8. INTRODUCTION TO THE THEORY OF FUNCTIONS OF A COMPLEX

VARIABLE

8.1. COMPLEX NUMBERS AND FUNCTIONS

Definition 8.1.1

A complex number z, is an ordered pair (x,y), where xR is called the real part of z

(denoted Re(z)) and y € R is called the imaginary part of z (denoted Im(z)). 0
If we define 1=(1,0) and i =(0,1), then
z=(xYy)=x(10)+y(0,1) = x+1iy.

The set of complex numbers is denoted by C. If z, =(x.,y,) and z,=(X,,Y,) are complex

numbers, then the following operations on C hold:

o 7,%7,=(X*X,,Y,£Y,). The additive identity is (0,0).
o 72,2, =(XX% —Y,Y,, XY, + X,¥,). The multiplicative identity is (1,0).
o oz, =(ax,ay,), forany scalar a.

Note that
i2=(0,1)(0,2) = (0-1,0+0) = (-1,0),
that is, i2 = -1 implying that i = v—1.

Definition 8.1.2

If zis a complex number, then the conjugate of z, denoted by Z, is Z = x—1iy.

Using definition 8.1.2, it can be shown that
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8.1.1. The Complex Plane

We can visualise every element of C by plotting it as a point on the xy —plane. Each complex

number z = x +iy corresponds to a point p(x, y).
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Definition 8.1.3

The absolute value or modulus of a complex number z, denoted | z|, is given by

|z] ={X*+y?
0
The absolute value of a complex number represents the distance from the point p(x,y) to the

origin in the complex plane. It follows that if z, and z, are complex numbers then |z, -z, |

is the distance between z, and z,, i.e.

12,-2,] =0, =) +(%-¥,)" -
Example 8.1.1
Find and plot all complex numbers z such that
@ |z+4—-i|=2  (b) |z+4-i|<2 () |z+2+2i|+|z+1+i|=32
Solutions:
@ |[z+4-i1|=2 &|z-(4+1)|=2

We consider this to be the distance between z and —4+i. Then, z lies on the circle centred

at —4+i with radius 2. Note that

|2 (-4+i)|=2 = J(x+4) +(y-1)? =2
= (X+4)* +(y-1)?=2?



|z+4-i|=2
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(b) zlies on and inside the circle centred at z, =—4+1.

(c) Here we have a sum of two distances |z—z, |=|z—-(-2-2i)| and |z—-Z,|=|z—(-1-1)],

where z, =-2-2i and z, =-1-1i. Check that z lies on an ellipse with foci at z, and z,.
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Proposition 8.1.1
Let z,,2,,2z, € C. Then the following inequalities hold:
() |Re(z)| <]z
(i) [ Im(2) | <[ z|
(iii) | z| £|Re(z) | + | Im(2) |
(V) |7,+2,[ <]z [ +]z,]
o

We now go back to figure 1.1. Suppose that OP makes an angle of & rad with the positive x -

axisand r=|z|=4/x*+y® . Then x=rcosé, y=rsind and tand =" so that
X

Z=X+1y =r(cosd+ising) (8.1)



Equation (8.1) is called the polar representation of a complex number z =0. The angle & is

called an argument of z, denoted arg z. Note that & plus any multiple of 27 satisfies (8.1). If
we restrict the choice of @ to the interval —7 < 8 <z, then there is a unique value of & that

satisfies (8.1).

Definition 8.1.4

The principle value of the argument of a complex number z, denoted by Arg z, is the unique

number with the following properties:
—r<Argz<r, tan(Argz) = y
X

Using Definition 8.1.4, we have that
argz ={Arg z+2kr:k € 7}

Example 8.1.2

Find the polar representation of z in each of the following and state the value of r, Argz and

argz:

(@) z=-1+i (b) z=B+i () z=3

Solutions:

(@) z=-1+i =r=z|=\(-)*+2 =42 and O=tan*(3) ==

4
.-.Argz=7r—£:3—” and argz:s—”+2k7z, keZ

4 4 4
c.z2=+2(cos ¥ +isin )

H — T
(b) z=\3+i=>r=2, 6=tan 1(%)=€

.'.Argz=% and argz=%+2k7z, keZ

.z=2(cosZ+isinZz)

() z=3=r=3, Argz=0 and argz =2kx, k € Z implying that z=3(cos0+isin0)

A
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When z,,z, €C are in the form(8.1), i.e. z, =r,(cosf, +isiné,) andz, =r,(cosé, +isiné,),

then

2,2, =rr,(cos(é, +6,) +isin (6, +6,))
o |zz,|=nr
o arg(zz,)=argz +argz,

. %: 2! :%(cos (—0)+isin(-0)) = %(cos@—isin 0)

[ ] Zl :i
r-2

- (cos(6,—6,)+isin(6,-6,))
2
If r=1, then z=cos@#+isiné and by induction
2" =cos(nd) +isin (nb) (8.2)
Equation (8.2) is called the De Moivre’s identity and in general

2" =r"(cos(nd) +isin (nd)).

Definition 8.1.5

Let w0 be a complex number and ne Z*. A number z is called an n™ root of w if z" = w.

¢

Using Definition 8.1.5, let w= p(cosa+isina) and z=r(cos@+isin@). Then by De

Moivre’s identity
2" =w<r"(cos(nd) +isin(nd)) = p(cosa +isina).

Thus, r"=p =r= ,o% and when two complex numbers are equal, their arguments must differ

a+2kr
n

by 2kz, i.e. n0=a+2kzr = 0= ,k=0,12,..,n-1.

