

1. If 
2( ) 4 2 1,f z z z    the domain of definition of f  is the entire complex plane and 

the image is also the entire complex plane. 
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2. If ( ) 2f z z i    and { :| | 1},S z z  then letting z x iy   we get

( ) 2 ( 1).f z x i y     Thus, the image of S  is the set S  translated two units to the 

right and one unit up. 

 

3. If 
1

( )f z
z

  on { : 2 ,0 arg },S z z z      then as the modulus of z  increases from 

2  to  , the modulus of 
1

z
 decreases from 

1

2
 to 0  (but not equal to 0). Letting 

,z x iy   we get 

 
2 2 2 2 2 2

1 1
( ) ,

x iy x y
f z i

z x iy x y x y x y


    

   
 

where 0.y   Thus, as argument of z  goes from 0  up to ,  argument of w  goes 

from 0   up to .  

 

4. If 
2( )f z z  on the vertical strip { :1 2},S z z    then letting ,z x iy   we obtain  

 
2 2 2( ) ( ) 2 .f z x iy x y i xy      

Thus, in the wplane 
2 2u x y   and 2 .v xy  Any vertical line x a  gives 

2 2 , 2 ,u a y v ay    where 1 a b   and .y    Eliminating y  we get 

2 2
2 2

22 2 4

v v v
y u a a

a a a

 
      

 
 

2 2 24 ( ),v a u a     which is a parabola with vertex at 
2( ,0)a  and v  intercepts at

 20, 2 .a  
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8.2. ELEMENTARY FUNCTIONS 

We consider complex functions involving exponential, logarithmic, trigonometric and 

hyperbolic functions. 

8.2.1. The Complex Exponential 

Definition 8.2.1 

The complex exponential function, denoted ( ) or ,zExp z e  is defined as  

 
2

!

0

1 ...
2!

nz z
n

n

z
e z





      for all .z  

If ,z i  then using Definition 8.2.1, we have that  

 

2 3 4 5 6 7

2 3 4 5 6 7

2 4 6 3 5 7

( ) ( ) ( ) ( ) ( ) ( )
1 ( ) ...

2! 3! 4! 5! 6! 7!

1 ...
2! 3! 4! 5! 6! 7!

1 ... ...
2! 4! 6! 3! 5! 7!

cos sin ,

z i i i i i i i
e e i

i i i i

i

i

      


     


     


 

        

        

   
            
   

 

 

that is,  

 cos sinie i     (8.4) 

Equation (8.4) is called Euler’s identity. Thus, if , , ,z x iy x y    then  

 (cos sin )z x iy xe e e y i y   , 

Re( )| | | (cos sin | | |z x x z ze e y i y e e e      

and  

 arg ( ) arg( (cos sin )) 2 , .z xe e y i y y k k      

If z  is in polar form, i.e. (cos sin ),z r i    then using (8.4), we have that 
iz re   

Proposition 8.2.1 

Let , .z w  Then 

(i) .z w z we e e   

(ii) 
1z

z
e

e

   

(iii) .
z

z w z w

w

e
e e e

e
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Example 8.2.1 

1. For each of the following, compute ,| |z ze e  and arg ( )ze : 

(a) 3
3

z i


         (b) 
5

4
z i


        (c) 1z i        (d) z    

2. Find the exponential form of each of the following: 

(a)  7 3 7z i      (b)  1z i   

3.  Find the image of ( ) zf z e  on { : 1 1, 0 }.S z x y        

Solutions: 

1.  (a)  3
3 3 3 31

3 3 2 2
(cos sin )

ize e e i e i


 
      

     
Re( ) 3| |z ze e e     and arg ( ) 2 2 , .

3

ze y k k k


        

(b) and (c) Exercise 

(d)
0 Re( ), | |z i z ze e e e e e          and arg ( ) 0 2 2 , .ze k k k      

2.  (a)  
2

27 3 7 196 14r        and 
1 1 7

7 3
tan ( ) tan ( )

6

y

x

 


    

 
5
6

5
14

6 6

iiArg z z re e


 
           

     (b) Exercise 

3.  Note that S  is a rectangular area 

 

    Consider any vertical line , 1 1.x a a     Then, 

  
2

2 2( ) (cos sin ) cos , sina a a af z e y i y u e y v e y u v e         

    which is a circle centred at (0,0) with radius 
ae . Since 1 1a   , it follows that  

     
1 1.ae e e    
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8.2.2. The Complex Logarithms and Powers 

To define complex logarithm log ,w z  set log .ww z e z    Expressing w  and z  as 

w u iv   and ,iz re   we get  

 . andu iv i u iv ie e re e r e e      

                                 ln and 2 arg ,u r v k z       

where ln r  is the usual natural logarithm. Thus,  

 log ln | | arg , 0z z i z z    (8.5) 

Definition 8.2.2 

The principal value or principal branch of the complex logarithm, denoted ,Log z  is defined 

by  

 ln | | , 0.Log z z i Arg z z    

 

