The University of Zambia Department of Mathematics and Statistics MAT 4119 - Engineering Mathematics III Tutorial Sheet 5

- 1. For the given functions f(x), let $x_0 = 0$, $x_1 = 0.6$, and $x_2 = 0.9$. Construct Lagrange interpolation polynomials of degree at most two to approximate f(0.45), and find the absolute error.
 - (a) $f(x) = \cos x$ (b) $f(x) = \sqrt{x+1}$ (c) $f(x) = \ln(x+1)$ (d) $f(x) = \tan x$
- 2. Let $f(x) = \sqrt{x x^2}$ be a function and $P_2(x)$ be the Lagrange interpolation polynomial on $x_0 = 0$, x_1 and $x_2 = 1$. Find the largest value of the number $x_1 \in (0, 1)$ for which $f(0.5) P_2(0.5) = -0.25$.
- 3. Use the Newton forward-difference formula to construct interpolating polynomials of degree one, two, and three for the following data. Approximate the specified value using each of the polynomials.
 - (a) f(0.43) if f(0) = 1, f(0.25) = 1.64872, f(0.5) = 2.71828, f(0.75) = 4.48169
 - (b) f(0.18) if f(0.1) = -0.29004986, f(0.2) = -0.56079734, f(0.3) = -0.81401972and f(0.4) = -1.0526302
- 4. Use the Newton backward-difference formula to construct interpolating polynomials of degree one, two, and three for the following data. Approximate the specified value using each of the polynomials.
- 5. Using $\sin(0.1) = 0.9983$ and $\sin(0.2) = 0.19867$, find an approximate value of $\sin(0.18)$ by Lagrange interpolation. Obtain a bound on the truncation error.
- 6. Evaluate $\sqrt{155}$ by using Lagrange interpolation formula from the following data:

X	150	152	154
$y = \sqrt{x}$	12.247	12.239	12.410

7. The following table gives the normal weight of a baby during the first six months of life. Use Newton's divided difference formula to estimate the weight of the baby at the age of 4 months.

Age in months	0	2	3	5	6
Weight in Kg	3.0	3.7	4.5	5.2	6.3

8. Approximate f(0.05) and f(0.65) using the following data and the Newton forward- or backward- difference formula:

X	0.0	0.2	0.4	0.6	0.8
f(x)	1.00000	1.22140	1.49182	1.82212	2.22554

9. Using Newton forward- or backward- interpolation find the annual premium at the ages of 27 and 33 from the following data:

	Age in years	24	28	32	36	40
ĺ	Annual premium	28.06	30.19	32.75	34.94	40

- 10. Given the data (0,0), (1,1), (2,4), fit a quadratic spline to the function f defined by this set of points and use it to approximate f(1.5).
- 11. Given the data f(0) = 0, f(1) = 1, f(2) = 2,
 - (a) construct the natural cubic spline S that interpolates the data.
 - (b) determine the clamped cubic spline S that interpolates the data and satisfies S'(0) = S'(2) = 1.
- 12. A natural cubic spline S on [0, 2] is defined by

$$\begin{cases} 1+2x-x^3, & \text{if } x \in [0,2] \\ 2+b(x-1)+c(x-1)^2+d(x-1)^3, & \text{if } x \in [1,2]. \end{cases}$$

Find the values of b, c, and d.