Therefore, the n™ root of a complex number z is given by

Zea=p" (cos(=2x)+isin(«:2)), k=0,1,2,..,n—-1, (8.3)

n n

where o = Argw.



Example 8.1.3

1. Calculate (1+i)11
2. Find all numbers z such that

@ z°=1  (b) (z+1)’=2+2i

Solutions:
1. Let z=1+i. Then r=+/2, Argz=tan*(1) :%

(L) = (\/5)11(003(117”)+ isin (1))

2. (a) z°=1 =z=1% Let w=1 and using (8.3), we have that p=1 and a = Argw=0

so that
2., =1° (cos (222 +isin (2:2)), k=0,1,2,3,4,5

When k=0,z =1

B3
2

k=1 z, :cos(§)+isin(§):%+i

w

.. 1 .
k=2, 23:cos(%”)ﬂsm(%”)=—§+|7

k=3, z, =cos(%)+isin(%)

-1

&

[

k=4, z; =cos(4£)+isin(4£)=—-=-i—

k=5, z, =cos(%&)+isin(%)==-i—

T

(b) Let w=2+2i sothat p=+2?+2% =+/8 and a=7



.'.(z+1)3:2+2i<:>z+l:(2+2i)%
=7,,+1= 88(003(Z )+|sm(”2k”)),k:0,1,2

k=0,2,=-1+8° (cos(”+81(2°)”)+|sm(w)) 2" (cos(%)+isin(%))-1
k=12, =2"(cos(%)+isin(%))-1=2* (cos(%) +isin (%)) -1
k=2, 2,=2*(cos(¥f)+isin(¥£))-1

RIS

Expressing z;, 1=1,2,3 in the form z, =a+ib, a,b € R, we have that
Z, :(\/Ecos(ﬁ)—l)ﬂ(\/?sin(ﬁ)), Z, :(ﬁcos(%)—l)ﬂ(ﬁsin(%’)) and
z,= (\/5003(117—2”)—1)+ i (ﬁsin (117—2”))
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8. 1. 2. Complex Functions

A complex-valued function f is a relation that assigns to each complex number z inaset S
a unique complex number f(z). The set S is called the domain of definition of f and the
unique number f(z) (sometimes written w= f(z)) is called the value of f at z. If we view
f as a mapping from z—plane to w—plane, then f[S] is called the image (or range) of S

under f.
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Example 8.1.3

1. If f(z)=4z"+2z+1, the domain of definition of f is the entire complex plane and

the image is also the entire complex plane.



If f(z)=z+2+1 and S ={z:|z| <1}, then letting z=x+iy we get
f(z) =x+2+i(y+1). Thus, the image of S isthe set S translated two units to the
right and one unit up.

z-plane w-plane

If f(z)= 1 on S={z:2<z,0<argz <}, then asthe modulus of z increases from
z

2 to oo, the modulus of 1 decreases from % to 0 (but not equal to 0). Letting
z

Z=Xx+1y, we get

1 1 X—iy X Y
f Z)=—= = = — ,
(2) 2 x+iy XP+y? xX2+y? xE+y?

where y>0. Thus, as argument of z goes from 0 up to =, argument of w goes
from O upto —r.

If f(z)=2z" on the vertical strip S ={z:1<z <2}, then letting z = x+iy, we obtain
f(2) = (x+iy)” = x> —y* +i2xy.

Thus, in the w—plane u=x*-y* and v=2xy. Any vertical line X =a gives
p y g

u=a’-y? v=_2ay, where 1<a<b and —o < y <co. Eliminating y we get

v 5 ( v T , VP
y=—=u=a’-|—| =a’-—

2a 2a da
=V’ =—4a’(u—a®), which is a parabola with vertex at (a*,0) and Vv — intercepts at
(0,+2a%).




8.2. ELEMENTARY FUNCTIONS

We consider complex functions involving exponential, logarithmic, trigonometric and

hyperbolic functions.

8.2.1. The Complex Exponential
Definition 8.2.1

The complex exponential function, denoted Exp(z) or €, is defined as

© 2
, z
g’ :ZZ——1+2+§+... forall zeC.

nt

n=0 0
If z=1i6, then using Definition 8.2.1, we have that
- 2 - 3 - 4 - 5 - 6 - 7
eZ:e“":1+(i6)+(|9) LU0 (o) (6 GO  (9)
2! 3! 41 5! 6! 7!
o> .0° 0 .0° 0° .0
=1+i0-—-1—+—+i————-1—+
2t 3t 41 51 6! 7!
0> o0* 6° 0 & 6
=[1——+———+...j+i[@——+———+...}
2! 41 6! 3! 51 71
=cosé@+isiné,
that is,
e’ =cos@+ising (8.4)
Equation (8.4) is called Euler’s identity. Thus, if z=Xx+1y, X,y € R, then
e’ =Y =e*(cosy +isiny),
|e” | =|e*(cosy +isiny| =¢e* =|e’ | =e™™®
and
arg(e®) =arg(e*(cosy+isiny)) =y+2kr, keZ.
If z isin polar form, i.e. z=r(cosd+isin#), then using (8.4), we have that z = re”
Proposition 8.2.1
Let z,we C. Then
(I) eZ+W — eZ.eW
(ii) e* =iz
e
z-w Z AW ez
iii)e " =e’e"=— O
(iii) -



Example 8.2.1

1. For each of the following, compute e*,|e” | and arg (e*):

@ 2=3-i% (b)z:i%ﬁ © z=1+i (d) z=-r

2. Find the exponential form of each of the following:

@) z=-73+7i (b) z=1+i

3. Find the image of f(z)=e"on S={z:-1<x<1,0<y<nr}.
Solutions:

1. (a) e*=€"¥ :e3(cos§—isin§):e3(%—i§)

s let|=e™® =¢® and arg(ez)=y+2k7r:—%+2k7r, keZ.