Example 8.2.2 

1. Evaluate the following: 

(a)  log (1 )i         (b)  log ( 2)  

2. Evaluate the following: 

(a)  (1 )Log i        (b)   6 iLog e   

Solutions: 

1. (a) Let 1 .z i   Then | | 2z    and  
1tan (1)

4

   

log log (1 ) ln 2 2 ,
4

z i i k k



 

       
 

 

(b)  Letting 2z    gives  

                    log log ( 2) ln | 2 | ( 2 ) ln 2 ( 2 ), .z i k i k k              

2. (a) From part 1(a), we get (1 ) ln 2 .
4 4

Arg z Log i i
 

      

(b) Letting 
6 1iz e    gives 0Arg z   so that 

      6 ln1 0 0.iLog z Log e i     
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Recall that the logarithmic function given in (8.5) is not single-valued because arg z  takes on 

a different value in a specified range. In fact, for every real number ,  we can specify that 

arg 2 .z      We can define the 
th branch of log ,z denoted log ,z  by the identity 

 log ln | | arg ,z z i z    

where log ( , 2 ).z      

 

NOTE: When ,    we get the principal value of the logarithm. 

 

Definition 8.2.3 

For any non-zero complex number ,z  we define the complex power as 

 
log ,a a zz e  

where log z  is as defined in (8.5). If we choose the principal logarithm, then 

 .a a Log zz e  

Example 8.2.3 

1. Evaluate the following using the principal branch of the logarithm: 

   (i) 
1( ) ii         (ii)  ( 1)i  

2.  Find the solution of the equation 
1 4.iz    

Solutions: 

1. (i)  Let and z i  . Then,  2
ln1

2
Log z i i


       so that  

 
     2 2 2 2 2

(1 )1

2 2
( ) cos sin

i i ia iz i e e e i ie
    

             

    (ii)  Let a i  and 1z   . Then, ln | 1|Log z i i     . 

 
( ) .a i iz e e     
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2.  
1 1
2 2

1

1 14 4 4 .
ii iz z

      

     Since log 4 ln 4 2 ,i k   we have that  

 

       

 

 

 

1 1 1 1 1 11 1
2 2 2 2 2 22 2

log4 ln 4 2 2ln 2 2 (ln 2 ) (ln 2 )

(ln 2 )

ln 2

4

cos(ln 2 ) sin (ln 2 )

. ( 1) cos(ln 2) sin (ln 2) , by Trigonometric identities

( 1) .2 cos(ln 2) sin (ln 2) .

i i i k i i ki k i k

k

k k

k k

z e e e e

e k i k

e e i

e i

   







 

       



    

   

  

  

 

We can also solve this equation by taking logs on both sides. 

 

8.2.3. The Complex Trigonometric and Hyperbolic Functions 

By Euler’s identity 

                                         
cos sin (i)

cos sin (ii)

i

i

e i

e i





 

 

 

  
 

Solving (i) and (ii) simultaneously for cos  and sin , we obtain 

 

cos
2

sin
2

i i

i i

e e

e e

i

 

 















 (8.6) 

We can also write cos z  as  

 

( ) ( )

cos
2 2

(cos sin ) (cos sin )

2

cos sin
2 2

cos cosh sin sinh ,

i x iy i x iy y ix y ix

y y

y y y y

e e e e
z

e x i y e i y

e e e e
x i x

x y i x y

     



 

 
 

  


    
    

   

 

 

i.e.  

 cos cos cosh sin sinh .z x y i x y   (8.7) 

Similarly,  

 sin sin cosh cos sinhz x y i x y   (8.8) 
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Definition 8.2.4 

For any a complex number ,z  the hyperbolic cosine and sine are defined as  

 cosh cosh cos sinh sin
2

z ze e
z x y i x y


    

and  

 sinh sinh cos cosh sin
2

z ze e
z x y i x y


    

 

Proposition 8.2.2 

Let 1 2, , .z z z   Then 

(i) cos ( ) cos and sin ( ) sinz z z z      

(ii)  
sin

tan , provided cos 0
cos

z
z z

z
   

(iii) cos sinize z i z   

(iv)  
2 2cos sin 1z z   

(v)  1 2 1 2 1 2cos ( ) cos cos sin sinz z z z z z    

(vi)  1 2 1 2 2 2sin ( ) sin cos sin cosz z z z z z    

(vii) 
2 1 cos 2

cos
2

z
z


  

(viii) 
2 1 cos 2

sin
2

z
z


  

 

Proposition 8.2.3 

Let 1 2, , .z z z   Then 

(i)    cosh cos and cos coshiz z iz z   

(ii)    sinh sin and sin sinhiz i z iz i z   

(iii) 2 2cosh sinh 1z z   

(iv) cosh cosh cos sinh sinz x y i x y   

(v) sinh sinh cos cosh sinz x y i x y   

(vi)    tanh tan and tan tanhiz i z iz i z   

(vii)    coth cot and cot cothiz i z iz i z     
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Example 8.2.4 

