The University of Zambia Department of Mathematics and Statistics MAT 4119 - Engineering Mathematics III Tutorial Sheet 4

2023

- 1. Using $\sin(0.1) = 0.9983$ and $\sin(0.2) = 0.19867$, find an approximate value of $\sin(0.18)$ by Lagrange interpolation. Obtain a bound on the truncation error.
- 2. Evaluate $\sqrt{155}$ by using Lagrange interpolation formula from the following data:

X	150	152	154
$y=\sqrt{x}$	12.247	12.239	12.410

3. The following table gives the normal weight of a baby during the first six months of life. Use Newton's divided difference formula to estimate the weight of the baby at the age of 4 months.

Age in months	0	2	3	5	6
Weight in Kg	3.0	3.7	4.5	5.2	6.3

4. Approximate f(0.05) and f(0.65) using the following data and the Newton forward- or backward- difference formula:

X	0.0	0.2	0.4	0.6	0.8
f(x)	1.00000	1.22140	1.49182	1.82212	2.22554

5. Using Newton forward- or backward- interpolation find the annual premium at the ages of 27 and 33 from the following data:

Age in years	24	28	32	36	40
Annual premium	28.06	30.19	32.75	34.94	40

- 6. Given the data (0,0), (1,1), (2,4), fit a quadratic spline to the function f defined by this set of points and use it to approximate f(1.5).
- 7. Given the data f(0) = 0, f(1) = 1, f(2) = 2,
 - (a) construct the natural cubic spline S that interpolates the data.
 - (b) determine the clamped cubic spline S that interpolates the data and satisfies S'(0) = S'(2) = 1.
- 8. A natural cubic spline S on [0,2] is defined by

$$\begin{cases} 1 + 2x - x^3, & \text{if } x \in [0, 2] \\ 2 + b(x - 1) + c(x - 1)^2 + d(x - 1)^3, & \text{if } x \in [1, 2]. \end{cases}$$

Find the values of b, c, and d.