(b) and (c) Exercise
(dye* =e ™" =¢", |e'|=e™ =¢ " and arg(e’) =0+ 2kz = 2kz, k e Z.

2
2. (@) 1=4(-74/3) +7* =196 =14 and tan’l(§):tan’1(%\/§):—%
Vs 57 i0 sz
.'.Q:Argz:—gwr:?:z:re =14e °

(b) Exercise

3. Note that S is a rectangular area

Consider any vertical line x=a, —1<a<1. Then,
f(z)=e*(cosy+isiny) =u=e*cosy, v=e?siny :u2+v2=(eé‘)2

which is a circle centred at (0,0) with radius e®. Since —1<a <1, it follows that

et<e? <el.

10



8.2.2. The Complex Logarithms and Powers

To define complex logarithm w=1logz, set w=logz =" =z. Expressing w and z as

w=u+iv and z=re", we get
e'e"=re” =e"=r and e" =¢"
=u=Inr and v=60+2kz =argz,
where Inr is the usual natural logarithm. Thus,
logz=In|z|+iargz, z#0 (8.5)

Definition 8.2.2

The principal value or principal branch of the complex logarithm, denoted Log z, is defined

by
Logz=In|z|+iArgz, z+0.
0
Example 8.2.2
1. Evaluate the following:
(@ log(L+1i) (b) log(-2)
2. Evaluate the following:
(@) Log(+i)  (b) Log(e™)
Solutions:
1. (a) Let z=1+i. Then [z|=+/2 and tan‘(1) =%
-~ logz=log(l+i) = In\/§+i(%+2kﬂj, keZ
(b) Letting z=-2 gives
logz=log(-2)=In|-2|+i(7z+2kz)=In2+i(x +2kx), ke Z.
2. (a) From part 1(a), we get Arg z :% — Log (1+i) =In~/2 +i %
(b) Letting z =e®" =1 gives Argz =0 so that
Log z=Log(e*")=1In1+0i=0.
A

11



Recall that the logarithmic function given in (8.5) is not single-valued because argz takes on

a different value in a specified range. In fact, for every real number «, we can specify that

a <argz < o+ 2. We can define the " branch of log z, denoted log,, z, by the identity
log, z=In|z|+iarg, z,

where log, ze (o, +27).

NOTE: When « =-x, we get the principal value of the logarithm.

Definition 8.2.3

For any non-zero complex number z, we define the complex power as

Za — ealogz

where log z is as defined in (8.5). If we choose the principal logarithm, then
7% =97,
Example 8.2.3
1. Evaluate the following using the principal branch of the logarithm:
@ ) (i) ()
2. Find the solution of the equation z**' = 4.

Solutions:

1. (i) Letand z=—i. Then, Logz:ln1+i(—%)=—i% so that

[N

2% = (i) = %) — o158 _ g3 (cos s —isin5) = —ie?
(ii) Let a=iand z=-1.Then, Logz=In|-1|+iz=Iix.

st =gl =g,

12



1
2. M =4 =z =41 =4

Since log4 =1In4+i2kz, we have that

7 = 4%—% _ e(%—i%)log4 _ e(%—i%)(ln4+i2k;r) e(%—i%)(ZanJriZk;z) _ e(ln2+k7r)—i(ln2—kn)

=" (cos(In2—kx)—isin(In2—kx))
=e"?e"(-1)* (cos(In2)—isin(In2)), by Trigonometric identities
= (-1)*.2e"" (cos(In2) —isin(In 2)).

We can also solve this equation by taking logs on both sides.

A
8.2.3. The Complex Trigonometric and Hyperbolic Functions
By Euler’s identity
e =cos@+isin@ (i)
= e =cosf—isiné (ii)
Solving (i) and (ii) simultaneously for cosé@ and siné, we obtain
i0 —i6
cosg =2+
el _gi0 (8'6)
sin@ = -
2i
We can also write cosz as
ei(><+iy) +e—i(x+iy) e—y+ix +ey—ix
cosz = =
2 2
_e(cosx+isiny)+e’(cos—isiny)
2
e’+e’ ) .. el —e”’
= COS X —isinx
2 2
=cos xcosh y—isin xsinhy,
i.e.
COS Z = COS Xxcosh y —isin xsinh y. (8.7)
Similarly,
sinz =sin xcosh y +icos xsinhy (8.8)

13



Definition 8.2.4

For any a complex number z, the hyperbolic cosine and sine are defined as

Z —Z

e’ +e
coshz =

= cosh xcos y +isinh xsiny

and

z -7

. e
sinhz =

=sinh xcos y+icosh xsiny

Proposition 8.2.2

Let z,2,,Z, €C. Then
(i) cos(-z)=cosz and sin(-z)=-sinz
. sinz .
(if) tanz=——, provided cosz =0
COSZ
(iii) €* =cosz +isinz
(iv) cos*z+sin®z=1
(v) cos(z +z,)=cosz cosz,—-sinzsinz,
(vi) sin(z, +z,) =sinz, cosz, +sin z,cos z,
2 _1l+cos2z