Compute cos , sin , coshz z z  and sinh z  for each of the following: 

(a) 2z i    (b) 5
4

z i   

Solutions: 

(a)  2z i       cos cos 2 cos 2cosh sin 2sinhz i i        

    

 

 

 

sin sin 2 sin 2cosh cos 2sinh

cosh cos 2 cosh 2cos sinh 2sin cosh 2

sinh sin 2 sinh 2cos cosh 2sin sinh 2

z i i

z h i i

z h i i

  

  

  

   

     

     

 

(b)  Exercise 

 

8.2.4. Inverse Trigonometric and Hyperbolic Functions 

If 
1sin ,w z  then sin

2

iw iwe e
z w

i


   

 

 

 

2

2

2

1 2

2 0

2 1 0

1

log 1 ,

i.e. sin log 1

iw iw

iw iw

iw

e e iz

e ize

e iz z

iw iz z

w z i iz z







   

   

   

   

    

 

Similarly, 

 

 

 

2

1 2

1 2

1

arccos log 1

1
arctan log ,

2 1

cosh log 1

sinh log 1

1 1
tanh log ,

2 1

z i z z

i iz
z z i

iz

z z z

z z z

z
z

z







   

 
   

 

  

  

 
  

 

  

where specific branches of a square root and logarithmic function are used. 
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Example 8.2.5 

Evaluate  

(a)      arcsin i             (b)    1cosh 1 i    

using the principle argument. 

Solutions: 

(a)        2 2 2arcsin log 1 arcsin log 1 log 1 2z i iz z i i i i i              

Let 
1 1 2w      and 

2 1 2.w      Then, 1 20 andArg w Arg w    so that  

 1 2ln 1 2 and ln 1 2 ,Log w Log w i        

i.e.      arcsin ln 1 2 or arcsin ln 1 2 ln 1 2i i i i i i              

(b)  

          21 2 1cosh log 1 cosh 1 log 1 1 1 log 1 1 2z z z i i i i i                 

   Let  1 2 .w i    Then,  1.107 2.03.Arg w     Thus, 

1
2

ln 5 2.03 ln5 2.03Log w i i      and    

 1 11 4
2 22

ln5 2.03 ln 5 1.015 4 41 2 5 cos1.015 5 sin1.015
iLog w ii e e e i

         

     

 

1 4 4cosh 1 1 5 cos1.015 5 sin1.015 1 0.789 1.270

1.789 2.270

ln 2.890 0.903

i Log i i Log i i

Log i

i

         

 

 

  

Or       1 4 4cosh 1 1 5 cos1.015 5 sin1.015i Log i i       

                              1 0.789 1.270Log i i     

                            
 0.211 0.247

ln 0.325 0.864 .

Log i

i
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8.3. ANALYTIC FUNCTIONS 

Before we develop the theory of functions of a complex variable, we give basic properties of 

subsets of the complex plane. 

Definition 8.3.1 

Let 0r  be a positive real number and 0z  be a point in the plane. The r  neighbourhood of 

0z , denoted  0 ,rB z  is the set of all complex numbers z satisfying 
0 .z z r   It is sometimes 

called open disc. 

 

  Open disk     Closed disk 

Definition 8.3.2 

Let S be a subset of . A point 0z  in S  is called an interior point of S if we can find a 

neighbourhood of 0z  that is wholly contained in S . A point z  in the complex plane is called 

a boundary point of S  if every neighbourhood of z  contains at least one point in S  and at 

least one point not in S . The set of all boundary point of S  is called the boundary of S . 

 

  z is an interior point of  0rB z  while 1z  is a boundary point 

Definition 8.3.3 

A subset S  of the complex number is called open if every point in S  is an interior point of .S  
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Definition 8.3.4 

A set S  is connected if every pair of points 1z  and 2z  in S  can be joined by an unbroken line 

consisting of a series of straight lines joining end-to-end each lying entirely within S . 

                   1z                                       1z  

                       2z                                                            2z  

 

Definition 8.3.5 

1. Let f  be a complex-valued function defined on a subset .S  We say that a complex 

number L  is the limit of f  as z  approaches 0z  and write  

  
0

0lim or ( ) as ,
z z

f z L f z L z z


    

if for any given 0  , there exists 0   such that  

z S  and 00 | |z z    ( ) .f z L     

2. The function f  is continuous at 0z  if and only if  0f z  exists and  

    
0

0lim .
z z

f z f z


  

Proposition 8.3.1 

(i) If the limit of a function f  exists at a point 0 ,z  then it is unique. 

