The University of Zambia Department of Mathematics and Statistics MAT 4119 - Engineering Mathematics III Tutorial Sheet 5

1. Consider the table of data below

X	0.2	0.4	0.6	0.8	1.0
f(x)	0.9798652	0.9177710	0.8080348	0.6386093	0.3843735

- (a) Use all appropriate formulas to approximate f'(0.4) and f''(0.4).
- (b) Use all appropriate formulas to approximate f'(0.6) and f''(0.6).
- 2. Let $f(x) = x^3 e^{x^2} \sin x$. For h = 0.1 and h = 0.01, approximate f'(2.19), using central difference formula and the three-point endpoint formula.
- 3. Let $f(x) = \cos \pi x$. Use the values of f(x) at x = 0.25, 0.75, 1.0, h = 0.01, and the
 - (a) approximation formula

$$f'(x_0) = \frac{1}{12h} [f(x_0 - 2h) - 8f(x_0 - h) + 8f(x_0 + h) - f(x_0 + 2h)] + \frac{h^4}{30} f^{(5)}(c),$$

where $x_0 - 2h < c < x_0 + 2h$,

(b) central difference formula

to approximate f'(0.5). Find a bound for the error in each case, and compare the results.

4. Suppose the following data has been experimentally collected.

X	1.00	1.01	1.02
f(x)	1.27	1.32	1.38

- (a) Use the centered difference formula and the three-point mid-point formula with step values h = 0.1, 0.001, to approximate
 - (i) f'(1.005) and f'(1.015).

(ii) f''(1.01).

(b) Find the maximum error in each case.