Vil Cos‘ z =
i :
wiiiy  sin? zz—l‘cgszz

Proposition 8.2.3

Let z,2,,z, € C. Then

(i) cosh(iz)=cosz and cos(iz)=coshz
(i) sinh(iz)=isinz  and sin(iz)=isinhz
(iii) cosh? z —sinh? z =1

(iv) cosh z = cosh xcos y +isinh xsin y

(v) sinh z =sinh xcos y +icosh xsin y
(vi)tanh(iz)=itanz = and  tan(iz)=itanhz

(vii) coth(iz)=—icotz  and  cot(iz)=—icothz

14



Example 8.2.4
Compute cosz, sinz, coshz and sinhz for each of the following:
(a) z2=2+irx (b) z=i2%

Solutions:
(@) z=2+ir = cosz=cos(2+ir)=cos2coshz—isin2sinhz

sinz =sin(2+ixz)=sin2cosh 7 +icos2sinh
cosh z =cosh(2+ix)=cosh2cosz +isinh 2sin 7 = —cosh 2

sinh z =sin h(2+i7r) =sinh 2cos 7 +icosh 2sin 7 = —sinh 2

(b) Exercise

8.2.4. Inverse Trigonometric and Hyperbolic Functions

iw —iw

. ) —e
If w=sin"z, then z=sinw=

2i
=e"_—e™_2iz=0

N2 i .
:>(e'W) —2ize™-1=0
= e" =iz ++/1- 72
:iw:log(izixll—zz),

ie. w=sintz=-i Iog(iz ++/1- 22 )

Similarly,

arccos z = —i log (z +/2° —1)

arctan z = - log 1_!2 . Z# T
2 1+iz

cosh™z = Iog(z ++/7° —1)

sinh™tz= Iog(z ++/2° +1)

tanhtz == log (H—Zj
2 1-z

where specific branches of a square root and logarithmic function are used.

15



Example 8.2.5

Evaluate
(@) arcsin(i) (b) cosh™(1+i)

using the principle argument.

Solutions:

(a) arcsinz =—i Iog(izi\/l—T) = arcsin (i) =i Iog(izi\/l—T)z—i Iog(—li\/i)

Let w, =—1++/2 and w, =—1—+/2. Then, Argw, =0 and Arg w, =z so that
Log w, :In‘—1+\/§‘ and Log w, :In‘—l—\/i‘ +ir,

ie. arcsin(i)=—i In‘—l+\/§‘ or arcsin(i)=—i(|n‘—1—\/§‘+i;z)=;z—i|n‘1+\/§‘

(b)
cosh™z= Iog(z ++7° —1) = cosh™ (1+i) = Iog((1+ i)+ (1+ i)2 —1) =log (1+i +/-1+2i )

Let w=-1+2i. Then, Arg w=7-1.107=2.03. Thus,
Logw=In+/5+2.03i=1In5+2.03i and
J15 21 = ebtoow = gilins 203 _ gindBarossi _ 4/5 0001 015+ 4/55in1.015

cosh™* (1+1) = Log (1+i + /5 c0s1.015+i 4/55in1.015) = Log (1+i+0.789+1.270 i)

= Log (1.789 +2.270 i)
=In2.890+0.903 i

Or cosh™(1+i)= Log (1+i~({5cos1.015+i 5sin1.015))

= Log (1+i—(0.789+1.270 i))

= Log (0.211-0.247 i)
=In0.325- 0.864 i.

16



8.3. ANALYTIC FUNCTIONS

Before we develop the theory of functions of a complex variable, we give basic properties of

subsets of the complex plane.

Definition 8.3.1

Let r > Qbe a positive real number and z, be a point in the plane. The r —neighbourhood of
Z,, denoted B, (z,), is the set of all complex numbers z satisfying |z —z,| <r. It is sometimes

called open disc.

YA P A
4 -—_z:; D z—zp|l=r T |'f/r 2':U'\\'I
-LE —zo|=
> — <
B zn) ]
] =3 ¥ >
Open disk Closed disk

Definition 8.3.2

Let Sbe asubset of C. Apoint z, in S is called an interior point of S if we can find a

neighbourhood of z, that is wholly contained in S. A point z in the complex plane is called

a boundary point of S if every neighbourhood of z contains at least one point in S and at

least one point not in S. The set of all boundary point of S is called the boundary of S.

-
TN RN TR T Y B, '
| TR TR PR o P YO PO 1Y
_;/

O]

‘a.v

z is an interior point of B, (z,) while z, is a boundary point

Definition 8.3.3

A subset S of the complex number is called open if every point in S is an interior point of S.

%
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Definition 8.3.4

A set S is connected if every pair of points z, and z, in S can be joined by an unbroken line

consisting of a series of straight lines joining end-to-end each lying entirely within S.

Definition 8.3.5

1. Let f beacomplex-valued function defined on a subset S. We say that a complex

number L is the limit of f as z approaches z, and write

limf(z)=L or f(z)>L as z—>z,

-7,

if for any given & >0, there exists ¢ >0 such that

zeSand 0<|z-2,| <6 =|f(2)-L<e
2. The function f is continuous at z, if and only if f(z,) exists and

!Lrgf(z):f(zo). o

Proposition 8.3.1

(i) If the limit of a function f exists at a point z,, then it is unique.