(ii)  If      , ,f z u x y i v x y   and 0 0 0 ,z x i y   then 

  
0

0 0 0lim ,
z z

f z w u i v


     if and only if 

    
0 0 0 0

0 0
( , ) ( , ) ( , ) ( , )

lim , and lim , .
x y x y x y x y

u x y u v x y v
 

   

(iii)         
0 0 0

lim lim lim
z z z z z z

f z g z f z g z
  

    

(iv)      
0 0

lim lim
z z z z

cf z c f z
 

  

(v)          
0 0 0

lim . lim . lim
z z z z z z

f z g z f z g z
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Example 8.3.1 

1.    Evaluate the following limits: 

       (a)  
 

 2

1 2
lim

z i
z z

 
  (b)  

0
lim
z

z

z

 
 
 

          (c)  
2

2 3
lim

1z

z i

z z



 
 

2.    Determine the point where  
2

2

4

9

z
f z

z





 is not continuous. 

Solutions: 

1. (a) Using Proposition 8.3.1, let .z x i y  Then, 

         
2 2 2f z x i y x i y x x y i xy y          

   2 2, and , 2u x y x x y v x y xy y       

       

 
 

2 2

( , ) (1,2) ( , ) (1,2) ( , ) (1,2) ( , ) (1,2)

2

1 2

lim , lim 4 and lim , lim 2 2

lim 4 2

x y x y x y x y

z i

u x y x x y v x y xy y

z z i

   

 

        

    

 

Note also that, we can evaluate the limit ‘directly’. 

 
     

22

1 2
lim 1 2 1 2 4 2

z i
z z i i i

 
        . 

  (b)  If ,z x i y   then  

2 2

2 2

2
.

z x i y x i y x xy i y

z x i y x i y x y

   
  

  
 

Note that  

2 2

2 2( , ) (0,0)
lim

x y

x y

x y

 
 

 
 and 

2 2( , ) (0,0)

2
lim

x y

xy

x y

 
 

 
 

do not exist along different paths. Therefore, 
0

lim
z

z

z

 
 
 

 does not exist. 

(c)   
2

2

32

2 1 1

2 3 0 0 0
lim lim 0

1 1 1 0 0 1

i
z z

z z
z z

z i

z z 

 
   

     
 

2. The function  
2

2

4

9

z
f z

z





 is not continuous at point(s) where 

2 9 0 3z z i     . 
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Definition 8.3.6 

A complex-valued function f  is said to be differentiable at 0z z  in a domain D  if 

 
       

0

0 0 0

0
0

lim lim
z z z

f z f z f z z f z

z z z  

      
   

    
 

exists and is denoted by  0 .f z  If f  is differentiable at every point of the domain ,D  then 

f  is said to be analytic in .D  A function analytic on the whole complex plane is called an 

entire function. 

Theorem 8.3.1 (Cauchy-Riemann Equations) 

Suppose that f u i v   is analytic on a domain .D  Then throughout ,D  we have  

  

 and .
u v u v

x y y x

   
  

   
 (8.9) 

 

Corollary 8.3.1 

If  f z u i v   and the partial derivatives are continuous on D  and satisfy Cauchy-Riemann 

equations (8.9), then f  is analytic on .D  

Remark 8.3.1 

Cauchy-Riemann equations (8.9) imply that  

     .x x y yf z u i v or f z v iu      

Example 8.3.2 

1. Show that  

(a)     zf z e           (b)      sinf z z  

 are entire functions. 

2. Show that  

(a)    f z z           (b)       2 2f x i y x i y x     

 are not analytic on . 

3. Determine the set on which the following functions are analytic and compute their 

complex derivatives: 

(a)    
1

1
f z

z



 (b)     

2
f z z  
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Solutions: 

1.  (a)     cos sinz xf z e e y i y      , cos and , sinx xu x y e y v x y e y   .  

Using Cauchy-Riemann equations, we have that 

 

cos , sin , sin and cos

and .

x x x xu u v v
e y e y e y e y

x y x y

u v u v

x y y x

   
    

   

   
   

   

 

Therefore,   zf z e  is entire. 

(b)    sin sin cosh cos sinhf z z x y i x y    

       , cos cosh ; , sin sinh ; , sin sinh and , cos coshx y x yu x y x y u x y x y v x y x y v x y x y       

       , , and , ,x y y xu x y v x y u x y v x y     

Therefore,   sinf z z  is entire. 

2.  (a)    f z z x iy   1, 0, 0 and 1
u u v v

x y x y

   
     

   
. Since ,

u v

x y

 
 

 
 the 

function  f z z  is not analytic on the whole . 

(b)        2 2f x i y x i y x          2, and , 2u x y x v x y y x    . 

       , 2 ; , 0; , 1 and , 2x y x xu x y x u x y v x y v x y     . 

 Clearly,  
x yu v   and   

y xu v   implying that    2 2f x i y x i y x     is not 

analytic on the whole . 

3.   (a)   
1

1
f z

z



 is analytic everywhere except at 1z    and  

 
2

1
.

