The University of Zambia Department of Mathematics and Statistics MAT 4119 - Engineering Mathematics III Tutorial Sheet 3

May 2024

1. For each of the following, the equation f(x) = 0 has been written in the form x = g(x). Determine which ones converge to a fixed-point in the specified interval:

(a)
$$g(x) = \frac{5}{x^2} + 2$$
 on [2.5,3]. (b) $g(x) = \pi + 0.5 \sin\left(\frac{x}{2}\right)$ on $[0, 2\pi]$.
(c) $g(x) = 2^{-x}$ on $\left[\frac{1}{3}, 1\right]$. (d) $g(x) = \frac{2 + x^2 - e^x}{3}$ on $[0, 1]$.
(e) $g(x) = (20 - x)^{\frac{1}{3}}$ on $[2, 3]$.

2. Most functions can be rearranged in several ways to give x = g(x) with which to begin the fixed-point method. For $f(x) = e^x - 2x^2 = 0$, one g(x) is $x = \pm \sqrt{\frac{e^x}{2}}$.

- (a) Show that this converges to the root near 1.5 if the positive value is used and to the root near -0.5 if the negative value is used.
- (b) There is a third root near 2.6. Show that we do not converge to this root even though values near the root such as $x_0 = 2.5$ or $p_0 = 2.7$ are used to begin the iteration.
- (c) Find another rearrangement that does converge correctly to the third root.
- 3. Use the function $g(x) = (20-x)^{\frac{1}{3}}$ to solve the equation $x^3 + x = 20$, using the fixed-point iteration method in the interval [2, 3] with $x_0 = 2.4$ to a 5% error.
- 4. Find the real root of $2 4x + \cos x = 0$, by Newton Raphson method up to four decimal places, assuming $x_0 = 0.5$
- 5. Use the Newton-Raphson method and the Secant method to find solutions accurate to within 10^{-4} for each of the following problems, starting with the given x_0 .
 - 1. $x^3 + 3x^2 1 = 0$, $x_0 = -3$.
 - 2. $4e^{-x}\sin x 1 = 0$, $x_0 = 0.336$.
 - 3. $\ln(x-1) + \cos(x-1) = 0$, $x_0 = 1.3$.
 - 4. $2\sin x 2^{\frac{x}{4}} 1 = 0$, $x_0 = -5$.
- 6. Newton-Raphson method is to be applied for approximating a root of the nonlinear equation $x^4 x 10 = 0$.
 - (a) How many solutions of the nonlinear equation are there in $[1, \infty)$? Are they simple?
 - (b) Find an interval [1, b] that contains the smallest positive solution of the nonlinear equation.
 - (c) Compute five iterations of Newton-Raphson method, for each of the initial guesses $x_0 = 1$, $x_0 = 2$, $x_0 = 100$. What are your observations?

7. Find the multiplicity of each given zero of f(x) = 0. Hence, use the Modified Newton-Raphson's method to approximate the same zero starting with the given x_0 .

(a)
$$f(x) = (x+1)^3$$
, $x = -1$, $x_0 = 0$.
(b) $f(x) = (x-1)(e^{x-1}-1)$, $x = 1$, $x_0 = 0$.
(c) $f(x) = \left(x - \frac{\pi}{2}\right)^2 (\cot x - 1)$, $x = \frac{\pi}{4}$, $x_0 = \frac{\pi}{6}$.