(ii) If f(z)=u(xy)+iv(xy)and z, =X, +iY,, then

lim f (z)=w, =u,+iv,, ifand only if

77,
lim u(x,y)=u, and lim v(x,y)=v,..
(x,Y)>(%,Yo) (x.y)=Uo (x.Y)>(%.Yo) (x.¥)=Vo

(i) lim(f(z)+g(z))=lim f(z) + limg(z)

(iv) ZIinzw(cf (z))zczlirp f(z)
(v) lim(f(2).9(z))=lim f(2) limg(2)

18



Example 8.3.1

1. Evaluate the following limits:

7 . 2743
a) lim (z°-z b) lim| £ c) lim———
( ) za(l+2i)( ) ( ) zao(zj ( ) 72— ZZ+Z+1

2

2. Determine the point where f(z)= ZZ+4

z2°+9

is not continuous.

Solutions:

1. (a) Using Proposition 8.3.1, let z=x+iYy.Then,
f(z):(x+iy)z—(x+iy):(xz—x—y)+i(2xy—y)
su(xy)=x*—x-y* and v(xy)=2xy-y

lim u(x,y)= lim (x¥-x-y*)=-4 and lim v(x,y)= lim (2xy-y)=2

(x,y)~>(1.2) (x,¥)—>(1.2) (x,y)~>(1.2) (x,y)=>(1,2)

lim )(22 —z)=—4+ 2i

z>(1+2i

Note also that, we can evaluate the limit ‘directly’.
lim (z°-z)=(1+2i) —(1+2i)=—4+2i.

z>(1+2i)

(b) If z=x+1iy, then

X—iy x—iy_ X2 —2xyi—y°
X+iy X—iy xX2+y?

zZ
z

Note that

2 2
. X" — : —2X
lim > yz and lim 5 y2
xy->00{ X* +y =00 X°+y

z

do not exist along different paths. Therefore, Iirrg(
z— 7

j does not exist.

(c) lim— =lim L=
27" +241 oel++5 14040

22+3i I+% 040 0
1

2

z°+4 . . . .
" is not continuous at point(s) where z2°+9=0 = z==+3i.
Z°+

2. The function f(z)=

A
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Definition 8.3.6

A complex-valued function f is said to be differentiable at z=2z, in adomain D if

”m(wj: iim ( f(z+42)-1 (zo))

Az

exists and is denoted by '(z,). If f is differentiable at every point of the domain D, then

f is said to be analytic in D. A function analytic on the whole complex plane is called an
entire function. 0

Theorem 8.3.1 (Cauchy-Riemann Equations)

Suppose that f =u+1iv isanalytic on a domain D. Then throughout D, we have

ou ov ou ov
and —=

Xy Yl (8.9)

Corollary 8.3.1

If f(z)=u+iv and the partial derivatives are continuous on D and satisfy Cauchy-Riemann

equations (8.9), then f is analytic on D.

O
Remark 8.3.1
Cauchy-Riemann equations (8.9) imply that
f'(z)=u +iv, or f'(z)=v, —iu,. -
Example 8.3.2
1. Show that

(a) f(z)=¢ (b) f(z)=sinz
are entire functions.

2. Show that
(@ f(z)=1 (b) f(x+iy)=x*+i(2y+x)

are not analytic on C.

3. Determine the set on which the following functions are analytic and compute their

complex derivatives:
@ f(z)=—= () f(z)=|z

20



Solutions:
1. (@) f(z)=e’=e*(cosy+isiny)=u(x,y)=e*cosy and v(x,y)=e*siny.

Using Cauchy-Riemann equations, we have that

ou ou « N . o
—=ecosy, —=-e"siny, —=e"siny and —=e*cosy
OX oy OX oy

ou ov ou ov
—=— and —=-—.

X oy oy  ox

Therefore, f(z)=e’ is entire.
(b) f(z)=sinz=sinxcoshy+icosxsinhy
=u,(x,y)=cosxcoshy; u,(x,y)=sinxsinhy; v (x,y)=-sinxsinhy and v, (x,y)=cosxcoshy

U (X y)=v,(xy) and u (X, y)=-v,(xY)
Therefore, f(z)=sinz is entire.

2. (@ f(z)=7=x-ly :a_u:La_u:O,@:O and @:—1.Since .'.a—u;é@,the
ox oy X oy ox %y

function f(z)=7 is notanalytic on the whole C.

2

(b) f(x+iy)=x’+i(2y+x) =u(xy)=x* and v(X,y)=2y+X.

=u, (X y)=2% u,(xy)=0; v,(x,y)=1 and v,(x,y)=2.

Clearly, u, =v, and u,=-v, implyingthat f(x+iy)=x*+i(2y+x) isnot
analytic on the whole C.
-1
(z +l)2 '

3. (@ f(z)= zi+1 is analytic everywhere exceptat z=-1and f'(z)=

(b) f(z):|z|2=x2+y2+0i =u(xy)=x*+y*> and v(x,y)=0

= U, (X, Y)=2% u,(x,y)=2y; v,(x,y)=0=v,(xY).
Therefore, Cauchy-Riemann equations are only satisfied at z=0 and at that point

f'(z)=0.
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8.4. COMPLEX INTEGRATION

The integral of a complex function f(z) with respect to the complex variable z involves
integrating a function f(z) along a curve C in the complex plane. The curves we generally

consider are unbroken paths in the complex plane. If these paths are of finite length, we call

them arcs.