1
f z

z


 


 

(b)       
2 2 2 2 20 , and , 0f z z x y i u x y x y v x y         

       , 2 ; , 2 ; , 0 , .x y x yu x y x u x y y v x y v x y      

         Therefore, Cauchy-Riemann equations are only satisfied at 0z   and at that point  

           0.f z   
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8.4. COMPLEX INTEGRATION 

The integral of a complex function ( )f z  with respect to the complex variable z  involves 

integrating a function ( )f z  along a curve C   in the complex plane. The curves we generally 

consider are unbroken paths in the complex plane. If these paths are of finite length, we call 

them arcs. 

Definition 8.4.1 

1. A smooth arc is an arc that does not intersect itself.  

 

               Smooth arc           Smooth arc        Not smooth arc 

2. A smooth closed curve is a closed curve that consists of only one loop. 

 

 

Smooth closed curve    Not smooth closed curve 

 

In short, smooth curves fall into two categories: smooth arcs, which have distinct endpoints, 

and smooth closed curves, whose endpoints coincide. 

For any smooth arc or smooth closed curve, we can specify which endpoint is the initial point 

thereby specifying the ordering of points. In this case, we have a directed smooth arc or a 

directed smooth closed curve. 

        Initial point 

 

Initial point        

Directed smooth arc    Directed smooth closed curve 

 

Definition 8.4.2 

A contour   is either a single point 0z  or finite sequence of directed smooth curves 1 2, ,..., n    

such that the terminal point of k  coincides with the initial point of 1k   for each 

1, 2,..., 1.k n   That is, 1 2, ,..., .n     

NOTE:   1. A single directed smooth curve is a contour with 1.n    

    2.  Some nonsmooth closed curves can be broken into smooth pieces. 
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Definition 8.4.3 

1. A region x  is said to be x  simple region if any line in x drawn parallel to the y 

axis cuts x  only twice.  Similarly, a region y  is y  simple if any line in y drawn 

parallel to the x  axis cuts 
y  only twice.  

 

 

                    x  simple        y  simple              

2. A region   which is both x  simple and y  simple is called a simple region. 

 

 

 

  

                                                Simple region 

Example 8.4.1 

1. Find an admissible parametrisation of each of the following smooth curves: 

(a)  C  from 2 2z i   to 2 2z i    

(b)   the circle of radius 2  centred at 1 .i   

2. Parametrise the contours given below: 

(a)              (b) 

    0 1t                         

Solutions: 

1. (a)   C  is a vertical straight line from 2 2z i   to 2 2z i   implying that  

 ( ) 2 , 2 2.z y i y y       

(b)   Using the angle   as the parameter, we have that 

 ( ) 1 2 , 0 2 .iz i e          
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2. (a)   Since the initial point of 1  is (0,0)  and the terminal point is (1,0),  we have that 

 1 1: ( ) , 0 1.z t t t      

      Similarly, taking into consideration the direction, we note that 2  is a straight line  

      1y x   implying that 1x y  . Letting y t  gives 1x t  . 

 2 2: ( ) 1 , 0 1z t t it t       

               and  

3 3: ( ) (1 ) , 0 1.z t t i t      

   Therefore, 

 

1

2

3

( )

( ) ( ) 1

( ) (1 )

z t t

z t z t t it

z t t i




   
  

  

    for 0 1.t   

        (b)  Note that the contour is a semicircle centred at the origin with radius .   Thus,  

 ( )
cos

ie
z




 


 


  

    for 0 .t    

 

8.4.1. Line Integrals 

A popular method for evaluating complex line integrals consists of breaking everything up into 

real and imaginary parts. Writing ( )f z  as ( ) ( , ) ( , ),f z u x y i v x y   where z x iy   gives 

                         ( ) ( , ) ( , )
C C

f z dz u x y i v x y d x iy                     

                                  ( , ) ( , ) ( , ) ( , )
C C

u x y dx v x y dy i v x y dx u x y dy             (8.10) 

NOTE:  Evaluation of (8.10) depends on the specified path. 

 

From the definition of the line integral, we have the following properties: 

1. ( ) ( )
C C

f z dz f z dz


    

where C  is the contour taken in the opposite direction of .C   



25 

 

2. 
1 2 1 2

( ) ( ) ( ) .
C C C C

f z dz f z dz f z dz


     

 

Example 8.4.2 

1. Evaluate 
C

z dz  from 0z   to 4 2z i   along two contours 1C (consisting of the 

curve 2x y  and 2C  (consisting of 2aC   and 2bC ) 

                                        

2. Evaluate 
2

C
z dz  from 0z   to 2z i   along two contours 1C  and 2C  (consisting 

of 2aC   and 2bC ) 

                                          

Solutions: 

1. Parametrising 
2 ,x y  we have that letting y t  implies 2x t  and 

2 .z x i y t i t      

The point 0z   corresponds to 0y t t   or 
2 0x t t    and point 4 2z i   

corresponds to 2y t t    or 
2 2.x t t    

Thus, along 1,C   

1 1 1 1

1 1

2 2 2 2

2 2

2 2
3 2

0 0

2
3

2
4 2

0

0

( ) ( )

(2 ) (2 )

(2 )

1
( )

2 3

8
10 .