Definition 8.4.1

1. A smooth arc is an arc that does not intersect itself.

Smooth arc Smooth arc Not smooth arc

2. A smooth closed curve is a closed curve that consists of only one loop.

Smooth closed curve Not smooth closed curve O

In short, smooth curves fall into two categories: smooth arcs, which have distinct endpoints,

and smooth closed curves, whose endpoints coincide.

For any smooth arc or smooth closed curve, we can specify which endpoint is the initial point

thereby specifying the ordering of points. In this case, we have a directed smooth arc or a
A

directed smooth closed curve.

’\I\/ Initial point@
L >

o

Initial pointl

v

Directed smooth arc Directed smooth closed curve

Definition 8.4.2

A contour T is either a single point z, or finite sequence of directed smooth curves 7,,7,,....7,
such that the terminal point of y, coincides with the initial point of y,,, for each
k=12,...,n—1. Thatis, T=,,%,, ¥, o

NOTE: 1. Asingle directed smooth curve is a contour with n=1.

2. Some nonsmooth closed curves can be broken into smooth pieces.
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Definition 8.4.3

1. Arvregion Q, issaid to be x—simple region if any line in Q, drawn parallel to the y —
axis cuts €, only twice. Similarly, aregion Q is y—simple if any line in Q drawn

parﬂllel to the x—axis cuts Q, only twice.

N4 “(
o )

v

[
»

X —simple y —simple

2. Aregion Q which is both x —simple and y—simple is called a simple region.
A

Simple region O

v

Example 8.4.1
1. Find an admissible parametrisation of each of the following smooth curves:

(@ C fromz=2-2i to z=2+2i
(b) the circle of radius 2 centred at 1—i.

2. Parametrise the contours given below:

(@) (b)

Solutions:
1. (a) C isavertical straight line from z=2-2i to z=2+2i implying that
z(y)=2+iy, —2<y<2.
(b) Using the angle & as the parameter, we have that

2(0)=1-i+2e", 0<@<2r.
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2. (&) Since the initial point of y, is (0,0) and the terminal point is (1,0), we have that
7 o(t)=t, 0<t<l,
Similarly, taking into consideration the direction, we note that y, is a straight line
y=1-x implying that x=1-y. Letting y=t gives x=1-t.

Sy, () =1-t+it, 0<t<1

and
Vs (1) =(1-1)i, 0<t<1.
Therefore,
z,(t)=t
z(t) =qz,(t) =1-t+it
2,(t) = A-1)i
for 0<t<1.

(b) Note that the contour is a semicircle centred at the origin with radius p. Thus,

i0
2(0) ={"e
—pCcosé

for 0<t< .

8.4.1. Line Integrals

A popular method for evaluating complex line integrals consists of breaking everything up into

real and imaginary parts. Writing f(z) as f(z) =u(x,y)+iv(x,Yy), where z=x+iy gives
jc f (z)dz :L[u(x, y)+iv(x, y)]d (x+iy)

= L u(x, y)dx—v(x, y)dy +i _[C v(x, y)dx+u(x, y)dy (8.10)

NOTE: Evaluation of (8.10) depends on the specified path.

From the definition of the line integral, we have the following properties:
1. jc f(2)dz =—L, f(2)dz

where C' is the contour taken in the opposite direction of C.
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2. Lﬁcz f(z2)dz = jcl f(z)dz + jcz f (2)dz.

Example 8.4.2

1. Evaluate Lfdz from z=0 to z=4+2i along two contours C,(consisting of the

curve X = y2) and C, (consisting of C,, and C,,)

N

C‘;all

—
e

2. Evaluate L z°dz from z=0to z=2+i along two contours C, and C, (consisting

of C,, and C,)
1
/’/
/(;‘/ (:‘.'b
/-// C,.
- ;¥

1. Parametrising x = y*, we have that letting y=t implies x=t> and z = x+iy=t*+it.

Solutions:

The point z=0 corresponds to y=t =t=00r x=t> =t=0 and point z=4+2i

correspondsto y=t =>t=2 or x=t> =>t=2.
Thus, along C,,
Iclfdz = jcl (t2 —it)d (t* +it) = _[Cltzdx+tdy+ i Iq —tdx +t%dy
= jc t2(2t)dt +tdt +i L —t(2t)dt +t%dt

(203 ) 2_2
_jo (2t +t)dt+|j0 t2dt

_l(t4+t2)‘2+i __ts 2
2 0 3

:10—§i.
3

0
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Along C,,, x=0,0<y<2 = z=iy, 0<y<2.
'[Czafdz = Lza—iyd (iy)= '[Cza—i(—y) dy+ i Lza—ydx
2
= |, vdy
=2
Along C,,, 0<x<4,y=2 = z=x+2i.
j%zaz =jczz(x—2i)d (x+2i)=L2axdx+2dy + iLza —2dx + xdy
4 .4
:I xdx+|j —20dx
0 0
=8-8i.
Thus,
I Zdz :J' 7dz+j Zdz=2+8-8i=10-8i.
C2 CZa CZb

2. Along C,, yzg and letting t =y implies that x =2t = z=2t+ti. The point z=0 and

z=2+icorrespondto t=0 and t=1.
2 . .
jcl 2%dz :jcl(ztm) d (2t+t|)=jcl 3t2(2dt)—4t2dt+|jcl 42 (2dt) + 3t2dt

- jolztzdt+i joliitzdt

1 1

:Zt?’
3

+i 1—lt3
0 3

Along C,,, y=0,0<x<2 =z=%, 0<x<2.
I zzdz:J‘zxzdx:§
Csa 0 3
Along C,,, x=2,0<y<1 = z=2+1iy.

ICZb 72 dz =IC22 (4-vy? +4yi)d(2+iy)=jc (4_y2)dx—4ydy + iIC2a4ydx+(4_yz)dy

:j:—4ydy+ijj(4—y2)dy
:—2+1—1i.
3

Thus,

jczzzdz=Lzazzdz+Lszzdz=§—2+§i=§+§i. R



Note that the integrand for question 1 of example 8.4.2 contains a nonanalytic point along and
inside the region enclosed by two curves and that integration along two different paths gives
different results. Note also that since the integrand for question 2 is entire, the result is the same
along different paths. In general, if the integrand is nonanalytic, then integration depends on
the path chosen and if the integrand is analytic, then integration can be evaluated along any

path.

Theorem 8.4.1

Let f(z) be analytic in a simply connected domain D. Then, if y is any arc lying entirely in

D with initial point z, and terminal point z, then the antiderivative

F@)=[ f(©de=[ f()ds

is a single-valued analytic function of z independent of » and such that F'(z) = f (2).
O

Theorem 8.4.2

Let f(z) be analytic in a simply connected domain D and F(z) be an antiderivative of f(z).

Then, for any two points z, and z, in D
j f(z)dz=F(z)-F(z,).

Example 8.4.3
Evaluate each of the following:

2431 | 43
(8 [ sinh3zdz (b) [ ez

1-i

Solutions:
(@) Theintegrand f(z)=sinh3z is analytic in the finite z—plane.

2+3i

Lz+3i5inh 37dz = %cosh 3z = %[cosh (6+9i)—cosh3]|= %(cosh 6c0s9—cosh 3)+%isinh 6sin9.
1

(b) Note that f(z)=e"* is entire. Thus,

1+3i 1+3i
J'l efdz=—e" =
-1

—(e’(1+3i) - e’(“)) =e*[(cos1-cos3)+i (sin1+sin3) ]

1-i
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We now consider line integrals involving closed contours. These line integrals will be denoted

by gS

Example 8.4.4

1. Evaluate cjsczdz along C given below:

‘ )
1) )

G

=10 G (LO))

- -X

©0-1 76
2. Evaluate cﬁcsinzdz along C given below:
Ya
df~—~ T,
(;4v A c,
c - ¢
a b X

1
z-1,

3. Evaluate Sf)c dz, where C is a directed contour |z—z,|=R, R>0.

Solutions:
1. Along C, z=ly

1

Along C,, z=x

1

IC zdz ='|.0_1xdx:
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Along C,, z=¢€", -7 <6<

N

J;3 zdz = j_ie“’ d (e‘e) = fﬂ ie’e’do=i J'_ie”‘ do= %e”‘ : =-1

-

QJS zdz =J.qzdz+jczzdz+jcgzdz =%+%—1=0.

2. Recall that if z=x+1y, then sinz=sinxcosh y+icosxsinhy.
Along C,a<x<b, y=c
L sin zdz :_[bsin xcoshcdx+ijbcosxsinhcdx =coshc(cosa—cosb)+isinhc(sinb—sina)

Along C,, x=b, c<y<d,
[|_sinzdz = ["~cosbsinhydy+i [ sinbcoshydy = cosb(coshc —coshd) +isinb(sinhd —sinhc)

Since C, is taken in the opposite direction of C, and C, is taken in the opposite

direction of C,, we have that
'[ sinzdz:—j sinzdz and j sinzdz:—j sinzdz.
Cs o c, c,

Therefore,

qicsinzdz :J.C sinzdz+.[C sinzdz+L sinzdz+‘|'C sinzdz
:J.Clsin zdz+Iczsinzdz—Lssinzdz—LASinzdz
=0.
3. Parametrising |z —z,| <R, we get

z2-2,=Re” =>z=7,+Re", 0<0<2rx

H i0
wf = [T R do=i["do=27i,
cz-12, ° z,+Re" -1z, 0 A

8.4.2. The Cauchy-Goursat Theorem
The Cauchy-Goursat theorem helps to determine the value of the integral, in some instances,

without resorting to the elementary evaluations.
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Definition 8.4.4

The point z, is said to be a singular point or singularity of f(z) if f(z) is not analytic at z,,
but is analytic in at least part of every neighbourhood of z,.

z, is called an isolated singularity if f(z) is analytic in every neighbourhood of z,, except at

Z,. o
Example 8.4.5
Determine the singular points of each of the following:
2(z+1 1
2 2 ) (b) f(2)=——
(2% +3) (2°-1) sin(3)

@ f(2)=

Solutions:

(@ f(z) has isolated singularities at (z2 +3)2(z2 —1):0, that is, at z=+/3i and z=+1.

(b) f(2) hasisolated singularity at sin()=0= % =nzor z= ni neZ /{0}, and also
T

L . i 1
at z=0, which is an accumulation point of z=—.
nz

Theorem 8.4.3 (Green’s Theorem for a Simple Region)

Let  be a simple region in the xy —plane with a boundary Y that is traversed such that the
area of Q lies to the left as Y is traversed in the positive sense. Then, if P and Q together

with their derivatives are continuous is Q and on Y, then

”Q(%—%jdxdy = L Pdx+Qdy

Using Theorem 8.4.3, we notice that if f(z) =u(x,y)+iv(x,Yy), inasimply connected
domain D, then

cﬁc f(z)dz= Sﬁcu(x, y)dx—v(x,y)dy+i gﬁcv(x, y) dx+u(x, y)dy,

where C is a smooth closed curve. Assuming that f(z) is analytic and that f'(z) is
continuous in D, then

gSc f(z) dz =—ﬂD[%+%“]dxdy+iij(g—i—%jdxdy
=0,
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Since u(x,y) and v(x,y) satisfy Cauchy-Riemann equations. Thus, we have the following
theorem:

Theorem 8.4.4 (Cauchy-Goursat Theorem)

If f(z) isanalytic in a simply connected domain D and also on its boundary C which is a

smooth closed curve, then
SBC f(z)dz =0.