3

C C C C

C C

z dz t it d t it t dx tdy i tdx t dy

t t dt tdt i t t dt t dt

t t dt i t dt

t
t t i

i
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Along 2 , 0, 0 2 , 0 2.aC x y z iy y         

 
2 2 2 2

2

0

( )

2

a a a aC C C C
z dz iy d iy i y dy i y dx

ydy

       





   

   

Along 2 , 0 4, 2 2 .bC x y z x i        

 
2 22 2 2

4 4

0 0

( 2 ) 2 2 2

2

8 8 .

b a aC C C C
z dz x i d x i x dx dy i dx xdy

xdx i dx

i

        

  

 

   

   

Thus,  

2 2 2

2 8 8 10 8 .
a bC C C

z dz z dz z dz i i          

2.    Along 1,
2

x
C y   and letting t y  implies that 2 2 .x t z t t i      The point 0z   and 

2z i  correspond to 0t   and 1.t    

 

   
1 1 1 1

22 2 2 2 2

1 1
2 2

0 0

1 1

3 3

0 0

2 2 3 (2 ) 4 4 (2 ) 3

2 11

2 11

3 3

2 11

3 3

C C C C
z dz t t i d t t i t dt t dt i t dt t dt

t dt i t dt

t i t

i

       

 

 

 

   

 
  

Along 2 , 0, 0 2 , 0 2.aC y x z x x         

         
2

2
2 2

0

8

3aC
z dz x dx     

Along 2 , 2, 0 1 2 .bC x y z iy        

     

 

2 22 2 2

2 2 2 2

1 1
2

0 0

(4 4 ) 2 4 4 4 4

4 4

11
2 .

3

b a aC C C C
z dz y yi d iy y dx ydy i y dx y dy

y dy i y dy

i

          

   

  

   

   

Thus,  

2 2 2

2 2 2 8 11 2 11
2 .

3 3 3 3a bC C C
z dz z dz z dz i i          
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Note that the integrand for question 1 of example 8.4.2 contains a nonanalytic point along and 

inside the region enclosed by two curves and that integration along two different paths gives 

different results. Note also that since the integrand for question 2 is entire, the result is the same 

along different paths. In general, if the integrand is nonanalytic, then integration depends on 

the path chosen and if the integrand is analytic, then integration can be evaluated along any 

path. 

 

Theorem 8.4.1 

Let ( )f z  be analytic in a simply connected domain .D  Then, if   is any arc lying entirely in

D  with initial point 0z  and terminal point ,z  then the antiderivative  

 
0

( ) ( ) ( )
z

z
F z f d f d


        

is a single-valued analytic function of z independent of   and such that ( ) ( ).F z f z   

Theorem 8.4.2 

Let ( )f z  be analytic in a simply connected domain D  and ( )F z  be an antiderivative of ( ).f z   

Then, for any two points 0z  and 1z  in D   

 
1

0
1 0( ) ( ) ( ).

z

z
f z dz F z F z     

Example 8.4.3 

Evaluate each of the following: 

        (a)    
2 3

1
sinh 3

i

z dz


           (b)     
1 3

1

i
z

i
e dz




  

Solutions: 

(a)  The integrand ( ) sinh 3f z z  is  analytic in the finite z plane. 

   
2 3

2 3

1
1

1 1 1 1
sinh 3 cosh 3 cosh 6 9 cosh 3 cosh 6cos9 cosh 3 sinh 6sin 9.

3 3 3 3

i
i

z dz z i i




           

(b)   Note that ( ) zf z e  is entire. Thus, 

       
        

1 3 1 3 1 3 1 1

11
cos1 cos3 sin1 sin 3

i i i iz z

ii
e dz e e e e i
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We now consider line integrals involving closed contours. These line integrals will be denoted 

by .   

 

Example 8.4.4 

1. Evaluate 
C

z dz  along C  given below: 

                                                 

2. Evaluate sin
C

z dz  along C  given below: 

                                     y   

                                     d                3c   

                                             4c                   2c    

                                    c                  1c   

                                                a b                   x   

 

3. Evaluate 
0

1
,

C
dz

z z  where C  is a directed contour 0 , 0.z z R R      

Solutions: 

1. Along 1,C z iy   

1

0

1

1

2C
z dz y dy     

Along 2 ,C z x   

2

1

0

1

2C
z dz x dx
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Along 
3 2
, ,iC z e         

 

 
2

2 2 2

3

1 2 3

2 2. 1
2

1 1
1 0.