Example 8.4.6

We can use the Cauchy-Goursat theorem to evaluate integrals for question 1 and 2 of example
8.4.3. Note that in each case, f(z) is entire and so

'[Czdz:O and _[Csinzdz:o.

But question 3 had f(z) =

, which has a singularity at z =z, in the circle |[z—z, =R|.

0

Thus,

45 L 4= 2xizo0.
cz-1,

Example 8.4.7
Evaluate each of the following:

(4-2i)z* +(2-5i)z+3-2i
L 95‘3 (22+1)(z+2) az,

where C is the directed contour (i) |z—i|=1 (ii) |z+2|=1.

-z

2. dz, where C isa unit circle centred at the origin.

Cy7_x
z 2

Solutions:

1. The singularities if f(z) are z=+i and z=-2. Decomposing f(z) into partial
fractions, we get
f(2) = ! _+1_|_+ 3
Z——1 z+i z+2

) f@dz=—i, ——dz+(1-i) ——dz+3f ——
C Cz—i Cz+i Cz+42

dz.
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(i) Since z=—i and z=-2 lie outside the circle |z—i|=1, we have that

i_dz =0= Ldz.
Cz+i Cz+2

<_f>c f(z)dz =—i(27i)=2x.
(i)  Only z=-2 lies inside the circle |z+2|=1. Thus,

<j’>c f(2)dz =~i(0) +(1~i)(0) +3(27i) = 6i.

2. Note that the only singularity z :% lies outside |z|=1.

The Principle of Deformation of Contour: The value of a line integral of an analytic function

around any simple closed contour remains unchanged if we deform the contour in such a

manner that we do not pass over a nonanalytic point.

Example 8.4.8

. : 1 .
Consider the integral of f(z) =7 around the contour consisting of a square centred at the

origin with vertices (1,1), (1,-1), (-1,1) and (—1,—1). Note that direct integration of gsc% is

very cumbersome. We can deform the original contour into a circle centred at the origin with

radius 1.

(1) 1)

-
v
x
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In this case, we get the same answer as long as the deformed contour encloses the singularity
of f(z). Thus,

d d .
Cj)c?zzcﬁcrzozzm'

8.4.3. The Cauchy’s Integral Formula

Suppose that g is defined as

f@-f@) ,,,
9(z) = L—1, ,
f'(2), z=1,

0

where z, e D and not on C. Then, g is continuous in D and the point z, is a removable

singularity. Also, g is analytic in D except at z = z,. Thus, by Cauchy-Goursat theorem

(j)cg(z)dz:O.
:@C%;(Zo)dz =0

:qscﬂdz = gSCﬂ dz = f(z,)¢,  a

-1, -1, -1,

Assuming that z, lies inside C gives

$ M@ 4 —2zi t(2,).
cz-1,

Thus, we have the following theorem:

Theorem 8.4.5 (Cauchy Integral Formula)

Let f(z) be analytic inadomain D and let C be a smooth closed contour in D taken in the

positive sense. Let z, be a pointin D noton C. Then,

1 f(z
(@)=, 2
midcz—z

dz (8.11)
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Example 8.4.9

Evaluate each of the following:

2°+3z-1 : :
CJSC(z—l)(z+1—i)dZ' where C is [z+1-2i[=1.

cos(rzz , , : ,
2. zAmcj)C 2(”1) dz, where C isarectangle with corners at =i and 2+i.
z

Solutions:

1. Note that only z, =—-1+i lies inside C. Letting

22 +3z-1

M@=

(—1+i)2+3(—1+i)—1_g+gi
~1+i-1 5 5

2
§ oL dz:27rif(—1+i):2ni(g+gij:—4—”+w—”i.
¢(z-1)(z+1-i) 5 5 5 5

implies that f (—1+i)=

2. Note that only z, =1 lies inside C.

R ICL) PR IO Y
7l C Z _1 Tl C Z—l
where
f(z):M: f(l)zmz_l_
1+1 2

_ cos(zz) 1 , 1
: Z%igsc ) dZ_Zﬁi(Zﬂl)f(l)__E'

By taking n derivatives of (8.11), we can extend the Cauchy’s Integral Formula as the next

theorem shows:
Theorem 8.4.6

Let f(z) be analytic inadomain D and let C be a smooth closed contour within D taken

in the positive sense. Then, for all points z, interior C,

I
(z)) 27

$ '@ 4, n-012,.
“(z-1,)
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Example 8.4.10

Evaluate
0 htge © e ©f

on [7)=2.

Solutions:

@) (ﬁcmdz: ‘JSC(: —(21))2 dz, where f(z)= Ze_ZB.

gS f(2) dz:z”if'(l)zzm e'(1-3)—¢' :—3Leli
' °(z-1) 1! (1-3)? 2

(b) Since only z, =1 lies inside C, letting f(z)=2z* implies that

dZ:ZE

@c(z_l)“ 3l

L $7@) =0.

THE END!
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(z+i)3

dz