2 2

i i i i i i

C

C C C

i
z dz e d e ie e d i e d e

i

z dz z dz z dz z dz


  

     

  


 
  



     

       

   

   

  

2. Recall that if ,z x iy   then sin sin cosh cos sinh .z x y i x y    

Along 1, ,C a x b y c     

   
1

sin sin cosh cos sinh cosh cos cos sinh sin sin
b b

C a a
z dz x c dx i x c dx c a b i c b a          

Along 2 , , ,C x b c y d     

   
2

sin cos sinh sin cosh cos cosh cosh sin sinh sinh
d d

C c c
z dz b y dy i b y dy b c d i b d c          

Since 3C  is taken in the opposite direction of 1C  and 4C  is taken in the opposite 

direction of 2 ,C  we have that 

3 1

sin sin
C C

z dz z dz     and 
4 2

sin sin .
C C

z dz z dz    

Therefore, 

1 2 3 4

1 2 3 4

sin sin sin sin sin

sin sin sin sin

0.

C C C C C

C C C C

z dz z dz z dz z dz z dz

z dz z dz z dz z dz

   

   



    

     

3. Parametrising 0 ,z z R   we get 

 0 0Re Re , 0 2i iz z z z            

2 2

0 0
0 0 0

1 Re
2 .

Re

i

iC

i
dz d i d i

z z z z


 


     

      

 

 

8.4.2. The Cauchy-Goursat Theorem 

The Cauchy-Goursat theorem helps to determine the value of the integral, in some instances, 

without resorting to the elementary evaluations. 
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Definition 8.4.4 

The point 0z  is said to be a singular point or singularity of ( )f z  if ( )f z  is not analytic at 0 ,z  

but is analytic in at least part of every neighbourhood of 0.z   

0z  is called an isolated singularity if ( )f z  is analytic in every neighbourhood of 0 ,z  except at 

0.z   

Example 8.4.5 

Determine the singular points of each of the following: 

 (a)   
 

   
2

2 2

2 1
( )

3 1

z
f z

z z




 
                  (b)    

 1

1
( )

sin
z

f z   

Solutions: 

(a)   ( )f z  has isolated singularities at    
2

2 23 1 0,z z    that is, at 3z i    and 1.z    

(b)    ( )f z  has isolated singularity at  1
1 1

sin 0 or , /{0},
z

n z n
z n




      and also  

          at 0,z   which is an accumulation point of  
1

.z
n

  

 

Theorem 8.4.3 (Green’s Theorem for a Simple Region) 

Let   be a simple region in the xy  plane with a boundary   that is traversed such that the 

area of   lies to the left as   is traversed in the positive sense. Then, if P  and Q  together 

with their derivatives are continuous is   and on ,  then 

Q P
dxdy P dx Qdy

x y 

  
   

  
   

Using Theorem 8.4.3, we notice that if ( ) ( , ) ( , ),f z u x y i v x y   in a simply connected 

domain ,D  then 

 ( ) ( , ) ( , ) ( , ) ( , ) ,
C C C

f z dz u x y dx v x y dy i v x y dx u x y dy        

where C  is a smooth closed curve. Assuming that ( )f z  is analytic and that ( )f z  is 

continuous in ,D  then 

( )

0,

C D D

v u u v
f z dz dxdy i dxdy

x y x y
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Since ( , )u x y  and ( , )v x y  satisfy Cauchy-Riemann equations. Thus, we have the following 

theorem: 

Theorem 8.4.4 (Cauchy-Goursat Theorem) 

If ( )f z  is analytic in a simply connected domain D  and also on its boundary C  which is a 

smooth closed curve, then  

 ( ) 0.
C

f z dz    

Example 8.4.6 

We can use the Cauchy-Goursat theorem to evaluate integrals for question 1 and 2 of example 

8.4.3. Note that in each case, ( )f z  is entire and so  

0
C

z dz   and sin 0
C

z dz  . 

But question 3 had 
0

1
( ) ,f z

z z



 which has  a singularity at 0z z  in the circle 0 .z z R   

Thus, 

0

1
2 0.

C
dz i

z z
 

  

Example 8.4.7 

Evaluate each of the following: 

1. 
   

  

2

2

4 2 2 5 3 2
,

1 2C

i z i z i
dz

z z

    

 
   

                   where C  is the directed contour  (i)   1z i     (ii)    2 1z   . 

2. 
2

,
z

C

e
dz

z 



   where C  is a unit circle centred at the origin. 

Solutions: 

1.  The singularities if ( )f z  are z i    and 2.z    Decomposing ( )f z  into partial 

fractions, we get 

 

 

1 3
( ) .

2

1 1 1
( ) 1 3 .

2C C C C

i i
f z

z i z i z

f z dz i dz i dz dz
z i z i z
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 (i) Since z i   and 2z    lie outside the circle 1,z i   we have that 

1 1
0 .

2C C
dz dz

z i z
 

     

 ( ) 2 2 .
C

f z dz i i       

 (ii) Only 2z    lies inside the circle 2 1.z    Thus, 

    ( ) (0) 1 (0) 3 2 6 .
C

f z dz i i i i         

2. Note that the only singularity 
2

z


  lies outside 1.z    

 
2

0.
z

C

e
dz

z 




   

 

The Principle of Deformation of Contour: The value of a line integral of an analytic function 

around any simple closed contour remains unchanged if we deform the contour in such a 

manner that we do not pass over a nonanalytic point. 

Example 8.4.8 

Consider the integral of 
1

( )f z
z

  around the contour consisting of a square centred at the 

origin with vertices      1,1 , 1, 1 , 1,1   and  1, 1 .   Note that direct integration of 
C

dz

z  is 

very cumbersome. We can deform the original contour into a circle centred at the origin with 

radius 1.   

          y   

                                 

   

   

1,1 1,1

1, 1 1, 1

x
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In this case, we get the same answer as long as the deformed contour encloses the singularity 

of ( ).f z  Thus, 

2 .
0C C

dz dz
i

z z
 

   

 

8.4.3. The Cauchy’s Integral Formula 

Suppose that g  is defined as 

 

0
0

0

0

( ) ( )
,

( )

( ),

f z f z
z z

z zg z

f z z z




 
  

  

where 0z D  and not on .C  Then, g  is continuous in D  and the point 0z  is a removable 

singularity. Also, g  is analytic in D  except at 0.z z  Thus, by Cauchy-Goursat theorem 

 0

0

0
0

0 0 0

( ) 0.

( ) ( )
0

( )( ) 1
( ) .

C

C

C C C

g z dz

f z f z
dz

z z

f zf z
dz dz f z dz

z z z z z z




 



  
  





  

  

Assuming that 0z  lies inside C  gives 

 
0

0

( )
2 ( ).

C

f z
dz i f z

z z


   

Thus, we have the following theorem: 

Theorem 8.4.5 (Cauchy Integral Formula) 

Let ( )f z  be analytic in a domain D  and let C  be a smooth closed contour in D  taken in the 

positive sense. Let 0z  be a point in D  not on .C  Then,  

                                                  0

0

1 ( )
( )

2 C

f z
f z dz

i z z


                                                     (8.11) 
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Example 8.4.9 

Evaluate each of the following: 

1. 
  

2 3 1
,

1 1C

z z
dz

z z i

 

    where  C  is 31
2 2

1.z i     

2. 1
2 2

cos ( )
,

1
i C

z
dz

z




   where  C  is a rectangle with corners at i  and 2 i . 

Solutions: 

1. Note that only 0 1z i    lies inside .C   Letting  

2 3 1
( )

1

z z
f z

z

 



 

implies that  
   

2
1 3 1 1 9 2

1 .
1 1 5 5

i i
f i i

i

     
    

  
 

  
 

2 3 1 9 2 4 18
2 1 2 .

1 1 5 5 5 5C

z z
dz i f i i i i

z z i

 
 

   
         

    
  

2. Note that only 0 1z   lies inside .C   

1 1
2 22

cos ( ) ( )
,

1 1
i iC C

z f z
dz dz

z z
 


 

    

where  

cos ( ) cos ( ) 1
( ) (1) .

1 1 1 2

z
f z f

z

 
    

 
 

   1
2 2

cos ( ) 1 1
2 1 .

1 2 2
i C

z
dz i f

z i






   

  

 

By taking n  derivatives of (8.11), we can extend the Cauchy’s Integral Formula as the next 

theorem shows: 

Theorem 8.4.6 

Let ( )f z  be analytic in a domain D  and let C  be a smooth closed contour within D  taken 

in the positive sense. Then, for all points 0z  interior ,C   

                                     
 

( )

0 1

0

! ( )
( ) , 0,1,2,....

2

n

nC

n f z
f z dz n

i z z 
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Example 8.4.10 

Evaluate 

    (a)   
   

2
1 3

z

C

e
dz

z z 
           (b)   

 

2

4
1C

z
dz

z 
             (c)   

 

3

3C

z
dz

z i
  

on 2.z    

Solutions: 

(a)   
     

2 2

( )
,

1 3 1

z

C C

e f z
dz dz

z z z


  
   where ( ) .

3

ze
f z

z



  

 
 

1 1 1

2 2

( ) 2 (1 3) 3
(1) 2 .

1! (1 3) 21C

f z i e e e
dz f i i

z

 

  

     
  

   

(b)   Since only 0 1z   lies inside ,C  letting 
2( )f z z  implies that 

 
 

2

4

2
(1) 0.

3!1C

z i
dz f

z


 


   

(c)   Let 
3( ) .f z z  Then, 

2( ) 3f z z    and ( ) 6 .f z z   Since 0 ,z i   we have  

 
 

3

3

2
( ) 6( ) 6 .

2!C

z i
dz f i i i

z i


      


  

 

 

 

 

 

THE END! 


